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Abstract. A contactless payment lets a card holder execute payment
without any interaction (e.g., entering PIN or signing) between the ter-
minal and the card holder. Even though the security is the first priority
in a payment system, the formal security model of contactless payment
does not exist. Therefore, in this paper, we design an adversarial model
and define formally the contactless-payment security against malicious
cards and malicious terminals including relay attacks. Accordingly, we
design a contactless-payment protocol and show its security in our secu-
rity model. At the end, we analyze EMV-contactless which is a commonly
used specification by most of the mobile contactless-payment systems
and credit cards in Europe. We find that it is not secure against mali-
cious cards. We also prove its security against malicious terminals in our
model. This type of cryptographic proof has not been done before for
the EMV specification.

1 Introduction

A contactless payment (CP) system is a payment method using a card or a
device, that allows a user to pay at a point of sale by holding the card/device
near a contactless terminal. There are two main ways of performing a contactless
transaction: with a card or with a smartphone.

CP technologies advanced quickly in recent years. Therefore, the CP market
size is expected to grow from USD 6.70 Billion in 2016 to USD 17.56 Billion by
2021 [1]. One of the reasons of this development is based on the convenience of
the payment process (e.g., users do not need to type a PIN code (or sign a bill)
and wait for the verification process of the PIN). The first CP was implemented
in 1995 by Seoul Bus Transport and since then many leading companies (Apple,
Google, Samsung) started to integrate a CP process into smartphones. The first
(contactless) payment system launched by a leading company is Google Wallet
in 2011. Then, Apple Pay and Samsung Pay followed suit in 2014 and 2015,
respectively. Also in 2015, Google announced a new contactless system, Android
Pay. Classic CP systems use cards. A majority of them now follow EMV con-
tactless specifications, written by EMVCo [3], a consortium created by payment
companies, like Visa and Mastercard. The USA has migrated from old magnetic
reader terminals to new EMV compliant ones, already used in Europe.

Despite the big developments in this technology, we realize that some impor-
tant functionalities such as secure processing of payments have not been consid-
ered formally. No standard security model was provided for CP. Some pre-play
attacks were detected for EMV because of poor random generation [8, 7]. Roland
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and Langer [23] discovered a cloning attack for EMV contactless payment cards
since the contactless payment permits an attacker to learn the necessary data
for cloning. The cloned cards can then be used to perform EMV Mag-Stripe
transactions at any EMV contactless payment terminal. Another type of pre-
play attack [8] was discovered which relies on the fact that EMV do not impose
any encryption between merchant and acquirer, or between acquirer and issuer.

The most important attack specific for EMV-contactless (and also most of
the contactless applications) is relay attack which has shown up for a while ago
[22, 28, 19, 17, 18]. A relay attack in an EMV-contactless payment can be run
as follows: the man-in-the-middle (MiM) adversary makes payment by relaying
messages from a card to a terminal and vice versa, while terminal and the card
think that they communicate with each other. Chothia et al. [14] remark that
the first version of EMVco is vulnerable to relay attacks and provide a solution
for this. The current EMVco [3], therefore, take precaution partly against relay
attacks using the solution proposed by Chothia et al. [14]. It is “partly” because
the solution they use is software based where the terminal does not require a
specific hardware. So, it protects against relatively trivial adversaries but does
not protect against the adversaries using a sophisticated hardware [18, 15]. To
defend this level of security that they provide against relay attacks, Chothia et
al. [14] say that “Considering that contactless payments are limited to small
amounts, the cost of the hardware would be a disincentive for criminals”. How-
ever, limiting to small amounts does not necessarily mean that the relay attack
outcome will be also a small amount. An attacker in a crowded area (e.g., metro,
concert, museum) can execute many numbers of relay attacks and increase its
outcome. In addition, some cards are limited to some small amounts in their
issued country currency, but when they are abroad this limit is removed because
the conversion from the issued country currency to currency in the current coun-
try cannot be computed. Besides this, the solution provided by Chothia et al.
[14] for EMV-contactless does not protect against malicious cards who can exe-
cute relay attacks in a different way than MiM-adversaries such as:
Distance Fraud (DF): A malicious far-away card tries to prove that he is close
enough to the terminal to make the verifier accept the payment.
Distance Hijacking (DH) [16] : A far-away malicious prover takes advantage of
some honest and active provers who are close to the verifier to make the verifier
grant privileges to the far-away prover.

Preventing against DF and DH in payment protocols is important as well.
For example, a DF or DH attack can be harmful to a bank in the following
case: A credit card holder makes a payment while he is far-away from a POS
machine. Then, he asks for a reimbursement of the payment from his bank by
claiming that he did not make the payment and he was probably exposed to
relay attack or cloning attack. While doing this, he can prove that he was not
at the place where the payment has been executed (e.g., showing that he was in
another city).

The most promising solution against MiM, DH or DF is distance bounding
(DB) [11]. In DB, a verifier determines the distance of a prover who wants to
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authenticate. If the distance of a prover is close enough, the verifier will be sure
of the nonexistence of relay attack during the protocol execution. Apparently, it
is necessary to utilize a secure distance bounding [20, 26, 25, 27, 12, 6, 24, 9, 10] in
contactless payment.

Our Contributions: Considering all these attacks and the missing formalism, we
design a new security model for CP protocols and design a secure contactless-
payment protocol. In more detail, our contributions are as follows:
– We formally define CP between parties: an issuer, a terminal, a card. Then,

we give two security definitions for malicious cards and for malicious termi-
nals in the adversarial and communication model that we define.

– We construct a secure CP protocol (ClessPay) against malicious cards and
malicious terminals. ClessPay uses a distance bounding protocol to protect
against relay attacks by malicious cards and MiM-adversaries. We proved
formally the security of ClessPay in our security model.

