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Abstract
Speech is the most natural means of communication for humans. Therefore, since
the beginning of computers it has been a goal to interact with machines via speech.
While there have been gradual improvements in this field over the decades, and with
recent drastic progress more and more commercial software is available that allow voice
commands, there are still many ways in which it can be improved.
One way to do this is with visual speech information, more specifically, the visible
articulations of the mouth. Based on the information contained in these articulations,
visual speech recognition (VSR) transcribes an utterance from a video sequence. It thus
helps extend speech recognition from audio-only to other scenarios such as silent or
whispered speech (e.g. in cybersecurity), mouthings in sign language, as an additional
modality in noisy audio scenarios for audio-visual automatic speech recognition, to better
understand speech production and disorders, or by itself for human machine interaction
and as a transcription method.
In this thesis, we present and compare different ways to build systems for VSR: We
start with the traditional hidden Markov models that have been used in the field for
decades, especially in combination with handcrafted features. These are compared to
models taking into account recent developments in the fields of computer vision and
speech recognition through deep learning. While their superior performance is confirmed,
certain limitations with respect to computing power for these systems are also discussed.
This thesis also addresses multi-view processing and fusion, which is an important topic
for many current applications. This is due to the fact that a single camera view often
cannot provide enough flexibility with speakers moving in front of the camera. Technology
companies are willing to integrate more cameras into their products, such as cars and
mobile devices, due to lower hardware cost for both cameras and processing units, as
well as the availability of higher processing power and high performance algorithms.
Multi-camera and multi-view solutions are thus becoming more common, which means
that algorithms can benefit from taking these into account. In this work we propose
several methods of fusing the views of multiple cameras to improve the overall results.
We can show that both, relying on deep learning-based approaches for feature extraction
and sequence modelling, as well as taking into account the complementary information
contained in several views, improves performance considerably. To further improve the
results, it would be necessary to move from data recorded in a lab environment, to
multi-view data in realistic scenarios. Furthermore, the findings and models could be
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Abstract

transferred to other domains such as audio-visual speech recognition or the study of
speech production and disorders.

Key words: visual speech recognition; automatic lip-reading; multi-view processing;
GMM-HMM; deep learning

vi



Résumé
La parole est la forme de communication la plus naturelle des humains. C’est la raison
pour laquelle, depuis le début des ordinateurs, on a cherché à interagir avec les machines à
travers la parole. Bien qu’il y ait eu des améliorations graduelles dans ce domaine pendant
des décennies, et qu’il existe de plus en plus de programmes commerciaux qui permettent
des commandes vocales, bon nombre de points doivent encore être améliorés. Pour ce
faire, une méthode utilise les informations de la parole visuelle, ou plus particulièrement,
les articulations visibles de la bouche.
Basée sur les informations contenues dans ces articulations, la reconnaissance de la parole
visuelle transcrit un énoncé depuis une séquence vidéo. Ainsi, elle permet d’étendre la
reconnaissance de la parole de l’audio uniquement à d’autres scénarios, tels que : la parole
silencieuse ou chuchotée utile pour la sécurité informatique, les « mouthings » (articula-
tions des lèvres) de la langue des signes, une modalité de plus dans les scénarios d’audio
bruité pour la reconnaissance de la parole audio-visuelle, une meilleure compréhension
de la production de la parole ou des troubles du langage, l’interaction homme-machine
ou une méthode de transcription.
Dans cette thèse, nous présentons et comparons des manières différentes de développer
des systèmes de reconnaissance de la parole visuelle. Nous commençons par étudier les
modèles de Markov cachés traditionnels, utilisés dans ce domaine pendant des décennies,
en particulier en combinaison avec des caractéristiques choisies manuellement. Puis,
nous comparons ces systèmes à des modèles qui prennent en compte les développements
récents, par l’apprentissage profond, dans les domaines de la vision par l’ordinateur et de
la reconnaissance de la parole. Même si leur performance supérieure est confirmée, il est
important de souligner certaines limites concernant leur besoin de puissance de calcul.
Cette thèse développe aussi le traitement et la fusion de plusieurs angles de vues, ce
qui est un sujet important pour beaucoup d’applications récentes. Cela est dû au fait
qu’une seule caméra ne peut pas donner assez de flexibilité au locuteur qui bouge devant
celle-ci. Les entreprises de technologie sont prêtes à intégrer plusieurs caméras dans leurs
appareils, comme les voitures ou les appareils portables, suite à la baisse des prix des
caméras et des processeurs, aux puissances de calcul plus élevées et aux algorithmes plus
performants. Des solutions multi-caméra et multi-vue deviennent ainsi plus communes,
ce que requièrent les algorithmes pour les prendre en compte. Dans ce travail, nous
proposons plusieurs méthodes pour la fusion de vues de plusieurs caméras, afin d’améliorer
les résultats finaux.
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Résumé

Nous pouvons constater que les deux approches : se baser sur l’apprentissage profond
pour l’extraction de caractéristiques et la modélisation de séquences, ainsi que prendre en
compte l’information complémentaire contenue dans plusieurs vues, améliore fortement
la performance. Afin d’améliorer les résultats, il serait nécessaire de changer les données
enregistrées dans un environnement de laboratoire, en données de plusieurs vues dans
les scénarios réalistes. En outre, les résultats et les modèles pourraient être transposés
à quelques autres domaines comme la reconnaissance de la parole audio-visuelle ou
l’investigation de la production de la parole et des troubles du langage.

Mots clefs : reconnaissance de la parole visuelle ; lecture labiale automatique ; traitement
de plusieurs vues ; MMG-MMC ; apprentissage profond
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Zusammenfassung
Sprache ist die natürlichste Form der menschlichen Kommunikation. Daher existiert seit
der Erfindung des Computers das Ziel, mit den Maschinen über Sprache zu interagieren.
Auch wenn auf diesem Gebiet in den letzten Jahrzehnten kontinuierliche Fortschritte
erreicht wurden und immer mehr Computerprogramme Sprachkommandos ermöglichen,
gibt es weiterhin viele Verbesserungsmöglichkeiten.
Eine Möglichkeit der Optimierung besteht in den visuellen Sprachinformationen, präziser,
in den sichtbaren Mundbewegungen. Gestützt auf die darin enthaltenen Informationen
transkribiert die visuelle Spracherkennung die Äußerung einer Videosequenz. Dies erlaubt,
die Spracherkennung von reinem Audio auf andere Szenarien auszuweiten, wie beispiels-
weise auf lautlose oder geflüsterte Sprache (z. B. in der Computersicherheit), „Mouthings“
(Lippenbewegungen) in der Gebärdensprache, als zusätzliche Modalität in geräuschvollen
Audioszenarien für audio-visuelle Spracherkennung, zum besseren Verständnis von Sprach-
produktion und Sprechstörungen oder alleine für die Mensch-Computer-Interaktion und
als Methode zur Transkription von Videos.
In dieser Doktorarbeit präsentieren und vergleichen wir verschiedene Methoden zur Ent-
wicklung eines visuellen Spracherkennungssystems: Wir beginnen mit den traditionellen
Hidden-Markov-Modellen, die in diesem Bereich jahrzehntelang eingesetzt waren, vor
allem in Kombination mit handverlesenen Merkmalen. Diese werden mit Modellen vergli-
chen, die die neuesten Entwicklungen auf dem Gebiet des maschinellen Sehens und der
Spracherkennung durch das Deep Learning einbeziehen. Deren bessere Leistung wird be-
stätigt, jedoch werden auch bestimmte Einschränkungen in Bezug auf die Rechenleistung
für diese Systeme besprochen.
Diese Doktorarbeit behandelt auch die Verarbeitung mehrerer Kameraansichten und
deren Fusion, die ein wichtiges Thema für viele aktuelle Anwendungen sind, weil eine
einzige Kameraansicht nicht genügend Flexibilität bietet, wenn die Sprecher sich vor
der Kamera bewegen. Technologieunternehmen integrieren inzwischen mehrere Kameras
in ihre Produkte, wie Autos, mobile Geräte usw., da die Hardwarekosten sowohl für
Kameras als auch für Prozessoren gesunken und gleichzeitig auch Rechenleistungen und die
Performance der Algorithmen gestiegen sind. Multikamera- und Multiansicht-Lösungen
verbreiten sich dadurch stärker, und daher sollten Algorithmen diese berücksichtigen. In
dieser Arbeit stellen wir mehrere Methoden für die Fusion verschiedener Kameraansichten
vor, um die Gesamtergebnisse zu verbessern.
Wir können aufzeigen, dass sowohl die Deep Learning-Methoden zur Extraktion von
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Zusammenfassung

Merkmalen und zur Modellierung von Sequenzen als auch die Nutzung von ergänzenden
Informationen aus mehreren Kameraansichten die Leistung erheblich steigern. Um die
Ergebnisse weiter zu optimieren, wäre es nötig, von Videoaufnahmen im Labor hin
zu Multiansichts-Daten aus realistischen Szenarien zu wechseln. Außerdem sollten die
Erkenntnisse und Modelle in anderen Bereichen wie der audio-visuellen Spracherkennung
oder der Untersuchung von Sprachproduktion und Sprechstörungen angewandt werden.

Stichwörter: visuelle Spracherkennung; automatisches Lippenlesen; Verarbeitung mehrerer
Kameraansichten; GMM-HMM; Deep Learning („tiefgehendes Lernen“)
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Introduction
Speech is an important means of human communication, and at its level of complexity it
is often considered to be one of the distinctive characteristics between humans and other
animals. Speech is also one of the most natural ways of communication for humans, and
thus has long been dreamt up in human computer interaction (HCI) to facilitate the
interaction between humans and machines and to make it more natural. With advances
in signal processing and increasing computational power, algorithms were developed that
could transcribe an audio signal to a sequence of phonetically distinct units. However,
only with further developments in both technology and algorithms, could the machines
recognise a larger vocabulary and eventually react to the commands. Still, the interaction
is often frustrating when there are misunderstandings, which can happen particularly in
noisy situations. Or it might be undesirable to have your neighbour listen in on your
commands, e.g. when spelling out your password. Furthermore, hearing impaired people
communicate via sign language, rather than using spoken words. For all these, another
branch of speech recognition, using the visible articulations of the mouth, has developed:
visual speech recognition (VSR) or automatic lip-reading.

There are many applications to this field, including the examples mentioned above,
such as support for the audio in noisy situations through audio-visual automatic speech
recognition [Potamianos et al., 2004], silent or whispered speech, e.g. for pronouncing
passwords in cybersecurity [Denby et al., 2010, Hassanat, 2014, Petridis et al., 2018],
for the mouthings in sign language recognition [Schmidt and Koller, 2013], as well as
understanding speech production better [Badin et al., 2002] or for direct HCI.

Motivation

The interest in visual speech recognition is motivated by the way humans work when
confronted with a listening task or conversation in a very noisy environment. In situations
such as a noisy restaurant humans usually resort to lip reading to improve their under-
standing. Humans make use of the additional information to distinguish different sounds.
When simultaneously listening and lip reading, a sound can even be confused if the wrong
mouth movement is shown: this is the McGurk effect [McGurk and MacDonald, 1976].
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We can exploit this extra information in audio-based automatic speech recognition as
well by combining audio and video modalities.

In this thesis the focus is on pure VSR which can then be used as a starting point for
other research problems like the ones mentioned above. The aim of this work is to
show the improvements that can be obtained starting from the traditional hand-crafted
feature and GMM-HMM systems, via combined approaches using neural networks to
extract features while still maintaining the GMM-HMM system, all the way to fully
deep learning-based methods with CNNs and RNNs. It also shows the limitations of
certain methods, considering the data size and using only a single computer and graphics
processing unit (GPU).

A remaining constraint of VSR is the inability to deal with videos coming from different
view angles. This is a major problem for applying these algorithms in real-life situations,
since in most cases the speaker is free to move his head or even the entire body. For these
reasons and due to the availability of cheaper equipment, it is becoming more popular
nowadays to increase the number of cameras on a device or in a certain environment.
For example, it is becoming more common to integrate at least two cameras into a car to
monitor the driver. Here the question of how to treat these different video streams and
how to combine their information comes into play. This topic is treated in this thesis,
albeit for static views. The choice of databases analysed is also determined by this factor,
whether it provides several simultaneously recorded views.

Thesis outline

The thesis is structured in the following way:

• To begin, Chapter 1: Background provides an overview of the methods needed
and used in VSR. This ranges from the definition of the speech classes, over
the face tracking needed to preprocess the videos, to approaches used for visual
feature extraction and sequence modelling. In the latter, three types of approaches
are elaborated: the traditional approaches, the combined, and the most recent
deep learning-based methods. This is followed by an overview of the performance
metrics used in this thesis. Finally, a short introduction to multi-view visual speech
recognition and the databases explored in this work are given.

• Chapter 2: Traditional approach outlines the setup and presents some baseline
results performed with handcrafted features (DCT coefficients) with standard
GMM-HMM systems.

• In Chapter 3: Combined approach a feature extraction system consisting of a PCA
network followed by an LSTM is presented. In a tandem system these features are
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then passed into a GMM-HMM which models the time evolution. It is shown that
this network outperforms the traditional methods presented as a baseline.

• Following the advances in deep learning, Chapter 4: Deep learning approach
provides a systematic step-by-step approach to developing a deep learning system.
It is shown that this method outperforms the previous approaches.

• Taking into account the views from different camera angles, Chapter 5: Multi-view
visual speech recognition uses the tandem approach to show that the combination
can improve the results by integrating the complementary information.

• Finally, Conclusion summarises the results presented in this thesis and provides an
outlook on future research.

Contributions

The main contributions of this thesis are summarised below:

• Provide an overview over the different approaches from the traditional to deep
learning methods.

• Design a novel tandem system composed of PCA networks with LSTM and a
GMM-HMM suitable for small databases [Zimmermann et al., 2017a].

• Propose a systematic approach to developing a deep learning system for continuous
sequence-to-sequence visual speech recognition.

• Implement a new method to weight the contributions of different views for multi-
view visual speech recognition with a tandem system [Zimmermann et al., 2017b].
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1 Background

This chapter provides background information on visual speech recognition (VSR) and
the methods used in the field, coming from both the speech recognition and computer
vision domains. First the visual speech classes used in this thesis are elaborated. This
is followed by an overview of face tracking, needed to find the relevant regions of the
face. The subsequent sections present various approaches to VSR: from the traditional
approaches with handcrafted features and GMM-HMMs via combined approaches to
end-to-end deep learning models. For each approach the processing steps for VSR shown
in Figure 1.1 are elaborated: first the features are extracted from the input video frames
and then the feature sequence is modelled in time to obtain the sequence of output labels.
Next, the performance metrics applied in this work are presented and an overview of
multi-view lip reading is given. Finally, existing (audio-)visual speech databases are
discussed and those used in this thesis are described in more detail.

1.1 Visual speech classes

One of the first decisions to take when building a speech recognition system involving
video is the choice of classes to distinguish different sounds or rather articulations for
VSR. In audio-based speech recognition the classes are usually phonemes, defined as
the smallest distinctive linguistic unit, or phones, the unit of speech sound independent
of the language [Coxhead, 2006]. However, in video-based speech recognition several

Parts of this chapter have been published by Zimmermann et al. [2017a,b].

Input video Feature extraction Sequence modelling Output label sequence

Figure 1.1 – Flowchart of the visual speech recognition chain.

5



Chapter 1. Background

phonemes look the same or similar, so they are usually grouped into visually distinct
units called visemes [Cappelletta and Harte, 2012]. Several many-to-one mappings exist
from phonemes to visemes. These are usually made up of around 8 to 17 different viseme
classes [Coxhead, 2006, Turkmani, 2007, Souviraà-Labastie and Bimbot, 2013]. Even
though some research has suggested that visemes provide a sub-optimal classification of
speech data [Bear et al., 2014, Yu et al., 2011], some type of visemes or even phonemes
are still generally preferred, since they easily relate to phonemes in audio recognition
and are thus easy to understand for humans and easily fused in audio-visual automatic
speech recognition (AVASR).

In this work we do VSR for English and use the same viseme set as the one used by [Harte
and Gillen, 2015], initially proposed in [Jeffers and Barley, 1971]. The choice is based on
two factors: first, this mapping has been shown to be reliable [Cappelletta and Harte,
2012]. Secondly, it is used in the baseline results for the database TCD-TIMIT proposed
in [Harte and Gillen, 2015], which will be used for part of this work. Using the same
viseme set allows better comparisons between different approaches.

However, other types of classes have also been used in the literature. Some recent
studies use graphemes rather than phonemes or visemes, which are the different letters,
numbers, characters and punctuation marks that appear in a written sentence [Chung
and Zisserman, 2017]. For smaller datasets sometimes whole words are used as the
smallest unit [Wand et al., 2016]. Finally, some research only tries to distinguish between
a set of predefined sentences [Lee et al., 2017, Saitoh et al., 2017].

In contrast to these, in this thesis generally visemes are used as smallest units and
sequence-to-sequence decoding is performed, rather than classifying whole utterances.
On the smaller one of the two datasets treated in this work, these viseme sequences are
then regrouped to word-level models which are then decoded to a sequence of words. For
the larger dataset the smallest unit in the sequence decoding are visemes.

1.2 Video preprocessing: face tracking

When treating facial video, it is important to focus on the particular region of interest
(ROI) on the face. For VSR, this means extracting the areas which are active during
articulation and which thus provide the largest amount of information about the utterance:
the mouth, in particular the lips, and possibly other regions such as the cheeks and jaws.

To find these ROIs, newer studies generally apply face trackers that detect the face and
find specific landmarks on the face and track these over consecutive frames (an example is
shown in Figure 1.2), while older works rely on manually labelling or on markers such as
lipstick. The most common choice nowadays for detecting the face is still the Viola-Jones
face detector, using features similar to the Haar basis functions [Viola and Jones, 2001].
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Table 1.1 – Viseme mapping for English by Jeffers and Barley [1971] as presented
by Harte and Gillen [2015] used in this work.

