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Abstract— Individuals with motor impairments typically
walk at much slower speeds than their unimpaired counter-
parts, yet their gait data is still evaluated against the relatively
faster gait of healthy subjects. Therefore a good understanding
of unimpaired gait at extremely slow speeds is needed for
comparison. Studies have shown that walking at very slow
speeds is quantitatively different from self-selected walking
speed. These modifications can be observed at different levels
(kinetic, kinematic, electromyographic). In order to better
understand the changes in walking at extremely slow speeds,
we recorded seven subjects walking at their preferred speed
and at speeds ranging from 0.11 m/s to 0.61 m/s. In this study,
we analyzed changes in muscle activations and quantified their
variability using the Pearson correlation coefficient. Confirming
previous observation, we show that both the inter- and intra-
subject variability of muscle activities increases with decreases
in walking speed, with a more pronounced effect for proximal
muscles. The inter-subject correlation of muscle activities also
suggests a modular organization of muscle activities in three
functional blocks at normal speed. This modular organization
vanishes with decreasing walking speed following a proximo-
distal gradient.

I. INTRODUCTION

Reported preferred walking speeds for healthy adults range
from 1.29 m/s to 1.40 m/s [1], [4], [5] while individuals
with gait impairments walk at much slower speeds (e.g.
SCI patients walk at speeds of 0.2 to 0.8 m/s [5]). Very
few studies have investigated whether the nervous system
controls muscles differently at very slow speeds than at self-
selected speeds. However, den Otter et al. demonstrated dif-
ferences in muscle activity (i.e. processed electromyographic
(EMG) signals) in some muscles at extremely slow speeds,
possibly due to increased difficulty of maintaining postural
stability at slower walking speeds [2]. Normative data of
healthy human slow walking neuromechanics is necessary
to better understand how to diagnose, assist, and rehabilitate
individuals with motor impairments. In this paper, we con-
tribute to the limited library of data of slow walking data in
humans and examine statistical similarities between muscle
activations both within and across subjects. We then use
similar measures to study the modification of the modular
organization of muscular activities as speed changes. We
hypothesize that such compensation strategies originate from
the nervous system and result in increasing variability of
muscle activities with decreasing speeds.
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II. MATERIALS AND METHODS

A. Experiment

To test if humans use different strategies when walking
at ultra-slow speeds, we asked seven healthy subjects (five
females and two males, 23 to 31 years of age, body mass
M = 63.8 ± 10.1 kg, leg length L = 0.85 ± 0.08 m,
mean ± s.d.) to walk on a treadmill at five different speeds
(0.11, 0.33, 0.5, 0.61 m/s, and at their self-selected speed)
for two minutes each with self-selected speeds ranging from
0.89 m/s to 1.14 m/s. Electromyographical (EMG) data was
collected from 8 muscles ( 1 - Tibialis Anterior (TA), 2 -
Soleus (SOL), 3 - Gastrocnemius (GAS), 4 - Vastus Medialis
(VM), 5 - Vastus Lateralis (VL), 6 - Rectus Femoris (RF), 7
- Semitendinosus (ST), and 8 - Gluteus Maximus (GMAX))
of the right leg at 2kHz (Delsys Inc., Natick, Massachusetts,
USA). To determine gait events, ground reaction forces
were recorded simultaneously at 1000 Hz (Motekforce Link,
Netherlands).

B. Data Analysis

Raw EMG signals were processed - high-pass filtered (f
= 10 Hz), full-wave rectified, and then low-pass filtered (f =
400 Hz) - to remove movement artifacts and compute muscle
activation profiles. Stance and swing phases were determined
based on the vertical ground reaction force with a threshold
of 10 N (stance if the GRF exceeded the threshold and in
the swing position otherwise). Swing-to-stance and stance-
to-swing transitions are referred as heel contact (HC) and toe
off (TO) events, respectively.

Muscles activation were time-normalized to the gait cycle,
defined as right heel-strike to right heel-strike.

