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ENTROPY STABLE ESSENTIALLY NONOSCILLATORY METHODS BASED ON

RBF RECONSTRUCTION

Jan S. Hesthaven1 and Fabian Mönkeberg1

Abstract. To solve hyperbolic conservation laws on general grids we propose to use high-order essen-
tially nonoscillatory methods based on radial basis functions. We introduce an entropy stable arbitrary
high-order finite difference method (RBF-TeCNOp) and an entropy stable second order finite volume
method (RBF-EFV2) for one-dimensional problems. Thus, we show that such methods based on radial
basis functions are as powerful as methods based on polynomial reconstruction. The main contribution
is the construction of an algorithm and a smoothness indicator that ensures an interpolation function
which fulfills the sign-property.
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1. Introduction

Conservation laws arise in different fields of physics to describe systems with particular conserved properties,
e.g. mass, momentum and energy. A change in these properties within a domain can be described by the flux
through its boundaries. The one-dimensional conservation law is of the form

ut + f(u)x = 0, (x, t) ∈ R ×R+,

u(0) = u0,
(1.1)

with the conserved variables u ∶ R×R+ → RN and the flux f ∶ RN → RN . A well known and challenging property
is the formation of discontinuities out of smooth initial data [23]. Thus, solutions need to be defined in the
weak (distributional) sense. Since the weak solutions are not unique they need to be restricted by additional
conditions. Let η be a convex scalar function (entropy function) such that there exists the entropy flux q with
∇uq = ∇uη∇uf .
The function u ∶ R ×R+ → RN is called an entropy solution of (1.1) for the entropy pair (η, q) if the inequality

η(u)t + q(u)x ≤ 0, (1.2)

is satisfied in the weak sense. In the case of scalar conservation laws, existence and uniqueness of the weak
entropy solution in Rd was shown by Kružkov [20]. Furthermore, we can use the concept of the entropy variables
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v ∶= (∇uη)T to symmetrize (1.1) in the sense that ∇vu(v) is symmetric positive definite and ∇vf(u(v)) is
symmetric. This can be seen by introducing the entropy potential ψ(v) = vT ⋅ f(u(v))− q(u(v)) to end up with
∇vf(u(v)) = ∇vvψ [26].
Note that entropy solutions satisfy

η(u)t + q(u)x = 0, (1.3)

in smooth regions, but satisfy (1.2) at discontinuities as entropy has to dissipate.

1.1. Finite Difference and Finite Volume Methods

One goal of numerical methods is to express the approximative behaviour of the physical correct solution.
Let us assume a one-dimensional grid {xi}i∈Z ⊂ R, partitioned into cells Ci = [xi−1/2, xi+1/2]. The finite difference
approach is based on approximating derivatives in space at xi as

Bf

Bx
(ui) =

Fi+1/2 − Fi−1/2

∆x
+O(∆xp), (1.4)

with p > 0. This results in the semi-discrete scheme

dui
dt

+ 1

∆x
(Fi+1/2 − Fi−1/2) = 0, (1.5)

where the numerical flux terms Fi+1/2 depend on point values {ui−k, . . . , ui+p−k} with 0 ≤ k ≤ p − 1.
On the other hand, finite volume methods work with mean values ūi for the cells Ci. By integrating (1.1) over
the cells and dividing it by its size ∣Ci∣ we recover (1.5) with the difference that

f(u(xi+1/2)) = Fi+1/2 +O(∆xp). (1.6)

In both cases, we can apply an arbitrary time discretization technique to receive a fully discrete scheme, e.g.
Euler, SSPRK method.
There exist multiple high-order accurate methods to solve conservation laws, for example the MUSCL scheme
introduced in [36], the ENO scheme [18] or the WENO scheme [34].
In [10], Fjordholm et al. proposed an entropy stable TeCNO scheme based on polynomial reconstruction. We
follow the spirit of this work and introduce a scheme based on radial basis functions (RBF). The goal is to
develop a scheme with the advantages of the RBFs in higher dimensions.

2. Entropy Stable Methods

The goal is to construct methods that fulfill a discrete version of (1.2), these are called entropy stable. As
a first step, we introduce entropy conservative methods that fulfill (1.3) at the discrete level. Next, we add a
dissipation term to control oscillations at discontinuities to recover an entropy stable method.

2.1. Entropy Conservative Methods

A finite difference method is entropy conservative if it satisfies

d

dt
η(ui) = −

1

∣Ci∣
[Qi+1/2 −Qi−1/2], (2.1)

for a consistent numerical entropy flux Qi+1/2. To construct entropy conservative methods we use Tadmor’s
entropy conservation condition [35]

vvw
T
i+1/2Fi+1/2 = vψwi+1/2. (2.2)

This condition describes a system of equations, but its solvability is not clear. For scalar conservation laws
there exists a unique solution as can be summarized in the following theorem.
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Theorem 2.1 (Entropy conservative schemes for scalar equations [35]). For a given entropy pair (η, q) the
numerical flux

Fi+1/2 =
⎧⎪⎪⎨⎪⎪⎩

vψwi+1/2

vvwi+1/2
if ui ≠ ui+1

f(ui) if ui = ui+1

, (2.3)

defines an entropy conservative method for scalar equations with the entropy variables v and the conserved ones
u. Furthermore, it is second-order accurate in smooth regions of u.

Given a numerical second order two-point flux the idea of Lefloch et al. is to combine them linearly to
construct a 2p-th order accurate flux.

Theorem 2.2 (High-order entropy conservative fluxes [22]). Let p ∈ N and assume that α1,p, . . . , αp,p solve the
p linear equations

p

∑
i=1

iαi,p = 1,
p

∑
i=1

i2s−1αi,p = 0, for s = 2, . . . , p. (2.4)

Then the flux

F̃ 2p(ui−p+1, . . . , ui+p) =
p

∑
j=1

αj,p
j

∑
l=1

F̃ 2(ui−j+l, ui+l), (2.5)

is consistent, 2p-th order accurate and entropy conservative with the second order two-point conservative flux
F̃ 2 fulfilling (2.2).

The fourth order entropy conservative flux with coefficients α2 = ( 4
3
,− 1

6
) and the sixth order scheme with

α3 = ( 3
2
,− 3

10
, 1

30
) present two explicit examples.

2.1.1. Entropy Conservative Methods for Shallow Water Equations

The shallow water equations describe a flow under the assumptions that the horizontal length scales are much
larger than the vertical ones. In one space dimension the system of equations depends on the mass flow m and
the fluid height h

(h
m

)
t

+ ( m
1
2
gh2 +m2/h)

x

= 0, (2.6)

with the gravitational constant g [23]. To apply Theorem 2.2 we need to construct a second order entropy
conservative scheme by solving (2.2). One choice of an entropy pair for the one-dimensional shallow water
equation is

η = 1

2
(m

2

h
+ gh2), q = m

3

h2
+ gmh, (2.7)

which results in the entropy variables and the potential

v = (gh −
m2

2h2

m
h

) , ψ = 1

2
gmh. (2.8)

An alternative second order entropy conservative flux is

F̃i+1/2 = ( h̄i+1/2ūi+1/2
h̄i+1/2(ūi+1/2)2 + 1

2
gh2

i+1/2
) , (2.9)

with u =m/h and f̄i+1/2 = 1
2
(fi + fi+1) [9].
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2.1.2. Entropy Conservative Methods for Euler Equations

The Euler equations can be recovered from the Navier-Stokes equations by neglecting the viscosity. They
consist of the continuity equation, momentum equation and the conservation law for the total energy. In one
dimension they are

⎛
⎜
⎝

ρ
m
E

⎞
⎟
⎠
t

+
⎛
⎜⎜
⎝

m
m2

ρ
+ p

m
ρ
(E + p)

⎞
⎟⎟
⎠
x

= 0, (2.10)

with p =RρT = (γ − 1)(E − 1
2
m2

ρ
) for an ideal gas with the ratio of specific heat γ [19]. For the Euler equations

the thermodynamical entropy s = log(p) − γ log(ρ) is different from the entropy function and the entropy flux.
One possible pair can be found in [10]

η = −ρs
γ − 1

, q = −ms
γ − 1

. (2.11)

Chandrashekar [5] proposed the kinetic energy preserving and entropy conservative (KEPEC) flux, based on
the entropy variables and the potential

v =
⎛
⎜⎜
⎝

γ−s
γ−1

− ρu2

2p

ρu/p
−ρ/p

⎞
⎟⎟
⎠
, ψ = ρu. (2.12)

The KEPEC flux makes use of the logarithmic averages ρ̂ and β̂ with β = ρ
2p

and can be written as

fρ = ρ̂ū, fm = ρ̄

2β̄
+ ūfρ, fe = ( 1

2(γ − 1)β̂
− 1

2
u2)fρ + ūfm, (2.13)

where v̄ = vi+1+vi
2

.

2.2. Entropy Stable Methods

Entropy conservative methods result in good results in smooth regions, but it is well-known that spurious
oscillations appear close to discontinuities. Introducing artificial dissipation, depending on the size of the jump
in the interface, controls these oscillations.
Based on an entropy conservative scheme F̃j+1/2 of second order and a symmetric positive definite matrix Di+1/2,
Tadmor constructs the entropy stable numerical flux function [35]

Fi+1/2 = F̃j+1/2 −
1

2
Di+1/2vvwi+1/2. (2.14)

Combining high-order conservative fluxes with dissipation terms introduces the problem that Di+1/2vvwi+1/2 =
O(∆xp) to maintain accuracy for smooth solutions.
For each cell Ci we define a stencil of cells Si on which we construct an interpolation function si(x) of order p
and replace the jump vvwi+1/2 by the jump in the reconstruction ⟪v⟫i+1/2 = si+1(xi+1/2) − si(xi+1/2). Thus, the
method has the form

Fi+1/2 = F̃ 2p
i+1/2 −

1

2
Di+1/2⟪v⟫i+1/2, (2.15)

with the additional condition

Di+1/2 = Ri+1/2Λi+1/2R
T
i+1/2, (2.16)

where Ri+1/2 ∈ RN×N is invertable and Λi+1/2 ≥ 0 is diagonal. Fjordholm et al. recovered the following stability
results.
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Lemma 2.3 (Entropy stability with high-order diffusion [10]). For each i ∈ Z, let (2.16) be fulfilled. Let si be a
reconstruction of the entropy variables in cell Ci, such that for each i, there exists a diagonal matrix Bi+1/2 ≥ 0
such that

⟪v⟫i+1/2 = R−T
i+1/2Bi+1/2R

T
i+1/2vvwi+1/2. (2.17)

Then the scheme with the flux (2.15) is entropy stable.

By introducing the scaled entropy variables

w±
i = RTi±1/2vi, w̃±

i R
T
i±1/2v

±
i , (2.18)

with the reconstructed entropy variables v±i = si(xi±1/2), condition (2.17) becomes

⟪w̃⟫i+1/2 = Bi+1/2vwwi+1/2. (2.19)

Since Bi+1/2 is diagonal and semi-positive definite, this can be reformulated componentwise as

sgn⟪w̃l⟫i+1/2 = sgnvwlwi+1/2, (2.20)

for each component l. This structural property of the reconstruction is called the sign-property.

