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Abstract 

Diverse studies have confirmed the adverse impact of global climate change in lakes. In order 
to establish effective water quality management policies, it is essential to understand how the 
heat exchange between the atmosphere and the lake evolves under these conditions. Lake 
Surface Water Temperature (LSWT), which is the key coupling parameter at the interface of 
the Atmospheric Boundary Layer (ABL) and the lake surface layer is often considered the 
reference climate variable in this context. The temporal development of the lake heat content is 
mainly controlled by the net Surface Heat Flux (SurHF) at this interface. LSWT, ABL 
conditions and SurHF are linked and may vary in space and time. However, past studies often 
relied on single point measurements for SurHF estimation and this can result in significant 
errors in the heat budget analysis, particularly over large lakes.  

In this thesis, the dynamics of SurHF over Lake Geneva, the largest water body in Western 
Europe, were investigated with an emphasis on the effect of spatial heterogeneity of the LSWT 
and meteorological parameters on two different scales. A large-scale study for the whole surface 
of the lake was carried out using meteorological data and satellite images with a pixel size of 1 
km2 that can depict large-scale thermal patterns, but not the meso- or small-scale processes. To 
address the SurHF aspects at the meso-scale level, an airborne system for resolving LSWT with 
a ~1 m pixel resolution was developed that allowed investigating the structure of the processes 
on scales within a satellite pixel. 

In a multi-annual large-scale analysis, the SurHF of Lake Geneva was estimated for a 7-y period 
(2008 to 2014). Data sources included hourly maps of over-the-lake reanalysis meteorological 
data from a numerical weather model, LSWT from satellite imagery, and long-term temperature 
depth profiles at two locations. The most common formulas for different heat flux components 
were combined and calibrated at two locations based on the heat content balance in the water 
column. When optimized for one lake temperature profile location, SurHF models failed to 
predict the temperature profile at the other location due to the spatial variability of 
meteorological parameters. Consequently, a procedure for calibrating the optimal SurHF 
models was developed using two profile locations. The combination of the modified 
parameterization of the Brutsaert equation for incoming atmospheric radiation and of similarity 
theory bulk parameterization algorithms for turbulent SurHF provided the most accurate SurHF 
estimates. It was found that if a calibration was not carried out optimally, the calculated change 
in heat content could be much higher than the observed annual climate change-induced trend. 
The developed calibration procedure improved parameterization of bulk transfer coefficients, 
mainly under low wind regimes. 

The optimized and calibrated set of bulk models was then used to compute the spatiotemporal 
SurHF. Model results indicated an average spatial range of > ± 20 Wm-2. This was mainly 
caused by wind-sheltering over parts of the lake, which produced spatial anomalies in sensible 
and latent heat fluxes. During spring, much less spatial variability was evident compared to 
other seasons. The spring variability was caused by air-water temperature differences and, to a 
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lesser extent, global radiation variability, again due to sheltering by the surrounding 
topography. Analysis of the ABL showed statistically unstable conditions during the whole year 
except from March to early June and also that this regime change could explain the low SurHF 
spatial anomalies obtained during spring. In addition, investigation of lake heat content 
variations induced by SurHF indicated a cooling period from 2008 to 2012, with an onset of 
warming in 2013. This trend is consistent with the recorded long-term heat content variation of 
Lake Geneva, and other worldwide observations. The results emphasized that spatial variability 
in the meteorological and the LSWT patterns, and consequently the spatiotemporal SurHF data, 
should be taken into consideration when assessing the time evolution of the heat budget of large 
water bodies. 

To resolve LSWT at meso-scales, a measurement platform for aerial thermography of inland 
water bodies was developed. It consists of a tethered Balloon Launched Imaging and 
Monitoring Platform (BLIMP), equipped with an uncooled InfraRed (IR) camera that records 
the LSWT, and an autonomous catamaran (called ZiviCat) that simultaneously measures in situ 
surface/near surface temperatures. Correcting the spatial and temporal noise of the IR camera 
(nonuniformity and shutter-based drift, respectively) was found to be vital prior to image 
registration. A feature matching-based algorithm, combining blob and region detectors, was 
implemented to create composite thermal images. The results indicate that a high overlapping 
field of view is essential for image fusion and noise reduction over such low-contrast scenes. 
Finally, by using the in situ temperatures for radiometric calibration, meso-scale LSWT maps 
were generated that revealed spatial LSWT variability with unprecedented detail. 

The meso-scale patterns, based on four selected daytime (afternoon) LSWT maps resolving a 
sub-pixel satellite area of less than 1 km2, indicated various cold-warm patches and streak-like 
structures over the lake with a LSWT contrast of > 2°C during spring and > 3.5°C during 
summer. The cold season data did not show significant meso-scale spatial LSWT heterogeneity, 
and hence SurHF variability. For representative spring and summer cases, the corresponding 
SurHF contrasts were found to be > 20 Wm-2 and > 40 Wm-2, respectively. Implementing a 
spatial mean filter, the effect of LSWT spatial heterogeneity on the SurHF estimation of the 
satellite pixelwise results was studied. Increasing the averaging filter size reduced the standard 
deviation of the SurHF patterns, but did not show a major effect on the median values of the 
distributions. However, the spatial mean value of SurHF during the summer field campaign, 
where the ABL was very stable, showed a reduction of ~3.5 Wm-2 from high, O(1 m) to low 
O(1 km) pixel resolution. Investigating the effect of errors in the meteorological condition 
sampling revealed that higher wind speed, and lower air temperature and relative humidity 
result in higher surface cooling and SurHF spatial contrast. It was also found that increasing air 
temperature, and consequently shifting from unstable to very stable ABL conditions, tend to 
alter the SurHF distribution from negatively skewed to positively skewed, and hence affect the 
mean SurHF estimates. This was mainly attributed to the substantial variation of latent heat flux 
under near-neutral ABL conditions.   

This thesis provides new concepts and insight for improving the heat budget analysis of inland 
water bodies. It highlights the challenges of SurHF model parameterization and calibration, and 
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estimates the effect of SurHF spatial variability on the total heat content evolution of a large 
lake, in particular under the threat of climate change. A measurement platform and an image 
processing procedure for the airborne thermography of lakes is proposed, and the effect of 
meso-scale LSWT heterogeneity on the estimation of SurHF is evaluated, since it is considered 
to be an important physical process in limnology.  

 

Keywords: Surface heat flux, lake surface water temperature, meteorological forcing, Lake 
Geneva, meso-scale thermal pattern, thermal imagery, remote sensing, model calibration, heat 
content. 
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Zusammenfassung 

Der Einfluss des globalen Klimawandels und dessen mögliche Folgen auf die Langzeitdynamik 
von Seen ist in der Literatur klar dokumentiert. Vielfach wird dabei die See-
Oberflächentemperatur (SOT) als der beste Indikator für diese Entwicklung herangenommen, 
weil die SOT ein Schlüsselparameter für die Kopplung zwischen der atmosphärischen 
Grenzschicht (AGS) und der Seeoberfläche ist. Die zeitliche Entwicklung des thermischen 
Zustandes von Seen, d.h. ihr Wärmeinhalt, wird hauptsächlich durch den Netto-
Oberflächenwärmestrom (OWS) an dieser Grenzfläche bestimmt. SOT, AGS-Bedingungen 
und OWS hängen miteinander zusammen und können sowohl räumlich als auch zeitlich 
variieren. Dennoch wurden in der Vergangenheit zur der Berechnung des OWS vielfach Daten 
eines einzigen Messpunktes im See verwendet, was insbesondere bei großen Seen zu Fehlern 
in der Wärmebilanz führen kann.  

Die vorliegende Arbeit befasst sich mit der Dynamik des OWS über Westeuropas größtem 
Binnengewässer, dem Genfer See. Der Schwerpunkt liegt dabei auf der Beurteilung der 
Bedeutung der räumlichen Heterogenität von OWS und den meteorologischen Parametern auf 
zwei verschiedenen Skalen. Zunächst werden die großskaligen Prozesse, die die gesamte 
Oberfläche des Sees einbeziehen, mit Hilfe von Satellitendaten, die eine räumlich Auflösung 
von etwa 1 km2 haben, untersucht. Satelliten-Daten können zwar großskalige thermische 
Muster erfassen, nicht aber meso- oder kleinskalige Prozesse. Um die Dynamik des OWS im 
Mesoskalenbereich zu studieren, wurde ein Ballon-gestütztes Thermographie System und ein 
Bildverarbei-tungskonzept mit einer Auflösung von ~1m entwickelt, das die Auflösung und 
somit Verifizierung von Satellitendaten im Subpixelbereich ermöglicht. 

In der Großskalen-Analyse wurde der OWS des Genfer Sees für eine Siebenjahresperiode 
(2008-2014) abgeschätzt. Als Datengrundlage dienten unter anderem stündliche, aufgearbeitete 
meteorologische Daten eines numerischen Wettermodells, SOT-Daten basierend auf 
Satellitenbildern sowie Langzeit-Wasser Temperaturprofile an zwei Stellen im See. 

Zunächst wurden die zwei gängigsten Ansätze zur Berechnung der einzelnen Komponenten des 
Wärmestroms kombiniert und anhand einer Wärmeinhalts-Bilanz an zwei Stellen kalibriert. 
Wurden die OWS-Modelle lediglich für eine Stelle optimiert, waren sie nicht in der Lage das 
Temperaturprofil an der anderen Stelle vorherzusagen. Dies ist auf die räumliche   Variabilität 
der meteorologischen Parameter zurückzuführen. Folglich wurde ein Verfahren entwickelt mit 
dessen Hilfe  die OWS-Modelle anhand von Profilen an zwei Stellen im See kalibriert wurden. 
Eine Kombination aus einer modifizierten Parametrisierung der Brutsaert Gleichung für die 
atmosphärische Strahlung mit, auf der Ähnlichkeitstheorie basierenden Bulk-
Parametrisierungen für den turbulenten OWS lieferten die genausten Schätzungen des OWS. 
Es konnte gezeigt werden, dass eine Vernachlässigung der zwei Punkt Kalibrierung 
Unterschiede im berechneten Wärmeinhalt zur Folge haben kann, welche wesentlich grösser 
sind als der jährlich beobachtete, durch den Klimawandel verursachte Trend. Die Kalibrierung 
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verbesserte die Parametrisierung der Bulk-Transferkoeffizienten hauptsächlich unter 
windarmen Bedingungen. 

Im nächsten Schritt wurde mithilfe der optimierten und kalibrierten Bulk-Modelle der räumlich-
zeitliche OWS berechnet. Die mittlere räumliche Variabilität lag dabei im Bereich von 20 
W/m². Dies ist in erster Linie darauf zurückzuführen, dass einige Teile des Sees windgeschützt 
sind, was zu räumlichen Unterschieden der fühlbaren und latenten Wärmeströme führt. Im 
Frühling war eine erheblich geringere räumliche Variabilität zu erkennen im Vergleich zu den 
übrigen Jahreszeiten. Die Variabilität im Frühling wurde in erste Linie durch 
Temperaturunterschiede zwischen Wasseroberfläche und Atmosphäre und in geringerem 
Masse durch topographiebedinge Unterschiede in der Globalstrahlung verursacht. Basierend 
auf einer Analyse der AGS herrschten, mit Ausnahme von März bis Anfang Juni, ganzjährig 
statistisch instabile AGS Bedingungen. Dieser Wechsel von instabilen zu stabilen 
atmosphärischen Bedingungen erklärt die geringe räumliche Variabilität des OWS im Frühling. 
Einer Analyse der OWS bedingten Änderungen des Wärmeinhalts zufolge, gab es zwischen 
2008 und 2012 eine Abkühlungsperiode, wohingegen das Jahr 2013 den Beginn einer 
Erwärmungsperiode markiert. Dieser Trend spiegelt sich auch in den Langzeit-Schwankungen 
des, auf den zuvor erwähnten zwei Punkt-Messungen basierenden, Wärmeinhalts des Genfer 
Sees sowie in anderen weltweiten Beobachtungen wider. Die hier vorgestellten Ergebnisse 
verdeutlichen, daß räumliche Unterschiede in meteorologischen Bedingungen und der See-
Oberflächentemperatur, und folglich räumlich-zeitlich variable OWS-Daten, bei der 
Bestimmung der zeitlichen Entwicklung der Wärmebilanz von großen Seen berücksichtig 
werden sollten. 

Um die SOT Dynamik im Mesoskalenbereich aufzulösen, wurde ein Messsystem für Ballon 
gestützte Thermographie von Binnengewässern entwickelt. Das System besteht aus einer 
Ballon-gebundenen Plattform (Balloon Launched Imaging and Monitoring Platform - BLIMP), 
ausgestattet mit einer ungekühlten Infrarot (IR) Kamera zur Aufzeichnung der SOT, sowie 
einem autonomen Katamaran (ZiviCat), welcher gleichzeitig in-situ Messungen von 
Oberflächenwasser- und Lufttemperatur durchführt. Eine Korrektur des räumlich-zeitlichen 
Rauschens der IR-Kamera vor der Bildregistrierung hat sich als unverzichtbar erwiesen. Ein 
auf Feature-Matching basierender Algorithmus, welcher Blob- und Regions-Erkennung 
kombiniert, wurde implementiert um zusammenhängende thermische Bildfolgen zu generieren. 
Aus den Untersuchungen lässt sich schließen, daß zur Bildfusion und Rauschreduktion solch 
kontrastarmer Szenen wie man sie an der Seeoberfläche findet, eine hohe Überlappung der 
Bildfelder notwendig ist. Unter Verwendung der gemessenen in-situ Temperaturen zur 
Kalibrierung des Radiometers, wurden mesoskalen SOT-Karten erstellt, welche eine räumliche 
Variabilität der SOT in einem bisher nicht dagewesenem Detailgrad erkennen lassen.  

Basierend auf SOT-Karten, welche an vier ausgewählten Nachmittagen aufgenommen wurden 
und den Subpixelbereich von Satelliten auflösen (< 1 km²), konnten verschiedene kalt-warm 
Bereiche und schlierenartige Strukturen mit einem SOT Unterschied von > 2°C im Frühlings 
und > 4°C im Sommers identifiziert werden. Während der kalten Jahreszeit konnte keine 
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signifikante räumliche SOT-Heterogenität und somit OWS-Variabilität festgestellt werden. Die 
OWS-Unterschiede waren typischerweise im Frühling > 20 Wm-2, während des Sommers > 40 
Wm-2. Mithilfe eines räumlichen Mittelungsfilters wurde der Effekt einer räumlichen OWS-
Heterogenität auf die OWS-Abschätzung basierend auf pixelweisen Satellitendaten untersucht. 
Eine Vergrößerung des Mittelungsbereichs führte zu einer Reduktion der Standardabweichung 
von OWS-Mustern, hatte aber keinen erheblichen Einfluss auf die Medianwerte der 
Verteilungen. Der räumliche Mittelwert des OWS während der Sommermessreihe, mit einer 
sehr stabilen AGS, wies hingegen eine Reduktion von ca. 3 Wm-2 zwischen einer hohen (d.h. 
O(1 m)) und einer niedrigen (d.h. O(1 km)) Pixelauflösung auf. Eine Untersuchung des Effekts 
von Fehlern bei der Messung der meteorologischen Bedingungen zeigte, dass höhere 
Windgeschwindigkeiten sowie eine niedrigere Lufttemperatur und relative Luftfeuchtigkeit 
sowohl zu einer höheren Oberflächenkühlung als auch zu größeren räumlichen Kontrasten im 
OWS führen. Des Weiteren konnte gezeigt werden, daß eine zunehmende Lufttemperatur und 
der damit einhergehende Wechsel von einer instabilen zu einer sehr stabilen AGS, dazu neigt, 
die OWS-Verteilung von einer linksschiefen zu einer rechtsschiefen Verteilung zu verschieben. 
Somit beeinflusst eine Änderung der Lufttemperatur ebenfalls den Mittelwert des OWS, was in 
erster Linie darauf zurückzuführen ist, dass sich die Richtung des fühlbaren Wärmestroms von 
Abkühlung zu Aufwärmung ändert. 

Diese Doktorarbeit hat neue Konzepte und Perspektiven für die Analyse der Wärmebilanz von 
Binnengewässern aufgezeigt und dabei die Herausforderungen bei der Parametrisierung und 
Kalibrierung von OWS-Modellen hervorgehoben. Der Einfluß einer räumlichen Variabilität der 
SOT auf die Entwicklung des gesamten Wärmeinhalts von großen Seen wurde untersucht und 
dessen signifikante Bedeutung im Genfer See nachgewiesen. Abschließend wurde eine 
Messplattform und ein Bildverarbeitungs-konzept zur Ballon gestützten Thermographie von 
Seen vorgestellt sowie der Effekt der Heterogenität der SOT im Mesoskalenbereich auf die 
Abschätzung des OWS abgeschätzt.  

 

Stichwörter: Oberflächenwärmestrom, See-Oberflächentemperatur, meteorologische 
Bedingungen, Genfer See, mesoskale thermische Muster, Wärmebildkamera, Fernerkundung, 
Modell-Kalibrierung, Wärmeinhalt. 
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1.1. Lake surface water temperature and surface heat flux  
1.1.1.  Response to climate change: Worldwide spatial heterogeneity 

Lakes, as an essential part of the water cycle, play a vital role in supplying domestic water as 

well as in agricultural and industrial applications. Therefore, monitoring and investigation of 

their physical, chemical and biological states, both in short-term and long-term, are crucial for 

water resource management (Carpenter et al. 2011). The on-going global and regional impacts 

of climate change on the water cycle underscore the need for the relevant data acquisition and 

analysis schemes to monitor and characterize the lake water status. In a global-scale, 

development of some networks to measure the environmental data around the world, and share 

them among the research communities have been growing in the last decade. In this context, 

the Global Lake Ecological Observatory Network (GLEON, last accessed 5 March 2018) is 

motivated by researchers having the goal to share and interpret the “high resolution sensor data 

to understand, predict and communicate the role and response of lakes in a changing global 

environment” (Hanson et al. 2018), and has led to some publications in the physical limnology 

(e.g., O’Reilly et al. 2015; Sharma et al. 2015; Woolway et al. 2017). 

Lake Surface Water Temperature (LSWT), which is the key coupling parameter at the interface 

of the Atmospheric Boundary Layer (ABL) and the lake surface layer, has been listed as an 

essential climate variable (Adrian et al. 2009; Arvola et al. 2010). A worldwide study by 

O’Reilly et al. (2015) indicated a mean warming rate of 0.34 °C decade-1 for summer LSWT 

between 1985 to 2009 by investigating more than 200 lakes around the globe. However, a high 

level of spatial heterogeneity in warming rates (or cooling rates in some cases) was found. They 

attributed this to the diversity of airside climate variables (Eastman and Warren 2013; Ji et al. 

2014), and of morphometric properties of the lakes that may influence the efficiency of the heat 

transfer (Toffolon et al. 2014), and hence the LSWT warming rate. The lake thermal status, i.e., 

lake heat content, depends on the net Surface Heat Flux (SurHF), thermal energy variation by 

inflows and geothermal heat flux. In lakes with a large surface area, SurHF, when integrated 

over time, is the dominant factor controlling lake temperatures (Henderson-Sellers 1986; Van 

Emmerik et al. 2013; Fink et al. 2014). In addition, on the airside, climate change affects air 

temperature, wind speed, relative humidity and cloud cover, which directly impact SurHF 

(Adrian et al. 2009). The LSWT, SurHF and ABL conditions, which are coupled (Woolway et 

al. 2015; Tozuka et al. 2017), not only reflect the response of a water body to climate change 

(Woolway and Merchant 2017), they also indirectly affect gas exchange and other chemical 
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and biological reactions at the air-water interface (Garbe et al. 2004; Cole et al. 2010; Bonvin 

et al. 2013). 

These parameters, i.e., LSWT, SurHF and ABL conditions, are likely to vary between lakes (as 

discussed above), and also be spatially heterogeneous within large lakes (discussed in section 

1.1.2.). To ascertain their spatial and temporal variability, accurate data gathered at appropriate 

intervals as well as properly calibrated formulas are essential. 

1.1.2. Measurement and estimation methodologies 

The LSWT data include in situ measurements and remote sensing. Depending on the 

measurement depth, surface water temperature is commonly classified as skin (less than a 

millimeter) or bulk (more than a few centimeters) temperature, while the former is usually < 

0.5 °C colder than the latter (Fairall et al. 1996; Minnett et al. 2011; Wilson et al. 2013).  For 

the in situ data, an in-air radiometer or an in-water thermistor is usually used to measure the 

skin (Wilson et al. 2013) or bulk (e.g., Gillet and Quetin 2006; Van Emmerik et al. 2013) 

LSWT, respectively. In a novel approach, the long-term variation of LSWT at a point can also 

be estimated from the air temperatures by using a simple lumped model (Piccolroaz et al. 2013). 

This approach requires tuning of a SurHF model for individual lakes (Toffolon et al. 2014). 

Using multiple points in large lakes, the tuning may also be spatially variable (Piccolroaz et al. 

2018).  

Spaceborne satellite thermal images are frequently employed to resolve the large-scale thermal 

patterns (e.g., Schwab et al. 1992; Sima et al. 2013; Riffler et al. 2015). These data reveal a 

remarkable (compared to the global warming rate) LSWT spatial variability over large lakes. 

For instance, an average LSWT spatial contrast of  > 3 °C and > 4 °C was reported for Lake 

Garda (Italy) (Pareeth et al. 2016) and Lake Superior (USA/Canada) (Xue et al. 2015), 

respectively, using the summertime satellite images. However, the satellite data cannot depict 

meso- or small-scale processes. Hereinafter, by large-scale, meso-scale and small-scale patterns 

we mean horizontal structures with O(>100 m), O(1-100 m) and O(<1 m) dimensions, 

respectively (this is different from the definition in oceanography). Satellite data are usually 

validated against point measurements, considered to be representative for a sizeable surface 

area (typical pixel size ~1 km2). Airborne thermography using an infrared camera, which has 

received little attention, allows one to spatially resolve meso-scale surface water patterns (Ferri 
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et al. 2000; Castro et al. 2017). Such data are also valuable for quantification of the uncertainty 

associated with the satellite-based thermal investigation of a water body. A large-scale analysis 

using satellite date is discussed in chapter 3, while chapters 4 and 5 describe an airborne 

platform and the obtained meso-scale data for the study site (see section 1.2.).  

SurHF depends on incoming and outgoing radiation (incoming solar shortwave and infrared 

from the sky, outgoing radiation from the water), latent (evaporative) and sensible (convective) 

heat fluxes, and precipitation. The effect of precipitation on the SurHF of European lakes is 

neglected due to its minimal influence on SurHF (Livingstone and Imboden 1989; Rimmer et 

al. 2009; Fink et al. 2014). SurHF is commonly determined based on (i) direct measurement 

using the eddy covariance technique and a net radiometer, or (ii) employing bulk formulas that 

requires LSWT and meteorological data. While the former is usually performed at a single 

location (e.g., Laird and Kristovich 2002; Assouline et al. 2008; Rouse et al. 2008; Blanken et 

al. 2011; Nordbo et al. 2011; Van Emmerik et al. 2013; Zhang and Liu 2014; Li et al. 2015), 

the latter can be done at a single point (e.g., Schertzer 1978; Henderson-Sellers 1986; Lenters 

et al. 2005; Woolway et al. 2015), at multiple points (e.g., Rimmer et al. 2009; Verburg and 

Antenucci 2010; Spence et al. 2011), or over the entire water body (e.g., Schneider and Mauser 

1991; Lofgren and Zhu 2000; Phillips et al. 2016; Moukomla and Blanken 2017), depending 

on the availability of LSWT and meteorological data. The reported results from large lakes 

emphasize that the spatial variability of SurHF, principally due to LSWT heterogeneity and 

variable meteorological conditions, can be important, and potentially can influence long-term 

climate studies. For example, the monthly spatial standard deviation of SurHF over Lake Huron 

(USA/Canada) was estimated to vary between 7 to 21 Wm-2 for summertime (Lofgren and Zhu 

2000). The reported spatial variability of SurHF in large lakes is mainly due to turbulent SurHF 

heterogeneity. A comprehensive multi-annual study on the spatiotemporal variation of SurHF 

over a large lake, and the critical factors underlying such variability is given in chapter 3.  

The thermal behavior of a water body can also be obtained by numerical simulation. It can be 

done using a one-dimensional (1D) (e.g., Tanentzap et al. 2007; Momii and Ito 2008; Austin 

and Allen 2011; Stepanenko et al. 2014; Thiery et al. 2014a; Thiery et al. 2014b; Yang et al. 

2017), or three-dimensional (3D) (e.g., Bai et al. 2013; Beletsky et al. 2013; Wahl and Peeters 

2014; Xue et al. 2015) hydrodynamic modeling. In numerical modeling, an error in the 

temperature of the near-surface layer is attenuated with time (about one month for 1°C 
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temperature deviation in the near-surface layer), a behavior that is attributed to “self-

restoration”. This behavior can lead to deviations from the observed surface thermal patterns 

(Xue et al. 2015). In a recent study, Dommenget and Rezny (2018) reported that the flux 

correction (as the surface boundary condition) could result in better simulated climate responses 

than the numerical model tuning. In this context, reliable spatiotemporal patterns of SurHF are 

preferred (and required) for the lake thermal modeling.   

As discussed before, bulk formulas are usually employed to calculate SurHF. There are various 

formulations in the literature for the radiative, evaporative and convective SurHF terms 

(Brutsaert 1975; Henderson-Sellers 1986; Brunke et al. 2002; Brodeau et al. 2017). These 

formulas are based on different concepts and require specific parameters. Ideally, these 

parameters are known for a given set of conditions (e.g., a lake), but, in practice, they should 

be calibrated. Furthermore, their possible combinations give rise to numerous net SurHF 

models. The functionality of such models over a water body, particularly for long-term analysis, 

needs to be investigated. This is discussed in details in chapter 1. 

1.2. Study site: Lake Geneva 
1.2.1.  General overview 

This dissertation is focused on the LSWT and SurHF spatial variation, using Lake Geneva 

(Local name: Lac Léman) as an outdoor “laboratory”. It is the largest lake in Western Europe 

which plays a vital role in providing drinking water, and supporting tourism, fishery and 

transportation for the surrounding area. Located between Switzerland and France, Lake Geneva 

is a deep, crescent-shaped perialpine lake with a mean surface altitude of 372 m. It is 

approximately 70-km long, with a maximum width of 14 km, a surface area of 582 km² and a 

volume of 89 km³. The mean residence time of the lake is ~11.3 y (The “Commision 

Internationale de la Protection des Eaux du Leman”; CIPEL, last accessed 1 February 2018). 

Lake Geneva is composed of two basins: an eastern, large basin called the Grand Lac, with a 

maximum depth of 309 m, and a western, small, narrow basin called the Petit Lac, with a 

maximum depth of approximately 70 m (Fig. 1.1). The high solar radiation in spring and 

summer results in a thermally stratified profile in the lake. During winter, the thermocline 

deepens, but usually does not disappear.  

The surrounding topography has a major influence on the wind-induced pattern over large lakes 

(e.g., Lemmin and D’Adamo 1996; Rueda et al. 2005; Valerio et al. 2017). The lake is 



CHAPTER 1 

6 
 

surrounded by the Jura Mountains in the northwest, and by the Alps in the south and, to a lesser 

extent, the northeast (Fig. 1.1). This topography creates a “corridor” through which two strong 

dominant winds pass over most of the lake surface, namely the Bise, coming from the northeast, 

and the Vent, from the southwest (Fig. 1). Wind speeds are generally weak and barely exceed 

5 ms-1. However, Lemmin and D’Adamo (1996) showed that on average, the western part of 

the Grand Lac and most of the Petit Lac experience higher wind speeds than the eastern part of 

the Grand Lac due to topographic sheltering. In addition, due to topographic sheltering, a small 

region on the eastern end of the lake experiences minimal average wind speeds throughout the 

year. Another consequence is the occurrence of lower near-shore wind speeds, particularly 

along the southern shore. The time variation of spatial anomalies of wind patterns, along with 

other parameters, over Lake Geneva are presented in chapter 3.  

 

 

 

 

 

 

 

 

 

 

 

 
Fig. 1.1. Location and bathymetry (see the legend in the right part) of Lake Geneva, adapted from a public domain 

satellite image (NASA World Wind, last accessed 1 February 2018) and bathymetry data (SwissTopo, last accessed 

1 February 2018). SHL2 (red star, 46.45° N, 6.59° E) and GE3 (white diamond, 46.3° N, 6.22° E) are two historical 

monitoring points in the lake. Arrows labeled Bise and Vent indicate the direction of the strongest winds that pass 

over the lake. Rhône-in and Rhône-out show the lake’s main river inflow and outflow locations, respectively. 

 

1.2.2.  Surface water temperature and heat content variability  

CIPEL (last accessed 1 February 2018) has measured Conductivity-Temperature-Depth (CTD) 

profiles regularly since 1957 at locations SHL2 (309 m depth) and GE3 (70 m depth) in the 

Grand Lac and Petit Lac (Fig. 1.1.), respectively, at a frequency of 1 to 2 profiles per month. 

Grand Lac 
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These data were used in some studies for numerical model tuning and validation, out of which 

the multi-annual thermal response of the lake to climate change was investigated using 1D 

models (Perroud et al. 2009; Perroud and Goyette 2010; Goyette and Perroud 2012). Although 

the overall trends seem reasonable, the temperature profiles at the mid and deep parts were not 

captured very well. Their results show a temperature increase of 2.32-3.8 °C and 2.2-2.33 °C 

over a13-decade period in monthly epilimnic and hypolimnic temperatures, respectively. 

Some near-shore measured data were also employed to study the thermal behavior of Lake 

Geneva. A warming rate of  ~0.065 °Cyr-1 was reported for the near-surface water temperature 

of Lake Geneva using a 28-y daily recorded data at 2 m on the south bank of the lake (Gillet 

and Quetin 2006). The effect of small-scale turbulence on over-lake water vapor, and hence 

heat flux and vertical energy balance of Lake Geneva were reported (Vercauteren et al. 2008; 

2009; Vercauteren et al. 2011). The measurements used collected on Aug-Oct 2006, 100 m 

from the northern shore close to Buchillon, in a 3-m deep section of the lake. They obtained the 

sensible and latent heat fluxes using the eddy covariance method. A method was then proposed 

to estimate wet surface evaporation. This required estimation of sensible heat flux and air 

temperature, humidity and wind speed values at one level only.  

The focus of this dissertation is on thermal patterns of Lake Geneva. Since the near-shore data 

may be affected by coastal mixing, they are not suitable for the selected heat balance 

methodology (see chapter 2). Therefore, the temperature profiles at SHL2 and GE3 locations 

are used to calibrate the SurHF models. The concept of water column heat content (Go, [Jm-2]) 

is used in this study:  

,
0

,o

H

w p wG t C T z t dz  (1.1) 

where ρw and Cp,w are the density [kgm-3] and the specific heat capacity of water at constant 

pressure [Jkg-1°C -1], respectively, and T(z,t) represents vertical temperature profile [°C] at time 

t down to water column depth z = H [m]. Based on this, the heat content difference between 

SHL2 and GE3 for a 35-y period (1970 to 2014) was calculated and plotted in Fig. 1.2. The 

results illustrate that the heat content variation may include positive and negative rates, which 

can be an indicator of the temporal variation of the climate patterns over Lake Geneva. It also 

demonstrates that the observed warming of the lake is usually damped by a cooling period, 

although the overall trend shows a net warming (dashed line in Fig. 1.2). This analysis suggests 
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that a multi-annual study is needed for SurHF model calibration and heat budget investigation 

of the lake. 

 

Fig. 1.2. Temporal evolution of heat content difference between SHL2 and GE3 estimated from temperature 

profiles from 1970 to 2014. The solid black lines show the piecewise linear trends by setting the intervals manually. 

The dashed line indicates the linear trend for the entire period. 