Viseme TIMIT phonemes Description

/A /f/, /v/ Lip to teeth

/B
/er/, /ow/, /r/, /q/, /w/,

Lips puckered
/uh/, /uw/, /axr/, /ux/

/C /b/, /p/, /m/, /em/ Lips together

/D /aw/
Lips relaxed-moderate opening

to Lips puckered-narrow

/E /dh/, /th/ Tongue between teeth

/F /ch/, /jh/, /sh/, /zh/ Lips forward

/G /oy/, /ao/ Lips rounded

/H /s/, /z/ Teeth approximated

/I
/aa/, /ae/, /ah/, /ay/, /ey/, /ih/, /iy/, /y/,

Lips relaxed narrow opening
/eh/, /ih/, /iy/, /y/, /eh/, ax-h/, /ax/, /ix/

/J /d/, /l/, /n/, /t/, /el/, /nx/, /en/, /dx/ Tongue up or down

/K /g/, /k/, /ng/, /eng/ Tongue back

/S
/sil/, /pcl/, /tcl/, /kcl/, /bcl/, /dcl/,

Silence
/gcl/, /h#/, /#h/, /pau/, /epi/

For subsequent tracking, various types of face trackers exist. One of the most commonly
used trackers in VSR is the active appearance model (AAM) [Cootes et al., 2001], since
its parameters are sometimes directly used as features.

AAMs model both facial shape and appearance. The shape of the AAM is described
by the sequence of (x, y) coordinates of the landmark locations in the model: s =
(x1, y1, . . . , xn, yn)

This shape is parametrised with a principle component analysis (PCA), so that it can
be represented as a sum of the mean shape s0 and its eigenvectors si multiplied by the
shape parameters pi [Lan et al., 2010]:

s = s0 +
m∑
i=1

pisi. (1.1)
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(a) Frontal view, mouth open. (b) Side view, mouth open.

(c) Frontal view, mouth closed. (d) Side view, mouth closed.

Figure 1.2 – Face tracking and mouth cropping examples with the facial landmarks
indicated on frames from the TCD-TIMIT database using the SDM-based face tracker.

Here the m largest eigenvectors are kept, where

p = sT (s− s0). (1.2)

Similarly, the appearance A within this region can be described as a linear combination of
a decomposition by PCA into mean appearance and eigenvectors with the corresponding
appearance parameters qi:

A = A0 +
l∑

i=1
qiAi. (1.3)

This is applied to shape-normalised and reshaped images and the l largest eigenvectors
are stored. Again,

q = AT (A−A0). (1.4)

However, more recent face trackers, like the regression-based one using the supervised
descent method (SDM) [Xiong and De la Torre, 2013] for fitting, show better performance
results for facial landmark tracking [Cuendet, 2017]. This fitting method has been
developed to minimise non-linear least squares functions. Unlike the parametrised AAM
described above, regression-based face trackers do not use a shape or appearance model,
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but learn the vectorial regression function from the image directly on the landmark
locations s = (x1, y1, . . . , xn, yn). This allows the tracker to more readily adapt to
asymmetric shapes or untrained gestures. The landmark locations are updated iteratively
through a sequence of descent directions and rescaling factors (sk+1 = sk +∆s).

Finally, another difference from the AAM is the use of scale-invariant feature transform
(SIFT) features around each landmark location in the SDM. The feature vector φ∗
contains the collected and ordered features of a particular shape s∗ in an image, and
is directly used to compute the necessary updates. Due to its better performance, an
implementation of the SDM-based face tracker from our lab, with improvements from
[Qu et al., 2015], is used where necessary in this work to crop the ROI.

1.3 Traditional approaches

This section describes the traditional approach to visual speech recognition, which
comprises the extraction of texture-based or geometrical features and the consequent
modelling of specific speech classes through hidden Markov models (HMMs) with Gaussian
mixture models (GMMs). It is structured in the following way: first visual feature
extraction techniques and then sequence modelling with a GMM-HMM system are
discussed.

1.3.1 Visual feature extraction

After deciding on the type of class and obtaining the correct landmark locations, it is
necessary to look into the different features used in visual speech recognition. They can
be grouped into two approaches: appearance-based and shape-based features [Potamianos
et al., 2004].

Appearance-based features exploit the pixel values in the ROI and apply a sort of
transformation to these. Popular image transformations include the PCA, discrete cosine
transform (DCT), discrete wavelet transform (DWT), linear discriminant analysis (LDA)
and maximum-likelihood linear transform (MLLT) [Potamianos et al., 2004]. These can
be applied at different stages of a feature extraction framework.

PCA, DCT and DWT are image transformation methods that compress the information
in the ROI, while LDA improves classification by remapping the data to a different feature
space where the discriminability is maximised; similarly, MLLT is a maximum likelihood
data modelling technique. The latter two can be used not only on appearance-based
features but also for post-processing of any kind of feature [Potamianos et al., 2004].

Shape-based features, on the other hand, extract information about the shape of the
mouth. As summarised by Potamianos et al. [2004], various shape-related features have
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been explored in the literature. This can be done for example with the help of active
contour models, or snakes, taking into account the outer contours of the mouth, or by
exploiting the geometrical appearance of the mouth: computing distances such as height,
width, perimeter, protrusion or area with the help of certain points of interest [Potamianos
et al., 2004, Chitu and Rothkrantz, 2008, Koller et al., 2014]. Other methods make use
of the lip image moments or Fourier descriptors of the lip contours [Potamianos et al.,
2004].

Some other works have also developed specific models of the lips based on parametric or
active shape models [Luettin et al., 1996, Gurbuz et al., 2001]. These are used to model
the mouth shapes for the different visemes and then to recognise them.

All these methods usually need a first tracking of the lips by a model. As mentioned in
section 1.2, a common choice for this is a face tracker, such as the AAM [Cootes et al.,
2001]. Many works employ it, either to extract further features from the shape or a ROI
defined by the shape, or to directly use its parameters as features [Chitu and Rothkrantz,
2008, Bowden et al., 2013, 2012, Lan et al., 2010, Koller et al., 2014, Potamianos et al.,
2004, Bowden et al., 2013, Biswas et al., 2015, Sterpu and Harte, 2017].

Some other researchers have worked with more detailed 3D models of the face and
lips [Watanabe et al., 2017]; however, these have more often been used with the aim
of recreating the motion for speech synthesis in avatars [Basu and Pentland, 1997, Wei
et al., 2004].

In some systems a combination of appearance and shape serves as the feature set used
for classification in the end. This can be achieved through simple concatenation of the
separate feature sets. Using the AAM for this purpose has showed a better performance
than the individual shape or appearance features [Lan et al., 2010].

For instance, the parameters of the shape and appearance decompositions of the AAM
can be combined:

b =
[
Wp
q

]
, (1.5)

where W is a matrix containing weights for unit adaptation of the shape parameters
with respect to the appearance parameters.

Finally, another PCA can be applied to this combined parameter vector to reduce the
feature dimensionality and decorrelate the features:

b = Vc. (1.6)

The columns of V are the first v eigenvectors of the covariance matrix of the vector of
combined shape and appearance parameters. c is then the combined parameter vector of
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shape and appearance on which the model is built.

In the end, some temporal information is usually included in the feature vector by either
incorporating features for several frames or adding delta and acceleration components.

Before using the features for speech recognition, a few techniques like the aforementioned
PCA or LDA and MLLT can also be applied as feature post-processing techniques. This
is especially useful for purposes of compression and decorrelation of features as well as to
achieve speaker independence [Potamianos et al., 2004, Neti et al., 2000]. In particular,
LDA has been intensively studied as a feature post-processing technique with different
types of classes: phonemes, visemes, or HMM state sequences [Potamianos and Graf,
1998, Potamianos et al., 2000, Lan et al., 2010]. LDA, in combination with MLLT, is
often applied once directly to the appearance-based features and then to a concatenation
of several frames. It is then referred to as hierarchical LDA (HiLDA) [Potamianos et al.,
2004].

In the traditional approaches, but also in some deep learning frameworks, commonly the
delta and acceleration components of the feature sequence are computed and concatenated
to the features, to be jointly passed to the sequence model. These coefficients provide
additional information about the sequence’s dynamics. The delta coefficient dt at time t
is computed in the following way:

dt =
∑Θ
θ=1 θ(ct+θ − ct−θ)

2 ∑Θ
θ=1 θ

2 , (1.7)

where ct+Θ and ct+Θ are the corresponding static coefficients, defined on a window of
size 2Θ + 1 [Young et al., 2009]. The acceleration coefficients are calculated by applying
equation (1.7) to the delta components.

1.3.2 Sequence modelling

In the traditional approaches, GMM-HMM systems are most commonly used for sequence
modelling. They have been employed in audio-based speech recognition for decades and
allow to model the phonemes, or visemes in the case of video-only speech recognition,
with an HMM with integrated GMMs.

The aim of using the HMM, which is a finite state machine that models a sequence in
time by states [Rabiner, 1989, Gales and Young, 2007, Young et al., 2009], is to find the
most likely label sequence Ŷ given an input, or observation sequence X:

Ŷ = arg max
Y

P (Y|X). (1.8)

Since the HMM is a generative model, we cannot find P (Y|X) directly. By applying
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Bayes’ Theorem, it can be approximated by

Ŷ = arg max
Y

P (X|Y)P (Y)
P (X) ∝ arg max

Y
P (X|Y)P (Y), (1.9)

where P (X|Y) is determined by the acoustic model and P (Y) by the language model
[Gales and Young, 2007]. The actual state sequence S producing the series of observations
X is unknown in practice, which is why it is called a hidden Markov model. The likelihood
P (X|Y) can further be obtained by marginalising over all possible state, or alignment,
sequences

P (X|Y) =
∑
S∈S

P (X,S|Y). (1.10)

This can be expanded to give

P (X) =
∑
S∈S

T∏
t=1

P (xt|st)P (st|st−1), (1.11)

omitting the conditioning on Y for simplicity.

More precisely, as shown in Figure 1.3, each observation or input xt at time step t is
modelled to be emitted, or drawn, from a probability density – the emission probability
bj(xt) = P (xt|st = j), in this case from the GMM – and the transition from state i to
state j is modelled by the so-called transition probability aij = P (st = j|st−1 = i).

The above equation can thus also be rewritten as

P (X) =
∑
S∈S

as0s1

T∏
t=1

bst(xt)ast−1st , (1.12)

with the constraint that s0 be the entry state and sT+1 the exit state.

The GMM that models the emissions takes as input the chosen features from the previous
section. Each class is then modelled by a mixture of Gaussians in a multi-dimensional
space depending on the feature dimensionality. The Gaussians are defined by a particular
parameter set, depending on the number of free parameters: mean, covariances and
mixture weights [Rabiner, 1989].

To train this model the Baum-Welch algorithm is widely used, which is an iterative
method based on the Expectation Maximisation algorithm that updates the different
model parameters through reestimation [Rabiner, 1989, Young et al., 2009].

The final decoding of the sequence is then performed by the Viterbi algorithm [Viterbi,
1967, Young et al., 2009]. This algorithm computes the most likely path through a
phoneme sequence, namely the maximum likelihood state sequence. Within the Viterbi
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s1 s2

a12

s3 s4

x1 x2

b4(x3)

x3

Figure 1.3 – Sequence modelling with a GMM-HMM system.

decoder, certain constraints of a lexicon (pronunciation model) and/or grammar (language
model) can be taken into account.

HMMs have been widely used in speech recognition since they allow easy and efficient
modelling of sequences of events by states. For a long time they produced the state-of-
the-art results in the field.

In this work the Hidden Markov Model Toolkit HTK [Young et al., 2009] is used for all
models involving GMMs and HMMs and the decoding.

1.4 Combined approaches

The traditional GMM-HMM approach was widely used until the emergence of artificial
neural networks (ANNs) for automatic speech recognition (ASR). With these, the GMM
emission models integrated into the HMM temporal modelling scheme were replaced by
such new, improved ‘acoustic-phonetic’ models which led to higher performance [Bourlard
and Morgan, 1994]. Whereas in ASR the main use for ANNs was initially these emission
models (which was then also repeated with success for visual speech recognition), the
bigger impact in this domain was achieved through the developments involving convolu-
tional neural networks (CNNs) and other deep learning methods for feature extraction
and directly in end-to-end systems.
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1.4.1 Visual feature extraction

In more recent approaches to VSR, the entire visual feature extraction pipeline has been
replaced by specific types of ANNs, usually CNNs or auto-encoders. CNNs are a very
common image processing tool nowadays, and they allow to extract features from images.

Artificial neural networks have been inspired by biology in the way brains consist of
networks of neurons. These artificial neurons receive and pass raw and processed
information (signals) from one to another in an often layered network [Bishop, 2006].
Each neuron has the following characteristics: an activation function f(·) that maps
the weighted (by wij) inputs xi to a certain output value yj . These functions are often
nonlinear, following their biological models. In this case and when they contain several
layers, these networks can also be referred to as multilayer perceptrons (MLPs). The
layers of the network that lie between the input and the output layer are often called
hidden layers since their activations are not observed directly.

The activation a(k)
j of neuron j in layer k with inputs y(k−1)

i in the preceding layer for
i ∈ {1, · · · , n} is given by

a
(k)
j =

n∑
i=1

w
(k)
ij y

(k−1)
i + wj0, (1.13)

where w0j is also referred to as the bias.

The output of a neuron j in layer k is then

y
(k)
j = f(a(k)

j ), (1.14)

with activation function f(·) acting on a(k)
j . Figure 1.4 shows a schematic of an MLP

with a sigmoid activation function.
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ANNs are trained using the backpropagation algorithm which involves the iterative
minimisation of a cost, or loss, function. The first stage evaluates the gradient of this
cost function with respect to the weights by propagating the error through the network.
In the second step the weights are updated by taking into account these derivatives.
Generally, this update is limited by a percentage, the learning rate, which controls by
how much each training sample influences the update and is used to regulate the speed
of convergence and the risk of overfitting [Bishop, 2006].

Mathematically, the backpropagation of errors is based on the following formula:

δ
(k)
i = f ′(ai)

n∑
j=1

w
(k)
ij δ

(k+1)
j , (1.15)

where δ(k)
i is the ‘error’ corresponding to hidden neuron i in layer k and δ

(k)
j are the

‘errors’ associated to the preceding (i.e. closer to the output, since the error is propagated
backwards through the network) hidden, or output, neurons j in layer k+ 1. w(k)

ij are the
weights associated to these neurons, and f ′(·) is the derivative of the activation function,
here evaluated at a(k)

i . For the output layer, the ‘error’ is calculated directly as the
difference between the ground truth tj and the network outputs oj , i.e. δj = oj − tj . The
‘errors’ are then iteratively passed through the network from one layer to the other.

The updates ∆w(k)
ij to each weight w(k)

ij can then be obtained by using the gradient
descent algorithm – a first-order iterative optimisation algorithm to find the minimum of
a function –, making small updates in the direction of the negative gradient:

∆w
(k)
ij = −η ∂E

∂w
(k)
ij

= −ηδ(k)
j y

(k−1)
i , (1.16)

where η is the learning rate and E is the loss function. The update of one sample at a
time is also referred to as stochastic learning, whereas updating after observing a number
(the batch size) of training samples is called batch learning. For the latter, the individual
contributions of each sample in a mini batch are summed up to perform one update after
each batch.

Convolutional neural networks (CNNs) are a specific type of ANN based on the concept
of receptive fields. In humans and other animals, neurons in the visual cortex process
information from a small, specific region in the field of view, the so-called local receptive
field. These can be represented by a weight matrix, usually referred to as a filter or
kernel, applied to a particular region. In CNNs the weights are often shared between
several neurons of a certain layer, thus allowing to recognise similar shapes across the
image and to reduce the number of parameters at the same time. This operation can
also be seen as a convolution of the neurons of the local receptive field with the filter [Le
Cun et al., 1990]. A major advantage of CNNs over MLPs is the fact that unlike the
latter, the former’s layers are often not fully connected, thus significantly reducing both
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Convolution Max-Pool Conv.

. . .

. . .

Figure 1.5 – Schematic of the basic building blocks of a CNN.

the training time and the need for training data.

In Figure 1.5 an example of two basic building blocks of a CNN is shown: these are the
convolutional layers, in which an input is convolved with each neuron’s receptive field,
thus creating a new activation matrix for each neuron; and the max pooling layers, which
compress the activations by only passing the maximum value for each cluster within a
given grid, as shown with a box in Figure 1.5. Another important building block consists
in the fully connected layers, which have connections between all neurons, similarly to
the neurons in an MLP. The same backpropagation algorithm with gradient descent as
mentioned above can be used to train CNNs.

In recent years, deep learning methods with multiple hidden layers between the input
and output layers, such as CNNs, have been shown to have superior image and object
classification performance [Donahue et al., 2015, Chan et al., 2015] which in turn should
also mean that they are better at extracting discriminative features from the image for
further processing like in VSR.

In the VSR domain, Ngiam et al. [2011] started by using deep Boltzmann machines
for feature extraction in combination with support vector machines to classify the
utterances, normalised in length. Other researchers extracted the features with deep
belief networks [Huang and Kingsbury, 2013] and CNNs [Noda et al., 2014, Koller et al.,
2015].

1.4.2 Sequence modelling

There are multiple ways to use the output of an ANN. One possibility is to simply use
the output of these models as an input to the traditional GMM-HMM system, practically
like features. This approach is called a tandem system [Hermansky et al., 2000].