2.3. Entropy Stable Finite Volume Methods

The setting of one dimensional finite volume methods differs only slightly from the finite difference scheme,
i.e. we are considering cell-average values ūi instead of point values and the definition of higher order methods
changes to

Fi+1/2 = f(u(xi+1/2)) +O(∆xp). (2.21)

Nevertheless, given a 2-point second order finite difference flux F , it is also a second order accurate finite volume
flux.

Lemma 2.4. Assume F is a 2-point second order finite difference flux. Then, F is also a second order finite
volume flux.

Proof. We know that

Fi+1/2 = ∆x
df(u(xi))

dx
+ Fi−1/2 +O(∆x2). (2.22)

By using the Taylor expansion for all the terms it follows

Fi+1/2 = ∆x
df(u(xi))

dx
+ Fi−1/2 +O(∆x2) = f(u(xi+1/2)) +O(∆x2). (2.23)

�

Since the definition of entropy conservative schemes does not change for finite volume methods, Lemma 2.4
allows us to conclude that a second order finite difference flux that fulfills (2.2) is also a second order entropy
conservative finite volume method. This can be summarized as follows.

Theorem 2.5. Every second order finite difference scheme fulfilling Tadmor’s entropy conservation condition
(2.2) in one space dimension is a second order entropy conservative finite volume method.

The construction of entropy stable schemes from entropy conservative schemes works as for the finite difference
case. The only difference being that the interpolation is based on cell averages instead of point values.
Thus, Lemma 2.3 holds as well for finite volume methods and we recover an entropy stable finite volume method
of the form

Fi+1/2 = F 2
i+1/2 −Di+1/2⟪v⟫i+1/2. (2.24)
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3. Radial Basis Functions

Radial basis functions (RBF) are successfully used for scattered data interpolation. Due to their mesh-
free property, they are more flexible in terms of the geometric structure of the data points. Furthermore, its
application to high-dimensional problems is simple. Following the seminal work by Duchon [7] and Micchelli [25],
RBFs are successfully used in different domains.

3.1. Basic Interpolation

The goal is the interpolation of a data vector f ∣X = (f(x1), . . . , f(xn))T ∈ Rn at a scattered set of data points
X = (x1, . . . , xn)T with xi ∈ Rd for some function f ∶ Rd → R. The basic idea is to use one univariate continuous
function φ, the radial basis function, composed with the Euclidean norm centered at the data points as the
interpolation basis

B = {φ(ε∥x − x1∥), . . . , φ(ε∥x − xn∥)}, (3.1)

with the shape parameter ε. To reduce the complexity we use the notation

φ(x − xi) ∶= φ(ε∥x − xi∥), φ ∶ Rd → R. (3.2)

The standard radial basis function approximation can be written as

s(x) =
n

∑
i=1

aiφ(x − xi) + p(x), (3.3)

with a polynomial p ∈ Πm−1(Rd), m ∈ N, the interpolation condition

s(xi) = f(xi), (3.4)

and the additional constraints
n

∑
i=1

aiq(xi) = 0, for all q ∈ Πm−1(Rd), (3.5)

with the coefficients ai ∈ R for all i = 1, . . . , n. Conditions (3.4) and (3.5) can be summarized in the system of
equations

( A P
PT 0

)(a
b
) = (f ∣X

0
) . (3.6)

The choice of the radial basis function φ is restricted by some conditions to insure the solvability of (3.6).

Definition 3.1 (Conditionally positive function). A function φ ∶ Rd → R is called conditionally positive (semi-)
definite of order m if for any pairwise distinct points x1, . . . , xn ∈ Rd and c = (c1, . . . , cn)T ∈ Rn ∖ {0} such that

n

∑
i=1

cip(xi) = 0, (3.7)

for all p ∈ Πm−1(Rd), the quadratic form
n

∑
j,k=1

cjckφ(xj − xk), (3.8)

is positive (non-negative).

Wendland shows in [37] that for a conditionally positive definite RBF φ of order m (3.6) has a unique solution
if x1, . . . , xn are Πm−1(Rd)-unisolvent.
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RBF φ(r) Order
Infinitely smooth RBFs
Multiquadratics (1 + (εr)2)ν ⌈ν⌉
Inverse multiquadratics (1 + (εr)2)−ν 0
Gaussians exp(−(εr)2) 0
Piecewise smooth RBFs
Polyharmonic Splines r2k−d k

r2k−d log(r) k

Table 1. Commonly used RBFs with N S ν > 0, k ∈ N and ε > 0.

Definition 3.2 (Positive definite functions). A function φ ∶ Rd → R is called positive definite if the quadratic
form

n

∑
j,k=1

cjckφ(xj − xk), (3.9)

is positive for any n pairwise different points x1, . . . , xn ∈ Rd and c = (c1, . . . , cn)T ∈ Rn ∖ {0}.

Note that in case of a positive definite function φ, the matrix A is positive definite and thus, there exists
an unique solution a to the problem (3.6). Some examples of positive definite functions are the inverse multi-
quadratics and the Gaussians (Table 1). Other RBFs fulfill a slightly weaker condition and are conditionally
positive definite of order k, e.g. multiquadratics, polyharmonic splines.

3.2. Interpolation of Cell-Averages

For the finite volume method we do not consider the pointwise interpolation, but cell-averages. Let us assume
a given grid of cells C1, . . . ,Cn with its average values ū1, . . . , ūn for n ∈ N. Based on [1, 2] we consider

s(x) =
n

∑
i=1

aiλ
ξ
Ci
φ(x − ξ) + p(x), p ∈ Πm−1(Rd), (3.10)

with the average operator of f over the cell C, λξCf , such that

λCjs = ūj , for all j = 1, . . . , n, (3.11a)
n

∑
i=1

aiλCi(q) = 0, for all q ∈ Πm−1(Rd). (3.11b)

To show solvability of system (3.11) it suffices to assume φ to be conditional positive definite in a pointwise
sense. Aboiyar et al. claim in [1] that (3.11) has a unique solution if the set {λCi}ni=1 is Πm−1(Rd)-unisolvent.

Theorem 3.3 (Well-posedness of RBF interpolation in the mean value sense). Let φ be a conditionally positive
definite radial basis function and let the set {λCi}ni=1 be Πm−1(Rd)-unisolvent with n ∈ N. Then, the problem
(3.11) has a unique solution.

The proof closely follows the one for the pointwise evaluation in [37] plus an estimate for the positive
definiteness, based on a pointwise result in [29].

3.3. Ill-Conditioning and VVRA-Method

Despite the simple concept of RBF-interpolation in multiple dimensions, there is a major drawback, often
referred to as the Uncertainty Principle [31]. It describes the trade-off between the well-known properties that
flat infinitely smooth RBFs (ε→ 0) have an increasing approximation power but a decreasing numerical stability
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due to ill-conditioning of the interpolation matrix [6, 21,33].
To overcome the issue of ill-conditioning there are multiple propositions for choosing an ‘optimal’ shape param-
eter [8, 30]. Note that a continuous scaling ε = αn−1/d causes stagnation errors [4]. However, there are multiple
approaches which overcome this problem: the RBF-CP [15], the RBF-QR [14], and the RBF-GA [13]. Further-
more, there is the vector-valued rational approximation method (RBF-RA), based on the RBF-CP algorithm
and introduced in [38].

3.3.1. Vector-Valued Rational Approximation

The vector-valued rational approximation is not restricted to RBF-interpolation, but can be applied to
approximation problems that satisfy certain conditions. Let us assume a vector-valued function f ∶ C → CM ,
with M > 1. All components fj(ε) for j = 1, . . . ,M are analytical in a domain Ω around the origin except for a
finite number of isolated poles such that

(i) all M-components of f share the same singular points,
(ii) the direct numerical evaluation of f is possible for ∣ε∣ ≥ εR > 0, where ∣ε∣ ≤ εR is in Ω,
(iii) ε = 0 is at most a removable singularity of f ,
(iv) the function f is even.

The goal is to construct a Padé approximant rj(ε) with the same denominator for each component and its

interpolation points εj = εReπj/K for K ∈ N. Condition (iv) is not mandatory, but it results in an even Padé
approximant

rj(ε) =
∑mi=0 ai,jε

2i

1 +∑ni=1 biε
2i

≈ fj(ε), (3.12)

for j = 1, . . . ,M and m,n ∈ N and it is fulfilled by RBFs. The interpolation problem can be described for each
component by the system

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1 ε2
1 . . . ε2m

1

1 ε2
2 . . . ε2m

2

⋮ ⋮ ⋱ ⋮
1 ε2

K . . . ε2m
K

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

a0,j

⋮
am,j

⎤⎥⎥⎥⎥⎥⎦
+ diag(−fj)

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ε2
1 . . . ε2n

1

ε2
2 . . . ε2n

2

⋮ ⋱ ⋮
ε2
K . . . ε2n

K

⎤⎥⎥⎥⎥⎥⎥⎥⎦

⎡⎢⎢⎢⎢⎢⎣

b1
⋮
bn

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

fj(ε1)
⋮

fj(εK)

⎤⎥⎥⎥⎥⎥⎦
, (3.13)

with (m + 1)M + n unknown coefficients. We write (3.13) as

Eaj + Fjbj = fj , (3.14)

and choose K >m+1+n/M to define an overdetermined system of equations that can be solved with Algorithm 1.
Note that there remains the choice of the parameters n,m,K ∈ N and εR ∈ R.

3.3.2. RBF-RA

In the case of RBF-interpolation let x̂1, . . . , x̂M be the evaluation points and consider the approximation
problem

f(ε) =
⎡⎢⎢⎢⎢⎢⎣

s(x̂1, ε)
⋮

s(x̂M , ε)

⎤⎥⎥⎥⎥⎥⎦
=
⎡⎢⎢⎢⎢⎢⎣

φε(∥x̂1 − x1∥) ⋯ φε(∥x̂1 − xn∥)
⋮ ⋱ ⋮

φε(∥x̂M − x1∥) ⋯ φε(∥x̂M − xn∥)

⎤⎥⎥⎥⎥⎥⎦
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Φ(ε)

⎡⎢⎢⎢⎢⎢⎣
A(ε)−1

⎤⎥⎥⎥⎥⎥⎦
f ∣X . (3.16)

Note that the evaluation points are fixed and the shape parameter ε is the variable of interest. Since φε(r) is
an analytic function in ε, all entries of Φ(ε) are analytic. In the same manner, all entries of A(ε) are analytic
around the origin and they have only isolated zeros. So, the entries of A(ε)−1 are analytic with at most isolated
poles and thus in compact domains there are at most a finite number of isolated poles. Furthermore, all entries



TITLE WILL BE SET BY THE PUBLISHER 9

Algorithm 1 Vector-valued rational approximation [38]

(i) We normalize the system by dividing each row of E, Fj and fj by ∥f(εk)∥∞. Then, we compute a
QR-decomposition of the modified E.

(ii) We multiply (3.13) with the Hermitian transpose Q∗ from the left to obtain

(R
0
)aj +Q∗Fjb = Q∗fj . (3.15)

(iii) We reorder the equations such that all k̄ = rankR equations of each component are first and all remaining

put in the end. This gives us an almost upper triangular system with a full matrix block 9F of size

M(K − (m + 1)) × n and the corresponding rows of the right hand side 9f .

