
Kairos: Preemptive Data Center Scheduling
Without Runtime Estimates

Pamela Delgado1, Diego Didona1, Florin Dinu1,2 and Willy Zwaenepoel1,2

1EPFL, Switzerland 2University of Sydney, Australia

ABSTRACT
The vast majority of data center schedulers use task runtime
estimates to improve the quality of their scheduling decisions.
Knowledge about runtimes allows the schedulers, among
other things, to achieve better load balance and to avoid head-
of-line blocking. Obtaining accurate runtime estimates is,
however, far from trivial, and erroneous estimates lead to
sub-optimal scheduling decisions. Techniques to mitigate the
effect of inaccurate estimates have shown some success, but
the fundamental problem remains.

This paper presents Kairos, a novel data center scheduler
that assumes no prior information on task runtimes. Kairos
introduces a distributed approximation of the Least Attained
Service (LAS) scheduling policy. Kairos consists of a cen-
tralized scheduler and per-node schedulers. The per-node
schedulers implement LAS for tasks on their node, using pre-
emption as necessary to avoid head-of-line blocking. The cen-
tralized scheduler distributes tasks among nodes in a manner
that balances the load and imposes on each node a workload
in which LAS provides favorable performance.

We have implemented Kairos in YARN. We compare its
performance against the YARN FIFO scheduler and Big-C,
an open-source state-of-the-art YARN-based scheduler that
also uses preemption. Compared to YARN FIFO, Kairos re-
duces the median job completion time by 73% and the 99th
percentile by 30%. Compared to Big-C, the improvements
are 37% for the median and 57% for the 99th percentile. We
evaluate Kairos at scale by implementing it in the Eagle sim-
ulator and comparing its performance against Eagle. Kairos
improves the 99th percentile of short job completion times by
up to 55% for the Google trace and 85% for the Yahoo trace.

Permission to make digital or hard copies of part or all of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for third-party
components of this work must be honored. For all other uses, contact the
owner/author(s).
SoCC’18, Oct 11-13, Carlsbad, CA, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 123-4567-24-567/08/06. . . $15.00
https://doi.org/10.475/123_4

CCS CONCEPTS
• Software and its engineering→ Scheduling;

KEYWORDS
Cloud computing, Data center, Scheduling

ACM Reference Format:
Pamela Delgado1, Diego Didona1, Florin Dinu1,2 and Willy Zwaenepoel1,2
1EPFL, Switzerland 2University of Sydney, Australia . 2018.
Kairos: Preemptive Data Center Scheduling Without Runtime Es-
timates. In Proceedings of ACM Symposium of Cloud Computing
conference, Carlsbad, CA, USA, Oct 11-13 (SoCC’18), 14 pages.
https://doi.org/10.475/123_4

1 INTRODUCTION
Modern data centers face increasingly heterogeneous work-
loads composed of long batch jobs, e.g., data analytics, and
latency-sensitive short jobs, e.g., operations of user-facing
services. Scheduling such jobs while achieving low schedul-
ing times, good job placement and high resource utilization
is a challenging task. The complexity is exacerbated by the
data-parallel nature of these jobs: a job is composed of mul-
tiple tasks, and the job completes only when all of its tasks
complete.

Many state-of-the-art systems rely on estimates of the run-
times of tasks within a job to improve the quality of their
scheduling decisions in the face of job heterogeneity and data-
parallelism [4, 18, 20, 21, 29, 30, 35]. Execution times from
prior runs [4] or a preliminary profiling phase [12] are often
used for this purpose. The accuracy of such estimates has a
significant impact on the performance of these schedulers.
For instance, queueing a 1-second task behind a task that
is estimated to take 1 second but in reality takes 3 seconds
doubles the completion time of the queued task. Similarly,
scheduling at the same time two tasks estimated to be of equal
length may seem to provide excellent load balance, but in fact
significant load imbalance occurs if one task turns out to be
shorter and the other longer.
Limitations of estimates-based approaches. Unfortunately,
obtaining accurate task runtime estimates is not trivial. We
show in §2 that a widely employed estimation technique –
using the mean task execution time as a predictor of the exe-
cution of all tasks in a job [10, 30] – can lead to large errors

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211985309?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.475/123_4
https://doi.org/10.475/123_4

SoCC’18, Oct 11-13, Carlsbad, CA, USA P. Delgado et al.

(> 100%). Our findings are confirmed by recent work that
shows that more sophisticated approaches based on machine
learning [29] still exhibit significant estimation errors. Many
factors contribute to the difficulty of obtaining reliable run-
time estimates. For example, small changes in the input data
of a recurring job may substantially change the execution
time [1] of its tasks, thus compromising the accuracy of esti-
mates based on previous executions. Data skew may lead a
few tasks in a job to take considerably more time to complete
than other tasks in the same job [8, 26]. Techniques to tackle
these issues, such as queue re-balancing [30] or uncertainty-
aware scheduling policies [29], have shown some success
in mitigating the impact of misestimations, but they do not
fundamentally address the problem.
Kairos. In this paper we introduce an alternative approach to
data center scheduling, which does not use task runtime esti-
mates. Our approach draws from the Least Attained Service
(LAS) scheduling policy [27]. LAS is a preemptive sched-
uling technique that selects for execution the task that has
received the smallest amount of service so far. LAS is known
to achieve good task completion times when the distribution
of task runtimes has high variance, as is the case in heavy-
tailed data center workloads that are common in data centers.

The main challenge is to find a good approximation for
LAS in a data center environment. A naive implementation
would cause frequent task migrations, with their attendant
performance penalties. Instead, we have developed a two-
level scheduler that avoids task migrations altogether, but still
offers good performance. In particular, Kairos consists of a
centralized scheduler and per-node schedulers. The per-node
schedulers implement LAS for tasks on their node, using
preemption as necessary to avoid head-of-line blocking. The
centralized scheduler distributes tasks among worker nodes
in a manner that addresses the following two challenges.

A first challenge is to ensure high resource utilization in the
absence of runtime estimates. To address this issue, the central
scheduler aims to equalize the number of tasks per node,
and reduces the amount of load imbalance possible among
nodes by limiting the maximum number of tasks assigned to
a worker node.

A second challenge is to ensure that the distributed approx-
imation of LAS preserves the performance benefits of the
original formulation of LAS. Kairos addresses this issue by
means of a novel task-to-node dispatching approach. In this
approach, the central scheduler assigns tasks to nodes in a
way such that the distribution of the runtime of tasks assigned
to a particular worker node has high variance.

We have implemented Kairos in YARN. We compare its
performance against the YARN FIFO scheduler and Big-C,
an open-source state-of-the-art YARN-based scheduler that
also uses preemption [5]. Compared to YARN FIFO, Kairos

reduces the median job completion time by 73% and the 99th
percentile by 30%. Compared to Big-C, the improvements
are 37% for the median and 57% for the 99th percentile.
We evaluate Kairos at scale by implementing it in the Eagle
simulator and comparing its performance against Eagle [10].
Kairos improves the 99th percentile of short job completion
times by up to 55% for the Google trace and 85% for the
Yahoo trace.
Contributions.
1) We demonstrate good data center scheduling performance
without using task runtime estimates.
2) We present an efficient distributed version of the LAS
scheduling discipline.
3) We implement this distributed approximation of LAS in
YARN, and compare its performance to state-of-the-art alter-
natives by measurement and simulation.
Roadmap. The outline of the rest of this paper is as follows.
§2 provides the necessary background. §3 describes the de-
sign of Kairos. §4 describes its implementation in YARN. §5
evaluates the performance of the Kairos YARN implemen-
tation. §6 provides simulation results. §7 discusses related
work. §8 concludes the paper.