However, there is another advantage of using ANNs: Their output represents a probability
distribution, which can easily be treated in the subsequent HMM sequence model as the
emission probability P (xt|st) if the posterior probability P (st|xt) is normalised by the
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probability of the state P (st). It thus does not require an additional acoustic model.
These kind of models are the so-called hybrid approaches [Bourlard and Morgan, 1994].

For VSR tandem systems with a GMM-HMM recogniser have been used in several
works [Huang and Kingsbury, 2013, Noda et al., 2014, Sui et al., 2015]. Other research
has made use of the hybrid approach [Thangthai et al., 2015, Thangthai and Harvey,
2017]. Mroueh et al. [2015] use another type of combined system by using hand-crafted
features, based on scattering coefficients and LDA, and then replace the entire recognition
system by a bilinear network.

1.5 Deep learning approaches

With the increasing availability of larger datasets and more powerful computational
resources, the latest work in VSR has replaced the whole recognition pipeline by recurrent
neural networks (RNNs), such as long short-term memories (LSTMs), on top of features
extracted from deep neural networks (DNNs) and more specifically CNNs [Wand et al.,
2016, Chung et al., 2017, Petridis et al., 2017a]. Thus, VSR has taken advantage of and
joined the recent advances in computer vision and speech recognition.

1.5.1 Feature extraction

In these deep learning frameworks, the feature extraction is typically performed using a
specific type of neural network, such as an auto-encoder framework, or the CNN described
in the previous section. Often it is trained in sequence, within one large network, together
with the RNN, thus resulting in an end-to-end deep learning framework. The features
are therefore not analysed on their own, but get evaluated through the overall system.

1.5.2 Sequence modelling

Similarly to other types of artificial neural networks, recurrent neural networks are made
up of neurons, or cells. However, contrary to those other networks, a given cell in an
RNN receives as input not only the activations from other nodes, but also the outputs
from a previous sample’s pass through the network, as well as the same cell’s so-called
state from this previous pass. The influence of each of these factors on the cell’s new
output is determined by a set of weights.

The most common type of RNN is made up of long short-term memory (LSTM) cells.
In this type of network the cell is comprised of three gates (see Figure 1.6): an input,
a forget and an output gate [Hochreiter and Schmidhuber, 1997, Olah, 2015]. At the
different gates, the input, the output and the cell state from the previous timestep are
weighted with learned matrices. Thus the cell’s new output and state are a function of
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these three entry values.

The input gate receives both the current input vector xt and the previous output vector
yt−1:

it = σ(Wi · [yt−1, xt] + bi), (1.17)
C̃t = tanh(WC · [yt−1, xt] + bC), (1.18)

where · represents a matrix multiplication, here with weight matrices Wi, and WC and bi
and bC are the bias terms, of the input gate and candidate value, respectively.

The candidate values C̃t are combined with the output from the forget gate ft

ft = σ(Wf · [yt−1, xt] + bf ), (1.19)

where Wf is the forget gate’s weight matrix and bf its bias, to produce the new cell state:

Ct = ft ∗ Ct−1 + it ∗ C̃t, (1.20)

where ∗ represents an element-wise multiplication.

Finally, the output gate computes the output weight ot and, in combination with the cell
state, gives the new cell output yt:

ot = σ(Wo · [yt−1, xt] + bo), (1.21)
yt = ot ∗ tanh(Ct), (1.22)

with the output gate’s weight matrix Wo and bias bo.

Another important type of RNN is the gated recurrent unit (GRU) [Cho et al., 2014].
Similar to the LSTM, the design of GRUs is based on gates (see Figure 1.7). However,
to reduce the number of parameters, the input and forget gates are combined, as are the
output and cell states. Furthermore, there is no nonlinearity when computing the output.
The lower number of parameters makes it an attractive choice for smaller datasets. In
the following, we thus describe the internal workings of a GRU:

The update gate zt at time t determines what will be retained from the previous memory
state yt−1, by also taking into account the current input xt

zt = σ(Wz · [yt−1, xt]), (1.23)

where · represents a matrix multiplication, here withWz, the update gate’s weight matrix.

The other gate, the reset gate rt, decides how to combine the current input with the
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Figure 1.6 – Schematic of an LSTM cell.

previous memory:
rt = σ(Wr · [yt−1, xt]), (1.24)

with the reset gate’s weight matrix Wr.

The new memory state and the unit’s activation are obtained in two steps. First, the
hidden state ỹt is calculated:

ỹt = tanh(Wh · [rt ∗ yt−1, xt]), (1.25)

where ∗ represents an element-wise multiplication and Wh is the hidden state’s weight
matrix.

Second, the final current output and cell state yt is given by

yt = (1− zt) ∗ yt−1 + zt ∗ ỹt. (1.26)

In visual speech recognition, researchers have used both GRUs [Assael et al., 2016, Xu
et al., 2018] and LSTM cells [Chung et al., 2017, Stafylakis and Tzimiropoulos, 2017]
successfully to model the temporal evolution. They are trained using gradient descent
and backpropagation (see Section 1.4.1).

In recent literature, so-called bidirectional RNNs [Schuster and K. Paliwal, 1997] have
been employed very often to improve predictability. Each bidirectional layer consists
of two recurrent layers which take as input the sequence in its forward and backward
direction, as shown in Figure 1.8. This allows learning connections between various
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Figure 1.7 – Schematic of a GRU.

elements in both directions, taking into account the previous as well as the future
contexts [Graves and Jaitly, 2014]. This advantage has been exploited, among others,
by Petridis et al. [2017a], Xu et al. [2018].

The work presented in this thesis compares the results of networks with uni- and
bidirectional GRUs and LSTM cells.

. . . → → → → . . .

←←←←. . . . . .

x2 x3 x4 x5

y5y4y3y2

y→2 y→3 y→4

. . .
. . .

y←3 y←4 y←5

Figure 1.8 – Schematic of a bidirectional RNN.
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Decoding

The main issue with the RNN outputs is that classification is still framewise whereas the
goal in speech recognition is to label a sequence. Similar to the decoding of HMMs using
the Viterbi decoder, connectionist temporal classification (CTC) scoring function deter-
mines the joint conditional probability of an overall sequence at given timestamps [Graves,
2008]. In doing so, it functions as an additional layer that can receive as input the
framewise output from the bidirectional GRU or LSTM of a certain (variable) length and
can output a sequence of symbols (in our case phonemes or visemes, the visual equivalent)
of a different (variable) length. For this, CTC does not require time-aligned labels – the
overall sequence is sufficient, meaning that it does not depend on the accuracy of the
labelling of the training set. The output will also only reflect the overall sequence, and
not be evaluated by its timings.

Similarly to HMMs, the CTC algorithm will need to add an extra “blank” class to the
labels. This class “collects” all types of silence or other non-speech occurrences in the
utterance. It will generally appear between labels which can also help in case of the
consecutive occurrence of the same label.

In mathematical terms, the decoding of the network can be described by the maximisation
of the following function [Graves and Jaitly, 2014]:

arg max
Y

P(Y |X) ≈ B(arg max
S

P(S|X)), (1.27)

where the input sequence X is transcribed by the label sequence Y . This can be
approximated by using the alignment S, related to the transcription Y through the sum
of all possible alignments or states S,

P(Y |X) =
∑

S∈B−1(Y )
P(S|X), (1.28)

where the operator B removes all repeated labels and blanks.

The probability of the alignment itself is the combined probability of the emission
probabilities of the alignments st at all time steps t ∈ {1, . . . , T} which, assuming their
independence, is given by:

P(S|X) =
T∏
t=1

P(st, t|X). (1.29)

Decoding can be performed either in a greedy manner, using best path decoding, or
by taking into account all possible sequences, using prefix search decoding. Best path
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decoding finds the particular path with the highest probability:

S∗ = arg max
S

T∏
t=1

P(st, t|X), (1.30)

where S are the possible alignments and S∗ is the most probable alignment.

However, this method does not take into account the fact that there might exist several
paths which – through repetitions of symbols or intermediate blanks – are ultimately
identical. Prefix search decoding also considers these similar paths – which in turn
increases the search space exponentially with the length of the input sequence. If certain
conditions – such as sufficiently peaked output distributions, or an adapted beam search
to only take into account the more promising paths, or additional constraints through
a language model – are met, then prefix search decoding still remains feasible [Graves
et al., 2006, Hannun, 2017].

Training of the CTC layer functions similarly to HMM training with a forward-backward
algorithm based on maximum likelihood. Therefore, the aim is to minimise the objective
function based on the negative log probability that the whole training set Z is labelled
correctly (with target transcriptions Y ∗):

O(Z,Nw) = −
∑

(X,Y ∗)∈Z
ln(P(Y ∗|X)), (1.31)

where Nw is the neural network to be trained [Graves et al., 2006]. It is thus indirectly
also related to the edit distance or label error rate (see Section 1.6).

When using gradient descent in the training step to update the network with the help of
the commonly used backpropagation algorithm (see Section 1.4.1), the derivative of this
objective function with respect to the network output has to be taken (see [Graves et al.,
2006] for more details).

Other methods for sequence decoding of network outputs have been developed in recent
years. One of these decoding methods uses an RNN transducer built on top of a CTC.
It combines the CTC-style network with another, separate RNN which acts as a joint
acoustic and language model to predict each phoneme given the previous ones [Graves
et al., 2013]. This thus results in additional hidden layers for the CTC network, and
increases the number of parameters of the model.

While in audio speech recognition these sequence modelling techniques for RNNs have
been widely used for several years, they are relatively new in VSR. CTC has been used
by Assael et al. [2016], Koumparoulis et al. [2017], Xu et al. [2018].

Another recent sequence modelling technique is the so-called attention scheme [Bahdanau
et al., 2016, Chan et al., 2016] for encoder-decoder based systems. It acts between the
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encoder and decoder as a sort of weighting which depends on a normalised score of the
previous state, the current encoded sequence and the convolutional features. A language
model can still be added with final state transducers or in the beam search. Some more
recent work combines both CTC and the attention scheme [Kim et al., 2017, Xu et al.,
2018].

The work presented in this thesis uses the CTC scheme for sequence decoding since this
scheme fits best with the CNN-RNN network and the database used.

1.6 Performance metrics

In this thesis, two metrics are used to present the results: the accuracy and correctness
at the viseme or word level, and the percentage of correct sentences. The accuracy and
correctness are defined as follows

Accuracy = H − I
N

· 100%, (1.32)

Correctness = H

N
· 100%, (1.33)

where H, I, and N are the number of correct symbols (visemes or words), number of
erroneous symbols (insertion error), and the total number of symbols in the reference,
respectively. The number of correct symbols is equal to the number of all symbols minus
the total number of ignored symbols (deletion error, D) and the number of wrongly
recognised symbols (substitution error, S), i.e. H = N − D − S. The accuracy also
penalises insertions and is thus related to the edit distance, given by I +D + S.

Some of the literature evaluates speech recognition results in terms of another metric
related to the edit distance: the word error rate (WER) – or sometimes phoneme/label
error rate – rather than the accuracy, which can be obtained from the word accuracy in
the following way:

WER = I +D + S

N
· 100% = 100%−Accuracy. (1.34)

1.7 Multi-view visual speech recognition

While audio-based speech recognition has improved significantly over the past decades
and is nowadays applicable in many real-life scenarios, visual speech recognition still
mostly focuses on speech produced in controlled lab conditions. However, there is a lot
of interest to address, for example, the problem of head pose, which is a large hindrance
in the application to real-world scenarios. Early work on multi-pose or non-frontal
automatic lip reading focused on using classifiers for each different head pose and defining
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a linear transformation or the regression of appearance-based features such as the DCT
or a subsequently applied LDA [Lucey et al., 2007, Estellers and Thiran, 2012]. Other
researchers worked on cross-view training/testing, i.e., training on one view and testing
on another [Lan et al., 2012]. Lan et al. [2012] also established that the 30◦ view angle
provides the best recognition performance, even over the frontal view. Some recent
research has applied cross-view analysis to 3D-AAMs [Watanabe et al., 2017] and used
channel, image and feature fusion for multiple- and cross-view analysis [Lee et al., 2017].

In [Bowden et al., 2013], three different view angles are explored. Two ways to detect
this angle are tested: (i) smallest root-mean-square error of three face trackers for each
angle, and (ii) shortest distance of the local gradient orientation (LGO) histogram which
performs better since it does not depend on the tracker results.

A method to remove off-plane head rotation has been used by Koller et al. [2014]. Here
the shape is registered to a frontal view with a 3D point density model (PDM) trained
with a non-rigid structure-from-motion algorithm. However, it is not clear up to which
view angles this algorithm is functional. Watanabe et al. [2017] use 3D-AAMs for the
same purpose of cross-view VSR.

Nowadays, in many applications, such as driver monitoring, the advantages of using
several cameras to cover a larger field of view outweigh the cost of systems with multiple
cameras and additional computational resources. Several cameras thus allow to integrate
the views to have more confident results, as well as a larger variety of head poses.

Recently, several researchers in this field have also joined different views at various
levels of the processing pipeline. In Navarathna et al. [2013], a synchronous HMM was
built to include four different views (centre left, centre right, side left, side right). The
weights for this multi-stream HMM are determined empirically by comparing the training
performance between the centre and the side views and the left and right views for
varying weights. The final individual weights are a combination of these coarser weights.
Lee et al. [2017], Petridis et al. [2017b] use the OuluVS2 database with five different
views [Anina et al., 2015]. Lee et al. [2017] use a combination of CNNs and LSTMs
with a final layer that provides the probability that one out of ten different phrases has
been uttered. They show results for different types of combinations: 3D-CNN, merging
channels, merging images and concatenating features at the output of the CNN. Finally,
Petridis et al. [2017b] propose an end-to-end deep learning system made up of restricted
Boltzmann machines (RBMs) and bidirectional LSTMs (BLSTMs) where the views are
fused between two layers of the BLSTM. They also provide a comparison between the
multi-view results from several researchers. Also in the latter system classification is
performed at the sentence-level.
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1.8 Databases

Recent studies on visual speech recognition have seen VSR moving further and further
towards deep learning, a technique widely employed in audio speech recognition as well
as computer vision. DNNs have set a new baseline in speech recognition [Graves and
Jaitly, 2014] and are now the standard in computer vision tasks [Donahue et al., 2015,
Chan et al., 2015]. Since one of the main requirements for deep learning is having a
large amount of data, the need for bigger databases is increasing. There exist several
databases publicly available to the research community, such as the BBC-Oxford ’Lip
Reading in the Wild’ (LRW) dataset [Chung and Zisserman, 2017], containing up to
1000 repetitions of 500 different words uttered by hundreds of different speakers, and the
GRID audio-visual sentence corpus [Cooke et al., 2006], made up of sentences based on
an artificial grammar from 34 speakers. These databases have been widely used in the
recent VSR literature that employ deep learning. A few other fairly large audio-visual
databases have been developed and published that contain more diverse sentences and
various view angles, namely TCD-TIMIT and OuluVS2 [Harte and Gillen, 2015, Anina
et al., 2015]. However, the size of these databases still remains rather small compared to
audio-only databases or image datasets.

There are numerous other databases in the field, some smaller, some larger, and several
in languages other than English. Just to mention some of them: In English there are the
CUAVE dataset [Patterson et al., 2002], AVICAR [Lee et al., 2004], an Australian English
corpus [Burnham et al., 2009] and the Modality database [Jachimski et al., 2017]. In
Spanish there are AV@CAR [Ortega et al., 2004] and the Visual Lip-Reading Feasibility
Database [Fernandez-Lopez et al., 2017]. Other languages covered are Czech [Trojanová
et al., 2008], Polish [Vorwerk et al., 2010], Turkish [Topkaya and Erdogan, 2012] Rus-
sian [Ivanko et al., 2017], Mandarin [Su et al., 2017] and Japanese [Yasui et al., 2017].
Closely related are also a few databases focusing on silent speech [Freitas et al., 2014,
Petridis et al., 2018].

In this work we use two databases: TCD-TIMIT and OuluVS2. They were chosen for three
reasons: they are publicly available to researchers, they include multiple, simultaneously
recorded views and they are relatively large compared to other audio-visual databases.

1.8.1 TCD-TIMIT

The TCD-TIMIT database [Harte and Gillen, 2015] has been collected at Trinity College
Dublin and is based on the TIMIT sentences [Garofolo et al., 1993] which are made up
of some accent-highlighting sentences, “non-sense” phrases specifically designed to be
phonetically rich and sentences from playwrights’ books with unusual phoneme contexts.
Some example sentences are shown in Table 1.3. The 6913 sentences have been uttered
by 62 speakers – among whom three are so-called professional lipspeakers with an
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Table 1.2 – Overview over the parts of the TCD-TIMT and OuluVS2 databases used in
this work.

TCD-TIMIT OuluVS2
(Irish-speaking volunteers) (short phrases)

Speakers 56 52
Accents Irish Various non-native
Gender 29 male, 27 female 39 male, 13 female
Utterances TIMIT sentences Short English phrases
Utterances per speaker 98 3 × 10
Amount of speech 7h:0m:36s 0h:19m:26s
Vocabulary 6224 20
Views 0◦, 30◦ 0◦, 30◦, 45◦, 60◦, 90◦

Video framerate 30 fps 30 fps
Video resolution 1920× 1080 pixels 1920× 1080 pixels

(a) Frontal view. (b) 30◦-side view.

Figure 1.9 – Examples for the different view angles from the TCD-TIMIT database.
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Table 1.3 – Example sentences from the TIMIT dataset.

TIMIT example sentences

She had your dark suit in greasy wash water all year.
Never happier in my life.
He will allow a rare lie.
Special task forces rescue hostages from kidnappers.
Are your grades higher or lower than Nancy’s?
Did dad do academic bidding?
We experience distress and frustration obtaining our degrees.
Kindergarten children decorate their classrooms for all holidays.
Curiosity and mediocrity seldom coexist.
My mother was beside herself with curiosity.