(iv) We compute the least square solution of the overdetermined system of equations 9Fb = 9f .
(v) By using the coefficients b we can solve the upper triangular systems to recover the remaining coefficients

aj for j = 1, . . . ,M .

of s(ε) share the same poles since they are all dependent on A(ε)−1. The symmetry condition is fulfilled because
of the following properties of the RBFs

φ(εr) = φ(−εr) = φ(εr) = φ(−εr). (3.17)

Further, the condition that ε = 0 is a removable singularity is typically and, in the case of the Gaussian kernel
always, is fulfilled [16,33].
Condition (ii) is the only one that may not be fulfilled for large stable evaluation contours. The problem with
kernels that have simple poles or branch points is that the interpolation domain may include branch points or
too many poles. The case of too many poles can be handled by choosing an higher degree of the denominator.
For kernels without poles and branch points, i.e. the Gaussian kernels, the problem is that the evaluation of φ(ε)
gets unstable since it is growing exponentially on the imaginary axis. In general, the unstable region around
the origin is small enough for n ≲ 100 in two dimensions and for n ≲ 300 in three dimensions. More details can
be found in [15,38].
Parameter Choice. For the choice of the evaluation radius there are two different strategies proposed [38],
depending on the type of the kernel. For positive definite kernels without poles and branch points εR should be
set to the approximate minimum of log(σ̃∞(A(β)) with

σ̃∞(A(β)) = ∥A(iβ)∥∞∥A(β)−1∥∞. (3.18)

For other kernels we choose εR smaller than the smallest distance to a singularity

εR = 0.95(max
i,j≤N

∥xi − xj∥)−1. (3.19)

In some cases with small distances this seems to give too big values. Then, we choose the minimum of (3.19)
and the approximated real value ε such that cond(A(ε)) ≈ 106.
The two remaining parameters m,n can be chosen such that n = ⌊K/4⌋ and m =K − n. In the one-dimensional
cases it is observed that K = 16 is a good choice.

3.4. Explicit Formula of the RBF Interpolation

Let us consider the pointwise RBF interpolation problem (3.6) with the interpolation function (3.3). Fur-
thermore, let x1, . . . , xn be the grid points such that xi < xi+1 and n ∈ N and y1, . . . , yn ∈ R its values. We are
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looking for an RBF interpolation function

s(x) =
n

∑
i=1

aiφ(x − xi) +
m

∑
j=1

bjLj(x), (3.20)

where Lj for j = 1, . . . ,m are the Lagrange polynomials such that Lj(xi) = δij and φ a conditional positive
definite RBF of order m. By assuming further that m = n − 1, it holds

Lemma 3.4 (Explicit RBF solution formula). The interpolation problem (3.4) and (3.5) can be solved using
an explicit formula if we choose an RBF interpolation ansatz with a conditional positive definite RBF of order
smaller than n − 1

s(x) = αdϕ(x) +
n−1

∑
i=1

yiLi(x), (3.21)

where α = yN−∑n−1
i=1 yiLi(xn)
dϕ(xn) , dϕ(x) = ϕ(x) −∑n−1

j=1 ϕ(xj)Lj(x) and ϕ(x) = φ(x − xn) −∑n−1
i=1 Li(xn)φ(x − xi).

Proof. From the representation of the polynomial part in Lagrange polynomials we recover

aj = −anLj(xn), for j = 1, . . . , n − 1. (3.22)

This yields the interpolation function

s(x) = αϕ(x) +
n−1

∑
j=1

bjLj(x), (3.23)

with α = an. This interpolation function solves the reduced interpolation problem

αϕ(xi) +
n−1

∑
j=1

bjLj(xi) = yi, for i = 1, . . . , n. (3.24)

By the properties of the Lagrange polynomials we can write down the explicit form of α and bj

α = yn −∑
n−1
i=1 yiLi(xn)

dϕ(xn)
, (3.25a)

bj = yj − αϕ(xj), for j = 1, . . . , n − 1. (3.25b)

�

Remark 3.5. We can express dϕ in terms of projections

dϕ(x) ∶= Ψ(x,xi) = (Id −Px)(Id −Py)[φ(x − y))]∣y=xi , (3.26)

where the operators Pz is the projection of the variable z on the polynomial space of dimension n− 1. Schaback
[32] shows that Ψ is positive definite on Rd ∖ {x1, . . . , xn−1}. Thus, it is closely related to reproducing kernels

and its native spaces, introduced in [32].

Remark 3.6. Note that this representation is independent to permutations of the indices. In general we can
choose ỹn = yj and ỹi ∈ {yl∣ l ≠ j}.
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4. Smoothness Indicator for RBF Interpolation Functions

In essentially nonoscillatory (ENO)- and weighted ENO (WENO)-type methods it is essential to measure the
smoothness of the interpolation function. In the polynomial ENO scheme, the highest degree divided difference
plays an important role for identifying the least oscillating interpolation of a certain degree. To extend this to
RBF-based interpolation in an ENO method we need something similar. However, the divided differences, used
in the standard Newton’s interpolation formula, are valid only for polynomials.

4.1. Generalized Divided Differences

For non-polynomial basis functions Mühlbach [27] introduces generalized divided differences, which coincide
in the monomial case with the standard one. The result of Mühlbach is based on functions f1, . . . , fn that form
a Chebyshev system, thus they satisfy

RRRRRRRRRRRRR

f1(z1) ⋯ f1(zk)
⋮ ⋮

fk(z1) ⋯ fk(zk)

RRRRRRRRRRRRR
≠ 0, (4.1)

for all choices of distinct points z1, . . . , zk and for k = 0, . . . , n.

Theorem 4.1 (Generalized Newton’s interpolation formula [28]). Let f1, . . . , fn from R → R form a complete
Chebyshev system. Then for any f ∶ R→ R and any subset Gn = {x1, . . . xn} ⊂ R of cardinality n it holds

pf [f1, . . . , fn
x1, . . . , xn

] =
n

∑
k=1

[f1, . . . , fk
x1, . . . , xk

f ] ⋅ gk, (4.2)

where

g1 = f1,

gk = rk−1fk, for k = 2, . . . , n,

and

[f1, . . . , fk
x1, . . . , xk

f ] =
[f1, . . . , fk−1

x2, . . . , xk
f ] − [f1, . . . , fk−1

x1, . . . , xk−1
f ]

[f1, . . . , fk−1

x2, . . . , xk
fk ] − [f1, . . . , fk−1

x1, . . . , xk−1
fk ]

, for k ≥ 2, (4.3)

and

rnf = rf [f1, . . . , fn
x1, . . . , xn

] = f − pf [f1, . . . , fn
x1, . . . , xn

] . (4.4)

The initial conditions are

[f1

xj
f ] = f(xj)

f1(xj)
. (4.5)

Based on this theorem we can express the generalized divided differences for the basis {1, x, . . . , xN−2, ϕ} for
N ∈ N with ϕ from Lemma 3.4 to quantify the oscillations of the interpolation function. To distinguish between

the Lagrange polynomials of different degree we write Li,dj for the Lagrange polynomial of degree d such that

Li,dj (xl) = δlj for l ∈ {i − d − 1, . . . , i − 1}.
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Theorem 4.2. Let the basis be given by {1, x, . . . , xN−2, ϕ} for N ∈ N and ϕ defined in Lemma 3.4. We recover
the generalized divided differences of the form

[ 1
x0

f ] = f(x0) = y0, (4.6)

[ 1, x, . . . , xk

x1, x2, . . . , xk+1
f ] = yk+1 −∑ki=1 yiL

k+1,k−1
i (xk+1)

∏ki=1(xk+1 − xi)
, for k < N − 1, (4.7)

[ 1, x, . . . , xN−2, ϕ
x1, x2, . . . , xN−1, xN

f ] = yN −∑N−1
i=1 yiL

N,N−2
i (xN)

ϕ(xN) −∑N−1
i=1 ϕ(xi)LN,N−2

i (xN)
. (4.8)

If we compare this results with the RBF interpolation in Lemma 3.4, we see that the last divided difference
can be written as

[ 1, x, . . . , xN−2, ϕ
x1, x2, . . . , xN−1, xN

f ] = α. (4.9)

This suggests that α may be a good choice as the smoothness indicator based on the success of the classic ENO
scheme.

4.2. Relation to Reproducing Kernel Hilbert Spaces and its Norm

As mentioned above there is a close relation to native spaces of conditionally positive definite functions (see
Schaback [32]). Indeed, the RBF-based basis function dϕ can be expressed in terms of the modified kernel
function Ψ(x, y) = (Id −Px)(Id −Py)[φ(x − y))].
If we further analyse the norm of the interpolation function, based on the inner product of the native space, we
get

Lemma 4.3. Let s be an RBF-interpolation function given by (3.21). Then, it has the norm

∥s∥2
φ =

N−1

∑
i=1

s(xi)2 + α2dϕ(xN). (4.10)

In particular, we have

∥s∥φ ≈
β

dϕ(xN)1/2 , (4.11)

with β = yN −∑N−1
i=1 yiLi(xN).

This lemma proposes a scaling of dϕ(xN)1/2 of our smoothness indicator.

Proof. The inner product of the native space is

(f, g)φ =
N−1

∑
i=1

f(xi)g(xi) + (f −Pf, g −Pg)φ,0, (4.12)

with

(f, g)φ,0 =
M

∑
j=1

N

∑
k=1

λjµkφ(xj , yk), (4.13)

for f = ∑Mj=1 λjφ(x,xj) and g = ∑Nk=1 µkφ(x, yk) [32].

We have (s −Ps)(x) = β dϕ(x)
dϕ(xN ) and

∥s∥2
φ =

N−1

∑
j=1

s(xj)2 +
⎛
⎝

β

dϕ(xN)
⎞
⎠

2

(dϕ,dϕ)φ. (4.14)
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Finally, we insert the definition of dϕ to recover

(dϕ,dϕ)φ = (dϕ,dϕ)φ,0,

= φ(0) − 2
N−1

∑
j=1

φ(xN − xj)Lj(xN) +
N−1

∑
j,k=1

φ(xk − xj)Lj(xN)Lk(xN),

= dϕ(xN).

�

Corollary 4.4. Assuming Lemma 4.3, we have

dϕ(xN) > 0. (4.15)

Lemma 4.5 (Equivalent Norm). The set defined by

B ∶= {ϕ} ∪ { ϕ(xj)
Lj(xN)Lj ∣j = 1, . . . ,N − 1}, (4.16)

is a basis of the interpolation space. In particular, we have equivalence of the norms ∣∣ ⋅ ∣∣φ and ∣∣ ⋅ ∣∣B, where

∥s∥2
B =

N

∑
i=1

α2
i ,

for s(x) = αNϕ(x) +∑N−1
i=1 αi

ϕ(xj)
Lj(xN )Lj(x).

