
Hiding the Presence of Sensitive Apps on Android

Anh Pham1, Italo Dacosta1, Eleonora Losiouk2, John Stephan1

Kévin Huguenin3, Jean-Pierre Hubaux1
1School of Computer and Communication Sciences (IC), EPFL, Lausanne, Switzerland

2University of Padova
3Faculty of Business and Economics (HEC), UNIL, Lausanne, Switzerland

Abstract—Millions of users rely on mobile health (mHealth)
apps to manage their wellness and medical conditions. Although
the popularity of such apps continues to grow, several privacy
and security challenges can hinder their potential. In particular,
the simple fact that an mHealth app (e.g., diabetes app) is
installed on a users’ phone, can reveal sensitive information
about the user’s health. Android’s open design enables apps
without any permissions to easily check for the presence of a
specific app or to collect the entire list of installed apps on the
phone, even if multiple user accounts or profiles are used. To
date, no mechanisms exist to effectively hide the use of sensitive
apps. Our analysis of 2917 popular apps in the Google Play
Store shows that around 57% of these apps explicitly query
for the list of installed apps. We also show that Android apps
expose a significant amount of identifiable metadata that can
be used for fingerprinting attacks. Therefore, we designed and
implemented HideMyApp (HMA), a practical and robust solution
that hides the presence of mHealth and other sensitive apps
from nosy apps on the same phone. HMA relies on user-level
virtualization techniques, thus avoiding changes to the operating
system (OS) or to apps while still supporting key functionality.
By using a diverse dataset of both free and paid mHealth
apps, our experimental evaluation shows that HMA supports
main features in most apps and introduces acceptable delays at
runtime, i.e., several milliseconds; such findings were validated
by our user-study (N = 30). In short, we show that the practice
of collecting information about installed apps is widespread and
that our solution, HMA, can provide robust protection against
such a threat.

I. INTRODUCTION

Mobile health (mHealth), the use of technologies such as
smartphones, mobile apps and wearable sensors for wellness
and medical purposes, promises to improve the quality and
reduce the costs of medical care and research. An increasing
number of people rely on mHealth apps to manage their
wellness and to prevent and manage diseases. For instance,
more than a third of physicians in the US recommend mHealth
apps to their patients [1], and there are around 325,000
mHealth apps available in major app stores [2].

Given the sensitivity of medical data, privacy and security
are one of the main challenges to the success of mHealth
technologies [3]. In this area, a serious and often overlooked
threat is that an adversary can infer sensitive information from
the presence of apps on a user’s phone. Previous studies
have shown that private information, such as age, gender,
race, and religion, can be inferred from the list of installed
apps [4]–[7]. With the increasing popularity of mHealth apps,
an adversary can now infer much more sensitive information.

For example, learning that a user has apps to manage diabetes
and depression can be very telling about the user’s medical
conditions; such information could be misused to profile,
discriminate or blackmail users. When inquired about it, 87%
of the participants in our user-study expressed concern about
this threat (Section X-E).

Due to Android’s open design, a zero-permission app can
easily infer the presence of specific apps, or even collect
the full list of installed apps on the phone through stan-
dard APIs [8]. Our analysis shows that Android exposes a
considerable amount of static and runtime metadata about
installed apps (Section IV); this information can be misused by
nosy apps to accurately fingerprint other apps installed on the
phone. Such attacks are possible even when the sensitive apps
and the nosy app are installed on different user accounts or
profiles on a single phone. In 2014, Twitter was criticized for
collecting the list of installed apps to offer targeted ads [9].1

But Twitter is not the only app interested in such information.
Our static and dynamic analysis of 2917 popular apps in the
US Google Play Store shows that around 57% of these apps
include calls to API methods that explicitly collect the list
of installed apps (Section V). Our analysis also shows that
free apps are more likely to query for such information and
that the use of third-party libraries (libs), e.g., ad libs, is the
main reason for such behavior, corroborating the findings of
previous studies [6], [11]. As users can have on average around
80 apps installed on their phones [12], most of them free, there
is a high chance of untrusted third-parties obtaining the list of
installed apps.

Since 2015, Android started to classify as potentially harm-
ful apps (PHA)2 the apps that collect information about
installed apps without user consent [14]. To avoid such
classification, however, developers simply need to provide
a privacy policy describing how the app collects, uses and
shares sensitive user data [15]. Interestingly, we found that
only 7.7% of the evaluated apps declared that they collect the
list of installed apps in their privacy policies; several of these
policies use similar generic statements (probably based on a
common template), and some state that such a list is non-
personal information (Section V-D). Moreover, few users read
and understand privacy policies [16], as our user-study also

1Twitter recently announced that it excludes apps dealing with health,
religion and sexual orientation [10].

2Now reclassified as mobile unwanted software (MUwS) [13].

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211984819?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

confirmed (Section X-E). Android recently announced that
Android’s security services will display warnings on apps that
collect without consent users’ personal information, including
the list of installed apps [17]. This is a welcomed step, but the
effectiveness of security warnings is known to be limited [18],
[19] and it is unclear how queries by third-party libs will be
handled. It is also unclear if such mechanisms will be able to
detect more subtle attacks, where a nosy app checks for the
existence of a small set of sensitive apps using more advanced
fingerprinting techniques (Section IV). In addition, Android
does not provide mechanisms to hide sensitive apps installed
on their phones; a few third-party tools, designed for other
purposes, can provide only partial protection to some users
(Section VI). Therefore, it is crucial to have a solution that
effectively hides the presence of sensitive apps from other apps
in the same phone.

We propose HideMyApp (HMA), the first system that en-
ables organizations and developers to distribute sensitive apps
to their users while considerably reducing the risk of such
apps being detected by nosy apps on the same phone. Apps
protected by HMA expose significantly less identifying meta-
data, therefore, it is more difficult for nosy apps to detect their
presence, even when the nosy app has all Android permissions
and debugging privilege (ADB). With HMA an organization
such as a consortium of hospitals, sets up an HMA app store
where authorized developers collaborating with the hospitals
can publish their mHealth and other sensitive apps. Users
employ a HMA manager app to (un)install, use and update the
apps selected from the HMA app store. HMA transparently works
on stock Android devices, it does not require root access, and
it preserves the app-isolation security model of the Android
OS. At the same time, HMA preserves the key functionality
of mHealth apps, such as connecting to external devices via
Bluetooth, sending information to online services over the
Internet and storing information in a database. Moreover, HMA
introduces only negligible effects on the usability of the apps.

HMA enables users to launch a sensitive app inside the
context of a container app, without requiring the sensitive app
to be installed, i.e., the sensitive app will not be registered in
the OS. A container app is a dynamically generated wrapper
around the APK (Android application package) of the sensitive
app, and it is designed in such a way that the sensitive app
cannot be fingerprinted. In order to launch the APK from the
container app, HMA relies on techniques described in existing
work: the dynamic loading of compiled source code and app
resources from the APKs and user-level app-virtualization
techniques, e.g., [20], [21]. To reduce the amount of identifi-
able information exposed by the app, we provide developers
with guidelines on how to reduce the identifiable metadata
in the app and, at runtime, the container app dynamically
intercepts and obfuscates identifiable information output by the
protected app. Note that, the main contributions of our work is
not about a new user-level virtualization technique, but rather
the analysis of possible information leaks that an nosy app can
exploit to fingerprint sensitive apps, and a practical design and
evaluation of a mechanism to effectively reduce such leaks.

Our thorough evaluation of HMA on a diverse data-set of
both free and paid mHealth apps on the Google Play store
shows that HMA is practical and that it introduces reasonable
operational delay to the users. For example, in 90% of the
cases, the delay introduced by HMA to the cold start of an
mHealth app (i.e., the app is launched for the first time since
the device booted, or since the system terminated it) by a non-
optimized proof-of-concept implementation of HMA is less than
1 second. At runtime, the delay introduced is in the order of
tenths of milliseconds and is unlikely to be noticed by users.
Moreover, our user-study, involving 30 participants, suggests
that HMA is user-friendly and of interest to users.

In short, we are the first to systematically investigate this
important yet understudied problem, and to propose a practical
solution. Our main contributions are as follows.
• A new perspective: We identify a crucial and novel problem:

the fact that nosy apps can easily fingerprint and identify
other installed apps is particularly severe, especially in
mHealth, where the presence of an app can reveal user’s
medical conditions.

• Systemized knowledge: We are the first to systematically
investigate the different techniques that a nosy app can use
to fingerprint another app in the same phone. Also, through
our thorough static and dynamic analysis of paid and free
apps across all app categories in the Google Play store, we
gain insights into the prevalence of the problem.

• Design and implementation of a solution for hiding sensitive
apps: We present HideMyApp, a practical system that pro-
vides robust defense against fingerprinting attacks targeting
sensitive apps in Android. HideMyApp works on stock
Android, and no firmware modification or root privilege is
required.

• Thorough evaluation of our solution: The evaluation of
HMA’s prototype on apps from the Google Play store sug-
gests that our solution is practical and usable. Moreover, the
results of our user study suggest that HMA is perceived as
usable and of interest to the users. HMA’s source code and
its experimental results are available online at [22].

II. RELATED WORK

Researchers have actively investigated security and privacy
problems in the Android platform. Existing works show that
third-party libs often abuse their permissions to collect users’
sensitive information [23], [24], and that apps have suspicious
activities, e.g., they collect call logs, phone numbers and
browser bookmarks [6], [11], [25]. Zhou et al. [8] show that
Android’s open design has made publicly available a number
of seemingly innocuous phone’s resources, including the list of
installed apps, that could be used to infer sensitive information
about their users, such as users’ gender and religion [4]–
[7], [26]. Similarly, Chen et al. present a way to fingerprint
Android apps based on their power consumption profiles.
Moreover, a significant amount of work has been devoted to
fingerprinting Android apps based on their (encrypted) net-
work traffic patterns [27]–[30]. Researchers have also shown
that it is possible to perform re-identification attacks based on

a small subset of installed apps [7], [31]. Closer to our work,
Demetriou et al. [6] performed a static analysis to quantify the
prevalence of the collections of the list of installed apps and
their meta-data by third-party libs. We go beyond their work,
however, by complementing the limitations of static analyses
by performing a dynamic analysis and privacy-policy analysis
and designing a solution to address the problem.

Existing mechanisms for preventing nosy apps from learn-
ing about the presence of another app are not sufficient
(Section VI). As we will show in Section VIII, user-level
virtualization techniques that enable an app (called target
app) to be encapsulated within the context of another app
(called container app) can be used as a building block for
HMA.These techniques are used to sandbox untrusted target
apps (e.g., [21], [32]) or to compartmentalize third-party libs
from the host apps (e.g., [33]). However, as they were designed
for a different problem, they do not directly help to hide the
presence of a sensitive target app on a phone. They either
require the target apps to be first installed on the phone, thus
exposing them to nosy apps through public APIs (Section IV),
or they grant the container apps with all possible Android
permissions to enable multiple target apps to run inside the
same container app, thus violating the Android’s app-isolation
and least-privilege security models (Section VII-C).

III. BACKGROUND

In this section, we provide background knowledge on An-
droid apps and Android security models.

A. Android Security Model

Android requires each app to have a unique package name
that is defined by its app developers and cannot be changed
during its installation or execution. Upon installation, the
Android OS automatically assigns a unique user ID (UID) to
each app and creates a private directory that only this UID has
read and write permissions. Additionally, each app is executed
in a dedicated process. Thus, apps are isolated, or sandboxed,
both at the process and file levels. Apps interact with the
underlying system (i.e., the app framework and OS) via meth-
ods defined by the Java API framework and the Linux-layer
interfaces. Depending on the API methods and commands,
apps might need to be granted certain permissions [34] or
privileges (e.g., [35]). Beginning with Android 6.0, users can
grant permissions to apps at runtime.