Table 1.4 – Training and test splits for the TCD-TIMIT dataset.

Training subjects Test subjects

01M, 02M, 03F, 04M, 05F, 06M, 07F, 10M, 11F, 12M, 08F, 09F, 15F, 18M, 25M,
13F, 14M, 16M, 17F, 19M, 20M, 21M, 22M, 23M, 24M, 28M, 33F, 34M, 36F, 41M,
26M, 29M, 30F, 31F, 32F, 37F, 38F, 39M, 40F, 42M, 44F, 45F, 49F, 54M, 55F,

43F, 46F, 47M, 48M, 50F, 51F, 52M, 57M, 59F 56M, 58F

accentuated articulation. These three speakers, as well as three other speakers with
non-Irish accents, have been excluded from our study as suggested by the authors of
the database. Each of the remaining subjects pronounced 98 sentences, out of which
two are always the same: the ones showing the subject’s accent. The rest is made up
of different sentences from the other two categories (nonsense phrases and playwrights’
book sentences). The training and test data splits as provided by the authors of the
database are shown in Table 1.4: the training set is made up of 39 subjects and the test
set of 17 subjects. During training we split the training set further into training and
validation sets.

Two views, frontal and at a 30◦ angle, have been recorded simultaneously, and have also
been synchronised with the audio. The two cameras each recorded at a framerate of
30 fps (frames per second) with a resolution of 1920×1080 pixels. This database includes
already cropped mouth ROIs only for the frontal view. Since we use both views in our
work, we use our SDM-based face tracker, see Section 1.2, to extract the mouth region.
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(a) Frontal view. (b) 30◦-side view. (c) 45◦. (d) 60◦. (e) 90◦.

Figure 1.10 – Examples of the cropped mouths for the different view angles from the
OuluVS2 database.

Table 1.5 – List of the short phrases from the OuluVS2 dataset.

Short phrases

Excuse me
Goodbye
Hello
How are you
Nice to meet you
See you
I am sorry
Thank you
Have a good time
You are welcome

1.8.2 OuluVS2

We use the ‘phrase recognition’ subset of the OuluVS2 database [Anina et al., 2015]
in our experiments. This dataset contains video clips of 52 subjects from five different
views: frontal and four side views at 30◦, 45◦, 60◦, and 90◦ (the profile). During each
recording session, the subjects were asked to utter 10 daily short English phrases (see
Table 1.5) shown on a computer monitor. Each phrase was repeated three times resulting
in 30 video recordings (utterances) per subject per view. The recording was performed
in an ordinary office environment with varying lighting conditions and background noises
producing a more real-world audio-visual dataset. Each of these videos was recorded
with a resolution of 1920× 1080 pixels, at 30 fps, and with an audio bit rate of 128 kbps
(kilobits per second). The authors also provided aligned and cropped mouth videos along
with the original videos and fixed the training and test subsets: 40 out of 52 subjects are
assigned for training and the rest are used for testing, as shown in Table 1.6. During
training we split the training set further into training and validation sets.
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Table 1.6 – Training and test splits for the OuluVS2 dataset.

Training subjects Test subjects

1, 2, 3, 4, 5, 7, 10, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 6, 8, 9, 15, 26, 30,
27, 28, 29, 31, 32, 33, 35, 36, 37, 38, 39, 40, 41, 42, 45, 46, 47, 48, 50, 52 34, 43, 44, 49, 51
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2 Traditional approach

Some traditional approaches to visual speech recognition have been described in chapter 1.
This chapter presents some results that were obtained by running experiments using
these traditional methods: a DCT is first used to extract texture-based features from
the ROI, which are then passed to a GMM-HMM system. Such a setup has been used
in the literature very often and thus provides a good baseline system to which other
results can be compared. This chapter presents a comparison between the results for
the different view angles that are provided for the OuluVS2 and TCD-TIMIT databases
and as will be seen in the later sections, there are particularly large differences in
recognition performance between the frontal and other view angles for the OuluVS2
dataset. Performance results are very similar for the frontal and 30◦ side-view for the
TCD-TIMIT dataset.

2.1 Motivation

The aim of this chapter is to provide a baseline for the analysis of the two databases,
OuluVS2 and TCD-TIMIT, by applying traditional VSR techniques. The techniques
applied here were popular methods to VSR for a long time, and involve using a texture-
based feature extractor, followed by a GMM-HMM. The systems presented in this chapter
are designed based on existing methods, without further improvements and parameter
tuning.

A first analysis of the different views from each of the two databases, OuluVS2 (short
phrases) and TCD-TIMIT (sentences, viseme recognition) is performed. This gives an
indication for later analyses regarding the performance of different views, and also how
it might vary between different recognition systems.

The remainder of the chapter is organised as follows: first, the proposed method, based
on traditional approaches to feature extraction and sequence modelling, is presented in
Section 2.2. Then Section 2.3 describes the two databases and the results obtained on

31



Chapter 2. Traditional approach

Mouth frames DCT features GMM-HMM

Figure 2.1 – Flowchart of the GMM-HMM system used.

each. Finally, Section 2.4 summarises the chapter.

2.2 Proposed method

The visual speech recognition pipeline is made up of several steps: first, the face is
detected and tracked in each frame and the mouth area is cropped, then features are
computed from this mouth area and, finally, these are passed to an acoustic modelling
scheme made up of GMMs and HMMs. Figure 2.1 shows this process.

This work is based on texture-based features, namely the DCT. The DCT is related to
the Fourier transform and extracts different frequency components from a signal. It is
widely used in image processing and especially image compression. This transform is
applied to the cropped out mouth images. The DCT coefficients obtained from each
of these are then sorted in zig-zag order from the lowest frequency components, and
only a certain number, in this case 44, of these coefficients from odd columns – thereby
enforcing vertical symmetry – are retained, also excluding the DC component. This
feature extraction process is programmed in C++ with the help of the OpenCV library1.

These coefficients and their delta and acceleration components (see Section 1.3.1 for
definition) are passed to a GMM modelling the emissions of the classes. These classes
are then modelled in time by an HMM. Finally, the sequences are decoded in a Viterbi
scheme. These models are obtained through the HMM toolkit (HTK) [Young et al.,
2009].

1https://opencv.org/
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2.3 Performance analysis

2.3.1 The datasets

Experiments were performed on both the OuluVS2 and the TCD-TIMIT datasets (see
Sections 1.8.2 and 1.8.1 for more detail).

2.3.2 Experimental results

OuluVS2 – short phrases

We used the cropped mouth videos provided by the authors of the database. These mouth
images were first converted to greyscale before the DCT coefficients were extracted.

Since the phrases are indeed very short and the dataset only contains 3 repetitions of
10 short English phrases (see Table 1.5), in this experiment the GMMs modelled words
rather than visemes or phonemes. Each GMM was made up of 15 mixture components
and each of the 20 words was modelled by 4 HMM states. A dictionary and grammar
corresponding to the phrase set were used as acoustic and language models to constrain
the decoding space.

All parameter tuning was performed on a leave-one-out cross validation across speakers
of the training set.

The results for the different view angles are shown in Figure 2.2, and in more detail in
Tables 2.1 and 2.2. The metrics as explained in Section 1.6 are used, namely the sentence
correctness, word correctness and word accuracy. Furthermore, two different sets of
results are shown: the first set with the exact labels provided by the models trained with
the expectation-maximisation algorithm in HTK, and the second set of results when
scoring without considering the “silence” label. The aim of this is to check the influence
of the silence label on the results, especially on the sentence-level correctness, since it will
indicate how well the model generalises to silence and to the other labels, and whether
misclassification of silence could lead to a lower sentence correctness.

In the results we can see that, indeed, removing the silence label has a big impact on the
sentence correctness. We note that for certain sentences, the only error is a missing or
added silence label between the words. However, we can also observe that the overall word
accuracy and correctness are reduced significantly, by around 15-20% when excluding
silence labels. We can thus conclude that silence is classified correctly over-proportionally,
and that there are more errors in the classification between words. Similarly, a higher
between-speaker variability can be observed for the non-silence classes, when looking at
the results without silence labels, which shows that there is less generalisability of the
models.

33



Chapter 2. Traditional approach

Sent. corr. Word corr. Word acc.

30

40

50

60

70

80

90

100
R

e
co

g
n

it
io

n
 r

e
su

lt
s,

 %

0 ◦

30 ◦

45 ◦

60 ◦

90 ◦

(a) Results including the silence label.
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(b) Results without the silence label.

Figure 2.2 – Mean phrase recognition results on the multi-view dataset of OuluVS2 using
a simple GMM-HMM model on the given test set (a) including the silence label, and (b)
without the silence label. Error bars denote the standard deviation across subjects (sent.
= sentence, corr. = correctness, acc. = accuracy).
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Table 2.1 – Phrase recognition results (in %) on the multi-view dataset of OuluVS2 using
our simple GMM-HMM model on the given test set per speaker and the corresponding
mean and standard deviation across speakers including the silence label (SC = Sentence
correctness, WC = Word correctness and WA = Word accuracy).

0◦ 30◦ 45◦ 60◦ 90◦

Spkr. SC WC WA SC WC WA SC WC WA SC WC WA SC WC WA

6 40.0 62.8 61.7 43.3 72.2 68.9 40.0 70.0 66.7 30.0 63.3 60.6 36.7 65.0 62.2

8 36.7 65.6 65.6 26.7 55.0 53.9 26.7 58.9 58.9 30.0 58.9 58.9 26.7 63.3 61.1

9 30.0 53.3 52.2 30.0 60.0 58.3 23.3 57.2 53.3 33.3 53.3 51.7 23.3 60.0 56.7

15 26.7 66.1 62.8 26.7 58.9 58.3 16.7 52.8 51.1 26.7 55.0 54.4 26.7 55.6 55.6

26 33.3 64.4 62.8 36.7 64.4 62.2 26.7 63.9 62.2 26.7 64.4 63.3 40.0 66.1 65.0

30 53.3 78.3 74.4 23.3 61.7 57.8 20.0 60.6 55.0 26.7 63.9 60.6 13.3 60.0 56.1

34 43.3 69.4 69.4 43.3 68.3 65.6 33.3 58.3 54.4 43.3 68.9 66.7 36.7 63.3 62.8

43 56.7 81.1 80.0 36.7 61.7 61.1 46.7 68.3 66.7 46.7 71.7 71.1 36.7 68.3 68.3

44 43.3 85.0 85.0 53.3 82.2 82.2 33.3 71.7 69.4 56.7 76.1 74.4 30.0 65.6 60.6

49 50.0 75.0 75.0 26.7 54.4 52.2 40.0 60.6 58.3 30.0 51.1 50.0 36.7 63.3 60.6

51 16.7 61.7 59.4 23.3 48.9 47.2 26.7 56.7 55.6 26.7 58.9 58.3 33.3 65.6 62.2

52 40.0 72.2 69.4 13.3 42.8 39.4 23.3 57.2 56.1 43.3 67.8 66.1 30.0 70.0 66.7

Mean 39.2 69.6 68.1 31.9 60.9 58.9 29.7 61.3 59.0 35.0 62.8 61.3 30.8 63.8 61.5

SD 11.5 9.1 9.3 11.1 10.5 10.8 9.0 5.9 5.9 10.0 7.6 7.4 7.5 3.9 4.0

Comparing the performance between different views, we can easily see that the best
performing view is the frontal view. The next highest performing view is the profile view,
followed closely by the 60◦, 45◦ and 30◦ views. Looking at the performance across views
and across speakers, we can also notice that the closer the view is to the profile view at
90◦, the lower is the standard deviation between the results for different speakers.

TCD-TIMIT

For the TCD-TIMIT database the mouth ROIs extracted with our SDM-based face
tracker are used. The image colours in this region are then modified using histogram
equalisation before extracting the DCT coefficients.

Since the TIMIT sentences that make up the database have been specifically created for
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Table 2.2 – Phrase recognition results (in %) on the multi-view dataset of OuluVS2 using
our simple GMM-HMM model on the given test set per speaker and the corresponding
mean and standard deviation across speakers without the silence label (SC = Sentence
correctness, WC = Word correctness and WA = Word accuracy).

0◦ 30◦ 45◦ 60◦ 90◦

Spkr. SC WC WA SC WC WA SC WC WA SC WC WA SC WC WA

6 46.7 42.7 40.0 50.0 54.7 48.0 50.0 53.3 49.3 36.7 38.7 34.7 40.0 41.3 32.0

8 50.0 46.7 46.7 40.0 37.3 33.3 40.0 37.3 37.3 36.7 36.0 34.7 36.7 42.7 29.3

9 33.3 30.7 26.7 40.0 44.0 30.7 40.0 41.3 33.3 36.7 32.0 22.7 30.0 37.3 24.0

15 43.3 49.3 36.0 46.7 45.3 41.3 36.7 38.7 33.3 40.0 34.7 33.3 46.7 41.3 38.7

26 36.7 38.7 30.7 40.0 37.3 30.7 43.3 45.3 40.0 40.0 41.3 34.7 46.7 46.7 36.0

30 56.7 61.3 54.7 33.3 36.0 29.3 20.0 34.7 20.0 30.0 45.3 33.3 40.0 46.7 29.3

34 60.0 54.7 52.0 53.3 48.0 44.0 33.3 37.3 29.3 46.7 53.3 49.3 53.3 52.0 48.0

43 66.7 70.7 64.0 40.0 37.3 30.7 53.3 53.3 48.0 56.7 57.3 53.3 60.0 56.0 52.0

44 83.3 86.7 81.3 70.0 74.7 74.7 56.7 61.3 53.3 63.3 61.3 58.7 36.7 45.3 32.0

49 73.3 69.3 69.3 46.7 38.7 33.3 43.3 42.7 37.3 33.3 28.0 25.3 50.0 49.3 45.3

51 43.3 42.7 37.3 26.7 24.0 17.3 33.3 30.7 29.3 50.0 42.7 38.7 43.3 46.7 37.3

52 46.7 54.7 49.3 13.3 10.7 0.0 23.3 29.3 25.3 50.0 54.7 44.0 60.0 62.7 48.0

Mean 53.3 54.0 49.0 41.7 40.7 34.4 39.4 42.1 36.3 43.3 43.8 38.6 45.3 47.3 37.7

SD 15.1 15.8 16.4 14.0 15.6 17.8 11.1 9.7 10.1 10.0 10.7 10.9 9.4 7.0 8.9

phoneme recognition, in this part we will only compare the recognition rates based on
visemes (the visual equivalent to phonemes, see Table 1.1 for the phoneme-to-viseme
mapping used).

A GMM (with 20 mixtures) models the emissions of the 12 different viseme classes (as
defined in Section 1.1) each of which is modelled in time by an HMM with 4 states. No
dictionary or grammar is used.

The overall results in Figure 2.3 and the more detailed performance values in Table 2.3
emphasise the difficulty of classifying visemes separately as opposed to the recognition of
a limited number of words for OuluVS2. Comparing the discrepancy between viseme
correctness and accuracy we can see that insertions in particular are very common and
reduce the accuracy by a large margin. We can see this high level of insertions clearly in
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Figure 2.3 – Mean viseme recognition results on the multi-view dataset of TCD-TIMIT
using a simple GMM-HMM model on the given test set. Error bars denote the standard
deviation across subjects (corr. = correctness, acc. = accuracy).

the confusion matrices for the frontal and 30◦ views in Figure 2.4. This is also confirmed
when observing the per speaker results and the mean and standard deviation between the
speakers, where the variations between speakers are much higher for the viseme accuracy
due to insertions.

The confusion matrices in Figure 2.4 also indicate a high level of deletions. However, the
confusions between labels are relatively low.

Comparing the two different views, we see that the performance is very similar and that
both views seem to contain similar amounts of information for viseme recognition.

2.4 Summary

We can see that first, for the OuluVS2 database the word correctness and accuracy
show good results, whereas the correct recognition of entire sentences still requires
improvement. Furthermore, we can see that this simple GMM-HMM system seems to
distinguish silence and words rather well, but requires further improvements in particular
to distinguish between words. This simple system would also require further tuning and
further experimentation to be comparable to the baseline results provided for the ACCV
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(a) Frontal view.
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Figure 2.4 – Confusion matrices of our simple GMM-HMM model for the frontal and 30◦
views including insertions and deletions (Ins = Insertions and Del = Deletions).
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2016 workshop challenge “Multi-view lip-reading/audio-visual challenges”2 and by Anina
et al. [2015].

Two main observations may be made from the baseline results for the TCD-TIMIT
database. On the one hand, the viseme correctness of the frontal view results are similar
to the baseline results by Harte and Gillen [2015]. On the other hand, the viseme accuracy
shows a far lower performance. This indicates that there is a large number of insertions of
visemes. These results could be improved by making use of a dictionary and a grammar,
or by further fine tuning of the various parameters in the feature extraction and the
GMM-HMM system.

2The baseline results can be found at http://ouluvs2.cse.oulu.fi/preliminary.html and in Table 3.1.
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Table 2.3 – Viseme recognition results (in %) on the multi-view dataset of TCD-
TIMIT using our simple GMM-HMM model on the given test set per speaker and the
corresponding mean and standard deviation across speakers (VC = Viseme correctness
and VA = Viseme accuracy).