– We analyze EMV-contactless protocol in our model. We give some vulner-
abilities on this against malicious cards. We prove the security of EMV-
contactless protocol against malicious terminal formally. This type of formal
cryptographic analysis is the first for EMV-contactless protocol.

2 Definitions

2.1 Contactless Payment

According to the EMV specifications [2], a (contactless) payment system consists
of a card holder, a merchant, an acquirer, an issuer, a payment system, a card
and a terminal. Our definitions do not include certification by the payment
system, communication between merchant-acquirer and terminal-acquirer. We
assume that the setup between payment components has been established. For
the sake of simplicity, we assume the terminal represents both the terminal and
the acquirer in the payment system and all cards are issued by one issuer.
The Issuer: It issues a personalized card to the card holder. The cards may
contact with the issuer during the payment process (in online transactions) for
the verification of the payment data. It also gives reimbursements of completed
transactions to the acquirer. Each issuer has its policy function Policy to approve
or disapprove a transaction. We assume that the issuer has a database DataB
which stores the card information. DataB consists of tuples (Public Key, Card
Information) of each card. Card information (CI) may consist of transaction list,
the balance or the card limit.
Cards: They have a technology (e.g. NFC, Bluetooth) to communicate with a
payment terminal without any contact. In CP, cards are the components which
interact with a payment terminal to execute a payment with a certain amount.
They include a unique card number. They also store a secret/public key pair
in their tamper-resistant module and the issuer’s public key. In this paper, we
exclude card numbers in our definitions for simplicity. In our definitions, cards
are identified with their public keys.
Terminals: Terminals interact with both cards and their issuers via acquirers.
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They receive an order of payment from a card and validate the payment together
with the issuer of the card.

Definition 1 (Contactless Payment (CP)). A CP consists of algo-
rithms for cards, terminals and issuers. They respectively run the algo-
rithms C(skC , pkC , pkI), T (pkI , τT ) and I(skI , pkI , DataB). Here, (skC , pkC)
and (skI , pkI) are the secret/public key pair of C and I, respectively. They
are generated by the algorithms GC(1n) and GI(1n) where n is a security pa-
rameter. DataB is the database for cards’ information. I includes a subroutine
Policy(pkC , CI, τI) where CI represents the card information of a card with pkC .
In the end, I outputs OutI ∈ {0, 1} and privately outputs POutI = (pkC , idI , τI).
Similarly, T outputs OutT ∈ {0, 1}1 and private output POutT = (pkC , idT , τT )
and C privately outputs POutC = (idC , τC). Here, τ is the transaction (τT , τI and
τC are the values seen by the terminal , the issuer and the card), id is the iden-
tifier of the transaction (idT , idI and idC are similarly defined) and φ ∈ {0, 1}
shows the approval or disapproval of the transaction.

The algorithm Policy depends on the policy of the transaction approval by
the issuer. So, we can consider it as an algorithm which decides if a transaction
τI is possible for the card with pkC and CI.

We note that OutI and Policy(pkC , CI, τI) can be different. OutI (similarly
OutT ) shows the result of the CP which can be either accepting or canceling the
payment. However, Policy(pkC , CI, τI) shows only if the card with pkC is able to
do the payment. For example, even though the payment is canceled (OutI = 0)
by the issuer, the issuer can approve the payment (Policy(pkC , CI, τI) = 1).
It means that the card is able to to this payment but the payment process is
canceled (e.g., because of malicious behaviors).

Definition 2 (Correctness of CP). A contactless payment is correct for all
B, transactions τ , database DataB, CI, and generated key pairs (skC , pkC) and
(skI , pkI) if
– the algorithms C, T and I are run,
– T starts a transaction τ ,
– there exists a C whose distance from T is at most B,
– (pkC , CI) is in DataB of an issuer I,

then there exists id such that probability of (OutT = OutI = Policy(pkC , CI, τ))∧
(POutT = POutI = (pkC , id, τ)) ∧ (POutC = (id, τ)) is 1.

The output of T has to depend on the output of I because actually I is in the
position to decide if the transaction is possible with the card (in fact an honest
card cannot know if the transaction is possible).

Adversarial and Communication Model: In contactless payment, we consider
the similar adversarial and communication model with the access control (AC)
security model by Kılınç and Vaudenay [21]. The parties in AC: a controller, a

1 OutI = 0 or OutT = 0 mean canceling and OutI = 1 or OutT = 1 mean accepting.
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reader, a tag correspond to the parties contactless payment: an issuer, a terminal,
a card, respectively. Differently than AC, in the contactless-payment adversarial
model, terminals can be malicious. In a nutshell, the model is as follows:
– The communication between T and I is secure and authenticated. The ad-

versary cannot attack this part of the communication.
– The communication between the parties is limited by the speed of light.
– All parties have polynomially many instances. An instance of a party is an

execution of its corresponding algorithm at a given location. Instances of
honest parties cannot be run in parallel.

– The adversaries can change the location of honest instances (but they move
at a limited speed) or can activate them (See [21] for details).

– Adversaries can create the database.
– Adversaries can change the destination of messages.

Definition 3 (Security in Contactless Payment with Malicious Cards).
The security game is as follows:
– Run GI(1n)→ (skI , pkI) and GC(1n)→ (skCi , pkCi) for the issuer and each

card Ci and give the public keys to the adversary.
– The adversary creates instances of cards (Ci’s) and the terminals at some

locations of his choice. There is a distinguished terminal T (T is honest).
– The adversary sets a database DataB of the issuer. The issuer instance I

which communicates with T is the distinguished issuer.
– The adversary creates the instances of himself (malicious cards or terminals)

which can run independently and communicate together.
We denote POutI = (pk′C , idI , τI) and POutT = (pk′′C , idT , τT ) the private out-
puts of I and T . Following our communication model, the game ends when T
outputs OutT . A contactless payment is secure, if the adversary wins this game
with negligible probability. The adversary wins the game if OutT = 1 and at least
one of the following conditions are satisfied:
1. (pk′C , .) /∈ DataB,
2. pk′C ∈ {pkCi} and the distance between any C holding pk and T is more than

B during the execution of the protocol with idT ,
3. pk′C /∈ {pkCi} and no instance of the adversary is close to T during the

execution of the contactless payment protocol with T and I.
4. (pk′C , idI , τI) 6= (pk′C , idT , τT ),
5. pk′C ∈ {pkCi} and there exists no card with pk′C and POutC = (idI , τI).