B. Android Apps and APK Files

Android apps are usually written in Java, then compiled
into Dalvik bytecode (.dex format) to be executed on Android
devices. Each app must contain a set of mandatory informa-
tion, including a unique package name, an icon and label, a
folder containing the app’s resources, and at least one of the
following components: Activity, Service, Broadcast Receiver
and Content Provider [36]. Apps can also support optional fea-
tures, including implicit intents, permissions, shared libraries,
customized app configurations (e.g., supported SDKs, themes
and styles), custom permissions, and assets.

Apps are distributed in the form of APK files, and they
must be digitally signed by their developers. An APK is a zip
archive that contains the compiled source code and resources
of the app. Each APK also includes a manifest configura-
tion file, called AndroidManifest.xml, that contains a
description of the app, e.g., its package name and components.

IV. FINGERPRINTABILITY OF ANDROID APPS

In this section, we show that Android apps disclose a signif-
icant amount of information that can be used by nosy apps to
perform fingerprinting attacks. This information includes static
information (i.e., information available after apps are installed
and that typically does not change during apps’ lifetime), and
runtime information (i.e., information generated or updated by
apps at runtime). To be exhaustive, our analysis, conducted
on Android 8.0, focuses on information leaks through both
Android’s Java API framework and its Linux-layer interface,
w.r.t. the granted permissions and privileges of the nosy app.
Our findings are summarized in Table I and detailed below.

A. Information Leaks Through the Java API Framework

Static Information. Without permissions3, a nosy app
can directly check if a specific package name ex-
ists on the phone (a package name is mandatory and
unique for each app). This can be done by invok-
ing two methods getInstalledApplications() and
getInstalledPackages(). These methods return the
entire list of installed package names. Moreover, apps can reg-
ister broadcast receivers, such as PACKAGE_INSTALLED and
PACKAGE_ADDED, to be notified when an app is installed.
Apps can also use various methods of the PackageManager
class, e.g., getResourcesForApplication() as an or-
acle to check for the presence of an app. These methods take
a package name as a parameter and return null if the app does
not exist.

If Android restricts access to apps’ package names, i.e.,
by requiring permission(s), a nosy app can still retrieve other
static information for fingerprinting attacks. For example,
apps’ mandatory information (e.g., components’ names, icons,
labels, developers’ signatures and signing certificates), and
optional features (e.g., implicit intents, requested permissions,
shared libraries, custom permissions, assets and apps’ config-
urations such as supported SDKs, themes and styles). This
information can be obtained through a number of methods in
the PackageManager class, e.g., getPackageInfo().
Runtime information. Without permissions, apps cannot
obtain runtime information generated by other apps.
However, with permissions, apps can obtain some identifying
information. For instance, the PACKAGE_USAGE_STATS
permission allows an app to obtain the list of running
processes (using getRunningAppProcesses()), and
statistics about network and storage consumption of all
installed apps, including their package names, during a time
interval (using queryUsageStats()). Apps granted with

3Note: Granting permissions to a zero-permission app does not enable it to
collect additional static information about other apps.

Java API Framework Linux-Layer Interface
W/o Permissions W/ Permissions Default App Privilege ADB Privilege

Static Mandatory information: (*) See note + Package names + Package names
Information + Package name + APK path

+ Components’ names + APK file

Optional features:
+ Implicit intent filters
+ Requested permissions

Runtime + Files in external storage + UI states† + Files in external storage
Information None + Storage consumption + Power consumption† + Network consumption

+ Running processes + Memory footprints† + Running processes
+ Network traffic + Screenshots
+ Package names + System log
+ Notifications + System diagnostic outputs

TABLE I: Identifying information about installed apps that a nosy app can learn, w.r.t. its permissions and privileges, through the Java
API framework and the Linux-layer kernel. Analysis was conducted on Android 8.0, † means that the information could be learnt in older
versions of Android, but later versions (e.g., Android 8.0) require the calling app to have adb privilege. (*) Note: Granting permissions to
a zero-permission nosy app does not enable it to obtain more static information about apps.

the READ_EXTERNAL_STORAGE permission, a frequently
requested permission, can inspect for unique folders and files
in the phone’s external storage (a.k.a SD card). Also, apps
with the BIND_NOTIFICATION_LISTENER_SERVICE
permission can receive notifications sent to other apps.
Moreover, apps with VPN capabilities (permission
BIND_VPN_SERVICE) can intercept network traffic of
other apps; Existing work shows that network traffic can be
used to fingerprint apps with good accuracy [28], [30], [37].

B. Information Leaks Through the Linux-Layer Interface

Static Information. With default app privilege, apps can
retrieve the list of all package names on the phone; This can be
done by obtaining the set of UIDs in the /proc/uid_stat
folder and using the getNameForUid() API call to map a
UID to a package name. With debugging privilege (i.e., adb
privilege), an app can retrieve the list of package names
(e.g., using the commandpm list packages) and learn
the path to the APK file of a specific app (e.g., us-
ing the command pm path [package name]). More-
over, adb privilege enable a nosy app to retrieve the APK
files of other apps (e.g., using the command pull [APK
path]); The nosy app can then use a method such as
getPackageArchiveInfo() to extra identifying infor-
mation from the APK files.
Runtime Information. With default app privilege, apps can
infer the UI states [38], memory footprints [39] and power
consumption [40] of other installed apps. Note that access
to this information has been restricted in later versions of
Android (e.g., Android 8.0 requires the apps to have adb
privileges). Additionally, with adb privilege, apps can learn
detailed information about runtime behaviors of other apps
by inspecting the system logs and diagnostic outputs (using
commands such as logcat and dumpsys, respectively).
Moreover, with adb privileges, apps can directly retrieve the
list of running processes (e.g., using command ps), take
screenshots [41] or gain access to statistics about network
usage of other apps (folder /proc/uid_stat/[uid]).

Our analysis shows that Android’s open design makes it
easy for a nosy app to fingerprint other apps on the same

phone. The diverse source of identifying information leaks
makes it difficult to add permissions or block all related
methods, particularly because most of these methods have
valid use cases and are widely used by apps; restricting or
blocking them could break a significant number of apps and
anger developers. We are the first to provide a solution to hide
the presence of sensitive apps w.r.t. a strong adversary that has
access to all the aforementioned information (Section VII).

V. APPS INQUIRING ABOUT OTHER APPS

We analyze popular apps from the Google Play store to
estimate how common it is for apps to inquiry about other
apps on the same phone. Our analysis focuses on apps that
contain API calls to directly retrieve the list of installed
apps (hereafter LIA): getInstalledApplications()
and getInstalledPackages() (hereafter abbreviated as
getIA() and getIP(), respectively). We chose these meth-
ods because their use clearly indicates the intent of apps to
learn about the presence of other apps, whereas other methods
presented in Section IV, such as getPackageInfo(),
can be used in valid use cases or for app fingerprinting
attacks. Therefore, the results presented in this section can
be interpreted as a lower-bound on the number of apps that
are interested in identifying other installed apps.

A. Data Collection

We gathered the following datasets for our analysis:
APK Dataset. We collected APK files of popular free apps
in the Google Play store (US site). For each app-category in
the store (55 total), we gathered the 60 most popular apps,
i.e., top 60 apps. After eliminating duplicate entries (an app
can belong to multiple categories), apps already installed on
Android by default, and brand-specific apps, we were left with
2917 distinct apps.
Privacy-Policy Dataset. We collected privacy policies that
corresponded to the apps in our dataset. Out of 2917 apps, we
gathered 2499 privacy policies by following the links included
in the apps’ Play store pages, i.e., 418 apps did not have
privacy policies. Note that Google requires developers to post
a privacy policy in both the designated field in the app’s

Analysis method Call origin getIA() (%) getIP() (%) getIA() or getIP() (%)
Static Third-party libs + Apps 36.4 43.6 57.0
Static Apps only 8.05 8.43 13.9

Dynamic Third-party libs + Apps 6.54 15.0 19.2

TABLE II: Proportion of free apps that invoke getIA() and getIP(), to collect LIAs w.r.t. different call origins.

Play store page and within the app itself, if their apps handle
personal or sensitive user-data [42].

B. Static Analysis

For our static analysis, we decompiled the APKs in our
dataset to obtain their smali code, a human-readable repre-
sentation of the app’s bytecode, by using the well-known
tool Apktool [43]. From the smali code, we searched for
occurrences of two methods getIA() and getIP().4 API
calls can be located in three parts of the decompiled code:
in code of Android/Google libs and SDKs (e.g., Android
AppCompat supporting library), in code of third-party libs
and SDKs (e.g., Flurry analytics, Facebook SDK), or in
code of the app itself. To differentiate among these three
origins, we applied the following heuristics. First, methods
found in paths containing the “com/google”, “com/android”
or “android/support” substrings, are considered part of An-
droid/Google libs and SDKs. Second, methods found in paths
containing the name of the app are considered part of the code
of the app. This is a reasonable heuristic, because Android
follows the Java package name conventions with the reversed
Internet domain of the companies, generally has length of two
words, to begin their package names. If the methods do not
match the first two categories, then they are considered part
of the code of a third-party library or SDK. Note that this
approach, also used in previous work [6], cannot precisely
classify obfuscated code or code in paths with no meaningful
names (e.g., developers might not follow naming conventions).
Such cases, which represent a small fraction (i.e., less than
5%), are classified as code from third-party libs or SDKs.
Still, this approach provides us with a good estimation of the
origin of most method calls.

Table II shows the proportions of apps that invoke two sen-
sitive methods i.e., getIA() and getIP() w.r.t. different
call origins. Of the 2917 apps evaluated, 1663 apps (57.0%)
include at least one invocation of these two sensitive methods
in the code from third-party libs and the apps. These results
show a significant increase in comparison with the results
presented in 2016 by Demetriou et al. [6]. These results also
show that most sensitive requests are originated from the code
belonging to third-party libs or SDKs; app developers might
not be aware of this activity, as it has been the case for other
sensitive data such as location [44].

Static analysis has two main limitations. First, it might be
the case that methods appeared in the code are never executed
by the app, i.e., a false positive. Second, it is possible that the
sensitive methods do not appear in the code included in the
APK, rather in the code loaded dynamically by the app or the

4Note that we also found many occurrences of other methods presented in
Section IV, but as explained before, we did not know the purposes of the
calling apps.

third-party libs at runtime, e.g., by using Java reflection [45].
To address these issues, we also performed a dynamic analysis
of the apps in our dataset, as we describe next.

C. Dynamic Analysis

For our dynamic analysis, we intercepted the API calls made
by apps by using XPrivacy [46] on a phone with Android 6.0.
To scale the analysis, for each app, we installed the app and
granted it all the permissions requested (declared in the app’s
Manifest file). Next, we launched all the runnable activities
declared by the app in an interval of 10 minutes, trying to
approximate the actions a user might trigger while using the
app. Although this approach has limitations, e.g., short period
of time per app and it cannot emulate all the activities a user
could do, it is enough to estimate a lower-bound on the number
of apps that query for LIAs at runtime.

Our results, presented in Table II, show that, 190 (6.54%)
apps called getIA() and 436 (15.0%) apps called getIP().
This means that 19.2% of the apps in our dataset called at least
one of these two sensitive methods during the first 10 minutes
after being installed and executed. However, because it is not
possible to infer the origin of the request (i.e., Google/Android
library, third-party library, or the app itself) from the data
gathered, we performed some additional steps. For each app,
we used the results of our static analysis (Section V-B) and
searched for occurrences of getIA() and getIP() in the
code belonging to Google/Android libs. We found that most
apps did not include calls to these sensitive methods in the
code belonging to Google/Android libs: 181 out of 190 for
getIA() and 412 out of 436 for getIP(). This means that,
with good certainty, the majority of these sensitive requests
originated from third-party libs or app codes.