 

Satellite data indicate that the spatial heterogeneity of LSWT can be significant over water 

bodies (discussed in section 1.1.2.). A few studies examined the spatial variability of LSWT 

over Lake Geneva (Oesch et al. 2005; 2008). Advanced very high resolution radiometer 

(AVHRR) together with moderate resolution imaging spectroradiometer (MODIS) satellite 

imagery were employed to monitor the diurnal/nocturnal LSWT patchiness during a 13-d period 

in summer 2003. They suggest that the observed warm/cold LSWT regions may result from 

thermocline undulations, lake-land breezes and large-scale circulation forced by the wind field 

over the lake (Lemmin and D’Adamo 1996). 

Figure 1.3 shows two daily (before noon) examples of LSWT spatial anomaly maps of Lake 

Geneva using Landsat-8 and (AVHRR) satellite data on 15 August 2013 (with less than 1.5 h 

time lag). The two images show similar large-scale patterns with a significant temperature 

contrast (~4 °C) over the entire lake. The effect of this variability on the mean SurHF, and hence 
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the total heat content of the lake has to be quantified. Furthermore, the comparison with the 

high resolution data can be used to assess the uncertainty associated with coarse resolution 

images. Landsat 8 (Fig. 1.3a) provides higher resolution images, and consequently a better 

indication of LSWT patchiness, than AVHRR (Fig. 1.3b). However, the imaging frequency is 

every 16 d (USGS, last accessed 1 February 2018) which makes it unsuitable for statistical 

analysis. Therefore, AVHRR data are used to study the multi-annual large-scale thermal 

patterns of Lake Geneva (see chapters 2 and 3). Thermography at the meso-scale level allows 

resolution of LSWT heterogeneity at the sub-pixel scale. As yet, to our knowledge, such data 

are available neither for Lake Geneva nor for other European lakes (Dörnhöfer and Oppelt 

2016). This is presumably due to the challenges intrinsic to the airborne thermal imagery over 

natural waters (discussed in chapter 4). 

 

Fig. 1.3. Examples of LSWT spatial anomaly maps of Lake Geneva on 15 August 2013 using: (a) Landsat-8 image 

(100-m resolution interpolated to 30 m), and (b) AVHRR image (~1 km resolution). The Swiss coordinate system 

with km length-based units (CH1903) is used in these plots. Colors are identified in the legend in (a). 

 

1.3. Research objectives and approaches 

With respect to the literature and illustrations given above, the main objectives of this 

dissertation are (i) to characterize the large-scale spatial variability of LSWT, meteorological 

parameters and SurHF over Lake Geneva (an archetype of a large, mid-latitude lake), (ii) to 

quantify the effect of SurHF spatial heterogeneity on the total heat content estimates of a large 

lake, (iii) to identify the critical factors underlying the SurHF spatial variability of Lake Geneva, 



CHAPTER 1 

10 
 

and (iv) to resolve the LSWT at meso-scales, and accordingly quantify the uncertainty of SurHF 

estimates at large-scales due to in-pixel LSWT heterogeneity. 

LSWT patterns from AVHRR (~1 km resolution), hourly maps of over-the-lake assimilated 

meteorological data from a numerical weather model (COSMO; 2.2-km resolution) run by the 

Swiss Federal Office of Meteorology and Climatology (MeteoSwiss, last accessed 1 February 

2018) and long-term temperature depth profiles at two locations (SHL2 and GE3 in Fig. 1.1) 

were used for the large-scale thermal investigation. A SurHF model was optimized and 

calibrated for a 7-y period (March 2008 to December 2014) to achieve the first three objectives. 

A measurement platform including a balloon-launched platform for aerial thermography and a 

catamaran for ground-truthing was proposed for meso-scale study. An image processing 

procedure was then proposed to create the composite LSWT maps at meso-scales (~1 m 

resolution). A few examples of field measurements covering different ABL conditions were 

then selected to quantify the effect of LSWT meso-scale heterogeneity on SurHF estimations 

at sub-pixel satellite scales.  

This dissertation is comprised of the following chapters:  

Chapter 2- focusses on the SurHF model optimization and calibration for a 7-y period study. 

A quasi-1D water column heat balance approach was used at two locations in the lake. In a 

comprehensive study, the functionality of various SurHF bulk formulas (combinations of 

existing formulas for different heat flux components) in reproducing the lake’s heat content was 

assessed. In addition, the impact of estimating the lake’s heat content based on profile data from 

two measurement locations, as opposed to calibrations based on a single station, was 

investigated. Based on that, optimal formulas and parameterizations for SurHF calculation of 

Lake Geneva were obtained. This model was used in chapters 3 and 5. The sensitivity of the 

lake heat budget to the variation of the optimal calibration factors in a long-term analysis was 

also evaluated.  

Chapter 3- uses the results of chapter 2 to obtain the typical monthly range of SurHF spatial 

variability over Lake Geneva. The full AVHRR data and meteorological patters were used for 

this study. The major meteorological factors controlling the dominant heat flux terms that 

determine spatial thermal patterns were obtained through statistical analyses.  

Chapter 4- describes the measurement platform and the image processing algorithm to obtain 

the meso-scale LSWT patterns over a large water body. (i) Correction of spatial and temporal 
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noise inherent within uncooled thermal cameras and intensified for water thermography, (ii) 

implementation of a procedure for thermal image fusion and registration, and (iii) 

georeferencing and radiometric calibration of the composite image were illustrated in this 

chapter.  

Chapter 5- uses the developed tools in chapters 2 and 4 to compute the surface cooling patterns 

with 1-m resolution. With these results, the impact of meso-scale LSWT heterogeneity on the 

large-scale SurHF (obtained in chapter 3) was quantified. Four different field campaigns 

containing different ABL conditions were selected and analyzed for this purpose.  

Chapter 6- includes a conclusion of the previous chapters of this dissertation as well as some 

possible future research questions. 

Appendix A- presents the temporal variation of lake-wide mean SurHF components and heat 

content using the results of chapter 3. A cross-correlation analysis was carried out to obtain the 

dominant SurHF terms underlying the total heat content variation. The results also demonstrate 

the time-lag between the lake’s thermal responses to each of SurHF terms.  

 

The dissertation structure is based on the manuscripts that are (or will be) submitted to peer-

reviewed journals. For consistency and continuity within each of them, they are presented in 

their unedited form (except for some minor changes). Therefore, the content of the chapters 

may be in part repetitive.  
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Abstract 

Net surface heat flux (SurHF) was estimated from 2008 to 2014 for Lake Geneva 

(Switzerland/France), using long-term temperature depth profiles at two locations, hourly maps 

of reanalysis meteorological data from a numerical weather model and lake surface water 

temperatures from calibrated satellite imagery. Existing formulas for different heat flux 

components were combined into 54 different total SurHF models. The coefficients in these 

models were calibrated based on SurHF optimization. Four calibration factors characterizing 

the incoming long-wave radiation, sensible and latent heat fluxes were further investigated for 

the six best performing models. The combination of the modified parameterization of the 

Brutsaert equation for incoming atmospheric radiation and of similarity theory based bulk 

parameterization algorithms for latent and sensible surface heat fluxes provided the most 

accurate SurHF estimates. When optimized for one lake temperature profile location, SurHF 

models failed to predict the temperature profile at the other location due to the spatial variability 

of meteorological parameters between the two locations. Consequently, the optimal SurHF 

models were calibrated using two profile locations. The results emphasize that even relatively 

small changes in calibration factors, particularly in the atmospheric emissivity, significantly 

modify the estimated long-term heat content. Lack of calibration can produce changes in the 

calculated heat content that are much higher than the observed annual climate change-induced 

trend. The calibration improved parameterization of bulk transfer coefficients, mainly under 

low wind regimes. 

 

Keywords: Surface heat flux, meteorological forcing, Lake Geneva, model calibration, bulk 

parameterization algorithm, radiation heat flux, turbulent heat flux   
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2.1.  Introduction  

Surface heat flux (SurHF) and wind forcing control stratification dynamics and have a major 

influence on the physical, chemical and biological properties of lakes (e.g., MacIntyre et al. 

2002; Churchill and Charles Kerfoot 2007; Bonvin et al. 2013; Finlay et al. 2015). For many 

lakes, changes in heat content are mainly due to SurHF variations, as shown in both short-term 

investigations (Van Emmerik et al. 2013) and long-term climate change studies (Arvola et al. 

2010; Fink et al. 2014). SurHF temporal variations are often obtained from measurements taken 

at a single location, e.g., at the deepest point in the lake (e.g., Heikinheimo et al. 1999; Laird 

and Kristovich 2002; Rouse et al. 2003; Rouse et al. 2008; Nordbo et al. 2011; Van Emmerik 

et al. 2013; Woolway et al. 2015a), using bulk formulas (e.g., Schertzer 1978; Henderson-

Sellers 1986; Lenters et al. 2005; Woolway et al. 2015b) or 1D numerical modeling (e.g., 

Tanentzap et al. 2007; Momii and Ito 2008; Austin and Allen 2011; Stepanenko et al. 2014; 

Thiery et al. 2014a; Thiery et al. 2014b; Yang et al. 2017). Such quasi one-dimensional (1D) 

estimates are then considered representative for the whole lake. Although the single location 

approach might be suitable for small water bodies, spatial variability of SurHF due to variable 

meteorological conditions can be important for large lakes (e.g., Lofgren and Zhu 2000; Xue et 

al. 2015; Moukomla and Blanken 2017). Data from multiple locations permit the investigation 

of SurHF spatial variability, and the availability of such data is growing (e.g., Rimmer et al. 

2009; Verburg and Antenucci 2010; Spence et al. 2011). A systematic evaluation of the validity 

and performance of SurHF models at more than one location has received little attention in the 

literature, especially for long-term studies. Here, we examine the impact of using data taken at 

two locations on the bulk SurHF model optimization and calibration, and then compare it to the 

common one-point approach.  

An additional source of uncertainty is the selected SurHF model itself. SurHF models involve 

several terms for the relevant physical processes. For each of these terms, different formulations 

exist. Some studies aimed to improve and optimize individual SurHF terms (e.g., Fairall et al. 

1996; Zeng et al. 1998; Crawford and Duchon 1999; Rimmer et al. 2009; Wang et al. 2014). 

However, the effect of combining different equations for all the relevant SurHF terms and 

optimizing them as a set has not been evaluated. 

In this study, we calibrated different combinations of SurHF term equations (with each term 

describing a different heat exchange mechanism) to quantify the heat content variation of a 
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large lake for a 7-y period (2008-2014). We also assessed the impact of using time series of 

temperature profiles taken at two measurement points, instead of at only one point, for the 

calibration and estimation of SurHF. Lake Geneva, the largest freshwater lake in Western 

Europe, is a suitable study site since the required data are available. Specifically, the following 

questions were addressed: 

(i) What is the optimal combination of bulk formulas for modeling SurHF in a given lake? 

(ii) What is the impact of estimating the lake’s heat content based on profile data from two 

measurement locations, as opposed to calibrations based on a single station? 

(iii) Using the example of Lake Geneva, how sensitive is the lake heat budget variation to the 

optimal calibration factors in a long-term analysis? 

The methodology is developed here using two locations. However, it can be extended to more 

than two locations. In fact, by increasing the number of locations, it can be expected that the 

performance of the lakewide SurHF model will be further improved. 

2.2.  Materials and procedures 

2.2.1.  Study site 

Located between Switzerland and France, Lake Geneva (Local name: Lac Léman) is a large, 

deep perialpine lake with a mean surface altitude of 372 m. It is approximately 70-km long, 

with a maximum width of 14 km, a surface area of 582 km² and a volume of 89 km³. The lake 

is composed of two basins: an eastern, large basin called the Grand Lac, with a maximum depth 

of 309 m, and a western, small narrow basin, the Petit Lac, with a maximum depth of 

approximately 70 m (Fig. 1.1). The main inflow (Rhône-in) and outflow (Rhône-out) of the lake 

are shown in Fig. 1.1. The lake is surrounded by the Jura Mountains in the northwest, and by 

the Alps in the south and, to a lesser extent, the northeast (Fig. 1.1). This topography leads to 

two dominant wind fields, namely the Bise coming from the northeast, and the Vent from the 

southwest (Lemmin and D’Adamo 1996). On average, due to topographic sheltering, the 

eastern part of the Grand Lac experiences lower wind speeds than the western part of the Grand 

Lac and most of the Petit Lac. However, the two monitoring locations, SHL2 located in the 

Grand Lac and GE3 in the Petit Lac (Fig. 1.1), for which all the required data for model 

calibration are available, are located in the part of the lake where the surrounding topography 

is flat and topographical sheltering effects can be neglected. 
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2.2.2.  Energy balance in a water column 

The total heat content of a water column, Go [Jm-2], is given by:  

,
0

,o

H

w p wG t ρ C T z t dz  (2.1) 

where ρw and Cp,w are the density [kgm-3] and the specific heat capacity of water at constant 

pressure [Jkg-1°C-1], respectively, and T(z,t) represents vertical temperature profile [°C] at time 

t down to water column depth z = H [m]. The heat content variation from time t1 to time t2 then 

can be quantified by:  

1 2 2 1o ooG G Gt t t t  (2.2) 

The heat content variation in the water column over the full lake depth (∆Gm) is the sum of the 

net energy flux into it and includes net SurHF, QN, advective (lateral) heat transport, Qad, and 

geothermal heat flux, Qge: 
2

1

1 2
ˆ ˆ ˆ ˆ

m

t

N ad ge
t

G t t Q t Q t Q t dt  (2.3) 

The contribution of the Qad and Qge terms to ∆Gm were compared with that of QN. For advective 

heat transport, note that the measurement locations in the present study are far from shore and 

the river mouth (Fig. 1.1), and so river input effects can be considered to be small, as is evident 

from the long theoretical residence time of Lake Geneva (11.3 y, CIPEL, last accessed 18 

January 2018). The contribution of advective heat flux, Qad, to the heat content variation in the 

water column, ∆Gm, may be important in lakes with short flushing times due to river inflows 

(Carmack 1979).  In large lakes, the advective heat flux may be significant in certain areas 

where persistent currents move water from one thermal regime to another, such as the 

Keewenaw current in Lake Superior (Zhu et al. 2001), or the bi-directional flow in the Straits 

of Mackinac (Anderson and Schwab 2017). However, the mean circulation pattern that is most 

often observed in large lakes is primarily a cyclonic circulation, with well-developed along-

shore currents in the near shore zone and mostly weak currents of more random orientation in 

the central region of the lake (e.g., Emery and Csanady 1973; Simons 1980; Boyce et al. 1989; 

Beletsky et al. 1999; Beletsky and Schwab 2008). With this circulation pattern, steady shore-

perpendicular currents advecting heat towards the center of the lake are rare. In their numerical 

modeling of Lake Superior, Bennington et al. (2010) observed that cyclonic circulation 

dominates and that there is no correlation between the daily anomalies of the local temperature 
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gradient in the meridional direction and the daily anomalies of the current speed in the zonal 

direction outside the near shore boundary layer. Derecki (1976) reported that heat advection 

can be ignored for Lake Erie during most of the year. Based on numerical modeling, a two-gyre 

(Simons 1980) or three-gyre (Akitomo et al. 2004) large-scale circulation pattern may 

sometimes be present in large lakes. 

In most studies cited in the literature, contributions by Qad and Qge are ignored and it is assumed 

that ∆Gm can be approximated by only considering QN. In order to determine whether such a 

quasi-1D approach is justified in Lake Geneva, we estimated the contribution of Qad using a 3D 

hydrodynamic model. A detailed simulation was performed for a representative period (January 

to October 2010), as described in the Supplemental Information (SI) section. The results (Fig. 

S2.3) show that far from shore and the main inflow, the Rhône river (Fig. 1.1), at the locations 

where the present study is carried out, the contribution of SurHF, QN, to the heat content 

variation is much higher than that of lateral advection, Qad. For the whole lake, the heat content 

variation due to advective heat flux is high in the near shore zone and low in the center of the 

lake (Fig. S2.4), in agreement with Bennington et al. (2010). Thus, in the present analysis, 

advective heat flux, Qad, is ignored.  

Although the geothermal heat flux, Qge, is not known for Lake Geneva, it is reported to be small 

in many Swiss lakes, typically ~ 0.1 Wm-2 (Finckh 1976), and its contribution is ignored here. 

However, we briefly quantify below the impact of this (potential) flux on the estimated 

parameter values. 

The net input energy, ∆Gm [J m-2], is calculated by time-integrating the net SurHF, QN [Wm-2], 

for a given period (Eq. 2.3). The energy balance in the water column can then be written as 

(Van Emmerik et al. 2013; Fink et al. 2014; Nussboim et al. 2017):  

2

1

ˆ ˆ
t

o m N
t

G G Q t dt  (2.4) 

The net heat flux at the air-water interface (positive when directed into the water), QN, in Eq. 

2.4 is given by: 

N sn an br ev co prQ Q Q Q Q Q Q  (2.5) 
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where the right-hand side terms describe the flux due to solar shortwave radiation, Qsn, 

incoming long-wave radiation from the sky, Qan, back long-wave radiation, Qbr, latent 

(evaporation, Qev), sensible (convection, Qco), and precipitation (Qpr) heat fluxes. The effect of 

precipitation, Qpr, on the SurHF of European lakes is neglected due to its minimal influence on 

SurHF (Livingstone and Imboden 1989; Rimmer et al. 2009; Fink et al. 2014). In order to use 

Eqs. 2.1, 2.4 and 2.5, water and atmospheric field data input are required. 

2.2.3.  Water temperature profiles 

CIPEL has measured water temperature profiles (for Eq. 2.1) since 1957 at locations SHL2 

(309 m depth) and GE3 (70 m depth) in the Grand Lac and Petit Lac (Fig. 1.1), respectively, at 

a frequency of 1 to 2 profiles per month. In total, 130 Conductivity-Temperature-Depth (CTD) 

profiles at SHL2 and 78 profiles at GE3 are available for the study period (2008 - 2014). Based 

on these temperature profiles, the water column heat content variation (Eq. 2.1) at these two 

locations was calculated (Fig. S2.5). 

2.2.4.  Satellite data 

Lake Surface Water Temperatures (LSWT) are needed for Eq. 2.5. Riffler et al. (2015) 

determined the LSWT for 25 lakes in and near the Alps from a long-term archive of AVHRR 

satellite imagery (1.1 km × 1.1 km pixel size). The satellite-based temperatures agreed well 

with the near-surface in situ measurements for our study with a bias and RMSE within the range 

of -0.5 to 0.6 K and 1.0 to 1.6 K, respectively. This range of values favorably corresponds with 

another long-term LSWT calibration for Lake Geneva (Oesch et al. 2005). In this study, we use 

the same data set as Riffler et al. (2015) (4384 images from 1 March 2008 to 31 December 

2014) to retrieve LSWT at the SHL2 and GE3 locations. Images with more than 70% lake 

coverage were selected, resulting in a total of 856 diurnal images and 308 nocturnal images. 

Missing pixels in these images were interpolated spatially using Barnes interpolation (Koch et 

al. 1983; Liston and Elder 2006). The present analysis requires a pixelwise spatially resolved 

time series of surface temperature. These were derived from the spatially interpolated LSWT 

maps. Time series were produced using Piecewise Cubic Hermite polynomials (Fritsch and 

Carlson 1980). Figure 2.1a shows the variation of LSWT (labeled Tw in the figures) at the SHL2 

and GE3 locations (the nearest pixels in the satellite images) smoothed with a 30-d moving 

average. On average, SHL2 has a higher skin temperature than GE3 in summer and winter (Fig. 
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2.1a). A shift in the Tw distribution at the two locations is evident from the smoothed Probability 

Density Function (PDF) of the LSWT (Fig. S2.6a). 

2.2.5.  Meteorological data  

Meteorological data over Lake Geneva are not measured. However, since 2008, the Swiss 

Federal Office of Meteorology and Climatology (MeteoSwiss, last accessed 18 January 2018) 

has run a numerical weather model, COSMO-2, which provides hourly output on a 2.2 km × 

2.2 km grid. Lakes are distinguished from land by using a lake model in COSMO-2 (Mironov 

2008). COSMO-2 data include spatiotemporal maps of wind speed (10 m above the lake), air 

temperature (2 m above the lake), relative humidity (2 m above the lake), cloudiness, global 

radiation and air pressure. Model results are systematically verified against over-land surface 

data in Switzerland and Europe (MeteoSwiss). This study is based on reanalysis COSMO-2 

datasets (assimilated results are based on past field observations) for the period from 1 March 

2008 to 31 December 2014. To investigate the quality of COSMO-2 results further, we 

compared these data with measurements taken at meteorological stations located around the 

lake (Fig. S2.7a). Our analysis indicates a high correlation between these measurements and 

the COSMO-2 outputs (Fig. S2.7b), with the exception of wind speed, which has a higher local 

spatiotemporal variability. For wind speed, the cross correlation between different stations is 

similar for COSMO-2 results and in situ measurements, which confirms the capability of the 

COSMO-2 model to represent realistic large-scale wind patterns over Lake Geneva (Fig. 

S2.7c).  

Smoothed meteorological data with a 30-d moving average are shown in Figs. 2.1b-f, for the 

SHL2 and GE3 locations (PDFs of the raw hourly data are presented in Figs. S2.6b-f). The 

differences between the two locations in variation and distribution of wind speed, U10, (Figs. 

2.1b and S2.6b), and relative humidity, ϕrel, (Figs. 2.1e and S2.6e), are pronounced. In 

particular, the average wind speed is higher at GE3 than at SHL2 (Fig. 2.1b). The probability 

density of low wind speeds (1-3 ms-1) is also lower at GE3 (Fig. S2.6b). This is due to the 

differences between the characteristics and fetch of the two dominant winds, Bise and Vent, as 

described above (Fig. 1.1). 
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Fig. 2.1. Time series of Lake Surface Water Temperature (LSWT) and meteorological data smoothed with a 30-d 

moving average at SHL2 and GE3 employed in the SurHF calculations: (a) LSWT, Tw, (b) wind speed, U10, (c) 

global radiation, Qsc, (d) air temperature, Ta, (e) relative humidity, rel , and (f) cloudiness, C. 

 

2.2.6.  Model calibration procedure 

The net SurHF, i.e., the air-water heat exchange in Eq. 2.5, is usually estimated using bulk 

formulas. These formulas are based on different concepts and require specific parameters. 

Ideally, these parameters are known for a given set of conditions (e.g., a lake), but, in practice, 

they should be calibrated. 

For each of the five SurHF terms in Eq. 2.5 that remain to be solved, there are various 

formulations available in the literature, and their possible combinations give rise to numerous 

net SurHF models. In this study, we evaluated 54 net SurHF model combinations and report 

here in more detail the results for the six combinations considered optimal. Details of the 

formulas and parameters are presented in the SI (Tables S2.1-S2.4). The relative contributions 

of the incoming long-wave radiation and latent heat flux (evaporation) on the long-term 

variation of lake heat budgets are more significant compared to other heat flux terms (Kuhn 

1978), a finding confirmed in our study (details not reported). There is a similarity between the 
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formulas for the Qev and Qco estimation that is attributed to the physical analogy between 

processes controlling humidity and air temperature. Therefore, we re-examined Qan, Qev and 

Qco, and recalibrated them. We used one model for Qsn and Qbr, two models for Qan, and three 

models for the Qev/Qco calculations in Eq. 2.5. Table 2.1 summarizes the references and the 

corresponding calibration factors for each SurHF component. The combination of equations 

used in each of the six SurHF models is given in Table 2.2.  

 

Table 2.1. Selected bulk formulas and their corresponding calibration coefficients for five 

surface heat flux (SurHF) components, Details of each model are given in Tables S2.1-S2.4  

SurHF components and equations References 
Corresponding 

calibration 
factors 

Solar 
shortwave 
radiation 

Qsn Eq. S2.1 Cogley (1979); Fink et al. 
(2014) - 

Atmospheric 
long-wave 
radiation 

Qan1 Eq. S2.2 Brutsaert (1975) Can and Ccloud 

Qan2 Eq. S2.3 Crawford and Duchon 
(1999) Clc and Clt 

Back radiation Qbr Eq. S2.4 Livingstone and Imboden 
(1989); Fink et al. (2014) - 

Latent 
(evaporation) 
and sensible 
(convection) 
heat fluxes 

(Qev  + Qco)1 Eq. S2.5 Bowen (1926); Murakami 
et al. (1985) Cmur and Cb 

(Qev  + Qco)2 Eq. S2.6 Ryan et al. (1974); Gill 
(1982) Ce,r and Ch,r 

(Qev  + Qco)3 Eq. S2.7 

Monin and Obukhov 
(1954); Woolway et al. 

(2015b) 
Cm2 and Cq1 
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Table 2.2. Equations used in each of the six selected surface heat flux (SurHF) models. See 

Table 2.1 for references for each heat flux term (details are given in Tables S2.1-S2.4) 

Model Number Constituent Equations 

1 Qsn + Qan1 + Qbr + (Qev + Qco)1 

2 Qsn + Qan1 + Qbr + (Qev + Qco)2 

3 Qsn + Qan1 + Qbr + (Qev + Qco)3 

4 Qsn + Qan2 + Qbr + (Qev + Qco)1 

5 Qsn + Qan2 + Qbr + (Qev + Qco)2 

6 Qsn + Qan2 + Qbr + (Qev + Qco)3 

 

The calibration factors listed in Table 2.1 were optimized based on energy conservation over 

time, (Eq. 2.4). The Generalized Likelihood Uncertainty Estimation (GLUE) methodology 

(Beven and Binley 1992) was applied to calibrate the six SurHF models in Table 2.2. This 

methodology requires a validity range for each parameter, a sampling strategy for the parameter 

space and a likelihood measure for each parameter set. The range of different parameters was 

chosen according to physical limitations as well as their reported ranges in the literature, 

particularly for Swiss lakes. The details on the range of parameters and the sampling strategy 

can be found in the SI. To evaluate the temporal variation of the model heat content, the Root 

Mean Square Error (RMSE) with respect to observations was selected as the minimized 

optimization metric: 

2

1 1
1

o o m m

N

i i
i

G G G Gt t t t
RMSE

N
 

(2.6) 

where N is the number of total observations at the two measurement locations (SHL2 and GE3, 

Fig. 1.1) at time ti. However, in cases where RMSEs are close for different models, other 

metrics, such as correlation coefficient and standard deviation were used. 
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2.3.  Assessment and results 

2.3.1.  Model calibration and assessment 

2.3.1.1. Calibrated versus uncalibrated net surface heat flux models 

Various combinations of SurHF models were studied applying the water column energy balance 

First, we examined the performance of the different models using coefficient values given in 

the literature, with an emphasis on those used in other lake studies in Switzerland. These include 

Ccloud = 0.17, Can = 1.0592 and Cb = 0.62 as in Fink et al. (2014), Clt = 0.06 and Clc = 1.22 

(Crawford and Duchon 1999), Cmur = 1.2 10-7 (Murakami et al. 1985), Ce,r = 2.1 10-3 and 

Ch,r = 1.45 10-3 (Wahl and Peeters 2014), Cm2 = 0.11 and Cq1 = -2.67 (Zeng et al. 1998).  

A Taylor diagram (Taylor 2001) was used to determine how well the results of the six SHF 

models matched the observations (Eq. 2.4). The Taylor diagram (Fig. 2.2) provides a 

comparison between a group of models and a reference observation by combining correlation 

coefficients, RMSE and standard deviations in a single figure. Here, the reference is the heat 

content variation at the SHL2 and GE3 locations, ∆Go, calculated by Eqs. 2.1 and 2.2. The 

comparison groups are the heat content variation calculated with these six different net SurHF 

models, ∆Gm, estimated by Eq. 2.3. These models and their corresponding SurHF terms are 

described in Tables 2.1 and 2.2. The results reveal that the models using the predefined 

(uncalibrated) values lead to a high standard deviation and RMSE (1.2-7.7 GJm-2), and a low 

correlation coefficient (less than 0.4) compared to the observations. These substantial 

deviations emphasize the significance of performing a pre-analysis before applying the SurHF 

models for long-term air-water heat exchange investigations. Furthermore, the model-

observation deviation is higher for uncalibrated models using atmospheric emissivity as 

proposed by Crawford and Duchon (1999), εan2 (Eq. S2.3b, Table S2.1), resulting from an 

overestimation of Qan2 due to a presumably high (uncalibrated) Clc value, 1.22. Crawford and 

Duchon (1999) reported a monthly mean bias error of -9 to 4 W m-2 based on their data for a 1-

y period using this formula. In summary, all six models using these predefined coefficients 

failed to reproduce the heat content variation at both the SHL2 and GE3 locations. 
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Fig. 2.2. Taylor diagrams showing a statistical 

comparison of the individual net surface heat flux 

(SurHF) models with respect to observations. Both 

uncalibrated, “uc” (in red), and calibrated, “c” (in 

black), models are shown by their corresponding 

numbers (see Table 2.2). Green dashed lines, orange 

dashed lines and purple dashed lines indicate RMSE, 

standard deviation and correlation coefficient, 

respectively. The lower diagram is a zoom of the blue 

rectangle in the upper diagram. For details, see the 

text. 

 

Therefore, we followed the optimization and calibration procedure for all model combinations, 

as explained above, using a two-location calibration approach. The zoomed lower panel of Fig. 

2.2 presents the model-observation comparison for the optimum (calibrated) net SurHF models 

and the combined observations at SHL2 and GE3. The results show a great improvement over 

the uncalibrated estimations. Models 1 and 4 (Table 2.2), which calculate turbulent heat fluxes 

using (Qev  + Qco)1 have a higher correlation coefficient, lower RMSE and smaller standard 

deviation than Models 2 and 5 using (Qev  + Qco)2. The simple Murikami’s and Bowen’s 

formulations, (Qev  + Qco)1, yield a better estimation of Lake Geneva’s surface heat exchange 

than considering the effect of both free and forced convection in (Qev  + Qco)2. For the model of 

Ryan et al. (1974), turbulent heat fluxes, (Qev  + Qco)2, were derived under laboratory conditions 

where forced convection is not significant compared to free convection and the air-water 

temperature difference was greater than in natural systems. However, the similarity theory, (Qev  

+ Qco)3 in Table 2.1, applied in Models 3 and 6, reproduces the temporal variation of turbulent 

heat fluxes far better than the other two algorithms. 

Since the calibrated Models 3 and 6 have similar RMSEs, we applied additional statistical 

methods, i.e., correlation coefficient and standard deviation, to select the best model for SurHF 
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estimation. We also calculated the bias between the observed and modeled heat contents for 

each model. Models 3 and 6 result in nearly identical correlation coefficients and RMSEs 

(purple lines and green lines in Fig. 2.2). However, Model 3 gives a slightly better standard 

deviation than Model 6 (blue lines in Fig. 2.2) while the estimated bias using Model 6 is slightly 

smaller than Model 3. Although the temporal variation of heat contents by implementing Model 

3 and Model 6 are not noticeably different (results not shown), Model 3 was selected as the best 

model resulting from the Taylor diagram comparison (Fig. 2.2). 

2.3.1.2. Two-point versus one-point calibration 

Our analysis (Fig. 2.2) shows that, regardless of the chosen model, recalibration greatly 

improves the estimation of the long-term surface heat exchange for Lake Geneva. In order to 

determine whether there is a significant difference between the one-point and two-point 

calibrations, we calibrated the six SurHF models using either SHL2 or GE3 temperature 

profiles. Figure 4 shows the heat content variation comparison between observations ∆Go and 

Model 3 results ∆Gm. The SurHF model calibrated at SHL2 overestimates the SurHF at GE3 

(Fig. 2.3a), while SurHF values are underestimated at SHL2 using only the GE3 temperature 

profiles for model calibration (Fig. 2.3b). Therefore, SurHF models calibrated using only one 

temperature profile location fail to predict the profile at the other location. Similar results were 

obtained using the other five net SurHF models (results not shown). This confirms that there is 

a significant difference between the one-point and two-point calibration. 