Remarks: The first winning condition shows that a card which does not belong
DataB should not authenticate. The second and the third conditions are to
protect against MiM and DH (DF as well), respectively. Finally, the last two
conditions are to be sure that the transaction that I and T approve and complete,
and the transaction that I and an honest C approve and complete are the same.

Definition 4 (Security in Contactless Payment with Malicious Termi-
nals). The security game is as follows:
– Run the key generation algorithms GI(1n) → (skI , pkI) and GC(1n) →

(skCi , pkCi) for the issuer I and each card Ci and give away public keys.
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– The adversary creates instances of Ci and the terminals at some locations
of his choice. There is a distinguished instance I.

– The adversary sets a database DataB.
– The adversary creates the instances of himself which can run independently

and communicate together (as malicious cards or malicious terminals).
At the end of the game I outputs OutI and POutI = (pk′C , idI , τI). A contact-

less payment is secure, if the adversary wins this game with negligible probability.
The adversary wins the game:
1. if OutI = 1 and if at least one of the following conditions are satisfied:

(a) (pk′C , .) /∈ DataB,
(b) pk′C ∈ {pkCi} and there exists no card with pk′C which outputs (idI , τI),
(c) pk′C ∈ {pkCi} and the instance of this card with pk′C having (idI , τI) has

distance from the adversary and any honest terminal more than B.
2. or if there exists an honest card instance with pkC ∈ {pkCi} which privately

outputs POutC = (idC , τC) and there exists an issuer instance which has
Policy(pkC , CI, τC) = 0 and idC .

The proximity condition (1c) has not been considered by any of the payment
systems before. Actually, even though we make sure that the payment can be
approved only when the terminal is close to the card, we still cannot prevent
a malicious terminal to execute a payment unbeknown to a card holder. For
example, a malicious terminal can be moved close to a card while the card is
not at the shop. This means 1c does not prevent the malicious intention of the
terminals. If we can be sure that the terminals can be run in a certain loca-
tion, then we can guarantee the security against malicious terminals with the
proximity condition. This can be possible by using position-based cryptography
[13], but current terminals do not support this. Therefore, in our protocol, we
eliminate 1c. We call almost-secure against malicious terminals if a pro-
tocol is secure without the condition 1c in Definition 4. The condition 2 is to
prevent honest cards to make payment even though the issuer does not approve
it. For example, this condition prevents attacks where malicious terminals make
a card pay (maybe without the knowledge of the honest card) for a big amount
of money where normally the issuer would not let this amount of payment.

2.2 Preliminaries about Public Key Distance Bounding

We give security definitions (MiM, DF, DH) of public-key distance bounding. In
CP, the terminal represents the verifier in DB because the issuer is not at the
position to determine the distance of cards and the card represents the prover.

Definition 5 (Public key DB Protocol [26, 20]). A public key DB protocol
is a two-party probabilistic polynomial-time (PPT) protocol and it consists of a
tuple (KP ,KV , V, P,B). Here, KP is the key generation algorithm of the prover
algorithm P and outputs secret/public key pair (skP , pkP ). KV is the key gen-
eration algorithm of the verifier algorithm V and outputs secret/public key pair
(skV , pkV ). B is the distance bound. P (skP , pkP , pkV ) and V (skV , pkV ) are in-
teractive algorithms. At the end of the protocol, V (skV , pkV ) outputs OutV and
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privately outputs POutV = pkP . If OutV = 1, then V accepts. If OutV = 0,
then V rejects. A public-key DB protocol is correct if and only if under honest
execution, whenever a verifier V and a close (to V ) prover P run the distance
bounding protocol, then V outputs OutV = 1 and POutV = pkP .

We use the same adversarial and communication model as in contactless-
payment where the provers are cards and the verifiers are terminals.

Definition 6 (MiM security [26]). The game begins by running the key gen-
erations algorithms KV and KP . They output (skV , pkV ) and (skP , pkP ), respec-
tively. The public keys pkV and pkP are given to the adversary. In the game, we
have polynomially many verifier instances where one of them is the distinguished
one V and polynomially many honest prover instances which are far away from
V. The adversary with its instances can be at any location. The adversary wins
if V outputs OutV = 1 and POutV = pkP . A DB protocol is MiM-secure if for
any such game, the probability of an adversary to win is negligible.

Definition 7 (Distance fraud [26]). The game begins by running the key
generation algorithm KV . It outputs (skV , pkV ). The public key pkV is given
to the adversary. The adversary generates its secret/public key pair (skP , pkP )
with using an arbitrary algorithm K∗P . In the game, we have polynomially many
verifier instances including the distinguished one V and instances of an adversary
(prover instances). The adversary wins if V outputs OutV = 1 and POutV = pkP
when there is no close party to V. A DB protocol is DF-secure, if for any such
game, the adversary wins with negligible probability.