Interestingly, we found 49 apps that called at least one of
the two methods in our dynamic analysis, but not in our static
analysis. This could be because the decompiler tool produced
incorrect smali code, or because these sensitive requests were
dynamically loaded at runtime. Still, this represents a small
percentage of the apps found by our analysis.

Our static and dynamic analysis have shown that a sig-
nificant number of popular free apps in the Google Play
store actively queries for LIAs: between 19.2% (dynamic
analysis) and 57% (static analysis) of the apps in our dataset.
In addition, our results show that third-party libs are probably
mainly responsible for such sensitive queries.5 Therefore, we
can conclude that apps are interested in knowing about the
presence of other installed apps, and that, if Android blocked
the two methods getIA() and getIP(), nosy apps would
likely make use of other methods presented in Section IV.

5We conduced a similar analysis for paid apps, at a smaller scale, and found
that paid apps are less likely to query for LIAs, probably because they rely
less on third-party libs, especially ad libs. See Appendix A for details.

D. Analysis of Privacy Policies

Google’s privacy-policy guidelines require apps that handle
personal or sensitive user data to comprehensively disclose
how the apps collect, use and share user-data. An example
of a common violation, included in these guidelines, is “An
app that doesn’t treat a user’s inventory of installed apps
as personal or sensitive user data” [42]. In this section, we
explain what developers understand about the guidelines and
the declared purposes of the collection of LIAs by apps. For
the sake of simplicity, in this section, we define a nosy app
as an app that calls at least one sensitive method in the static
(Section V-B) or dynamic (Section V-C) analysis .

As mentioned in Section V-A, out of 2917 apps in our
dataset, we found and collected 2499 privacy policies. From
1674 nosy apps found in the static and dynamic analysis, 1524
apps have privacy policies. We semi-automated the policy
analysis as follows. We built a set of keywords consisting of
nouns and verbs that might be used to construct a sentence
or paragraph to express the intention of collecting LIAs,
e.g., collect, gather, package, ID and software. For each pri-
vacy policy, we extracted the sentences that contain at least one
of the keywords. From the extracted sentences, we manually
searched for specific expressions, e.g., “installed app”, “app
ID” and “installed software”. Thereafter, we read the matched
sentences and the corresponding privacy policy. During the
process, we discovered new patterns and we updated the
expression list. We stopped when the results converged.

From the set of 2499 policies, we found 162 policies that
explicitly mention the collection of LIAs. Among these, 129
belong to the set of 1674 nosy apps, i.e., only 7.7% of the nosy
apps inform the users about their collections of LIAs. Interest-
ingly, some apps have exactly the same privacy policies, even
though they are from different companies (e.g., [47] and [48]).
Also, 33 apps mentioned the collections of LIAs, but we did
not find them in both static and dynamic analysis. For these
apps, we performed a more thorough dynamic analysis, i.e., we
used them as a normal user, while intercepting API calls.
We did not capture, however, any calls to the two sensitive
methods. This might be because developers copy the privacy
policies from other apps, or because the apps will make these
calls in the future.

Among the generic declared purposes of the collections of
LIAs by apps, e.g., for improving the service (e.g., [49]) or for
troubleshooting the service in case the app crashes (e.g., [50]),
some apps explicitly declare that they collect LIAs for tar-
geted ads (e.g., [51], [52]), even more specifically targeted
ads by third-party ad networks (e.g., [53]). Unexpectedly, we
have found that among the 162 privacy policies that mention
the collections of LIAs, 76 of them categorize LIAs as non-
personal information, whereas Google defines this as personal
information. This shows a serious misunderstanding between
developers and Google’s guidelines.

VI. EXISTING PROTECTION MECHANISMS

There are no robust mechanisms available to help users hide
the existence of sensitive apps from nosy apps. Below, we

present some mechanisms that can offer partial protection.

Mechanisms by Google. Android does not provide users with
a mechanism to hide the existence of apps from other apps.
However, users could repurpose existing Android mechanisms
for partially hiding apps. For instance, Android supports
Multiple Users [54] on a single phone by separating user
accounts and app data. Sensitive apps could then be installed
and used in one or more secondary accounts. This approach
will prevent nosy apps in the primary account from learning
which apps are installed in secondary accounts, if nosy apps
use the getIA() and getIP() methods. Unfortunately,
nosy apps only need to include additional parameters or use
different methods, that also do not require permissions, to
bypass the isolation provided by multiple user accounts. We
found several ways to identify which apps are installed in sec-
ondary accounts, see more details in the Appendix B. Multiple
user accounts also have a negative impact on functionality
and usability. For example, while the primary account is in
the foreground, apps in secondary accounts cannot provide
notifications to users or use Bluetooth services (important for
mHealth apps). Moreover, apps in different accounts cannot be
used simultaneously without switching accounts, an operation
that introduces a noticeable delay.

Android for Work [55], a solution that separates work apps
from personal apps, provides better usability but similar level
of protection as multiple users, as it relies on the latter to
provide app isolation. Our tests (Appendix B) also confirmed
that, as with multiple users accounts, it is easy to identify
which apps are in the work profile. In addition, Android for
Work is only available to enterprise users. Recently, Android
introduced a new feature called Instant Apps [56], that enables
users to run apps instantly without installing them. Such an
approach could be used to hide sensitive apps, however, it
only supports a limited subset of permissions, and it does
not support features that are crucial for mHealth apps, such
as storing users’ data or connecting to external Bluetooth-
enabled devices [57]. Our solution (Section VII) uses this idea
of running an app without installing it to hide its presence.

Google classifies the LIA as personal information and,
therefore, requires apps that collect LIAs to include in their
privacy policies the purpose for collecting this data. Apps
that do not follow this requirement can then be classified
as Potentially Harmful Apps (PHAs) or Mobile Unwanted
Softwares (MuWS) [13], [14]. Android security services, such
as Google Play Protect [58] and SafetyNet [59], periodically
scan users’ phones and could warn users if apps are behaving
as PHAs or MuWS. Such mechanisms, however, do not seem
to effectively protect against the unauthorized collection of
LIAs. Our analyses show that only 7.7% of the apps declare
their collections of LIAs in their privacy policies and some
claim that a LIA is non-personal information (Sections V).
Moreover, these mechanisms may fail to detect more targeted
attacks, e.g., a nosy app checking if a small subset of sensitive
apps exists in the phone.

Mechanisms by Third-Parties. Samsung Knox [60] relies on
secure hardware to offer isolation between work and personal

data and apps, similar to Android for Work. Hence, it could
be use to hide sensitive apps. Unfortunately, we were not able
to evaluate how robust is the protection offered by Knox w.r.t.
hiding apps, as Samsung discontinued its support for work and
personal spaces for private users; only enterprise users can use
such a feature. Nevertheless, this solution is device-specific
and only hide apps from other apps in a different isolated
environment, but not from apps in the same environment,
e.g., apps in the same isolated environment may come from
different, untrusted sources. That is, a solution that provides
isolation-per-app is preferable.

There are apps in the Google Play store that help users
to hide the icons of their sensitive apps from the Android
app launcher, (e.g., [61]). Even though they help to hide
the presence of the app from other human users (e.g., nosy
partners), the sensitive apps are still visible to other apps
on the phone, through public APIs. Along the lines of user-
level virtualization techniques (see Section II), we have found
apps on the Google Play store that use these techniques to
enable users to run multiple instances of an app on their
phones in parallel and partially hide apps, (e.g., [62]–[64]).
However, these apps require the app to be installed first in
the phone before protecting it, thus triggering installation and
uninstallation broadcast events that can be detected by a nosy
app (see Section IV). Moreover, users have to grant all the
Android permissions to these (untrusted) apps, thus providing
these apps with complete control over the phone. In addition,
these apps provide only a single isolated space, i.e., they do
not protect from other apps in the same environment. Our
preliminary evaluation of these apps also shows that their
protection is limited, e.g., the names of the hidden apps can
be found in the list of running processes.

VII. HIDEMYAPP : A PRACTICAL SOLUTION

In this section, we present HideMyApp (HMA), a system
that hides the presence of sensitive apps.

A. System Model

The scenario envisioned for HMA is as follows. A hospital or
a hospital consortium (hereafter hospitals) sets up an app store,
called HMA App Store, where app developers working for
the hospitals publish their mHealth apps. Hospitals want their
patients to use their mHealth apps without disclosing their use
to other apps on the same phone.

To enable the users to manage the apps provided by the
HMA App Store, the HMA App Store provides the users
with a client app, called HMA Manager; this app can be
distributed through any available app stores, such as the
Google Play store. To allow the HMA Manager to install
apps downloaded from the HMA App Store, similarly to
other Google Play store alternatives such as Amazon [65]
and F-Droid [66], users need to enable the “allow apps from
unknown sources” setting on their phones. Also, starting from
Android 8.0, Google has made this option more fine-grained
by turning it into the “Install unknown apps” permission [67].
That is, users will need to grant this permission to the

HMA Manager app to allow it to install apps from the
HMA App Store.

B. Adversarial Model

We assume the Android OS on the users’ phones to be
trusted and secure, including the Linux kernel and the Java
API framework. We assume there is a nosy app that wants
to learn if a specific app is present on the phone, and the
nosy app can have all permissions and it can manage to
have adb privilege, e.g., by using methods presented by Lin
et al. [41]. As a result, the nosy app can have access to
all static and dynamic information related to installed apps
on the phone, as presented in Section IV. We assume that
the HMA App Store and the HMA Manager provided by
the hospitals are trusted and secure, and that they follow the
prescribed protocols of the system. We discuss mechanisms
to relax the trust assumptions on the HMA App Store and
HMA Manager app in Section IX-B.

C. Design Goals

The goal of HMA is to effectively hide the presence of sen-
sitive apps, while preserving their usability and functionality.

(O1) Privacy protection. It should be difficult for a nosy app
to fingerprint and identify sensitive apps on the same phone.

(O2) No firmware modifications. The solution should run
on stock Android phones, i.e., it should not require the phones
to run customized versions of Android firmware, such as
extensions to Android’s middleware or kernel. This also means
that the solution should not require to root the phones.

(O3) Preserving the app-isolation security model of An-
droid. Each app should have its own private directory and
run in its own dedicated process.

(O4) No app modifications. The solution should not require
to access to apps’ source-code, i.e., only APK files are needed.

(O5) Usability. The solution should preserve the key func-
tionality of sensitive apps and their usability.

D. HMA Overview

From a high-level point of view, HMA achieves its aforemen-
tioned design goals by enabling its users to install a container
app for each sensitive app (as illustrated in Fig. 1). Each
container app has a random package name and obfuscated app
components, hence, nosy apps cannot fingerprint a sensitive
app based on the information they can collect about its
container app. At runtime, the container app will launch the
APK file of the sensitive app within its context by relying
on user-level virtualization techniques (e.g., [21]), i.e., the
sensitive app is not registered in the OS.

To do so, HMA requires the hospitals to bootstrap the system
by setting up the HMA App Store and distributing the
HMA Manager app to users (Section VIII-A). Through the
HMA Manager app, users can (un)install, open and update
sensitive apps w/o being discovered by the OS and other apps.
We detail these operations in Section VIII-B.

HMA App Store (1) Request mHealth app

(2) A container app for mHealth APK

App-3

App-1

App-2

Nosy App 2

Nosy App 1

Third-party servers

HMA Manager

Play Store
List of installed apps:

- Nosy App 1
- Nosy-App 2
- Play Store
- HMA Manager
- App-1
- App-2
- App-3

Fig. 1: Overview of the HMA architecture. Nosy apps would only learn the random names of the container apps.