0◦ 30◦

Spkr. VC VA VC VA

08F 47.3 30.1 47.9 30.1

09F 48.0 30.6 51.0 29.3

15F 48.8 24.2 48.0 25.0

18M 43.3 31.2 47.3 27.5

25M 49.4 34.8 51.1 40.1

28M 44.3 30.0 44.1 28.1

33F 47.0 32.8 48.9 25.5

34M 49.4 6.9 46.2 5.0

36F 48.9 28.9 48.4 27.3

41M 45.0 31.0 42.8 32.6

44F 50.4 32.6 50.8 29.4

45F 45.9 27.2 44.1 21.5

49F 47.2 31.2 49.2 32.3

54M 47.5 29.0 47.7 27.7

55F 50.5 27.4 51.9 29.9

56M 48.4 26.7 44.2 28.0

58F 48.4 30.7 51.4 34.1

Mean 47.6 28.5 47.9 27.8

SD 2.0 6.1 2.9 7.2
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3 Combined approach

The work presented in this chapter combines the advantages of deep learning methods,
with the good time modelling techniques of GMM-HMM models. Firstly, mouth image
patches are extracted from frames of the video speech data, on which PCA is applied in
order to learn the weights of a two-stage CNN. Block histograms are then extracted as
the unsupervisedly learned features. These features are employed to learn a recurrent
neural network with a set of long short-term memory cells to obtain spatiotemporal
features. Finally, the obtained features are used in a tandem GMM-HMM system for
speech recognition. Our results show that the proposed method outperforms the baseline
techniques applied to the OuluVS2 audiovisual database for phrase recognition.

3.1 Motivation

Efforts to bring visual speech recognition up to date with novel techniques used in both
audio speech recognition and computer vision have led researchers to utilise deep learning
techniques. DNNs are widely employed in audio-based automatic speech recognition
resulting in the current state of the art results [Graves and Jaitly, 2014]. DNNs have
also become the standard techniques in computer vision to set baselines in recognition or
analysis tasks [Donahue et al., 2015, Chan et al., 2015]. However, one major problem in
applying these networks to visual speech data is the fact that visual speech databases are
not comparable to audio databases in terms of their sizes and number of speakers, meaning
that insufficient amounts of training data are available. This is an important drawback
since having a large amount of data is a necessity for training deep learning frameworks
for complex acoustic models and complete recognition chains used for continuous speech.
Although a few larger audio-visual databases such as TCD-TIMIT and OuluVS2 [Harte

Parts of this chapter have been published by Zimmermann et al. [2017a].
Adapted by permission from Springer Nature: Springer International Publishing, Computer Vision –
ACCV 2016 Workshops, Visual Speech Recognition Using PCA Networks and LSTMs in a Tandem
GMM-HMM System, Zimmermann M., Mehdipour Ghazi M., Ekenel H. K., Thiran J.-P. (2017),
http://dx.doi.org/10.1007/978-3-319-54427-4_20.
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and Gillen, 2015, Anina et al., 2015] have been published recently, the problem still
remains highly challenging.

The work presented in this chapter proposes a visual speech recognition approach based
on a two-stage PCA-based convolutional network [Chan et al., 2015] followed by a layer
of long short-term memories (LSTMs) to extract a set of unsupervised spatiotemporal
visual features. These features are then used in a tandem GMM-HMM system for speech
recognition. Our contribution is two-fold, with a major focus on feature extraction:

• First, we use principle component analysis in a multi-stage convolutional network
to extract the optimal unsupervisedly learned lip representations. The two-stage
projection onto the leading principle components allows us to capture the main
variations within the image patches, while also extracting higher level features
through the concatenation of these in two stages. The subsequent binarisation
and extraction of histograms leads to an indexing and pooling of these features, a
non-linear step.

• Secondly, we apply recurrent neural networks (RNNs) with LSTM cells to extract
spatiotemporal features from lip representations. This approach not only finds the
time-series dependencies within the video frame sequences, but also decreases the
lips feature set dimension for further processing with the GMM-HMM scheme.

Using this system, we were able to improve the baseline cross-validation results1 for phrase
recognition from a frontal and 30◦ side view with a large margin of roughly 5%, reaching
79% of all sentences being recognised correctly for each of these views. Combining these
two views leads to an even higher recognition rate of 83% of all sentences.

The rest of this chapter is organised as follows. Section 3.2 explains the details of the
proposed method for visual speech recognition based on a PCA network, LSTMs, and the
GMM-HMM system. Section 3.3 describes the utilised dataset, experiments, and obtained
results. Finally, Section 3.4 concludes the chapter with a summary and discussions.

3.2 Proposed method

In this section, novel feature extraction methods are explored for visual speech recognition.
More specifically, a two-stage PCA-based convolutional network [Chan et al., 2015]
followed by a layer of LSTMs [Hochreiter and Schmidhuber, 1997] extracts features from
the cropped mouth images. The obtained spatiotemporal features are then processed in
a tandem system with a GMM-HMM basis for speech recognition.

1These results were published for the workshop “Multi-view lip-reading/audio-visual challenges”
at ACCV 2016 at http://www.ee.oulu.fi/research/imag/OuluVS2/preliminary.html and are shown in
Table 3.1.

42

http://www.ee.oulu.fi/research/imag/OuluVS2/preliminary.html


3.2. Proposed method

...

...

...

Mouth frames PCA network LSTM Logarithm GMM-HMM

Figure 3.1 – The proposed tandem system with PCA network-LSTMs and GMM-HMMs
for visual speech recognition from the mouth video frames.

Feature extraction is performed in a sequential fashion as shown in Figure 3.1. First, a
two-stage PCA network is applied to each video frame (see Figure 3.2). The first layer
network weights are learned by applying PCA to concatenated square patches – which
are extracted from the mouth video frames and then vectorised. We use eight principle
components as the networks’ first-layer filter bank and convolve these with the input
images. In a cascaded scheme, a similar procedure is applied to the filtered patches to
obtain the second-layer filter bank. After convolution, the output maps are binarised
with a Heaviside step function and every eight binary images are stacked together to
compose an 8-bit image – similar to the first layer outputs. Finally, block histograms –
with 256 bins – are extracted from the obtained maps and concatenated, resulting in a
long feature vector for each video frame. In this work, we extract 16 block histograms
which result in feature vectors of length 16× 256× 8 = 32, 768.

Secondly, an LSTM network is connected to the outputs of the PCA network to extract
more abstract representations while taking the time-series dependencies between the
video frames into account. This type of RNN is composed of memory cells to store the
past values or ignore the dependencies when needed. Therefore, each cell has an input,
an output, and a forget gate that can be activated at different levels. This architecture
results in three cases: accepting the new input value, forgetting the existing value, or
outputting a value at the given level [Graves et al., 2013], see Section 1.5.2 for more
details. Since we label each video frame in the phrase recognition subset based on the
audio phonemes, there are 28 output nodes in our LSTM network.

Lastly, the posterior probabilities received from the LSTMs are passed as spatiotemporal
features concatenated with their delta and acceleration components into a GMM-HMM
based speech recognition system, the so-called tandem approach. This system is imple-
mented using the Hidden Markov Model Toolkit (HTK) [Young et al., 2009]. However,
since the outputs of the LSTM network show small variations, we first take the logarithm
of these features to make them more discriminative. Our tandem system contains GMMs
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Patch	mean	removal	&	
PCA	filter	application	

	

Patch	mean	removal	&	
PCA	filter	application	

	

Binarisation	and	stacking	
&	block-wise	histograms	
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Figure 3.2 – The PCA network used in the first stage of the proposed tandem system
with PCA network-LSTMs and GMM-HMMs.

with 15 Gaussian mixtures per observation and 4 states per word.

3.3 Performance analysis

In this section, we review details of the utilised dataset, evaluation metrics, and the
conducted experiments. We present the validation and test results and discuss them in
detail.

3.3.1 The dataset

We use the phrase recognition subset of the OuluVS2 database [Anina et al., 2015] in
our experiments (see Section 1.8.2 for more detail).

3.3.2 Experimental results

In our experiments, we use the provided cropped mouth videos by first extracting and
converting all video frames to greyscale images of size 60× 90 pixels. PCA is applied to
all image patches of size 7× 7 pixels to learn eight filter banks in a two-stage cascaded
PCA network. We add a max-pooling layer to the output of this network to obtain a
more abstract representation before histogram pooling. Finally, 16 block histograms are
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Table 3.1 – Baseline sentence recognition accuracy results (in %) on the multi-view
dataset of OuluVS2 by the authors of the database using the DCT followed by HiLDA
and an HMM (DCT+HiLDA+HMM) and raw pixel values in latent variable models
(RAW+PLVM) with the cross-validation technique (results are approximative from
http://www.ee.oulu.fi/research/imag/OuluVS2/preliminary.html).

0◦ 30◦ 45◦ 60◦ 90◦

DCT-HiLDA-HMM 74 71 73 73 68

RAW-PLVM 73 75 76 75 70

extracted and concatenated to obtain a 32,768-dimensional feature vector for each frame.

For spatiotemporal recognition using the LSTM network, we need to obtain frame-based
labels using phoneme level transcription. For this purpose, the audio data is first aligned
to the sentence transcriptions using a standard GMM-HMM system with mel-frequency
cepstral coefficients (MFCCs) – a common feature in audio-based speech recognition2

– trained on the training subset. These transcriptions are then used as labels for the
obtained feature set from the PCA network. We train a one-layer LSTM network with
a Sigmoid activation function in the gates and cells. The learning rate, weight decay
penalty, and momentum value are set to 0.5, 0.001, and 0.8, respectively. We use a
random batch size and train the network until 10,000 iterations.

To adjust our system parameters, we use a leave-one-out cross-validation scheme across
speakers on the given training set. Subsequently, we apply the system in a leave-one out
cross-validation scheme on the whole data3. This system is then trained using the whole
training set, and finally applied to the test set to obtain the final recognition at the word
or phrase levels. Figures 3.3 and 3.4 show our cross-validation and test results on the
OuluVS2 dataset for phrase recognition.

Single-view experiments

We compare our results with the baseline results provided by the authors of the database
and organisers of the workshop “Multi-view lip-reading/audio-visual challenges” at ACCV
2016. The results shown in Table 3.1 were obtained using two different methods: DCT
followed by HiLDA and an HMM (DCT+HiLDA+HMM) and using raw pixel values in
latent variable models (RAW+PLVM). They were obtained using leave-one-speaker-out
cross-validation.

2The MFCCs are derived from the DCT of the log power spectrum on the nonlinear mel frequency
scale.

3As was done in the baseline, whose results can be found at http://ouluvs2.cse.oulu.fi/preliminary.html
and in Table 3.1
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Figure 3.3 – Mean phrase recognition results on the multi-view dataset of OuluVS2
using the proposed tandem system with PCA network-LSTMs and GMM-HMMs with
the cross-validation technique on the whole dataset. Error bars denote the standard
deviation across subjects (sent. = sentence, corr. = correctness, acc. = accuracy).

As the obtained results show, approximately 81% of the words are correctly recognised
on average during the cross-validation approach for the frontal view. In addition, we
have achieved a word recognition correctness of around 74% on the test set. Also, we
can see that 79% of sentences are correctly recognised during cross-validation while the
performance on the test set is 73%. The small differences between the word correctness
and accuracies indicate that there are very few insertion errors. Comparing our obtained
results with the baseline cross-validation results on the same dataset reveals that we have
improved the performance with a large margin of about 5%.

The average phrase recognition results for the 30◦ view show similar improvements
over the baseline provided. Almost 79% of all sentences are classified correctly for the
cross-validation data – approximately 4% more than the baseline – and around 76% on
the test data. Similarly, for the test set 77% of all words are correct and the accuracy
reaches 75%, while on the cross-validation these values reach 82% and 81%, respectively.
The other views do not show improvements over the baseline.

Looking into the standard deviation indicated in the figures or the individual test results
in Table 3.2, we can see, however, that there is a large margin between the performance
of the best speaker and the worst. This hints at a common problem in visual speech
recognition where the variability between speakers is very large.
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Figure 3.4 – Mean phrase recognition results on the multi-view dataset of OuluVS2
using the proposed tandem system with PCA network-LSTMs and GMM-HMMs on the
given test set. Error bars denote the standard deviation across subjects (sent. = sentence,
corr. = correctness, acc. = accuracy).

The frame recognition accuracy at the output of the LSTM is shown in Table 3.3. The
per frame results on a phoneme and a viseme basis for the training and test sets are
displayed here, which are obtained at the output of the LSTM and thus do not include
any language modelling. The observations are two-fold: First, it can be seen that on
a frame level the differences between the various view angles does not seem very big.
However, the combination of successive frames proves more successful for the frontal
views as described above. Secondly, the phoneme and viseme-based classification show a
big difference between the 28 phoneme classes and 12 viseme classes (defined according
to [Harte and Gillen, 2015]) due to the similarity between various phonemes represented
only by the shape of the lips.

3.4 Summary

In this chapter, we have proposed a visual speech recognition system that utilises a
two-stage cascaded PCA network to extract unsupervised learning based lip representa-
tions together with a layer of LSTM networks to obtain a set of spatiotemporal visual
features. These features have later been used in a tandem GMM-HMM system for speech
recognition. As the results indicate, the proposed method has outperformed the baseline
technique with a large margin.
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Table 3.2 – Phrase recognition results (in %) on the multi-view dataset of OuluVS2 using
the proposed tandem system with PCA network-LSTMs and GMM-HMMs on the given
test set per speaker and the corresponding mean and standard deviation across speakers
(SC = Sentence correctness, WC = Word correctness and WA = Word accuracy).

0◦ 30◦ 45◦ 60◦ 90◦

Spkr. SC WC WA SC WC WA SC WC WA SC WC WA SC WC WA

6 73.3 73.3 73.3 70.0 70.0 73.3 53.3 60.0 56.0 40.0 40.0 37.3 50.0 57.3 52.0

8 56.7 54.7 54.7 66.7 66.7 62.7 66.7 74.7 73.3 66.7 66.7 66.7 63.3 66.7 60.0

9 43.3 45.3 41.3 53.3 53.3 56.0 56.7 54.7 50.7 43.3 45.3 40.0 36.7 36.0 24.0

15 73.3 77.3 76.0 63.3 63.3 58.7 53.3 54.7 53.3 40.0 40.0 34.7 40.0 41.3 30.7

26 76.7 74.7 74.7 90.0 90.0 89.3 63.3 62.7 58.7 70.0 65.3 65.3 80.0 85.3 82.7

30 73.3 80.0 78.7 76.7 76.7 77.3 90.0 92.0 92.0 73.3 82.7 80.0 73.3 84.0 74.7

34 96.7 97.3 97.3 86.7 86.7 90.7 80.0 85.3 85.3 80.0 80.0 78.7 63.3 61.3 56.0

43 73.3 78.7 76.0 83.3 83.3 81.3 63.3 62.7 56.0 56.7 50.7 41.3 70.0 70.7 68.0

44 80.0 81.3 81.3 86.7 86.7 88.0 80.0 78.7 78.7 93.3 97.3 97.3 50.0 52.0 48.0

49 86.7 88.0 86.7 80.0 80.0 80.0 93.3 93.3 93.3 83.3 86.7 86.7 63.3 69.3 68.0

51 66.7 60.0 60.0 53.3 53.3 50.7 50.0 42.7 41.3 43.3 41.3 33.3 53.3 56.0 48.0

52 76.7 78.7 76.0 96.7 96.7 94.7 56.7 62.7 60.0 70.0 68.0 65.3 66.7 77.3 69.3

Mean 73.1 74.1 73.0 75.6 76.8 75.2 67.2 68.7 66.6 63.3 63.7 60.6 59.2 63.1 56.8

SD 12.9 13.8 14.2 13.6 13.4 14.3 14.3 15.3 16.6 17.6 19.2 21.5 12.7 14.9 16.7

In this study only a limited dataset with a small vocabulary of 20 words has been
explored to point out the benefits of using PCA networks in combination with LSTMs.
Future works should thus extend this approach to other available datasets such as TCD-
TIMIT [Harte and Gillen, 2015] that allow phoneme classification and provide a larger
vocabulary. However, it has been found difficult to extend this approach in practice due
to the large amount of computer memory needed to calculate the parameters of the PCA
network, which increases with the size of the dataset. It is thus not a scalable approach,
but shows good results for a limited amount of training data, resources and time.

In addition, the influence of the different views and their complementary or redundant
nature within the framework of these spatiotemporal features could be explored in a
more detailed multiple-view visual speech recognition study.
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Table 3.3 – Frame recognition accuracy results (in %) on the multi-view dataset of
OuluVS2 using the LSTM output of the proposed tandem system with PCA network-
LSTMs on the given train and test sets across all speakers for phonemes and visemes
(visemes defined according to [Harte and Gillen, 2015]).

0◦ 30◦ 45◦ 60◦ 90◦

Train
Phoneme 19.5 20.1 18.0 17.7 15.7

Viseme 34.4 32.9 33.8 33.7 30.8

Test
Phoneme 17.2 17.7 17.1 17.2 16.1

Viseme 30.8 30.4 32.0 31.4 29.6
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4 Deep learning approach

In this chapter the recent advances in deep learning are taken into account to develop
a sequence-to-sequence speech recognition system for the TCD-TIMIT database. We
propose a system which consists of a CNN for feature extraction, an RNN for sequence
modelling and a CTC for sequence decoding. The different building blocks of this system
are chosen in a systematic fashion, by defining the blocks stepwise and building one block
upon the other. The final results show that sequence-to-sequence deep learning models
outperform the traditional method by a large margin.

4.1 Motivation

The aim of the work presented in this chapter is to take advantage of the recent
developments in deep learning to design a sequence-to-sequence visual speech recognition
system for complete sentences, rather than words. The focus here is on the TCD-TIMIT
database, which provides a relatively large corpus of sentences spoken by more than 50
speakers. These sentences are designed for viseme recognition, thus allowing transcriptions
of sentences with a large vocabulary of around 6000 words at a viseme-level. We propose
to build a system from a CNN, an RNN and a CTC decoding scheme. Two systems
are trained separately: one for the frontal view and one for the 30◦-side view. The
architecture of the two systems is identical, and chosen based on the frontal view.

This approach to VSR can easily be extended to continuous speech recognition, unlike
some of the other approaches in the field. Furthermore, the aim is to create a system
that can be run on a single computer, rather than a cluster or via a cloud, since speech
recognition is often used in direct interaction with a speaker, and thus the model can be
stored and applied locally.