Definition 8 (Distance hijacking [26]). The game includes polynomially
many verifier instances V, V1, V2, ..., a far away adversary P, and honest prover
instances P′,P′1,P

′
2.... In this game, we consider a DB protocol (KP ,KV , V, P,B)

with phases: initialization, a challenge and a verification phases. A DB protocol
is DH-secure if for all PPT algorithms K∗P and A, the probability of P to win
the following game is negligible.
– The game runs KV → (skV , pkV ) for the verifier and KP ′ → (skP ′ , pkP ′) for

the honest prover.
– The adversary runs K∗P (pkP ′ , pkV )→ (skP , pkP ).
– The game aborts, if pkP = pkP ′ . Otherwise, instances of P run the adversar-

ial algorithm A, the honest prover instances P′,P′1,P
′
2, ... run P (skp′ , pkV ),

the verifier instances V, V1, V2, ... run V (skV , pkV ).
– P interacts with P′,P′1,P

′
2, ... and V, V1, V2, ... during the initialization phase

of V and P′ concurrently.
– P′ and V continue interacting with each other in their challenge phase and

P remains passive but it sees the exchanged messages.
– P interacts with P′,P′1,P

′
2, ... and V, V1, V2, ... in the verification phase.

The adversary wins if V outputs OutV = 1 and POutV = pkP .

The initialization and verification phase do not have any specific definition
but the challenge phase corresponds to the phase where the challenge/response
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exchanges occur. It is the time critical phase meaning that the verifier determines
the proximity of the responses by checking the response time (i.e., If the responses
arrived on time, the prover is accepted. Otherwise, it is rejected.).

3 Contactless Payment Protocol

In this section, we construct a secure CP protocol from a public-key distance
bounding DB = (KP ,KV , V, P,B), an encryption scheme (Enc,Dec) and a sig-
nature scheme (Sign,Verify).

3.1 ClessPay

I(skI , pkI , DataB) T (pkI , τ) C(skC , pkC , pkI)

Initialization pick r

KV (1n)→ (skV , pkV )
τ,pkV−−−−−−→ KP (1n; r)→ (skP , pkP )

id,pkC←−−−−−− pick id

V (skV , pkV )→ OutV , pkP
DB←−−−−−→ P (skP , pkP , pkV )

if OutV = 0: cancel
Approval

φ = ∃(pkC , CI) ∈ DataB
pkC,pkP ,id,τ←−−−−−−−−−

s.t. Policy(pkC , CI, τ)→ 1
if φ = False: cancel

SI = signskIs
(id, τ, pkC)

SI−−−−−−→
SI−−−−−−→ if ¬VerifypkIs (SI , id, τ, pkC) :

cancel
Completion

SC = signskC
(id, τ, r)

SC , r = DecskIe
(EC)

EC←−−−−−−
EC←−−−−−− EC = EncpkIe

(SC , r)

KP (1n; r)→ (sk, pk) POutC = (id, τ)
if ¬VerifypkC (SC , id, τ, r)

∨pkP 6= pk: cancel

OutI = 1
OutI−−−−−−→ OutT = OutI

if OutT = 0: cancel
POutI = (pkC , id, τ) POutT = (pkC , id, τ)

Fig. 1. The ClessPay Protocol.

The protocol ClessPay (See Figure 1) starts after the terminal T creates a
transaction τ and connects with a card C. We do not give the details of τ since
it depends on the payment system.

In our protocol, we use signature schemes and an encryption scheme. There-
fore, some secret/public key pairs are generated by using their key generation
algorithms. More specifically, the key generation algorithm GI generates a se-
cret/public key pair (skI , pkI) = ((skIs , skIe), (pkIs , pkIe)) where (skIs , pkIs) is
generated by the key generation algorithm of the signature scheme used by
issuers and (skIe , pkIe) is generated by the key generation algorithm of the en-
cryption scheme. The key generation algorithm GC generates a secret/public key
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pair (skC , pkC) using the key generation algorithm of the signature scheme used
by cards. ClessPay consists of the following phases:
Initialization Phase: This phase is executed by T and C. If this phase cannot
be completed successfully, then T cancels the transaction.

T and C generate ephemeral secret/public key pairs for the distance bounding
protocol DB = (KP ,KV , V, P,B). So, C first picks the random coins r and runs
the deterministic algorithm KP (1n; r) to generate (skP , pkP ). Here, what C does
is equivalent to running KP (1n). C needs to generate the random coins used in
KP (1n) because they will be needed in the last phase as a one-time proof for
having generated pkP . Then, T runs KV (1n) to obtain (skV , pkV ) used for DB. T
sends τ and pkV to C. After receiving them, C picks an identifier id and replies
with id and pkC to introduce itself.

T and C start the distance bounding protocol so that T determines the
distance of C. Therefore, T runs the verifier algorithm V (skV , pkV ) of DB and
C runs the prover algorithm P (skP , pkP , pkV ) of DB. At the end, V outputs
OutV which shows if C is close or not and private output POutP = pkP . If
OutV = 0, then T cancels the transaction. Otherwise, they continue with the
next phase. Remark that, T still does not know if the card whose distance is
determined is an authorized card because C has not authenticated itself with its
(static) public key pkC yet.
Approval Phase: This phase aims to check with the issuer whether the card
can execute the transaction. T first sends pkC , pkP , id, τ to I. I checks if the
card with pkC is in DataB. If it is in DataB, it retrieves the card information of
the card (CI) and runs the algorithm Policy(pkC , CI, τ) which outputs 1 if the
card has the privilege to execute τ2. If this algorithm returns 0, the transaction
is canceled. Otherwise, I approves the transaction.

If it is approved, I signs with skIs the message (id, τ, pkC). This signature is
necessary for cards to be sure that they are approved for the payment. Then,
it sends this signature SI to T and T relays it to C. C runs the verification
algorithm of the signature scheme VerifypkIs

(SI , id, τ, pkC) to be sure that C

and I have the same id, τ, pkC . If C verifies SI , then the next phase begins.
Otherwise, C cancels.
Completion Phase: In this phase, the execution of the transaction τ with id
is completed by I, T and C. First, C signs the message id, τ, r with skC as a
proof of execution of the payment. The reason of signing r is showing that C
took part in the DB protocol. Then, it encrypts the signature SC and r by using
the key pkIe . The reason of the encryption is to hide r. At the end, C sends
the encryption (EC) to T . T relays it to I. At this point, the transaction is
completed for C and it privately outputs (id, τ).