VIII. HMA SYSTEM DESCRIPTION

In this section, we detail the design of HMA, including its
system-bootstrapping procedure and operations.
A. HMA System Bootstrapping

To bootstrap the system, the hospitals need to set
up the HMA App Store and provide users with the
HMA Manager app.

1) HMA Manager App: Recall, to hide their presence,
sensitive apps are not registered in the OS; instead, their
container apps are registered. Consequently, if users open
their default Android app launcher, they will not see their
sensitive apps; instead, they will see container apps with
generic icons and random names. To solve this usability issue,
at installation time (Section VIII-B1), the HMA Manager app
keeps track of the one-to-one mappings between sensitive
apps and their container apps. Based on the mappings, the
HMA Manager app can display the container apps to the
users with the original icons and labels of their sensitive apps.
To provide unlinkability between users and their sensitive
apps w.r.t. the HMA App Store, the HMA Manager app
never sends any identifying information of the users to the
HMA App Store, and all the communications between the
HMA App Store and the HMA Manager are anonymous,
e.g., using an anonymous proxy or Tor.

2) HMA App Store: The HMA App Store receives
app-installation and app-update requests from HMA Manager
apps, accordingly creates container apps for the requested
apps and sends them to the HMA Manager apps. Below, we
explain the procedure followed by the HMA App Store to
create a container app. Details about the app-installation and
update requests from the HMA Manager apps are explained
in Section VIII-B.

HMA Container-App Generation. To generate a container
app for a sensitive APK, the HMA App Store performs
the following steps. This operation cannot be performed by
the HMA Manager app, because the Android OS does not
provide tools for apps to decompile and compile other apps.
• It creates an empty app with a generic app icon, a random

package name and label, and it imports in to the app the lib
and the code for the user-level virtualization, i.e., to launch
the APK from the container app. Note that the lib and the
code are independent from the APK.

• The HMA App Store extracts the permissions declared by
the sensitive app and declares them in the Manifest file of
the container app.

• To enable the container app to launch the sensitive APK,
app components (i.e., activities, services, broadcast receivers,
and content providers) declared by the sensitive app need to
be declared in the Manifest file of the container app. This
information, however, can be retrieved by nosy apps to fin-
gerprint sensitive apps (Section IV). To mitigate this problem,
for each activity and service declared by the sensitive app,
the container app declares a randomly-named component. At
runtime, the container app will map these random names to
the real names. For broadcast receivers, the container app
dynamically registers them at runtime. The case of content
providers is discussed in Section IX.

• The HMA App Store compiles the container app to obtain
its APK and signs it.
Note that for the sake of simplicity, here we only present a

solution that protects mandatory features of Android apps. A
resolute nosy app might try to fingerprint sensitive apps based
on e.g., the runtime information produced by their container
apps. We discuss this in Section IX.
HMA User-Level Virtualization. To launch the APK of a
sensitive app without installing it, its container app spawns
a randomly-named child process in which the APK will
run, i.e., the APK is executed under the same UID as its
container app. Thereafter, the container app loads the APK
dynamically at runtime, and it intercepts and proxies the
interactions between the sensitive app and the underlying
system (i.e., the OS and the app framework). To do so, we
rely on the technique implemented by DroidPlugin [68], an
open-source lib for app virtualization. We explain DroidPlugin
techniques in Appendix C.

B. HMA Operations

In this section, we detail the procedure followed by a user
when she (un)installs, updates, or uses sensitive apps.

1) App Installation: To install a sensitive app, the user
opens her HMA Manager app to retrieve the set of apps
provided by the HMA App Store. Once she selects a sen-
sitive app, the HMA Manager app sends an installation
request consisting of the name of the sensitive app to the
HMA App Store. The HMA App Store creates a con-
tainer app for the requested sensitive app (see Section VIII-A2)
and it sends the container app together with the original label
and icon of the sensitive app to the HMA Manager. The
HMA Manager prompts the user for her confirmation about
the installation. Once the user accepts, the installation occurs
as in standard app installation on Android. In addition, the

HMA Manager saves a record of the package name of the
container app and the package name, the original icon and
label of the sensitive app in a database in its private directory.

2) App Launch: To launch a sensitive app, the user opens
her HMA Manager app to be shown with the set of container
apps installed on her phone. Using the information stored in
its database about the mappings between container apps and
sensitive apps (Section VIII-B1), the HMA Manager displays
to the user the container apps with the original labels and icons
of the corresponding sensitive apps. Therefore, the user can
easily identify and select her sensitive apps.

The first time a container app runs, it needs to obtain the
sensitive APK from the HMA App Store, and stores the
APK in its private directory. This incurs some delays to the
first launch of sensitive apps, but it is needed, to prevent
sensitive apps from being fingerprinted. This is because, if the
sensitive APK was included in the resources or assets folders
of its container app so that the container app can copy and store
the APK in its private directory at installation time, a nosy app
would be able to obtain the sensitive APK; Recall, any app
can obtain the resources and assets of other apps (Section IV).
Also, Android does not allow apps to automatically start their
background services upon their installation.

At runtime, the container app dynamically loads the sensi-
tive APK. Thereafter, it intercepts and proxies API calls and
system calls between the sensitive app and the underlying
system (i.e., the OS and the Android app framework), as
described in Section VIII-A2. If the version of the Android
OS is at least 6.0, permissions requested by the sensitive app
will be prompted by its container app at runtime. As a result,
they will be shown with the random package name of the
container app. This, however, does not affect the usability and
comprehensibility of the permission requests, as shown by our
user study (Section X-E).

3) App Update: To check for updates, at predefined time
intervals (e.g., every day), the HMA Manager app anony-
mously sends to the HMA App Store the list of sensitive
apps on the user’s phone. Alternatively, the HMA App Store
can send a push notification to all HMA Manager clients
when there is an update for an app. If an app has an update,
the HMA Manager sends the package name of its existing
container app to the HMA App Store. Using this existing
package name, the HMA App Store creates a new container
app for the updated sensitive app. Note that this step is needed,
because the configuration file of the container app needs
to be updated w.r.t. the updates introduced by the sensitive
app. The HMA Manager receives the updated container app
from the HMA App Store, and it prompts the user for her
confirmation about the installation. Once the user accepts, the
updated container app is installed on the phone, similarly to
standard app-update procedure on Android (i.e., the updated
app reuses its existing directory and UID).

4) App Uninstallation: To uninstall a sensitive app, the
user opens her HMA Manager app to be shown with the set
of container apps installed on her phone. Once she selects
the app, the HMA Manager prompts her to confirm the

uninstallation. Thereafter, the uninstallation occurs similarly
to the standard app-uninstallation procedure on Android.

IX. PRIVACY AND SECURITY ANALYSIS

Here, we present an analysis of HMA to show that it effec-
tively achieves its privacy and security goals (Section VII-C).

A. Privacy

Fig. 2 compares the information about sensitive apps that
a nosy app can learn w/ and w/o HMA. We will explain how
HMA achieves its privacy goals in detail below.

Static Information. Obviously, HMA effectively protects the
mandatory information of sensitive apps by obfuscating the
metadata associated with the sensitive app. First, a nosy app
cannot obtain the package name of a sensitive app, because
the sensitive app is never registered on the system; instead,
its container app with a random package name is installed.
With adb privilege, the nosy app can obtain the path to the
APK of the container app, but this path does not contain
any information about the sensitive app. Moreover, the nosy
app can retrieve the APK file of the container app, but it
cannot retrieve the APK file of the sensitive app, because the
sensitive APK is not included in the container-app’s APK (it
is stored inside the private directory of the container app).
Second, the resources, shared libraries, developers’ signature
and developers’ signing certificates of the sensitive app cannot
be learnt by the nosy app, because they are not declared
or included in the container-app’s APK file, i.e., they are
dynamically loaded from the sensitive app’s APKs at runtime.
Third, the nosy app cannot learn the components’ names of
the sensitive app, because these names are randomized. To
prevent a nosy app from being able to fingerprint sensitive
apps based on the number of app components declared in
their container apps, during the generation of container apps,
the HMA App Store adds dummy random components such
that all container apps generated by the HMA App Store
declare the same number of random components.

Regarding optional information, a nosy app might try to
fingerprint sensitive apps based on the set of permissions de-
clared by their container-apps. This problem can be mitigated
if all container apps declare a union of permissions requested
by sensitive apps in the HMA App Store. Note that if the
device’s OS is at least 6.0, container apps only request, at
runtime, for permissions needed by their sensitive apps, and
users can grant or decline the requests, thus making it difficult
for nosy apps to fingerprint sensitive apps based on the set
of permissions that their container apps have been granted.
In addition, to hide their presence, sensitive apps should not
expose themselves to other apps by using content providers
and implicit intents (Section XI-A). Moreover, to prevent a
nosy app from fingerprinting sensitive apps based on their cus-
tomized configurations, such as themes and screen settings, the
HMA App Store can define a guideline for app developers
to follow, such that all apps have the same configurations.
This will affect the look-and-feel of the sensitive apps, but
it is a trade-off between usability and privacy, and the same

Cancer.Net

Diabetes

Depression

List of installed apps

- Nosy App 1
- Nosy App 2
- Play Store
- Diabetes
- Depression
- Cancer.net Third-party servers

Play Store

Nosy App 2

Nosy App 1

(a) w/o HMA

App-3

App-1

App-2

List of installed apps:

- Nosy App 1
- Nosy App 2
- Play Store
- HMA Manager
- App-1
- App-2
- App-3

Third-party servers

HMA Manager

Play Store

Nosy App 2

Nosy App 1

(b) w/ HMA

Fig. 2: Information learnt by nosy apps if sensitive apps are executed (a) w/o HMA and (b) w/ HMA.

approach has been used in other deployed systems, such as in
Tor where all the browsers have the same default window size
and user-agent strings [69]. To facilitate guideline compliance,
the HMA App Store can also provide developers with IDE
plugins to help them write guideline-compliant code; such
an approach has been proposed in existing work (e.g., [70]
and [71]).

Runtime Information. A nosy app cannot fingerprint a
sensitive app based on the the list of running processes
it can retrieve, because the sensitive app runs inside the
child process of its container app with a random name. To
prevent nosy apps from fingerprinting sensitive apps based
on statistics about resources consumed by their container
apps (including network and storage consumption, power
consumption, and memory footprints, system logs and di-
agnostic outputs), the container apps can randomly generate
dummy data to obfuscate the usage statistics of sensitive
apps. The container apps can also obfuscate the UI states
of the sensitive apps by overlaying transparent frames on
the real screens of the sensitive apps. Regarding files in the
phone’s external storage, container apps can intercept and
translate calls from sensitive apps when they create or access
files in the external storage. However, note that apps are
not recommended to store data in external storage, especially
mHealth apps. In addition, to prevent the nosy app from
receiving notifications sent to other apps, the users should not
grant the BIND_NOTIFICATION_LISTENER_SERVICE to
apps that they do not trust.

B. Security

As explained in Section VIII-A2, the user-level virtualiza-
tion technique used by HMA to launch an APK in HMA does not
require users to modify the OS of the phone. The Android’s
app-sandboxing security model is also preserved, because each
APK runs inside the context of its container app, thus it is
executed in a process under the same UID as its container
app, and it uses the private data directory of its container
app. Similarly to other third-party stores (e.g., Amazon or F-
Droid), HMA requires users to enable the “allow apps from
unknown sources” setting on their phones. However, apps
installed from these sources are still scanned and checked
by Android security services for malware [13], [58]. Also,
recently, this setting was converted to a per-app permission;
hence, it does not propagate to other apps [67].