2 BACKGROUND
2.1 Estimating task runtimes
Estimates in existing systems. Most state-of-the-art data
center schedulers rely on task runtime estimates to make
informed scheduling decisions [4, 10–12, 18–21, 25, 36]. Es-
timates are used to avoid head-of-line blocking and resource
contention, provide load balancing and fairness, and meet
deadlines. The accuracy of task runtime estimates is therefore
of paramount importance. Estimates of the runtime of a task
within a job can be obtained from past executions of the same
task, if any, from past executions of similar tasks [4], or by
means of on-line profiling [12]. A common estimation tech-
nique for the task duration is to take the average of the task
durations over previous executions of the job [11, 30]. More
sophisticated techniques rely on machine learning [29].

Challenges in obtaining accurate estimates. Unfortunately,
obtaining accurate estimates is not easy due to several reasons.
The scheduler may have little or no information to produce
estimates for tasks of jobs that have never been submitted
before [30]. Even if jobs are recurring, changes in the input
data set may lead to significant and hard-to-predict shifts in
task runtimes [1]. Changes in data placement may also cause
the task execution time to change. Skew in the input data
distribution can lead to tasks in the same job having radically
different runtimes [8, 26]. Finally, failures and transient re-
source utilization spikes may lead to stragglers [2], which not

Kairos: Preemptive Data Center Scheduling Without Runtime Estimates SoCC’18, Oct 11-13, Carlsbad, CA, USA

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1
 1.1

 0 25 50 75 100 125 150

C
D

F

Absolute relative error (%)

Yahoo
Google

Cloudera
Facebook

Figure 1: Prediction error for estimating the duration of
each task in a job as the mean task duration in that job.

only have an unpredictable duration, but represent outliers in
the data set used to predict future runtimes for tasks of the
same job.

We provide an example of the estimation errors that can
affect job scheduling decisions by studying the distribution
of the error incurred when using the mean execution time
of tasks in a job as an indicator of the execution time of a
task in that job. We analyze four public traces that are widely
used to evaluate data center schedulers. In particular, we
consider the Cloudera [6], Facebook [6], Google [31] and
Yahoo [7] traces. Let J be a job in the trace and T the set of
tasks t1, · · · , tn , in the job, each with an associated execution
time ti .exectime. Let TJ be the mean execution time of tasks
in J . Then, we compute the prediction error for a task as
E = |100 × (ti .exectime −TJ)/TJ |. We show the CDF of E in
Figure 1. While up to 50% of the predictions are accurate to
within 10%, some prediction errors are higher than 100%.

Similar degrees of misestimation have also been reported in
recent work that uses a machine learning approach to predict
task resource demands [29].

Coping with misestimations. Previous work has shown that
task runtime misestimation leads to worse job completion
times [10], and failure to meet service level objectives [12, 35]
or job completion deadlines [35]. Some systems deal with
misestimations by runtime correction mechanisms such as
task cloning [2] and queue re-balancing [30], or by using a dis-
tribution of estimates rather than single-value estimates [29].
These solutions mitigate the effects of misestimations, but
they do not avoid the problem entirely, and increase the com-
plexity of the system.

Kairos overcomes the limitations of scheduling based on
runtime estimates by adapting the LAS scheduling policy [27]
to a data center environment. LAS does not require a priori
information about task runtimes and is well suited to work-
loads with high variance in runtimes, as is the case in the
often heavy-tailed data center workloads.

2.2 Least Attained Service
Prioritizing short jobs. Data centers workloads typically
consist of a mix of long and short jobs [6, 7, 31]. Giving
higher priority to short jobs improves their response times
by reducing head-of-line-blocking. The Shortest Remaining
Processing Time (SRPT) scheduling policy [33] prioritizes
short tasks by executing pending tasks in increasing order
of expected runtime and by preempting a task if a shorter
task arrives. SRPT is provably optimal with respect to mean
response time [32].

Recent systems have successfully adopted SRPT in the
context of data center scheduling [10, 23, 30]. These systems
do not support preemption, so they implement a variant of
SRPT, where the shortest task is chosen for execution, but
once a task is started, it runs to completion.
Least Attained Service (LAS). SRPT requires task runtime
estimates to determine which task should be executed. LAS
is a scheduling policy akin to SRPT, but it does not rely on
a priori estimates [27]. LAS instead uses the service time
already received by the task as an indication of the remaining
runtime of the task.

Given a set of tasks to run, LAS schedules the so called
youngest task for execution. The youngest task is the one with
the lowest attained service, or, in other words, the one that has
executed for the smallest amount of time so far. In case there
are n youngest tasks with the same attained service, all of
them are assigned an equal 1/n share of processing time, i.e.,
they run according to the Processor Sharing (PS) scheduling
policy (as in typical multiprogramming operating systems).
LAS makes use of preemption to allow the youngest task to
execute at any moment.

Rationale. LAS uses the attained service as an indication
of the remaining service demand of a task. This prediction
works well with heavy-tailed service demand distributions. If
a task has executed for a long time, it is likely that it is a large
task, and therefore has a long way to go towards completion.
Hence, it is better to execute younger tasks, that are more
likely to be short tasks and therefore complete quickly.

In addition, a new incoming task is per definition the
youngest task and executes immediately. Assuming a heavy-
tailed runtime distribution, this new task is likely to be a
short one. If no other task arrives during its execution and it
completes in a time shorter than the attained service of any
other waiting task, then it executes to completion without any
preemption or queueing.

SoCC’18, Oct 11-13, Carlsbad, CA, USA P. Delgado et al.

3 KAIROS
3.1 Design overview
Challenges of LAS in a data center. LAS is an appealing
starting point to design a data center scheduler that does not
require a priori task runtime estimates. In a strict implemen-
tation of LAS, however, the youngest task should be running
at any moment in time. Then, adapting LAS to the data center
scenario with a distributed set of worker nodes requires that a
preempted task must be able to resume its execution on any
worker node.

Allowing task migration across worker nodes incurs costs
such as transferring input data or intermediate output of the
task, and setting up the environment in which the task runs
(e.g., a container). Determining whether or not to migrate a
task is a challenging problem, especially in the absence of
an estimate of the remaining runtime of the task. Therefore,
Kairos does not strictly follow LAS, but rather implements
an approximation thereof.

Note that long-running services that should never be pre-
empted are out of the scope of Kairos scheduling.
Kairos approach to LAS. Kairos uses a two-level schedul-
ing hierarchy consisting of a central scheduler and per-node
schedulers on each worker node. We depict the high-level
architecture of Kairos in Figure 2. The node schedulers imple-
ment LAS locally on each worker node (§3.2) and periodically
send statistics to the central scheduler. The central scheduler
assigns tasks to worker nodes so as to achieve load balance
and to maximize the effectiveness of LAS at each worker
(§3.3).

Figure 2: Kairos’ two-level scheduling architecture. Node
schedulers implement LAS locally. The central scheduler
assigns tasks to nodes.