Proof. From the interpolation (3.21) we directly recover that B is a basis of the interpolation space. �

4.3. Smoothness Indicator and Stencil Choice

Harten et al. proposed the Essentially Nonoscillatory method to reduce spurious oscillations at discontinuities
[18]. Its principle is based on the evaluation of multiple stencils for each cell Ci for which we construct the
reconstruction. Finally, one chooses the least oscillatory reconstruction to define si. Fjordholm et al. showed
in [11] the sign-property for the polynomial reconstruction method with the recursive algorithm introduced by
Harten et al. which utilizes the last divided difference related to the highest derivative as a local smoothness
indicator. A sign preserving WENO reconstruction method was proposed by Fjordholm et al. [12]. In the
RBF reconstruction the highest derivative is similar to the RBF-part of the reconstruction found in Lemma 4.3
and Theorem 4.2. As we shall show, the recursive algorithm from the polynomial case, combined with the
smoothness indicator

IS(s) = β

dϕ(xN)1/2 with β = yN −
N−1

∑
i=1

yiLi(xN), (4.17)

is sign-stable for small enough grid sizes. Numerical experiments confirm this to be true for general grids. In
the next section we prove this for the second and third degree reconstructions on general grids.
Note that from Corollary 4.4 the definition of IS(s) is well defined.

Remark 4.6. The restriction that the sign-property holds only on grids with small grid size is not a limitation.
For infinitely smooth RBFs we can choose a small shape parameter to decrease the computational grid size.

Remark 4.7. The smoothness indicator (4.17) has an impractical and computationally expensive form. How-
ever, with Lemma 4.5 we recover

dϕ(xN) = ∥dϕ∥2
φ ≈ ∥dϕ∥2

B = (1 +
N−1

∑
i=1

Li(xN)2). (4.18)
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Algorithm 2 Recursive Algorithm

Let the interpolation points xi−N+1, . . . , xi+N−1 and its values yi−N+1, . . . , yi+N−1 be given.

Start by initializing s0 = 0
for j = 0, . . . ,N − 2 do

if ∣IS(s(i + sj − 1, . . . , i + sj + j))∣ < ∣IS(s(i + sj , . . . , i + sj + j + 1))∣ then
Set sj+1 = sj − 1

else
Set sj+1 = sj

end if
end for
Define the stencil Si = {Ci+sN , . . . ,Ci+sN+N−1}.

Thus, we have equivalence of the smoothness indicator IS with

ĨS(s) ∶= β

dϕ(xN)(1 +
N−1

∑
i=1

Li(xN)2)
1/2

= (
N

∑
i=1

a2
i )

1/2
. (4.19)

To choose the least oscillatory stencil Si for the i-th cell for the RBF-reconstruction we follow Algorithm 2
which is based on the one from Harten et al. [18]. We use the notation s(j, . . . , j + k) that corresponds to the
reconstruction on the cells Cj , . . . ,Cj+k with the interpolation points xj , . . . , xj+k and its values yj , . . . , yj+k.

Remark 4.8. In the general case N ≥M +1 with a conditionally positive definite RBF of order M , we replace α

by
√
∑Ni=1 a

2
i in Algorithm 2. In this case it is more difficult to prove the sign-property, but numerical examples

suggest that it remains valid.

5. Sign-Property for 2nd and 3rd Degree Reconstruction

Based on the results from the previous sections we show the sign-property of the RBF interpolation for the
second and third degree reconstruction, i.e. N = 2,3. This means that we deal with stencils Si of size N which
represent the interpolation points for the reconstruction on cell Ci. Let us call them

Si = {Ci+rN−1 , . . . ,Ci+rN−1+N−1}, (5.1a)

Si+1 = {Ci+sN−1+1, . . . ,Ci+sN−1+N}, (5.1b)

where rN−1 ≤ 1+sN−1 and Cj is the j-th cell with its mid-point xj on which we apply the interpolation. Further,
we define dN−1 ∶= 1 + sN−1 − rN−1 ≥ 0 as the shift between the stencils. Note that the stencils are chosen by
Algorithm 2 and that there are no constraints on the stencils.
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5.1. Notation

For simplicity, we introduce some notation. We assume the stencil length to be N and we name terms by
the highest appearing index j that exists in the underlying stencil Cj−N+1, . . . ,Cj . We also define

Lij(x) − Lagrange polynomial of degree N − 1 such that (5.2)

Lij(xl) = δlj for l ∈ {i −N + 1, . . . , i − 1},

ϕj(x) ∶=φ(x − xj) −
N−1

∑
l=1

φ(x − xj−N+l)Ljj−N+l(xj), (5.3)

dϕj(x) ∶=ϕj(x) −
N−1

∑
i=1

ϕj(xi)Lji (x), (5.4)

αj ∶=
βj

dϕj(xj)
, γj ∶=

βj

dϕj(xj)1/2 , βj ∶= yj −
N−1

∑
i=1

yj−N+iL
j
j−N+i(xj). (5.5)

5.2. Representation of the Reconstructed Jumps

The idea of the proof is to give a simple representation of the reconstructed jumps

jRi+1/2 ∶= si+1(xi+1/2) − si(xi+1/2), (5.6)

for which we can show that each term has the same sign as the jump in its neighboring cells. Let us assume that
we have given the stencils Si and Si+1 for the cells i and i + 1 from Algorithm 2. We now prove Theorem 5.1.

Theorem 5.1 (Generalized representation). The second and third degree reconstructed jump can be written in
the following form

jRi+1/2 =
dN−1−1

∑
j=0

Cj(γi+rN−1+N+j − γi+rN−1+N−1+j) + ε(∆x), (5.7)

with the constants

C0 =
dϕk(xi+1/2)

δk
−Akδk,

Cj = Cj−1 −Ak+jδk+j = dϕk(xi+1/2) −
j

∑
l=0

Ak+lδk+j ,

(5.8)

and an error term

ε(∆x) = γk+dN−1(
dϕk+dN−1(xi+1/2)

δk+dN−1
−CdN−1−1), (5.9)

where k = i + rN−1 +N − 1.

The proof relies on multiple Lemmas which we now develop.

Lemma 5.2. Given the Lagrange polynomials. For N = 2,3 it holds

−
N−1

∑
l=1

yj−N+lL
j
j−N+l(xi+1/2) = Ajβj −

N−1

∑
l=1

yj−N+l+1L
j+1
j−N+l+1(xi+1/2), (5.10)

where

Aj =
Ljj−N+1(xi+1/2)
Ljj−N+1(xj)

. (5.11)
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Proof. The case N = 2 is direct since the Lagrange polynomials are constant. Thus, (5.10) is

−yj−1 = βj − yj , (5.12)

For N = 3, we write the left hand side of (5.10) and subtract Ajβj

− yj−2L
j
j−2(xi+1/2) − yj−1L

j
j−1(xi+1/2) − Ajβj = −yj−1(Ljj−1(xi+1/2) − AjL

j
j−1(xj)) − yjAj . (5.13)

Note that Aj = Lj+1
j (xi+1/2) and calculate

AjL
j
j−1(xj) −L

j
j−1(xi+1/2) =

(xi+1/2 − xj)
(xj − xj−1)

= −Lj+1
j−1(xi+1/2). (5.14)

�

Lemma 5.3. The reconstructed jump jRi+1/2 for the second and third degree reconstruction method can be
expressed as

jRi+1/2 =
γk+dN−1
δk+dN−1

dϕk+dN−1(xi+1/2) −
γk
δk

dϕk(xi+1/2) +
dN−1−1

∑
j=0

Ak+jγk+jδk+j , (5.15)

where k = i + rN−1 +N − 1, k + dN−1 = i + sN−1 +N and δi = dϕi(xi)1/2.

Proof. From Lemma 3.4 and the selected stencils from (5.1) we rewrite the N -th degree reconstructed jump
jRi+1/2 between cell i and i + 1 as

jRi+1/2 = αi+sN−1+Ndϕi+sN−1+N(xi+1/2) − αi+rN−1+N−1dϕi+rN−1+N−1(xi+1/2)

+
N−1

∑
j=1

yi+sN−1+jL
i+sN−1+N
i+sN−1+j (xi+1/2) −

N−1

∑
j=1

yi+rN−1+j−1L
i+rN−1+N−1
i+rN−1+j−1 (xi+1/2).

(5.16)

The polynomial part of the reconstructed jump is

pi+1(xi+1/2) − pi(xi+1/2) =
dN−1−1

∑
j=0

Ai+rN−1+N−1+jβi+rN−1+N−1+j , (5.17)

by recursively applying Lemma 5.2. This yields

jRi+1/2 = αk+dN−1dϕk+dN−1(xi+1/2) − αkdϕk(xi+1/2) +
dN−1−1

∑
j=0

Ak+jdϕ
k+j(xk+j)αk+j . (5.18)

By inserting γi = αidϕi(xi)1/2 we recover the result. �

Lemma 5.4. We have

Ajdϕ
j(xj) − dϕj(xi+1/2) = −(ϕj −PN−1

j+1 ϕ
j)(xi+1/2),

= −dϕj+1(xi+1/2) + εj(∆x), (5.19)

with Pkj+1 as the k-th degree polynomial approximation with respect to the interpolation points xj , . . . , xj+1−k and

εj(∆x) = dϕj+1(xi+1/2) − (ϕj −PN−1
j+1 ϕ

j)(xi+1/2).
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Proof. In the case N = 2, we have Aj = 1 and Lj = 1 and recover

dϕj(xj) − dϕj(xi+1/2) = φ(0) − φ(xj − xj−1) − φ(xi+1/2 − xj) + φ(xi+1/2 − xj−1),
= −(ϕj −P1

j+1ϕ
j)(xi+1/2).

In the case N = 3, we have

Ajdϕ
j(xj) − dϕj(xi+1/2) = (ϕj(xj)Ljj−2(xi+1/2) − ϕj(xi+1/2)Ljj−2(xj)

− ϕj(xj−1)Ljj−1(xj)L
j
j−2(xi+1/2) − ϕj(xj−2)Ljj−2(xj)L

j
j−2(xi+1/2)

+ ϕj(xj−1)Ljj−1(xi+1/2)Ljj−2(xj) + ϕ
j(xj−2)Ljj−2(xi+1/2)Ljj−2(xj))

1

Ljj−2(xj)
,

(5.20)

which can be simplified as

Ajdϕ
j(xj) − dϕj(xi+1/2) = (ϕj(xj)Ljj−2(xi+1/2) − ϕj(xi+1/2)Ljj−2(xj)

+ ϕj(xj−1)(Ljj−1(xi+1/2)Ljj−2(xj) −L
j
j−1(xj)L

j
j−2(xi+1/2)))

1

Ljj−2(xj)
.

(5.21)

Next, we express the last term

Ljj−1(xi+1/2)Ljj−2(xj) −L
j
j−1(xj)L

j
j−2(xi+1/2) = Ljj−2(xj) −L

j
j−2(xi+1/2), (5.22)

and insert this into (5.21)

Ajdϕ
j(xj) − dϕj(xi+1/2) = −ϕj(xi+1/2) + ϕj(xj)Lj+1

j (xi+1/2) + ϕj(xj−1)Lj+1
j−1(xi+1/2), (5.23)

where we used that

Lj+1
j (xi+1/2) =

Ljj−2(xi+1/2)
Ljj−2(xj)

, Lj+1
j−1(xi+1/2) = 1 −

Ljj−2(xi+1/2)
Ljj−2(xj)

. (5.24)

Finally, we add ±dϕj+1(xi+1/2) and recover

Ajdϕ
j(xj) − dϕj(xi+1/2) = −dϕj+1(xi+1/2) + ϕj+1(xi+1/2) − ϕj(xi+1/2)

− (ϕj+1(xj) − ϕj(xj))Lj+1
j (xi+1/2)

− (ϕj+1(xj−1) − ϕj(xj−1))Lj+1
j−1(xi+1/2),

= −dϕj+1(xi+1/2) + εj(∆x). (5.25)

�

Corollary 5.5. We have

dϕj(xi+1/2) −
l−1

∑
k=0

Aj+kdϕj+k(xj+k) = dϕj+l(xi+1/2) −
l−1

∑
k=0

εj+k(∆x). (5.26)

Proof. This follows directly by applying Lemma 5.4 multiple times. �



18 TITLE WILL BE SET BY THE PUBLISHER

Now, we are ready to prove Theorem 5.1.