In order to obtain SC and r, I first decrypts EC with skIe . I verifies that
r generates pkP by running KP (1n; r). If it is verified, it also verifies SC with
VerifypkC (SC , id, τ, r). If the signature is valid, then it sends OutI = 1 to T and
privately outputs (pkC , id, τ). Otherwise, I cancels the transaction.

2 The Policy checks the execution right of a card depending on the bank policy. So,
we do not discuss about how this verification happens.
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Cancel the transaction: As it can be seen in the protocol, the cancellation can
be done by I, T or C. In the case of timeout, parties cancel as well. When I
cancels, it sets OutI = 0 and sends OutI to T . Then, T cancels as well. When
T cancels, it sets OutT = 0 and terminates. When C cancels, it sends a cancel
message to T and terminates with POutC =⊥.

3.2 Security

Theorem 1. Assuming that DB = (KP ,KV , V, P,B) is DF secure (Definition
7), DH-secure (Definition 8) and MiM-secure (Definition 6), the encryption
scheme is IND-CCA secure and the signature scheme used by cards is secure
against the existential forgery under no message attacks (EF-0MA), ClessPay is
secure against malicious cards (Definition 3).

Proof. We define a sequence of games Γi where we denote pi as a success proba-
bility of winning Γi. We assume that we have honest cards {C1, C2, ..., Ck} and
their public keys are in a set {pkCi}.

Γ0 : The instances of the issuer, terminals and cards play the game in Def-
inition 3. There is a distinguished terminal instance T which privately outputs
POutT = (pk′′C , idT , τT ) and in which the V protocol outputs POutV = pk′P ,
and a distinguished issuer I which communicates with T and privately outputs
POutI = (pk′C , idI , τI). In Γ0, the adversary cannot win with the first condi-
tion in Definition 3 because I always cancels the transaction if (pk′C , .) /∈ DataB.

Γ1 : It is the same game as Γ0 except that (pk′C , idI , τI) is always equal
(pk′′C , idT , τT ). Because of our secure and authenticated channel assumption be-
tween T and I and because of the honesty of T , they have the same public-key,
identifier and the transaction. Besides, T outputs 1, if I outputs 1. So, p1 = p0.
In Γ1, the adversary cannot win with the fourth condition in Definition 3.

Γ2 : It is the same game as in Γ1 except that instances of honest cards do not
sign and they encrypt a random message. Basically, each stores the ciphertext
together with the identifier, transaction and static/ephemeral public keys to a
table. I does not decrypt such random ciphertexts and retrieves their data from
the table. More specifically, we simulate them as follows:

C(skC , pkC , pkI)

... (unchanged until sign)
pick R
EC = EncpkIe

(R)

store (EC , id, τ, pkC , pkP ) in TableE
send EC
POutC = (id, τ)

I(skI , pkI ,DataB)

... (unchanged until the reception of EC)
if (EC , id, τ, pkC , .) ∈ TableE:

retrieve pk s.t. (EC , id, τ, pkC , pk)∈ TableE
if pk 6= pkP : cancel
OutI = 1,POutI = (pkC , id, τ)

else: the same as after receiving EC

We can easily show Γ1 and Γ2 are indistinguishable by using the IND-CCA
security of the encryption scheme. So, |p2 − p1| is negligible. Remark that the
random coins of the honest cards are not used in Γ2.

Γ3 : It is the same game as Γ2 except that OutV = 0 after the execution of
V (skV , pkV ) if one of the situations happens:
1. no party is close to T ,
2. pk′P is generated by no honest card and there is no adversary close to T ,
3. pk′P is generated by an honest card but it has no instance close to T .
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Γ3 and Γ2 are indistinguishable because the probability that OutV = 1 if
one of the situations above happens is negligible. OutV = 1 when the 1st sit-
uation happens with negligible probability due to the the DF-security of DB.
OutV = 1 when the 2nd situation happens with negligible probability due to the
DH-security of DB. OutV = 1 when the 3rd situation happens with negligible
probability due to the MiM-security of DB. Note that we can simulate an honest
card instance in Γ3 by using a prover instance in the MiM-game because r is not
used by honest card instances. Therefore, |p3 − p2| is negligible.

Γ4 : It is the same game as in Γ3 except that I cancels after decrypting and
obtaining the random coins r where KP (1n; r) → (skP , pkP ) and (skP , pkP ) is
generated by an honest card instance.

I(skI , pkI , DataB)

... (unchanged until the reception of EC)

if (EC , id, τ, pkC , .) ∈ TableE: retrieve pk s.t. (EC , id, τ, pkC , pk)∈ TableE

if pk 6= pkP : cancel

OutI = 1,POutI = (pkC , idT , τT )

else: SC , r = DecskI (EC), KP (1n; r)→ (sk, pk)

if (sk, pk) is generated by an honest instance: cancel

else if ¬Verify(SC , id, τ, r) ∨ pkP 6= pk: cancel

OutI = 1,POutI = (pkC , id, τ)

We can easily prove that if there exists an adversary with pkC in Γ3 which ob-
tains a randomness r generating the secret/public key pair used by an honest in-
stance, then we can construct another adversary which breaks the MiM-security
of DB. Clearly, during the simulation of Γ3, if I gets r, then it generates the cor-
responding secret key of the prover in MiM-game and breaks the MiM-security.
Since receiving such r in Γ4 is negligible, |p4 − p3| is negligible.