 

Fig. 2.3. Heat content variation comparison between observations at SHL2 (green squares) and GE3 (blue 

triangles) employing Model 3 with a calibration at (a) SHL2, and (b) GE3. 
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2.3.1.3. Intercomparison of lake heat content variation 

A group of four optimal calibration factors was obtained for each of the six models, listed in 

Table 2.2, using the two-point calibration. For the remaining analysis, only these values are 

employed. The observed heat content variation, ∆Go, and the corresponding heat content 

variation using the six different calibrated models, ∆Gm, are compared in Fig. 2.4. Here, the 

model performances at SHL2 and GE3 are investigated separately. Using Models 2 and 5, the 

SHL2 and GE3 results are roughly distributed below and above the optimal dashed line, 

respectively, and have the largest scatter. This demonstrates that the worst combination of 

sensible-latent heat flux terms, (Qev  + Qco)2 (Eq. S2.6, Table S2.3), underestimates the SurHF 

at SHL2, while it is overestimated at GE3. Although this two-point separation is less 

pronounced using Models 1 and 4 (left panels of Fig. 2.4), these models still have a relatively 

higher RMSE and lower correlation coefficient compared to the best models (Fig. 2.2). Models 

3 and 6, which are the best models in terms of RMSE, employ similarity theory, (Qev  + Qco)3 

(Eq. S2.7, Table S2.3), for turbulent heat flux estimation. Model 3 uses Brutsaert’s formulation 

(Eq. S2.2, Table S2.1), while Crawford-Duchon’s approach (Eq. S2.3, Table S2.1) quantifies 

atmospheric radiation in Model 6. Therefore, using a more advanced model for the sensible-

latent SurHF calculation, Eq. S2.7, Table S2.3, not only leads to better model-observation 

statistics, but it also reproduces the heat content of individual points better than the other 

models. 

When comparing Models 1-3 (top panels) with Models 4-6 (bottom panels) in Fig. 2.4, it should 

be noted that in the top panels, the results for SHL2 mainly cluster above the optimal line, 

whereas those for GE3 are mainly below that line. Such a clear separation between the results 

of the two stations is less obvious in the bottom panels. Models 1-3 use the Brutsaert (1975) 

formulation for cloud cover, and the remaining models use the more complex model of 

Crawford and Duchon (1999). This latter formulation gives more realistic results in terms of 

the model bias.  
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Fig. 2.4. Heat content variation comparison between observations at SHL2 (green squares) and GE3 (blue 

triangles) for six different model combinations. The individual formulas used in each model are given in Table 2.2 

(see Tables S2.1-S2.4 for more details). 

 

Using the best and worst models (respectively, Model 3, closest to “obs” in Fig. 2.2, and Model 

2, furthest from “obs” in Fig. 2.2), time series of the modeled lake heat content at the calibration 

locations are compared with observations in Fig. 2.5. As stated above, the calibration factors 

are assumed constant. However, if each location is treated independently in the calibration 

process, there is little or no difference between the models (results not shown). This, again, 

demonstrates the significant improvement resulting from the two-point calibration and the use 

of optimal heat flux term concepts. 
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Fig. 2.5. Temporal evolution of the lake heat content. Model results compared to observations (points) at (a) SHL2, 

and (b) GE3 (see Fig. 1.1 for station location). Only the best (Model 3, black lines) and the worst (Model 2, grey 

lines) models are presented. Note that due to the difference in depth at the two locations, i.e., 309 m at SHL2 and 

70 m at GE3, the absolute values of heat content (vertical axis) have different magnitudes in (a) and (b). 

 

2.3.1.4. Intercomparison of net surface heat flux 

In order to compare the net SurHF, QN [Wm-2], at SHL2 and GE3 obtained with the six selected 

models using the best-fit parameters, the mean and standard deviation of QN were calculated 

for the period 1 January 2009 to 31 December 2014 (due to missing data, the January-February 

2008 results were excluded). The mean value of SurHF at GE3 is higher than at SHL2 in all 

models (Table 2.3). The mean SurHF difference ranges from 4 to 10.7 Wm-2 for Models 6 and 

2, respectively. In terms of mean net SurHF, Model 6, and to a lesser extent Model 1, are close 

to Model 3, while Model 2 has the largest deviation. The results of Models 5 and 6 have the 

maximum and minimum standard deviation differences with respect to Model 3 at the two 

locations. Consequently, there will be marked differences between the models if integrated over 

the entire lake and considered over an annual cycle. 

The mean net SurHF at SHL2 and GE3 are -1 and 3.4 Wm-2, respectively, for 2009-2014. The 

results indicate that on average, some parts of the lake, e.g., GE3, are warming at the same time 

as other regions are cooling down, e.g., SHL2, for this period. This emphasizes the importance 

of using multiple locations (or ideally the entire lake) instead of only one location for SurHF 

and lake heat content studies, especially for long-term analyses. The high standard deviation 
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values in Table 2.3 result from using hourly estimates. When the data are smoothed with a 30-

d moving average, standard deviations of 88.9 and 95.6 Wm-2 for SHL2 and GE3, respectively, 

are obtained with Model 3. Although the difference between these standard deviations is small, 

it shows that the SurHF distribution can vary systematically from one point to another over a 

large lake. Furthermore, the SurHF values are spread over a slightly wider range at GE3 than 

at SHL2. This distribution is the response to the combined contribution of various 

meteorological parameters, for which spatial variations are likely to occur. Figures 2.1 and S2.3, 

for example, illustrate this variability at the two studied locations. 

 

Table 2.3. Mean and standard deviation of net surface heat flux (SurHF), QN, at SHL2 and GE3 

using the six SurHF models specified in Table 2.2 for the period 2009-2014. Model 3, in bold, 

is the best model based on the results in the Taylor diagram (Figs. 2.2 and 2.4) 

 Location Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 

Mean 
[Wm-2] 

SHL2 -1.1 -6.2 -1.0 0.4 -2.5 -0.7 

GE3 4.7 4.5 3.4 4. 8 6.1 3.3 

Standard 
deviation 
[Wm-2] 

SHL2 221.9 219.4 232.4 219. 6 219.4 228.6 

GE3 223.2 220.2 238.9 222.2 219.6 235.8 

 
 

2.3.2. Surface heat flux estimation 

We calculated SurHF terms at two locations using the best model (Model 3), with the four best-

fit coefficient values Ccloud,opt = 0.11, Can,opt = 0.983, Cm2,opt = 0.01 and Cq1,opt = -1.52. The 

Ccloud,opt value is lower than Ccloud = 0.17 determined by Kuhn (1978) and used in other studies 

in Switzerland (Livingstone and Imboden 1989; Fink et al. 2014). The parameter Can,opt is also 

slightly lower than the values of 1.09 and 1.0592 employed in those studies. To verify the 

calibrated values for Ccloud and Can, we evaluated the computed atmospheric emissivity for the 

SHL2 and GE3 stations. The emissivity values, εan1 (Eq. S2.2b, Table S2.1), fluctuate between 

0.6 and 1, with the lower emissivity values being valid for clear skies and low air temperatures 
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in winter and the highest values during warm and fully cloudy summertime conditions. The Cm2 

and Cq1 factors will be further discussed in the next section. 

The calculated temporal variation of five SurHF terms and the net SurHF for the study period 

using Model 3 is presented in Fig. 2.6 (results were smoothed with a 30-d moving average). 

There is a high correlation (> 0.97) for the radiative heat fluxes, Qsn, Qan and Qbr at SHL2 and 

GE3. However, due to the difference in variation of wind speed, relative humidity and LSWT 

at SHL2 and GE3 (U10, ϕrel, and Tw in Figs. 2.2 and S2.6), the correlation coefficients of 

sensible, Qco, and latent, Qev, heat fluxes between SHL2 and GE3 are 0.8 and 0.63, respectively, 

based on hourly values. A correlation coefficient of 0.93 was found between the net SurHF QN 

at SHL2 and GE3. The mean and standard deviation of the different SurHF terms at both 

locations for the period 1 January 2009 to 31 December 2014 are given in Table 2.4. Examining 

the results for different SurHF terms reveals that radiative components mainly contribute to the 

variation of the mean net SurHF at each location. The higher standard deviation of the net 

SurHF at the GE3 location compared to SHL2 (Table 2.3) can be explained by the higher 

standard deviation values of turbulent heat fluxes at this location (Table 2.4). 

 
Fig. 2.6. Long-term time series of the surface heat flux (SurHF) terms and net SurHF of Lake Geneva at SHL2 

(green lines) and GE3 (blue lines) smoothed with a 30-d moving average obtained with Model 3: (a) solar radiation, 

Qsn, (b) atmospheric radiation, Qan, (c) back radiation, Qbr, (d) latent heat flux, Qev, (e) sensible heat flux, Qco, and 

(f) net SurHF, QN. The horizontal axis indicates the year. 
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Table 2.4. Mean and standard deviation of different surface heat flux (SurHF) terms at SHL2 

and GE3 using Model 3 for the period 2009-2014 

 
Location Qsn Qan Qbr Qev Qco 

Mean  

[Wm-2] 

SHL2 136.4 289.7 -371.4 -42.8 -12.9 

GE3 137.2 288.7 -367.5 -42.7 -12.3 

Standard 
deviation 
[Wm-2] 

SHL2 210.4 50.6 30.8 58.4 31.1 

GE3 210.7 50.2 30.6 64.7 39.8 

 

2.4.  Discussion  
2.4.1.  Bulk transfer coefficients 

The model assessment shows that using an appropriate model for the sensible-latent heat flux 

estimation is essential for the two-point calibration. The results indicate that some models fail 

to reflect the long-term heat content variation at two points. Based on the RSME, the bulk 

aerodynamic algorithm using the similarity theory and empirical relationships, (Qev  + Qco)3 in 

Table 2.2 (details in Eq. S2.7, Table S2.3), was the best model. Two components must be 

defined in this algorithm: turbulence stability functions, fm, fe and fh, and roughness lengths for 

momentum, temperature and humidity, z0, z0t and z0q, respectively. Details of the calculation 

procedure are given in the SI. Unlike the other selected models, i.e., (Qev  + Qco)1 and (Qev  + 

Qco)2 in Table 2.2, the heat transfer coefficients are not constant in this algorithm. The 

spatiotemporal values of the transfer coefficients, Cd,m, Ce,m and Ch,m, are defined as a function 

of the atmospheric stability parameter ( ζ , Eq. S2.7e, Table S2.3) using the Monin-Obukhov 

theory (Monin and Obukhov 1954). Even though wind speed is often considered to be the main 

physical parameter affecting the transfer coefficient values, other processes such as waves and 

relative humidity may also contribute (Toffoli et al. 2012). 

The obtained optimal values, Cm2,opt = 0.01 and Cq1,opt = -1.52, are, respectively, lower and 

higher than the optimum values of Zeng et al. (1998), i.e., Cm2,uc = 0.11 and Cq1,uc = -2.57. 
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Figure 2.7 illustrates the variation of Ce,m and Cd,m as a function of wind speed, U10, comparing 

the uncalibrated and calibrated factors. The coefficient Ch,m has a similar shape to Ce,m (not 

shown here). These curves were obtained by randomly sampling 2000 points from the dataset 

under unstable conditions (negative stability parameter, 0ζ ). Following the sensitivity 

analysis in Fig. S2.8, the difference between calibrated and uncalibrated factors results in lower 

(higher) humidity and temperature bulk transfer coefficients under low (high) wind speed 

conditions (Fig. 2.7a). We assumed a constant value of 0.013 for the Charnock parameter 

(Charnock 1955) in the calculation of the momentum roughness length, z0 (Eq. S2.8). Therefore, 

the drag coefficient, Cd,m, under high wind conditions (> 7 ms-1) is similar for uncalibrated and 

calibrated conditions (Fig. 2.7b).  

 

Fig. 2.7. (a) Humidity bulk transfer coefficient, Ce,m, and (b) drag coefficient, Cd,m, as a function of wind speed, 

U10, using uncalibrated (Cm2,uc = 0.11 and Cq1,uc = -2.57; in red) and calibrated parameters (Cm2,opt = 0.01 and Cq1,opt 

= -1.52; in blue). 

 

To verify the calibration factors, we compare the shape and range of these curves with some 

measurements taken over water. The general form of theses curves is similar to the measured 

values over inland and open waters (e.g., Wüest and Lorke 2003; Wei et al. 2016). Since we 

obtained lower values for both Cm2 and Cq1 than Zeng et al. (1998), the calibrated transport 

coefficients are smaller (higher) at low (high) winds than the uncalibrated coefficients in Fig. 

2.7. These coefficients are sensitive to the choice of parameterization, especially in low wind 

regimes (Webster and Lukas 1992). For weak winds, the measured data cover a wide range of 
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drag coefficients from ~ 2 × 10-3 to 2 × 10-2. Higher coefficient values (~ 2 × 10-2) are reported 

mainly for ocean experiments (Geernaert et al. 1988; Bradley et al. 1991) while lower values 

(~ 2 × 10-3) were observed over shallow coastal waters (Mahrt et al. 1996) and estuaries (Lin et 

al. 2002). Wei et al. (2016) found a high drag coefficient value of ~ 10-2 at a wind speed of ~ 1 

ms-1 for Lake Kasumigaura (Japan), while a value of ~ 2.5 × 10-3 was measured for Lake 

Neuchatel (Switzerland), for the same wind speed (Simon 1997). For Lake Kasumigaura, 

however, the humidity transfer coefficient was ~ 3 × 10-3 at 1 ms-1 wind speed, which is closer 

to our estimated values (Fig. 2.7a). Under high wind regimes, the calibrated value (~ 2 × 10-3) 

and the almost linear variation of the transfer coefficients are in agreement with reported 

measurements (Graf and Prost 1980; Merzi and Graf 1988; Mahrt et al. 1996; Babanin and 

Makin 2008; Toffoli et al. 2012; Wei et al. 2016). Although the transfer coefficient values are 

consistent with other studies, there is a shift in the wind speed under which these minima are 

observed. The minimum values of the transfer coefficients (~ 10-3) were obtained at a low wind 

speed of ~ 2 ms-1 (Fig. 2.7), whereas the minima reported in the literature are, for example, at 

~ 4 ms-1 (Mahrt et al. 1996; Lin et al. 2002) or ~ 5 ms-1 (Wüest and Lorke 2003; Wei et al. 

2016).  

The large scatter seen in the transport coefficients under weak wind regimes could be due to 

the measurement technique, method of statistical calculation, or site-dependent parameters. 

Recently, Wei et al. (2016) suggested some possible reasons for high values at low wind speeds, 

e.g., the lake surface current, wave effects, gustiness, etc. However, the behavior of transfer 

coefficients under low wind speeds is less clear. Mahrt et al. (1996) investigated the influence 

of fetch on the drag coefficient curve. They reasoned that the drag coefficient for a short fetch 

(< 4 km) is greater than for a long fetch, particularly for high wind speeds. They associated this 

variation to the wave field difference under different fetches. Their results also indicate that the 

drag coefficient for short fetches has a minimum at a wind speed of ~ 3 m s-1. Our results agree 

with the short-fetch results of Mahrt et al. (1996), especially for low wind speeds (< 3 ms-1). 

The variation of transport coefficients in this regime is mainly due to the second term in the 

right-hand side of Eq. S2.8, Cm2va/u*. Compared to measurements by Zeng et al. (1998), Wüest 

and Lorke (2003) and Wei et al. (2016), the lower transport coefficients at low wind speeds 

reported here are due to the small Cm2 value, 0.01, compared to the commonly used value of 

0.11. Other parameterizations for this term are proposed, e.g., Cm3σw/ρwu*
2 (Jin 1994; Bourassa 

et al. 1999), where Cm3 is a calibration factor and σw is the surface tension. Better insight into 
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realistic parameterizations could be obtained from systematic direct measurements of the 

atmospheric boundary layer. 

2.4.2.  Sensitivity of the calibration factors 

We quantified the effect of uncertainty associated with the four calibration factors using a 

straightforward sensitivity analysis in which one parameter was varied over a specific range 

while keeping the remaining three constant. The difference in heating/cooling caused by the 

different parameters is expressed as the temperature change in the near surface water layer, e.g., 

the upper 10 m of the water column, ∆T [°Cy-1], using: 

,

,

m sen

w p w sl

G
T

ρ C H
 ( .2 7) 

where ∆Gm,sen [Jm-2y-1] is the mean annual heat content change due to variation of the 

corresponding parameter, and Hsl is the surface layer depth [m]. This metric was used to 

compare the cooling/heating induced by employing uncalibrated SurHF box models with a 

warming water temperature trend. In this context, a ±1°Cy-1 variation is approximately equal to 

a ±1.3 Wm-2 bias in the estimation of the net SurHF.  

Figure 2.8 shows the effect on the heat content variation at SHL2 and GE3. The results indicate 

that relatively small deviations in calibration factors, particularly in Can, affect the lake’s 

temperature trend significantly and can be much higher than the annual climate change trend of 

0.065 °Cy-1 reported by Gillet and Quetin (2006) for the near surface layer. Variations in Can 

and Ccloud have a linear influence on the heat flux estimation (Figs. 2.8a and b) while the effect 

of an uncalibrated Cq1 and Cm2 is non-linear (Figs. 2.8c and d). This is due to non-linearity 

inherent in the turbulent heat flux parameterization. The sensitivity of the results to Can 

variations is striking (Fig. 2.8a), whereas variations of Cq1 are less marked (Fig. 2.8c). A small 

deviation in Can (< 1%) results in a noticeable change in the SurHF estimation (> 2.5 Wm-2), 

and consequently the lake heat content. The results are also sensitive to Ccloud. A ±10% variation 

of Ccloud leads to a bias of ~ ±1.6 Wm-2 in the estimation of net SurHF. 

The results also indicate that the responses to Cq1 and Cm2 at SHL2 and GE3 are different. The 

Cm2 variation has a more pronounced effect at SHL2 (Fig. 2.8c) while GE3 is more sensitive to 

Cq1 (Fig. 2.8d) due to the spatial variability of meteorological forcing and LSWT over Lake 
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Geneva. The differences in wind speed, LSWT and relative humidity are quite noticeable 

between the two locations (Figs. 2.1 and S2.6). Wind speed variations (Fig. 2.1b), for example, 

are on average higher at GE3 than at SHL2. Since the value of Cm2 mainly affects the intensity 

of turbulent heat fluxes at low wind regimes (Fig. S2.8a), the tendency for weak winds to occur 

at SHL2 reflects its sensitivity to Cm2. In contrast, stronger wind forcing at GE3 makes it more 

sensitive to the value of Cq1, which controls heat flux for high wind regimes (Fig. S2.8b). Again, 

these differences underscore the possible significant errors arising from single-point model 

calibration. 

 

Fig. 2.8. Sensitivity analysis of model-induced cooling/warming for the upper 10 m of Lake Geneva at SHL2 

(green lines) and GE3 (blue lines) depending on the optimum calibration factors for (a) Can, (b) Ccloud, (c) Cq1, and 

(d) Cm2. The vertical dashed lines indicate the position at the optimum values for each calibration factor resulting 

from our analysis. Note that there is a high amount of overlap between the green and blue lines in panels (a) and 

(b). 

 

The same analysis can be applied to quantify the effect of geothermal heat flux on the model 

calibration. The water column heat content variation due to geothermal bottom heating is ~ 

0.003 GJm-2y-1 using the typical value for the geothermal heat flux, i.e., ~ 0.1 Wm-2 (Finckh 
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1976), which is 100 times smaller than the calculated RMSE employing Model 3 (legends in 

Fig. 2.4). Since this variation is small, we did not repeat the optimization procedure with the 

updated heat content values. Instead, we used the sensitivity analysis results to estimate its 

effect on the obtained calibration factors. The calculated geothermal induced slight warming 

(0.003 GJm-2y-1) corresponds to a 0.08 °Cy-1 variation in a 10-m water column. 

2.5.  Comments and recommendations  

Large lakes can be characterized by considerable spatial variability in meteorological 

parameters. For example, the surrounding topography can exert a strong influence on the wind 

patterns and solar radiation, and hence on SurHF. LSWT may likewise exhibit significant 

spatial variability, mainly during the summertime. Therefore, the determination of SurHF at a 

single location only provides a partial understanding of the energy exchange dynamics over the 

whole lake surface and could result in significant errors in the estimation of SurHF for the whole 

lake. In addition, various formulations and parameterizations exist for different heat flux 

components, in particular for sensible and latent heat fluxes. Thus far, a systematic analysis of 

their optimal combination, which determines the net SurHF, has not been reported. In this study, 

we addressed these questions by expanding the net SurHF estimation for a 7-y period using a 

two-point calibration, instead of the commonly used one-point calibration. We tested 54 

different net SurHF models QN, and presented the results for the best six models associated with 

different combinations of one model for solar shortwave radiation Qsn, two models for 

atmospheric radiation Qan, one model for longwave radiation from the water surface Qbr, and 

three models for turbulent heat fluxes, i.e., sensible Qco and latent Qev heat fluxes. For the period 

2008 to 2014, we evaluated the heat content response of Lake Geneva to these models by 

implementing frequently used coefficients given in the literature for comparable water bodies. 

The analysis emphasizes the importance of choosing appropriate calibration factors when 

estimating the heat budgets of large lakes. Since none of the coefficients given in the literature 

provided acceptable SurHF estimates, optimization was used to find the best calibration factors 

for the selected SurHF models. However, the common approach of computing SurHF based on 

a single location did not result in satisfactory SurHF predictions at both locations. We found a 

high sensitivity of SurHF estimations to certain calibration factors indicating that a systematic 

calibration of bulk models is required for each study site. We demonstrated that a small 
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variation in calibration factors, especially those controlling atmospheric radiation, leads to a 

significant change in the heating/cooling estimation of the lake.  

The results indicate that multi-point (two-point in this study) calibration is best performed using 

a comprehensive model for sensible-latent heat flux calculation. The parameterization in the 

bulk formula based on similarity theory was found to account for the spatial variability 

adequately. On the other hand, the temporal variation of the air-water heat exchange is highly 

sensitive to the atmospheric radiation modeling. Note that all the tested models gave reasonable 

RMSE values for short periods, i.e., less than 2 y (Fig. 2.5). However, only a few of them gave 

satisfactory calibration over two points for longer periods, i.e., more than 3 y. Therefore, an 

accurate model selection and calibration is important for long-term climate studies, assuming 

that the calibration remains valid for a shifting temperature pattern.  

The results show that, for heat exchange analysis of large lakes, a properly calibrated 

atmospheric radiation model and an appropriate turbulent SurHF model are essential. The 

quality of the results is affected by model simplifications/limitations, errors in temperature 

measurements and AVHRR data retrieval, and uncertainties associated with meteorological 

data. However, the results are still reliable in terms of showing the need for optimized SurHF 

models, the advantage of two-point versus one-point calibration, and the sensitivity of the lake 

heat exchange to the actual values of different calibration factors. In this study, we used a 3D 

numerical simulation of Lake Geneva to quantify the negligible contribution of lateral heat 

exchange to the heat content variation of the water column far from the shore. In general, direct 

measurements of different heat flux terms and advective heat transport in the water body should 

be carried out, since this may further refine the validation of the different SurHF terms and the 

heat balance algorithm applied. Likewise, measurements from more than two points would 

extend and enhance the present survey. The methodology developed in this study and the results 

obtained improve the computation of the spatiotemporal SurHF over large lakes, and 

consequently give a better estimation of the total energy exchange at the air-water interface. At 

the same time, these results may increase the reliability of numerical weather modeling by better 

accounting for lake-atmosphere heat exchanges. 
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Text S2.1. Contribution of lateral (horizontal) advection to the water column 

energy balance 

In order to quantify the effect of lateral (horizontal) advection on the energy content of the water 

column, particularly at the SHL2 and GE3 locations, we used a 3D numerical model to calculate 

the effect of horizontal advection over the entire lake. This included locations SHL2 and GE3. 

The MITgcm code (Marshall et al. 1997) was applied to solve the Navier-Stokes equations 

under the Boussinesq and hydrostatic approximations. The 3D velocity and temperature fields 

were solved by the model with a finite-volume approach. Since salinity plays a minor role in 

determining the density of Lake Geneva, a constant value of 0.05 p.s.u. was assumed. COSMO-

2 hourly meteorological patterns provided the surface forcing. The model also includes the 

Rhône-in (Fig. 1.1) discharge and temperature data provided by Swiss Federal Office for the 

Environment (FOEN, last accessed 18 January 2018) and the Rhone outflow (Rhône-out in Fig. 

1.1) for water mass balance. A grid with a horizontal resolution of 173 m to 260 m, and 35 

depth layers (ranging in thickness from 0.5 m at the top to 37 m at the bottom) was generated. 

The model parameters were determined through a comprehensive study of Lake Geneva 

(Cimatoribus et al. 2018). The same model configuration was employed to study the effect of 

lateral heat exchange on the total heat content variation at SHL2 and GE3.  

We performed the modeling from January to October 2010. The model was initialized from rest 

on 16 November 2009 at 12:00, using the temperature profile recorded at SHL2 on that date as 

the initial condition. The model spin up finished by April 2010, and the simulation was run until 

the end of October 2010. Here, we present the results for the six-month period May to October 

2010. The measured temperature profiles up to 70-m depth at SHL2 and GE3 and the model 

results at these locations (Figs. S2.1 and S2.2) are in good agreement. 

At each grid cell, the 6-h average advective temperature fluxes, Fad,x, Fad,y, and Fad,z [oCm3s-1], 

were recorded. The horizontal advective temperature fluxes at each cell were then calculated 

following MITgcm guidelines (MITgcm, last accessed 18 January 2018). These fluxes were 

integrated over the entire column and multiplied by ,w p wρ C  to determine the rate of horizontal 

thermal energy transfer [W] into the water column. To compare this with the SurHF estimations 

[W per m2 of the surface], the values were averaged over ~ 1 km2 (satellite pixel resolution), 

and then multiplied by (surface area/lateral area) to obtain Qad  [Wm-2] (hereinafter m2 refers to 
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the m2 of the lake surface). Mean monthly absolute values were less than 10 Wm-2 (results not 

shown). We also computed the horizontal diffusive fluxes at each grid cell. As expected, they 

are much lower than the horizontal advective fluxes and thus were neglected in this analysis.  

 

Fig. S2.1. Comparison of measured temperature profiles (green squares) at SHL2 (for station location see Fig. 1.1) with the 

MITgcm model results (black lines) for May to October 2010. The water depth is ~ 309 m at this point. However, for 

visualization purposes only the first 70 m are shown (results for deeper depths are similar). 

 

 
Fig. S2.2. Comparison of measured temperature profiles (blue triangles) at GE3 (for station location see Fig. 1.1) with the 

MITgcm model results (black lines) for May to October 2010. 

 

To determine the contribution of advective heat flux, Qad, to the lake heat content (Eq. 2.3), the 

heat content variation due to Qad was compared with the heat content variation resulting from 



CHAPTER 2 

52 
 

the estimated SurHF QN for the numerical simulation period. The 6-h advective fluxes were 

used for Qad, and the hourly results for QN. Results (Fig. S2.3) indicate that the temporal heat 

content variation resulting from the advective heat fluxes remains nearly constant and is 

negligible compared to the net SurHF for the spatiotemporal scales of this study. Oscillations 

in Qad, more clearly seen for GE3, indicate that large-scale mixing and homogenization are 

more significant than unidirectional transport. 

 

Fig. S2.3. Comparison of cumulative heat content variation due to (i) the net SurHF (∆GN obtained from bulk modeling) and 

(ii) to lateral advection (∆Gad determined from 3D numerical modeling) at SHL2 and GE3 for the period May to October 2010. 

 

The standard deviation for the time series of water column heat content due to advective heat 

fluxes, i.e., the standard deviation of ∆Gad , was also calculated over the entire lake. Figure S2.4 

shows the map of this statistical parameter for the simulation period. It can be seen that the 

contribution of the advective heat fluxes is important for near-shore regions, whereas it is 

negligible for the central region of the lake where stations SHL2 and GE3 are located (for 

station location see Fig. 1.1). 



CHAPTER 2 

53 
 

 
Fig. S2.4. Spatial pattern of the standard deviation of the water column energy content variation, σ∆Gad [GJm-2], due to horizontal 

advective energy fluxes (Qad, [Wm-2]) for the period May to October 2010. In order to compare it with the energy content 

variation due to SurHF, the range of the color bar is equal to the standard deviation of ΔGN at SHL2 and GE3 (black lines in 

Fig. S2.3). The Swiss coordinate system with km length-based units (CH1903) was used.  

 

 
Fig. S2.5. Temporal evolution of lake heat content variation (the mean value is removed) using the measured temperature 

profiles at SHL2 (green squares) and GE3 (blue triangles). 
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Fig. S2.6. Probability density functions (PDFs) for hourly input data at SHL2 and GE3. (a) Lake surface water temperature 

(LSWT), Tw, (b) wind speed, U10, (c) global radiation, Qsc, (d) air temperature, Ta, (e) relative humidity, ϕrel, and (f) cloudiness, 

C.  
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Fig. S2.7. (a) Location of meteorological stations on the Swiss side of Lake Geneva operated by MeteoSwiss 

(black circles; GVE: Geneva airport, CGI: Changins, PRE: Saint-Prex, PUY: Pully, and BOU: Bouveret), and our 

station 100 m offshore (black cross; BUC: Buchillon). The shaded color shows the lake bathymetry, (b) Correlation 

coefficient, ρ, between hourly averaged ( θ ) in situ air temperature (obs) and COSMO-2 outputs (C2) at 

Changins and  Pully for 2013, and (c) Cross correlation (including autocorrelation) values between BUC and the 

other stations for in situ measurements (blue lines) and COSMO-2 outputs (green lines). The values on the abscissa 

of (c) are in hours. 
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Text S2.2. Selected surface heat flux (SurHF) models 

Radiation 

Tables S2.1 and S2.2 summarize formulas and coefficient values for estimating the radiative 

SurHF components, Qsn, Qan and Qbr, Eqs. S2.1 to S2.4 in Table S2.1, respectively. Part of the 

incident solar radiation is reflected at the water surface, denoted by the albedo coefficient, rs, 

which is divided into direct and diffusive parts. Several empirical formulas exist for the 

determination of the atmospheric long-wave radiation, Qan. Here, we considered two concepts 

that represent the relevant physics and provide widely used formulas. In Eq. S2.2b, Ccloud is a 

calibration factor that depends on the cloud type. Factor Can is another calibration factor that 

corrects the so-called leading coefficient proposed by Brutsaert (1975), i.e., 1.24 in Eq. S2.2b. 

This means that εan can physically reach a maximum value of unity under completely covered 

skies, i.e., C = 1 where C is cloudiness. The parameter εan2 was calculated employing the 

improved methods of Crawford and Duchon (1999). They added a seasonal adjustment, Clt, in 

Table S2.1-Eq. S2.3b, to the leading coefficient, Clc. According to their analysis, this time-

variable atmospheric emissivity better represents the monthly mean bias and root mean square 

errors of the observations.  
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Table S2.1. Bulk models used to calculate radiative surface heat flux (SurHF) components 

Cogley (1979); 
Fink et al. (2014) 

 (S2.1a) 

 (S2.1b) 

 (S2.1c) 

Stefan-Boltzmann 
law  (S2.2a) 

Brutsaert (1975)  (S2.2b) 

Stefan-Boltzmann 
law  (S2.3a) 

Crawford and 
Duchon (1999) (S2.3b) 

Stefan-Boltzmann 
law  (S2.4) 
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Table S2.2. Definition and values/formulas of the symbols used in Table S2.1 
Definitions Value 
C Cloudiness From COSMO-2 
Can Calibration factor - 
Ccloud Calibration factor - 
Clc Calibration factor - 
Clt Calibration factor - 

ea Water vapor pressure [hPa] 
5303.3

23.38 exp 18.1
273.15a

a rele
T

 

Fdiff Solar radiation diffusive fraction - 
Fdir Solar radiation direct fraction - 
Qsc Global radiation [Wm-2] From COSMO-2 
rs,diff Diffusive albedo a 0.066 

rs,dir Direct albedo b From Cogley (1979) 

Ta Air temperature [°C] From COSMO-2 
tm Numerical month e.g., 15 January = 1 
Tw Lake surface water temperature [°C] From satellite imagery 
εa Atmospheric emissivity - 
εw Water surface emissivity c 0.972 

ϕrel Relative humidity From COSMO-2 
σ   Stefan-Boltzmann constant [Wm-2°C -4] 5.67 10-8 

a Burt (1954); Fink et al. (2014) 
b In the present study, the modified mean monthly direct albedo for 46o latitude (Cogley 

1979) was used. For the SurHF calculation, hourly values were estimated by applying the 

Piecewise Cubic Hermite polynomials interpolation method (Fritsch and Carlson 1980). 