Proof. (Theorem 5.1)
The goal is to show the equivalence with the representation in Lemma 5.3. Therefore, we insert (5.9) into (5.7)
to have

jRi+1/2 = CdN−1−1γk+dN−1 +
dN−1−1

∑
j=1

γk+j(Cj−1 −Cj) −C0γk + ε(∆x),

= CdN−1−1γk+dN−1 +
dN−1−1

∑
j=1

γk+j(Cj−1 −Cj) +Akδkγk

− γk
δk

dϕk(xi+1/2) + γk+dN−1(
dϕk+dN−1(xi+1/2)

δk+dN−1
−CdN−1−1).

Finally, we insert the definitions of Cj to obtain

jRi+1/2 =
γk+dN−1
δk+dN−1

dϕk+dN−1(xi+1/2) +
dN−1−1

∑
j=0

Ak+jδk+jγk+j −
γk
δk

dϕk(xi+1/2).

�

Remark 5.6. Note that the error ε(∆x) can be written as

ε(∆x) = βk+d
dN−1

∑
i=0

εk+i(∆x)
δk+i+1

δk+d
, (5.27)

with

εj(∆x) =
1

δj+1δj
(dϕj+1(xi+1/2)

δj

δj+1
− dϕj(xi+1/2) +Ajdϕj(xj)),

= 1

δj+1δj
(dϕj+1(xi+1/2)

δj

δj+1
− (ϕj −PN−1

j+1 ϕ
j)(xi+1/2)). (5.28)

5.3. Sign-Property for Small Grid Size

In this section we analyse the reconstructed jumps for infinitely smooth RBFs for small grid size ∆x → 0.
From Theorem 5.1 we have a simple expression for the reconstructed jump to prove its sign-stability in the limit
∆x → 0. We show that the error ε(∆x) goes to zero, if the grid size goes to zero. Then, we show that each
term of the remaining equation has the sign of the jump yi+1 − yi.
Remark 5.7. The notation ∆x→ 0 should be interpreted in the way that

max{xi+1 − xi}→ 0 for a grid x0 < x1 < ⋅ ⋅ ⋅ < xm. (5.29)

Remark 5.8. When calculating the errors εj we must be aware that

dϕj(x) = ϕj(x) −PN−1
j ϕj(x). (5.30)

Theorem 5.9. Let φ be an infinitely smooth RBF of first or second order. Then, we have that εj(∆x) = O(∆x2)
for ∆x→ 0 for N = 2,3 and

jRi+1/2 ≈
dN−1−1

∑
j=0

Cj(γi+rN−1+N+j − γi+rN−1+N−1+j). (5.31)
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Proof. We start by analysing the different parts in the error term εk(∆x). Note that φ is a conditionally positive
definite RBF

φ(x) = h(x2). (5.32)

Thus, it follows by induction that φ(2k+1)(0) = 0 for k ∈ N and we can neglect odd terms in Taylor expansions.
Let us start with the case N = 2 and a first order RBF:

dϕk(y) = φ(y − xk) − φ(y − xk−1) − φ(xk−1 − xk) + φ(0),

= φ
′′(0)
2

((y − xk)2 − (y − xk−1)2 − (xk−1 − xk)2) +O(∆x4),

= −φ′′(0)(xk−1 − xk)(xk−1 − y) +O(∆x4).

(5.33)

And we further have

(ϕk −P1
k+1ϕ

k)(y) = φ(y − xk) − φ(y − xk−1) − φ(0) + φ(xk − xk−1),

= φ
′′(0)
2

((y − xk)2 − (y − xk−1)2 + (xk−1 − xk)2) +O(∆x4),

= −φ′′(0)(xk−1 − xk)(xk − y) +O(∆x4).

(5.34)

From eq. (5.33) we have

δk
δk+1

= xk − xk−1

xk+1 − xk
+O(∆x2),

δkδk+1 =
φ′′(0)

2
(xk − xk−1)(xk+1 − xk) +O(∆x4) = O(∆x2),

and we conclude

εk(∆x) = O(∆x2). (5.35)

Next, we consider the more complicated case with N = 3 and a second order RBF φ. Therefore, we need to
analyse the following two terms:

dϕk+1(y) = ϕk+1(y) − ϕk+1(xk)Lk+1
k (y) − ϕk+1(xk−1)Lk+1

k−1(y),
= φ(y − xk+1) − φ(y − xk)Lk+1

k (xk+1) − φ(y − xk−1)Lk+1
k−1(xk+1)

− (φ(xk − xk+1) − φ(0)Lk+1
k (xk+1) − φ(xk − xk−1)Lk+1

k−1(xk+1))Lk+1
k (y)

− (φ(xk−1 − xk+1) − φ(xk−1 − xk)Lk+1
k (xk+1) − φ(0)Lk+1

k−1(xk+1))Lk+1
k−1(y),

(5.36)

(ϕk −P2
k+1ϕ

k)(y) = ϕk(y) − ϕk(xk)Lk+1
k (y) − ϕk(xk−1)Lk+1

k−1(y),
= φ(y − xk) − φ(y − xk−1)Lkk−1(xk) − φ(y − xk−2)Lkk−2(xk)

− (φ(0) − φ(xk − xk−1)Lkk−1(xk) − φ(xk − xk−2)Lkk−2(xk))Lk+1
k (y)

− (φ(xk−1 − xk) − φ(0)Lkk−1(xk) − φ(xk−1 − xk−2)Lkk−2(xk))Lk+1
k−1(y).

(5.37)
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As before we apply the Taylor expansion

ϕk+1(y) = φ(y − xk+1) − φ(y − xk)Lk+1
k (xk+1) − φ(y − xk−1)Lk+1

k−1(xk+1),

= φ
′′(0)
2

((y − xk+1)2 − (y − xk)2Lk+1
k (xk+1) − (y − xk−1)2Lk+1

k−1(xk+1))

+ φ
(4)(0)

2
((y − xk)4 − (y − xk)4Lk+1

k (xk+1) − (y − xk−1)4Lk+1
k−1(xk+1))

+O(∆x6).

(5.38)

Thus, we write

dϕk+1(y) = a1
φ′′(0)

2
+ a2

φ(4)(0)
4!

+O(∆x6),

(ϕk −P2
k+1ϕ

k)(y) = b1
φ′′(0)

2
+ b2

φ(4)(0)
4!

+O(∆x6).

Let us calculate the coefficients a1 and a2

a1 = ak−1
1 Lk+1

k−1(xk+1) + ak1Lk+1
k (xk+1). (5.39)

From standard algebra we get that ak−1
1 = ak1 = 0. The fourth order term is

a2 = (y − xk+1)4 − (y − xk)4Lk+1
k (xk+1) − (y − xk−1)4Lk+1

k−1(xk+1)

− ((xk − xk+1)4 − (xk − xk−1)4Lk+1
k−1(xk+1))Lk+1

k (y)

− ((xk−1 − xk+1)4 − (xk−1 − xk)4Lk+1
k (xk+1))Lk+1

k−1(y),
= 6(xk−1 − xk+1)(xk − xk+1)(xk−1 − y)(xk − y).

(5.40)

We repeat this for the coefficients b1 and b2

b1 = bk−1
1 Lkk−1(xk) + bk−2

1 Lkk−2(xk), (5.41)

with bk−1
1 = bk−2

1 = 0. The fourth order term is

b2 = (y − xk)4 − (y − xk−1)4Lkk−1(xk) − (y − xk−2)4Lkk−2(xk)

− ( − (xk − xk−1)4Lkk−1(xk) − (xk − xk−2)4Lkk−2(xk))Lk+1
k (y)

− ((xk−1 − xk)4 − (xk−1 − xk−2)4Lkk−2(xk))Lk+1
k−1(y),

= 6(xk−2 − xk)(xk−1 − xk)(xk−1 − y)(xk − y).

(5.42)

We summarize the results

dϕk+1(y) ≈ φ
(4)(0)

4
(xk−1 − xk+1)(xk − xk+1)(xk−1 − y)(xk − y), (5.43)

(ϕk −P2
k+1ϕ

k)(y) ≈ φ
(4)(0)

4
(xk−2 − xk)(xk−1 − xk)(xk−1 − y)(xk − y), (5.44)
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plus higher order terms O(∆x6) for ∆x→ 0. From this we recover

δk
δk+1

= (xk − xk−1)(xk − xk−2)
(xk+1 − xk)(xk+1 − xx)

+O(∆x2),

δkδk+1 =
φ(4)(0)

4
(xk − xk−1)(xk − xk−2)(xk+1 − xk)(xk+1 − xx) +O(∆x6),

= O(∆x4).

Thus, we have

dϕk+1(y) δk
δk+1

− (ϕk −P2
k+1ϕ

k)(y) = O(∆x6), (5.45)

which yields
εk(∆x) = O(∆x2), (5.46)

for ∆x→ 0. �

Since the error term ε(∆x) vanishes, the remaining step is to prove that each term of (5.31) has the same
sign as the jump.

Theorem 5.10 (Sign-property of second and third degree RBF-reconstruction). Let us assume that the stencil
Si and Si+1 are chosen with the Algorithm 2. Then, for infinitely smooth RBFs of first or second order it holds
that

sgn(Cj(γi+rN−1+N+j − γi+rN−1+N−1+j)) = sgn(yi+1 − yi), (5.47)

for all j = 0, . . . , dN−1 − 1.

Proof. The proof is based on a study of all possible choices of stencils, that may result from Algorithm 2:

● Si = {Ci−1,Ci}, Si+1 = {Ci,Ci+1},
● Si = {Ci−1,Ci}, Si+1 = {Ci+1,Ci+2},
● Si = {Ci,Ci+1}, Si+1 = {Ci+1,Ci+2},
● ...

For each case we look at any inequality due to Algorithm 2 to recover the particular stencil configuration, and
show for each case that (5.47) is fulfilled.
Note that jRi+1/2 = 0, if Si = Si+1. So, we do not include these cases in the analysis.
Let us first consider N = 2 and assume φ is of first order.

Case 1. Let us consider the stencils Si = {Ci−1,Ci}, Si+1 = {Ci,Ci+1}, which require the following conditions

∣γi∣ < ∣γi+1∣, ∣γi+1∣ < ∣γi+2∣. (5.48)

Further, we know the representation of the jump for small grid sizes

jRi+1/2 ≈ C0(γi+1 − γi),

and with (5.33) it follows that

C0 = δi
⎛
⎝

dϕi(xi+1/2)
dϕi(xi)

− 1
⎞
⎠
≈ δi

xi+1/2 − xi
xi − xi−1

> 0.