3.2 Node scheduler
Each worker node has N cores, which can run N concurrent
tasks, and a queue, in which preempted tasks are placed. Al-
gorithm 1 presents the data structures maintained by the node

Algorithm 1 Node scheduler
1: Set<TaskEntry> IdleTasks, RunningTasks ▷ Track suspended/running tasks

2: upon event Task t arrives do
3: TaskEntry te
4: te .task← t
5: te .attained← 0
6: te .start← now ()
7: RunningTasks.add(te)
8: if (IdleCores.size() > 0) then ▷ Free core can execute t
9: core c = idleCores.pop()

10: else ▷ Preempt oldest running task
11: tp ← arдmax{tt .attained } {tt ∈ RunninдTasks }
12: tp .attained+ = now () − tp .star t
13: c ← core serving t
14: remove tp from c
15: IdleTasks.add(tp)
16: assign t to c
17: c.startTimer(W)
18: start t

19: upon event Task t finishes on core c do
20: RunningTasks.remove(t)
21: if (!IdleTasks.isEmpty() then ▷ Run youngest suspended task
22: TaskEntry tr ← arдmin{ti .attained } {ti ∈ IdleT asks }
23: RunningTasks.add(tr)
24: assign tr to c
25: tr .star t ← now ()
26: c.startTimer(W)
27: start tr .task
28: else
29: IdleCores.push(c)

30: upon event Timer fires on core c running task t do
31: TaskEntry ts ←TaskEntry e : e .task = t
32: ts .attained+ = now () − ts .star t

▷ Find youngest suspended task
33: TaskEntry tm ← arдmin{ti .attained } {ti ∈ IdleT asks }
34: if (tm .attained ≤ ts .attained) then ▷ Preempt t
35: IdleTasks.remove(tm)
36: IdleTasks.add(ts)
37: RunningTasks.remove(ts)
38: RunningTasks.add(tm)
39: tm .star t ← now ()
40: place tm .task on c
41: start tm .task
42: else ▷ Continue running t
43: ts .star t ← now ()
44: c.startTimer(W)

45: upon event Every ∆ do
46: Heartbeat HB
47: HB.num← IdleTasks.size() + RunningTasks.size()
48: HB.var← var{t .attained } {t ∈ IdleT asks ∪ RunninдTasks }
49: send HB to the central scheduler

schedulers and the operations they perform. A TaskEntry
structure maintains per task information such as its attained
service time and, for running tasks, the start time of their
current quantum. Each node scheduler implements LAS by
taking as input the number of cores N and the quantum of
timeW .

When a new task arrives, it is immediately executed. If
there is at least one core available, the task is assigned to
that core (Line 8). Else, the task preempts the running task
with the highest attained service time (Line 11). This task
is moved to the node queue, and its attained service time is
increased by the service time that it has received. When a task

Kairos: Preemptive Data Center Scheduling Without Runtime Estimates SoCC’18, Oct 11-13, Carlsbad, CA, USA

terminates, if the node queue is not empty, the task with the
lowest attained service is scheduled for execution (Line 21).

When a task t is assigned to a core, a timer is set to expire
afterW seconds (Line 17). If t has not completed by the time
the timer fires (Line 27), the scheduler increases the attained
service time of the task by W . Let T be the updated value
of the attained service time for task t . If there is a task t ′ in
the node queue with attained service time lower than T , t ′ is
scheduled for execution by preempting t (Line 31). Otherwise,
t continues its execution, and the timer is reset (Line 39).

Periodically, the node scheduler sends to the central sched-
uler the number of tasks currently assigned to it, and the vari-
ance in the service times already attained by the tasks (Line
42). The latter information is used by the central scheduler in
deciding where to send a task, as explained in §3.3.3.

The node scheduler implements a starvation prevention
mechanism (not shown in the pseudocode) to guarantee that
all tasks get scheduled eventually. If a task is not able to run
for a given number of consecutive quanta, then Kairos guar-
antees that the task gets to run for at least a given amount of
time (a multiple ofW), during which it cannot be preempted.
This mechanism ensures the progress of every task.
Impact and setting of W . The value of W determines the
trade-off between task waiting times and completion times. A
high value forW allows the shortest tasks to complete within
a single quantum. However, it may also lead a preempted
task in the node queue to wait for a long time before it can
run again, an undesirable situation for a short task that has
been preempted to make room for a new incoming task. A
low value forW , instead, gives a task frequent opportunities
to execute and hence potentially complete. However, it may
also lead to longer completion times because of frequent task
interleaving. We study the sensitivity of Kairos to the setting
ofW in §5.3.3, where we show that Kairos is relatively robust
to sub-optimal settings ofW .

3.3 Central scheduler
Algorithm 2 presents the data structures maintained by the
central scheduler and its operations.

3.3.1 Challenges in the absence of estimates. The
lack of a priori task runtime estimates makes it cumbersome
to achieve load balancing.

Existing approaches use task runtime estimates to place
a task on the worker node that is expected to minimize the
waiting time of the task [4, 30]. This strategy improves task
completion times and achieves high resource utilization by
equalizing the load on the worker nodes. Kairos cannot re-use
such existing techniques in a straightforward fashion, because
it cannot accurately estimate the backlog on a worker node
and the additional load posed by a task being scheduled.

Algorithm 2 Central scheduler
1: Queue CentralQueue ▷ Queue where incoming tasks are placed
2: Node[numNodes] Nodes ▷ Entries track # tasks and attained service times

3: upon event New job J arrives do
4: for task t ∈ J do
5: Queue.push(t)

6: upon event Heartbeat HB from Node i arrives do
7: Nodes[i].var← HB.var
8: Nodes[i].numTasks← HB.numTasks

9: procedure MAINLOOP
10: while (true) do
11: for i = 0, . . . , N +Q do
12: Si ← {Node m ∈ Nodes :m .numTasks = i }
13: while (!Si .isEmpty() ∧!CentralQueue .isEmpty()) do
14: Node m ← arдminn .var {n ∈ Si }
15: Task t ← CentralQueue .pop()
16: Assign t to m
17: Si ← Si \ {m }
18: Sleep(∆)

To circumvent this problem, Kairos decouples the prob-
lems of achieving load balance and high resource utilization
from the problem of achieving low completion times. Kairos
leverages the insight that short completion times are already
achieved by implementing LAS in the individual node sched-
ulers. In fact, LAS gives shorter tasks the possibility to com-
pletely or partially bypass the queues on the worker nodes. As
a result, the central scheduler can to some extent be agnostic
of the actual backlog on worker nodes, because the backlog
is not an indicator of the waiting time for a task.

Hence, in Kairos, the central scheduler has two goals:
1) Achieve high resource utilization and load balance, by
reducing the probability that cores are idle while tasks are
waiting in some queue, either the central queue or any of the
worker queues (§3.3.2).
2) Maximize LAS effectiveness, e.g., by improving the proa-
bility that short tasks can bypass long tasks and by reducing
the probability that tasks hurt each other’s response times by
an excessive number of task switches (§3.3.3).

3.3.2 Load balancing. The central scheduler aims to
balance the load across worker nodes by assigning to each of
them an equal number of tasks. Hence, the first outstanding
task in the central queue is placed on the worker node with
the smallest number of assigned tasks.

This policy alone, however, is not sufficient with heavy-
tailed runtime distributions, as it may lead to temporary load
imbalance scenarios. For example, a worker node may be
assigned many short tasks, while another worker node is
loaded with longer tasks. Then, the first worker node might
complete all of its short tasks and become idle, while some
tasks are waiting on the other worker node.

To address this issue, the central scheduler assigns to each
worker at most Q + N tasks at any moment in time. This

SoCC’18, Oct 11-13, Carlsbad, CA, USA P. Delgado et al.

admission control mechanism bounds the amount of load
imbalance possible, since a worker node can host at most Q
idle tasks that could have been assigned to other worker nodes
with available resources.
Impact and setting of Q . The value of Q determines the
trade-off between load balance and effectiveness of LAS. A
small value of Q reduces the possibility of load imbalance,
but may lead to many short tasks being delayed in the central
queue. A high value of Q , on the contrary, may lead to higher
load imbalance, but enables more parallelism, benefiting short
tasks that can complete quickly by preempting other tasks.

We assess the sensitivity of Kairos to the setting of Q
in §5.3.3, where we show that Kairos’ performance is not
dramatically affected by sub-optimal settings of Q .

3.3.3 Maximizing LAS effectiveness. Kairos imple-
ments an LAS-aware policy to break ties in cases in which
two or more worker nodes have an equal number of tasks
assigned to them. In more detail, it assigns the task to the
worker node with the lowest variance in the attained service
times of tasks currently placed on that worker node. The hope
is that by doing so it can significantly increase the variance
of the runtimes of tasks assigned to that node. The rationale
behind this choice is that LAS is most effective when the task
duration distribution has a high variance. Intuitively, if only
short tasks were assigned to a node, the youngest short tasks
would preempt older short tasks, hurting their completion
times. Similarly, if only long tasks were assigned to a node,
all would run in an interleaved fashion, each one hurting the
completion time of the others.