The chapter is organised as follows. First, the proposed method is presented in Section 4.2.
Then, Section 4.3 details the experiments performed and their results. Finally, Section 4.4
concludes the chapter.
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4.2 Proposed method

The aim is to not only propose a new method for VSR, but to also systematically evaluate
the parts that make up the sequence-to-sequence model, to develop the highest performing
architecture. The pipeline is composed of several parts: a feature-extraction network,
made up of CNNs, a time-evolutional model, from RNNs, and a decoding layer, using
CTC. In the following, we will describe the different steps in this processing pipeline.

4.2.1 Feature extraction using convolutional neural networks

CNNs are effective networks for feature extraction and image classification. Their most
important building block are the convolutional layers, which can be understood as
convolving a matrix of weights with the input image or matrix. Through this convolution,
certain patterns can be recognised independently of their location inside the input image.
Each element in the output of the convolution is one neuron, which then passes the
information on to the next layer. These neurons thus share their weights (the convolutional
matrix), the width of the convolutional layer determining how many different convolutions
will be performed.

In addition to the convolutional layers other layers commonly found in CNNs are max
pooling and fully connected layers. Max pooling allows to reduce the size of the input
field to the next layer by only retaining the maximum value within a certain grid, thus
helping to concentrate the essential information and reduce the parameter size. Fully
connected layers are closer to MLPs, since for these, as the name indicates, all the input
and output neurons are connected. These are usually used as the last layers, to classify
the features extracted from the previous layers.

This work uses a simple architecture involving a sequence of convolutional layers, some
of which are followed by max pooling, and compares it to some existing and pre-trained
networks (see Figure 4.1a).

The pre-trained networks used in this work are MobileNet [Howard et al., 2017] and
VGG16 [Simonyan and Zisserman, 2015], with the weights trained on ImageNet1 data –
a large-scale image database used for a yearly object recognition challenge – provided by
the popular deep learning library Keras2. The top layers of each of these networks are
removed and replaced by a pair of fully connected layers with dropout – a method which
randomly sets certain input values to 0 during training to avoid overfitting [Srivastava
et al., 2014] – and a final softmax layer – which provides a probability distribution over
the different output classes, here the visemes. These fully connected and softmax layers
are trained specifically for the viseme recognition task. Before passing the output of the

1http://image-net.org/
2https://keras.io/applications/

52

http://image-net.org/
https://keras.io/applications/


4.2. Proposed method

Table 4.1 – Comparison of model sizes (No. of parameters) for the different CNN
architectures and input image sizes. For the pre-trained networks, the number in brackets
indicates the number of parameters that are trained (top layers).

Network Small input image Medium input image Large input image

Own network small 138,734 280,046 998,894

Own network large 44,526 52,718 89,582

MobileNet small 864,910 (35,374) 864,910 (35,374) 864,910 (35,374)

MobileNet large 3,297,006 (68,142) 3,297,006 (68,142) 3,297,006 (68,142)

VGG16 14,750,062 (35,374) 14,750,062 (35,374) 14,750,062 (35,374)

pre-trained networks to the top layers, an average pooling is performed to reduce the
data size. No networks pre-trained for face recognition have been used, since usually the
mouth is the part of the face that the classifier should be more invariant to, to recognise
people irrespectively whether they are smiling, have an open or closed mouth.

MobileNet is a network specifically designed for mobile applications. It has thus been
created with the aim to maximise performance while still being computationally light.
It is made up of depthwise and pointwise convolutional filters (see Figure 4.1b), called
depthwise separable convolutions in combination [Howard et al., 2017]. The former
applies the same filter to all channels of an input. The latter then combines these layers
by applying a 1× 1 convolution. Therefore, the model size and necessary computations
are greatly reduced compared to conventional models. While the first layer of the network
contains a full convolution, the following layers are made up of depthwise separable
convolutions. To reduce the size of this network further, it is possible to reduce the
width of the network by a multiplicative factor of 0 < α < 1. The recognition results on
ImageNet are lower than for other common networks, but remain reasonable taking into
account the considerably smaller size of the network.

The VGG16 network is made up of 16 layers with convolutional and fully connected
layers (see Figure 4.1c). The convolutions are typically grouped in twos or threes which
are followed by a max pooling layer [Simonyan and Zisserman, 2015]. The network
has shown good performance on the ImageNet dataset3 and has been widely used as a
pre-trained network to build upon.

A comparison of the model sizes is shown in Table 4.1. We can clearly see that our own
simple networks are much smaller in size than the networks designed for the ImageNet
task. This is very important also in terms of computational power, even if the networks
are not being retrained. Keeping all the model parameters in the computer’s memory

3http://image-net.org/
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(a) Own networks small (and
large with Max pool2 & 4).
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(b) MobileNet.
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(c) VGG16.

Figure 4.1 – Flowcharts of the different CNN architectures (conv = convolutional layer,
max pool = max pooling layer, conv dw = depthwise separable convolutional layer, avg
pool = average pooling layer, FC = fully connected layer). For (b) and (c) the dashed
lines indicate the pre-trained layers above and the added layers below.
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Table 4.2 – Comparison of model sizes (No. of parameters) for the different RNN
architectures in combination with our own large CNN network.

RNN length GRU LSTM BGRU BLSTM

30 67,910 76,430 100,790 119,630

50 95,320 112,430 165,030 204,430

70 129,750 158,030 248,470 314,830

100 195,030 244,430 409,630 528,430

150 339,830 436,430 774,230 1,012,430

200 529,630 688,430 1,258,830 1,656,430

300 1,044,230 1,372,430 2,588,030 3,424,430

takes up considerable space, in particular for the VGG16 model. We can also observe
that the own “small” network actually requires more parameters than the own “large”
network, since its output of the convolutional layers to the dense layers is much larger
than in the own “large” network, where the additional max pooling layers reduce the
feature map size.

4.2.2 Sequence modelling with recurrent neural networks

In this work we compare results between RNNs with LSTM cells and GRUs (see Sec-
tion 1.5.2 for more details). The aim is to see which kind of network performs better,
since we only have a limited amount of data available. The results are also compared
to bidirectional RNNs (BRNNs) which process the input sequence in two layers, one
receiving the sequence in forward order and one in reverse order. This is common practice
in recent speech recognition work, since it is assumed that the network will always be
fed sequences of at least a specific length, and not one sample at a time. The integration
of the RNN into the previous CNN network is shown in Figure 4.2.

Table 4.2 presents the number of parameters for these different RNN architectures
(combined with our own large CNN network). We can clearly see the difference between
the GRU and LSTM-based models, where the number of parameters is significantly
larger. Since the BRNNs have to model both the forward and backward sequences, as
well as the connections between these two, the number of parameters is even larger for
the bidirectional GRU (BGRU) and BLSTM.
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Input,
(seq. len. x image size x1)
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RNN1 (RNN length)
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FC2 (32)

Softmax, (13)

Figure 4.2 – Flowchart of the RNN network integrated with the CNN (seq. len. =
training input sequence length).
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4.2.3 Decoding with connectionist temporal classification

Finally, the output of the BRNNs is decoded using the CTC. This sequence decoder,
described in more detail in Section 1.5.2, calculates the overall combined probabilities
for various sequences which allows to choose the most likely one based on the emission
probabilities from the network at each time step. In this work we use the greedy method
of best path decoding (see equation 1.30 in Section 1.5.2), not performing prefix search
decoding with its extensive beam search and grouping of alignments. Neither a dictionary
nor a language model are used to restrain the search tree.

4.3 Performance analysis

Since finding the right parameters and the best deep learning architecture is a very
complicated procedure, a systematic approach was applied to this part of the work. This
involved a multi-step approach: first, the best combination of input image size and image
recognition system was found. Next, the best sequence modelling architecture was added.
Finally, this was combined with the decoding of the sequence.

For the image recognition/feature extraction part, five different networks were tested:

1. A simple system of five convolutional layers with three max pooling layers after
every second convolutional layer, “Own network small” (see Figure 4.1a, excluding
the max pooling layers in brackets).

2. Similar to system 1) but with max pooling after each convolutional layer, “Own
network large” (see Figure 4.1a).

3. The reduced pre-trained MobileNet [Howard et al., 2017] with a width of α = 0.5,
“MobileNet small” (see Figure 4.1b, with the widths of the convolutions reduced by
factor α; only the last layers after the dashed line are trained).

4. The full pre-trained MobileNet [Howard et al., 2017] with a width of α = 1,
“MobileNet large” (see Figure 4.1b; only the last layers after the dashed line are
trained).

5. The full VGG16 [Simonyan and Zisserman, 2015] network, “VGG16” (see Fig-
ure 4.1c; only the last layers after the dashed line are trained).

All the networks had the same architecture for the last few dense layers. For the pre-
trained networks only these last few layers were adapted during training, whereas for the
other networks the whole network was trained from scratch.

In addition, three different input sizes of images were tested: 150× 210 pixels (‘large’),
75× 105 pixels (‘medium’) and 50× 70 pixels (‘small’).
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From these experiments the best combination of network and input image size was chosen,
in order to be combined with the temporal model. Here again, a number of parameters
were varied to determine the best possible architecture.

First, the sequence length modelled by the RNN was varied from 30 to 300, and the input
sequence length was varied between 30 and 50 samples. A longer input image sequence
could not be tested due to memory requirements. Finally, a comparison between GRU,
LSTM, BGRU and BLSTM was performed.

Based on the results from these experiments the best four systems were chosen and then
integrated into a full end-to-end speech recognition system with CTC as a sequence
decoder.

All experiments were implemented using the Keras4 library in Python 3 with TensorFlow5

as backend. The Adam optimiser [Kingma and Ba, 2015] was used with the categorical
cross entropy functioning as loss function and using the categorical accuracy as metric –
except for the experiments with the CTC, where the CTC loss function was used, and no
metric was used during training. The default learning rate of 0.001 was used. For each
epoch, the training was performed on the whole training set – with batches of 50 for the
first CNNs and 32 to reduce the memory use for the RNN and CTC experiments – and
then tested on the validation set. Where not mentioned otherwise, the final model was
trained for 10 epochs with reshuffled training data. All computations were performed on
a single GPU – an NVIDIA GTX 1080 Ti with 11 GB memory.

4.3.1 The dataset

In these experiments the TCD-TIMIT database was used to train the models, since it
is considerably larger than the OuluVS2 short phrases (see Section 1.8.1). Two of the
sentences were excluded for each subject from both the training and test sets: the ones
highlighting the speaker’s accent. This is due to two reasons: on the one hand, these
sentences are repeated for each subject and are thus more predictable. On the other
hand, the fact that they highlight the accent could impact the understandability of these
sentences. Thus, 96 sentences were used per speaker.

From the training set, another six subjects were randomly chosen to be in the validation
set, to control the evolution of the training across epochs.

Again, we wanted to obtain results for both the frontal and the 30◦-side view. Therefore,
we use our own SDM-based face tracker to extract the region around the mouth. To
this end, first the average mouth size for each image is calculated. In a second round
the particular ROI is cropped out. In this experiment three different types of ROIs are

4https://keras.io/
5https://www.tensorflow.org/
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tested:

1. A region cropped with a larger margin of 2.5/3 added to each side horizontally
around the mouth in greyscale. All the images were normalised by dividing by 255
(the maximum possible value) and removing their own mean values. Final input
image size (‘small’): 50× 70 pixels.

2. A region cropped with a larger margin of 2.5/3 added to each side horizontally
around the mouth in greyscale. All the images were normalised by dividing by 255
(the maximum possible value) and removing their own mean values. Final input
image size (‘medium’): 75× 105 pixels.

3. A region cropped closely around the mouth (margin of 1/3 added to each side
horizontally) with the greyscale values adjusted by histogram equalisation. All
the images were normalised by removing the mean and dividing by the standard
deviation of the training set. Final input image size (‘large’): 150× 210 pixels.

The transcriptions aligned in time according to the (time-synchronous) audio as provided
by the authors of the database were used as ground truth in the training procedure. The
phoneme labels were converted into viseme labels according to the mapping provided in
Table 1.1 in Section 1.1, except for /hh/ and /hv/, which take the shape of the following
phoneme [Harte and Gillen, 2015]. These phonemes are thus converted according to the
next phoneme label.

Since the silence label was highly overrepresented in the distribution of visemes, the
leading and trailing silence of each utterance were cropped. As a result, the data was
distributed as shown in the histogram in Figure 4.3. We can see that certain visemes are
much more common than others – a common phenomenon in speech recognition.

4.3.2 Experimental results

In the following, we present the steps and results of the building blocks to the full sequence-
to-sequence visual speech recognition system. We start with the feature extraction using
CNNs, then add sequence modelling with RNNs and finally combine it with decoding
using CTC. In the end, this architecture, designed on the frontal view, is also trained on
and applied to the 30◦-side view.

Feature extraction using CNNs

The framewise viseme classification results for the analysis of the different CNN archi-
tectures after training for 10 epochs with a batch size of 50 can be found in Tables 4.3
(validation set) and 4.4 (test set). Here we can see that the small networks which are
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Figure 4.3 – Histogram of the visemes in the TCD-TIMIT database after cropping
leading and trailing silence.

trained from scratch perform much better than the pre-trained networks. This might
partially be due to the fact that since only the last, classification layers are trained, the
same features as for the image classification task ImageNet are extracted. These features
are specialised to recognise different animals and objects, despite different appearances.
Therefore, the variations in the mouth shape might be partially ignored.

This also indicates that for VSR it might be better to use our own relatively simple
network rather than relying on more complicated and larger models which would need
more space in computer memory and thus only allow shorter time-sequences and batch
sizes for training, which ultimately leads to longer training times.

We can also see that even though the performance for the small and medium image sizes
is very similar, the medium size consistently performs better except for VGG16 and
MobileNet small, but the results are very close for the latter. For the larger image size
only one test was performed with our own small network. However, the training time
is largely increased to around 10 hours per epoch, as compared to around 20 minutes
per epoch for the medium input image size. Therefore, the training was stopped after 5
epochs, and is compared to the one with medium image size after training for 5 epochs.
We can see that the results are very similar. Therefore, there is no added value to using
the larger input images.
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(b) Own network large, input image size medium.

Figure 4.4 – Evolution of the loss for the training and validation sets during training for
10 epochs.
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(a) Own network small, input image size medium.
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(b) Own network large, input image size medium.

Figure 4.5 – Evolution of the categorical accuracy for the training and validation sets
during training for 10 epochs.
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Table 4.3 – Framewise viseme accuracy results (in %) on the frontal view of TCD-TIMIT
using the different CNN architectures on the validation set (* = results after training for
5 epochs).

Network Small input image Medium input image Large input image

Own network small 42.23 44.11/43.67∗ 38.60∗

Own network large 41.70 42.86 -

MobileNet small 34.74 34.27 -

MobileNet large 35.40 35.53 -

VGG16 39.79 34.65 -

Table 4.4 – Framewise viseme accuracy results (in %) on the frontal view of TCD-TIMIT
using the different CNN architectures on the given test set (* = results after training for
5 epochs).

Network Small input image Medium input image Large input image

Own network small 39.83 39.95/39.47∗ 39.23∗

Own network large 39.56 40.18 -

MobileNet small 33.07 34.49 -

MobileNet large 33.70 34.78 -

VGG16 37.70 37.59 -

The evolution of the loss and categorical, framewise accuracy for both training and
validation sets are shown in Figures 4.4 and 4.5 across the 10 training epochs for the
two best performing networks (on the validation set): our own small and large networks,
with a medium input image size. These graphs show that while the training performance
increases constantly, even though slower towards the end, the validation performance
varies much more. However, still an overall trend towards an improving performance is
visible, which is a little stronger in the case of the larger network.

Taking into account these different considerations, we chose to use the medium input
images with our own large network for the evaluations with RNNs, also because it reduces
the final matrix size passed to the RNN, thus allowing for fewer parameters in the RNN.

Finally, to evaluate how the systems perform at a viseme level, we show the confusion
matrices of these two best CNNs in Figure 4.6. These confusion matrices illustrate that
certain visemes are always misclassified, whereas others are classified correctly most of
the times. Visemes are in particular misclassified to /B, /I and /J (‘Lips puckered’, ‘Lips
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relaxed narrow opening’ and ‘Tongue up or down’, see Table 1.1). These are the most
common visemes in this database (see Figure 4.3). In addition, their shape is similar to
some other visemes. This could also point towards a slight overfitting of the network.

Sequence modelling using RNNs

Tables 4.5 (validation set) and 4.6 (test set) present the results of combining our own
CNN architecture with different RNNs to model and consider the temporal evolution in
the viseme recognition process. The results are framewise classifications and we can see
that using longer RNNs proves crucial to improving temporal modelling.

Furthermore, we can see a difference between the input sequence lengths: while it might
be counter-intuitive, using training input sequence lengths (linputseq) of 30 leads to better
models than using length 50 training input sequences. This could be related to the way
these training sequences are created: each utterance of length L can contain L− linputseq
training samples. These sequences are shuffled across the whole training set, to avoid
repeating very similar sequences in the same batch and thus overfitting. Therefore,
shorter training input sequences result in more training samples: 4721 for linputseq = 30
and 2742 for linputseq = 50, and thus can help to improve the results.

Another interesting observation is the difference between LSTMs and GRUs: the results
are rather close, however, most of the time the GRUs perform better. This is most likely
due to its lower number of parameters, which is particularly important when dealing
with small amounts of data. Furthermore, like expected, the bidirectional versions of
the RNNs outperform the unidirectional variants in most cases, and are particularly
useful for longer networks. This shows that taking into account some future and past
information is very useful to provide a more complete context to each frame. With the
shorter networks, the additional information that could be gained is not as significant,
and thus the performance increase is smaller.