Hence
sgn (C0(γi+1 − γi)) = sgn(γi+1 − γi) = sgn(γi+1) = sgn(yi+1 − yi), (5.49)

since
∣a∣ > ∣b∣⇒ sgn(a − b) = sgn(a). (5.50)
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Case 2. Let us consider the stencils Si = {Ci−1,Ci}, Si+1 = {Ci+1,Ci+2}, which is equivalent to the conditions

∣γi∣ < ∣γi+1∣, ∣γi+1∣ > ∣γi+2∣. (5.51)

The jump can be represented by

jRi+1/2 ≈ C0(γi+1 − γi) +C1(γi+2 − γi+1).

As before it holds sgn (C0(γi+1 − γi)) = sgn(yi+1 − yi) and

C1 = C0 − δi+1 ≈ δi
xi+1/2 − xi+1

xi − xi−1
< 0. (5.52)

Thus, we get for the second term

sgn (C1(γi+2 − γi+1)) = sgn(γi+1 − γi+2) = sgn(γi+1) = sgn(yi+1 − yi),

where we applied (5.50) with (5.51).

Case 3. In the last case of the second degree reconstruction we have the stencils Si = {Ci,Ci+1}, Si+1 =
{Ci+1,Ci+2}, equivalent to the conditions

∣γi∣ > ∣γi+1∣, ∣γi+1∣ > ∣γi+2∣. (5.53)

The representation of the jump is

jRi+1/2 ≈ C0(γi+2 − γi+1).
As in the first case we recover using (5.33), that

C0 = δi+1

⎛
⎝

dϕi+1(xi+1/2)
dϕi+1(xi)

− 1
⎞
⎠
≈ δi

xi+1/2 − xi+1

xi+1 − xi
< 0,

and

sgn (C0(γi+2 − γi+1)) = sgn(γi+1 − γi+2) = sgn(γi+1). (5.54)

This finishes the proof of the sign-property for the second degree reconstruction with infinitely smooth RBFs
of first order for small enough grids.
The proof for N = 3 can be found in Appendix A. �

6. Entropy Stable RBF-Based Methods

In one space dimension there is no need to deviate from the polynomial reconstruction. For unstructured
grids in multiple dimensions the problem is the construction of an interpolation function. There exist a lot
cell or point configurations such that the reconstruction problem is not well-defined. This issue can be relaxed
by solving an overdetermined system of equations, but then we lose the exact interpolation property. The
RBF-interpolation can circumvent this problem since we do not need a unisolvent set of cells or points, but just
a unisolvent subset of lower order. Thus, by adding some extra cells we drastically reduce the possibility that
unsolvable configurations occur.
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6.1. RBF-TeCNOp Method

Based on the theory of entropy stable schemes and the work of Fjordholm et al. [10] we introduce the RBF-
TeCNOp scheme.
By using Algorithm 2 with (4.19) for calculating the least oscillatory stencil we showed in Theorem 5.10 that
the sign-property holds for 2nd and 3rd degree reconstruction in the limit of ∆x → 0. We conjecture that this
result holds for higher order reconstructions. Thus, by combining the framework proposed by Fjordholm et. al
in [10] with the RBF reconstruction using multiquadratics we recover an entropy stable essentially nonoscillatory
RBF-based finite difference method of arbitrary high order. Furthermore, we use Algorithm 1 to circumvent
ill-conditioning in the reconstruction step.
In more detail, for constructing a p-th order RBF-TeCNOp method of the form (2.15) we use an entropy conser-
vative flux of order 2k with k = ⌈p/2⌉ (see Theorem 2.2) and an ENO based RBF reconstruction (Algorithm 2)
on the scaled entropy variables of order p with multiquadratics of order p − 1.
Based on the Roe diffusion operator

R∣Λ∣R−1
vuw, (6.1)

with the eigenvector matrix R and the diagonal matrix of the eigenvalues, evaluated at the Roe average, Λ
we are choosing R and Λ in the same way. By Merriam [24] there is a scaling of the eigenvectors such that
RRT = vu = Buv(ui+1/2). Thus, we get the relation

R∣Λ∣R−1
vuw ≈ R∣Λ∣R−1vuvvw = R∣Λ∣RT vvw, (6.2)

that has a similar structure to that of a diffusion operator (2.16). The numerical diffusion term can be written
as

Di+1/2⟪v⟫i+1/2 = Ri+1/2Λi+1/2⟪w⟫i+1/2, (6.3)

with the scaled entropy variables (2.18).
Furthermore, we choose Λi+1/2 = diag(λ1(ui+1/2), . . . , λN(ui+1/2)) and ui+1/2 = ui+ui+1

2
with the eigenvalues Λ(u)

of the Jacobian ∇uf .
It is important to note that the ill-conditioning of the interpolation matrix does not just affect the evaluation
of the reconstruction; it also affects the calculation of the smoothness indicator which is based on the sum of
the squares of the coefficients of the RBF-part of the interpolation.
From the theory we expect that the error of the interpolation with infinitely smooth RBFs decreases for smaller
shape parameters. However, computations suggest that the choice of the stencil does not depend on the shape
parameter. Thus, we calculate the stencil with respect to a stable shape parameter (3.19).

6.2. RBF-Finite Volume Method

The combination of the RBF interpolation with finite volume methods works analogeous to the RBF-TeCNOp
Method. Aboiyar et al. combine in their work [1] a high-order WENO approach with a polyharmonic spline
reconstruction. Bigoni et al. apply a high-order WENO approach to multiquadratics [3].
We construct an entropy stable finite volume method of second order that is essentially nonoscillatory by
combining (2.24) with a second order accurate RBF interpolation that acts on the scaled entropy variables.
Therefore, we are using multiquadratics with the smoothness indicator (4.19) combined with Algorithm 2 and
the vector valued rational approximation from Algorithm 1 for a stable evaluation of the interpolation function.
We conjecture the sign-property for the RBF reconstruction on mean values that is based on Algorithm 2 which
is fulfilled in the pointwise case for second and third degree reconstruction in the limit ∆x→ 0 (Theorem 5.10).
Under this assumption we recover a second order entropy stable finite volume (RBF-EFV2) method.

7. Numerical results

In this chapter, we are evaluating the second order entropy stable finite volume (EFV2) and the TeCNOp
methods with RBF reconstruction for one-dimensional problems and compare it with its original version. Note
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that in one dimension we do not expect to do better than the classical methods, but at least as well.
For the polynomial reconstruction we use the original algorithm from [18] to select the stencil and in the RBF
case we use Algorithm 2. The EFV2 and TeCNOp methods are based on the ERoe diffusion term (6.3).
The parameters for the vector-valued rational approximation are chosen as described in Section 3.3. Further,
we choose the shape parameter ε = 0.1 for all examples.

7.1. Linear Advection Equation

We consider the linear advection equation

ut + aux = 0, (7.1)

with wave speed a = 1 and periodic boundary conditions [23]. With the entropy function η(u) = u2

2
we have

q(u) = au
2

2
, v(u) = u, ψ(u) = au

2

2
, (7.2)

and obtain the second order entropy conservative flux

F̃i+1/2 = ūi+1/2, (7.3)

to construct a high-order accurate scheme. We use a 5th order SSPRK method for time discretization [17]. For
the EFV2 method we use the second order entropy conservative flux plus a third order SSPRK method in time.
The convergence results for the smooth initial conditions are shown in Table 2. The L1-errors are the same
for the different reconstruction methods for grids of size smaller than 1/32 and their convergence rates are as
expected and similar to the ones found in literature.

7.2. Burger’s Equation

For the Burger’s equation

ut +
1

2
(u2)x = 0, (7.4)

we study the convergence and check if the methods handle discontinuities without introducing major oscillations.
The EFV2 and TeCNOp method are based on the entropy η(u) = u2/2 and

q(u) = u
3

3
, v(u) = u, ψ(u) = u

3

6
, (7.5)

leading to an entropy conservative flux

F̃i+1/2 =
u2
i + ui + ui+1 + u2

i+1

6
, (7.6)

which is used to construct an high-order scheme. For the time discretization we use a 5th order SSPRK
method [17]. Furthermore, we choose the domain [0,1] and the initial conditions u0(x) = sin(2πx).
A detailed analysis of the convergence is shown in Table 2. The convergence rate is as expected and the errors
of the two different methods (polynomial reconstruction and RBF reconstruction) coincide.
At time t = 0.3 a discontinuity emerges at x = 0.5. This can be resolved accurately with vanishing oscillations
(Fig. 1). Furthermore, we observe that the difference between the reconstruction methods goes to machine
precision in the smooth part and at the shock it stays small.
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N
Linear Advection eq. Burger’s eq.
RBF Reconstr Poly Reconstr RBF Reconstr Poly Reconstr
error rate error rate error rate error rate

TeCNO2
16 2.27e-02 - 2.26e-02 - 3.01e-02 - 2.97e-02 -
32 7.26e-03 1.64 7.26e-03 1.64 9.01e-03 1.74 9.01e-03 1.72
64 2.06e-03 1.82 2.06e-03 1.82 2.46e-03 1.87 2.46e-03 1.87
128 5.44e-04 1.92 5.44e-04 1.92 6.88e-04 1.84 6.88e-04 1.84
256 1.45e-04 1.91 1.45e-04 1.91 1.88e-04 1.87 1.88e-04 1.87

TeCNO3
16 1.48e-03 - 1.48e-03 - 5.19e-03 - 5.17e-03 -
32 1.89e-04 2.97 1.89e-04 2.97 9.23e-04 2.49 9.23e-04 2.49
64 2.36e-05 3.00 2.36e-05 3.00 1.47e-04 2.65 1.47e-04 2.65
128 2.96e-06 3.00 2.96e-06 3.00 2.52e-05 2.54 2.52e-05 2.54
256 3.70e-07 3.00 3.70e-07 3.00 4.13e-06 2.61 4.13e-06 2.61

TeCNO4
16 5.61e-04 - 5.60e-04 - 2.84e-03 - 2.84e-03 -
32 3.98e-05 3.82 3.98e-05 3.82 5.37e-04 2.40 5.37e-04 2.40
64 2.62e-06 3.92 2.62e-06 3.93 5.76e-05 3.22 5.76e-05 3.22
128 1.74e-07 3.91 1.74e-07 3.90 4.97e-06 3.54 4.97e-06 3.54
256 1.14e-08 3.93 1.14e-08 3.93 6.97e-07 2.83 6.97e-07 2.83

TeCNO5
16 4.40e-05 - 4.40e-05 - 1.17e-03 - 1.17e-03 -
32 1.40e-06 4.98 1.40e-06 4.98 2.90e-04 2.01 2.90e-04 2.01
64 4.43e-08 4.98 4.43e-08 4.98 1.19e-05 4.61 1.19e-05 4.61
128 1.47e-09 4.92 1.47e-09 4.92 6.84e-07 4.12 6.84e-07 4.12
256 5.50e-11 4.74 5.50e-11 4.74 1.81e-07 1.92 1.81e-07 1.92

EFVM2
16 2.25e-02 - 2.24e-02 - 2.68e-02 - 2.68e-02 -
32 7.26e-03 1.63 7.25e-03 1.63 8.10e-03 1.73 8.10e-03 1.73
64 2.06e-03 1.82 2.06e-03 1.82 2.28e-03 1.83 2.28e-03 1.83
128 5.44e-04 1.92 5.44e-04 1.92 6.40e-04 1.84 6.40e-04 1.83
256 1.45e-04 1.91 1.45e-04 1.91 1.78e-04 1.85 1.78e-04 1.85

Table 2. Convergence rates of TeCNOp and EFV2 methods using multiquadratics and poly-
nomials for the linear advection and Burger’s equation on [0,1] at time t = 0.1. We use periodic
boundary conditions and u0(x) = sin(2πx), shape parameter ε = 0.1, CFL = 0.5 .
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Figure 1. Burger’s equation on [0,1] at time t = 0.3 with continuous initial condition u0 =
sin(2πx), shape parameter ε = 0.1, CFL = 0.5, solved by TeCNO5.
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Figure 2. Shallow water equations on [−1,1] at time t = 0.4 with N = 100, shape parameter
ε = 0.1, CFL = 0.5, solved by TeCNO and EFV2.