Outlying trials were removed via the process described
in [3], i.e. if the maximum activation value of a muscle at
a time point of a gait cycle exceeded the median activation
plus 3 times the median absolute deviation (MAD) at this
time point, the entire step was removed. Finally, muscle
activations were normalized using the maximum recorded
muscle activation achieved over all steps at all speeds (after
the outlier removal process). Normalization of muscle acti-
vation signals was thus performed per subject and not per
speed.

C. Muscle activation variability measure

We extracted the intra-subject and inter-subject correla-
tions across speeds using the Pearson correlation coefficient.
We define three measures of similarity :

1) Intra-subject correlation C(m, c)intra.
For a given subject, a specific muscle m and speed c,



C(m)intra =
∑

(corr(A(m))− 1)/(N − 1) measures
the similarity of muscle activations within trials, i.e it
is a measure of how consistent the muscle activations
are within a specific trial. A(m) is a NxT matrix
where N is the number of strides and T is the number
of samples per stride (here we used T = 100), and
m specifies the muscle being considered. The Pearson
correlation function, corr, outputs an NxN matrix of
stride similarity.

2) Inter-subject correlation C(m)inter
This measure assesses, for a given muscle, m, the
similarity of the averaged muscle activity between
subjects at each speed and therefore measures the
similarity of the averaged muscles activation between
each subject. This measure is defined as: C(m)inter =∣∣(∑ corr(Aave(m)))−1

M−1

∣∣, where Aave(m) is a SxT ma-
trix of averaged stride muscle activation for each
subject s. Finally, S and T , are subject numbers and
sample numbers per stride respectively.

3) Cross-muscle correlation C(c)cross
This measure assesses - for a given speed condition
c - the similarity between the muscles and reveals us
about the modular organization of the muscle control.

Fig. 1. A. Left: inter-subject correlation, Right: intra-subject correlation.
B. ψ tells us if the similarity is higher for the averaged patterns across
subjects or within subjects (ψ > 0 means that the averaged EMGs patterns
are more similar between the subject than the EMGs patterns within the
subject, and vice-versa for ψ < 0). The figures shows that muscles become
less correlated at slower walking speeds. Distal muscles (SOL and GAS),
are more correlated than proximal muscles (GMAX and ST).

III. RESULTS

Our analyses show an increase in muscle activations
variability as walking speed decreases, see Fig.1 A, Left.
Interestingly, the trend is more pronounced for proximal
muscles than distal muscles. Fig. 1 A, Right shows the
similarity of the averaged muscle activations across subjects,
which also shows an increase in variability as the speed
decreases. As expected, patterns across subjects are very
stable across all speeds for the SOL and GAS. Interestingly,
the averaged patterns of those muscles is more similar when
compared between subjects than within a subject at slow
speeds, meaning that muscle activations show more vari-

Fig. 2. Inter-subjects muscle activities. Each block shows the correlation
matrices of the EMGs (averaged between subject) for the different speeds.
This shows us that there is a modular organization in the data.

ability between cycles but the overall patterns are conserved
within subjects, see Fig. 1 B.

The correlation analysis across muscles and subjects re-
vealed that the muscles activation are organized in three
different functional blocks (TA, SOL and GAS, hip muscles),
Fig. 2. The first and third blocks showed an increase in
correlation with increase in speed while the second block
showed high correlation at all speeds. Interestingly, the most
stable module at all speeds was the module responsible for
push off (i.e. acting on plantar-flexor muscles).

IV. CONCLUSION

Due to the possibly increased difficulty of maintaining
balance at increasingly slow walking speeds [2], we see
increases in muscle activation variability that could be the re-
sult of a higher degree of intervention from the nervous sys-
tem (via reflex loops or higher level control). This increase
in variability is correlated with decreases in speed, which
suggests that we might expect that the control strategies
used for self-selected walking speeds might be inadequate
to model or control slower walking speeds. Therefore gait
changes at very slow speeds, highlighted in this study, should
be considered when developing rehabilitation strategies for
motor impaired populations or designing assistive robotic
coworkers or humanoid robots.
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