Furthermore, with HMA, developers still control and sign
their apps, and the HMA App Store validates these sig-
natures before publishing the apps on the app store. The
container apps are signed by the HMA App Store, vouching
for the developers’ signatures. Furthermore, HMA container
apps only ask users for permissions requested by sensitive
apps, unlike solutions, e.g., Boxify [21], that require all
permissions to be granted beforehand. To relax the trust as-
sumptions on the HMA App Store and HMA Manager, the
HMA App Store can provide an API so that anyone can im-
plement her own HMA Manager app, or the HMA Manager
app can be open-source, i.e., anyone can audit the app and
check if it follows the protocols as prescribed. Therefore,
assuming that the metadata of the network and the lower
communication layers cannot be used to identify users, e.g., by
using a proxy or Tor, the HMA App Store cannot link a set
of sensitive apps to a specific user.

X. EVALUATION

To evaluate HMA, we used a real dataset of free- and paid-
mHealth apps on the Google Play store. We looked into three
evaluation criteria: (1) overheads experienced by mHealth
apps, (2) HMA runtime robustness and its compatibility with
mHealth apps, and (3) HMA usability.

A. Dataset

We selected 50 apps from the medical category on the
Google Play store, of which 42 apps are free and 8 apps are
paid. To have a diverse dataset, we selected apps based on their
popularity (i.e., more than 1000 downloads), their medical
specialization, and their supported functionality. From the 50
apps, we filtered out apps that make calls to APIs that we
did not support in our prototype implementations, including
Google Mobile Services (GMS), Google Cloud Messaging
(GCM) and Google Play Services APIs. Note that these
services can be supported, similarly to other services, the only
challenge is engineering efforts. We also filtered out apps that
use Facebook SDKs, because such SDKs often use custom
layouts, which have not been yet supported by the user-level
virtualization library that HMA uses (i.e., DroidPlugin [68]).
Exploring the interaction mechanisms between custom layouts
and custom notifications with the Android app framework is
an avenue for future work.

After filtering, we narrowed down the dataset to 30 apps
(24 free apps and 6 paid apps, see Appendix D). Our dataset

is somewhat diverse with 15 medical conditions.Also, apps in
our dataset support features that are crucial for mHealth apps,
such as Bluetooth connections with external medical devices
(e.g., Beurer HealthManager app [72]) and Internet
connections (e.g., Cancer.Net app [73]).

B. Implementation Details

Our prototype implemented the main components of HMA,
including the HMA App Store and the HMA Manager
app. To measure the operational delay introduced by HMA,
we implemented a proof-of-concept HMA App Store on
a computer (Intel Core i7, 3GHz, 16 GB RAM) with Ma-
cOS Sierra. Our HMA App Store dynamically generated
container apps from APKs, and it relied on an open-source
library called DroidPlugin [68] for the user-level virtualization.
Our prototype container apps dynamically loaded the classes
and resources of the apps from the mHealth APKs, and they
supported the interception and proxy of API calls that are
commonly used and crucial to mHealth apps, such as APIs
related to Bluetooth connections and SQLite databases.

C. Performance Overhead

In this section, we present the delays introduced by HMA to
sensitive apps during app-installation and app-launch opera-
tions. We omit the app-update operation, because app-update
and app-installation operations are similar. For the evaluation
of delays added by the user-level virtualization to commonly
used API methods and system calls at runtime of sensitive
apps, we refer the readers to existing work such as Boxify [21];
they show that such overhead is negligible, e.g., opening a
camera introduces an overhead of 1.24 ms.

Results presented in this section were measured on a Google
Nexus 5X phone running Android 7.0, one of the most recent
Android versions. In our experiments, the HMA App Store
connected to the phone through a micro-USB cable, thus
network delays were not considered. However, note that,
compared to the standard use of apps, HMA incurs negligible
network-delay overheads, because the only payload overhead
introduced by HMA is the container app, whose size is of
several hundreds of kilobytes only.

1) App Installation: When a user wants to install an
mHealth app, the HMA App Store first needs to create a
container app for it. Based on our experiments, assuming
the HMA App Store decompiles the mHealth APKs be-
forehand, for 90% of the cases, generating a container app
takes, on average, 5 s; Note that a large part of the delay
comes from the compilation of the container app, and the
measurement was performed on a laptop computer. Also note
that the HMA App Store can always prepare in advance
container apps for each mHealth app. The size of the container
apps is only several hundreds of kilobytes, which would take
less than a second for the HMA Manager app to download
(assuming a 3G or 4G Internet connection). As a result, the
total delay incurred by HMA will take less than 5 s, in the
worst-case scenario; This an acceptable one-time delay.

2) App Launch: On Android, apps can be launched from
different states, i.e., cold starts where apps are launched for
the first time since the phone was booted or since the system
killed the apps, and warm starts where the apps’ activities
might still reside in memory, and the system only needs to
bring them to the foreground, hence faster than cold starts.

Experiment Set-Up. To measure cold-start delays (i.e., the
time elapsed since a user clicks on the app’s icon until the first
screen of the app is loaded), we rely on the Android’s official
launch-performance profiling method [74]. For each app, we
installed its container app, copied its APK file to the container-
app’s private directory and launched the container app through
adb. Thereafter, we extracted the time information from the
Displayed entry of the logcat output. To simulate a first
launch, before we launched an app, we used the command
adb shell pm clear [package-name] to delete all
data associated with the app [35] (i.e., to bring the app back to
its initial state). To simulate a cold start, before we launched an
app, we used the command adb shell am force-stop
[package-name] to kill all the foreground activities and
background processes of the app. For each app, we collected
50 measurements per launch setting. For baseline measure-
ments, we measured the delays experienced by mHealth apps
when they were executed w/o HMA, i.e., we installed the apps
on the phone and followed the same procedure.

To measure warm-start delays, due to the lack of Android
supports for profiling warm starts, we have to instrument the
source-code of the sensitive apps to log the time that the app
enters different stages in its lifecycle. Because apps in our
dataset are closed-source, we used an open-source app [75].
To simulate a warm start, we used the command input
keyevent 187 to bring the app to the background, and
then used the monkey command to bring the app back to the
foreground. By subtracting the time when the onResume()
method is successfully executed with the time before the
monkey command is sent, we know the warm-start delay
experienced by the app. We measured the warm-start delays
experienced by the app in both settings (w/ and w/o HMA), 50
measurements per setting.

Results. It is intuitive that, in HMA, the first launch of an
mHealth app will experience more delays than the subsequent
cold starts, because the container app has to download the APK
from the HMA App Store and stores the APK in its private
directory. It also needs to process the APK and cache needed
information for the user-level virtualization. Our experiments
show that the median of the first launch delays is 6.5 s (as
compared to 0.8 s if the mHealth apps were launched w/o
HMA). However, this delay occurs only once, and therefore it
is negligible w.r.t. the lifetime of the app on the phone.

Fig. 3 shows the bar plot of subsequent cold-start delays
experienced by mHealth apps when they are executed w/ and
w/o HMA; the heights of the bars represent the mean values
and the error bars represent one standard deviation. It can be
seen that the average delays are at most 3.0 s and 1.3 s if
the apps are executed w/ HMA and w/o HMA respectively. For
90% of the cases, the average delay with HMA is less than 2 s.

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13 A14 A15 A16 A17 A18 A19 A20 A21 A22 A23 A24 A25 A26 A27 A28 A29 A30
mHealth apps

0

500

1000

1500

2000

2500

3000
La

un
ch

 ti
m

e
(m

s)
w/o HMA
w/ HMA

Fig. 3: Cold-start delays experienced by mHealth apps when they are executed w/ and w/o HMA. Note that our HMA implementation is a
proof-of-concept, hence not-optimized. The heights of the bars represent mean values and the error bars represent the standard deviation.
For each setting, we collected 50 measurements per app. The full names of the apps can be found in Appendix D.

Note that our prototype implementation is a proof-of-concept
hence not optimized; a more optimized implementation of
the system is left for future work. However, the observed
delays are still under the delay limit suggested by Android
(i.e., 5 s [74]). Also, based on our user study (Section X-E),
97% of participants agreed that a launch delay of 5 s (i.e., the
delay experienced by the Cancer.Net app [73] in its first
launch w/ HMA) is acceptable.

Regarding the warm-start delays, we found that the average
warm-start delays experienced by our tested app when it was
launched w/ and w/o HMA were both approximately 550 ms.
This is intuitive, because the app’s processes were still running
and the activities still resided in the phone’s memory. In case
the garbage collector evicts the activities from the phone’s
memory, warm-start delays can be longer, due to the overheads
of activity initializations. We unfortunately cannot simulate
this case, because Android does not provide methods to control
the garbage collector. However, in that case, the delay will still
be less than cold-start delays (i.e., at most 3 s, see above).

D. HMA Robustness and Compatibility

In this section, we present the evaluation of HMA in terms
of its robustness and its compatibility with Android versions.

Runtime Robustness. Following the approach used in previ-
ous work, (e.g., [23] and [76]), we manually tested each app
in our data-set with HMA. For each mHealth app, we extracted
its APK and used the HMA App Store to create a container
app and installed the container app on the phone. Thereafter,
we used the HMA Manager to launch the app. We manually
used most of the functionality of the mHealth app, and checked
if it crashed during its execution. We found that all of the
apps in our dataset work normally, except one app that threw
an error when making an SQLite connection. However, we
ran an example app from [77] that uses the official Android
APIs for database (i.e., android.database.sqlite)
to insert and retrieve records from an SQLite database
and the app ran successfully. We suspected the app
specified the full path to the directory of the database
(i.e., /data/data/package-name/db-name), hence
failing the call, because the directory does not exist. This
problem could be solved if the developers specified the relative
path to the database (i.e., ./db-name) instead of its full path.

Compatibility. We ran HMA on a series of smartphones
with Android OS from version 5.0 to 8.0 and found that
HMA can be successfully deployed on mainstream commer-
cial Android devices. However, there are two apps (Mole
Mapper and Alzheimer’s Speed of Processing
Game) that initially failed to run on our Nexus 5X (Android
7.1.1) due to the incompatibility between 32-bit and 64-bit
systems. We fixed the problem by enabling the option --abi
armeabi-v7a when installing them. From the list of 20 apps
that we filtered out, we found that 3 apps (Hearing Aid,
What’s Up and Cardiac diagnosis) successfully ran
on Android 5.0 and 6.0, but they failed to run in later versions
of Android. We investigated the log of the three apps and found
that API methods related to GMS services that we have not
supported were called in the later versions of Android. This
problem, however, can be solved if these services are hooked,
as we discussed in Section X-B.

E. HMA Usability and Desirability

To evaluate the usability of HMA and the users’ interest
for it (i.e., desirability), we conducted a user study at the
laboratory for behavioral experiments at our institution.6 Our
study involved 30 student subjects (19 males, 11 females)
with 18 different majors. The participants were experienced
Android users, i.e., 87% of the participants have been using
an Android phone for at least one year, and they were relatively
concerned about their privacy, i.e., using the standard metric
for measuring users’ privacy perception (IUIPC) [78], we
found that, on a scale from 1 to 5 for privacy postures, 97%
of participants graded at least 3.0 and an average of 4.1.

We began the study with an entry survey (see transcript) [79]
about demographics information, privacy postures and users’
awareness and concerns about the problem of LIA collections.
Then, we provided each participant with a fresh phone and
asked them to install and use two apps (one app is a popular
app about public-transportation timetables in the city where
the university is located and one app is an mHealth app) with
and without HMA, in order to precisely measure the users’ per-
ception of the delay introduced by HMA. The participants were
provided with detailed instructions [79], including screenshots,
on how to install and run the apps with and without HMA.

6Our user study was approved by our institutional ethical committee.