The effectiveness of this policy is grounded in previous
analysis of SRPT in distributed environments, that shows
that maximizing the heterogeneity of task runtimes on each
worker node is key to improve task completion times [3, 13].
Unlike previous studies, however, Kairos does not rely on
exact knowledge of task runtimes for each worker node, and
uses the attained service times of tasks on a worker node to
estimate the variability in task runtimes on that worker node.

4 IMPLEMENTATION
We implement Kairos in YARN [17], a widely used scheduler
for data-parallel jobs. Figure 3 shows the main building blocks
of YARN, their interactions and the components introduced
by Kairos.
YARN. YARN consists of a ResourceManager residing
on a master node, and a NodeManager residing on each
worker node. YARN runs a task on a worker node within a
container, which specifies the node resources allocated to the
task. Each worker node also has a ContainerManager
that manages the containers on the node. Finally, each job

has an ApplicationManager that runs on a worker node
and tracks the advancement of all tasks within the job.

Figure 3: Kairos integration in YARN.

The ResourceManager assigns tasks to worker nodes
and communicates with the NodeManagers on the worker
nodes. A NodeManager sends periodic heartbeat messages
to the ResourceManager. The heartbeats describe the
node’s health and the containers running on it.
Kairos central scheduler. The Kairos central scheduling pol-
icy is implemented in the ResourceManager. In particu-
lar, the Kairos central scheduler extends the CapacitySched-
uler, to allow more containers to be allocated to a node than
there are cores on that mode.
Kairos node scheduler. The KairosNodeScheduler is
implemented within the ContainerManager. It consists
of a thread that monitors the status of the containers and im-
plements LAS. The KairosNodeScheduler maintains
the attained service time of the tasks running within the con-
tainers, and implements preemption. It preempts a container
by reducing the resources allocated to it to a minimum, and
resumes it by restoring the original allocation, similar to what
is done in Chen et al. [5]. Reducing the resources to a mini-
mum (rather than to zero) allows the heartbeat mechanism to
continue to function correctly when a container is preempted.
The KairosNodeScheduler sets the timers necessary
for implementing the processor sharing window W, and also
extends the information sent by the NodeManager in the
heartbeat messages, by including the standard deviation of the
attained service of all containers hosted by the node. In this
implementation (not in the general approach) preempted con-
tainers still consume memory, Kairos assumes that memory
is not a limiting factor.

We have made the Kairos code publicly available. 1

1https://github.com/epfl-labos/Kairos

Kairos: Preemptive Data Center Scheduling Without Runtime Estimates SoCC’18, Oct 11-13, Carlsbad, CA, USA

Category input #maps #reduces extraFlops duration probability
1 small 4GB 15 15 0 85s 0.32
2 medium small 4GB 15 15 500 201s 0.31
3 medium 8GB 30 30 0 239s 0.31
4 medium long 30GB 112 60 500 308s 0.04
5 long 60GB 224 60 1000 1175s 0.02

Table 1: Job categories composing our workload. Job run-
times follow a heavy-tailed distribution, typical for mod-
ern data center workloads.

5 EXPERIMENTAL EVALUATION
5.1 Methodology and baselines
We compare Kairos to the FIFO YARN scheduler and to Big-
C, a recent preemptive scheduler based on YARN and for
which the source code is available [5].

Big-C uses available runtime estimates to perform task
placements, and preemption to prioritize short tasks in case
of high utilization. Big-C extends YARN’s capacity scheduler.
Jobs are partitioned in classes, and each class is assigned a
priority and a number of nodes. Tasks can run opportunisti-
cally on nodes assigned to a different class, but when a task
with a certain priority is ready to run and there are no free
nodes in its class, tasks with lower priority are preempted.

Big-C defines two job classes, corresponding to long and
short jobs. A job is classified according to available runtime
estimates. Short jobs have higher priority and are assigned
a large fraction of the nodes. Long jobs running opportunis-
tically on a node assigned to the short job class can be pre-
empted by newly arrived short tasks. We configure Big-C
with its default value for the share of resources for short jobs
(95%).

5.2 Testbed
Platform. We use a 30-node cluster running over a 10Gb
Ethernet. Each node runs 2.6Ghz AMD Opteron 6212 CPUs.
We limit the scheduler to 4 CPUs, resulting in 120 cores
cluster-wide. We use Hadoop-2.7.1, the same code base as
Big-C. Containers use Docker-1.12.1 with the image from
sequenceiq/hadoop-docker.

We set Q = 4, bounding the maximum number of tasks
queued per node to the number of cores on a node, andW =
50s, which allows the shortest tasks to execute within one
quantum of time.
Workloads. We create workloads with specific distributions
of job runtimes. In particular, we use Hadoop WordCount
jobs, using different input sizes, and with each input consist-
ing of randomly generated 100-character strings. We modify
the Hadoop WordCount code so that we can increase a task’s

runtime by a controllable amount, by inserting a parameter-
ized number of floating point operations in both the map and
reduce functions.

The resulting workloads then consist of five categories of
jobs, described in Table 1. The number of mappers in each
category is equal to the job input size divided by the HDFS
block size. The number of reducers is chsoen for optimal per-
formance. We allocate 2GB for map tasks and 4GB for reduce
tasks. The HDFS block size used is 256MB for categories 1
to 4, and 1GB for category 5. The HDFS replication factor
is 3. The container size is set to <5120 MB,1 vCore>. The
durations in Table 1 correspond to the total makespan of a job
when running alone in the cluster. When using Big-C, jobs
from the first three categories are considered short jobs, and
jobs from the remaining two categories as long jobs.

For each experiment we draw 100 jobs from these five
categories, according to the probabilities given in Table 1.
The probabilities are inspired by the typical heavy-tailed job
runtime distribution that characterizes production workloads.
The job inter-arrival times follow a Poisson distribution with
a mean of 60s. The resulting workload takes roughly 2 hours
to run.

5.3 Results
5.3.1 Job completion times. Figure 4a reports the CDF

of job completion times with Kairos, YARN/FIFO and Big-C.
Figure 4b shows the CDF of job slowdowns for the same
three systems.

Kairos achieves better job completion times than Big-C
and FIFO at all percentiles. Short tasks in Kairos complete
more quickly than in Big-C, which can be seen by looking at
the lower percentiles. For example, Kairos reduces the 50th
percentile of job completion times by 73% with respect to
YARN FIFO (241s vs. 808s) and by 37% with respect to
Big-C (217s vs. 341s).

The reason for this improvements is that worker nodes
in Kairos accept Q more tasks than what they can process,
allowing short tasks to be placed on a busy node and execute
immediately thanks to LAS. Instead, in Big-C a short task ts
cannot preempt another short task t ′s , even if ts is shorter than
t ′s . Hence, ts has to wait for some node to have free resources
before starting.

Kairos is also more effective in achieving low completion
times for longer jobs, which is visible at the right end of the
CDF. Kairos reduces the 99th percentile of job completion
times by 30% with respect to FIFO (1452s vs. 2061s) and by
57% with respect to Big-C (1452s vs. 3368s). Kairos achieves
better job completion times at the high percentiles by not
restricting the share of resources for long jobs, and by enhanc-
ing the effectiveness of LAS by its task-to-node assignment
policy. Big-C achieves worse tail latency than FIFO, because

SoCC’18, Oct 11-13, Carlsbad, CA, USA P. Delgado et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 250 500 750 1000 1250 1500 1750 2000 2250

C
D

F

Job completion times (s)

Kairos
Big-C
FIFO

(a) CDF of job completion times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 2 4 6 8 10 12 14 16 18 20

C
D

F

Slowdown (actual job runtime/expected job runtime)

Kairos
Big-C
FIFO

(b) Slowdown.