7.3. Shallow Water Equations

For the shallow water equations (2.6) we consider the dambreak problem with initial conditions

(h0,m0) =
⎧⎪⎪⎨⎪⎪⎩

(1.5,0) if ∣x∣ ≤ 0.2

(1,0) if ∣x∣ > 0.2
, (7.7)

on the domain [−1,1] and periodic boundary conditions. We use a second order entropy stable flux (2.9) to
construct a high-order flux and a third order SSPRK method for the time integration.
Fjordholm et al. [10] showed that the standard TeCNO scheme behaves similar to the ENO-MUSCL scheme.
The same holds for the RBF-TeCNOp scheme and the RBF-EFV2 scheme as seen in Fig. 2. The difference
between the RBF methods and the polynomial scheme is around 1e − 6 in the region where the discontinuity
passed and much smaller in smooth regions.

7.4. Euler Equations

The one-dimensional Euler equations (2.10) are a system of size three. As for the shallow water equations
we use a third order SSPRK method and as a second order entropy conservative flux we use the KEPEC-flux
(2.13). Further, we choose γ = 1.4 which simulates a diatomic gas such as air.

7.4.1. Sod’s Shock Tube Problem

Sod’s shock tube problem is a Riemann problem where two gases with different densities collide. A rarefaction
wave emerges, followed by a contact and a shock discontinuity.
The initial conditions are

(ρ0,m0, p0) =
⎧⎪⎪⎨⎪⎪⎩

(1,0,1) if x < 0

(0.125,0,0.1) if x ≥ 0
, (7.8)

where m = uρ. The results at time t = 2 of the RBF-TeCNOp and RBF-EFV2 methods are shown in Fig. 3,
clearly representing the rarefaction wave, the contact and the shock discontinuity. Comparing the solutions
obtained with polynomial reconstruction or with RBF reconstruction, we see in Fig. 4 that their difference is
decreasing with the refinement of the grid.
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Figure 3. Sod’s shock tube problem on [−5,5] at time t = 2 with N = 100, shape parameter
ε = 0.1, CFL = 0.3, solved by RBF-TeCNOp and RBF-EFV2.
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Figure 4. Pointwise error between RBF and polynomial based reconstruction EFV2 method
for the Sod’s shock tube problem on [−5,5] at time t = 2 for different number of grid points N ,
shape parameter ε = 0.1, CFL = 0.3.

7.4.2. Lax Shock Tube Problem

The Lax shock tube problem is another Riemann problem defined by the initial conditions

(ρ0,m0, p0) =
⎧⎪⎪⎨⎪⎪⎩

(0.445,0.698,3.528) if x < 0

(0.5,0,0.571) if x ≥ 0
, (7.9)
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Figure 5. Lax shock tube problem on [−5,5] at time t = 1.3 with N = 100, shape parameter
ε = 0.1, CFL = 0.3, solved by RBF-TeCNOp and RBF-EFV2.

where m = uρ. The RBF-TeCNOp methods of order three to five represent the big shock in the density sharply
with just N = 100 points, see Fig. 5. The second order RBF-EFV2 method does not perform well for this case.

7.4.3. Shu-Osher Shock-Entropy Wave Interaction Problem

The Shu-Osher problem is a shock-turbulence interaction in which a shock propagates into a low frequency
wave. Due to this interaction high-frequency oscillations develop over time. The initial conditions are

(ρ0,m0, p0) =
⎧⎪⎪⎨⎪⎪⎩

(3.857143,2.629369,10.33333) if x < −4

(1 + 0.2 sin(5x),0,1) if x ≥ −4
, (7.10)

where m = uρ. The RBF-TeCNOp methods of order larger than three recover the high frequency oscillations
well. The RBF-EFV2 method fits the low order oscillations and the shock, but not the high frequency one due
to excessive dissipation.

8. Conclusions

We introduce a new smoothness indicator and an algorithm to choose the least oscillatory stencil based on
RBF interpolation. This smoothness indicator is directly related to the RBF interpolation and it is based on the
generalized divided difference method. For this ENO reconstruction we prove the sign-property in the pointwise
case for the second and third order reconstruction in the limit ∆x→ 0 for infinitely smooth RBFs. Further, we
conjecture this property for higher order schemes and for the case of the average-based interpolation. Note that
the condition ∆x→ 0 can be replaced by the condition for the shape parameter ε→ 0.
Based on this procedure we construct a RBF-TeCNOp method as an arbitrary high-order entropy stable finite
difference method and the RBF-EFV2 method as a second order entropy stable finite volume method. Both
are based on high-order entropy conservative schemes minus a diffusion term which depends on the RBF-
reconstruction in the scaled entropy variables. To circumvent the ill-conditioning of the local interpolation
problems we apply the vector-valued rational approximation method [38].
Thus, we introduce a method that has all the properties from the original TeCNO scheme [10]. It is entropy
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Figure 6. Shu-Osher problem on [−5,5] at time t = 1.8 with N = 200, shape parameter ε = 0.1,
CFL = 0.3 solved by RBF-TeCNOp and RBF-EFV2.

stable, high-order accurate for smooth solutions, essentially nonoscillatory near discontinuities, yet flexible on
unstructured grids.
To show their robustness we present a range of numerical simulations in one dimension. The solutions coincide
up to a small error with those obtained from the original TeCNO method.
The main drawback of the method is the expansive evaluation of the vector-valued approximation to circumvent
ill-conditioning, but this problem is being considered. The advantages of RBF-based reconstructions will become
much clearer for high-dimensional problems and we hope to report on this in the near future.

Appendix A. Proof of Theorem 5.10 for the 3rd Degree Reconstruction

Proof. The proof is based on a study of all possible choices of stencils, that may result from Algorithm 2:

● Si = {Ci−2,Ci−1,Ci}, Si+1 = {Ci−1,Ci,Ci+1},
● Si = {Ci−2,Ci−1,Ci}, Si+1 = {Ci,Ci+1,Ci+2},
● Si = {Ci−2,Ci−1,Ci}, Si+1 = {Ci+1,Ci+2,Ci+3},
● ...

We consider N = 3 (third degree reconstruction) and assume φ is of second order. The main difference between
the second and third degree is that Algorithm 2 gives two conditions for each stencil that depend on different
grid sizes. Therefore, we introduce the superscript l to indicate the size of the stencil

δlk = dϕk(xk)1/2, βlk = yk −
l−1

∑
i=1

yk−lL
k,l
k−l(xl), γlk =

βlk
δlk
,

based on the stencil {Ck−l+1,⋯,Ck}. Further, we can show with simple calculations that

β3
k+1 = β2

k+1 −
xk+1 − xk
xk − xk−1

β2
k.
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With (5.33) and (5.43) we recover

xk+1 − xk
xk − xk−1

≈ δ
2
k+1

δ2
k

,

which allows us to conclude that

δ3
k+1γ

3
k+1 = β3

k+1 ≈ β2
k+1 −

δ2
k+1

δ2
k

β2
k = δ2

k+1(γ2
k+1 − γ2

k),

and so

γ3
k+1 =

δ2
k+1

δ3
k+1

(γ2
k+1 − γ2

k). (A.1)

Note that the term δ2
k+1/δ3

k+1 is always positive (Corollary 4.4). Next, we can show the sign of the constant Cl
using Theorem 5.1

C0 = δk
⎛
⎝

dϕk(xi+1/2)
dϕk(xk)

−Ak
⎞
⎠
≈ δk

⎛
⎝
(xk−2 − xi+1/2)(xk−1 − xi+1/2)

(xk−2 − xk)(xk−1 − xk)
−
xi+1/2 − xk−1

xk − xk−1

⎞
⎠
,

≈ δk
(xi+1/2 − xk−1)(xi+1/2 − xk)

(xk − xk−2)(xk − xk−1)
,

with k = i + rN−1 +N − 1. By induction one proves that

Cl ≈ δk
xi+1/2 − xk+l−1

xk − xk−2

xi+1/2 − xk+l
xk − xk−1

, (A.2)

for l ∈ N and we recover

sgn(Cl) = (−1)rN−1+N−1+l. (A.3)

Case 1. We consider the stencils Si = {Ci−2,Ci−1,Ci}, Si+1 = {Ci−1,Ci,Ci+1}, equivalent to the conditions

∣γ2
i ∣ < ∣γ2

i+1∣, ∣γ3
i ∣ < ∣γ3

i+1∣, ∣γ2
i+1∣ < ∣γ2

i+2∣, γ3
i+1∣ < ∣γ3

i+2∣. (A.4)

Note that this case can be characterized by d2 = 1 and s2 = r2 = −2. From Theorem 5.9 we know

jRi+1/2 ≈ C0(γ3
i+1 − γ3

i ), (A.5)

and we have

sgn (C0(γ3
i+1 − γ3

i )) = sgn(γ3
i+1 − γ3

i ) = sgn(γ3
i+1) = sgn(γ2

i+1 − γ2
i ) = sgn(γ2

i+1) = sgn(yi+1 − yi),

where we used (A.1), (A.2) and (A.4).

Case 2. Next, we assume the stencil Si = {Ci−2,Ci−1,Ci}, Si+1 = {Ci,Ci+1,Ci+2}, equivalent to the conditions

∣γ2
i ∣ < ∣γ2

i+1∣, ∣γ3
i ∣ < ∣γ3

i+1∣,
⎧⎪⎪⎨⎪⎪⎩

∣γ2
i+1∣ < ∣γ2

i+2∣, ∣γ3
i+1∣ > ∣γ3

i+2∣, (a)
∣γ2
i+1∣ > ∣γ2

i+2∣, ∣γ3
i+2∣ < ∣γ3

i+3∣. (b)
(A.6)

The jump can be written by

jRi+1/2 ≈ C0(γ3
i+1 − γ3

i ) +C1(γ3
i+2 − γ3

i+1). (A.7)
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For each term we calculate its sign. The first term can be done in the same way as above and it holds for both
(a) and (b) in (A.6)

sgn (C0(γ3
i+1 − γ3

i )) = sgn(yi+1 − yi),
For the second term we first assume that (a) holds and compute its sign as

sgn (C1(γ3
i+2 − γ3

i+1)) = sgn(γ3
i+1 − γ3

i+2) = sgn(γ3
i+1) = sgn(γ2

i+1 − γ2
i ) = sgn(γ2

i+1) = sgn(yi+1 − yi).