The effects of other atmospheric conditions, e.g., air pollution, and solar zenith angle on 

the direct/diffusive fraction are neglected. The daily variation of Qsn is mainly due to Qsc, 

which is taken into account. 
c     Davies et al. (1971) and Sweers (1976) recommended a value of εw = 0.972, which was 

used by Livingstone and Imboden (1989) and Fink et al. (2014), whereas Octavio (1977) 

suggested εw = 0.956. We applied the first value, i.e., 0.972, following previous studies in 

Switzerland.   
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Sensible and latent heat fluxes  

Due to the similarity between sensible, Qco, and latent, Qev, heat fluxes, they are often calculated 

with formulas having a similar form. To estimate them, three different pairs of equations, Eqs. 

S2.5 to S2.7 in Table S2.3, were selected, representing different concepts. The level of 

complexity in these formulas increases from Eq. S2.5 to Eq. S2.7. Table S2.4 shows the 

definition and values of the parameters in those equations. 

Murakami’s formulation, Eq. S2.5a, corresponds to the turbulent bulk latent heat flux formula 

without the influence of free convection, following a constant Dalton number. A constant 

Bowen ratio in Eq. S2.5b, Cb, was used to estimate the sensible heat flux with values of the 

latent heat flux, Qev1. The factor Cb is proportional to air pressure even though an average value 

is usually employed in SurHF estimation. Equation S2.6 takes into account the contribution of 

free convection to the sensible and latent heat flux calculations. Here, Ce,r and Ch,r are the Dalton 

and Stanton numbers, respectively, both of which are calibrated. In a more sophisticated 

approach, the turbulent SurHF is calculated by applying the bulk parameterization algorithms 

based on similarity theory and empirical relationships, Eq. S2.7. This formulation relates the 

surface layer data to surface momentum and heat fluxes. More information is given in the 

“Details of the model calibration procedure” section below.  
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Table S2.3. Selected bulk models for sensible and latent surface heat fluxes 

Murakami et al. 
(1985)  1 10 s aev mur w v e eQ C U ρ L  (S2.5a) 

Bowen (1926) a 1 1
w a

s a
co ev b

T T
e e

Q Q C  (S2.5b) 

Ryan et al. (1974); 
Gill (1982) 

2 2, 2,ev ev forced ev freeQ Q Q   (S2.6a) 

2 2, 2,co co forced co freeQ Q Q  (S2.6b) 

2, , 10ev forced e r v a s aQ C U L ρ q q  (S2.6c) 

2,ev free s v a s aQ k L ρ q q  (S2.6d) 

2, , , 10co forced a p a h r w aQ ρ C C U T T  (S2.6e) 

2, ,co free s a p a w aQ k ρ C T T  (S2.6f) 
1

2 3

. .
a

fr conv a s
a a

s
gD

C ρ ρ
υ ρ

k  (S2.6g) 

100 100 100 100 100 100

,
273.15 273.15

atm s s atm a a

dry vap dry vap
s a

w a

P e e P e e
R R R R

ρ ρ
T T

 (S2.6h) 

2
a s

a
ρ ρρ  (S2.6i) 

Monin-Obukhov 
similarity theory 
(Monin and Obukhov 
1954) 

3 , * *ev e m z v z s z z vQ C ρ L u q q ρ L u q  (S2.7a) 

3 , , , * *co z p a h m z s z z p aQ ρ C C u T T ρ C u T  (S2.7b) 
2 2

, *d m z z zτ C ρ u ρ u  (S2.7c) 

* * *

, ,qu t
m e h

κzκz u q κz Tf ζ f ζ f ζ
u z q z T z

 (S2.7d) 

33

,1
3
*

273.15
0.61 z evco

p a v
w

z v

T QQzκg
C L

ζ zL
ρ u T

 
(S2.7e) 

a Assuming an analogy between heat exchange and mass transfer, the convective heat flux can 

be related to the evaporative flux through the Bowen ratio, , w a

s a

co b
b b

ev

T T
e e

Q
R C

Q
.  
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Table S2.4. Definition and values/formulas of the symbols used in Table S2.3 (continued) 

Definitions Value 

Cb 
Calibration factor (Bowen coefficient) 
[hPaK-1] -  

Ce Calibration factor (Dalton number) - 
Cfr.conv. The free convection coefficient a 0.14 

Cd Momentum transfer coefficient  - 
Ch Calibration factor (Stanton number) - 
Cmur Calibration factor - 
Cp,a Specific heat capacity of air [Jkg-1°C -1] 1004 

Da Air molecular diffusivity [m2s-1] 
Pr

a
aD  

es Saturated water vapor pressure [hPa] b 17.626.112exp
243.12

w
s

w

Te
T

 

g Gravitational acceleration [ms-2] 9.81 
ks Exchange velocity [ms-1] - 
Lv Latent heat of vaporization [Jkg-1] 6 32.5 10 2.3 10v wL T  
Lw Monin-Obukhov length - 
Patm Air pressure [hPa] From COSMO-2 
Pr Prandtl number 0.7 

qa 
Actual air specific humidity  
[kgkg-1 dry air] 

0.62

0.38atm

a
a

a

e

P e
q  

qs 
Saturated air specific humidity  
[kgkg-1 dry air] 

0.62

0.38atm

s
s

s

e

P e
q  

qz 
Specific humidity at height zq  
[kgkg-1 dry air] 

- 

q* Scaling humidity [kgkg-1 dry air]  
Rdry Dry air gas constant [Jkg-1°C -1] 287.05 
Rvap Water vapor gas constant [Jkg-1°C -1] 461.495 
SL Lake surface area [m2] 5.8 108 
Tz Air temperature at height zt [°C] - 
Tv Virtual air temperature [°C] 273.15 1 0.61v z zT T q  

T* Scaling temperature [°C] - 

U10 
Wind speed at 10 m above the free 
surface [m s-1] 

From COSMO-2 

uz Wind speed at height zu [ms-1] - 
u* Air friction velocity [ms-1] - 
zq Height of humidity data [m] From COSMO-2 
zt Height of air temperature data [m] From COSMO-2 
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Table S2.4. Definition and values/formulas of the symbols used in Table S2.3 (continued) 

Definitions Value 
zu Height of wind speed data [m] From COSMO-2 

 Von Karman constant 0.41 
a  Air viscosity [m2s-1] 1.6 10-5 

a  Actual air density [kgm-3] - 

a  Average air density [kgm-3] - 
s  Saturated air density [kgm-3] - 

w  Water density [kgm-3] 

2288.941 3.986
1

1000 5089292 68.1296
w ww

w

T T
T

(Read et al. 2011) 

z  Air density at height z [kgm-3] 
100 100 100

273.15

atm z z

dry vap
z

z

P e e
R R
T

 

 Air-water momentum flux [Nm-2] - 
 Stability parameter - 

a Estimated by Ryan et al. (1974). 

b      Estimated with the Magnus formula (WMO 2008).  
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Text S2.3. Details of the model calibration procedure 

In Tables 2.1 and S2.3, the level of complexity in the turbulent heat flux models increases from 

(Qev + Qco)1 to (Qev + Qco)3. The calculations in the first two formulas are not complicated. The 

latter, i.e., (Qev + Qco)3, uses the bulk parameterization algorithms based on the similarity theory 

and empirical relationships (Eq. S2.7, Table S2.3). Two components must be defined in this 

algorithm: the turbulence stability functions, fm, fe and fh, and the roughness lengths for wind, 

temperature and humidity (z0, z0t and z0q, respectively). The differential equations for fm, fe and 

fh (Eq. S2.7d) are integrated between the roughness lengths and the measurement heights to 

obtain the wind, temperature and specific humidity gradients in the atmospheric boundary layer, 

and the corresponding drag, humidity and temperature bulk transfer coefficients, Cd,m, Ce,m and 

Ch,m, respectively, to calculate the turbulent surface fluxes. The Monin-Obukhov similarity 

theory (Monin and Obukhov 1954) was used for the turbulence stability functions, which 

depend on the atmospheric stability parameter, ζ (Eq. S2.7e). Details of these functions are 

given elsewhere (e.g., Zeng et al. 1998; Woolway et al. 2015). 

The empirical parameterization of two roughness lengths was investigated in order to reduce 

the calibration factor for the calculation of (Qev + Qco)3. The roughness momentum length, z0, 

was calculated using (Smith 1988): 

2
*

0 1 2
*

a
m m

u νz C C
g u

 (S2.8) 

where Cm1, the Charnock constant (Charnock 1955), and Cm2 are calibration factors. The 

functional form of Brutsaert (1982) was applied for the roughness lengths of humidity, z0q, and 

temperature, z0t:  

0.25
0 0 0 1 * 2exp Req t q qz z z C C  (S2.9) 

where Cq1 and Cq2 are calibration factors, and Re* = u*z0/va is the roughness Reynolds number. 

Zeng et al. (1998), employing the bulk parametrization in Eqs. S2.8 and S2.9 with some other 

algorithms, obtained the following values:  Cm1 = 0.013, Cm2 = 0.11, Cq1 = −2.67 and Cq2 = 2.57. 

These four calibration factors were based on the data of the Tropical Ocean-Global Atmosphere 

Coupled-Ocean Atmosphere Response (TOGA CORE) experiment (Fairall et al. 1996) and 
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define the variation of drag, humidity and temperature bulk transfer coefficients as a function 

of meteorological parameters, especially wind speed. A sensitivity analysis of these calibration 

factors reveals that the shape of humidity and temperature transfer coefficients are mainly 

controlled by Cm2 and Cq1 (Fig. S2.8). These results illustrate that Cm2 affects the low wind 

speed regime (up to 5 ms-1) while Cq1 controls higher wind speeds (over 5 m s-1). Rearranging 

Eq. S2.8 indicates that Cm2 is equal to a constant Re* as the wind speed approaches zero. In 

addition to other meteorological parameters and LSWT, the wind speed distribution also 

changes at SHL2 and GE3 (Figs. 2.1b and S2.6b). In this study, we assumed Cm1 = 0.013 and 

Cq2 = 2.57 and examine and calibrate Cm2 and Cq1. Their values are found through an 

optimization procedure.  

The Generalized Likelihood Uncertainty Estimation (GLUE) methodology employed for the 

optimization requires values within a certain range for each calibration parameter. These are 

based on values reported in the literature (Table S2.5). For each of the six net SurHF models, 

there are four calibration factors: viz., Ccloud/Can or Clc/Clt in the atmospheric radiation 

component, and Cmur/Cb or Ce,r/Ch,r or Cm2/Cq1 in the turbulent, i.e., sensible and latent heat 

fluxes. Monte Carlo realizations (105) using uniform random sampling across the parameter 

ranges were implemented as the sampling strategy. 

For the calibration, the following five-step procedure was carried out for each SurHF model:  

(i) the meteorological data including U10, Ta, rel , Qsc, C, Patm from the COSMO-2 model and 

Tw from AVHRR satellite images were extracted at the SHL2 and GE3 locations (Fig. 1.1), (ii) 

the net SurHF model and its corresponding calibration factors, [(Can/Ccloud) | (Clc/Clt)] and 

[(Cmur/Cb) | (Ch,r/Ce,r) | (Cm2/Cq1)], were chosen, (iii) QN and Gm were calculated at the two 

locations for different Monte Carlo model realizations, (iv) the measured temperature profiles 

at SHL2 and GE3 were taken from the CIPEL data set and Go was calculated, and (v) model 

performance was ranked based on Eq. 2.6. 

The data set was divided into two parts: The period March 2008 to 7 July 2011 was used for 

calibration, and August 2011 to December 2014 for validation. 
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Fig. S2.8. Sensitivity of humidity bulk transfer coefficient, Ce,m, to the calibration factors given in the legend: (a) 

Cm2, and (b) Cq1. Dashed arrows indicate the change in values as given in the legend.  
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Table S2.5. Literature values for the selected calibration factors 

Calibration 
factors 

Reported 
values 

References 
Selected range 

for GLUE 
methodology  

Can 
1.09, 0.943, 

1.05 

Livingstone and Imboden (1989), 
Herrero and Polo (2012), Fink et 

al. (2014) 
[0.8, 1.3] 

Ccloud 
0.17, 0.42, 

0.17 

Livingstone and Imboden (1989), 
Herrero and Polo (2012), Fink et 

al. (2014) 
[0.04, 0.45] 

Clc 1.22 Crawford and Duchon (1999) [0.8, 1.3] 

Clt 0.06 Crawford and Duchon (1999) [0.02, 0.2] 

Cmur 1.2 10-7 Murakami et al. (1985) [5 10-8, 2 10-7] 

Cb 
0.65, 0.6, 

0.62 
Sweers (1976), Livingstone and 

Imboden (1989), Fink et al. (2014) 
[0.58, 0.7] 

Ce,r 2.1 10-3 Wahl and Peeters (2014) [10-4, 5 10-2] 

Ch,r 1.45 10-3 Wahl and Peeters (2014) [10-4, 5 10-2] 

Cm2 0.11 Zeng et al. (1998) [0, 0.12]a 

 Cq1 -2.67 Zeng et al. (1998) [-3, 0]a 

a See the sensitivity analysis above for the details of the range selection. 
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Abstract 

The spatiotemporal surface heat flux (SurHF) of Lake Geneva, the largest lake in Western 

Europe, was estimated for a 7-y period (2008 to 2014). Data sources included hourly maps of 

over-the-lake assimilated meteorological data from a numerical weather model and lake surface 

water temperatures (LSWT) from satellite imagery. A set of bulk algorithms, optimized and 

calibrated previously at two locations in Lake Geneva, was used. Analysis results indicate an 

average spatial range of > 40 Wm-2. This is mainly due to wind sheltering over parts of the lake, 

which in turn produces spatial variability in sensible and latent heat fluxes. During spring, much 

less spatial variability was evident compared to other seasons. The spring variability was caused 

by air-water temperature differences and, to a lesser extent, global radiation variability, again 

due to shielding by the surrounding topography. Analysis of the atmospheric thermal boundary 

layer showed unstable conditions except from March to early June. This regime change can 

explain the low SurHF spatial variability observed during spring. The results emphasize that 

spatial variability in the meteorological and LSWT patterns, and consequently the 

spatiotemporal SurHF data, should be taken into consideration when assessing the time 

evolution of the heat budget of large water bodies. 

 

Keywords: Surface heat flux, meteorological forcing, spatial variability, Lake Geneva, 

atmospheric boundary layer stability, heat content   
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3.1. Introduction  

Wind forcing and Surface Heat Flux (SurHF) are the main external parameters affecting lake 

thermodynamics and hydrodynamics, which in turn influence the chemical and biological 

properties of aquatic systems (Honrath et al. 1997; MacIntyre et al. 2002; Churchill and Charles 

Kerfoot 2007; Bonvin et al. 2013; Finlay et al. 2015). In many lakes, SurHF is the most 

important process controlling total lake heat content and thus water temperatures that are often 

used as a climate change indicator (Adrian et al. 2009). Frequently, SurHF is determined from 

eddy covariance measurements or a surface heat balance using Lake Surface Water 

Temperature (LSWT) and meteorological data. A single-point approach is applied in many 

studies based on (i) direct measurements (e.g., Laird and Kristovich 2002; Assouline et al. 2008; 

Rouse et al. 2008; Blanken et al. 2011; Nordbo et al. 2011; Van Emmerik et al. 2013; Zhang 

and Liu 2014; Li et al. 2015), (ii) bulk formula calculations (e.g., Schertzer 1978; Henderson-

Sellers 1986; Lenters et al. 2005; Woolway et al. 2015), or (iii) one-dimensional (1D) numerical 

modeling (e.g., Tanentzap et al. 2007; Momii and Ito 2008; Austin and Allen 2011; Stepanenko 

et al. 2014; Thiery et al. 2014a; Thiery et al. 2014b; Yang et al. 2017). Relying on a one-point 

approach can result in significant errors in the SurHF estimation of large lakes (Mahrer and 

Assouline 1993). With increasing size of the water body, variations of LSWT and 

meteorological conditions potentially induce larger spatial variability of SurHF, a topic that has 

received little attention in the literature. Data from multiple locations capture more of the SurHF 

spatial variability over lakes than the one-point approach (Rimmer et al. 2009; Verburg and 

Antenucci 2010; Rahaghi et al. 2018). Unfortunately, for most lakes, data from multiple 

locations are scarce, and these are often located close to shore. 

Spatially resolved meteorological and LSWT data permit investigating SurHF spatial patterns 

over water bodies. The former are provided by numerical weather models (e.g., Kourzeneva et 

al. 2012; Mironov et al. 2012), while the latter are usually available from satellite remote 

sensing (e.g., Schwab et al. 1992; Politi et al. 2012; Sima et al. 2013; Riffler et al. 2015). 

Satellite data that are collected on a regular basis are suitable for long-term thermal analyses, 

although pixel sizes may be large (at the km scale) and clouds can reduce coverage. The 

combination of LSWT patterns and meteorological data from stations located around the shore 

(Schneider and Mauser 1991; Lofgren and Zhu 2000; Alcantara et al. 2010; Phillips et al. 2016) 

or numerical weather models (Spence et al. 2011; Xue et al. 2015; Moukomla and Blanken 
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2017) have been used to estimate the surface thermal patterns of inland water bodies. Satellite 

data were used to investigate the diurnal/nocturnal LSWT evolution of Lake Geneva (Oesch et 

al. 2005; 2008). They suggest that the observed warm/cold LSWT regions may result from 

thermocline undulations, lake-land breezes and large-scale circulation forced by the wind field 

over the lake (Lemmin and D’Adamo 1996). 

Spatial thermal patterns can be also obtained via three-dimensional (3D) hydrodynamic 

modeling (e.g., Bai et al. 2013; Beletsky et al. 2013; Wahl and Peeters 2014; Xue et al. 2015). 

However, these models rely on bulk temperatures for back radiation and non-radiative heat flux 

calculations, whereas LSWT is preferred (Minnett et al. 2011; Wilson et al. 2013). In numerical 

modeling, an error in the temperature of the near-surface layer is attenuated with time (about 

one month for 1°C temperature deviation in the near-surface layer), a behavior that is attributed 

to “self-restoration”. However, it can lead to deviations from the observed surface thermal 

patterns (Xue et al. 2015).  

Despite the diversity of thermal structure analyses of inland water bodies, investigations of 

spatial SurHF variability of large lakes are scarce due to the lack of (i) spatiotemporal LSWTs, 

(ii) over-the-lake meteorological data, (iii) multi-station over-lake measurements, or multiple 

temperature profiles for determining the overall energy balance. However, Lake Geneva, the 

largest lake in Western Europe, is a suitable study site to investigate the spatial variability of 

SurHF, since all the required data mentioned above are available.  

In this study, we quantify the impact of spatiotemporal SurHF variability of Lake Geneva on 

its overall energy balance. Specifically, the following questions are addressed: (i) What is the 

typical monthly range of SurHF spatial variability using optimized and calibrated bulk 

formulas?, and (ii) What are the major meteorological factors controlling the dominant heat 

flux terms that determine spatial thermal patterns? This study is based on the 2-point calibrated 

SurHF model using the same data sets as in chapter 2 (Rahaghi et al. 2018; Unpublished work). 

3.2.  Materials and methods 

3.2.1.  Study site 

Located between Switzerland and France, Lake Geneva (Local name: Lac Léman) is a large, 

deep, crescent-shaped perialpine lake with a mean surface altitude of 372 m. It is approximately 
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70-km long, with a maximum width of 14 km, a surface area of 582 km² and a volume of 89 

km³. The lake is composed of two basins: an eastern, large basin called the Grand Lac, with a 

maximum depth of 309 m, and a western, small, narrow basin called the Petit Lac, with a 

maximum depth of approximately 70 m (Fig. 1.1).  

The lake is surrounded by the Jura Mountains in the northwest, and by the Alps in the south 

and, to a lesser extent, the northeast (Fig. 1.1). The eastern part of the Grand Lac basin is also 

referred to as the Haut Lac. The surrounding mountains there can reach over 1000 m above the 

lake surface within 2 km from shore. This topography creates a “corridor” through which two 

strong dominant winds pass over most of the lake surface, namely the Bise, coming from the 

northeast, and the Vent, from the southwest (Fig. 1.1). Lemmin and D’Adamo (1996) showed 

that on average, the western part of the Grand Lac and most of the Petit Lac experience higher 

wind speeds than the eastern part of the Grand Lac due to topographic sheltering by the high 

mountains surrounding the Haut Lac area. 

3.2.2.  Meteorological data 

Meteorological data over Lake Geneva are not measured. However, the Swiss Federal Office 

of Meteorology and Climatology (MeteoSwiss, last accessed 1 February 2018) runs a numerical 

weather model, COSMO-2 that provides hourly output on a 2.2-km grid for the studied period. 

COSMO-2 data include spatiotemporal maps of wind speed (10 m above the lake), air 

temperature (2 m above the lake), relative humidity (2 m above the lake), cloudiness, global 

radiation and air pressure. Model results are systematically verified against over-land surface 

data in Switzerland and Europe by MeteoSwiss. The present study is based on COSMO-2 data 

sets  for the period from 1 March 2008 to 31 December 2014. We used the assimilated results 

(called analysis data) based on the field observations rather than pure forecast data.  

To investigate the quality of analysis COSMO-2 results, these data were compared with in situ 

measurements taken at meteorological stations located around the lake in chapter 2 (Rahaghi et 

al. 2018). A high correlation coefficient (more than 0.96) between those measurements and the 

COSMO-2 data was found, with the exception of wind speed, which has higher local 

spatiotemporal variability. For wind speed, the cross correlation between different stations was 

similar for COSMO-2 data and in situ measurements, thus confirming the capability of the 

COSMO-2 model to represent large-scale wind patterns over Lake Geneva. A cubic 
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interpolation method was applied to map the meteorological data in the LSWT satellite grid 

cells which have a pixel resolution of ~1 km. Although COSMO-2 can distinguish lakes from 

land by using a lake model only for the momentum transfer calculation (Mironov 2008), 

COSMO-2 cannot spatially resolve LSWT. 

3.2.3.  Lake surface water temperature (satellite data) 

Riffler et al. (2015) determined LSWT for 25 lakes in and near the Alps from a long-term 

archive of Advanced Very High Resolution Radiometer (AVHRR) satellite imagery (~ 1 km 

pixel size). The satellite-based temperatures agreed well with the near-surface in situ 

measurements with a bias and Root Mean Square Error (RMSE) within the range of −0.5 to 0.6 

°C and 1.0 to 1.6 °C, respectively. This range of values favorably corresponds with another 

long-term LSWT calibration for Lake Geneva (Oesch et al. 2005). In the present study, we use 

the same dataset as Riffler et al. (2015), i.e., 4384 images from 1 March 2008 to 31 December 

2014, to retrieve LSWT. Images with more than 70% lake coverage were selected, resulting in 

a total of 856 diurnal images and 308 nocturnal images. Missing pixels in these images were 

interpolated spatially using Barnes interpolation (Koch et al. 1983; Liston and Elder 2006). The 

present analysis requires a pixel-wise spatially-resolved time series of lake surface temperature, 

which was derived from the spatially interpolated LSWT maps. Time series were produced 

using Piecewise Cubic Hermite Polynomials. For a large surface area, the effect of diel 

temperature variation on the pixel-wise interpolated data is expected to be small (Woolway et 

al. 2016). A simple cross-validation analysis was performed on the interpolation algorithms by 

randomly and repeatedly removing some measured points. A correlation coefficient of ~ 0.99 

and a RMSE of ~ 0.85°C are found when comparing actual measurements and the virtually 

interpolated points. 

3.2.4.  Spatiotemporal variation of meteorological data and LSWT 

The monthly mean spatial anomalies of wind speed for March, June, September and December, 

representative of different seasons, averaged over the study period (1 March 2008 to 31 

December 2014) are plotted in Fig. 3.1a (maps for other months are presented in the 

Supplementary Information (SI), Fig. S3.1) section. A distinct pattern is evident for all seasons, 

with the highest winds over the western part of the Grand Lac basin and often slightly lower 

winds over the Petit Lac basin. Lowest wind speeds are systematically found over the Haut 
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Lac, the eastern part of the Grand Lac basin where high mountains surround the basin. On 

average, wind speeds over the western half of Lake Geneva are twice as high as those over its 

eastern half, and are higher from September to March compared to the summer period (April to 

August). The lake-wide mean wind speed also shows a seasonal pattern with high speeds 

measured during fall and in particular winter, and low speeds during the summer. 

 

Fig. 3.1. Mean monthly anomaly patterns of (a) wind speed at 10 m above the surface (U10), (b) LSWT (Tw), and 

(c) air-water surface temperature difference (Ta - Tw). Spatial averages are noted on each map. For a better 

comparison, the deviations from the mean spatial value within a range of ±1.5 ms-1 and ±1 °C are plotted in panels 

(a), and (b)-(c), respectively. The Swiss coordinate system with km length-based units (CH1903) is used in these 

plots. Legends of the color range are given in the top panels. 

The monthly mean LWST distribution over the lake surface for selected months, averaged over 

the period 1 March 2008 to 31 December 2014 (Fig. 3.1b), shows that the temperatures in the 
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Petit Lac are most of the time below the lake-wide mean LWST and above the lake-wide mean 

LWST in the eastern part of the Grand Lac (see maps for other months in Fig. S3.2). A typical 

pattern for the summer months (April to August) is seen in the June image of Fig. 3.1b with a 

strong North-South temperature gradient across the Grand Lac basin, most pronounced in the 

western and central parts. During fall and winter, a band of below-average LSWT is observed 

along the southern shore due to shielding of solar radiation by the high mountains along the 

southern shore. Temperatures in the Haut Lac area of the lake remain above the lake-wide 

average year round, and in the western part of the Grand Lac, they may be close to average or 

slightly above. Lake-wide mean LWSTs follow the seasonal cycle that is characteristic for the 

mid-latitude climate zone. The monthly mean spatial patterns of air-water temperature 

difference, which will be discussed below, are also plotted (Figs. 3.1c and S3.3). 

Time evolution of meteorological data and LSWT (labeled Tw), smoothed with a 30-d moving 

average, shows the mean annual cycle typical for this latitude for LWST, air temperature and 

global radiation with maxima in the summer and minima in the winter (Fig. S3.4). Wind speed 

reaches its highest mean values during the fall to spring period. To further investigate the 

temporal variability of the spatial distribution of these parameters, an InterQuartile Range (IQR) 

analysis based on the 25-75 percentile was carried out in order to determine how spread out the 

actual values are with respect to the spatial median value. To better visualize the results, the 

mean time trend seen in Fig. S3.4 was subtracted, and to facilitate the interpretation of the IQR 

results, we included the 1-99 percentile, called P1-99 hereinafter, which is indicative for the 

total range.  

The spatial distribution range over the lake of the above parameters, identified via IQR and P1-

99 and smoothed with a 30-d running mean (Fig. 3.2) reveals that spatial variability is 

noticeable. Figure 3.2a gives the temporal evolution of LSWT spatial anomalies. The negatively 

skewed distribution, which is dominant in Fig. 3.2a, is due to the colder mean LSWT values in 

the Petit Lac compared to the Grand Lac and the narrow cold band close to the southern shore 

of the lake (Fig. 3.1b). Spatial variability in wind speed, U10 (Fig. 3.2b), is considerable. The 

IQR band shows seasonal variations with widest bands usually during the fall to spring period. 

Comparing the median to the quartile values reveals that the wind speed distribution over the 

lake has a higher proportion of low speeds, and therefore the median is closer to the first quartile 

(Figs. 3.2b and S3.4b). Significant peaks, mainly during winter, are seen in the total range of 
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P1-99 band (Fig. 3.2b). Air temperature has the narrowest IQR band with respect to the standard 

deviation, indicating that air temperatures over the lake are more evenly distributed (Fig. 3.2c). 

However, the total range (P1-99) suggests that often, in particular from fall to spring, significant 

temperature differences can be expected over the lake. The IQR band of the global radiation is 

narrowest during winter and widest during summer (Fig. 3.2d). The total range is wide with 

more pronounced negative peaks mainly occurring during the summer season. This may be 

related to different types of cloud cover during the different seasons. Shielding by the high 

mountains along the southern shore in the central to eastern part of the Grand Lac basin may 

also contribute. The above results confirm the significance of spatial variability of LSWT and 

the meteorological parameters that most strongly affect the heat flux dynamics over Lake 

Geneva. 

 

Fig. 3.2. Time series of the spatial anomalies, IQR and P1-99, of lake surface water temperature (LSWT) and 

meteorological data. The time series are smoothed with a 30-d running window and the median has been removed. 

(a) LSWT (Tw), (b) wind speed (U10), (c) air temperature (Ta), and (d) global radiation (Qsc). These plots show the 

time evolution of the colored areas in Fig. S3.4 in the Supplemental Information (SI) section. Colors are identified 

in the legend in (c). 
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3.2.5.  Bulk modeling of surface heat fluxes  

The net (total) heat flux at the air-water interface, SurHF, also called QN , is given by: 

N sn an br ev coQ Q Q Q Q Q  (3.1) 

The effect of precipitation on the SurHF is neglected, since it has a minimal influence on the 

surface heat exchange of central European lakes (Livingstone and Imboden 1989; Rimmer et 

al. 2009; Fink et al. 2014). SurHF is often estimated using bulk formulas. These formulas are 

based on different concepts and require specific parameters. Ideally, these parameters are 

known for a given site (e.g., a lake), but, in practice, lake-specific calibrated parameter sets are 

required (Phillips et al. 2016). For each of the five SurHF terms on the right hand side of Eq. 

3.1, there are various formulations available in the literature, and their possible combinations 

give rise to numerous net SurHF models. In a comprehensive study by Rahaghi et al. (2018; 

Unpublished work), various combinations of SurHF models were evaluated for Lake Geneva 

based on the total heat content variation concept (Van Emmerik et al. 2013; Fink et al. 2014). 

A 2-point calibration and optimization (Rahaghi et al. 2018; Unpublished work) was performed 

using long-term detailed water temperature profiles at two locations far from the shore (SHL2 

and GE3 in Fig. 1.1). The present analysis is based on the obtained optimal models. These 

models are then assumed to be valid over the entire lake. Details about the calibration procedure 

were given in chapter 2. 

3.3.  Results 

3.3.1.  Mean annual spatiotemporal variability of surface heat flux 

The lake-wide average net SurHF and its terms for the study period, smoothed with a 30-d 

running mean, are presented in Fig. 3.3. The mean shortwave solar radiation Qsn follows the 

annual sun cycle (Fig. 3.3a), with a maximum and minimum around the summer and winter 

solstices, respectively. Most years, the mean Qsn curve shows sub-monthly temporal 

fluctuations most often from the end of the spring to the summer that reflect cloud cover 

variability. Atmospheric longwave radiation, Qan, is the largest warming contributor to SurHF 

with the second largest annual amplitude after solar radiation (Fig. 3.3b). It is compensated by 

the longwave back radiation from the lake, Qbr (Fig. 3.3c). The Qan and Qbr terms approximately 

follow the same periodic variation but are shifted in phase by half an annual cycle. The mean 
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annual radiative heat fluxes were estimated to be 135.6 for Qsn, 292.7 for Qan, and –370.2       

Wm-2 for Qbr, respectively, for the period of 1 January 2009 to 31 December 2014 (due to the 

missing data of January-February, 2008 results were excluded for the mean annual analyses).  

 

Fig. 3.3. Time series of the median (black lines) and percentiles (colored areas for IQR, and P1-99; colors are 

identified in the legend in (c)) of the distribution of spatially resolved surface heat flux (SurHF) terms and net 

SurHF for Lake Geneva smoothed with a 30-d running mean: (a) solar radiation, Qsn, (b) atmospheric radiation, 

Qan, (c) back radiation, Qbr, (d) latent heat flux, Qev, (e) sensible heat flux, Qco, and (f) net SurHF (QN). For a better 

comparison, all plots (except f) have the same range of 300 Wm-2 on the ordinate axis. The mean annual values of 

each term and the net SurHF, averaged over the 2009 to 2014 period, are also noted on each diagram. 
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The contributions of the non-radiative (turbulent) heat flux terms are smaller in magnitude 

compared to the radiative components, but they show larger variability in both time and space. 