67% of the participants used the first app in the past, whereas
only 7% of them used the second one (or an app of the same
category). We finished the user study with an exit survey
containing questions related to the usability of the solution
and the users’ levels of interest in HMA. The user-study session
took approximately 45 minutes and we paid each participant
∼$25. The full transcript of survey questions and the user-
study instructions can be found at [79]

Our study shows that the participants are concerned about
the privacy of health-related data: 90% of the participants
would be at least concerned if their health-related informa-
tion were to be collected by mobile apps installed on their
phones and shared with third-parties, and 87% of participants
would be at least concerned if third-parties learned that they
have used health-related apps. Indeed, our study confirms the
findings from previous works (e.g., [16]) that the majority
of people never read privacy policies; as a consequence, the
current solution using privacy policies by Google for LIA
collections is not satisfactory. These findings show the need
for a solution to hide the presence of a sensitive mobile app.

Regarding the usability of HMA, only 30% of the participants
noticed a difference when the two apps ran with and without
HMA. Note that the delays that users experienced in the user
study were the first-launch delays, which are 4.2 s and 5.1 s for
the transportation app and the Cancer.Net app, respectively.
From the open-ended question in our exit survey, we found
that the observed differences are mainly about the launching
delay of the apps and the change in the app-names in permis-
sion prompts. From the close-ended questions, which were
coded with a 5-point Likert scales, we made the following
observations. Almost all participants agreed that these changes
and delays are acceptable (97% and 93% of the participants,
respectively). In addition, 93% of the participants agreed that
the use of HMA Manager to install and launch apps is at least
somewhat acceptable. Also, 90% of the participants agreed that
HMA does not affect the user-experience of the apps it protects
and that they are at least somewhat interested in using HMA.
These results suggests that HMA is usable and desirable.

As most lab experiments, our study has a low ecological
viability and some limitations which we acknowledge here.
It should be noted, however, that the goal of our study was
not to evaluate the design and the usability of the solution
as a final product but rather to evaluate, based on a proof
of concept with a basic UI, the interest and the perception
of users regarding the general approach and its technical
implications (e.g., delays). First, the participants used phones
provided by the experimenters, with only two apps and in a
hypothetical scenario. Second, the users were provided with
detailed instructions; therefore, we did not test how intuitive
the proposed solution is. Finally, when they took the exit
survey, the participants had already been briefed about the
privacy problems of LIA, which might introduce a bias. We
intend to conduct long-term studies and to refine and evaluate
the design of the user interface and the global user experience.

XI. DISCUSSIONS

A. HMA Limitations

As explained in Sections IX and X, HMA effectively hides
the mandatory features and runtime information of sensitive
apps. However, due to their hiding goal, optional features
that help sensitive apps to intentionally expose themselves
to other apps, including content providers and implicit in-
tents, should not be used. This can limit their data-sharing
capabilities; A possible workaround for this problem is to
put apps that want to share data with each other in the
same container app. In addition, due to the limitation of
user-level virtualization library that HMA uses, if sensitive
apps use many customizations with third-party SDKs, the
container apps might fail to launch them. This might be a
problem with complex apps, such as dating apps, but mHealth
apps are unlikely to require many customizations. In the
scenario envisioned by HMA, developers build apps for the
hospitals, thus the HMA App Store can provide developers
with a guideline about supported features so that their apps
are HMA-compatible. To facilitate guideline compliance, the
HMA App Store can also provide developers with IDE
plugins to help them write compliant code; such approach has
been proposed in existing work (e.g., [70], [71]). Lastly, if
the number of apps in the HMA App Store is small, a nosy
app could guess the name of the sensitive app. To increase the
anonymity-set, the hospitals can include simpler, non-sensitive
apps (e.g., informational) in the HMA App Store, and the
popularity of apps on the store should not be public.

B. An Alternative Scenario

HMA is designed to work for the case of hospitals hosting
their mHealth apps. However, there are other categories of
apps that can be considered sensitive (e.g., apps about religion
or sexual orientation). For example, in some countries, people
would be arrested if they use a gay dating app [80]. Moreover,
developers might publish their mHealth and other sensitive
apps on app stores other than the HMA App Store, such
as the Amazon or Google Play app stores. In such cases,
the community or an organization can run a proxy service
that retrieves the APKs of these apps from these stores and
create container apps for them accordingly; this service can
be free or paid. This might require an agreement between the
proxy service and the app developers and also, as discussed in
Section XI-A, some apps might have optional features that are
not recommended or features that are not supported by user-
level virtualization techniques. Similarly to the case of the
Amazon app store, the proxy service can provide developers
with a testing service to test the compatibility of their apps.

XII. CONCLUSION

In this paper, we have systematically investigated the prob-
lem of apps fingerprinting other installed apps. We showed that
apps can collect a significant amount of static and runtime
information about other apps to fingerprint them. We also
quantified the prevalence of the problem and have shown that
third-party libs and apps are interested in learning the list of

installed apps on the phone. Moreover, our analysis showed
that there are no existing mechanisms to hide the presence of
a sensitive app from other apps. Therefore, we have proposed
HMA, the first solution that addresses this problem. HMA does
not require any modifications to the mobile OS and it preserves
the key functionality of apps. Our thorough evaluation of HMA
on a diverse data-set of both free and paid mHealth apps
from the Google Play store shows that HMA is practical with
reasonable operational delays. Moreover, the results of our
user study suggest that HMA is perceived as usable and of
interest to the users. For future work, we plan to implement a
full prototype of the system and make it publicly available.

REFERENCES

[1] M. Aitken and J. Lyle, “Patient adoption of mhealth: use, evidence and
remaining barriers to mainstream acceptance,” Parsippany: IMS Institute
for Healthcare Informatics, 2015.

[2] “The mHealth apps market is getting crowded.” https:
//research2guidance.com/mhealth-app-market-getting-crowded-
259000-mhealth-apps-now/, last visited: Jan. 2018.

[3] D. Kotz, C. A. Gunter, S. Kumar, and J. P. Weiner, “Privacy and security
in mobile health: A research agenda,” Computer, vol. 49, no. 6, June
2016.

[4] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Pre-
dicting user traits from a snapshot of apps installed on a smartphone,”
SIGMOBILE Mob. Comput. Commun. Rev., vol. 18, no. 2, Jun. 2014.

[5] S. Seneviratne, A. Seneviratne, P. Mohapatra, and A. Mahanti, “Your
installed apps reveal your gender and more!” SIGMOBILE Mob. Comput.
Commun. Rev., vol. 18, no. 3, 2015.

[6] S. Demetriou, W. Merrill, W. Yang, A. Zhang, and C. A. Gunter,
“Free for all! assessing user data exposure to advertising libraries on
android,” in Proc. of the 2016 Network and Distributed System Security
Symposium, 2016.

[7] J. P. Achara, G. Acs, and C. Castelluccia, “On the unicity of smartphone
applications,” in Proc. of the 2015 ACM Workshop on Privacy in the
Electronic Society, 2015.

[8] X. Zhou, S. Demetriou, D. He, M. Naveed, X. Pan, X. Wang, C. A.
Gunter, and K. Nahrstedt, “Identity, location, disease and more: Inferring
your secrets from android public resources,” in Proc. of the 2013 ACM
SIGSAC conference on Computer & communications security, 2013.

[9] “Twitter scanning users’ other apps to help deliver ’tailored con-
tent’ ,” https://www.theguardian.com/technology/2014/nov/27/twitter-
scanning-other-apps-tailored-content, last visited: Jan. 2018.

[10] “About Twitter’s app graph,” https://help.twitter.com/en/safety-and-
security/app-graph.

[11] M. C. Grace, W. Zhou, X. Jiang, and A.-R. Sadeghi, “Unsafe exposure
analysis of mobile in-app advertisements,” in Proc. of the 2012 ACM
conference on Security and Privacy in Wireless and Mobile Networks,
2012.

[12] “Report: Smartphone owners are using 9 apps per day, 30 per
month,” https://techcrunch.com/2017/05/04/report-smartphone-owners-
are-using-9-apps-per-day-30-per-month/, last visited: Feb. 2018.

[13] “Android Security 2016 Year In Review,” https://source.android.com/
security/reports/Google Android Security 2016 Report Final.pdf, last
visited: Feb. 2018.

[14] “Android Security 2015 Year In Review,” https://source.android.com/
security/reports/Google Android Security 2015 Report Final.pdf, last
visited: Feb. 2018.

[15] “Android Developer Policy Center,” https://play.google.com/about/
developer-content-policy-print/, last visited: Feb. 2018.

[16] A. M. McDonald, R. W. Reeder, P. G. Kelley, and L. F. Cranor, “A
Comparative Study of Online Privacy Policies and Formats,” in Privacy
Enhancing Technologies, 2009.

[17] “Additional protections by Safe Browsing for Android users ,”
https://security.googleblog.com/2017/12/additional-protections-by-safe-
browsing.html, last visited: Jan. 2018.

[18] J. Sunshine, S. Egelman, H. Almuhimedi, N. Atri, and L. F. Cranor,
“Crying wolf: An empirical study of ssl warning effectiveness,” in Proc.
of the 2009 USENIX Security Symposium, 2009.

[19] A. P. Felt, E. Ha, S. Egelman, A. Haney, E. Chin, and D. Wagner,
“Android permissions: User attention, comprehension, and behavior,” in
Proc. of the 2012 Symposium on Usable Privacy and Security, 2012.

[20] R. Xu, H. Saidi, and R. J. Anderson, “Aurasium: practical policy
enforcement for android applications.” in Proc. of the 2012 USENIX
Security Symposium, 2012.

[21] M. Backes, S. Bugiel, C. Hammer, O. Schranz, and P. von Styp-
Rekowsky, “Boxify: Full-fledged app sandboxing for stock android.”
in Proc. of the 2015 USENIX Security Symposium, 2015.

[22] “HMA website,” https://[obfuscatedforsubmission], last visited: Jan.
2018.

[23] S. Jaebaek, K. Daehyeok, C. Donghyun, S. Insik, and K. Taesoo,
“FLEXDROID: enforcing in-app privilege separation in android,” in
Proc. of the 2016 Network and Distributed System Security Symposium,
2016.

[24] M. Sun and G. Tan, “Nativeguard: Protecting android applications from
third-party native libraries,” in Proc. of the 2014 ACM Conference on
Security and Privacy in Wireless & Mobile Networks, 2014.

[25] M. Naveed, X.-y. Zhou, S. Demetriou, X. Wang, and C. A. Gunter,
“Inside job: Understanding and mitigating the threat of external device
mis-binding on android.” in Proc. of the 2014 Network and Distributed
System Security Symposium, 2014.

[26] E. Malmi and I. Weber, “You are what apps you use: Demographic
prediction based on user’s apps,” in Proc. of the 2016 International
AAAI Conference on Web and Social Media, 2016.

[27] S. Dai, A. Tongaonkar, X. Wang, A. Nucci, and D. Song, “Networkpro-
filer: Towards automatic fingerprinting of android apps,” in Proceedings
IEEE INFOCOM, 2013.

[28] Q. Xu, Y. Liao, S. Miskovic, Z. M. Mao, M. Baldi, A. Nucci, and
T. Andrews, “Automatic generation of mobile app signatures from
traffic observations,” in IEEE Conference on Computer Communications
(INFOCOM), 2015.

[29] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in 2016 IEEE European Symposium on Security and Privacy
(EuroS P), 2016.

[30] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Robust smart-
phone app identification via encrypted network traffic analysis,” IEEE
Transactions on Information Forensics and Security, vol. 13, no. 1, pp.
63–78, Jan 2018.

[31] G. G. Gulys, G. Acs, and C. Castelluccia”, “”near-optimal fingerprinting
with constraints”,” ”Proceedings on Privacy Enhancing Technologies”,
vol. ”2016”, no. ”4”, pp. 470 – 487, ”2016”.

[32] A. Bianchi, Y. Fratantonio, C. Kruegel, and G. Vigna, “Njas: Sandboxing
unmodified applications in non-rooted devices running stock android,”
in Proc. of the ACM CCS Workshop on Security and Privacy in
Smartphones and Mobile Devices, 2015.