For (b) we split it in two terms using (A.1)

C1(γ3
i+2 − γ3

i+1) = C1
δ2
i+2

δ3
i+2

(γ2
i+2 − γ2

i+1) −C1
δ2
i+1

δ3
i+1

(γ2
i+1 − γ2

i ),

and calculate the sign of each one

sgn (C1
δ2
i+2

δ3
i+2

(γ2
i+2 − γ2

i+1)) = sgn(γ2
i+1 − γ2

i+2) = sgn(γ2
i+1) = sgn(yi+1 − yi),

sgn ( −C1
δ2
i+1

δ3
i+1

(γ2
i+1 − γ2

i )) = sgn(γ2
i+1 − γ2

i )) = sgn(γ2
i+1) = sgn(yi+1 − yi).

Case 3. Next, we consider the stencil Si = {Ci−2,Ci−1,Ci}, Si+1 = {Ci+1,Ci+2,Ci+3}, equivalent to the conditions

∣γ2
i ∣ < ∣γ2

i+1∣, ∣γ3
i ∣ < ∣γ3

i+1∣, ∣γ2
i+1∣ > ∣γ2

i+2∣, ∣γ3
i+2∣ > ∣γ3

i+3∣. (A.8)

For the reconstructed jump we have

jRi+1/2 ≈ C0(γ3
i+1 − γ3

i ) +C1(γ3
i+2 − γ3

i+1) +C2(γ3
i+3 − γ3

i+2), (A.9)

and calculate the sign of each term

sgn (C0(γ3
i+1 − γ3

i )) = sgn(γ3
i+1 − γ3

i ) = sgn(γ3
i+1) = sgn(γ2

i+1 − γ2
i ) = sgn(γ2

i+1) = sgn(yi+1 − yi).

For the second term we need

sgn(γ3
i+1) = sgn(γ2

i+1 − γ2
i ) = sgn(γ2

i+1),
sgn(−γ3

i+2) = sgn(γ2
i+1 − γ2

i+2) = sgn(γ2
i+1),

such that we can show

sgn (C1(γ3
i+2 − γ3

i+1)) = sgn(γ3
i+1 − γ3

i+2) = sgn(γ2
i+1) = sgn(yi+1 − yi).

The last term yields

sgn (C2(γ3
i+3 − γ3

i+2)) = sgn(γ3
i+3 − γ3

i+2) = − sgn(γ3
i+2) = sgn(γ2

i+1 − γ2
i+2) = sgn(γ2

i+1) = sgn(yi+1 − yi).

Case 4. Next, we assume the stencils Si = {Ci−1,Ci,Ci+1}, Si+1 = {Ci,Ci+1,Ci+2}, equivalent to the conditions

⎧⎪⎪⎨⎪⎪⎩

∣γ2
i ∣ < ∣γ2

i+1∣, ∣γ3
i ∣ ≥ ∣γ3

i+1∣, (a1)
∣γ2
i ∣ ≥ ∣γ2

i+1∣, ∣γ3
i+1∣ < ∣γ3

i+2∣, (a2)
⎧⎪⎪⎨⎪⎪⎩

∣γ2
i+1∣ < ∣γ2

i+2∣, ∣γ3
i+1∣ ≥ ∣γ3

i+2∣, (b1)
∣γ2
i+1∣ ≥ ∣γ2

i+2∣, ∣γ3
i+2∣ < ∣γ3

i+3∣. (b2)

(A.10)



32 TITLE WILL BE SET BY THE PUBLISHER

Here, we have the different combinations (a1, b1), (a1, b2), (a2, b1) and (a2, b2), where (a2, b1) is not possible.
The jump is represented as

jRi+1/2 ≈ C0(γ3
i+2 − γ3

i+1). (A.11)

Let us start with the combination (a1, b1). We have

sgn (C0(γ3
i+2 − γ3

i+1)) = sgn(γ3
i+1 − γ3

i+2) = sgn(γ3
i+1) = sgn(γ2

i+1 − γ2
i ) = sgn(γ2

i+1) = sgn(yi+1 − yi).

In the case (a1, b2), we precalculate

sgn(γ3
i+1) = sgn(γ2

i+1 − γ2
i ) = sgn(γ2

i+1),
sgn(−γ3

i+2) = sgn(γ2
i+1 − γ2

i+2) = sgn(γ2
i+1).

Thus,

sgn (C0(γ3
i+2 − γ3

i+1)) = sgn(γ3
i+1 − γ3

i+2) = sgn(γ2
i+1) = sgn(yi+1 − yi).

In the last case (a2, b2), we get

sgn (C0(γ3
i+2 − γ3

i+1)) = sgn(γ3
i+1 − γ3

i+2) = − sgn(γ3
i+2) = sgn(γ2

i+1 − γ2
i+2) = sgn(γ2

i+1) = sgn(yi+1 − yi).

Case 5. Next, we assume the stencils Si = {Ci−1,Ci,Ci+1}, Si+1 = {Ci+1,Ci+2,Ci+3}, equivalent to the conditions

⎧⎪⎪⎨⎪⎪⎩

∣γ2
i ∣ < ∣γ2

i+1∣, ∣γ3
i ∣ ≥ ∣γ3

i+1∣, (a)
∣γ2
i ∣ ≥ ∣γ2

i+1∣, ∣γ3
i+1∣ < ∣γ3

i+2∣, (b)
∣γ2
i+1∣ > ∣γ2

i+2∣, ∣γ3
i+2∣ > ∣γ3

i+3∣.
(A.12)

The jump is represented as
jRi+1/2 ≈ C0(γ3

i+2 − γ3
i+1) +C1(γ3

i+3 − γ3
i+2). (A.13)

In the case of (a) we precalculate

sgn(−γ3
i+2) = sgn(γ2

i+1 − γ2
i+2) = sgn(γ2

i+1),
sgn(γ3

i+1) = sgn(γ2
i+1 − γ2

i ) = sgn(γ2
i+1).

With these we have

sgn (C0(γ3
i+2 − γ3

i+1)) = sgn(γ3
i+1 − γ3

i+2) = sgn(γ2
i+1) = sgn(yi+1 − yi),

sgn (C1(γ3
i+3 − γ3

i+2)) = sgn(γ3
i+3 − γ3

i+2) = − sgn(γ3
i+2) = sgn(γ2

i+1 − γ2
i+2) = sgn(γ2

i+1) = sgn(yi+1 − yi).

For (b) we can use the same calculation as above for the second term since we were not using (a). The sign of
the first term is

sgn (C0(γ3
i+2 − γ3

i+1)) = sgn(γ3
i+1 − γ3

i+2) = sgn(γ3
i+1) = sgn(γ2

i+1 − γ2
i+2) = sgn(γ2

i+1) = sgn(yi+1 − yi).

Case 6. The last configuration is Si = {Ci,Ci+1,Ci+2}, Si+1 = {Ci+1,Ci+2,Ci+3}, equivalent to the conditions

∣γ2
i ∣ > ∣γ2

i+1∣, ∣γ3
i+1∣ > ∣γ3

i+2∣, ∣γ2
i+1∣ > ∣γ2

i+2∣, ∣γ3
i+2∣ > ∣γ3

i+3∣, (A.14)

with a reconstructed jump of the form
jRi+1/2 ≈ C0(γ3

i+3 − γ3
i+2). (A.15)
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We recover

sgn (C0(γ3
i+3 − γ3

i+2)) = sgn(γ3
i+3 − γ3

i+2) = − sgn(γ3
i+2) = sgn(γ2

i+1 − γ2
i+2) = sgn(γ2

i+1) = sgn(yi+1 − yi).

This finishes the proof of the sign-property of the reconstruction method for grids as ∆x → 0 or the shape
parameter ε→ 0. �

Acknowledgments

The authors are grateful to Dr. Deep Ray for helpful discussions and insights. This work was partially supported by
SNSF.

References

[1] T. Aboiyar, E. H. Georgoulis, and A. Iske. High order weno finite volume schemes using polyharmonic spline reconstruction.

In Proceedings of the international conference on numerical analysis and approximation theory NAAT2006, Cluj-Napoca
(Romania), 2006. Dept. of Mathematics. University of Leicester.

[2] T. Aboiyar, E. H. Georgoulis, and A. Iske. Adaptive ader methods using kernel-based polyharmonic spline weno reconstruction.

SIAM Journal on Scientific Computing, 32(6):3251–3277, 2010.
[3] C. Bigoni and J. S. Hesthaven. Adaptive weno methods based on radial basis function reconstruction. Journal of Scientific

Computing, 72(3):986–1020, 2017.
[4] J. P. Boyd. Error saturation in gaussian radial basis functions on a finite interval. Journal of Computational and Applied

Mathematics, 234(5):1435–1441, 7 2010.

[5] P. Chandrashekar. Kinetic energy preserving and entropy stable finite volume schemes for compressible euler and navier-stokes
equations. Communications in Computational Physics, 14(5):1252–1286, 2013.

[6] T. A. Driscoll and B. Fornberg. Interpolation in the limit of increasingly flat radial basis functions. Computers & Mathematics

with Applications, 43(3):413–422, 2002.
[7] J. Duchon. Splines minimizing rotation-invariant semi-norms in Sobolev spaces, pages 85–100. Springer, 1977.

[8] G. E. Fasshauer and J. G. Zhang. On choosing “optimal”shape parameters for rbf approximation. Numerical Algorithms,

45(1-4):345–368, 2007.
[9] U. S. Fjordholm, S. Mishra, and E. Tadmor. Well-balanced and energy stable schemes for the shallow water equations with

discontinuous topography. Journal of Computational Physics, 230(14):5587–5609, 2011.

[10] U. S. Fjordholm, S. Mishra, and E. Tadmor. Arbitrarily high-order accurate entropy stable essentially nonoscillatory schemes
for systems of conservation laws. SIAM Journal on Numerical Analysis, 50(2):544–573, 2012.

[11] U. S. Fjordholm, S. Mishra, and E. Tadmor. Eno reconstruction and eno interpolation are stable. Foundations of Computational
Mathematics, 13(2):139–159, 2013.

[12] U. S. Fjordholm and D. Ray. A sign preserving weno reconstruction method. Journal of Scientific Computing, pages 1–22,

2016.
[13] B. Fornberg, E. Larsson, and N. Flyer. Stable computations with gaussian radial basis functions in 2-d. Technical report,

Department of Information Technology, Uppsala University, 2009.

[14] B. Fornberg and C. Piret. A stable algorithm for flat radial basis functions on a sphere. SIAM Journal on Scientific Computing,
30(1):60–80, 2007.

[15] B. Fornberg and G. Wright. Stable computation of multiquadric interpolants for all values of the shape parameter. Computers

& Mathematics with Applications, 48(5):853–867, 2004.
[16] B. Fornberg, G. Wright, and E. Larsson. Some observations regarding interpolants in the limit of flat radial basis functions.

Computers & Mathematics with Applications, 47(1):37–55, 2004.

[17] S. Gottlieb, D. I. Ketcheson, and C.-W. Shu. High order strong stability preserving time discretizations. Journal of Scientific
Computing, 38(3):251–289, 2009.

[18] A. Harten, B. Engquist, S. Osher, and S. R. Chakravarthy. Uniformly high order accurate essentially non-oscillatory schemes,
iii. Journal of Computational Physics, 71(2):231–303, 1987.

[19] J. Hesthaven. Numerical Methods for Conservation Laws: From Analysis to Algorithms. Society for Industrial and Applied

Mathematics, 2018/04/06 2017.
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