Now, we show that the adversary cannot win with the third condition in
Γ4. If the adversary wins with this in Γ4, it means that pk′C /∈ {pkCi} and no
instance of the adversary is close to T during the execution of the CP protocol
with T and I. Due to the condition 2 in the reduction of Γ3, pkP must be
generated by an honest card (otherwise, T cancels) . However, in Γ4, it is not
possible to have OutI = 1 while pkC /∈ {pkCi} and pkP is generated by an honest
card instance (check the dashed underlined parts in the simulation of I). So, it
is not possible that OutI = 1, if the game is in the third condition.

Since only condition 2 and 5 of Definition 3 remain to win in Γ3, we can
assume that pkC ∈ {pkCi}.

Γ5 : It is the same game as Γ4 except we simulate Verify algorithm with
Verify′ such that it only accepts the signature of malicious cards. It does not
accept the signatures of honest cards’ instances.

The only difference in Verify and Verify′ is in the case of pkC ∈ {pkCi}. In this
case, while Verify returns the output of the verification of the signature, Verify′

returns 0. In Γ5 and Γ4, no honest cards’ instances generate a signature. So, the
only difference between Γ4 and Γ5 happens when I obtains a forged signature
of an honest card instance.

Thanks to EF-0MA security of the signature, we can easily show that forging
a signature of any honest cards happens with a negligible probability to prove
that Γ5 and Γ4 are indistinguishable.
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Remark that in Γ5, I have OutI = 1, if and only if (EC , idT , τT , pk
′
C , pk

′
P ) is

in TableE. So, we can assume that (EC , idT , τT , pk
′
C , pk

′
P ) ∈ TableE.

If the adversary wins with the condition 2 in Γ5, then pk′C ∈ {pkCi} and the
distance between any C holding pk′C and T is more than B during the execution
of the protocol with idT . Due to condition 3 in Γ3, pk′P must not been generated
by C. So, (EC , idT , τT , pk

′
C , pk

′
P , .) cannot be in TableE which contradicts with

our assumption. Hence, the adversary cannot win with the second condition.
If the adversary wins with the fifth condition, then it means that pk′C ∈

{pkCi} and there exists no card with pk′C which privately outputs idI , τI . Then,
it means that (EC , idT , τT , pk

′
C , pk

′
P , .) /∈ TableE since no honest card instance

has (idT , τT ). This contradicts with our assumption. Therefore, the adversary
cannot win with the fifth condition. Remark that in Γ5, the adversary cannot
win the game So, p5 is negligible meaning that p0 is negligible. ut
Theorem 2. Assuming that the signature schemes used are existential forgery
chosen message attack (EF-CMA) secure then ClessPay is almost-secure
against malicious terminal (Definition 4).

Proof. We recall that in almost-security, we do not need to consider condition
1c of Definition 4 .

Γ0 : The instances of the issuer, terminals and cards play the game in Defi-
nition 4. We have a distinguished issuer instance I which outputs (pk′C , idI , τI).
Remark that in Γ0, the adversary cannot win with condition 1a ((pk′C , .) /∈
DataB) because I rejects the cards which are not in DataB.

Γ1 : It is the same game as Γ2 except that no id selected by an honest card
instance repeats. Clearly, |p1 − p0| is negligible.

Γ2 : It is the same game as Γ1 except that we simulate I and its instances
while generating the signature and honest cards’ instances in the verification of
this signature as follows:

I(skI , pkI ,DataB)

SI = signskIs
(id, τ, pkC)

store (SI , id, τ, pkC) in Table1
send SI

Verify′pkIs
(S, id, τ, pkC)

if (S, id, τ, pkC) in Table1
return 1

else: return 0

|p2 − p1| is negligible.
The output of issuer instance is the same as issuer instances in Γ1. Therefore,

we have a perfect simulation for it. The only difference happens when honest
cards’ instances in Γ1 receive a valid signature verified by pkIs and not in Table1.
In this case, honest cards in Γ1 verify the signature but they do not in Γ2.
Otherwise, the simulations of them are perfect. We can easily show that the
probability of generating a valid signature which is not in the Table1 is negligible
in Γ2 thanks to EF-CMA security of the signature scheme. We can use the public
key received from the signing game as a public key of the issuer and simulate
signatures of issuer instances by using the signing game. Note that skIs is not
used in the simulation but the signature generation, so we can simulate the rest
of the protocol perfectly. Therefore, |p2 − p1| is negligible.

The adversary cannot win the game with condition 2 in Definition 4. As-
sume that the adversary wins with this. It implies that (., idC , τC , pkC) /∈ Table1
since idC is unique. So, no honest card instance outputs (idC , τC) in this case.
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Γ3 : It is the same game as Γ2 except we simulate honest cards’ instances
while generating the signature and I in the verification of it as follows:

C(skC , pkC ,DataB)

SC = signskC
(id, τ, r)

store (SC , pkC , id, τ, r) in Table2
EC = EncpkIe

(SC , r)

send EC

Verify′′pkC (S, idI , τI , pkC , r)

if (S, pkC , id, τ, r) in Table2
return 1

else: return 0

The only difference is the output of Verify′′ and Verify when a forged signature
received. To show the indistinguishability of Γ2 and Γ3, we can EF-CMA security
of the signature scheme. So, |p3 − p2| is negligible.

Remark that in this game, the adversary cannot win with the condition 1b.
If I outputs (pk′C , idI , τI), it means that an honest card instance with pk′C added
(S, pk′C , idI , τI , .) in Table2 and outputted (idI , τI). Hence, in Γ3, the adversary
cannot win. So, p0 is negligible. ut

We recommend using Eff-pkDB [20] as a public-key DB in ClessPay since it
is shown that it is the most efficient public-key DB protocol having the necessary
security requirements for ClessPay. It requires one exponentiation and hashing.