[33] J. Huang, O. Schranz, S. Bugiel, and M. Backes, “The art of app
compartmentalization: Compiler-based library privilege separation on
stock android,” in Proc. of the 2017 ACM SIGSAC Conference on
Computer and Communications Security, 2017.

[34] “Permissions Overview,” https://developer.android.com/guide/topics/
permissions/overview, last visited: May 2018.

[35] “Android Debug Bridge (adb),” https://developer.android.com/studio/
command-line/adb.html, last visited: Dec. 2017.

[36] “Application Fundamentals,” https://developer.android.com/guide/
components/fundamentals, last visited: May 2018.

[37] V. F. Taylor, R. Spolaor, M. Conti, and I. Martinovic, “Appscanner:
Automatic fingerprinting of smartphone apps from encrypted network
traffic,” in Security and Privacy (EuroS&P), 2016 IEEE European
Symposium on. IEEE, 2016, pp. 439–454.

[38] Q. A. Chen, Z. Qian, and Z. M. Mao, “Peeking into your app without
actually seeing it: Ui state inference and novel android attacks.” in
USENIX Security Symposium, 2014, pp. 1037–1052.

[39] S. Jana and V. Shmatikov, “Memento: Learning secrets from process
footprints,” in Security and Privacy (SP), 2012 IEEE Symposium on.
IEEE, 2012, pp. 143–157.

[40] Y. Chen, X. Jin, J. Sun, R. Zhang, and Y. Zhang, “Powerful: Mobile app
fingerprinting via power analysis,” in INFOCOM 2017-IEEE Conference
on Computer Communications, IEEE. IEEE, 2017, pp. 1–9.

[41] C.-C. Lin, H. Li, X.-y. Zhou, and X. Wang, “Screenmilker: How to milk
your android screen for secrets.” in NDSS, 2014.

[42] “Privacy, Security, and Deception,” https://play.google.com/about/
privacy-security-deception/personal-sensitive/, last visited: Dec. 2017.

https://research2guidance.com/mhealth-app-market-getting-crowded-259000-mhealth-apps-now/
https://research2guidance.com/mhealth-app-market-getting-crowded-259000-mhealth-apps-now/
https://research2guidance.com/mhealth-app-market-getting-crowded-259000-mhealth-apps-now/
https://www.theguardian.com/technology/2014/nov/27/twitter-scanning-other-apps-tailored-content
https://www.theguardian.com/technology/2014/nov/27/twitter-scanning-other-apps-tailored-content
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://techcrunch.com/2017/05/04/report-smartphone-owners-are-using-9-apps-per-day-30-per-month/
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2016_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://source.android.com/security/reports/Google_Android_Security_2015_Report_Final.pdf
https://play.google.com/about/developer-content-policy-print/
https://play.google.com/about/developer-content-policy-print/
https://security.googleblog.com/2017/12/additional-protections-by-safe-browsing.html
https://security.googleblog.com/2017/12/additional-protections-by-safe-browsing.html
https://[obfuscated for submission]
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/guide/topics/permissions/overview
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/studio/command-line/adb.html
https://developer.android.com/guide/components/fundamentals
https://developer.android.com/guide/components/fundamentals
https://play.google.com/about/privacy-security-deception/personal-sensitive/
https://play.google.com/about/privacy-security-deception/personal-sensitive/

[43] “A tool for reverse engineering Android apk files,” https://ibotpeaches.
github.io/Apktool/, last visited: Dec. 2017.

[44] http://www.zdnet.com/article/accuweather-caught-sending-geo-
location-data-even-when-denied-access/, 2017, last visited: Sep.
2017.

[45] “Trail: The Reflection API,” https://docs.oracle.com/javase/tutorial/
reflect/, last visited: Dec. 2017.

[46] “XPrivacy,” https://github.com/M66B/XPrivacy, last visited: Dec. 2017.
[47] “Solitaire: Super Challenges,” https://play.google.com/store/apps/

details?id=com.cardgame.solitaire.full, last visited: Jan. 2018.
[48] “DH Texas Poker - Texas Hold’em,” https://play.google.com/store/apps/

details?id=com.droidhen.game.poker, last visited: Jan. 2018.
[49] “MX Player,” https://play.google.com/store/apps/details?id=com.

mxtech.videoplayer.ad, last visited: Dec. 2017.
[50] “Sweet Selfie - selfie camera, beauty cam, photo edit,” https://play.

google.com/store/apps/details?id=com.cam001.selfie, last visited: Dec.
2017.

[51] “InstaSize Editor: Photo Filters and Collage Maker,” https://play.google.
com/store/apps/details?id=com.jsdev.instasize, last visited: Dec. 2017.

[52] “Angry Birds,” https://play.google.com/store/apps/details?id=com.rovio.
angrybirds, last visited: Dec. 2017.

[53] “Neon Motocross,” https://play.google.com/store/apps/details?id=com.
motomex.neonmotocross, last visited: Dec. 2017.

[54] “Supporting Multiple Users — Android Open Source Project,” https:
//source.android.com/devices/tech/admin/multi-user, last visited: May
2018.

[55] “Put Android to work,” https://www.android.com/enterprise/employees/,
last visited: Dec. 2017.

[56] “Android Instant Apps,” https://developer.android.com/topic/instant-
apps/index.html, last visited: Dec. 2017.

[57] “Android Instant Apps API reference,” https://developer.android.com/
topic/instant-apps/reference.html#instantapps.InstantApps, last visited:
Dec. 2017.

[58] “Help protect against harmful apps with Google Play Protect,” https:
//support.google.com/accounts/answer/2812853?hl=en, last visited: Jan.
2018.

[59] “Protecting against Security Threats with SafetyNet,” https://developer.
android.com/training/safetynet/index.html, last visited: Jan. 2018.

[60] “Samsung Knox,” https://www.samsungknox.com/en, last visited: Dec.
2017.

[61] “Nova Launcher,” https://play.google.com/store/apps/details?id=com.
teslacoilsw.launcher&hl=en, last visited: Jan. 2018.

[62] “Parallel Space - Multiple accounts and Two face,” https://play.google.
com/store/apps/details?id=com.lbe.parallel.intl&hl=en, last visited: Jan.
2018.

[63] “Hide App, Private Dating, Safe Chat - PrivacyHider,” https:
//play.google.com/store/apps/details?id=com.trigtech.privateme&hl=en,
last visited: Jan. 2018.

[64] “Private Zone - Safe Vault,” https://play.google.com/store/apps/details?
id=com.leo.appmaster, last visited: May 2018.

[65] “Amazon App Store,” https://www.amazon.com/mobile-apps/b?ie=
UTF8&node=2350149011, last visited: Jan. 2018.

[66] “F-Droid,” https://f-droid.org/en/, last visited: Jan. 2018.
[67] “Publish Your App,” https://developer.android.com/studio/publish/index.

html#publishing-unknown, last visited: Jan. 2018.
[68] “DroidPlugin,” https://github.com/DroidPluginTeam/DroidPlugin, last

visited: Jan. 2018.
[69] “The Design and Implementation of the Tor Browser,” https://www.

torproject.org/projects/torbrowser/design/, last visited: Jan. 2018.
[70] D. C. Nguyen, D. Wermke, Y. Acar, M. Backes, C. Weir, and S. Fahl,

“A stitch in time: Supporting android developers in writingsecure code,”
in Proceedings of the 2017 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2017, pp. 1065–1077.

[71] E. Fernandes, J. Paupore, A. Rahmati, D. Simionato, M. Conti, and
A. Prakash, “Flowfence: Practical data protection for emerging iot
application frameworks.” in USENIX Security Symposium, 2016, pp.
531–548.

[72] “Beurer HealthManager,” https://play.google.com/store/apps/details?id=
com.beurer.connect.healthmanager, last visited: Jan. 2018.

[73] “Cancer.Net Mobile,” https://play.google.com/store/apps/details?id=
com.fueled.cancernet, last visited: Jan. 2018.

[74] “Launch-Time Performance,” https://developer.android.com/topic/
performance/launch-time.html, last visited: Jan. 2018.

[75] https://github.com/commonsguy/cw-omnibus/tree/master/Activities/
Lifecycle, last visited: May 2018.

[76] X. Wang, K. Sun, Y. Wang, and J. Jing, “Deepdroid: Dynamically
enforcing enterprise policy on android devices.” in Proc. of the 2015
Network and Distributed System Security Symposium, 2015.

[77] “SQLite via SQLiteOpenHelper,” https://github.com/commonsguy/cw-
omnibus/tree/master/Database/ConstantsROWID, last visited: Jan. 2018.

[78] N. K. Malhotra, S. S. Kim, and J. Agarwal, “Internet users’ information
privacy concerns (iuipc): The construct, the scale, and a causal model,”
Information systems research, vol. 15, no. 4, pp. 336–355, 2004.

[79] https://www.dropbox.com/sh/lo273jtx6jkbf1c/
AAB1BtkBmBuNVOV13OAwDu-ha?dl=1, last visited: May 2018.

[80] https://www.washingtonpost.com/news/worldviews/wp/2014/
09/12/could-using-gay-dating-app-grindr-get-you-arrested-in-
egypt/?noredirect=on&utm term=.470e8bc8f41c, last visited: May
2018.

[81] “DexClassLoader,” https://developer.android.com/reference/dalvik/
system/DexClassLoader.html, last visited: Jan. 2018.

APPENDIX A
ANALYSIS OF PAID APPS

To estimate if there are differences between free and paid
apps w.r.t. collecting LIAs, we performed similar analyses
(i.e., static and dynamic) with a set of 28 popular paid-
apps in the Google Play store. We chose popular paid-apps
(i.e., top paid apps) from different categories; the list of paid
apps evaluated can be found on Table IV in Appendix E. We
found that 17.8% of the paid apps include at least one call to
getIA() or getIP() methods in their code (upper-bound)
and that 7.4% of the paid apps called at least one of these two
methods at runtime (lower-bound). While the number of paid
apps evaluated is much smaller than of free apps, our results
still indicate that paid apps are less likely to query for LIAs,
probably due to the fact that they rely less on third-party libs,
particularly ad libs.

APPENDIX B
ANDROID MULTIPLE USERS AND ANDROID FOR WORK

EVALUATION

We evaluated how robust Android’s multiple users [54]
support and Android for Work [55] when used to hide the
presence of sensitive apps from other apps in the same device.
For this evaluation, we used a Nexus 5 device with Android
6.0 and two Android emulator instances with Android 8.1 and
Android 9.0, respectively. In these devices, we installed a nosy
app in the primary account (personal profile for Android for
Work) and several sensitive apps in the secondary partition
(work profile for Android for Work). The main goal was to
see if the nosy app could identify the sensitive apps in the
secondary accounts/work profile.

Our results show that it is easy for a nosy app to bypass the
hiding protection offered by multiple user accounts and An-
droid for work. A nosy app can use the following techniques
to bypass such protection:
• In Android 7 or earlier, including an additional parameter

flag (MATCH UNINSTALLED PACKAGES) in getIA()
and getIP() will reveal the apps installed in secondary
user accounts. For Android for Work, this approach works
even in Android 8.1.