Figure 4: CDFs of job completion times and slowdown in Kairos, Big-C and YARN/FIFO. Heavy tailed workload. Tail
of Big-C omitted for visibility in (a). Worst tail job completion time for Big-C in (a) is 3624s.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

Job completion times (s)

Kairos
Big-C

(a) CDF of job completion times.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 1 2 3 4 5 6

C
D

F

Slowdown (actual job runtime/expected job runtime)

Kairos
Big-C

(b) Slowdown.

Figure 5: CDFs of job completion times and slowdown in Kairos, Big-C. Uniform workload.

long jobs can be delayed due to frequent preemptions and
their low priority in Big-C.

As illustrated in Figure 4b, the job slowdown is lower in
Kairos for all jobs. Moreover, all jobs in Kairos are slowed
down by a comparable amount – a desirable property, because
it provides performance predictability and a degree of fair-
ness. In contrast, in YARN FIFO and Big-C some jobs are
slowed down much more than others. Even worse, some of
the largest slowdowns in FIFO and Big-C (5.14x and 18.23x,
respectively) occur for the shortest jobs in the workload.

We also create a uniform workload to test how Kairos
behaves in a setting that is not ideal for LAS. We show the
results in Figure 5. For this workload we only use the first
3 categories in Table 1 with probabilities 0.35, 0.35 and 0.3.
The job inter-arrival times follow a Poisson distribution with
a mean of 30s. Big-C is configured to assign a 70% share to
categories 1 and 2, and 30% for category 3. Since the ratio
short/long in Big-C is workload dependent, we did our best to
adjust it based on the types of jobs in the uniform workload.
As expected, the job runtimes and the slowdown for Kairos
deteriorate compared to the heavy-tailed scenario, but they
are still better than Big-C.

5.3.2 LAS-aware task dispatching. Figure 6 reports
the CDF of job completion times in Kairos with different
policies used to choose where to place a task, when there are
multiple worker nodes with the same number of tasks already
assigned. Besides the LAS-aware policy describe in §3.3.3
and denoted by Var in Figure 6, we implement two additional
policies, Random and Sum. Random assigns the task to a
randomly chosen node. The Sum policy assigns a task to the
node whose tasks have the lowest cumulative attained service
time. The rationale is that by using attained service time as
an estimation of remaining runtime, the Sum policy tries to
assign a task to the least loaded node.

Figure 6 shows that the Var policy delivers better job
completion times at all percentiles. The biggest gains over
Random and Sum are around the 30th percentile and towards
the tail of the distribution. The benefit at the 30th percentile
indicates that the shortest jobs, which account for 30% of the
total (see Table 1), are effectively prioritized. The benefit at
higher percentiles shows that Var is also able to effectively
use LAS to improve the response time of larger jobs as well.

5.3.3 Sensitivity analysis. We now show that Kairos
maintains performance better than or comparable to Big-C
even for sub-optimal settings of the parametersW and Q . To

Kairos: Preemptive Data Center Scheduling Without Runtime Estimates SoCC’18, Oct 11-13, Carlsbad, CA, USA

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600

C
D

F

Job completion times (s)

Random
Sum
Var

Figure 6: Comparison of alternative task-to-node dis-
patching policies in Kairos. Tail omitted for visibility.
Worst tail job completion times are 1633s for Random,
1651s for Sum and 1452s for Var.

this end, we study how the performance of Kairos varies with
different settings forW and Q . When studying the sensitivity
of Kairos to the setting of one parameter, we keep the other
one to its default value.
Sensitivity to Q . Figure 7a shows the CDF of job response
times in Kairos with Q = 2, 4, 8 and in Big-C. Q = 8 and
Q = 2 perform slightly worse than the default value of Q = 4
we use in Kairos, but still deliver better performance than
Big-C at each percentile.

The shape of the CDFs for different values of Q matches
our analysis of §3.3. If Q is too low, then sometimes short
tasks are kept in the central queue, thus preventing them from
going to the nodes, where they could execute rightaway by
virtue of LAS. This effect is visible at the 20th percentile
of the CDF, where Q = 2 is worse than Q = 8. If Q is too
high, instead, short tasks more often preempt longer ones,
increasing their response times and thus leading to worse tail
latencies.
Sensitivity toW . Figure 7b shows the CDF of job response
times in Kairos withW = 10, 50, 100 and in Big-C. Similar to
what is seen for Q , settingW too high or too low has some
negative impact on the performance of Kairos, but Kairos
maintains its performance lead over Big-C.

Comparing the performance achieved with theW = 10 and
W = 100 we see that too low a value forW has the effect that
the execution of tasks on a worker node is much interleaved.
This phenomenon penalizes the longest jobs, i.e., the very
tail of the completion times distribution, but leads to better

Trace Total # jobs % Long jobs % Task-Seconds long jobs
Yahoo [7] 24262 9.41 98

Google [31] 506460 10.00 83

Table 2: Job heterogeneity in the traces. % Task-seconds
long jobs is the sum of the execution times of all long tasks
divided by the sum of the execution times of all tasks.

values for lower percentiles. The dual holds forW = 100. The
longest jobs can use big quanta, improving their completion
times at the detriment of shorter jobs.

6 SIMULATION
6.1 Methodology and baseline
We evaluate Kairos in larger data centers by means of a sim-
ulation study using the popular Yahoo [7] and Google [31]
traces. We compare Kairos to Eagle [10], the most recent sys-
tem whose design is implemented in a simulator.2 We have
integrated the Kairos design in the Eagle simulator, and we
have made the simulation code publicly available. 3 We report
average values of 10 runs for the Yahoo trace, and 5 runs for
the Google trace.
Background on Eagle. Eagle partitions the set of worker
nodes in two sub-clusters, one for long jobs and one for short
jobs. The nodes of the data center are divided between the
two sub-clusters proportionally to the expected load posed
by short and long jobs. Hence, in the traces we consider, the
majority of the resources is assigned to long jobs, as they
consume the bulk of the resources. Short tasks are allowed to
opportunistically use idle nodes in the partition for long jobs.
By this workload partition technique, Eagle avoids head-of-
line-blocking altogether. In addition, short jobs are executed
according to a distributed approximation of SRPT that does
not use preemption. In other words, Eagle aims to first execute
the tasks of shorter jobs, but tasks cannot be suspended once
they start. Eagle uses task runtime estimates to classify jobs
as long or short, and to implement the SRPT policy.

We configure Eagle with the same parameters as in its
original implementation (which vary depending on the tar-
get workload trace). These parameters include sub-cluster
sizes, cutoffs to distinguish short jobs from long ones and
parameters to implement SRPT.

6.2 Simulated testbed
Platform. We simulate data centers with 15,000 to 23,000
worker nodes using the Google trace, and with 4,000 to 8,000
nodes using the Yahoo trace. We keep the job arrival rates
constant at the values in the traces, so increasing the number
of worker nodes reduces the load. We set the network delay
to 0.5 milliseconds, and we do not assign any cost to making
scheduling decisions.
Workloads. Table 2 shows the total number of jobs, the per-
centage of long jobs and the percentage of task-seconds for
long jobs for the two traces. The percentage of the execution
times (task-seconds) of all short jobs is 17% in the Google

2We do not compare our prototype of Kairos with Eagle because Eagle is
built on top of Spark’s scheduler.
3https://github.com/epfl-labos/kairos

SoCC’18, Oct 11-13, Carlsbad, CA, USA P. Delgado et al.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500

C
D

F

Job completion times (s)

Q=0
Q=4
Q=8

Big-C

(a) Varying Q (max number of tasks queued per node).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 500 1000 1500

C
D

F

Job completion times (s)

W=10
W=50

W=100
Big-C

(b) VaryingW (size of quantum of time).

Figure 7: Sensitivity analysis to parameters Q (queue size) andW (time quantum).