The assumption on the signature scheme used by cards differ in Theorem
1 (EF-0MA) and Theorem 2 (EF-CMA). Hence, it looks like to have security
against both terminals and cards we need DF, DH, MiM-secure DB protocol,
IND-CCA secure encryption scheme, and EF-CMA secure signature schemes.
However, we could have the almost security against malicious terminal if we
have the following assumptions in Theorem 2: the encryption scheme is IND-
CCA secure and the signature scheme used by cards is EF-0MA secure. In this
case, the proof of Theorem 2 would need the same games Γ2 and Γ5 in the proof
of Theorem 1 instead of Γ3 in the proof of Theorem 2. So, actually, to have
full security in ClessPay, we need DF, DH, MiM-secure DB protocol, IND-CCA
secure encryption scheme, EF-CMA secure signature for issuers, and EF-0MA
secure signature for cards.

4 EMV Analysis

EMV key setting is different than our contactless payment key setting because it
has a symmetric key shared between the card and its issuer as well as asymmetric
keys. An issuer I has secret/public key pair SI/PI . It also has a master symmetric
key MKAC . A card C shares MKAC with its issuer I. It has public/secret key
pair PIC and SIC . PIC is signed by I’s private key SI . C stores certified PI .
We assume that the terminal T knows the public key of the certificate authority
(CA) to verify PI and so PIC . We also assume that the channel between I and
T is authenticated.

For the sake of simplicity, in our description, we assume that C knows all
terminal related information and the authentication method. T also knows the
card related information.

EMV contactless session consists of four phases without card holder (user)
verification method:
Contact Establishment with NFC card: T detects C.
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Transaction Initialization: T sends the transaction τ to C. Then, C responds
with its public key PIC and card information such as PAN and expiration date
(ED). If T verifies PIC , it continues.
Relay Resistance Protocol [3]: This protocol is executed if C and T support
it. Here, we assume that they support this feature. T picks a random number
R1 and sends this to C. C responses with another random number R2. It also
sends timing estimates (timings): Min and Max Time For Processing, Device
Estimated Transmission Time. Then, T checks if the total time passed after
sending R1 exceeds the limit (let’s call it B). If the total time does not exceed
B, then the next phase begins. Otherwise, the transaction is canceled.
Data Authentication: There are three type of authentication methods in EMV:
Static Data Authentication (SDA), Dynamic Data Authentication (DDA) and
Combined Data Authentication (CDA). Because of some weaknesses in SDA and
DDA (replay attacks and wedge attacks), we consider CDA which is combined
with the next phase.
Transaction: T sends a random number UNT to request a cryptogram genera-
tion from C. In EMV, three type of cryptograms exist: Transaction Certificate
(TC), Authorization Request Cryptogram (ARQC), Application Authentication
Cryptogram (AAC). Here, we consider the online verification where T requests
ARQC. TC is used for the offline verification by the issuer and AAC is used to
cancel the transaction.

Online Verification: C increases its counter ATC and generates a secret key
SKAC by using ATC and MKAC . Then, it generates the cryptogram ARQC:
a MAC of UNT , ATC, τ with using SKAC . C sends the cryptogram AC to T
and T relays it to I with the card information. I verifies ARQC and possibly
validate the information of C. If ARQC passes verification and card is validated
for the transaction, then ARC = 1 and I generates a MAC of ARQC and ARC
with the secret key SKAC . This MAC is called as ARPC. I sends ARPC with
the message to T and T relays it to C if ARC = 1. Otherwise, it cancels. C
verifies ARPC. If the verification and ARC is 1 then C generates the second
cryptogram TC. TC is a MAC of CDOL2’s objects with SKAC (See [4], Table
26) to show transaction is complete. Also, it picks a random number UNC and
signs UNC , UNT , ATC, TC, timings,R1, R2 with SIC . C At the end, C sends
the signature and TC to T .

Terminal checks if the signature and the data signed are valid. Later, the
terminal contacts with the issuer to receive the reimbursement and gives TC as
a proof of transaction completion by the card. In this case, the issuer verifies
TC to execute the reimbursement.

EMV in Our Model: The EMV protocol can have the following maps to
have the same structure as in Definition 1: (skC , pkC) = ((MKAC , SIC), PIC),
(skI , pkI) = ((MKAC , SI), PI), id = ATC, Policy(pkC , CI, id, τ) = ARC,
OutT = approval/ decline, OutI = Verify(TC,UNT , ATC, τ), POutI =
(PIC , ATC, τ), POutT = (PIC , ATC, τ) and POutC = (ATC, τ).

Security Against Malicious Terminal in EMV: Clearly, the EMV protocol
is not secure according to Definition 4 since the malicious terminal can approve

14



relay resistance protocol without considering the distance of C. However, it is
almost-secure against malicious terminals. We prove this as follows:

Theorem 3. Assuming that MAC is EF-CMA secure and Gen is a pseudo-
random permutation, then EMV protocol is almost-secure against malicious ter-
minals (Definition 4).

Proof. Γ0 : The instances of the issuer, terminals and cards play the game in Defi-
nition 4. We have a distinguished issuer instance I which outputs (PIC , ATC, τI).
In Γ0, there exists at most one card instance with PIC seeing ATC as ATC is a
counter and incremented by each new instance. Let’s call this instance as C.

Γ1 : It is the same game as Γ0 except that the honest card instances picks
a random SK ′AC instead of generating it with Gen(MK ′, ATC) and stores the
random SK ′AC in Table1 as (MK ′, ATC ′, SK ′AC). If an issuer instance receives
card information belongs to an honest card then it retrieves SK ′AC from Table1.
Since Gen is pseudo-random permutation, |p1 − p0| is negligible.