On average, the evaporative heat loss (Qev, Fig. 3.3d) is lower during the spring and higher in 

the summer. The mean annual evaporative cooling for the period 2009 to 2014 is –45.0 Wm-2. 

Convective heat loss (Qco, Fig. 3.3e) is usually highest in winter when both wind speed and air-

water temperature differences are high. In contrast to evaporation, which always cools the lake, 

convection may occasionally warm the lake during spring, mainly in April and May, when the 

lake-wide average LSWT can be colder than the air temperature. Overall, the mean annual 

convective cooling is –14.1 Wm-2 for the period 2009 to 2014.  

The net SurHF (Fig. 3.3f) follows an annual cycle with occasional exceptionally strong cooling 

(e.g., January 2012, December 2013) and warming (e.g., May and June 2014) events (see the 

mean annual plot in Fig. S3.5). Due to the phase shift in cooling and warming of the lake, the 

range of mean net SurHF from Eq. 3.1 (> 350 Wm-2, Fig. 3.3f) is higher than the range of each 

of the individual SurHF terms (< 250 Wm-2, Figs. 3.3a-e). The spatial variability of IQR and 

P1-99 will be discussed below. 

3.3.2.  Spatial variability of surface heat flux components 

The monthly spatially resolved variability of the net SurHF maps (Fig. 3.4) indicates that, on 

average, the SurHF in the western part of the Grand Lac is below the lake-wide mean value, 

whereas it is above in most of its eastern part. This non-uniformity in SurHF is accentuated 

during the cooling season, and the spatial pattern changes little in shape during this period. 

Thus, the eastern part of the Grand Lac cools less rapidly than its western part. A minimum 

SurHF spatial variation is found in March to May, with a spatial standard deviation, σs, of ~ 8 

Wm-2. In the Petit Lac, the SurHF is either above the lake-wide mean or close to it and the least 

spatial variability is again seen during March to May. 

Mean monthly NQ and σs values, as well as the mean SurHF spatial range (min/max difference), 

Rs ( NQ ), are listed in Table 3.1. A relatively high spatial standard deviation of > 20 Wm-2 

(equivalent to a temperature change of 0.88 °Cy-1 in the whole water body of Lake Geneva) 

was obtained during February, October and December (25%, 32% and 17% of mean NQ , 

respectively). The results also indicate that during certain months, on average, some parts of 

the 
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Fig. 3.4. Mean monthly net SurHF anomaly patterns of Lake Geneva averaged over the period from March 2008 

to December 2014. The lake-wide mean values are indicated on each map. For a better comparison, all panels use 

the same scale, showing deviations from the mean value within a range of ± 45 Wm-2. The Swiss coordinate system 

with km length-based units (CH1903) is used. Colors are identified in the legend in (a). 

 

the lake warm up, while other parts cool down. This behavior is pronounced during September 

and to a lesser extent in March. During these months the mean lake-wide SurHF is low. Lofgren 

and Zhu (2000) estimated the monthly SurHF for Lake Huron using satellite LSWT and data 

from on-shore meteorological stations. They found a maximum spatial standard deviation of 

~20 Wm-2 during August and December. A close-to-zero mean net SurHF was reported for 

March and September that agrees with the results from Lake Geneva. Over Lake Constance, a 
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total SurHF spatial range was estimated to be 60 Wm-2 during May 1989 (Schneider and Mauser 

1991). We obtain a value of 63 Wm-2 for that month over Lake Geneva. The effect of the spatial 

SurHF variation on the spatial lake heat content variation will be addressed below. 

 

Table 3.1. The lake-wide average NQ , standard deviation σs and range Rs ( NQ ) of monthly 

SurHF patterns shown in Fig. 3.4 

Month NQ  [Wm-2] σs [Wm-2] Rs ( NQ ) [Wm-2] 

Jan –108 18 74 

Feb –88 22 90 

Mar 22 8 33 

Apr 86 7 46 

May 109 10 63 

Jun 119 11 75 

Jul 85 14 76 

Aug 55 15 88 

Sep 8 17 73 

Oct –63 20 79 

Nov –104 19 98 

Dec –139 23 102 

 

The average spatial pattern of the net SurHF for the 2009 to 2014 period (Fig. 3.5) shows a 

mean spatial standard deviation and a range of ~13 and > 40 Wm-2, respectively. This variability 

emphasizes that a single-point analysis can lead to sizable errors in the estimation of the SurHF 

and hence the heat budget of a large water body (Rahaghi et al. 2018; Unpublished work). In 

addition, a small negative mean spatiotemporal heat flux of –1 Wm-2 (indicated in Fig. 3.5) is 

found for the entire period considered, i.e., the lake slightly cooled during the period from 2009 

to 2014, if we assume that the SurHF dominates the lake’s energy budget. Since a close-to-zero 

value is expected for the mean spatiotemporal SurHF of Lake Geneva, this small value confirms 

the validity of the methods and formulas employed in this study. However, due to various 

sources of uncertainty, e.g., errors in data retrieval, model assumptions, etc., the mean absolute 
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value (-1 Wm-2) must be interpreted with caution. The physical parameters controlling the 

obtained spatial SurHF anomalies and the effect of such variability on the estimation of lake 

heat content will be discussed in the following sections. 

 

Fig. 3.5. Mean annual pattern of net SurHF in 

Lake Geneva, based on data from 1 January 

2009 to 31 December 2014. The spatial 

pattern shows deviations from the mean 

value within a range of ± 30 Wm-2. The Swiss 

coordinate system with km length-based 

units (CH1903) is used. Colors are identified 

in the legend. 

 

3.3.3.  Statistical analysis of the spatial heat flux variability 

To characterize the factors underlying the observed spatial SurHF anomalies (Figs. 3.4 and 3.5), 

we computed statistics relating the spatial variability of the net SurHF to that of the different 

SurHF terms. The correlation coefficient and Root Mean Square Difference (RMSD) between 

spatially resolved hourly maps of different SurHF terms and the total SurHF were calculated. 

The results were smoothed with a 30-d running mean window, and then for each hour in the 

year averaged over the corresponding time during the 6-y period from 1 January 2009 to 31 

December 2014 (for leap years the additional day in February was removed). Higher correlation 

coefficients and smaller RMSD values indicate a more significant contribution of the 

corresponding SurHF term to the spatial variability of the net SurHF. The radiative heat flux 

components, Qsn, Qan and Qbr, have relatively low correlation coefficients and high RMSDs 

(Fig. 3.6) pointing towards the low probability of spatial variability of these terms. Evaporation 

(latent heat flux, Qev) patterns have the highest correlation coefficient (Fig. 3.6a) and the lowest 

RMSD (Fig. 3.6b) for all months and is followed by convection, Qco. Therefore, spatial 

evaporation and convection variations are mainly responsible for the observed spatial anomalies 

of SurHF over Lake Geneva. This is in agreement with the findings in other large lakes, e.g., 

Lake Superior (Xue et al. 2015) and Lake Huron (Lofgren and Zhu 2000). However, there is 
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more spatial variability in global radiation and air temperature over Lake Huron due to its larger 

surface area (~10 times greater than Lake Geneva). Therefore, the spatial variability of the net 

radiative flux on Lake Huron is more than two times higher than that of Lake Geneva. Similar 

to Lake Geneva, a significant spatial variability of evaporation was also reported for other large 

lakes, e.g., Lake Tanganyika (Verburg and Antenucci 2010) and Great Lakes (Moukomla and 

Blanken 2017). 

 

Fig. 3.6. Statistical comparison 

of spatial patterns of individual 

SurHF components with respect 

to spatial patterns of net SurHF: 

(a) correlation coefficient, and 

(b) root mean square difference 

(RMSD). The results are 

smoothed with a 30-d running 

mean. Colors are identified in 

the legend in (a). 

 

Figure 3.6 also indicates that the correlation and RMSD between the SurHF components and 

net SurHF vary throughout the year. Evaporation has a high correlation (> 0.8) with net SurHF 

from July to February that is reduced to about 0.7 in March and April. In March, and to a lesser 

extent in April, the RMSD curves converge due to the overall small spatial variability of the net 

SurHF (Fig. 3.4) and the various SurHF terms (not shown). The convective (sensible heat flux, 

Qco) component demonstrates a behavior similar to Qev from November to February, while it 

deviates from Qev from March to June. Generally, a change of the SurHF forcing regime during 

the March to June period with respect to the rest of the year is observed for the net SurHF spatial 
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patterns (Fig. 3.4) and the analysis of SurHF components (Fig. 3.6, see the Qbr correlation curve 

as a clear example). This will be further discussed below. 

Time series of IQR of the spatial variability of the net SurHF and its components with their 

median values removed (Fig. 3.7) show that the spatial variability of the radiative components 

(Fig. 3.7a) is small throughout the study period and hardly changes with time, thus confirming 

the correlation analysis results above. The spatial variability of SurHF in IQR is dominated by 

the spatial variability of the two turbulent flux components, in particular evaporation, Qev (Fig. 

3.7b). Seasonal variability of Qev is obvious with smaller spatial variability occurring during 

spring. However, a year-to-year variability is also seen in this pattern reflecting changing large-

scale weather conditions. During most years, convective heat flux, Qco, has small spatial 

variability except from late fall to early spring, when it may reach spatial variability values 

similar to those of Qev. Individual events of strong spatial SurHF variability such as in early 

2012 and late 2013 are exclusively caused by the variability of the turbulent heat flux 

components. The P1-99 distribution (not shown) is similar to the IQR distribution, but spread 

out over a wider range. This indicates that spatial variability of turbulent heat fluxes 

significantly contributes to the spatial variability of SurHF over Lake Geneva.  

 

3.4.  Discussion  
3.4.1.  Effects of spatial variability of meteorological forcing on SurHF 

In order to determine the major meteorological factors controlling the spatial thermal variability 

patterns, we computed the correlation coefficients of hourly spatial patterns (over 7 y) of each 

meteorological parameter and the net SurHF at the corresponding time. The hourly (spatial) 

correlation coefficients thus obtained were smoothed with a 30-d running mean, and then 

averaged over a year (i.e., the correlation coefficients for a given hour in the year were averaged 

over the six or seven years considered; for leap years the additional day in February was 

removed). The results are shown in Fig. 3.8. Spatial LSWT (Tw) and wind speed (U10) are 

negatively correlated with the spatial SurHF pattern. Global radiation, Qsc, reaches a maximum 

correlation coefficient of around 0.5 during March and April, the months with the lowest spatial 

variability in net SurHF (Fig. 3.4). Except for spring, wind speed has a correlation of > 0.6 and 

is the dominant meteorological parameter controlling net SurHF spatial variability. 
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Fig. 3.7. Time series of the spatial 

anomalies with respect to the median 

value (Q), i.e., IQR (25-75 percentile), 

of the surface heat flux (SurHF) 

components as compared with the net 

SurHF of Lake Geneva: (a) radiative 

heat flux terms, and (b) turbulent heat 

fluxes terms. The results are smoothed 

with a 30-d running mean.  

 

 

Fig. 3.8. Temporal variation of 

correlation coefficients between lake-

wide meteorological parameters and 

lake-wide net SurHF. 
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The air-water temperature difference is close to zero in early spring over a large portion of the 

lake (March and April in Figs. 3.1c and S3.3). The wind speed is also relatively low during that 

period, in particular during April (Figs. 3.1a and S3.1). As a result, the spatial SurHF variability 

due to evaporation and convection is lowest in early spring, as indicated by the low spatial 

correlation coefficients during this time (Fig. 3.6). During the March-to-June period, when wind 

speeds are low (Figs. 3.1a and S3.1), LSWT and the air-water temperature difference are the 

most important parameters, with correlation coefficients of approximately 0.6 (Fig. 3.8). During 

this period, the convective net cooling effect due to the air-water temperature difference (Tw –

Ta) is larger in the eastern part of Lake Geneva than in the western part of the lake (not shown). 

Thus, the wind-sheltering effect in the eastern part of the lake is partially compensated by the 

air-water temperature difference during spring, and consequently there is a less noticeable 

difference in SurHF between the eastern and western parts of the Grand Lac (Fig. 3.4). 

Schneider and Mauser (1991) suggested the same reason for the estimated spatial variation of 

SurHF over Lake Constance during May 1989. Using point data over three small lakes, Granger 

and Hedstrom (2011) found that wind speed, land-water temperature difference and land-water 

vapor pressure contrasts were the dominant factors causing turbulent SurHF variations. As is 

the case in the present study, they reported a minimum in turbulent cooling during spring.  

The patterns in Figs. 3.1c and S3.3 demonstrate that the convective net heating effect due to the 

air-water temperature difference is smaller in the eastern part of the lake during March to June 

compared to the western part of the lake. On average, LSWT (Figs. 3.1b and S3.2), and hence 

longwave cooling is lower in the Petit Lac than the Grand Lac. Furthermore, the effect of strong 

winds on convective cooling is partially balanced by higher (Ta –Tw) in the Petit Lac. These 

factors explain the higher SurHF in the Petit Lac compared to the western Grand Lac (Figs. 3.4 

and 3.5). 

3.4.2.  Atmospheric boundary layer stability 

It was shown above that evaporation and convection are the most important heat flux 

components affecting the spatial variability of net SurHF. The main variable in these terms is 

the Obukhov ABL stability parameter, ζ, which characterizes the relative contribution of 

buoyancy and wind shear to the turbulence generation over the lake surface (Yusup and Liu 

2016). When ζ < 0, the ABL is unstable, and turbulent cooling of the surface is higher. In 

contrast, under stable ABL conditions (ζ > 0), the turbulent heat exchange is less important. 
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ABL stability is determined by several meteorological parameters, such as wind speed (U10), 

LSWT (Tw), air-water temperature difference (Ta –Tw) and relative humidity ( rel ). To examine 

the combined effect of the dominant controlling factors, i.e., U10, Tw and (Tw –Ta), the mean 

temporal variation and the mean spatial pattern of the ABL stability parameter (ζ) for different 

months were calculated.  

The annual time series of the median and the spatial anomalies of the ABL stability parameter 

(ζ) are shown in Fig. 3.9. The results (smoothed with a 30-d running mean) demonstrate that 

the ABL is unstable over Lake Geneva, except for a stable period from early March to early 

June. The transition to a stable period in spring coincides with the strong change in the values 

of the various correlation coefficients observed before in Figs. 3.6 and 3.8. Evaporation, as 

discussed above, was at its minimum during the stable period (ζ > 0). Woolway et al. (2017), 

using data from different lakes, observed that unstable ABL conditions are least common during 

spring. Our results indicate that on an annual basis, the ABL is unstable ~ 74% of the time over 

Lake Geneva and that the unstable period accounts for ~ 90% of total evaporation. Woolway et 

al. (2017) reported unstable ABL conditions ~ 72% of the time (annual basis). Persistent 

unstable conditions were observed over tropical lakes (Verburg and Antenucci 2010; Woolway 

et al. 2017). 

 

Fig. 3.9. Temporal variation of lake-

wide mean atmospheric stability 

parameter (ζ), smoothed with a 30-d 

running mean window. The colored 

areas indicate the spatial distribution 

(IQR and P1-99) of ζ. Colors are 

identified in the legend. 
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The range of spatial anomalies of ζ as indicated by IQR and P1-99 is approximately constant in 

time except in late February and early March, when the stability changes rapidly from unstable 

to stable and the spatial variability is reduced (colored areas in Fig. 3.9). Since the ABL is more 

stable during spring, the air-water temperature difference is close to zero over most of the lake 

(Fig. 3.1c), resulting in lower turbulent heat fluxes, Qev and Qco. In early spring, this stability is 

due to intense solar radiation, and the capacity of water to absorb heat is high, because surface 

layer water temperatures are colder and the stratification is weaker than in summertime. 

Comparing Tw and Ta spatial patterns (not shown) suggests that the spatial distribution of air-

water temperature differences over Lake Geneva, and hence the spatial variability of the 

atmospheric thermal boundary layer, is predominantly controlled by LSWT, not air 

temperatures. 

Maps of the mean ABL stability parameter based on the six years of analysis were created for 

each month as described above for SurHF (Fig. 3.4). The spatial variability of ζ is large 

compared to its mean throughout the year (Fig. 3.10) for all months. The narrowest range of 

spatial variability is found during the period of stable stratification (March to May). This 

corresponds to the narrowest range of spatial variability of SurHF observed in Fig. 3.4. During 

the unstable period (ζ < 0) from July to February, the ABL is less unstable in the western Grand 

Lac where the SurHF is at the lowest below the monthly mean value (Fig. 3.4). Thus, in this 

area, the less unstable the ABL is, the greater the heat loss is from the lake. This agrees with 

Yusup and Liu (2016) who found that the maxima of turbulent heat fluxes did not occur in the 

most unstable conditions, but rather at low values of ζ. On average, the ABL is more unstable 

in the eastern Grand Lac where wind speeds are generally lower than in the western Grand Lac. 

In the eastern part of Lake Geneva, gradients from the less unstable southern part to the more 

unstable northern part are evident for some months. Yusup and Liu (2016) had already indicated 

that low wind speeds usually correspond to very unstable ABL conditions as seen in the eastern 

Grand Lac. They also mentioned that due to mixing in the near-surface water layers caused by 

wind stirring, the feedback mechanism between ABL stability and turbulent heat fluxes may at 

times make the interpretation of the relationship between these parameters difficult. For the 

Petit Lac, it is more difficult to establish a clear link between ζ and SurHF. 

The ABL stability concept appears in the Monin-Obukhov similarity theory, Eq. S2.7 in Table 

S2.3. Yusup and Liu (2016) suggested that the Monin-Obukhov similarity theory may have 
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limited validity beyond the stability range of 1. Studying the effect of thermal inertia and 

water advection on the Monin-Obukhov scaling, Assouline et al. (2008) concluded that for the 

case of small advection and large thermal inertia, as seen in Lake Geneva in the spring, the 

transport efficiency of humidity is higher than that of temperature, whereas they are usually 

assumed to be equal in the similarity theory (Zeng et al. 1998; Woolway et al. 2015). This can 

also be a source of error in the presented results. 

 

Fig. 3.10. Mean monthly anomaly patterns of Atmospheric Boundary Layer (ABL) stability (ζ) for Lake Geneva 

averaged over the period from March 2008 to December 2014. The lake-wide mean values of ζ for each month are 

indicated on each map. For a better comparison, deviations from the mean value within a range of ±2.5 are plotted. 

The Swiss coordinate system with km length-based units (CH1903) is used. Colors are identified in the legend in 

(a). 
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3.4.3. Spatial clustering using the k-means method 

To further explore similarities in the SurHF spatial patterns and those of meteorological 

parameters, the k-means clustering method (Jain 2010) was applied to the seasonal data. In the 

present analysis, this method is used to spatially partition SurHF and the meteorological 

parameters that affect SurHF spatial variability into clusters. The number of clusters used (k ≥ 

1) is arbitrary for a given data set. However, the overall variance of the data set decreases with 

increasing k, and the “optimal” value of k is usually taken at the point where the variance 

reduction rate becomes relatively small, because the variance first reduces rapidly, then more 

slowly (e.g., Tibshirani et al. 2001). The method was applied to the hourly data sets of the net 

SurHF (QN) and the three meteorological parameters that affect its spatial variability the most, 

i.e., LSWT (Tw), wind speed (U10), and global radiation (Qs). Results for spring and fall (Fig. 

3.11; results for the other two seasons are presented in Fig. S3.6) show that the net SurHF splits 

into four clusters (Fig. 3.11a-b), thus indicating four lake areas within which SurHF values vary 

little from the mean of the cluster. These compare well with the pattern seen in Fig. 3.4. There 

are only minor differences between the patterns in the different seasons (Figs. 3.11a-b and S6a-

b). LSWT and wind speed also split into four clusters in spring (Fig. 3.11c and e, respectively). 

The actual pattern of the former more closely resembles that of the clustering of the net SurHF. 

Due to convective surface cooling, and therefore strong mixing at the surface, only two LWST 

clusters (one in the Grand Lac and one mainly in the Petit Lac) were obtained for the fall season 

(Fig. 3.11d), while there is more consistency between the SurHF clustering (Fig. 3.11b) and 

that of the wind speed (Fig. 3.11f) in this season. Therefore, wind speed, which is a key 

parameter in the evaporative and convective SurHF terms (Eq. S2.7), is significant in 

controlling SurHF spatial variability during fall. Air-water temperature differences (Tw –Ta) are 

also higher in fall compared to spring (Figs. 3.1c and S3.3) when lower values of (Tw –Ta) 

weaken the effect of the convective and evaporative heat fluxes. As a result, the contribution of 

the spatial variability of the longwave emission to the observed variability in the total SHF 

becomes more significant during spring. The similarity between the net SurHF clusters (Fig. 

3.11a) and that of LSWT (Fig. 3.11c) confirms this.  

In all seasons, the global radiation, Qs, splits into three clusters (Figs. 3.11g-h and S3.6g-h) that 

hardly change in shape or extent. The pattern of three clusters probably is a reflection of the 

effect of the topography surrounding the lake and cloud cover. In general, the results of the 
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seasonal k-means analysis are in agreement with the temporal correlation coefficient trends 

presented in Fig. 3.8 and coincide with spatial variability in the SurHF patterns (Fig. 3.4). For 

most of the year, spatial variability is organized in zones aligned along the lake axis from the 

west to the east. 

 

Fig. 3.11. Dominant patterns (clusters) of (a) and (b) net SHF (QN), (c) and (d) LSWT (Tw), (e) and (f) wind speed 

at 10 m above surface (U10), and (g) and (h) global radiation (Qs), during spring (plots in left panel) and fall (plots 

in right panel) for the period 2008 to 2014. Shading identifies the different clusters; k is given in each panel and is 

the number of clusters. 
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A source of error in the above results (Figs. 3.3 to 3.11) may be related to the horizontal 

heterogeneity due to the relatively large LSWT pixel resolution (~ 1 km) and meteorological 

data (~ 2.2 km). The area-averaged SurHF may be overestimated or underestimated, 

particularly when air-water temperature differences are small (Mahrt and Khelif 2010). The 

change of the ABL regime from unstable to stable and vice versa, results in a drastic change of 

bulk transfer coefficients (Deardorff 1968). Therefore, we expect higher uncertainties during 

near-neutral conditions at the end of February and beginning of March (Fig. 3.9). The above-

mentioned errors become more significant when the absolute value of the SurHF is at its 

minimum in the springtime. However, regardless of these uncertainties, the general findings of 

our study, showing the spatiotemporal variation of SurHF (Figs. 3.3, 3.4 and 3.5) and the change 

of the dominant controlling regimes (Figs. 3.6, 3.8 and 3.9), are not affected. Better 

quantification of the associated uncertainties requires higher resolution maps of LSWT and 

meteorological data, which, to our knowledge, are presently not available. 

3.4.4. Lake surface thermal energy (heat content) variability 

The heat content variation in the water column over the full lake depth is the sum of the net 

energy flux into it. In order to determine whether and how the effect of the spatial variability of 

the SurHF affects the heat content of the lake, the temporal variation of the water column 

thermal energy is used (Van Emmerik et al. 2013; Fink et al. 2014; Nussboim et al. 2017):  

0

ˆ ˆ
m

t

NG t Q t dt  (3.2) 

Here, the net input energy, ∆Gm [Jm-2] into the lake, is calculated by time-integrating the net 

SurHF, QN [Wm-2], for a given period (Eq. 3.1). This calculation was carried out for one area 

in the western Grand Lac where SurHF is below the lake-wide mean and one in the eastern 

Grand Lac where SurHF is above the lake-wide mean (Fig. 3.5). Time series of QN were 

averaged over a small area in these regions instead of single points to be more representative 

for these regions. They are shown by shaded areas in Fig. 3.12a, denoted by EG and PG. For 

the 2009 to 2014 period, the spatiotemporal average net SurHF, NQ , is 3.2 Wm-2 (above the 

mean value of –1 Wm-2 obtained for the whole lake and for the same period) in the EG area and 

–6.7 Wm-2 (below the mean value) in the PG area. Time series of the heat content calculated 

with Eq. 3.2 for the areas EG and PG (Fig. 3.12b) indicate that the heat content changes in the 
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two areas follow the same seasonal pattern. However, they occur systematically at higher values 

in the EG area than those in the PG area. Thus, spatial variability of SurHF results in spatial 

variability of the heat content in the lake. Unfortunately, no measured water temperature 

profiles in these areas are available for the period 2008 to 2014 to verify these results.  

However, monthly temperature profiles in these areas were taken for the period July 1986 to 

June 1995 at several stations in the lake. From these measured temperature profiles, the total 

heat content of a water column in the lake, Go [Jm-2], is obtained employing Eq. 2.1. By using 

Eq. 2.2, the change in heat content from time t1 to time t2 can then be quantified between two 

consecutive profiles. These calculations were carried out for stations P1 and P2 in the EG area, 

and P3 and P4 in the PG area. It can be seen (Fig. 3.12c) that the seasonal variation and the 

amplitude of the variation are similar at all four stations. However, the heat content time change 

at P1 and P2 in EG is systematically above that of stations P3 and P4 in the PG area. This result 

is consistent with the difference in the time variation of the heat content in the EG and PG areas 

computed from the SurHF (Fig. 3.12b), and thus confirms that the heat content in the eastern 

Grand Lac is above that of the western Grand Lac. Furthermore, it shows that the SurHF (QN) 

for Lake Geneva is the dominant source of heat input into the lake and that other processes such 

as advective heat flux only play a minor role, as was demonstrated previously in chapter 2 

(Rahaghi et al. 2018; Unpublished work). This also indicates that in a large lake the effect of 

spatial variability of heat flux on the heat content may be important and that estimating heat 

content dynamics of a lake from a single station may not be representative for the whole lake. 

It is suggested that the trend towards higher heat content values and the spread between the 

eastern and the western Grand Lac regions over the study periods, as seen in Figs. 3.12b and c, 

is related to the effects of climate change (Lemmin and Amouroux 2013). They reported an 

average warming trend in Lake Geneva between 1970 to 2010, which follows the climate-

related warming trend in ABL.   
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Fig. 3.12. (a) Location of long-term monitoring points in Lake Geneva; see legend for details, (b) heat content 

evolution in the lake based on SurHF estimation for the period 4 July 2008 to 31 December 2014. The shaded 

regions in (a), denoted by EG and PG, represents the areas used for net SurHF, QN, estimation (see the text for 

more details), and (c) temporal evolution of heat content estimated by ~ monthly temperature profiles at P1-P3 for 

the period 4 July 1986 to 14 June 1995. For comparison with the curves in figures (b) and (c), the horizontal axes 

of the two plots are made for the same number of years. For a better comparison, all curves in (b) and (c) are 

plotted relative to their heat content value on the initial date. 
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3.5.  Conclusions  

It can be expected that large lakes exhibit spatial variability in meteorological parameters. For 

example, the surrounding topography can influence wind patterns and solar radiation. As a 

result, LSWT may exhibit considerable spatial variability, in particular during the summertime. 

The combination of meteorological and LSWT surface patterns can induce significant spatial 

variability in SurHF. Therefore, the determination of SurHF at a single location (or at best a 

few locations) where SurHF or water temperature profiles are measured regularly, only 

provides a partial understanding of the overall energy exchange dynamics in large lakes. In this 

study, we addressed this question by calculating the spatiotemporal distribution of net SurHF 

and its five main components over a 7-y period for Lake Geneva. The optimized and calibrated 

bulk algorithms, based on observations at 2 locations (discussed in chapter 2), were used to 

compute the SurHF terms. 

The calibrated SurHF model permitted quantifying the spatial variability of SurHF. We found 

a monthly spatial variability of up to ~ ± 40 Wm-2 (Fig. 3.4), which indicates the significance 

of spatial patterns of meteorological forcing patterns and LSWT in SurHF estimation in large 

lakes. From the results, it is clear that the latent and sensible heat fluxes are the main factors 

affecting the observed spatial variability of SurHF (Fig. 3.6). These fluxes are controlled by the 

variability of wind patterns, LSWT and air-water temperature difference, all of which affect the 

ABL stability, and hence the air-water heat exchange dynamics. 

The spatiotemporal variation of these meteorological forces follows a seasonal pattern. Our 

analyses show a noticeable change of the main controlling forcing in spring compared to the 

rest of the year (Fig. 3.8). The spatial variability of SurHF values predominantly reflects the 

variation in wind patterns during the summer-winter period, while the LSWT variability is more 

important during springtime (Fig. 3.8). The data show relatively low spatial anomalies for air 

temperature over Lake Geneva for all months. Therefore, LSWT mainly determines the spatial 

temperature difference in the ABL. The change of the controlling regime was evident in the 

ABL stability conditions curve (Fig. 3.9). Our results indicate that on average, the ABL over 

Lake Geneva is statically unstable 74% of the time, except during the springtime, when it is 

stable. The rate of evaporation is lower under stable ABL conditions (only ~ 10% of evaporation 

occurs during this period). Due to intense solar radiation and a higher potential of heat 

absorption during the onset of stratification (March-April), the air-water temperature 
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difference, and therefore the non-radiative heat fluxes are lower in the springtime. In addition, 

due to relatively low wind speeds, combined with the reduced air-water temperature difference, 

less spatial anomalies were observed during this period (Figs. 3.4c-d and S3.5). With increasing 

LSWT, the back radiation into the atmosphere becomes significant in the summertime. This, 

together with the reduced solar radiation, decreases the stability of the ABL (Fig. 3.9). 

Accordingly, the turbulent heat fluxes, mainly evaporation, increase. The wind pattern, as the 

dominant factor in the non-radiative SurHF terms, then controls the spatial variability of SurHF. 

This can explain the change of the dominant parameters shown in Fig. 3.8. 

The area-averaged (pixelwise) analyses are restricted by the LSWT satellite pixel resolution 

(~1 km). However, the results are dependable in terms of showing the range and distribution of 

spatiotemporal variability of SurHF and surface thermal energy (heat content) over a large lake. 

More detailed spatiotemporal in situ measurements of the thermal parameters, in both water 

and air are desirable in order to further improve the understanding of spatial variability of 

energy exchange dynamics. 
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Fig. S3.1. Mean monthly anomaly patterns of wind speed at 10 m above the surface, U10. Spatial averages are 

noted on each map. For a better comparison, the deviations from the mean spatial value within a range of ±1.5   

ms-1 are plotted. The Swiss coordinate system with km length-based units (CH1903) is used in these plots. The 

legend in (a) indicates the color range.  
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Fig. S3.2. Mean monthly anomaly patterns of lake surface water temperature, Tw. Spatial averages are noted on 

each map. For a better comparison, the deviations from the mean spatial value within a range of ±1 °C are plotted. 

The Swiss coordinate system with km length-based units (CH1903) is used in these plots. The legend in (a) 

indicates the color range.  
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Fig. S3.3. Mean monthly anomaly patterns of air-water surface temperature difference, Ta - Tw. Spatial averages 

are noted on each map. For a better comparison, the deviations from the mean spatial value within a range of ±1 

°C are plotted. The Swiss coordinate system with km length-based units (CH1903) is used in these plots. The 

legend in (a) indicates the color range.  
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Fig. S3.4. Time series of the mean (black lines) and percentiles of the distribution of spatially resolved data (areas 

filled between IQR, i.e., 25-75 percentile, and P1-99, i.e.,1-99 percentile, see the legend in (b) for color coding) of 

lake surface water temperature (LSWT) and meteorological data smoothed with a 30-d running window: (a) LSWT 

(Tw), (b) wind speed (U10), (c)  air temperature (Ta), and (d) global radiation (Qsc).  
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Fig. S3.5. Temporal variation of lake-wide mean net SurHF of Lake Geneva, based on data from 1 January 2009 

to 31 December 2014 smoothed with a 30-d running mean. The colored areas show the spatial distribution (IQR 

and P1-99) of net SurHF; see legend for color coding.  
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Fig. S3.6. Dominant patterns (clusters) of (a) and (b) net SHF (QN), (c) and (d) LSWT (Tw), (e) and (f) wind speed 

at 10 m above surface (U10), and (g) and (h) global radiation (Qs), during summer (plots in left panel) and winter 

(plots in right panel) for the period 2008 to 2014. Shading identifies the different clusters; k is given in each panel 

and is the number of clusters. 
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Abstract 

An airborne system for realizing thermography of the Lake Surface Water Temperature 

(LSWT) with ~0.8 m pixel resolution is presented. It consists of a tethered Balloon Launched 

Imaging and Monitoring Platform (BLIMP) that records the LSWT and an autonomous 

catamaran (called ZiviCat) that measures in situ surface/near surface temperatures and permits 

simultaneous ground-truthing of the BLIMP data. The BLIMP was equipped with an uncooled 

InfraRed (IR) camera. The ZiviCat was designed to measure autonomously along predefined 

trajectories on a lake. Since LSWT spatial variability is expected to be low in each frame, poor 

estimation of spatial and temporal noise of the IR camera (nonuniformity and shutter-based 

drift, respectively) leads to errors in the thermal maps obtained. Nonuniformity was corrected 

by applying a pixelwise two-point linear correction method based on laboratory experiments. 