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

15000 17000 19000 21000 23000

K
a

ir
o

s
 n

o
rm

.
to

 E
a

g
le

Number of nodes in the cluster

50th perc. short jobs
90th perc. short jobs
99th perc. short jobs

avg. utilization for Eagle
avg. utilization for Kairos

(a) Kairos short jobs normal. to Eagle. Google trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

15000 17000 19000 21000 23000

K
a

ir
o

s
 n

o
rm

a
liz

e
d
 t

o
 E

a
g

le

Number of nodes in the cluster

50th perc. long jobs
90th perc. long jobs
99th perc. long jobs

avg. utilization for Eagle
avg. utilization for Kairos

(b) Kairos long jobs normal. to Eagle. Google trace.

Figure 8: Kairos normalized to Eagle short (a) and long (b) jobs. Google trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

4000 5000 6000 7000 8000

K
a

ir
o

s
 n

o
rm

.
to

 E
a

g
le

Number of nodes in the cluster

50th perc. short jobs
90th perc. short jobs
99th perc. short jobs

avg. utilization for Eagle
avg. utilization for Kairos

(a) Kairos short jobs normal. to Eagle. Yahoo trace.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

 2

4000 5000 6000 7000 8000

K
a

ir
o

s
 n

o
rm

a
liz

e
d
 t

o
 E

a
g
le

Number of nodes in the cluster

50th perc. long jobs
90th perc. long jobs
99th perc. long jobs

avg. utilization for Eagle
avg. utilization for Kairos

(b) Kairos long jobs normal. to Eagle. Yahoo trace.

Figure 9: Kairos normalized to Eagle short (a) and long (b) jobs. Yahoo trace.

trace and 2% for the Yahoo trace. These values determine the
size of the partitions for short jobs in Eagle.

Each simulated worker node has one core. Kairos uses
Q = 2 for both workloads,W = 100 time units for the Yahoo
trace and W = 10, 000 time units for the Google trace. The
starvation prevention counter for Kairos is set to 3 for both
traces.

6.3 Results
Figures 8 and 9 report the 50th, 90th and 99th percentiles
of job completion times for Kairos normalized to Eagle for
the Yahoo and Google traces, respectively. The plots on the
left (right) report short (long) job completion times. We also
report the average cluster utilization for Kairos and Eagle as
a function of the number of worker nodes in the cluster.

Kairos: Preemptive Data Center Scheduling Without Runtime Estimates SoCC’18, Oct 11-13, Carlsbad, CA, USA

Figures 8a and 9a show that Kairos improves the short job
completion times significantly at high loads (up to 55% for
the Google trace and 85% for the Yahoo trace). When the load
is very high, short jobs in Eagle are confined to the sub-cluster
reserved from them. Hence, short jobs compete for the same
scarce resources. In Kairos, instead, short jobs can run on
any node, and preempt long jobs to achieve fast completion
times. As the load decreases, the two systems achieve similar
performance.

Long jobs exhibit different dynamics. Looking at the 50th
and 90th percentiles in Figures 8(b) and Figure 9(b), we
see that, when the load is at least 50%, Kairos reduces the
completion times of most of the long jobs with respect to
Eagle. Kairos interleaves the execution of long jobs, leading
to better completion times for the shorter among the long
jobs. In Eagle, instead, the absence of preemption may cause
a relatively short task among the long ones to wait for the
entire execution of a longer task to complete. Similar to what
is seen for short jobs, the performance differences between
the two systems at the 50th and the 99th percentile level off
as the load decreases.

Kairos achieves a worse 99th percentile than Eagle (be-
tween 14% and 50% in the Yahoo trace and between 11%
and 33% for the Google trace), due to the fact that Kairos
frequently preempts the longest jobs to prioritize the shorter
ones. This tradeoff is unavoidable, and in our opinion the right
one. Kairos improves the performance for the vast majority
of the jobs, especially latency-sensitive ones. The price to pay
for that is slightly worse performance for the longest jobs.

Finally, Kairos and Eagle achieve the same resource uti-
lization in both workloads and for all cluster sizes. This result
showcases Kairos’s ability to achieve the same high resource
utilization as approaches that rely on prior knowledge of task
runtimes.

7 RELATED WORK
We compare Kairos to existing systems first focusing on
scheduling policy, and then on scheduler architecture.

7.1 Scheduling policies
7.1.1 Scheduling with runtime estimates. Most state-

of-the-art scheduling systems rely on runtime estimates to
make informed scheduling decisions. These systems differ in
how such estimates are integrated into the scheduling policy.

Apollo [4], Yaq [30] and Mercury [25] disseminate infor-
mation about the expected backlog on worker nodes. Tasks
are scheduled to minimize expected queueing delay and to
equalize the load. Yaq also uses per-task runtime estimates to
implement queue reordering strategies, aimed at prioritizing
short tasks.

Hawk [11], Eagle [10] and Big-C [5] use runtime estimates
to classify jobs as long or short. In Eagle and Hawk, the set
of worker nodes is partitioned in two subsets, sized propor-
tionally to the expected load in each class. Then, tasks of a
job are sent to either of the two sub-clusters depending on
their expected runtime. Big-C gives priority to short jobs by
assigning a higher priority to them in the YARN capacity
scheduler. Workload partitioning and short job prioritization
aim to reduce [5, 11] or eliminate [10] head-of-line-blocking.

Tetrisched [35], Rayon [9], Firmament [18], Quincy [24],
Tetris [19], 3Sigma [29] and Medea [15] formalize the sched-
uling decision as a combinatorial optimization problem. The
resulting Mixed-Integer Linear Program is solved either ex-
actly, or an approximation is computed by means of heuristics.

Jockey [14] uses a simulator to speculate on the evolu-
tion of the system and accordingly decides the task-to-node
placement. Graphene [21] uses estimates to decide first the
placement of the job with the most complex requirements,
and then packs other jobs depending on the remaining avail-
able resources. Carabyne [20] temporarily relaxes fairness
guarantees to allow jobs to use resources destined to others.

As opposed to these systems, Kairos eschews the need
for any a priori information about task runtimes. Instead,
Kairos infers the expected remaining runtime of tasks from
the amount of time they have already executed, and uses pre-
emption and a novel task-to-node assignment policy to avoid
head-of-line blocking and achieve high resource utilization.

Correction mechanisms. The systems that rely on task run-
time estimates also encompass several techniques to cope
with unavoidable misestimations.

Tetrisched [35], 3Sigma [29], Rayon [9] and Jockey [14]
periodically re-evaluate the scheduling plan in case tasks take
longer than expected to complete.

By contrast, Kairos uses preemption and limits the amount
of queue imbalance by means of admission control. Kairos
can integrate speculative execution or queue re-balancing
techniques techniques at the cost of introducing heuristics
to detect stragglers (e.g., based on their progress rate) and
support for task migration (e.g., based on checkpointing).

Some systems like Rayon [9], 3Sigma [29] and Big-C [5]
use preemption to correct the scheduling decision in case a
new job arrives that must use resources already allocated. The
difference with the use of preemption in Kairos is twofold.
First, Kairos uses preemption to avoid the need for runtime
estimates, which makes Kairos suitable also for environments
with highly variable runtimes across several executions of
the same job or where data on previous runs of the jobs is
not available. Second, preemption in Kairos, in addition to
allowing short tasks to get served quickly, also allows longer
tasks to take turns to execute, thereby ensuring progress.

SoCC’18, Oct 11-13, Carlsbad, CA, USA P. Delgado et al.

