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The tokamak periphery and GBS code Drift-reduced fluid equations implemented in GBS
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A new version of GBS for diverted geometry
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Numerical implementation in GBS:
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> Spatial accuracy: 4™ order centered finite differences scheme with the grid

staggered in the toroidal and vertical direction o o =
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>  Time evolution: 4t" order Runge-Kutta time stepping method L Kos Khe
> Non-field-aligned coordinate system is used to treat diverted configurations 300 . 300 = 800
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> The E x B velocity is self-generated by the plasma when the ions are heated up: the ion
pressure gradient increases as well as the diamagnetic ion velocity which is balanced by an

n increase of the E x B velocity

> By retaining only the dominant terms, the time and toroidal averaged vorticity equation
(figures below) is i%n b, w| + C(pe +71pi) + Vg =0

> By combining this equation with the time and toroidal averaged density equation, the

continuity equation for the ions is retrieved, where v, is the polarization velocity and it
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Particles are transported
to the divertor plates

Cut view of full-tokamak simulation

Conclusion and future plans
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> Full-tokamak simulations used to investigate the core-edge turbulence transport {o {o: |

> Analysis of the electric potential in the tokamak (SOL, edge and core) 0 I 1 . ez E

> Formation of Vg.p shear and preliminary study of the L-H mode transition. > : = =™ S 3
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> Expand the analysis with the simplified time and toroidal averaged equation . "/ ool 1 N s

> Determination of the heat flux impacting on the divertor plates m eoon A4 B T — -~ X ol E
> Effect of core-edge turbulence transport on SOL width ey T o e o A
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