A Probability Density Function (PDF) matching in regions of overlap between sequential 

images was used for the drift correction. A feature matching-based algorithm, combining blob 

and region detectors, was implemented to create composite thermal images, and a mean value 

of the overlapped images at each location was considered as a representative value of that pixel. 

The results indicate that a high overlapping field of view is essential for image fusion and noise 

reduction over such low-contrast scenes. Finally, the measured in situ temperatures were used 

for the radiometric calibration. This resulted in the generation of meso-scale LSWT maps that 

revealed spatial LSWT variability with unprecedented detail. 

 

Keywords: Remote sensing, thermal imagery, lake surface water temperature, image 

registration, uncooled infrared camera   
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4.1. Introduction  

Lake Surface Water Temperature (LSWT) varies in space and time and is thus a powerful 

indicator of the meteorological and climatological forcing dynamics of water bodies 

(Livingstone and Dokulil 2001; Adrian et al. 2009). Data sources for LSWT mapping include 

remote sensing and in situ measurements. Depending on cloud cover, satellite data can depict 

large-scale thermal patterns, but not meso- or small-scale processes. Satellite thermal images 

are usually validated against point measurements (e.g., Oesch et al. 2005; Riffler et al. 2015), 

considered to be representative for a sizeable surface area (typical pixel size ~1 km2). 

Thermography at the meso-scale level allows resolving (and hence ground-truthing) lake 

surface features at the sub-pixel scale ranging from several hundreds of meters to less than a 

meter. LSWT and air-water heat exchange are strongly coupled (Woolway et al. 2015; Tozuka 

et al. 2017) and so spatial heterogeneity of LSWT affects area-averaged surface heat flux 

estimates (Mahrt and Khelif 2010). Airborne thermography using an infrared camera (IR) can 

better resolve meso-scale LSWT spatial patterns.  

In recent years, commercial and scientific applications of IR cameras grew substantially (e.g., 

Mounier 2011; Lahiri et al. 2012). Thermal detectors used in IR cameras can be cooled or 

uncooled (Williams 2009; Vollmer and Möllmann 2011). Cooled cameras provide a higher and 

more stable thermal sensitivity compared to uncooled detectors, but they are more expensive 

and heavier than uncooled ones; this limits their use on small airborne platforms. Uncooled 

cameras are an adequate choice for many airborne environmental applications (e.g., Torgersen 

et al. 2001; Handcock et al. 2006; Haselwimmer et al. 2013; Hernandez et al. 2014; Tamborski 

et al. 2015; Neale et al. 2016) due to their lower price, compactness, portability, high spatial 

and good temperature resolutions (Kruse 1997; Vollmer and Möllmann 2011). However, 

LSWT thermography must take into consideration the following: When moving platforms, such 

as aircrafts are used to cover a broader area (e.g., Ferri et al. 2000; Tonolla et al. 2012; 

Haselwimmer et al. 2013; Emery et al. 2014; Castro et al. 2017), registration (stitching) of the 

image sequence is frequently required. Atmospheric boundary layer conditions, such as air 

temperature, humidity and atmospheric aerosol concentration, under which the thermal imagery 

is carried out, are constantly changing. This, together with a typical thermography altitude of 

O(100 m) to O(1 km) makes it more challenging to obtain reliable estimates of the atmospheric 

transmission coefficient than under controlled laboratory conditions. Therefore, in situ ground-
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truthing is needed for radiometric calibration of the airborne thermography. The spatial 

variation of temperature, and consequently the grey value contrast in an IR image, is expected 

to be low over natural waters. Properly addressing the effects of these particular conditions 

requires advanced image processing.  

The core of the uncooled IR sensor (micro bolometer) consists of a two-dimensional detector 

matrix, called the Focal Plane Array (FPA). Optical, electronic and mechanical components of 

the camera may affect the irradiance outputs (Milton et al. 1985; Vollmer and Möllmann 2011; 

Budzier and Gerlach 2015). Error sources include spatial noise, called nonuniformity, and 

temporal noise, called shutter-based drift (offset) (Nugent et al. 2013; Budzier and Gerlach 

2015). Nonuniformity in thermal imagery results from the different photo responses of 

individual detectors in the FPA for the same incident radiation. Thermal cameras usually try to 

correct this internally by periodically placing a mechanical shutter with a uniform temperature 

between the camera and the lens (FLIR, last accessed 12 January 2018). This Flat Field 

Correction (FFC) adjusts the internal offset coefficients of the camera, subsequently providing 

a more uniform image. During the implementation procedure, which takes ~2 s, the thermal 

imagery is frozen. However, the missing internal correction between the sequential FFC 

operations results in a thermal drift in the images. Nonuniformity and drift corrections must be 

performed prior to camera temperature calibration (Vollmer and Möllmann 2011). 

Quantification of these noise sources, and consequently correcting the camera output, requires 

details of internal signal processing of the micro bolometer array, and other parameters, e.g., 

camera internal temperature and sensor temperature information that is usually not available. 

Therefore, a calibration model is needed for the camera.  

Calibration models require an adjustable constant scene temperature (e.g., Perry and Dereniak 

1993; Marinetti et al. 1997), rely on the IR camera internal information (e.g., Parra et al. 2011; 

Nugent et al. 2013; Nugent and Shaw 2014; Budzier and Gerlach 2015), or use scene-based 

algorithms (e.g., Torres et al. 2005; 2006). However, these algorithms are best suited for thermal 

imagery of high temperature contrast fields. Satellite images of lake surface waters show only 

small LSWT differences, typically much less than 5°C. Therefore, this kind of calibration 

cannot be used for image fusion and registration of over-lake IR images.  

This study was carried out on Lake Geneva, the largest lake in Western Europe, (see section 

2.1.). Advanced Very High Resolution Radiometer (AVHRR) satellite data were used to 
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investigate the diurnal/nocturnal LSWT evolution of this lake (Oesch et al. 2005; 2008). Due 

to the limited spatial resolution, it was suggested that the observed warm/cold LSWT regions 

could possibly be due to the development or attenuation of the diurnal thermocline, lake breezes 

and/or large-scale summertime circulations resulting from temporally and spatially variable 

wind forcing patterns over the lake (Lemmin and D’Adamo 1996). Meso-scale LSWT patterns 

can resolve the uncertainties in the LSWT data interpretation of previous investigations.  

In the present study, we use a Balloon Launched Imaging and Monitoring Platform (BLIMP) 

with an uncooled IR camera that was developed to measure LSWTs at meso-scales. Here, we 

investigate its feasibility for taking meso-scale thermal imagery over Lake Geneva with an 

emphasis on NonUniformity Correction (NUC) and drift adjustment. We implemented an 

image processing workflow including NUC, drift correction, and denoising through image 

fusion. A feature matching-based algorithm was used for image registration (stitching). The 

proposed methodology was validated by comparing the corrected grey values and the 

simultaneous in situ water temperature data that were obtained using an autonomous craft 

(ZiviCat). 

4.2. Materials and methods 

4.2.1.  Study site 

Located between Switzerland and France, Lake Geneva (Local name: Lac Léman) is a large, 

deep perialpine lake at a mean surface altitude of 372 m. It is approximately 70-km long, with 

a maximum width of 14 km, a surface area of 582 km² and a volume of 89 km³ (Fig. 4.1). To 

avoid the effect of coastal mixing on the temporal and spatial patterns of LSWT, we present 

results for areas sufficiently far from the shores. Although land features, due to their high 

contrast in both visible and IR bands, are beneficial for image stitching and fusion (e.g., 

Tamborski et al. 2015), such complementary information is not available at the areas of interest 

in this study. 
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Fig. 4.1. Location and bathymetry (see the legend in the left part) of Lake Geneva, adapted from a public domain 

satellite image (NASA World Wind, last accessed 1 February 2018) and bathymetry data (SwissTopo, last accessed 

1 February 2018). The map is given in CH1903 Swisstopo coordinates. The red dot indicates the area of the present 

study. 

 

4.2.2.  Measurement platforms 

Field measurement campaigns were carried out using two systems: (i) an airborne balloon for 

thermal imagery (called BLIMP, Fig. 4.2a), and (ii) an autonomous catamaran (called ZiviCat, 

Fig. 4.2b) for in situ measurements.  

The BLIMP was attached to a small balloon tethered to a winch on a boat, from which its height 

is controlled. In the present study, the balloon was placed at less than 600 m elevation. It carried 

a thermal imagery package (Liardon and Barry 2017) suspended beneath it (grey box in Fig. 

4.2a). The package includes a FLIR Tau2 LWIR camera (640 × 512 pixel resolution, 14-bit 

digital output) and a Raspberry Pi RGB camera (used for visual inspection and verification), as 

well as other equipment for its position (GPS), orientation, tilt angles (Inertial Measurement 

Unit; IMU), height, and communication with the boat. All data are recorded internally in the 

BLIMP. The system uses either User Datagram Protocol (UDP) communication through a 

mobile network via a 4G module, or serial radio transmission using an XBee Pro 100 mW 

module for real-time monitoring of the BLIMP imagery on the boat. Compared to other aerial 

systems such as aircraft or drones, the BLIMP system is less affected by vibration and tilting, 

as we confirmed by testing with a custom autonomous drone (Liardon et al. 2017). To minimize 
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camera movement, a self-balancing attachment system was used (Picavet rigging, last accessed 

12 January 2018) that allows for passive stabilization even under moderate wind speeds. 

However, in our study, measurements were made under weak wind conditions, when LSWT 

spatial patterns are more likely to occur and, furthermore, data are less contaminated by surface 

waves and BLIMP lateral movements.  

Simultaneous ground-truthing of the BLIMP data was achieved using the ZiviCat, an 

autonomously operating catamaran. It can measure in situ near-surface water temperatures 

(main parameter in this study), as well as lake current profiles, radiative heat flux, and surface 

momentum flux for physical limnology investigations. In the near-surface water layer, ten 

RBRsolo temperature sensors (RBR, last accessed 12 January 2018) with an accuracy of 

0.002°C were mounted on a 2-m long spar and measured water temperature profiles with a 

frequency of up to 1 Hz in the near-surface layer (1.5 m). Thermistors were more closely spaced 

near the surface (shown with the arrow in Fig. 4.2b). The thermistor spar is mounted well 

forward of the craft to avoid hull disturbances. The ZiviCat moves with a speed of ~1 ms-1. The 

craft is equipped with other instruments and equipment for position (GPS), stability (IMU), data 

recording, and communication, which allows for real-time data control, correction and analysis 

on the boat that accompanies the ZiviCat and on which the winch for the BLIMP is mounted. 

Details of the systems and sensors are presented in Barry et al. (2018, Unpublished results).   

 

Fig. 4.2. Field measurement system: (a) BLIMP for airborne imagery, and (b) ZiviCat platform for in situ 

measurements. The small helium balloon (volume 9 m3) that carries the BLIMP is tethered to a winch on the 

accompanying boat. The thermistor spar of the ZiviCat, which is tilted horizontally in (b) for navigation in shallow 

areas, is rotated vertically for measurements and includes 10 thermistors to measure the near-surface layer (down 

to 1.5 m depth) temperature profiles. 
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Several field campaigns were conducted over Lake Geneva to test the feasibility of the 

combined ZiviCat-BLIMP system. Results from 18 March 2016 are presented here. The 

BLIMP moves forward with the boat to which it is tethered and takes images every 5 s, resulting 

in more than 90% overlap between the sequential frames. The imagery height was kept at ~400 

m, which provided IR images with ~0.8 m pixel resolution. From 11h45 to 16h30, the ZiviCat 

covered a ~16 km long trajectory. However, only the last 3 h of the campaign showed noticeable 

LSWT patterns. In order to demonstrate our methodology for the LSWT image processing, we 

selected a ~24 min segment, i.e., five FFC intervals, which includes 287 IR frames. It should 

be noted that the proposed image processing algorithm is a tool that can be applied to any 

comparable data set. Some examples of raw IR images from the selected period are shown in 

Fig. 4.3. They only cover a narrow band in the 14-bit output (16384 grey levels) of the camera 

(~2550 to 2720 in grey values) because of the low temperature contrast over the field of view 

of the IR camera. The inter-frame grey value variations, e.g., cold (Frame 1) to warm (Frame 

31), or warm (Frame 61) to cold (Frame 91), reveal a clear temporal drift problem. This 

variation is non-linear in time (shown later), and sometimes it is within the range of the frame 

spatial contrast between two FFC periods (e.g., compare Frames 1 and 31 in Fig. 4.3). 

Nonuniformity is also evident in the raw images, e.g., cold corner areas of Frames 1, 121, and 

151, or warm corners in Frame 31 (Fig. 4.3). The main LWST feature, e.g., the elongated cold 

streak in the middle of Frame 1 disappears in Frame 181, because the platform is moving during 

the thermal imagery recording. This can also be seen by following the position of the ZiviCat, 

indicated by a red dot in the Fig. 4.3 images, and its boat track due to water mixing. A similar 

track is produced by the accompanying boat navigating “below” the ZiviCat (more evident in 

Frames 1 and 181). This motion requires that consecutive images have to be assembled along 

the track of the BLIMP. We implemented an image processing procedure that combines 

available methods to address and correct all these issues for LSWT image registration. 
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Fig. 4.3. Examples of 7 selected raw IR 

images 30 frames apart (collected on 18 

March 2016) with a pixel resolution of 

~0.8 m and a frequency of 0.2 frames per 

second (FPS). The color map shows the 

IR camera output as grey values (given 

in the legend). A red dot indicates the 

position of the ZiviCat in each frame. 

This figure illustrates both spatial (e.g., 

more pronounced in Frame 151) and 

temporal (e.g., grey value variation 

between Frames 1 and 31) noise of the 

thermal images. The change of the 

surface pattern structures among the 

frames is due to the moving BLIMP 

(e.g., take the catamaran position as a 

reference point to visualize the 

movement). 

 

4.2.3.  Image enhancement, registration and calibration procedure 

The procedure developed to estimate and correct noise in images, register all the images and 

calibrate them is shown in Fig. 4.4. It is divided into three main steps: (i) pre-processing, (ii) 

image registration, and (iii) and post-processing.  

In the pre-processing step, we first read the raw 14-bit thermal images collected during the field 

measurements. A spatial filter, e.g., Gaussian filter or median filter, is then applied to reduce 

the salt-and-pepper noise evident in raw thermal images (Vollmer and Möllmann 2011). The 

filter size, i.e., the standard deviation value (Gaussian filter) or the radius (median filter), was 

selected so as to retain the meso-scale patterns of LSWTs. In the next step, a preliminary NUC 
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Fig. 4.4. Flowchart of the procedure for image enhancement (top), registration (center) and calibration (bottom). 

investigation is performed. For this, FLIR camera images of a ~1.5 × 1.5 m metal plate were 

recorded under low (controlled cold room at ~4oC) and high (night-time windowless basement 

room at ~25oC with minimum airflow) temperatures. Then, a NUC was performed on these 

images following the two-point algorithm of Budzier and Gerlach (2015). In this approach, the 
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deviation in pixel ij, ijU , from the mean scene value, U , is a linear function of the pixel 

value: 

ij ij ij ij ijU U U a U b  (4.1) 

where ijU  denotes the pixel grey value of pixel ij. We used 500 frames under constant low and 

high temperature conditions for this calibration, and so obtained the linear regression model 

parameters, a and b in Eq. 4.1, for each pixel. The linear model showed mean and maximum 

residuals of 1.9 and 4.5 in grey values, respectively. Afterwards, the pixel value corrected for 

nonuniformity was calculated by subtracting the deviation, Eq. 4.1, from the measured 

irradiance at each frame:    

, 1k k k k
ij NUC ij ij ij ij ijU U U a U b  (4.2) 

where k is the frame number. An example of the NUC operation on the field data is shown in 

Fig. 4.5. It reveals that the preliminary NUC enhances the thermal imagery (e.g., the 

enhancement of the top-right cold corner and the central warm area of the image). The 

corresponding NUC in grey value (Fig. 4.5c) indicates that the nonuniformity errors over inland 

water bodies can be comparable with the frame contrast at the given scales (range of colormap 

in Fig. 4.5a and b). However, examining the NUC method under lower contrast conditions, e.g., 

in wintertime when spatial LSWT variation is minimal, indicates that some artifacts still remain 

in the images (not shown here). This can be due to the very low temperature contrast of LSWTs, 

environmental conditions different from the laboratory tests (especially humidity and higher 

sensor-environment temperature difference), errors associated with the parameter estimations, 

or the linearity assumption in the two-point NUC algorithm. In the present investigation, the 

large overlap area between subsequent images permits further improvement of the 

nonuniformity effect (discussed in section 4.3).  

Compared to aircraft systems, tilting was expected to be negligible with the BLIMP Picavet 

rigging system. Therefore, an image with minimal (close to zero) Inertial Measurement Unit 

(IMU) values (negligible tilting) was selected as a first image. After applying the preliminary 

NUC to all selected images, the geometric transformation of the images with respect to the first 
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Fig. 4.5. An example of NonUniformity Correction 

(NUC) of Lake Geneva thermal imagery: (a) raw 

thermal image (Frame 151 of the selected images in 

Fig. 4.3, 640 × 512 pixels) with a pixel resolution of 

~0.8 m, (b) the image after NUC, and (c) the difference 

between (a) and (b). Note that the grey value range of 

the legend in (a) and (b) is different from panel (c), and 

also Fig. 4.3. 

  

 

image was calculated. To do this, a feature detection and matching technique was applied. Since 

strong meso-scale features (~1 m image resolution) are not likely over natural waters, we 

combined the Speeded-Up Robust Features (SURF) (Bay et al. 2008) and Maximally Stable 

Extremal Regions (MSER) (Matas et al. 2004) algorithms for feature detection in each frame. 

An example of features found by the SURF and MSER algorithms is shown in the 

Supplementary materials (Fig. S4.1). The matching of the points between two frames and their 

relative geometrical transformation is obtained using the Maximum Likelihood Estimation 

SAmple Consensus (MLESAC) (Torr and Zisserman 2000) algorithm. We applied an affine 

transformation, which preserves straight lines and planes. The above mentioned algorithms 
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require that certain parameters be specified. These were selected such that the final stitched 

image keeps the main patterns over the lake (by eye inspection). More importantly, an objective 

metric was used, i.e., that the irradiance values match well in situ temperature data measured 

by the ZiviCat (discussed below in section 3). All image processing in this work, including the 

subroutines for feature detection and estimation of the geometrical transformation, were written 

in Matlab (last accessed 10 February 2018). An example of three overlaid frames (20 frames 

apart; Fig. 4.6) demonstrates the excellent performance of the selected methods and parameters 

in preserving the main LSWT features in the stitched image (see the two boat tracks in the lower 

parts, or the streak-like features in the middle of Fig. 4.6). The change of inter-frame grey values 

is due to drift and will be discussed below.   

 

Fig. 4.6. An example demonstrating the performance of the feature-based image registration algorithm. It shows 

Frames 181, 201 and 221 (after the NUC was applied) overlaid based on matched features. Here we selected one 

image every 20 frames only for visualization purposes; a much higher amount of overlap exists between 

consecutive images. Note that, for example, the ZiviCat and the accompanying boat tracks appear twice to show 

the motion between the first two (bottom) and then between all three images. 

 

As mentioned earlier, a problem with uncooled IR cameras is shutter-based drift. Two 

examples, in Figs. 4.3 and 4.6, show the problem for LSWT thermography. Even though the 

FLIR camera implements the internal FFC every ~5 min, drift is still evident within each FFC 

interval as an increase or decrease of the pixelwise grey value from frame-to-frame. To correct 
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this internal grey value variation that is non-physical with respect to LSWTs, the overlapped 

areas between consecutive pairs of frames were found using the geometric transfer functions 

obtained above. We then estimated and matched the probability distribution of the grey values 

for the overlapped area of each frame. The matching was achieved by computing the cross-

correlation of the overlapped areas, finding the lag in the grey value distribution, and 

subsequently shifting the level of the second image to the first one. Thereafter, the corrected 

second image was used to correct the third image, and so on. In other words, the shutter-based 

drift corrected pixel value, Uij,Shk , is estimated as:  

, , 1k k k
ij Sh ij NUC k ij ij ij kU U c a U b c  (4.3) 

where kc is the drift correction associated with frame number k, and is calculated as follows:  

1
, ,

k k
ij NUC k ij ShOL OL

P U c P U  (4.4) 

Here, P denotes the estimate of the Probability Distribution Function (PDF), and OL is the 

overlapped area. In this methodology, the drift correction for the first frame, for which we take 

the frame right after the FFC, is zero ( 1 0c ). We also tested correcting the drift by using the 

spatially averaged values of the overlapped area. However, errors cumulated through the image 

sequence and the results were slightly worse than those of the present methodology (results not 

shown). Figure 4.7a gives an example of the drift problem, and its correction procedure is 

illustrated in Fig. 4.7b. The drift correction for the whole frame sequence (287 frames in five 

FFC periods) is presented in Fig. 4.7c. The results suggest that the drift problem is non-linear 

between and within FFC intervals. 

After the pre-processing step, all the selected images were registered. Image stitching was 

accomplished using the geometrical transform functions obtained through feature detection and 

matching in the pre-processing step. Pixelwise image fusion was performed to create the 

composite image. Although there are various methods for image fusion (Anita and Moses 

2013), here we used simple averaging to fuse a set of input intensities at each pixel: 
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Fig. 4.7. (a) An example of drift problems in thermal imagery. Note the evidently non-physical increase of grey 

value from Frame 45 to Frame 46. The grey scale is given in the legend, (b) The Probability Distribution Function 

(PDF) of Frames 45 and 46 (solid lines), together with the PDF of the drift-corrected Frame 46 (dashed line). The 

corresponding correction obtained by the cross-correlation analysis is found to be ~9.1 in grey value, and (c) The 

drift correction for the entire selected frame series with respect to the first frame. FFC periods are indicated by 

dashed-vertical lines. 

 

,

,

,
,

pq reg

m
pq Sh

m k
pq reg

pq reg

U
U

N
 

(4.5) 

where ,pq regU  is the intensity value at location pq of the composite image and ,pq regN is the 

number of frames that are included in the calculation of the mean overlapped grey value at pq, 

i.e., ,pq regk . Thereafter, a statistical criterion using the number of overlapped pixels was 
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applied to keep a pixel in the stitched image, or remove it. This is based on the statistical 

variation of the grey value as a function of OLN , i.e., the number of overlapped images at each 

pixel. Results will be given in section 4.3. At the end of this step, the overall corrected LSWT 

thermal image in grey values is established. However, two more steps are required: (i) mapping 

the obtained pattern into geographic coordinates to correlate the BLIMP data to the ZiviCat 

data, and (ii) converting grey values to temperatures by carrying out the radiometric calibration 

to produce the temperature map.  

For both of these steps (post-processing in Fig. 4.4) the ZiviCat measurements are needed. First, 

the ZiviCat location in each image was found. Solid objects, i.e., ZiviCat and the boat, usually 

produce pixels with the highest intensity (for example, see hot spots in Figs. 4.5 and 4.6). Due 

to the high overlap ratio between consecutive images (~95%), the displacement of objects is 

expected to be small between sequential frames. Therefore, the ZiviCat was manually located 

in the first image. In order to locate the ZiviCat in the second image, we searched for the pixel 

with the highest intensity within a small radius, i.e., ~20 pixels, around that pixel. We repeated 

the same procedure for the following frames always using the ZiviCat location in the previous 

frame (see examples in Fig. 4.3 shown by red dots). Using these locations, together with the 

geometric transformation for each frame from the pre-processing step, ZiviCat locations were 

pinpointed in the stitched image. Since the BLIMP and ZiviCat have separate data acquisition 

systems, the meta-data synchronization was accomplished through time matching. The 

corresponding GPS coordinates, recorded by the ZiviCat, permitted transforming the final 

stitched image from pixel coordinates to the geographic coordinates.  

Conversion of pixel grey values to actual temperatures was achieved through radiometric 

calibration using (Horny 2003): 

,
,lnpq zc

pq reg

BT
R U O F

 (4.6) 

where B, R, O and F are the calibration coefficients that were determined through a non-linear 

regression analysis. The close-to-the-surface (2 cm depth) in situ temperatures measured by 

ZiviCat, ,pq zcT , and the corresponding grey values in the stitched image, ,pq regU , were used to 

find these parameters. Prior to that, the actual depths of the ten RBRsolo thermistors (Fig. 4.2b) 
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due to the ZiviCat frame movement were corrected using the ZiviCat IMU data. Finally, the 

LSWT map was obtained from the grey values of the stitched images with Eq. 4.6. 

4.3.  Results and discussion 

To illustrate the performance of the proposed procedure for LSWT image registration and 

calibration, we show results for the selected IR frame series over Lake Geneva. To demonstrate 

the effect of each of the main steps of image processing, i.e., NUC, drift correction and image 

fusion, we present the resulting map with full correction, together with the thermal maps 

without NUC, without drift correction, or using fewer frames for image fusion.  

To examine the effect of the pixelwise averaging on the image registration (image fusion), the 

results using all images (0.2 FPS, and an average of ~95% overlap between consecutive images) 

were compared with the thermal map considering only every 10th image (0.02 FPS, and an 

average of ~86% overlap between consecutive images). Using only every 10th image, the 

current algorithm of feature detection and estimation of the geometric transformation failed 

(results not shown). This is apparently due to lack of enough features, and also the significant 

movement of the ZiviCat and the boat (moving objects) between frames in the 10th image 

configuration. Therefore, we employed the geometrical transformations corresponding to the 

subset of images, i.e., every 10th image, computed using all images. According to the 

preliminary results, a higher number of overlapped images for a pixel results in a higher 

enhancement on the stitched image. For example, the edges of the stitched image, where the 

number of overlapped images is lower, show more non-physical spatial variability. To quantify 

the effect of smoothing by image fusion, and consequently to find a criterion for omitting the 

pixels with insufficient overlaps, we calculated the variation of the grey value,
OLN

U , as a 

function of the number of overlaps, OLN , at each pixel:  

 , , , 1OL OL OL
pq reg pq reg pq regN N N

U U U  (4.7) 

According to Eq. 4.7, at an arbitrary position, pq, on the registered image, the variation due to 

OLN overlaps is defined as the change of the absolute grey value resulting from adding a new 

frame that includes pq to the registered image, i.e., using Eq. 4.5. This variation may change 

with location on the registered image. Therefore, we calculated the statistical parameters of 
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variation as a function of the number of overlapped images. Figure S4.2 presents the maps of 

the number of overlaps for both cases studied, using every 10th image and using all images. 

The median and the range of grey value variations for each number of overlapped images were 

then calculated and were presented as box plots (Fig. 4.8). It is evident that using more overlaps 

leads to less pixelwise grey value variation. Here, the results of Fig. 4.8a at point 3 on the x-

axis, should be compared with the corresponding results in Fig. 8b at point 30 on the x-axis. In 

this example, point 3 in Fig. 4.8a showed a median and maximum variation of ~2 and 7, 

respectively, and for the corresponding point in Fig. 4.8b (point 30) a median and maximum 

variation of ~0.2 and 0.6, respectively, were found.  

 

Fig. 4.8. Pixelwise grey value variation as a function of the number of overlapped images obtained by using (a) 

every 10th image, and (b) all images. The typical value (median, blue lines), the likely range of variation 

(interquartile, black boxes) and the wider range of variation (whiskers extent, solid black lines) excluding outliers 

are given in the box plots. The red line in (b) corresponds to 0.5 grey value variation that is used as an arbitrary 

threshold here. Inset: zoom on the interval of number of overlapped images where the chosen threshold intersects 

the maximum grey value variation. 

 

The results of Fig. 4.8b can also be used to define a threshold for the number of overlaps in the 

stitched image. In this study, we considered a threshold of 35 frames for image fusion, i.e., 

, 35cr OLN  in step 7 of Fig. 4.4. This point is at the beginning of the flat part of the curve in 

Fig. 4.8b, and has an average maximum variation of < 0.5 grey value (as indicated by the red 

line in Fig. 4.8b). We applied this criterion to generate the final thermal maps shown below. 
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After BLIMP-ZiviCat time synchronization, as explained above, the catamaran pixel-GPS 

locations were used to create the final thermal map in CH1903 Swisstopo coordinates. In order 

to reveal the effectiveness of the proposed image processing algorithm, the results are given 

(Fig. 4.9) for full correction in all images, as well as the thermal maps without implementing 

NUC, without drift correction, and using fewer frames for image fusion. The results confirm 

that the high-frequency denoising (step 1 in Fig. 4.4) preserved the main features of the thermal 

images. For this part, we implemented both the median and Gaussian filters. The difference 

between the final thermal maps was insignificant at the given scale (we only show the results 

applying the Gaussian filter). 

 

Fig. 4.9. Surface thermal maps of a section of Lake Geneva in grey value (step 9 in Fig. 4.4) obtained by: (a) Using 

every 10th image (to examine the effect of step 7 in Fig. 4.4), (b) Neglecting the drift correction (to examine the 

effect of step 5 in Fig. 4.4), (c) Neglecting NUC (to examine the effect of step 2 in Fig. 4.4), and (d) with full 

correction. Legend in (b) indicates the grey value scale valid for all panels. 

 

Using fewer frames for image fusion (Fig. 4.9a) produces less image contrast difference 

compared to the full correction map (Fig. 4.9d), and the resulting map is not satisfactory in 

terms of preserving all (even the main) features in the stitched image. For example, the IR boat 
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tracks are not as clear as in Fig. 4.9d. In addition, due to the lack of sufficient frames for image 

fusion (as also shown in Fig. 4.8), some artifacts are evident in the areas with less overlap (e.g., 

close to the edges of Fig. 4.9a). Also, the geometrical transformation to CH1903 coordinates 

are slightly tilted compared to using full images (Fig. 4.9d). This is, again, due to insufficient 

number of frames for transformation.   

Figure 4.9 also indicates that neglecting NUC or the drift correction may cause non-physical 

spatial gradients over the stitched image (e.g., note the warm areas in Figs. 4.9b and c). The 

warm areas in the left part of Fig. 4.9b result from the negative drift correction required for the 

first FFC interval (Fig. 4.7c), whereas in the center parts, the averaging due to a high number 

of overlaps (Fig. S4.2) compensates the drift problem. Fig. 4.9c illustrates a gradual warming 

from left (first frame) to the right (last frame) of the stitched image. This is due to the recursive 

behavior of the drift correction methodology. This methodology uses the PDF matching 

between overlapped areas of consecutive frames, but then applies the obtained correction to the 

whole frame. NUC is particularly effective on the edges (see Fig. 4.5c as an example), which 

mainly contain the non-overlapped regions of the frame. Therefore, neglecting NUC retains an 

error in a frame for the subsequent drift correction. This error is cumulative over subsequent 

frames, causing warming in this case. To confirm this, we generated a stitched image neglecting 

both NUC and drift correction (Fig. S4.3). It shows a map similar to Fig. 4.9b (no drift 

correction) with more artifacts on the edges due to omitting NUC. 

To further investigate the performance of the procedure, the matching of the measured in situ 

near-surface temperatures (at about 2-cm depth) with the corresponding grey value on the 

stitched image is required. However, the in situ measurement points are contaminated by the 

boat track in the stitched image (note again that the measurement platform is moving). To avoid 

this, the average grey value of a few pixels (4 in the present analysis) above and below the 

actual locations of the ZiviCat were used. Therefore, locations with minimal grey value 

differences between pixels above and below the ZiviCat track are more appropriate. 