7.1.2 Scheduling without runtime estimates. Spar-
row [28] avoids the use of runtime estimates by means of
batch sampling. A job with t tasks sends 2t probes to 2t
worker nodes, where the probes are enqueued. One task of the
job is served when one of the probes reaches the head of its
queue. Sparrow improves response times because the t tasks
in a job are executed by the least loaded t worker nodes out
of the 2t contacted. We have not compared Kairos to Spar-
row directly, because several other schedulers significantly
outperform Sparrow. For example, Hawk [11] improves the
50th and 90th percentile job runtimes by 80% and 90% for
short jobs compared to Sparrow. Also for short jobs, Eagle
improves on Hawk between 30% and 90% for all percentiles.
We therefore compare Kairos against Eagle.

Tyrex [16] aims to avoid head-of-line blocking by partition-
ing the workload in classes depending on task runtimes, and
by assigning different classes to disjoint partitions of worker
nodes. Because runtimes are not known a priori, workload
partitioning is achieved by initially assigning all tasks to parti-
tion 1, and then migrating a task from partition i to i + 1 when
the task execution time has exceeded a threshold ti .

Hu et al. [22] aim to prioritize short jobs by organizing
jobs in priority queues depending on the cumulative time its
tasks have received so far. Jobs in higher-priority queues are
assigned more resources than those in lower-priority queues.
Tasks are hosted in a system-wide queue on a centralized
scheduler, and are assigned to worker nodes depending on the
priority of the corresponding job.

Unlike Kairos, in all these systems there is no support for
preemption, and tasks, once started, run to completion. Hence,
latency-sensitive tasks may incur head-of-line blocking and
suffer from high waiting times in case of high utilization. In
contrast, Kairos uses preemption to allow an incoming task
to run as soon as it arrives on a worker node, offering short
tasks the possibility of completing with limited or no waiting
time, even in high-utilization scenarios.

7.2 Scheduler architecture
Kairos can be classified as a centralized scheduler, because
all tasks are dispatched by a single component, although
the worker nodes also perform local scheduling decisions.
There is a recent trend towards distributed schedulers, such as
Omega [34], Sparrow [28], Apollo [4] and Yaq [30], or hybrid
schedulers such as Mercury [25], Hawk [11] and Eagle [10]
to achieve low scheduling latency under high job arrival rates.

Kairos can sustain high load and achieve low scheduling
latency despite being centralized, because i) it effectively
distributes the burden of performing scheduling decisions
between the central scheduler and the worker nodes and ii)
the task-to-node assignment policy is very lightweight.

Because of these characteristics, we argue that Kairos could
also be implemented as a distributed scheduler. The state of
the worker nodes could be gossiped across the system, e.g., as
in Apollo [4] and Yaq [30], or shared among the distributed
schedulers, e.g., as in Omega [34]. Existing techniques like
randomly perturbing the state communicated to different
schedulers [4] and atomic transactions over the shared view
of the cluster [34] could be used to limit or avoid concurrent
conflicting scheduling decisions by different schedulers.

8 CONCLUSIONS AND FUTURE WORK
In this paper we present Kairos, a new data center scheduler
that makes no use of a priori task runtime estimates. Kairos
achieves low latency and high resource utilization, by em-
ploying in synergy two techniques. First, it uses a lightweight
form of preemption to prioritize short tasks over long ones and
to avoid head-of-line-blocking. Second, it employs a novel
task-to-node assignment that reduces load imbalance among
worker nodes and assigns tasks to nodes so as to improve the
chances that they complete quickly.

We evaluate Kairos experimentally on a small scale using
a full-fledged prototype in YARN, and on a larger scale by
means of simulation. We show that Kairos achieves better job
completion times than state-of-the-art approaches that use a
priori task runtime estimates.

As part of future work we plan to extend Kairos to make
it more aware of other container resources. Currently, Kairos
assumes a slot-based allocation system where each container
occupies a slot, defined in terms of a fixed number of cores.
In future work, we first plan to make Kairos memory-aware.
Currently, Kairos assumes that the CPU is the bottleneck
resource in the cluster and that memory is not a limiting
factor. Second, we plan to make Kairos handle heterogeneous
CPU allocations, where different containers can be allocated
different number of cores.

ACKNOWLEDGEMENTS
We thank the anonymous reviewers and our shepherd Ken-
neth Yocum for their feedback. We also thank Baptiste Lep-
ers, Calin Iorgulescu, Kristina Spirovska, and Konstantinos
Karanasos for the discussions, feedback and help. Additional
thanks go to the Big-C authors for making their code avail-
able. This research has been supported in part by a grant
from Microsoft Research Cambridge and by an EcoCloud
post-doctoral research fellowship.

REFERENCES
[1] O. Alipourfard, H. H. Liu, J. Chen, S. Venkataraman, M. Yu, and

M. Zhang. Cherrypick: Adaptively unearthing the best cloud configura-
tions for big data analytics. In Proceedings of the 14th USENIX Con-
ference on Networked Systems Design and Implementation, NSDI’17,
pages 469–482, Berkeley, CA, USA, 2017. USENIX Association.

Kairos: Preemptive Data Center Scheduling Without Runtime Estimates SoCC’18, Oct 11-13, Carlsbad, CA, USA

[2] G. Ananthanarayanan, A. Ghodsi, S. Shenker, and I. Stoica. Effective
straggler mitigation: Attack of the clones. In Proceedings of the 10th
USENIX Conference on Networked Systems Design and Implementa-
tion, NSDI’13, pages 185–198, Berkeley, CA, USA, 2013. USENIX
Association.

[3] N. Avrahami and Y. Azar. Minimizing total flow time and total com-
pletion time with immediate dispatching. In Proceedings of the 15th
Annual ACM Symposium on Parallel Algorithms and Architectures,
SPAA’03, pages 11–18, New York, NY, USA, 2003. ACM.

[4] E. Boutin, J. Ekanayake, W. Lin, B. Shi, J. Zhou, Z. Qian, M. Wu, and
L. Zhou. Apollo: Scalable and coordinated scheduling for cloud-scale
computing. In 11th USENIX Symposium on Operating Systems Design
and Implementation, OSDI’14, pages 285–300, Broomfield, CO, Oct.
2014. USENIX Association.

[5] W. Chen, J. Rao, and X. Zhou. Preemptive, low latency datacenter
scheduling via lightweight virtualization. In Proceedings of the 2017
USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC’17, pages 251–263, Santa Clara, CA, 2017.

[6] Y. Chen, S. Alspaugh, and R. Katz. Interactive analytical processing
in big data systems: A cross-industry study of mapreduce workloads.
Proceedings of the VLDB Endowment, 5(12):1802–1813, Aug. 2012.

[7] Y. Chen, A. Ganapathi, R. Griffith, and R. Katz. The case for evaluating
mapreduce performance using workload suites. In Proceedings of
the 2011 IEEE 19th Annual International Symposium on Modelling,
Analysis, and Simulation of Computer and Telecommunication Systems,
MASCOTS’11, pages 390–399, Washington, DC, USA, 2011. IEEE
Computer Society.

[8] E. Coppa and I. Finocchi. On data skewness, stragglers, and mapreduce
progress indicators. In Proceedings of the 6th ACM Symposium on
Cloud Computing, SoCC’15, pages 139–152, New York, NY, USA,
2015. ACM.

[9] C. Curino, D. E. Difallah, C. Douglas, S. Krishnan, R. Ramakrishnan,
and S. Rao. Reservation-based scheduling: If you’re late don’t blame
us! In Proceedings of the ACM Symposium on Cloud Computing,
SOCC’14, pages 2:1–2:14, New York, NY, USA, 2014. ACM.

[10] P. Delgado, D. Didona, F. Dinu, and W. Zwaenepoel. Job-aware sched-
uling in eagle: Divide and stick to your probes. In Proceedings of the
Seventh ACM Symposium on Cloud Computing, number EPFL-CONF-
221125, 2016.

[11] P. Delgado, F. Dinu, A.-M. Kermarrec, and W. Zwaenepoel. Hawk:
Hybrid datacenter scheduling. In Proceedings of the 2015 USENIX
Conference on Usenix Annual Technical Conference, USENIX ATC’15,
pages 499–510. USENIX Association, July 2015.