In the end we can conclude that the best system is the BGRU with length 300 fed with
an input sequence of length 30. The framewise confusion matrix on the test set for this
setup is shown in Figure 4.7. We can clearly see the improvement over the previous
confusion matrices for the CNN-only classification in Figure 4.6. However, similarly to
the CNN-only classification, we still have the same classes that function as sink models.

To test the influence of the decoding CTC layer, we will perform tests with a series of
best networks: we maintain the CNN architecture with our own large network and the
medium image as input. Both, input sequences of 30 and 50 are tested, and the BGRU
length is varied between 200 and 300. These architectures are now also tested on the 30◦
view.
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(a) Own network small, input image size medium.
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Figure 4.6 – Normalised confusion matrices on the test set for the best two CNNs.

64



4.3. Performance analysis

Table 4.5 – Framewise viseme accuracy results (in %) on the frontal view of TCD-TIMIT
using the different RNN architectures on the validation set.

RNN type Input sequence
length

RNN length

30 50 70 100 150 200 300

GRU
30 41.99 44.89 45.42 44.72 44.91 44.23 44.48

50 43.50 43.49 45.30 46.58 44.38 43.67 44.56

LSTM
30 40.37 45.97 46.27 44.47 43.22 42.72 42.47

50 41.46 44.36 45.32 44.00 42.71 42.59 43.09

BGRU
30 45.07 47.09 48.55 48.73 46.96 46.69 51.81

50 45.57 46.98 47.03 48.91 44.73 50.20 50.91

BLSTM
30 44.30 47.29 46.92 46.61 46.15 45.25 45.36

50 44.28 46.84 46.05 47.05 45.64 46.52 47.04

Table 4.6 – Framewise viseme accuracy results (in %) on the frontal view of TCD-TIMIT
using the different RNN architectures on the given test set.

RNN type Input sequence
length

RNN length

30 50 70 100 150 200 300

GRU
30 41.75 42.16 42.58 43.25 42.09 42.66 43.07

50 40.92 41.72 42.40 43.15 42.85 41.39 42.83

LSTM
30 39.84 40.77 41.67 41.74 40.55 42.26 40.73

50 40.19 41.31 42.30 41.63 41.96 40.95 41.80

BGRU
30 41.93 45.02 44.94 45.15 46.41 45.29 46.92

50 43.40 44.09 44.49 44.87 44.82 46.74 46.09

BLSTM
30 42.50 43.44 43.32 44.41 45.17 43.82 45.23

50 43.13 43.07 43.59 44.30 44.12 44.55 46.00
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Figure 4.7 – Normalised confusion matrix on the test set for the best RNN: a BGRU
with length 300 and trained with an input sequence length of 30.

Table 4.7 – Viseme recognition accuracy (in %) on the frontal and 30◦ views of TCD-
TIMIT using different RNN architectures with CTC on the given test set.

View Input sequence
length

BGRU length

200 300

0◦
30 53.98 55.17

50 53.78 52.85

30◦
30 53.48 54.75

50 54.54 55.49
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Decoding with CTC

In this last step we analyse the influence of a CTC decoder on the results. We maintain
the previously determined architecture and pass the output of this network to the CTC
which will group the framewise output of the BGRU and output sequences of visemes,
rather than classifying each frame. In our work we do not constrain the CTC with a
dictionary or grammar, since we want to see the model’s capability to learn independently
of these.

In Table 4.7 the results for the complete network with varying RNN length and input
sequence length are presented, now for the two views: frontal and 30◦. The parameters
to be compared were chosen according to the best performing networks in the previous
step. We thus compare RNN lengths of 200 and 300 and vary the input sequence length
between 30 and 50 frames. The accuracy is now the viseme accuracy based on the edit
distance of a sequence, as defined in Section 1.6, compared to the framewise categorical
accuracy in the previous sections. The accuracy is computed based on the edit distance
in the ‘editdistance’ library in Python.

We can clearly see the improvement from using only a CNN-RNN system for framewise
classification (see Table 4.6), to the sequence classification results (see Table 4.7). Again,
we observe that the longer sequence models perform better. The influence of the input
sequence length cannot be defined completely, since it varies between the frontal and
30◦-view angle.

Since overall the RNN length of 300 and input sequence length of 30 show the best
performance, the results are analysed in more detail with HTK (see Table 4.8). HTK
computes both the viseme correctness and accuracy, and allows to analyse the results
per subject. The algorithm seems to be slightly different from the algorithm used for the
results in Table 4.7, but the results are comparable.

In Figure 4.8, and in more detail in Table 4.8, we can see that the viseme recognition
accuracies are much higher than the previous baseline results presented in Chapter 2. Also
comparing to previous results presented in Thangthai et al. [2017] and the benchmark
results of the database Harte and Gillen [2015] on the same test set, we can see that
our method outperforms these by a large margin. For the speaker independent case on
the frontal view, Thangthai et al. [2017] report a viseme accuracy of 44.60% (compared
to 34.77% for the benchmark), which our method improves to 52.28% (using the HTK
results).

The other works only used the frontal view. However, in our comparison we can see that
both views perform similarly, with a slightly higher accuracy for the 30◦ view. This is
consistent with our results presented in Chapter 3 for the OuluVS2 database.

Furthermore, looking at the detailed results in Table 4.8, it can be noted that in particular
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Figure 4.8 – Mean viseme recognition results on the multi-view dataset of TCD-TIMIT
using our proposed CNN-RNN method with CTC on the given test set. Error bars
denote the standard deviation across subjects (corr. = correctness, acc. = accuracy).

subject 34M performs poorer than the other subjects. This has also been the case in the
previous GMM-HMM-based experiments (see Table 2.3). Looking into the videos, we can
see that this subject has a beard, which might reduce the performance of the algorithm.

The viseme accuracy is still lower than the viseme correctness, like in the GMM-HMM
case. However, the gap is now smaller, which indicates that there are still substitution
errors, although not as many as in the GMM-HMM-based system.

Finally, the confusion matrices in Figure 4.9 (this time based on sequence classification,
not framewise labels) clearly show that integrating the decoding with CTC improves
recognition as compared to sequence modelling through RNNs (see Figure 4.7), which
itself enhanced the CNN-based framewise image classification (see Figure 4.6). Comparing
these confusion matrices to the ones obtained in the baseline system with GMM-HMMs
(see Figure 2.4) we can see that for many visemes the classification has become more
reliable. However, unlike for the GMM-HMM systems, we see that certain viseme classes
have become sink models. Further we can note that for these particular classes there are
higher levels of insertions, while for the other classes insertion levels are lower than for
the GMM-HMM systems. Also the number of deletions remains relatively high.
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(a) Frontal view.
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(b) 30◦ view.

Figure 4.9 – Confusion matrices of our CNN-RNN with CTC for the frontal and 30◦
views including insertions and deletions (Ins = Insertions and Del = Deletions).
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4.4 Summary

In this chapter we developed an end-to-end, sequence-to-sequence neural network from
scratch. This network was built step by step, by first determining the best CNN-based
feature extraction framework which was evaluated framewise with the classification
accuracy. Here we could show that for such specific use cases, it can be more beneficial
to train a small network from scratch, rather than reusing larger pre-trained networks.

Adding RNNs to the per-frame classification proved very useful to improve the results.
However, it could also be observed that the results could likely be improved further with
access to larger databases. Furthermore, we could see that using BGRUs led to the best
performance, due not only to its advantage of bidirectional sequence modelling, but also
its reduction in parameters compared to the LSTM-based networks. In addition, using
a longer model has shown increased accuracy, since it allows taking more context into
account.

Finally, we could see that using the CTC for decoding further increased the accuracy,
since it smooths out the results while finding the best path of the viseme sequence. It
thus removes outliers or unlikely combinations of frames. It also allows us to do actual
sequence-to-sequence speech recognition, since we are ultimately interested in the output
sequence rather than a classification for each frame.

We were also able to show that this sequence-to-sequence deep network outperforms
previous state-of-the-art results on TCD-TIMIT by a large margin.

The networks were optimised on the frontal view, however, training the same architecture
for the 30◦-view angle proved that it was just as suitable for this view. The performance
on the 30◦ view network was even slightly higher than for the frontal view, which is
consistent with previous results.
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Table 4.8 – Viseme recognition results (in %) on the multi-view dataset of TCD-TIMIT
using our proposed CNN-RNN method with CTC on the given test set per speaker
and the corresponding mean and standard deviation across speakers (VC = Viseme
correctness and VA = Viseme accuracy).

0◦ 30◦

Spkr. VC VA VC VA

08F 65.67 56.17 67.77 57.58

09F 65.14 56.33 65.66 59.36

15F 58.38 52.07 63.91 53.72

18M 63.06 57.16 59.93 54.09

25M 60.05 53.77 57.35 50.87

28M 59.97 54.26 58.71 52.37

33F 64.29 55.02 64.64 55.46

34M 34.73 34.42 41.54 37.63

36F 61.44 54.78 61.50 54.12

41M 58.68 51.12 61.72 54.76

44F 65.44 57.57 63.86 56.50

45F 52.80 48.11 54.98 51.07

49F 62.28 55.36 67.65 57.00

54M 54.79 46.48 60.71 52.22

55F 58.67 53.61 72.31 60.79

56M 50.46 46.83 55.98 49.74

58F 62.11 55.64 64.66 54.56

Mean 58.70 52.28 61.35 53.64

SD 7.56 5.74 6.81 5.09
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5 Multi-view visual speech recognition

A remaining challenge in the field of visual speech recognition arises from the problem of
varying head poses. In this chapter, we present an in-depth study of the possibilities to
combine various view angles and the influence of these combinations on the recognition
results. To this end, we compare the concatenation of features as well as the decision
fusion of simultaneous recordings from different camera angles. The features are obtained
through a PCA-based convolutional neural network, followed by an LSTM network.
Finally, these features are processed in a tandem system, being fed into a GMM-HMM
scheme. The decision fusion acts after this point by combining the Viterbi path log-
likelihoods. The results show that the complementary and redundant information
contained in recordings from different view angles improves the results.

5.1 Motivation

Pure audio-based speech recognition has seen significant improvements over the last
decades and has been tested on and applied to many real-life datasets and scenarios.
However, visual speech recognition still focuses mainly on in-lab databases. To overcome
some of the shortcomings that need to be addressed to work on real-world data, several
studies have focused on VSR for various head poses [Lucey et al., 2007, Estellers and
Thiran, 2012]. Moreover, a few databases have included recorded sentences from cameras
at various view angles [Lee et al., 2004, Harte and Gillen, 2015]. Following up with
this perspective, the work in this chapter continues the use of the recent OuluVS2
dataset [Anina et al., 2015] which includes simultaneous recordings from cameras placed
at five different angles.

In this chapter, we continue the use of a PCA-based convolutional network [Chan et al.,
2015] in combination with long short-term memory (LSTM) cells and a GMM-HMM
scheme to model temporal evolution between words (see Chapter 3). This work focuses

Parts of this chapter have been published by Zimmermann et al. [2017b].
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on the combination possibilities between various view angles and the complementary or
redundant information that can thus be exploited. We show that different views indeed
complement each other or provide redundancy to increase reliability and thus produce
better overall sentence recognition results of up to 83% for the combination of the frontal,
30◦, 60◦ and 90◦ side views. In general, combinations with views such as the 30◦ and
60◦ views showed good improvements, highlighting the complementary , or redundant,
nature of the information between various view angles. On the contrary, although the
90◦ pose does not seem to contain as many relevant features to correctly recognise a
sentence on its own, combined with other views, especially other lower performing angles
such as 45◦, it improves recognition rates. This observation implies that there exists a
certain amount of complementary information or redundancy between these views as
well.

The rest of this chapter is organised as follows. Section 5.2 reviews the proposed method
for VSR utilising a PCA network, LSTMs, and the GMM-HMM system and introduces
the decision fusion scheme. Section 5.3 presents the dataset, experiments, and obtained
results. Finally, Section 5.4 concludes the chapter with a summary and discussions.

5.2 Proposed method

In this work we use a PCA network and LSTM framework developed in Chapter 3 to
extract robust features for visual speech recognition inside a tandem GMM-HMM scheme.
Unlike previous work, where either multi-stream HMMs or feature fusion are employed,
in our method, we also explore a scheme where the decision fusion happens at the end
of the recognition pipeline by weighting the log-likelihoods of the paths of the Viterbi
algorithm for several views.

In this study we combine the views in the database using two different methods: an
early and a late fusion. For the former we fuse the features of multiple views. To this
end, the feature vectors obtained from the LSTM are concatenated and then processed
similarly to the single views with their delta and acceleration components in a tandem
GMM-HMM system (see Figure 5.1).

This simple multi-view scheme is extended by further analyses of results using late fusion
with decision fusion techniques. The following fusion scheme of the likelihoods for two
views va and vb is used:

p(ova , ovb
|q = qi) = p(ova |q = qi)λvap(ovb

|q = qi)λvb (5.1)

where ova and ovb
are the observations of the two views, for the speech (viseme) class qi

and with the weights λva and λvb
constrained by

λva + λvb
= 1 (5.2)
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Mouth frames PCA network LSTM Logarithm Fusion GMM-HMM

Figure 5.1 – The proposed feature fusion multi-view tandem system with PCA network-
LSTMs and GMM-HMMs for visual speech recognition from the mouth video frames.

Taking the logarithm of equation 5.1 to obtain the log-likelihoods like in HTK’s imple-
mentation of the Viterbi algorithm we have

log(p(ova , ovb
|q = qi)) = λva log(p(ova |q = qi)) + λvb

log(p(ovb
|q = qi)) (5.3)

To finally fuse the results, the top-5 Viterbi output sequences for each view and utterance
are retained together with their log-likelihoods. The weighted log-likelihoods of the two
views are summed up and the Viterbi sequence with the highest weighted sum is then
selected to obtain the final joint log-likelihood. This approach was similarly extended to
multiple views by summing up the weighted log-likelihoods and restricting the sum of
their weights to one.

5.3 Performance analysis

This section presents the data evaluated in this study, the experiments conducted, and
the results obtained when performing decision fusion across multiple views.

5.3.1 The dataset

The dataset used in this chapter is the short phrase section of the OuluVS2 database [An-
ina et al., 2015] (see Section 1.8.2 for more detail).
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5.3.2 Experimental results

Parameters for the spatiotemporal feature extraction by PCA network and LSTM from
the given cropped mouth videos were selected similar to the approach in Chapter 3. First
the results of combining the features from different views were analysed. Subsequent
experiments were conducted to measure the improvements in performance when combining
classifier outputs. These results are compared to the previous recognition rates for single-
view.

Three measures of word accuracy, word correctness, and sentence recognition per cent
are used for reporting the results, which are defined in Section 1.6.

To adjust our system parameters, we use a leave-one-out cross-validation scheme across
speakers on the given training set. Next, we apply the trained system on the test set
for the final recognition at the word or phrase levels. We present the best test results
obtained for phrase recognition on the OuluVS2 dataset for varying numbers of views
combined in Figure 5.4, and the complete test results in Table 5.3.

Feature fusion: Multiple-view experiments

First experiments on the combination of different views involved feature concatenation.
These multi-view experiments show interesting results (see Figures 5.2 and 5.3). Various
combinations of the frontal view with each of the four side views were tested, as well as
the ensemble of all views together.

The multiple-view results show very good improvements especially for the combination
of the frontal and the 30◦-side view. On the cross-validation set a sentence accuracy
of nearly 83% is achieved, while word correctness and word accuracy are around 85%
and 84%, respectively. Thus this amounts to improvements of around 3–10% over the
separate results for these views. Similar improvements can be seen on the test set,
where for the same combination the recognition of sentences reaches 79% and 83% of
words are recognised correctly. The word accuracy lies at 81%. These results show that
especially between the frontal and the 30◦-view there is complementary or redundant
information that can be exploited. The improvements for the other views are not as
significant – however, there could be further improvements. The concatenation of all the
feature vectors from all views shows a particularly bad result. This is probably due to
the increase in dimensionality, which could be aided by prior dimensionality reduction
techniques.

Furthermore, a large variability in the performance between the different speakers can
again be observed from the high standard deviation shown in Figures 5.2 and 5.3 as well
as the individual speaker results in Table 5.1.
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Table 5.1 – Phrase recognition results (in %) on the combination of different views of
the multi-view dataset of OuluVS2 using feature fusion in the proposed tandem system
with PCA network-LSTMs and GMM-HMMs on the given test set per speaker and the
corresponding mean and standard deviation across speakers (SC = Sentence correctness,
WC = Word correctness and WA = Word accuracy).

all views 0◦ + 30◦ 0◦ + 45◦ 0◦ + 60◦ 0◦ + 90◦

Spkr. SC WC WA SC WC WA SC WC WA SC WC WA SC WC WA

6 30.0 29.3 25.3 76.7 80.0 77.3 63.3 68.0 64.0 40.0 44.0 41.3 50.0 53.3 52.0

8 56.7 61.3 58.7 70.0 74.7 70.7 60.0 64.0 61.3 53.3 57.3 57.3 50.0 54.7 54.7

9 36.7 44.0 38.7 70.0 76.0 73.3 43.3 44.0 41.3 60.0 64.0 62.7 43.3 54.7 45.3

15 70.0 65.3 65.3 70.0 76.0 73.3 66.7 66.7 65.3 70.0 68.0 68.0 70.0 69.3 66.7

26 60.0 56.0 50.7 80.0 84.0 80.0 86.7 88.0 88.0 66.7 62.7 61.3 66.7 66.7 64.0

30 76.7 82.7 81.3 86.7 90.7 90.7 83.3 88.0 88.0 90.0 93.3 93.3 83.3 90.7 88.0

34 96.7 98.7 98.7 86.7 90.7 90.7 96.7 98.7 98.7 96.7 97.3 97.3 90.0 90.7 89.3

43 76.7 80.0 77.3 76.7 81.3 78.7 86.7 89.3 89.3 73.3 80.0 77.3 86.7 85.3 85.3

44 70.0 72.0 72.0 83.3 88.0 88.0 76.7 81.3 78.7 100.0 100.0 100.0 70.0 70.7 70.7

49 80.0 82.7 82.7 86.7 92.0 89.3 86.7 88.0 86.7 90.0 93.3 92.0 83.3 88.0 86.7

51 40.0 37.3 33.3 63.3 61.3 58.7 46.7 33.3 32.0 40.0 36.0 30.7 56.7 56.0 54.7

52 86.7 88.0 86.7 100.0 100.0 100.0 76.7 77.3 76.0 86.7 81.3 81.3 86.7 92.0 88.0

Mean 65.0 66.4 64.2 79.2 82.9 80.9 72.8 73.9 72.4 72.2 73.1 71.9 69.7 72.7 70.4

SD 19.9 20.6 22.2 9.7 9.8 10.8 16.2 18.8 19.5 20.1 20.3 21.4 15.8 15.2 15.8

Decision fusion: Weighting schemes

The aim of these experiments is to investigate whether the complementary information
contained in the different views can be exploited by combining the top-5 Viterbi decoder
HMM outputs for several angles. To do so, we summed the weighted log-likelihoods for
two views to determine which path would have the highest combined log-likelihood.