Furthermore, to cover wider temperature ranges, regions with higher along-track spatial 

variability are more relevant. Considering these requirements, the along-track measurement 

frames between 533.95 and 534.3 km in Fig. 4.9d were selected (50 frames with their locations 

are shown in Fig. S4.4). The comparison between the measured temperatures (from ZiviCat) 

and the enhanced grey values (processed BLIMP data) for the thermal maps of Figs. 4.9a and 
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d are shown in Fig. 4.10. It again demonstrates the poor performance by using fewer frames for 

image stitching and fusion and indicates a relatively low RMSD and high correlation coefficient 

when using the proposed method for the all image registration. The observed deviations 

between the grey values and LSWTs (red circles in Fig. 4.10) can be due to errors in the 

estimation of the geometric transformations, the difference between skin (top 10 - 500 μm layer) 

and near-surface temperatures (Minnett et al. 2011; Wilson et al. 2013), uncertainties in the 

ZiviCat measured and corrected data, and errors induced by averaging above/below pixels for 

the comparison. 

 

Fig. 4.10. Comparison of the grey value of the stitched image (from the airborne BLIMP) with the corresponding 

in situ near-surface (2-cm depth) temperatures measured by the ZiviCat using every 10th image (blue squares) and 

all images (red circles). The solid lines show the corresponding radiometric calibrations, Eq. 4.6, which tend to be 

linear for a narrow temperature range (< 3°C). The RMSDs for the non-linear regression model, and the correlation 

coefficients, lρ , for a linear curve fitting are given in the legend. 

 

In the last step of this procedure, the radiometric calibration (step 10 in Fig. 4.4) is required to 

convert the obtained grey value thermal map (Fig. 4.9d) into a temperature map. A non-linear 

regression analysis following an ordinary least-square approach was carried out to find the best-

fit parameters in Eq. 4.6. The solid lines in Fig. 4.10 show the fitted curves. We note that Eq. 

4.6 was developed for a wide range of temperatures (> 50°C), confirmed by the wide range of 
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confidence intervals obtained for the estimated calibration parameters (not shown here). For a 

low-contrast scene, a linear relationship is expected and linearity within the < 3°C range of 

LSWTs is evident in Fig. 4.10. The red solid line parameterization in Fig. 4.10 was used to 

obtain the meso-scale thermal map (Fig. 4.11 with ~0.8 m resolution) over a section of Lake 

Geneva. The area covered in Fig. 4.11, i.e., ~0.61 km2, resolves less than a typical satellite pixel 

(1 km2). However, it shows various cold-warm patches and streak-like structures over the lake 

surface with a temperature contrast of > 2°C. These features are not resolved in satellite images, 

but may be important for atmosphere-lake heat exchange dynamics. 

 
Fig. 4.11. Lake surface water temperature (LSWT) meso-scale map over a section of Lake Geneva obtained from 

aerial remote sensing (see Fig. 4.2 for measurement platforms). This map was created using 287 images with a 

resolution of ~0.8 m together with an image processing procedure (Fig. 4.4). Streaks with temperature differences 

of several degrees are evident. Note the boat track from west to east across the upper part of the image. The legend 

indicates temperature in °C. 

 

4.4.  Summary and conclusions  

Airborne meso-scale thermography of LSWTs can provide suitable data for ground-truthing 

and spatial downscaling of satellite data. The obtained patterns are also valuable for physical 

limnology studies, especially the dynamics of air-water exchange phenomena at the meso-

scales (~1 m resolution). In this study, we presented aerial thermography results over a section 

of a large lake (Lake Geneva) obtained with an in-house system consisting of a balloon-
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launched platform (BLIMP) accompanied by a catamaran (ZiviCat) for ground-truthing and 

radiometric calibration. An uncooled microbolometer camera was used, for which the spatial 

noise, i.e., nonuniformity, and temporal drift are intrinsic. Correction and enhancement of the 

IR images were carried out before and throughout the image registration procedure (Fig. 4.4). 

A preliminary two-point NUC (using laboratory measurements, Fig. 4.5) together with drift 

estimation through PDF matching of the overlap regions of consecutive frames (Fig. 4.7) were 

implemented prior to image registration. The selected frames were registered to create a stitched 

image covering a wider area. To estimate the geometric transformations for image registration, 

the blob and region features are detected applying SURF and MSER techniques (Figs. 4.6 and 

S4.1). Then, MLESAC was employed to find the transformation functions by matching the 

combination of these features among frames. Due to a large degree of overlap, a simple 

averaging was used on the stitched image to fuse the grey value at each pixel. The results 

indicated that neglecting either the NUC or the drift correction can produce substantial artificial 

spatial gradients in the stitched image (Figs. 4.9b and c). Furthermore, using all images, 

providing ~95% overlap between consecutive frames allowed accurate generation of the 

stitched image (Figs. 4.9a and 4.10), whereas imagery with less overlap, e.g., ~86% overlap, 

failed. The final result (Figs. 4.10 and 4.11) showed the capability of the two-platform system 

and the proposed image-processing procedure to resolve meso-scale LSWT patterns over a lake. 

It also demonstrates that in such low-contrast moving scene cases containing only a few clearly 

identifiable mobile objects such as boats, a high overlap ratio (~95% in our case) combined 

with spatiotemporal noise reduction are essential for accurate LSWT thermography. This 

resulted in the generation of meso-scale LSWT maps that revealed spatial LSWT variability 

with unprecedented detail. 
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(a) Detected features by SURF 

 

(b) Detected features by MSER 

 

Fig. S4.1. Examples of features detected by: (a) the SURF method (blob objects), and (b) the MSER method 

(region objects). The SURF blob detector works by first blurring the image with the Gaussian filter at several 

scales, then downscaling the images, and finally detecting the blobs with a fixed size. In (a) the size of each 

detected feature is the radius of the drawn circle. The concept of the MSER detector in (b) is connected with 

thresholding. The algorithm checks for regions that remain stable over a certain number of thresholds provided as 

an input to this method.  

 

  

 

Fig. S4.2. Number of overlapped images at each pixel on the stitched image: (a) using every 10th image (29 frames), 

and (b) using all images (287 frames). The legend indicates the number of overlapped images, i.e., NOL. 
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Fig. S4.3. Thermal maps in grey values by: (a) Neglecting the drift correction, and (b) Neglecting NUC and the 

drift correction. It shows that, as expected, the results in (b) are worse in than (a). For example, note the cold areas 

(artifacts) in the middle lower part of (b). The legend in (a) gives the grey value scale for (a) and (b). 

   

 

Fig. S4.4. The part of the stitched image that is used for radiometric calibration (50 frames) shown in white circles 

on the right side of the image. This part of the track covers the widest range of grey value (or LSWT) variability. 

Also, due to the streak-like structures, the differences between grey values above and below the selected points 

are minimal. The legend gives the grey value scale. 
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Abstract 

The effect of spatial heterogeneity of Lake Surface Water Temperature (LSWT) at meso-scale, 

O(1 m) on the surface cooling estimation at sub-pixel satellite area O(1 km2) was investigated 

using an airborne platform. The cold season data did not show significant LSWT heterogeneity, 

and hence surface cooling spatial variability. However, the spring and summer results, based 

on three selected daytime meso-scale maps, indicated a LSWT contrast of > 2°C and > 3.5°C, 

corresponding to the spatial surface cooling range of > 20 Wm-2 and > 40 Wm-2, respectively. 

Due to the nonlinear relationship between turbulent surface heat fluxes and LSWT, the 

negatively skewed LSWT distributions resulted in both negatively and positively skewed 

surface cooling patterns, respectively, under very stable or predominantly unstable 

Atmospheric Boundary Layer (ABL) conditions, and predominantly stable ABL conditions. 

Implementing a mean spatial filter, the effect of area-averaged LSWT on the surface cooling 

estimation of a typical satellite pixel was assessed. The effect of the averaging filter size on the 

mean spatial surface cooling values was negligible, except for predominantly stable ABL 

conditions when a reduction of ~3.5 Wm-2 from high O(1 m) to low O(1 km) pixel resolution 

was obtained. The results revealed that the bias in meteorological condition sampling, 

particularly wind speed, can affect both the mean and the range of spatial surface cooling. The 

error in the air temperature may also alter the surface cooling distribution from negatively 

skewed to positively skewed, and hence affect the area-averaged estimates. 

 

Keywords: Lake surface water temperature, surface cooling, thermal imagery, remote 

sensing, Lake Geneva, atmospheric boundary layer stability   
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5.1. Introduction  

Lake Surface Water Temperature (LSWT) is one of the main parameters for the estimation of 

surface cooling in lakes. Long-wave radiation and the surface turbulent heat fluxes are the major 

cooling components. Surface cooling estimates may be sensitive to space and time averaging 

of the input variables including LSWT (Gulev 1997; Hughes et al. 2012). A small (~ 1°C) 

variation in the LSWT, particularly under near-neutral Atmospheric Boundary Layer (ABL) 

stability conditions, may result in a significant modification of surface cooling of a water body 

(Mahrt and Khelif 2010; Brodeau et al. 2017; Mahrt and Hristov 2017).   

To estimate the surface heat fluxes over water bodies, in situ point measurements (e.g., 

Assouline et al. 2008; Nordbo et al. 2011; Spence et al. 2011; Van Emmerik et al. 2013; Zhang 

and Liu 2013) or satellite surface temperature data (e.g., Lofgren and Zhu 2000; Alcantara et 

al. 2010; Moukomla and Blanken 2017; Rahaghi et al. 2018a) are most often used. Satellite 

data can depict large-scale thermal patterns, but not meso- or small-scale processes (hereinafter, 

meso-scale refers to horizontal structures ranging from O(1 m) to O(100 m)). Satellite thermal 

images are representative for a surface area with typical pixel resolution of O(1 km). Thus far, 

however, little attention has been given to LSWT spatial heterogeneity at sub-pixel satellite 

resolution. Thermography at the meso-scale level allows resolution of lake surface 

heterogeneity at the satellite sub-pixel scale. Past studies have examined meso-scale surface 

temperature variability using airborne systems. Due to the challenges intrinsic to the thermal 

image registration over water, which was discussed in chapter 4 (Rahaghi et al. 2018c; 

Unpublished work), or instrumental restrictions, they only reported along-track point (Mahrt 

and Khelif 2010) or area-averaged (Castro et al. 2017) measurements. The results indicated a 

skin temperature variation of > 1 °C within ~1 km distance, which can affect the area-averaged 

surface heat flux calculation. Other studies used infrared thermography to investigate small-

scale (less than 1 m pixel resolution) surface water and heat flux horizontal variabilities (Garbe 

et al. 2003; 2004; Veron et al. 2008; Handler and Smith 2011; Schnieders et al. 2013).  

Due to LSWT heterogeneity, air-water temperature differences and, consequently, the stability 

conditions, can be spatially variable at meso-scales. Turbulent heat fluxes are found to be more 

sensitive to skin temperature under near-neutral ABL stability conditions (Mahrt and Khelif 

2010; Mahrt and Hristov 2017). The turbulent cooling response to the LSWT distribution also 

incorporates the spatial heterogeneity of the surface stress. Therefore, bulk algorithms that take 
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into account the stability are preferred for this study. The surface shear stress and turbulent heat 

flux coefficients are coupled by the Monin-Obukhov similarity theory (Monin and Obukhov 

1954) with some parameterizations (e.g., Zeng et al. 1998; Fairall et al. 2003; Woolway et al. 

2015), or through bulk Richardson number concepts (Mahrt and Khelif 2010; Mahrt and Hristov 

2017).  

In the present case study, we assess the effect of LSWT meso-scale variation on the surface 

cooling distribution and its area-averaged estimate without resolving the spatial variability of 

other meteorological parameters. A measurement system, including a balloon launched 

airborne platform for thermography and a catamaran for in situ ground truthing, was used for 

LSWT mapping and calibration. Several field campaigns were carried out over Lake Geneva, 

the largest lake in Western Europe (see section 5.2.2.). Four daytime (afternoon) missions 

covering different ABL stability conditions were selected. The surface cooling estimation is 

based on a 2-point calibrated model using large-scale data described in chapter 2 (Rahaghi et 

al. 2018b; Unpublished work). However, we investigated the effect of turbulent model 

parameterization on the surface cooling distribution by applying the commonly used model of 

Zeng et al. (1998). The uncertainty associated with the primary meteorological parameters was 

also quantified by a sensitivity analysis. 

5.2. Materials and methods 

5.2.1.  Lake surface cooling formulas 

The cooling from a lake surface (Qc) contains a long-wave radiative term (Qbr) and two 

turbulent components, latent (evaporation, Qev) and sensible (convection, Qco):  

c br ev coQ Q Q Q  (5.1) 

All the heat flux terms were assumed positive upwards (out of the lake).  

Back radiation, Qbr, was modeled with the Stefan-Boltzmann law: 

4273.15br w wQ T  (5.2) 
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where σ and Tw are Stefan-Boltzmann constant (5.67 10-8 Wm-2K-4) and LSWT (°C), 

respectively. Following other studies in Switzerland (Livingstone and Imboden 1989; Fink et 

al. 2014), we used a constant water surface emissivity, εw, of 0.972.  

Based on satellite LSWT data and meteorological parameters from a numerical model at two 

locations over Lake Geneva, the Monin-Obukhov similarity theory (Monin and Obukhov 1954) 

was found to provide the best estimates of turbulent heat fluxes over this lake (see chapter 2) 

(Rahaghi et al. 2018b; Unpublished work). We assume that the obtained model is also valid for 

the meso-scale short-term data presented here (section 5.2.2.). A set of coupled formulas is 

solved iteratively to find the drag, humidity and temperature bulk transfer coefficients, i.e., Cd, 

Ce and Ch, respectively, in order to calculate the turbulent surface heat fluxes:  

* *ev e z v z s z z vQ C L u q q L u q  (5.3) 

, , * *co z p a h z w z z p aQ C C u T T C u T  (5.4) 

2 2
*d z z zC u u  (5.5) 

where ρ, Lv, q, u, Cp,a, T and τ are air density [kgm-3], latent heat of vaporization [Jkg-1], specific 

humidity [kgkg-1 dry air], wind speed [ms-1], specific heat capacity of air at constant pressure 

[Jkg-1K-1], temperature [°C] and surface shear stress [Nm-2], respectively. The subscript z 

denotes the measurement height [m] of the corresponding meteorological parameter, and the 

symbol qs is the saturated specific humidity [kgkg-1 dry air]. In this algorithm, a set of 

differential equations, normalized by the scaling parameters (indicated by * in Eqs. 5.3-5.5), 

and as a function of the ABL stability parameter (ζ) are defined and they are solved iteratively 

to resolve the ABL. The details of these equations, their solution procedure and their calibration 

can be found elsewhere (Zeng et al. 1998; Woolway et al. 2015; Rahaghi et al. 2018b). The key 

coupling parameter, ζ, is defined as follows:  

1 3
, *0.61 273.15w co p a z ev v z vzL z g Q C T Q L u T  (5.6) 

where Lw is the Monin-Obukhov length [m], and κ and Tv are, respectively, the Von Karman 

constant (0.41) and virtual air temperature [K], which is given by:  
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273.15 1 0.61v z zT T q  (5.7) 

The relationship between LSWT (Tw) and the surface cooling terms, Qbr (Eq. 5.2), Qev (Eq. 5.3) 

and Qco (Eq. 5.4), is by definition non-linear, in particular, the turbulent heat fluxes. Therefore, 

the response of surface cooling formulas to the LSWT distribution is expected to be non-linear. 

This might affect area-averaged surface cooling estimations. 

5.2.2.  Data set and study site 

A measurement platform comprising (i) an airborne balloon for thermal imagery (called 

BLIMP), and (ii) an autonomous catamaran (called ZiviCat) for in situ measurements are used 

to resolve the LSWT at meso-scales.  

The BLIMP was attached to a small balloon tethered to a winch on a boat, from which its height 

(typically between 300 m to 800 m) is controlled. It carried a thermal imagery package (Liardon 

and Barry 2017) suspended beneath it. The package includes a FLIR Tau2 LWIR camera (640 

× 512 pixel resolution, 14-bit digital output) and a RGB Raspberry Pi camera (used for visual 

inspection and verification), as well as other equipment for its position (GPS), orientation, tilt 

angles (Inertial Measurement Unit; IMU), height, and communication with the boat. Unlike 

other aerial systems such as aircraft or drones, the BLIMP system is less affected by vibration 

and tilting, as we confirmed by testing with a custom made autonomous drone (Liardon et al. 

2017).  

Simultaneous ground-truthing of the BLIMP data was achieved using the ZiviCat, an 

autonomously operating catamaran. It can measure in situ near-surface (down to 1.5 m) water 

temperatures using 10 RBRsolo thermistors (RBR, last accessed 12 January 2018), as well as 

lake current profiles, radiative heat flux, wind speed, air temperature and relative humidity. 

However, some of these sensors were not available during some of the field measurements. The 

ZiviCat moves at a speed of ~1 ms-1. The craft is equipped with other instruments and 

equipment for the position (GPS), stability (IMU), data recording, and communication, which 

allows for real-time data control, correction and analysis on the boat that accompanies the 

ZiviCat and on which the winch for the BLIMP is mounted. Details of the systems and sensors 

are presented in Barry et al. (2018; Unpublished work). The thermal images were then 
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registered and calibrated implementing an image processing procedure to create the final meso-

scale temperature maps (see chapter 4) (Rahaghi et al. 2018c; Unpublished work).  

This study was carried out over Lake Geneva (Local name: Lac Léman; Fig. 5.1). Located 

between Switzerland and France, it is a large, deep, crescent-shaped (Fig. 5.1) perialpine lake 

with a mean surface altitude of 372 m. It is approximately 70-km long, with a maximum width 

of 14 km, a surface area of 582 km², a volume of 89 km³, and a maximum depth of 309 m.  

 

Fig. 5.1. Location and bathymetry (see the legend in the left panel) of Lake Geneva. The inset shows the area of 

the selected missions. The dates of the field missions are indicated in the legend of right panel.  

 

Four field measurement data sets (Fig. 5.1 and Table 5.1) were selected for this study. Due to 

legal restrictions in Switzerland, the field measurements were performed during the daytime 

and over predefined areas on the lake. To avoid the effect of coastal mixing on the temporal 

and spatial patterns of LSWT, we present the results for deep (>200 m depth) areas sufficiently 

far from the shores. All the measurements were taken under weak wind conditions (less than 

~2 ms-1) when LSWT spatial patterns are more likely to occur, and data are less contaminated 

by surface waves and BLIMP lateral movements. Each mission usually takes ~5-6 h, but to 

minimize the effect of LSWT temporal variation on the presented results, a ~25-30 min segment 

of each data set was used, except for MGL2. Since there were insufficient features for image 

registration on that date, only ~7 min of the data are used. This is due to very small temporal 

and spatial variations of temperature (discussed in section 5.3.1). Unlike the other three 

missions, where we used the ZiviCat continuous temperature data for the calibration of the 
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BLIMP registered image (explained in chapter 4) (Rahaghi et al. 2018c; Unpublished work), 

the minimum and maximum in situ temperature values are used for the calibration of the MGL2 

thermal images.  As will be discussed in section 5.3.1, this does not affect the findings of this 

study.  

Meteorological data, i.e., wind speed, relative humidity and air temperature, are also required 

for the surface cooling estimation (Eqs. 5.3-5.5). The ZiviCat platform was designed and 

equipped to measure along-track data, but not spatial meteorological patterns. We did not find 

a significant correlation between the near-surface temperatures and the measured 

meteorological data. Furthermore, the standard deviation of the measured data during the 

relatively short period of the selected segments were on average small, except for air 

temperature during the MGL3 mission with intense springtime radiative forcing (Table 5.1). 

Therefore, the average values of the meteorological data were used for the heat flux 

calculations. Due to technical issues, certain data were missing during MGL1 and MGL3 

missions. In those cases, we used the assimilated results of a numerical weather model 

(COSMO, last accessed 25 February 2018) for the wind speed (at 10 m) and relative humidity 

(at 2 m) for the MGL1 and MGL3 missions, and the air temperature (at 2 m) of MGL1 (Table 

5.1). We studied the effect of errors in meteorological sampling by performing a sensitivity 

analysis (section 5.3.4.). For a better comparison, the averaged values measured by ZiviCat (at 

~1.8 m) were converted into the wind speed at 10 m, U10 (Table 5.1) assuming a power-low 

profile (Hsu et al. 1994):  

0.11
10 10zU u z  (5.7) 
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Table 5.1. Time, number of frames, pixel resolution and meteorological parameters for the 

selected field experiments in this study (see Fig. 5.1 for locations and dates). The standard 

deviations of the ZiviCat meteorological measurements are indicated in parenthesis.  

Field 

campaign 
Time 

Number of 

frames 

Pixel 

resolution 

[m] 

U10 [ms-1] Ta [°C] ϕrel [%] 

MGL1 ~15h30 287 0.8 0.6 9.8 60.1 

EGL2 ~17h30 496 0.8 1.3 (0.2) 25.2 (0.27) 60.1 (3.1) 

MGL2 ~14h00 81 2.7 2 (0.5) 12.3 (0.15) 50.1 (1.2) 

MGL3 ~13h40 315 1.4 2 13.5 (0.96) 66.7 

 

5.3.  Results and discussion 
5.3.1.  Spatial heterogeneity of lake surface water temperature at meso-scales 

The registered thermal images for the selected missions are presented in Fig. 5.2. It shows 

various cold-warm patches and streak-like structures over the lake. These meso-scale features 

are not discernible in the satellite images. The number of frames used to create each composite 

map is given in Table 5.1. The comparison of the BLIMP irradiance values and the 

corresponding ZiviCat near-surface temperatures shows a correlation coefficient of > 89% and 

a Root mean Square Difference (RMSD) of < 0.17 °C (Fig. S5.1; Supporting Information (SI)).  

The corresponding Probability Distribution Function (PDF) for each LSWT map is also plotted 

(bottom-left corner curves in Fig. 5.2). It confirms that the LSWT spatial variability within a 

typical satellite pixel can be significant. The spatial variability is more pronounced during the 

MGL1 (Fig. 5.2a) and EGL2 (Fig. 5.2b) missions with an LSWT spatial range of > 2 and > 

3.5°C, respectively, over an area covering less than 1 km2. MGL2 is a representative case for 

the cold season (October to February), when the spatial variability of LSWT at meso-scales is 

negligible (< 0.1°C). It should be noted that the measurement platform was continuously 

moving to cover a broader area. The observed LSWT patchiness over the measured tracks (not 

shown here) was spatially and temporally variable. For example, the springtime LSWT spatial 
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heterogeneity was found to be insignificant before 13h00 compared to the late afternoon data. 

In this study, we only present part of the data with significant LSWT heterogeneity. 

 

Fig. 5.2. Meso-scale lake surface water temperature patterns (top-middle maps in each panel) and their 

corresponding probability distribution function (PDF) (bottom-left corner of each panel) for different field 

missions: (a) MGL1, (b) EGL2, (c) MGL2, and (d) MGL3. For the location and the date of each panel see Fig. 

5.1. Note that the temperature range of the legends and PDF plots is different in each panel, and all panels cover 

an approximately 2 km × 2 km area (~4 typical satellite pixels). 
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Except for MGL2 (Fig. 5.2c), when the spatial variability was negligible, the remaining selected 

LSWT patterns show a negatively skewed distribution (skewness values of -0.8, -0.4 and -0.7 

for MGL1, EGL2 and MGL3, respectively). Determining the reason for such skewness is 

beyond the scope of this paper. However, previous studies have examined the surface 

temperature distribution at small-scales in the field (Veron et al. 2008) or under controlled 

laboratory conditions (Garbe et al. 2004; Handler and Smith 2011). Handler and Smith (2011) 

attributed the negative skewness of surface water temperature distribution to the elongated cold 

bands over the surface. Even though their measurements were taken under surface wind speeds 

of > 2 ms-1, such cold bands were also observed in our LSWT patterns, as is particularly evident 

in Fig. 5.2a. 

5.3.2.  Meso-scale surface cooling patterns and distributions 

We used Eqs. 5.1-5.5, the obtained LSWT spatial maps (Fig. 5.2) and the area-averaged 

meteorological data (Table 5.1) to compute the lake surface cooling (Qc) patterns. Figure 5.3 

shows the surface cooling maps as well as their corresponding distribution. Although Qc 

responses preserve the larger-scale structures, the distributions (bottom-left corner plots in Fig. 

5.3) are different from the LSWT PDF curves (Fig. 5.2) for some missions. This difference is 

more evident for the missions with higher LSWT contrasts, i.e., MGL1 and EGL2, and at the 

tails of the distributions. The results also demonstrate a positive skewness (value of 1.5) for 

the Qc distribution of EGL2 (Fig. 5.3b) that is different from the responses to LSWT 

heterogeneity of MGL1 and MGL3. The spatial variation of Qc of MGL2 (Fig. 5.3c) is 

negligible and reflects the small contrast of LSWT (Fig. 5.2c). The higher the LSWT contrast 

is, the larger the surface cooling spatial variation is (Fig. 5.3).  
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Fig. 5.3. Same as Fig. 5.2, but for lake surface cooling anomaly patterns. 

 

The difference of the Qc distributions as compared with the LSWT distributions is mainly due 

to the non-linearity in the turbulent heat flux formulas. More specifically, the Monin-Obukhov 

similarity theory depends on ABL stability (ζ) conditions, since ζ is coupled with the surface 

turbulent heat fluxes and surface momentum flux. The level of this non-linearity is higher 

under near-neutral conditions, i.e., small air-water temperature differences, and weak surface 

stress (Mahrt and Khelif 2010; Mahrt and Hristov 2017). Therefore, investigating the stability 

condition can be useful to interpret the obtained surface cooling distributions.  
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The ABL stability conditions for the selected missions are shown in Fig. 5.4. The atmospheric 

thermal boundary layer is defined as very unstable (ζ < -0.465), unstable (-0.465 ≤ ζ < 0), stable 

(0 ≤ ζ ≤ 1), or very stable (0 < ζ) (Zeng et al. 1998; Woolway et al. 2015). The results indicate 

that the ABL is very unstable and very stable for the MGL2 (Fig. 5.4c) and MGL3 (Fig. 5.4d) 

missions, respectively, over the entire studied regions. The major part of the MGL1 thermal 

map (Fig. 5.4a) was very stable followed by some very stable and near-neutral regions 

corresponding to the cold patches (Fig. 5.2a). The ABL over EGL2 (Fig. 5.4b) was found to be 

mainly very stable, but very unstable and in a near-neutral condition over the warmer parts (Fig. 

5.2b). Hereinafter, we call the MGL1 and EGL2 missions “predominantly unstable” and 

“predominantly stable”, respectively. Comparison of the results in Figs. 5.2-5.4 indicates that 

the range of the surface cooling variation for the same LSWT range is higher under unstable 

than stable ABL conditions. For example, comparison of Figs. 5.2b and 5.4b in the very stable 

areas (Fig. 5.4b) shows a larger relative contrast in the former than the latter. The tails of the 

PDF curves in Figs. 5.3a and b also show higher PDF values for negative anomalies 

(corresponding to very stable conditions). A clear example is the second smaller mode formed 

in the left part of PDF plot for MGL1 (Fig. 5.3a) that is non-existent in the corresponding LSWT 

distribution (PDF plot in Fig. 5.2a). Furthermore, the spatial variability of LSWT, and 

consequently surface cooling, is much higher during the MGL1 field mission (Fig. 5.3a) than 

during MGL2 (Fig. 5.3c), even though both are on average very unstable. The net heat flux 

(including solar short-wave and atmospheric long-wave radiation) was positive for MGL1, 

whereas it was negative during the MGL2 mission (results not shown here). The net heating 

under the weak wind conditions resulted in a strong stratification during the MGL1 mission 

(temperature difference of up to > 2.5 °C in the 1.5 m thick surface layer; not shown here) 

which can enhance the water resistance to thermal mixing. This comparison suggests that the 

background stratification and the net surface heat flux are also important for the LSWT, and 

consequently surface cooling spatial heterogeneity under very unstable conditions.  
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Fig. 5.4. Atmospheric boundary layer stability patterns for different field missions: (a) MGL1 (predominantly 

unstable), (b) EGL2 (predominantly stable), (c) MGL2 (very unstable), and (d) MGL3 (very stable). For the 

location and the date of each panel see Fig. 5.1. Note that all panels cover an approximately 1.8 km × 1.8 km area 

(less than four typical satellite pixels). The Swiss-coordinate system with km length-based units (CH1903) is used. 

Colors are identified in the legend in panel (a). 

 

Figure 5.5 shows the variation of different surface cooling components, Qbr, Qev and Qco, as a 

function of LSWT (Tw) for the MGL1, EGL2 and MGL3 missions (we do not show the results 

for MGL2, since the horizontal heterogeneity of Tw and Qc is negligible). The results 
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demonstrate that the long-wave back radiation (Qbr; blue lines in Fig. 5.5) changes linearly over 

the measured temperature ranges, and is the controlling component during the MGL3 mission 

(Fig. 5.5c) with a very stable ABL over the entire area (Fig. 5.4d). The convective cooling (Qco; 

green lines in Fig. 5.5) shows the least contribution among surface cooling terms. Its effect was 

only comparable to the other terms under very unstable conditions at the right end of Fig. 5.5a.  

 

Fig. 5.5. Anomaly variation (with respect to the mean spatial surface cooling) of back radiation (Qbr), latent (Qev) 

and sensible (Qco) heat fluxes as a function of lake surface water temperature, Tw, for different field missions: (a) 

MGL1 (predominantly unstable), (b) EGL2 (predominantly stable), and (c) MGL3 (very stable). The vertical 

dashed lines in (a) and (b) indicate the neutral condition, = 0. Colors are identified in the legend in panel (a). 

 

A substantial variation of evaporative cooling (Qev) was found during the missions under near-

neutral conditions (brown lines in Fig. 5.5a and b). The results indicate that the Qev variation as 

a function of LSWT can be divided into three sections: (i) a nearly flat section (left part of the 

curves in the very stable zone with negative Qc anomalies), (ii) a substantial non-linear change 

from stable to unstable conditions (close to vertical dashed lines in the near-neutral zone), and 

(iii) a linear section with a positive slope (right part of the curves in the very unstable zone with 

positive Qc anomalies). Part (i) explains the negative modes in the Qc anomaly distributions 

(left part of the PDF plots in Fig. 5.3a and b). Since part (i) in Fig. 5.5b covers a large portion 

of the LSWT distribution (see Figs. 5.2b and 5.5b together), the corresponding negative mode 

in the PDF plot of the Qc anomalies (Fig. 5.3b) is consequently large. This illustrates the positive 

skewness obtained for the Qc anomaly distribution in Fig. 5.3b as compared to the negatively 

skewed LSWT pattern (Fig. 5.2b). In contrast, part (i) in Fig. 5.5a corresponds to a relatively 
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small segment of the LSWT pattern (see Figs. 5.2a and 5.5a together). As a result, the negative 

mode is relatively small, and therefore has a negligible impact on the Qc response to the LSWT 

distribution, i.e., both the LSWT and Qc anomalies show a negative skewness. The results also 

indicate that the evaporative cooling increases substantially from stable to unstable ABL 

conditions (Figs. 5.5a and b). Due to the higher wind speed during the EGL2 mission compared 

to MGL1, this variation is higher for EGL2.  

5.3.3.  Effect of area-averaged LSWT on the surface cooling estimates 

Our results indicated that the sub-pixel satellite LSWT heterogeneity can be significant, in 

particular under weak wind and near-neutral ABL stability conditions (Fig. 5.2). It was also 

shown that the surface cooling response to the LSWT under such conditions is non-linear (Figs. 

5.3 and 5.5). It suggests that surface cooling, and consequently the net surface heat flux, at 

satellite pixel resolution may be sensitive to the spatial averaging of the sub-pixel satellite 

LSWT variation, as has been shown for large-scales and over open waters (Gulev 1997; Mahrt 

and Khelif 2010; Mahrt et al. 2012). Here, we used the selected meso-scale LSWT maps 

obtained with our airborne remote sensing platform (Fig. 5.2) together with the calibrated bulk 

formulas over Lake Geneva (Eqs. 5.1-5.5) to study this effect.  