[12] C. Delimitrou and C. Kozyrakis. Quasar: Resource-efficient and qos-
aware cluster management. In Proceedings of the 19th International
Conference on Architectural Support for Programming Languages and
Operating Systems, ASPLOS’14, pages 127–144, New York, NY, USA,
2014. ACM.

[13] D. G. Down and R. Wu. Multi-layered round robin routing for parallel
servers. Queueing Systems, 53(4):177–188, Aug. 2006.

[14] A. D. Ferguson, P. Bodik, S. Kandula, E. Boutin, and R. Fonseca.
Jockey: Guaranteed job latency in data parallel clusters. In Proceed-
ings of the 7th ACM European Conference on Computer Systems, Eu-
roSys’12, pages 99–112, New York, NY, USA, 2012. ACM.

[15] P. Garefalakis, K. Karanasos, P. Pietzuch, A. Suresh, and S. Rao. Medea:
Scheduling of long running applications in shared production clusters.
In Proceedings of the 13th European Conference on Computer Systems,
EuroSys’18, pages 4:1–4:13, 2018.

[16] B. Ghit and D. H. J. Epema. Tyrex: Size-based resource allocation in
mapreduce frameworks. In IEEE/ACM 16th International Symposium
on Cluster, Cloud and Grid Computing, CCGrid 2016, Cartagena,
Colombia, May 16-19, 2016, pages 11–20, 2016.

[17] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica. Dominant resource fairness: Fair allocation of multiple re-
source types. In Proceedings of the 8th USENIX Conference on Net-
worked Systems Design and Implementation, NSDI’11, pages 323–336,
Berkeley, CA, USA, 2011. USENIX Association.

[18] I. Gog, M. Schwarzkopf, A. Gleave, R. M. N. Watson, and S. Hand.
Firmament: Fast, centralized cluster scheduling at scale. In Proc. of
OSDI, 2016.

[19] R. Grandl, G. Ananthanarayanan, S. Kandula, S. Rao, and A. Akella.
Multi-resource packing for cluster schedulers. ACM SIGCOMM Com-
puter Communication Review, 44(4):455–466, Aug. 2014.

[20] R. Grandl, M. Chowdhury, A. Akella, and G. Ananthanarayanan. Al-
truistic scheduling in multi-resource clusters. In Proceedings of the
12th USENIX Conference on Operating Systems Design and Implemen-
tation, OSDI’16, pages 65–80, Berkeley, CA, USA, 2016. USENIX
Association.

[21] R. Grandl, S. Kandula, S. Rao, A. Akella, and J. Kulkarni. GRAPHENE:
Packing and dependency-aware scheduling for data-parallel clusters.
In Proceedings of the 12th USENIX Conference on Operating Systems
Design and Implementation, OSDI’16, pages 81–97, Savannah, GA,
2016. USENIX Association.

[22] Z. Hu, B. Li, Z. Qin, and R. S. M. Goh. Job scheduling without prior
information in big data processing systems. In Proceedings of ICDCS,
2017.

[23] C.-C. Hung, L. Golubchik, and M. Yu. Scheduling jobs across geo-
distributed datacenters. In Proceedings of the 6th Symposium on Cloud
Computing, SoCC’15, pages 111–124, New York, NY, USA, 2015.
ACM.

[24] M. Isard, V. Prabhakaran, J. Currey, U. Wieder, K. Talwar, and A. Gold-
berg. Quincy: Fair scheduling for distributed computing clusters. In
Proceedings of the ACM SIGOPS 22Nd Symposium on Operating Sys-
tems Principles, SOSP’09, pages 261–276, 2009.

[25] K. Karanasos, S. Rao, C. Curino, C. Douglas, K. Chaliparambil, G. M.
Fumarola, S. Heddaya, R. Ramakrishnan, and S. Sakalanaga. Mercury:
Hybrid centralized and distributed scheduling in large shared clusters.
In Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference, USENIX ATC’15, pages 485–497, Berkeley,
CA, USA, 2015. USENIX Association.

[26] Y. Kwon, M. Balazinska, B. Howe, and J. A. Rolia. Skewtune: mitigat-
ing skew in mapreduce applications. In K. S. Candan, Y. C. 0001, R. T.
Snodgrass, L. Gravano, and A. Fuxman, editors, SIGMOD Conference,
pages 25–36. ACM, 2012.

[27] M. Nuyens and A. Wierman. The foreground-background queue: A
survey. Performance evaluation, 65(3-4):286–307, Mar. 2008.

[28] K. Ousterhout, P. Wendell, M. Zaharia, and I. Stoica. Sparrow: Dis-
tributed, low latency scheduling. In Proceedings of the Twenty-Fourth
ACM Symposium on Operating Systems Principles, SOSP’13, pages
69–84, New York, NY, USA, 2013. ACM.

[29] J. W. Park, A. Tumanov, A. Jiang, M. A. Kozuch, and G. R. Ganger.
3sigma: distribution-based cluster scheduling for runtime uncertainty.
In Proceedings of the 13th European Conference on Computer Systems,
EuroSys’18, page 2. ACM, 2018.

[30] J. Rasley, K. Karanasos, S. Kandula, R. Fonseca, M. Vojnovic, and
S. Rao. Efficient queue management for cluster scheduling. In Pro-
ceedings of the 11th European Conference on Computer Systems, Eu-
roSys’16, page 36. ACM, 2016.

[31] C. Reiss, A. Tumanov, G. R. Ganger, R. H. Katz, and M. A. Kozuch.
Heterogeneity and dynamicity of clouds at scale: Google trace analy-
sis. In Proceedings of the 3rd ACM Symposium on Cloud Computing,
SoCC’12, pages 7:1–7:13, New York, NY, USA, 2012. ACM.

[32] L. Schrage. A proof of the optimality of the shortest remaining process-
ing time discipline. Operations Research, 16(3):687–690, 1968.

SoCC’18, Oct 11-13, Carlsbad, CA, USA P. Delgado et al.

[33] L. E. Schrage and L. W. Miller. The queue m/g/1 with the shortest
remaining processing time discipline. Operations Research, 14(4):670–
684, Aug. 1966.

[34] M. Schwarzkopf, A. Konwinski, M. Abd-El-Malek, and J. Wilkes.
Omega: Flexible, scalable schedulers for large compute clusters. In
Proceedings of the 8th European Conference on Computer Systems,
EuroSys’13, pages 351–364, New York, NY, USA, 2013. ACM.

[35] A. Tumanov, T. Zhu, J. W. Park, M. A. Kozuch, M. Harchol-Balter,
and G. R. Ganger. Tetrisched: global rescheduling with adaptive plan-
ahead in dynamic heterogeneous clusters. In Proceedings of the 11th
European Conference on Computer Systems, EuroSys’16, page 35.
ACM, 2016.

[36] Y. Zhang, G. Prekas, G. M. Fumarola, M. Fontoura, I. n. Goiri, and
R. Bianchini. History-based harvesting of spare cycles and storage in
large-scale datacenters. In Proceedings of the 12th USENIX Conference
on Operating Systems Design and Implementation, OSDI’16, pages
755–770, Berkeley, CA, USA, 2016. USENIX Association.

	Abstract
	1 Introduction
	2 Background
	2.1 Estimating task runtimes
	2.2 Least Attained Service

	3 Kairos
	3.1 Design overview
	3.2 Node scheduler
	3.3 Central scheduler

	4 Implementation
	5 Experimental Evaluation
	5.1 Methodology and baselines
	5.2 Testbed
	5.3 Results

	6 Simulation
	6.1 Methodology and baseline
	6.2 Simulated testbed
	6.3 Results

	7 Related Work
	7.1 Scheduling policies
	7.2 Scheduler architecture

	8 Conclusions and Future Work
	References