The optimal weights (see Table 5.2) were obtained through a leave-one-out cross-validation
scheme applied only on the training set using the train-test splits of the data as provided
by the authors of the dataset. These weights are determined in two ways. In the first
method, the weights are based on the sentence correctness of a leave-one-out cross-
validation in the training set and are later normalised by the total sum of weights.
This measure is referred to as “Training recognition” or “Rec” in Tables 5.2 and 5.3.
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Table 5.2 – Optimal weights obtained via grid search and by training performance
normalisation.

View combination Grid search Training recognition
va + vb + vc + vd + ve λva λvb

λvc λvd
λve λva λvb

λvc λvd
λve

0◦ - - - - - - - - - -
30◦ - - - - - - - - - -
45◦ - - - - - - - - - -
60◦ - - - - - - - - - -
90◦ - - - - - - - - - -

0◦ + 30◦ 0.4 0.6 - - - 0.5 0.5 - - -
0◦ + 45◦ 0.6 0.4 - - - 0.6 0.4 - - -
0◦ + 60◦ 0.9 0.1 - - - 0.5 0.5 - - -
0◦ + 90◦ 0.7 0.3 - - - 0.6 0.4 - - -
30◦ + 45◦ 0.8 0.2 - - - 0.6 0.4 - - -
30◦ + 60◦ 0.6 0.4 - - - 0.5 0.5 - - -
30◦ + 90◦ 0.9 0.1 - - - 0.6 0.4 - - -
45◦ + 60◦ 0.4 0.6 - - - 0.5 0.5 - - -
45◦ + 90◦ 0.8 0.2 - - - 0.5 0.5 - - -
60◦ + 90◦ 0.7 0.3 - - - 0.5 0.5 - - -

0◦ + 30◦ + 45◦ 0.4 0.5 0.1 - - 0.4 0.4 0.2 - -
0◦ + 30◦ + 60◦ 0.4 0.4 0.2 - - 0.3 0.3 0.4 - -
0◦ + 30◦ + 90◦ 0.4 0.6 0.0 - - 0.4 0.4 0.2 - -
0◦ + 45◦ + 60◦ 0.8 0.1 0.1 - - 0.4 0.3 0.3 - -
0◦ + 45◦ + 90◦ 0.8 0.1 0.1 - - 0.4 0.3 0.3 - -
0◦ + 60◦ + 90◦ 0.8 0.1 0.1 - - 0.4 0.3 0.3 - -
30◦ + 45◦ + 60◦ 0.6 0.0 0.4 - - 0.4 0.3 0.3 - -
30◦ + 45◦ + 90◦ 0.8 0.1 0.1 - - 0.4 0.3 0.3 - -
30◦ + 60◦ + 90◦ 0.8 0.1 0.1 - - 0.4 0.3 0.3 - -
45◦ + 60◦ + 90◦ 0.1 0.8 0.1 - - 0.3 0.4 0.3 - -

0◦ + 30◦ + 45◦ + 60◦ 0.3 0.4 0.1 0.2 - 0.3 0.3 0.2 0.2 -
0◦ + 30◦ + 45◦ + 90◦ 0.4 0.4 0.1 0.1 - 0.3 0.3 0.2 0.2 -
0◦ + 30◦ + 60◦ + 90◦ 0.4 0.4 0.1 0.1 - 0.3 0.3 0.2 0.2 -
0◦ + 45◦ + 60◦ + 90◦ 0.8 0.1 0.0 0.1 - 0.3 0.2 0.3 0.2 -
30◦ + 45◦ + 60◦ + 90◦ 0.7 0.1 0.1 0.1 - 0.3 0.2 0.3 0.2 -

0◦ + 30◦ + 45◦ + 60◦ + 90◦ 0.9 0.1 0.0 0.0 0.0 0.2 0.2 0.2 0.2 0.2
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Figure 5.2 – Mean phrase recognition results on the combination of different views of
the multi-view dataset of OuluVS2 using feature fusion in the proposed tandem system
with PCA network-LSTMs and GMM-HMMs with the cross-validation technique on
the whole dataset. Error bars denote the standard deviation across subjects (sent. =
sentence, corr. = correctness, acc. = accuracy).

In the second approach, optimal weights were obtained by iterating over all possible
values between 0 and 1 in 0.1 steps and choosing the highest performing one on the
cross-validation of the training set, while observing the constraint of equation 5.2. These
weights are referred to as “Grid search” or “Grid” in Tables 5.2 and 5.3. Afterwards,
these weights were used on the test set.

Evaluating the weights obtained for various cases in Table 5.2, we can already see that
for grid search the weights tend to be higher especially for the frontal and 30◦ side view.
This does not seem very surprising, since these views also have the highest performance
when taken separately. Since every time the best results based on the cross-validation of
the training set are used, we can still see variations on the performance of the test set.
For example, the optimal combination of all views only gives non-zero weights to the 0◦
and 30◦ view angles, though still at different rates from the simple two-view combination
of those two, and in the end still provides poorer test results.

The weighting scheme based on the training recognition results shows very balanced
weights, since the training results are fairly similar so that rounding the weights to the
nearest tenth results in very close values. This means, for the same example of the
combination of all views, that all views are weighted equally. In the end, the test results
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Figure 5.3 – Mean phrase recognition results on the combination of different views of
the multi-view dataset of OuluVS2 using feature fusion in the proposed tandem system
with PCA network-LSTMs and GMM-HMMs on the given test set. Error bars denote
the standard deviation across subjects (sent. = sentence, corr. = correctness, acc. =
accuracy).

in sentence correctness are similar to the other weighting scheme, however, word accuracy
and correctness are much lower.

Decision fusion: Multiple-view experiments

Table 5.3 shows the results of various combinations on the test set. It contains the results
obtained with the two weighting schemes, as well as the baseline results from Chapter 3
under “Feat”. These are the single-view test results and the combinations through feature
concatenation presented in the previous section. When evaluating the results, it should be
taken into account that we do not perform a simple 10-class classification, but rather make
use of a typical speech evolution process with HMMs, modelling word sequences. This
includes silence as a possible utterance, which is only removed for evaluation purposes,
in order not to distort the results.

Looking at the results in Table 5.3 we can see that there are various improvements over
the baseline results for the 30◦-side view (the highest performing single view). While
this view on its own has a sentence correctness of around 76% on the test set, we can see
that both through feature concatenation, and by combining classifier results with the
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Table 5.3 – Mean phrase recognition results (in %) across test subjects on the combination
of different views of the OuluVS2 multi-view dataset using the proposed method.

View combination Sentence Correctness Word Accuracy Word Correctness
Grid Rec Feat Grid Rec Feat Grid Rec Feat

0◦ - - 73.1 - - 73.0 - - 74.1
30◦ - - 75.6 - - 75.2 - - 76.8
45◦ - - 67.2 - - 66.6 - - 68.7
60◦ - - 63.3 - - 60.6 - - 63.7
90◦ - - 59.2 - - 56.8 - - 63.1

0◦ + 30◦ 79.4 80.0 79.2 79.9 80.8 82.9 80.6 81.6 80.9
0◦ + 45◦ 76.1 76.1 72.8 76.4 76.4 73.9 77.3 77.3 72.4
0◦ + 60◦ 77.2 74.7 72.2 77.9 74.6 73.1 78.9 75.7 71.9
0◦ + 90◦ 75.6 76.4 69.7 76.4 76.9 72.7 77.7 77.8 70.4
30◦ + 45◦ 77.2 76.9 - 77.4 77.2 - 78.8 78.6 -
30◦ + 60◦ 78.1 74.7 - 77.7 73.8 - 79.0 75.7 -
30◦ + 90◦ 76.7 76.9 - 77.7 77.9 - 79.2 79.4 -
45◦ + 60◦ 69.7 72.2 - 67.6 70.4 - 69.8 72.6 -
45◦ + 90◦ 72.5 71.9 - 71.9 71.3 - 73.9 73.8 -
60◦ + 90◦ 66.7 67.5 - 65.8 66.2 - 68.4 69.9 -

0◦ + 30◦ + 45◦ 82.3 80.4 - 81.3 79.6 - 81.1 79.7 -
0◦ + 30◦ + 60◦ 82.0 83.1 - 81.4 82.7 - 80.6 81.9 -
0◦ + 30◦ + 90◦ 80.6 82.3 - 79.9 81.3 - 79.4 80.3 -
0◦ + 45◦ + 60◦ 80.9 79.8 - 80.1 79.0 - 79.4 78.9 -
0◦ + 45◦ + 90◦ 78.0 79.4 - 77.2 78.4 - 76.7 78.1 -
0◦ + 60◦ + 90◦ 78.3 78.2 - 77.3 77.0 - 76.1 76.1 -
30◦ + 45◦ + 60◦ 79.0 78.3 - 77.7 77.1 - 78.1 77.2 -
30◦ + 45◦ + 90◦ 80.1 79.9 - 78.8 78.9 - 78.1 78.1 -
30◦ + 60◦ + 90◦ 80.1 79.0 - 78.8 77.4 - 78.1 76.9 -
45◦ + 60◦ + 90◦ 70.6 72.7 - 68.1 70.8 - 69.2 71.4 -

0◦ + 30◦ + 45◦ + 60◦ 82.7 81.1 - 82.1 80.2 - 81.7 79.4 -
0◦ + 30◦ + 45◦ + 90◦ 82.7 82.7 - 81.7 81.6 - 80.6 80.3 -
0◦ + 30◦ + 60◦ + 90◦ 82.1 83.3 - 81.4 82.7 - 80.3 81.4 -
0◦ + 45◦ + 60◦ + 90◦ 78.0 80.2 - 77.2 79.2 - 76.7 78.1 -
30◦ + 45◦ + 60◦ + 90◦ 80.0 78.3 - 78.7 76.4 - 77.5 76.1 -

0◦ + 30◦ + 45◦ + 60◦ + 90◦ 75.0 75.7 65.0 72.6 67.8 66.4 72.8 66.9 64.2
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Figure 5.4 – Best mean phrase recognition results (in %) across test subjects for each
number of views per combination of the OuluVS2 multi-view dataset using the proposed
tandem system. Error bars denote the standard deviation across subjects (sent. =
sentence, corr. = correctness, acc. = accuracy).

frontal view we can achieve a sentence correctness of around 80%. For other types of
combinations, the impact of combining classifiers over features becomes more apparent:
all the combinations involving either the frontal or the 30◦ side view achieve a sentence
correctness of at least 76%, while most of the feature concatenation schemes stay around
70%. Similar trends are also observed for the word accuracy and word correctness.

It is interesting to note that, aside from the frontal and 30◦ views, the combination
of the 30◦ and 60◦ side views give particularly significant improvements, showing the
degree of complementarity or redundancy between these views. In general, it is evident
that the frontal, 30◦ and 60◦ side views contain the most information and only some
complementary or redundant information can be exploited in the 45◦ and 90◦ views.

Comparing the combinations of more than just two views, we can see that they improve
the results further. This is true for almost all combinations, but especially in combining
the frontal and 30◦ views with the 60◦ we can reach sentence recognition results of 83%.
A slightly better correctness is also still achieved when adding the 90◦ side view.

When finally combining all views, we see a drop in performance again. This is probably
due to the effect described regarding the weighting, that on the cross-validation of the
training set a certain weighting only taking into account limited views achieves the
highest performance, which is not the case on the test set.

The above discussions only take into account the sentence correctness. However, similar
trends can be observed looking at both word accuracy and word correctness.
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5.4 Summary

In this chapter, we have explored the influence of multi-view fusion on visual speech
recognition. The results have shown that exploiting multiple-view data can improve the
recognition results significantly. This is particularly true for combinations involving the
frontal view, the 30◦ and 60◦ view angles. The other views do provide some additional
information, however, the improvements are not as noteworthy.

In this work we have extended our previous experiments to include a more in-depth
study of various combinations of different view angles. However, this study still has
several limitations: First, it only takes into account a simple decision fusion scheme of
the log-likelihoods of various Viterbi paths. Furthermore, the dataset is limited to simple
phrase recognition. Future work should further extend this effort to test other fusion
schemes and to evaluate them on larger databases.
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Conclusion
In this thesis we compare the results of three different approaches to sequence-to-sequence
visual speech recognition. These approaches are the traditional approach with handcrafted
features and a GMM-HMM sequential model, the combined approach with deep learning-
based features and a subsequent GMM-HMM model, and finally the deep learning
approach where deep learning is used for feature extraction and sequence modelling,
together with a decoding technique to allow sequence-to-sequence recognition.

The results are compared for two different databases. The databases have different
advantages and are used to demonstrate a few points in this work. On the one hand, the
OuluVS2 phrases dataset is relatively small in terms of number of sentences per speaker –
in particular the vocabulary is very limited since each phrase is repeated three times per
speaker. However, this dataset comprises five different view angles, which is very useful
for a complete study of multi-view fusion. On the other hand, the TCD-TIMIT dataset,
having around the same number of speakers as OuluVS2, has more sentences per speaker
which contain a larger variety of vocabulary and thus this dataset is more adapted to
viseme-level recognition and, due to its larger size, is more suitable for deep learning
methods. However, there are only two different views, which means that the study of
multiple-view processing cannot be as complete. Combining the conclusions drawn from
both datasets is thus essential.

We could show that using deep learning frameworks, both for feature extraction and for
sequence modelling, improves the results. However, finding a deep neural network that
works well is not an easy task. There are many different architectures that have to be
compared and evaluated, to find out what is the best choice. Furthermore, a number of
parameters need to be decided on, which is again a combination of literature research
and empirical testing. Finally, the number of parameters in a specific model is important,
since, with computational processing and memory constraints of a single GPU, it is
important to be able to train the model, i.e. keep the parameters and each training batch
in memory.

Contrary to some other recent work, we make sure that the modelling of the utterances
is at a sequence-to-sequence level, opposed to the classification at the word or the entire
phrase level. This means, that our findings can be extrapolated to continuous speech
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recognition and similar approaches can be used for work on large vocabulary databases.

In addition, we have demonstrated that combining several views is advantageous to
exploit the complementary information contained in each of the views. There are various
techniques for multi-view processing, and we compare feature fusion techniques to late
fusion at the decision level. We can clearly observe the advantage of late fusion. A major
problem for feature fusion is the increase of the number of model parameters for each
additional view, which would require more training data to remain at the same level of
accuracy for each additional view. Since we do not have more training data available, it
is more feasible to train a feature extraction and sequence model for each view and then
weight the suggested sequences, which shows a good performance increase compared to
the single view.

Perspectives

To continue the work in this thesis, a good starting point would be to use or collect
multi-view data from a real-life scenario. This could be recording a subject while driving
or on a mobile device, with several cameras. This data could then be used to train
models which, firstly, are independent of the exact view angle – which is not the case in
this thesis – and secondly, integrate in a multimodal processing scheme, where the views
are weighted depending on the contribution they can bring to the overall system.

Evidently, in this field it is necessary to have sufficiently large amounts of data. Therefore,
the data collected should include many subjects, at least comparable to the two databases
used in this work, and include many sentences per speaker, with a large range of
vocabulary.

Furthermore, the work should be extended to various use cases in which visual speech
recognition can be useful, this can be audio-visual speech recognition in noisy scenarios,
or as a help to distinguish mouthings in sign language.

Perhaps further in the future, one could dream up a universal speech recognition system
that adapts to a particular situation – and not only regarding the noise level for audio-
visual speech recognition, but also adapts if the speaker is whispering, using sign language
or just articulating without sound. This would require a multimodal approach to detect
whether there is sound (and if yes, if it is related to the articulation), or signing, or none
of these, and shift the focus of the recogniser accordingly between the modalities.

Other interesting applications of visual speech recognition could be for the study of
speech production and speaking disorders. The visible articulation of the mouth could
help to understand how certain sounds are changed through a disorder, to determine the
type of speaking disorder. Along the same line, visual speech recognition could be an
additional tool in computer or mobile phone-based pronunciation and language learning,
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where the patient or learner gets additional help on how to move the lips and articulate
according to their performance.

Finally, in an increasingly digital world, where not only banking, but also governments
move more and more administration online, cybersecurity is an important topic. To
combat counterfeiting, ever increasing security layers are added, among which more and
more are video-based methods to recognise the user. Here the ‘whispering’ or ‘silent
articulation’ of passwords can, for example, directly include several security features: the
password itself, the way the user articulates and the user’s appearance.
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