Γ2 : It is the same game as Γ1 except that we simulate MAC generation of
honest cards and verification of MACs of honest cards’ instances by the issuer
as follows:

I(P ′
IC , S

′
IC , P

′
I ,MK′

AC)

ATC′ = ATC′ + 1
pick SK′

AC
store (MK′

AC , ATC
′, SK′

AC)
ARQC = MACSK′

AC
(UNT , ATC

′, τ)

store (SK′
AC , UN

′
T , ATC

′, τ ′, ARQC) in TableARQC
rest is the same until TC/AAC generation
if ARC = 1 and Verify(ARPC′, SK′

AC):
TC = MACSK′

AC
(UNT , ATC

′, τ)

store (SK′
AC , UN

′
T , ATC

′, τ ′, TC) in TableTC
else:
AAC = MACSK′

AC
(UNT , ATC

′, τ)

store (SK′
AC , UN

′
T , ATC

′, τ ′, AAC) in TableAAC

Verify′(AC,SKAC)

if (SKAC , UNT , ATC, τ, AC) ∈
TableAC
return 1

else: return 0

Γ2 is indistinguishable from Γ1 because of the security of MAC. The similar
reduction in the proof of Theorem 1 from Γ4 to Γ5 can be used to prove the
indistinguishably. So, |p2 − p1| is negligible.

Γ3 : It is the same game with Γ2 except that I generates ARPC and then
stores it to TableARPC (similar storing as in Γ2). Then, the honest cards verify
ARPC by checking if it is in the TableARPC . Γ3 is indistinguishable from Γ2

because of the security of MAC. So, |p3 − p2| is negligible.
Clearly, in Γ3, the adversary cannot win with the condition 1b because I

privately outputs (PIC , ATC, τ) if and only if the card with PIC outputs ATC, τ .
In addition, it cannot win with the condition 2 because if ARC 6= 1, then no

honest card outputs ATC, τ and if an honest card receives a valid ARPC having
ARC = 1, then it means that ARPC is in TableARPC . So, I has (PIC , ATC, τ).
Since the adversary cannot win in Γ3, p0 is negligible. ut

However, there exists another problem in EMV related to ATC which is not
considered in our model. It can be explained as follows: ATC is 16-bit number
and incremented at the beginning of each session. If ATC reaches the limit which
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65535, then the card is not valid anymore because EMV specification does not let
rotating the counter due to the security reasons. According to EMV specification
[4] if cards are used normally, it will approach the limit (65,535) transaction limit
not so fast (60 per day every day for a 3-year card). However, an attacker who
does not aim to make a payment but aims to invalidate the card can trigger the
card at most 65,535 times. Then, the card cannot be used anymore.

Security Against Malicious Card in EMV: Unfortunately, EMV is not
secure against malicious cards. In the followings, we show that an adversary can
win with the second, third and fourth condition in Definition 3.
Fake Transaction Attack: This attack comes from the fact that T cannot vali-
date TC in the signature SDAD because it does not have SKAC . Therefore, a
malicious card can generate an invalid TC ′ in the last cryptogram generation
process and use this cryptogram while generating this signature. Then, the ter-
minal will approve the payment because the signature is correct. However, TC ′

is not valid. So, when T contacts with I, I cannot validate TC ′. In this case, the
malicious card succeeds to break the security of EMV with breaking the fourth
condition of Definition 3 because I cancels while T does not.
Distance Fraud Attack: A malicious card can initiate a payment process with
T , while it is not close T . In this case, it can send R2 before seeing R1 in order
to reply early enough. In this case, T thinks that the card is close. Here, the
malicious card succeeds to break the security of EMV with breaking the third
condition of Definition 3. This type of attack is dangerous for an EMV payment
because the malicious card can claim later that it does not do the payment by
showing that it was in somewhere else.
MiM Attack: The relay resistance protocol in EMV constructed to prevent relay
attacks by a MiM-adversary. In this attack scenario, a MiM-adversary relays
the messages between the card and the terminal to do the payment without the
card’s consent. The relay resistance protocol aims to prevent it by checking the
distance of the card. The assumption on its security based on the fact that the
adversary cannot relay the messages faster than the speed of light. Therefore,
the adversary cannot succeed to pass the relay resistance protocol because it
cannot guess R2 before R2 is picked by the card. However, it has been shown
that with guessing attacks [15] the security against relay attacks is breakable for
the protocols with single challenge/response bit strings exchanges. In addition,
Chothia et al. [14] have already explained this vulnerability.

5 Conclusion

In this paper, we concentrated on formalism of CP system. In this direction,
we formally define contactless payment by defining the inputs and outputs of
the algorithms of issuers, terminals and cards. Based on this definition, we gave
two security definitions against malicious cards and malicious terminals. We also
considered relay attacks which are very common attacks in CP.

We also designed a contactless-payment protocol ClessPay in our model.
In this protocol, the terminal determines the distance of the card by using a
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secure public-key distance bounding protocol to prevent the relay attack and
then the rest of the protocol continues with the authentication of the card and the
issuer. We proved the security of ClessPay against malicious cards and malicious
terminals formally.

Finally, we analyzed current EMV-contactless protocol [5] in our model. We
realized that it is not secure against malicious cards because MiM-attack and
DF-attack which are based on relay attacks. In addition to this, we formally
proved that EMV-contactless protocol is secure against malicious terminals. Our
analysis is the first formal cryptographic analysis of EMV-contactless protocol.

If we compare ClessPay and EMVCo in regard to cryptographic computa-
tions executed by the cards, we see that EMVCo is slightly more efficient since
public-key operations are less in EMVCo. A card in EMVCo has to compute two
MAC, verify one MAC and generate one signature. While a card in ClessPay has
to compute one public-key encryption, generate one signature and verify one sig-
nature. However, to have the highest level of the security, it is the price to pay
and with a dedicated hardware on smart cards, this price is not so high. As a
future work, assuming that changing completely EMV specification is very hard,
we can recommend some adaptations on EMVCo to have full security without
not so much change in the basic structure of the protocol.
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