• In Android 9 (latest version of Android), a nosy app
can use API methods such as getPackageUid(), getPack-
ageGidS(), getInstallerPackageName() or getApplicationEn-
abledSetting() as oracles to check if an app is installed in the

https://ibotpeaches.github.io/Apktool/
https://ibotpeaches.github.io/Apktool/
http://www.zdnet.com/article/accuweather-caught-sending-geo-location-data-even-when-denied-access/
http://www.zdnet.com/article/accuweather-caught-sending-geo-location-data-even-when-denied-access/
https://docs.oracle.com/javase/tutorial/reflect/
https://docs.oracle.com/javase/tutorial/reflect/
https://github.com/M66B/XPrivacy
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.cardgame.solitaire.full
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://play.google.com/store/apps/details?id=com.droidhen.game.poker
https://play.google.com/store/apps/details?id=com.mxtech.videoplayer.ad
https://play.google.com/store/apps/details?id=com.mxtech.videoplayer.ad
https://play.google.com/store/apps/details?id=com.cam001.selfie
https://play.google.com/store/apps/details?id=com.cam001.selfie
https://play.google.com/store/apps/details?id=com.jsdev.instasize
https://play.google.com/store/apps/details?id=com.jsdev.instasize
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.rovio.angrybirds
https://play.google.com/store/apps/details?id=com.motomex.neonmotocross
https://play.google.com/store/apps/details?id=com.motomex.neonmotocross
https://source.android.com/devices/tech/admin/multi-user
https://source.android.com/devices/tech/admin/multi-user
https://www.android.com/enterprise/employees/
https://developer.android.com/topic/instant-apps/index.html
https://developer.android.com/topic/instant-apps/index.html
https://developer.android.com/topic/instant-apps/reference.html#instantapps.InstantApps
https://developer.android.com/topic/instant-apps/reference.html#instantapps.InstantApps
https://support.google.com/accounts/answer/2812853?hl=en
https://support.google.com/accounts/answer/2812853?hl=en
https://developer.android.com/training/safetynet/index.html
https://developer.android.com/training/safetynet/index.html
https://www.samsungknox.com/en
https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher&hl=en
https://play.google.com/store/apps/details?id=com.teslacoilsw.launcher&hl=en
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
https://play.google.com/store/apps/details?id=com.lbe.parallel.intl&hl=en
https://play.google.com/store/apps/details?id=com.trigtech.privateme&hl=en
https://play.google.com/store/apps/details?id=com.trigtech.privateme&hl=en
https://play.google.com/store/apps/details?id=com.leo.appmaster
https://play.google.com/store/apps/details?id=com.leo.appmaster
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://www.amazon.com/mobile-apps/b?ie=UTF8&node=2350149011
https://f-droid.org/en/
https://developer.android.com/studio/publish/index.html#publishing-unknown
https://developer.android.com/studio/publish/index.html#publishing-unknown
https://github.com/DroidPluginTeam/DroidPlugin
https://www.torproject.org/projects/torbrowser/design/
https://www.torproject.org/projects/torbrowser/design/
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.beurer.connect.healthmanager
https://play.google.com/store/apps/details?id=com.fueled.cancernet
https://play.google.com/store/apps/details?id=com.fueled.cancernet
https://developer.android.com/topic/performance/launch-time.html
https://developer.android.com/topic/performance/launch-time.html
https://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
https://github.com/commonsguy/cw-omnibus/tree/master/Activities/Lifecycle
https://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
https://github.com/commonsguy/cw-omnibus/tree/master/Database/ConstantsROWID
https://www.dropbox.com/sh/lo273jtx6jkbf1c/AAB1BtkBmBuNVOV13OAwDu-ha?dl=1
https://www.dropbox.com/sh/lo273jtx6jkbf1c/AAB1BtkBmBuNVOV13OAwDu-ha?dl=1
https://www.washingtonpost.com/news/worldviews/wp/2014/09/12/could-using-gay-dating-app-grindr-get-you-arrested-in-egypt/?noredirect=on&utm_term=.470e8bc8f41c
https://www.washingtonpost.com/news/worldviews/wp/2014/09/12/could-using-gay-dating-app-grindr-get-you-arrested-in-egypt/?noredirect=on&utm_term=.470e8bc8f41c
https://www.washingtonpost.com/news/worldviews/wp/2014/09/12/could-using-gay-dating-app-grindr-get-you-arrested-in-egypt/?noredirect=on&utm_term=.470e8bc8f41c
https://developer.android.com/reference/dalvik/system/DexClassLoader.html
https://developer.android.com/reference/dalvik/system/DexClassLoader.html

device, even if it is installed in a secondary account or in a
work profile. The nosy app only need to include the package
name of the targeted sensitive app as a parameter to these
methods. If the targeted app is installed in the device, these
methods will return valid values, otherwise they return an
error message or null.

• A nosy app can guess the UIDs of the installed apps in all
the accounts and work profiles, by looking at the /proc/uid
directory to learn the ranges of current UIDs in the system,
and then guessing UIDs of other apps in the device using
the getNameForUid() method. This method will return a
package name given a UID as a input parameter; if the app
does not exist, it returns null. Hence, it can be used as an
oracle to retrieve the LIA on the device. This was tested on
Android 6, 8.1 and 9.

• A nosy app with ADB privilege can easily verify if a
sensitive app is running in the device, independently of the
account or profile it was installed, by using the shell com-
mand: pidof <PackageName>. This approach was tested on
Android 9.

• A nosy app with ADB privilege can get the LIA, which
includes apps in secondary accounts and work profiles, by
using the shell command dumpsys. This approach was tested
on Android 9.

APPENDIX C
DROIDPLUGIN USER-LEVEL VIRTUALIZATION

To enable the ClassLoader of the container app to load
the classes and resources from the APK, the container app
creates a LoadedApk object from the APK file (through
the public API method getPackageInfoNoCheck()).
A LoadedApk object is an in-memory representation of
the APK file through which source-code and resources of
the app can be obtained. Thereafter, the container app cre-
ates a customized ClassLoader object with information
from the APK by using the constructor provided by the
Android APIs [81], and it uses Java refection to set this
newly created ClassLoader to the mClassLoader field
in the aforementioned LoadedApk object. This LoadedApk
object is added to the mPackages cache in the current
ActivityThread object of the container app.

Once the APK is loaded, the container app needs to
intercept and proxy API calls between the process of the
sensitive app and system services and the system calls between
the app and the OS. For the API calls, the container app has to
hook the Binder communication between the sensitive app
and system services, such as ActivityManagerService,
ClipboardManagerService and
PackageManagerService. In the Android framework,
the Binder proxy object of a system service is
accessed through the method getService() of the
ServiceManager. For efficiency, when this function is
called, the system first looks for the Binder proxy object in
a Map object called sCache. Therefore, to hook a system
service, the container app first creates a fake Binder proxy
object and inserts this fake object in the sCache Map object

of the system. This way, when the process of the sensitive
app wants to access a system service, it will use the fake
proxy object created by HMA, instead of the original one.
Consequently, the container app can intercept the Binder
communication between the sensitive app and the system.
For system-call interceptions, we refer the readers to previous
work e.g., [21]; we omit the descriptions due to space
constraints.

APPENDIX D
APPS TESTED WITH HMA

Table III.

APPENDIX E
EVALUATED PAID-APPS

Table IV.

Index App Name Package Name # Downloads
1 My Ovulation Calculator com.ecare.ovulationcalculator 1M - 5M
2 Blood Pressure Log - MyDiary com.zlamanit.blood.pressure 500K - 1M
3 DreamMapper com.philips.sleepmapper.root 100K - 500K
4 Breathing Zone com.breathing.zone 5K - 10K
5 Alzheimer’s Speed of Processing Game com.TinyHappySteps.Bird 1K - 5K
6 Cancer.Net Mobile com.fueled.cancernet 10K - 50K
7 AIDS Info Drug Database com.aidsinfo.aidsinfoapp 5K - 10K
8 My Pain Diary com.damonlynn.mypaindiary 5K - 10K
9 iBP Blood Pressure com.leadingedgeapps.ibp 10K - 50K
10 Squeezy: NHS Pelvic Floor App com.propagator.squeezy 10K - 50K
11 OneTouch Reveal com.lifescan.reveal 500K - 1M
12 ADHD Adults com.labshealth.tdahadults 10K - 50K
13 Baritastic - Bariatric Tracker com.baritastic.view 100K - 500K
14 Mole Mapper edu.ohsu.molemapper 1K - 5K
15 Respiroguide Pro com.tremend.respiroguide 10K - 50K
16 FearTools - Anxiety Aid com.feartools.feartools 10K - 50K
17 Back Pain Relieving Exercises com.backpainrelieving.backpain 10K - 50K
18 OnTrack Diabetes com.gexperts.ontrack 500K - 1M
19 Asthmatic be.sarahvn.asthmatic 50 - 100
20 MoodTools - Depression Aid com.moodtools.moodtools 100K - 500K
21 Pain Diary & Forum CatchMyPain com.sanovation.catchmypain.phone 50K - 100K
22 Beurer HealthManager com.beurer.connect.healthmanager 100K - 500K
23 Constant Therapy com.constanttherapy.android.main 10K - 50K
24 Self-help Anxiety Management com.uwe.myoxygen 100K - 500K
25 Pregnancy Calendar and Tracker ru.mobiledimension.kbr 1M - 5M
26 BELONG Beating Cancer Together com.belongtail.belong 10K - 50K
27 AsthmaMD com.mobilebreeze.AsthmaMD 10K - 50K
28 Propeller com.asthmapolis.mobile 5K - 10K
29 mySugr: the blood sugar tracker made just for you com.mysugr.android.companion 500K - 1M
30 QuitNow! - Quit smoking com.EAGINsoftware.dejaloYa 1M - 5M

TABLE III: mHealth apps tested with HMA.

1. org.xtramath.mathfacts 15. com.maxmpz.audioplayer.unlock
2. co.wordswag.wordswag 16. com.microphone.earspy.pro
3. com.vicman.photolabpro 17. com.tdr3.hs.android
4. com.ultimateguitar.tabs 18. com.etermax.preguntados.pro
5. com.burleighlabs.babypics 19. com.real.bodywork.muscle.trigger.points
6. com.ellisapps.itrackbitesplus 20. com.devolver.spaceplan
7. com.intsig.lic.camscanner 21. org.twisevictory.apps
8. com.period.tracker.deluxe 22. com.samruston.weather
9. com.mojang.minecraftpe 23. au.com.shiftyjelly.pocketcasts
10. com.wolfram.android.alpha 24. com.azumio.instantheartrate.full
11. slide.cameraZoom 25. udk.android.reader
12. com.digipom.easyvoicerecorder.pro 26. radiotime.player
13. com.melodis.midomiMusicIdentifier 27. com.flyersoft.moonreaderp
14. com.laurencedawson.reddit sync.pro 28. kr.aboy.tools

TABLE IV: List of paid apps evaluated in our study. Only a few paid apps (17.8% static analysis, 7.4% dynamic analysis)
seems to request information about LIAs (Section V).

	Introduction
	Related Work
	Background
	Android Security Model
	Android Apps and APK Files

	[2]Fingerprintability of Android Apps
	Information Leaks Through the Java API Framework
	Information Leaks Through the Linux-Layer Interface

	Apps Inquiring About Other Apps
	Data Collection
	Static Analysis
	Dynamic Analysis
	Analysis of Privacy Policies

	Existing Protection Mechanisms
	HideMyApp: A Practical Solution
	System Model
	Adversarial Model
	Design Goals
	HMA Overview

	HMA System Description
	HMA System Bootstrapping
	HMA Manager App
	HMA App Store

	HMA Operations
	App Installation
	App Launch
	App Update
	App Uninstallation

	Privacy and Security Analysis
	Privacy
	Security

	Evaluation
	Dataset
	Implementation Details
	Performance Overhead
	App Installation
	App Launch

	HMA Robustness and Compatibility
	HMA Usability and Desirability

	Discussions
	HMA Limitations
	An Alternative Scenario

	Conclusion
	References
	Appendix A: Analysis of Paid Apps
	Appendix B: Android Multiple Users and Android for Work Evaluation
	Appendix C: DroidPlugin User-Level Virtualization
	Appendix D: Apps Tested with HMA
	Appendix E: Evaluated Paid-Apps