A mean spatial filter with variable size was implemented on the LSWT patterns to produce 

thermal maps with different resolutions. In this operation, each pixel value is replaced with the 

mean (average) value of the predefined neighborhood pixels, including itself. We used the 

LSWT maps at their initial resolution (given in Table 5.1) to find the filtered patterns at 20, 100 

and 500 m resolutions. Due to the negligible spatial variability of MGL2, the operation was not 

performed for this case. Figure 5.6 shows the resulting distributions of the LSWT anomalies 

(with respect to the mean spatial value at the initial resolution) with different spatial resolutions. 

The spatial filter preserves the mean spatial LSWT value in all missions for various filter sizes. 

The results indicate that the range of LSWT spatial variability decreases with increasing pixel 

resolution. However, the difference between the distributions with O(1 m) and 20 m resolutions 

was found to be negligible. It indicates that the surface temperature features with an O(10 m) 

horizontal scale were dominant for the selected missions. By increasing the pixel resolution, 

the reduction of the 0.5-99.5 percentiles ranges (solid lines in Fig. 5.6; indicative for the total 

range) is more pronounced than the interquartile ranges (filled rectangles in Fig. 5.6), and is 

mainly attributed to the fading of the cold features.  
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Fig. 5.6. Box plots of lake surface water temperature (LSWT), Tw, anomaly distributions as a function of pixel 

resolution for different field missions. The results are presented for O(1 m) (given in Table 5.1), 20 m, 100 m and 

500 m pixel resolutions. The white circles, the filled rectangles and the solid lines indicate the median, interquartile 

range (25 to 75 percentiles) and the 0.5 to 99.5 percentiles (indicative for the total range), respectively. Note the 

logarithmic scale on the horizontal axis. 

 

From the spatially filtered LSWT maps, the surface cooling (Qc) maps at different spatial 

resolutions were estimated using the constant meteorological parameters given in Table 5.1. 

Figure 5.7 shows the calculated distributions of the Qc anomalies for the selected missions. The 

surface cooling meso-scale variability is higher during the EGL2 mission with an evident 

positive skewness that was discussed above. Our results, similar to Mahrt and Hristov (2017), 

demonstrate that under near-neutral conditions (MGL1 and EGL2), the LSWT heterogeneity is 

more influenced by the stably stratified parts of the ABL while the turbulent heat flux spatial 

variability is dominated by the unstable parts of the ABL.  
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Fig. 5.7. Same as Fig. 5.6, but for surface cooling, Qc, anomaly distributions. 

 

The area-averaged surface cooling (Qc) values were also calculated for various pixel resolutions 

and for the different field missions. The results indicate that the spatial mean Qc for the MGL1 

mission (predominantly unstable) increases by ~0.5 Wm-2 from meso-scale O(1 m) to large-

scale  O(1 km) resolution, while a decrease of ~3.5 Wm-2 for the same resolution range was 

found for EGL2 (predominantly stable). The spatial mean Qc value also decreased, but 

negligibly (~0.05 Wm-2) for the very stable (MGL3) mission when comparing heterogeneous 

with homogenous patterns. These findings demonstrate that in the surface heat flux estimation 

of water bodies, the errors associated with the area-averaged LSWT are expected to be higher 

under near-neutral conditions (Gutowski et al. 1998; Mahrt and Hristov 2017), a condition that 

is not common on an annual basis over lakes (Verburg and Antenucci 2010; Woolway et al. 

2017; Rahaghi et al. 2018a). In order to investigate the effect of the obtained biases of surface 

cooling induced by LSWT meso-scale heterogeneity on the overall heat budget of a water body, 

especially in a long-term analysis, a more extensive data base is required. 
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5.3.4.   Effect of biases in the meteorological parameters on the surface cooling spatial 

distribution 

The meteorological parameters, wind speed, air temperature and relative humidity, were 

assumed to be spatially constant in this study. Our direct along-track measurements taken with 

the ZiviCat platform indicated that the spatial variability of some parameters, e.g., air 

temperature during the MGL3 mission (Table 5.1), can be significant even over a relatively 

short measurement time. Meso-scale surface maps of the meteorological parameters are 

required for a detailed analysis. To our knowledge, these data do not exist over Lake Geneva 

or other comparable lakes. 

To quantify the uncertainty associated with the errors in meteorological parameter sampling, 

we performed a sensitivity analysis by changing each of the meteorological parameters within 

a reasonable range while keeping the other two constant (values in Table 5.1). The MGL1 data 

(predominantly unstable) was used. The wind speed (U10) values were changed from 0 to 3    

ms-1, to cover the weak wind conditions over Lake Geneva. We studied the air temperature (Ta) 

values within a ±1°C range around its mean value (9.8°C). We also selected the values of 50, 

65 and 80% for of the relative humidity (ϕrel) as the typical variation range over Lake Geneva. 

The results (Fig. 5.8) show that by increasing the wind speed from 0 to 3 ms-1 , the sensible and 

latent surface cooling are enhanced, and the area-averaged mean and the standard deviation of 

the Qc map increase by ~25 and ~3 Wm-2 (Fig. 5.8a).  However, LSWT spatial heterogeneity is 

less likely under stronger wind speeds due to stronger surface mixing. The spatial mean value 

of Qc shows a ~10 Wm-2 reduction when increasing the air-water temperature difference within 

a 2°C range (Fig. 5.8b). This parameter mainly affects the ABL stability conditions over the 

lake, and hence the skewness of the Qc distribution. Increasing the air-water temperature 

difference tends to alter the ABL from unstable to stable, and therefore the negatively skewed 

Qc distribution to a positively skewed one (left to right in Fig. 5.8b). The standard deviation of 

Qc also showed a ~1 Wm-2 reduction by changing Ta from 8.8 to 10.8°C, indicating a more 

homogenous surface cooling pattern under stable conditions. The relative humidity had the least 

effect on the surface cooling variation with a decrease of ~6 and ~1 Wm-2 in the mean and 

standard deviation of the Qc spatial map by increasing its value from 50 to 80% (Fig. 5.8c). 
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Fig. 5.8. Box plots of the variation of the surface cooling (Qc) spatial distribution as a function of (a) wind speed 

(U10), (b) air temperature (Ta), and (c) relative humidity (ϕrel) for the MGL1 field mission (see Table 5.1, Figs. 5.1 

and 5.2 for more details). The white circles, the red filled rectangles and the solid black lines indicate the median, 

interquartile range (25 to 75 percentiles) and the 0.5 to 99.5 percentiles (indicative for the total range), respectively. 

Note that the range of ordinate axis in (a) is different from (b) and (c). 

 

5.3.5.   Effect of turbulent heat flux parameterization on the surface cooling spatial 

distribution 

The current surface cooling estimations are based on a model calibrated at two points using 

large-scale satellite and meteorological data during a 7-y period (see chapter 2 for more details) 

(Rahaghi et al. 2018b; Unpublished work). Here, we study the effect of changing the turbulent 

heat flux parameterization on the results.  From the various formulas and approaches that exist 

for carrying out such an analysis (Brodeau et al. 2017), in this study, we considered the 

parameterization of Zeng et al. (1998), hereinafter is referred to as ZZD. The roughness lengths 

of wind, humidity and temperature were estimated slightly differently by ZZD than in our study. 

The details of the difference between the ZZD algorithm and the  parameterization used in the 

present paper can be found in chapter 2 (Rahaghi et al. 2018b; Unpublished work).  The MGL1 

and EGL2 field missions, which cover near-neutral conditions, were selected for this 

investigation.  

The comparison between the surface cooling distributions using the ZZD algorithm and the 

parameterization is shown in Fig. 5.9, indicating that the two models result in a similar 
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distribution under very stable conditions (left segments of Fig. 5.9a and b corresponding to the 

flat parts in Figs. 5.5a and b). However, the ZZD algorithm estimates a higher turbulent cooling 

under unstable and weak wind conditions, which led to a broadening of the curve in the right 

segment of the PDF distribution. This comparison reveals that the main spatial features of 

surface cooling predicted by the two parameterizations are similar (due to the similarity in the 

overall shape of the PDF curves in Fig. 5.9). However, a quantitative comparison shows that 

the estimated spatial mean of surface cooling is ~3 and ~2 Wm-2 higher for MGL1 (Fig. 5.9a) 

and EGL2 (Fig. 5.9b), respectively, using the ZZD algorithm. The standard deviation also 

increases by ~3 Wm-2 for MGL1 and EGL2, by employing the ZZD algorithm. The results 

demonstrate that the turbulent heat flux parameterization can affect the meso-scale surface 

cooling heterogeneity (Fig. 5.9), and therefore the area-averaged results at the satellite pixel 

resolution (discussed in section 5.3.3). This effect was reported to be significant for the long-

term heat budget analysis of aquatic systems (Brodeau et al. 2017; Rahaghi et al. 2018b). 

 

Fig. 5.9. Comparison of surface cooling distribution using two different turbulent surface heat flux 

parameterizations, i.e., the present study and the ZZD algorithm (see the text for more details), for (a) the MGL1 

(predominantly unstable) and (b) the EGL2 (predominantly stable) field mission. Colors are identified in the legend 

in panel (a). 
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5.4.  Summary and conclusions  

An airborne balloon-launched remote sensing platform (BLIMP) accompanied by a catamaran 

(ZiviCat) for ground-truthing was used to resolve the meso-scale O(1 m), LSWT heterogeneity 

over Lake Geneva. Four different daytime LSWT maps covering different ABL stability 

conditions were selected to estimate the associated surface cooling spatial variability, and the 

effect of area-averaged LSWT on the surface heat flux estimation at a typical satellite pixel O(1 

km) resolution. The bulk aerodynamic relationship implementing the Monin-Obukhov 

similarity was used to calculate the turbulent surface heat fluxes. The meteorological variables 

were assumed to be constant during the short-term studied periods (less than 30 min).  

The measured LSWT patterns showed a maximum spatial variation of > 2°C and > 3.5°C at the 

beginning of spring and in the middle of summer, respectively, under near-neutral and weak 

wind conditions. The LSWT distributions were negatively skewed, a PDF shape that was 

attributed to the cold patches and fronts in the selected patterns. Comparison of the cold season 

and the beginning of the spring LSWT data revealed that the net surface energy, surface mixing 

and background stratification must be considered, in addition to the ABL stability when 

investigating the LSWT heterogeneity. 

The corresponding calculated surface cooling patterns preserved the most prominent features 

of the data. However, during summer, under stable and unstable ABL conditions, the surface 

cooling distribution was significantly different than that of the LSWT distribution. This is 

related to the non-linearity in the latent heat flux estimation under near-neutral conditions, 

which turned the negative skewness distribution of the LSWT map into a positively skewed 

surface cooling one. Furthermore, this suggests that using area-averaged LSWT data (not 

resolving the meso-scale heterogeneity) may result in errors in the surface cooling estimation. 

To address this, we applied a mean spatial filter with variable size to the LSWT patterns of the 

selected missions. The corresponding surface cooling distributions were then calculated. The 

results indicate that the heterogeneous-homogeneous differences in surface cooling estimations 

are greater for near-neutral conditions. Under predominantly stable conditions, the area-

averaged surface cooling showed a reduction of ~3.5 Wm-2 when comparing the heterogeneous 

O(1 m) resolution with homogeneous O(1 km) resolution results. For the same pixel resolution 

variation, the mean surface cooling estimation increased by ~0.5 Wm-2 for the predominantly 

unstable case. Integrating such overestimation or underestimation of surface cooling over the 
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entire surface of a large water body, e.g., Lake Geneva in our case, may significantly modify 

its overall heat budget analysis, especially for long-term studies.  

The results of this study are affected by uncertainties associated with the model calibration and 

the errors in meteorological data measurement and sampling. A sensitivity analysis was 

performed to quantify these errors. Our results emphasize that the wind speed variation may 

significantly affect the mean and spatial range of the surface cooling. The errors in the air 

temperature data in near-neutral conditions can also change the estimated ABL stability, and 

hence affect the calculated surface cooling distribution over the lake. Increasing the relative 

humidity resulted in the reduction of the spatial mean surface cooling, but the effect was not as 

significant as the other two parameters. The effect of the turbulent heat flux model calibration 

was also studied by comparing the results with a commonly implemented parameterization in 

other studies (ZZD, see section 5.3.5.). Our results indicated that employing the ZZD algorithm 

instead of the current model results in an increase of ~2.5 and ~3 Wm-2 in the spatial mean and 

standard deviation of surface cooling patterns, respectively. It was determined that this variation 

is mainly due to the change of latent heat flux cooling over the segments with negative ABL 

stability, i.e., unstable and very unstable parts. These measurements were taken under daytime 

and weak wind conditions over a large inland water body. Although this study was limited to 

small sections of the lake, it provided unprecedented insight into the dynamics of meso-scale 

heterogeneity of the LSWT. Further field campaigns measurements should be carried out to 

confirm and extend the present results over larger areas and a wider range of conditions. 
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Fig. S5.1. Comparison of the grey value of the stitched image (from the airborne BLIMP) with the corresponding 

in situ near-surface (2-cm depth) temperatures measured by ZiviCat for the (a) MGL1, (b) EGL2, and (3) MGL3 

missions. The solid lines show the corresponding radiometric calibrations, which tend to be linear for a narrow 

temperature range (< 4°C). The correlation coefficients for a linear curve fitting (ρl), the root mean square 

differences (RMSD) and the normalized RMSD (NRMSD) for the non-linear regression model are given in the 

legend. The min/max temperature range at each mission was used for RMSD normalization. The details of the 

calibration procedure can be found in chapter 4 (Rahaghi et al. 2018;  Unpublished work). 
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6.1.   Summary and conclusions  

LSWT and meteorological parameters may exhibit significant spatial variability over large 

lakes. For example, the surrounding topography can exert a strong influence on the wind 

patterns, and hence on SurHF. LSWT spatial heterogeneity can also be considerable, especially 

during the summertime. Therefore, the determination of SurHF at a single location only 

provides a partial understanding of the energy exchange dynamics over the whole lake surface 

and could result in significant errors in the estimation of SurHF for the entire lake. In this thesis, 

the impact of LSWT and meteorological spatial variability on the air-water heat exchange of a 

large European lake, i.e., Lake Geneva, was studied at different spatial scales. 

6.1.1.  Large-scale investigation 

The LSWT maps from a moderate resolution satellite, i.e., AVHRR, and the meteorological 

patterns from a numerical weather model, i.e., COSMO (last accessed 2 February 2018), were 

used for the large-scale (~1 km resolution) investigation. An optimal combination of different 

heat flux components was obtained through a systematic analysis of various existing 

formulations and parameterizations for SurHF estimation. A 7-y period (2008 to 2014) using a 

two-point calibration, instead of the commonly used one-point calibration was used for this 

investigation (chapter 2). When optimized for one lake temperature profile location, SurHF 

models failed to predict the temperature profile at the other location due to the spatial variability 

of meteorological parameters between the two locations. Consequently, the optimal SurHF 

models were calibrated using two profile locations. The combination of the modified 

parameterization of the Brutsaert equation (Brutsaert 1975) for incoming atmospheric radiation 

and of similarity theory based bulk parameterization algorithms for latent and sensible surface 

heat fluxes (Monin and Obukhov 1954) provided the most accurate SurHF estimates. The 

results showed that, for heat exchange analysis of large lakes, an adequately calibrated 

atmospheric radiation model and an appropriate turbulent SurHF model are essential. It was 

demonstrated that a small variation in calibration factors, especially those controlling 

atmospheric radiation, leads to a significant change in the heating/cooling estimation of the 

lake, in particular for long-term investigations, i.e., more than 3 y. This indicates that a 

systematic calibration of bulk models is required for each study site. The calibration improved 

the long-wave atmospheric radiation, and parameterization of bulk transfer coefficients (mainly 
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under low wind regimes) compared to other studies (e.g., Livingstone and Imboden 1989; Zeng 

et al. 1998; Fink et al. 2014; Woolway et al. 2015). 

The optimized and calibrated bulk algorithms in chapter 2 were then used to compute the 

spatiotemporal SurHF of Lake Geneva (chapter 3). The results indicated an average spatial 

range of > 40 Wm-2. During spring, much less spatial variability was evident compared to other 

seasons. These results are comparable with the reported values for other large lakes (Schneider 

and Mauser 1991; Lofgren and Zhu 2000; Moukomla and Blanken 2017). It was found that the 

spatial variability of SurHF values predominantly reflects the variation in wind patterns during 

the summer-winter period, while the LSWT variability is more important during springtime. 

The change of the controlling regime was evident in the ABL stability conditions curve. It 

demonstrates that the ABL stability patterns, in which the wind speed, LSWT and air-water 

temperature difference are inherent, is a better indicator of SurHF spatial variability. It was 

found that on average, the ABL over Lake Geneva is statically unstable 74% of the time, except 

during the springtime, which is in agreement with some studies in a global scale (Woolway et 

al. 2017). The results showed that the rate of evaporation is lower under stable ABL conditions 

(only ~ 10% of evaporation occurred during this period). The substantial spatial variability of 

SurHF obtained in chapter 3 emphasize that the spatial variability of LSWT and meteorological 

patterns should be taken into account when assessing the time evolution of the heat budget of 

large water bodies. 

6.1.2.  Meso-scale investigation 

An airborne platform was developed to measure the LSWT patterns of inland water bodies at 

meso-scale (~1 m resolution). It consists of a tethered Balloon Launched Imaging and 

Monitoring Platform (BLIMP) equipped with an uncooled InfraRed (IR) camera for thermal 

imagery, and an autonomous catamaran (called ZiviCat) that measures in situ surface/near 

surface temperatures and permits simultaneous ground-truthing of the BLIMP data. A 

procedure for image enhancement, denoising, registration, georeferencing and radiometric 

calibration was proposed (described in chapter 4). The results indicated that neglecting either 

the NUC or the drift correction can produce substantial artificial spatial gradients in the stitched 

image. Furthermore, it was found that a high overlap ratio (~95% in our case) is also required 

for accurate LSWT thermography over natural water bodies.  
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Several field campaigns were conducted over Lake Geneva using the combined ZiviCat-

BLIMP system, out of which four daily data sets were selected to be analyzed in this 

dissertation. The obtained meso-scale LSWT maps revealed spatial temperature variability with 

unprecedented detail. The measured LSWT patterns showed a maximum spatial variation of > 

2°C and > 3.5°C during spring and summer, respectively, under near-neutral and weak wind 

conditions. The LSWT distributions were negatively skewed, a PDF shape that was attributed 

to the cold patches and fronts in the selected patterns. The impact of LSWT meso-scale 

heterogeneity on the surface cooling estimates at sub-pixel satellite scale was then assessed. 

The calibrated SurHF models obtained in chapter 2 was used for this study. The results indicated 

that the LSWT heterogeneity, and hence the surface cooling spatial range are higher under near-

neutral ABL stability conditions. A spatial surface cooling range of > 20 Wm-2 and > 40 Wm-2 

was found for near-neutral conditions during spring and summer, respectively. Implementing a 

mean spatial filter, the effect of area-averaged LSWT on the surface cooling estimation of a 

typical satellite pixel was also evaluated. Under predominantly unstable conditions, the area-

averaged surface cooling showed an increase of ~0.5 Wm-2 when comparing the heterogeneous 

O(1 m) resolution with homogeneous O(1 km) resolution results. For predominantly stable 

ABL conditions a reduction of ~3.5 Wm-2 from high O(1 m) to low O(1 km) pixel resolution 

was obtained. Such overestimation or underestimation of surface cooling, when integrated over 

the entire surface of a large lake, e.g., Lake Geneva in our case, may significantly modify its 

overall heat budget analysis, especially for long-term studies. The uncertainty associated with 

the primary meteorological parameters was also quantified by a sensitivity analysis that 

revealed that the bias in meteorological condition sampling, particularly wind speed, can affect 

both the mean and the range of spatial surface cooling. The error in the air temperature may 

also alter the surface cooling distribution from negatively skewed to positively skewed, and 

hence affect the area-averaged estimates. 

6.2.   Future work 

It was found that, compared to commonly used one-point approach, calibrating the SurHF 

models at two points enhances the heat budget analysis of a large lake in the long-term study 

(chapter 2). This was mainly due to the spatial variability of LSWT and meteorological 

parameters. However, based on the k-means clustering results in chapter 3, Lake Geneva can 

be partitioned into four zones, of which only two (SHL2 and GE3 points) are currently 
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monitored by CIPEL (last accessed 1 February 2018). Measuring the CTD profiles in the other 

two zones will improve the thermodynamic understanding of the lake.  

The Monin-Obukhov similarity scaling (Monin and Obukhov 1954) based on the surface 

stability parameter was found to be the optimal method for turbulent heat flux estimation over 

Lake Geneva (chapter 2). However, there is a large scatter of parameterization and reported 

transfer coefficients parameters (e.g., Wüest and Lorke 2003; Wei et al. 2016; Brodeau et al. 

2017), as discussed in chapter 2. Given that the ZiviCat platform is capable of measuring over-

lake ABL data, direct measurements of sensible and latent heat fluxes can improve the results 

of this study. It must be mentioned that the turbulent heat fluxes are the dominant terms 

affecting the SurHF spatial variability (results shown in chapters 3 and 5). Although some 

challenges are anticipated for such field measurements, the eddy covariance (eddy correlation) 

technique (e.g., Assouline et al. 2008; Vercauteren et al. 2009) is suggested. 

Some numerical simulation studies demonstrated the effect of using precomputed SurHF on 

thermodynamic modeling of large water bodies (Xue et al. 2015; Dommenget and Rezny 2018). 

The results of chapter 3 can be used to investigate the impact of flux correction on 

hydrodynamic and thermodynamic modeling of Lake Geneva. Updating the 3D model interface 

to use the precomputed spatiotemporal SurHF maps instead of dynamically-computed fluxes 

as well as re-tuning the model are required for this study.  

For the meso-scale investigation of this dissertation, the meteorological data were assumed to 

be spatially constant (chapter 5). Although the uncertainty associated with this assumption was 

estimated by a sensitivity analysis, more sophisticated models, such as Bayesian inference (e.g., 

Ershadi et al. 2013; Kavetski et al. 2013) may improve the presented results. In addition, one 

may consider using scanning Doppler wind LiDAR (Light Detection and Ranging) to resolve 

the over-lake wind patterns (Fuertes et al. 2014). Such data, if obtained over water, 

simultaneously with the LSWT meso-scale maps generated by the proposed platform and image 

registration algorithm, can provide a better insight into the air-water exchange processes. 

Furthermore, an autonomous drone that carries the BLIMP imaging package (Liardon et al. 

2017) can cover a wider area over the lake. However, the vibration and titling issues intrinsic 

with the drone system, which in turn affect the image registration (discussed in chapter 4), need 

to be addressed first.  
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In this appendix, the temporal evolution of lake-wide mean SurHF terms and their individual 

effect on the total heat content variation is discussed. The obtained spatiotemporal results of 

chapter 3 was used for this investigation.  

A1. Temporal variation of surface heat flux components  

The spatial mean values (solid lines in Fig. 3.3) were analyzed first. The mean annual temporal 

variation of different SurHF terms and the net SurHF was calculated and plotted in Fig. A1. To 

investigate the dominant heat flux terms controlling the temporal variation of lake-wide mean 

SurHF (solid line, Fig. 3.3f), correlation coefficients of different heat flux components with 

respect to total SurHF for the lake-wide mean were calculated first. We obtained 0.93, 0.7, -

0.55, 0.24 and 0.84 for Qsn, Qan, Qbr, Qev and Qco, respectively. Figure A1, together with the 

calculated correlation coefficients, demonstrate that solar radiation is the leading component 

underlying the mean total SurHF evolution, mainly in the spring and summer. The temporal 

variation in the convective flux, Qco, also shows a high correlation with the total SurHF despite 

its relatively smaller range of values. Its effect is more significant during fall and winter, where 

the small perturbations in the net SurHF curve follow the jumps in sensible and latent heat flux. 

Atmospheric longwave radiation reaches its maximum in summer, leading back radiation by 

approximately 6 months. Qan and Qbr extrema are delayed by approximately 1-2 months relative 

to Qsn, which can explain the low correlation coefficients obtained above. We quantified the 

time-lags between different terms and net SurHF below.  

To further analyze the temporal variation of SurHF, the surface heat exchange due to radiative 

heating, Qsn + Qan + Qbr, and non-radiative (turbulent) cooling, –(Qev + Qco), are plotted 

separately (red and blue lines in Fig. A2, respectively). The radiative surface heating shows a 

seasonal variation mainly controlled by solar shortwave radiation with a maximum during May-

July and a minimum during December-January. In contrast, the SurHF cooling due to the non-

radiative terms, –(Qev + Qco), decreases rapidly from January to mid-April. It then increases 

rapidly until mid-July, and fluctuates over a short period until the following January (Fig. A2, 

blue lines). In addition, even though using a 30-d running average filters out the extreme 

weather events, some long-lasting cooling events are still observed, e.g., beginning of 2012 and 

end of 2013. 
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Fig. A1. Temporal evolution of lake-wide mean surface heat flux (SurHF) terms and net SurHF of Lake Geneva 

averaged over 1 January 2009 to 31 December 2014. Temporal variation smoothed with a 30-d running mean 

window. For better legibility, the mean annual values of SurHF terms (given in section 3.3.1.) were subtracted in 

all plots. 

 

Comparison with Fig. S3.4 demonstrates that the low air temperatures and high wind speeds, 

and consequently a rapid decrease in the atmospheric radiation (Fig. 3.3b) and non-radiative 

terms (Fig. 3.3d-e), account for these events. A five-month delay between radiative heating and 

non-radiative cooling was reported for Lake Superior (Blanken et al. 2011), a larger inland 

water body than Lake Geneva. A cross correlation analysis was performed to obtain this delay 

for Lake Geneva (Fig. A3) which reveals a ~4-month lag between maximum summer radiative 

heating and maximum non-radiative cooling. However, computing the 99% confidence 

intervals for the obtained cross-correlation values (Ebisuzaki 1997) showed that the results are 

not statistically significant. The wide range of the significance limits is due to high seasonality, 

and therefore, the high auto-correlation values. Nonetheless, we speculate that the higher delay 

for Lake Superior is due its larger volume and ice coverage during winter (lower mean 

temperature), consequently a higher thermal inertia. 
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Fig. A2. Time series of the lake-wide average net surface radiative heat flux (red line, positive into the lake), and 

net flux of the non-radiative (turbulent) components (blue line, positive outward), smoothed with a 30-d running 

mean. 

 

 

Fig A3. Cross-correlation curve between radiative and non-radiative surface heat fluxes (SurHF). The hourly 

spatially mean data were used for this analysis (the smoothed results were shown in Fig. A2).Thin lines show the 

upper and lower limits of 99% confidence intervals (values within these limits are not statistically significant). It 

indicates that the obtained values including peaks at ~4- and ~2- month are statistically insignificant. 
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 A2. Temporal variation of Lake surface thermal energy (heat content) 

In Fig. 3.5 a small negative mean spatiotemporal heat flux of -1 Wm-2 is seen for the studied 

period, i.e., on average the lake cooled during 2009-2014 if we neglect the uncertainties 

associated with the used data and models, and if it is assumed that the SurHF dominates the 

lake’s energy budget, compared to other heat sources such as inflow, precipitation and 

geothermal heat flux. The smoothed SurHF results (Figs. 3.3f and A2) does not readily reflect 

this low rate of cooling. For this reason, the cumulative SurHF, i.e., lake surface thermal energy 

(heat content) was considered. The surface thermal energy variation, G, is calculated by time-

integration of the SurHF terms for a given period (Eq. 3.2). Fig. A4a shows the temporal 

variation of the total heat content in Lake Geneva due to surface heat exchange for the study 

period (2008-2014). It indicates a net cooling for 2008 to 2012 and the onset of a warming 

period in 2013. To put this behavior in the context of the lake’s longer term heat budget, the 

observed heat content at SHL2 was estimated (Eq. 2.1) using historical measurements of the 

vertical temperature profile measured by the CIPEL (Fig. A4b).  

 

Fig. A4. (a) Temporal anomalies (zero-mean) of total heat content of Lake Geneva due to surface heat exchange 

(cumulative net SurHF) for 1 March 2008 to 31 December 2014, and (b) heat content variation of Lake Geneva 

by using historical temperature profile measurements at SHL2 for the 1970 to 2014 period. For better comparison, 

the mean values over the periods shown in each plot were subtracted. The bold line in (b) indicates the temporal 

variation smoothed with a 50-point running mean. 
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Figure A4b shows the long-term heat content variation at SHL2, where several cooling and 

warming periods during 1970-2014 are apparent. Although our previous results showed that the 

pointwise analysis may result in significant errors in estimation of SurHF and heat content of 

large lakes (Fig. 3.4, for example), we can still use the long-term heat content variation to 

underscore the lake response to global and regional climate change. The trend in cooling for 

1998-2012 (Figs. A4a and b) is consistent with global cooling (Desbruyeres et al. 2014; 

Drijfhout et al. 2014; Watanabe et al. 2014). 

The contribution of individual SurHF terms leading to the calculated total surface thermal 

energy variation (Fig. A4a) was also studied. The hourly spatially mean time series of each 

SurHF component were used to find the corresponding surface thermal energy variation (Fig. 

A5a). For a better comparison, the linear trends of each curve were removed. The results 

indicate that the range of thermal energy variation induced by radiative terms (especially solar 

radiation) is higher than non-radiative components. Also, the contribution of longwave 

atmospheric radiation (∆Gan) and back radiation from the water (∆Gbr) are negatively 

correlated.  

A time-lag among different curves of Fig. A5a is apparent, e.g., as shown by the peaks of the 

different curves. We computed the cross-correlations between each of these curves and the total 

surface energy variation (Fig. A4a), which are shown in Fig. A5b. Because of potentially high 

auto-correlation values (due to seasonality), the 99% confidence intervals for the cross-

correlation analysis were also estimated following the statistical method proposed by Ebisuzaki 

(1997). The cross-correlation curve for solar shortwave radiation (∆Gsn), which reaches a high 

value of >0.8 at ~zero-lag, was not statistically significant. Therefore, we removed this curve 

from Fig. A5b. For other components, the cross-correlations are statistically significant only 

close to their peaks. The contributions of sensible heat flux (∆Gco) on the total heat content 

variation of the lake was found to be without any pronounced delay (i.e., no time lag). However, 

a high cross-correlation of >0.9 was obtained for ∆Gbr and ∆Gan at ~ -50-d time-lag, i.e., total 

surface thermal energy leads ∆Gbr and ∆Gan. This seems to be linked to the seasonal thermal 

lag resulting from the thermal inertia of the water body (Rouse et al. 2003). The results also 

indicate a ~90-d time-lag between ∆Gev and ∆GN. Interestingly, by following the peaks and 

general trend of different plots (Fig. A5a), we note that only evaporative cooling and longwave  
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Fig. A5. (a) Temporal evolution of the spatially mean surface thermal energy (cumulative surface heat flux) due 

to different surface heat flux terms, and (b) cross-correlation curve between each term and the net surface thermal 

energy presented in Fig. A4a. For better legibility, the linear trends of the surface thermal energy variation were 

subtracted in all plots in (a). Also, thin lines in (b) show the limits of 99% confidence intervals for the calculated 

cross-correlation values, i.e., the values between these lines are not statistically significant. A high cross-

correlation value (~0.8) between surface thermal energy variation due to solar radiation ( snG ) and total surface 

thermal energy at ~zero-lag was also found. However, since it was statistically insignificant we did not show it. 

 

atmospheric heating (and to a lesser extent convective cooling) have the same trend as total 

surface thermal energy variation (Fig. A4a). This suggests that the overall trends of the lake 

total heat content can be predicted by the surface thermal energy variation induced by latent 

heat flux (~90-d lead-time, Fig. A5b), and that the results can be used to forecast the cumulative 

atmospheric longwave radiation (~50-d lag-time, Fig. A5b), if, again, the SurHF is assumed to 

dominate the lake total heat content variation. 
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