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ABSTRACT

Causal consistency is an attractive consistency model for
geo-replicated data stores. It is provably the strongest model
that tolerates network partitions. It avoids the long laten-
cies associated with strong consistency, and, especially when
using read-only transactions (ROTs), it prevents many of
the anomalies of weaker consistency models. Recent work
has shown that causal consistency allows “latency-optimal”
ROTs, that are nonblocking, single-round and single-version
in terms of communication. On the surface, this latency op-
timality is very appealing, as the vast majority of applica-
tions are assumed to have read-dominated workloads.

In this paper, we show that such “latency-optimal” ROTs
induce an extra overhead on writes that is so high that
it actually jeopardizes performance even in read-dominated
workloads. We show this result from a practical as well as
from a theoretical angle.

We present the Contrarian protocol that implements “al-
most latency-optimal” ROTs, but that does not impose on
the writes any of the overheads present in latency-optimal
protocols. In Contrarian, ROTs are nonblocking and single-
version, but they require two rounds of client-server com-
munication. We experimentally show that this protocol not
only achieves higher throughput, but, surprisingly, also pro-
vides better latencies for all but the lowest loads and the
most read-heavy workloads.

We furthermore prove that the extra overhead imposed on
writes by latency-optimal ROTs is inherent, i.e., it is not an
artifact of the design we consider, and cannot be avoided by
any implementation of latency-optimal ROTs. We show in
particular that this overhead grows linearly with the number
of clients.
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1. INTRODUCTION

Geo-replication is gaining momentum in industry [9, 16,
20, 22, 25, 43, 50, 51, 65] and academia [24, 34, 47, 49, 59,
69, 70, 71] as a design choice for large-scale data platforms
to meet the strict latency and availability requirements of
on-line applications [5, 55, 62].

Causal consistency. To build geo-replicated data stores,
causal consistency (CC) [2] is an attractive consistency model.
On the one hand, CC has an intuitive semantics and avoids
many anomalies that are allowed under weaker consistency
models [25, 67]. On the other hand, CC avoids the long
latencies incurred by strong consistency [22, 31] and toler-
ates network partitions [40]. CC is provably the strongest
consistency level that can be achieved in an always-available
system [7, 44]. CC has been the target consistency level of
many systems [4, 19, 26, 27, 30, 40, 41]. It is used in plat-
forms that support multiple levels of consistency [13, 39],
and it is a building block for strong consistency systems [12]
as well as for formal checkers of distributed protocols [29].

Read-only transactions. High-level operations such as
producing a web page often translate to multiple reads from
the underlying data store [50]. Ensuring that all these reads
are served from the same consistent snapshot avoids un-
desirable anomalies, in particular the following well-known
anomaly: Alice removes Bob from the access list of a photo
album and adds a photo to it, but Bob reads the original per-
missions and the new version of the album [40]. Therefore,
the vast majority of CC systems provide read-only transac-
tions (ROTSs) to read multiple items at once from a causally
consistent snapshot [3, 4, 27, 40, 41]. Large-scale applica-
tions are often read-heavy [6, 43, 50, 51]. Hence, achieving
low-latency ROTs is a first-class concern for CC systems.

Earlier CC ROT designs were blocking [3, 4, 26, 27| or
required multiple rounds of communications to complete [4,
40, 41]. The recent COPS-SNOW system [42] shows that
it is possible to perform CC ROTs in a nonblocking fash-
ion, using a single round of communication, and sending
only a single version of the keys involved. Because it ex-
hibits these properties, the COPS-SNOW ROT protocol was
termed latency-optimal (LO). COPS-SNOW achieves LO by
imposing additional processing costs on writes. One could
argue that doing so is a correct tradeoff for the common
case of read-heavy workloads, because the overhead affects
the minority of operations and is to the advantage of the
majority of them. This paper sheds a different light on this
tradeoff.

Contributions. In this paper we show that the extra cost
on writes is so high that so-called LO ROTSs in practice
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exhibit performance inferior to alternative designs, even in
read-heavy workloads. Not only does this extra cost reduce
the available processing power, leading to lower through-
put, but it also causes higher resource contention, and hence
higher latencies. We demonstrate this counterintuitive re-
sult from two angles.

(1) From a practical standpoint, we propose Contrarian,
a CC design that achieves all but one of the properties of a
LO design, without incurring the overhead on writes that LO
implies. In particular, it is nonblocking and single-version,
but it requires two rounds of communication. Measurements
in a variety of scenarios demonstrate that, for all but the low-
est loads, Contrarian provides better latencies and through-
put than an LO protocol.

(2) From a theoretical standpoint, we show that the extra
cost imposed on writes to achieve LO ROTSs is inherent to
CC, i.e., it cannot be avoided by any CC system that im-
plements LO ROTs. We also provide a lower bound on this
extra cost in terms of communication overhead. Specifically,
we show that the amount of extra information exchanged
potentially grows linearly with the number of clients.

Roadmap. The remainder of this paper is organized as
follows. Section 2 provides introductory concepts and defi-
nitions. Section 3 surveys the complexities involved in the
implementation of ROTs. Section 4 presents our Contrar-
ian protocol. Section 5 compares Contrarian and an LO
design. Section 6 presents our theoretical results. Section 7
discusses related work. Section 8 concludes the paper. We
provide the pseudo-code of Contrarian, and we sketch an
informal proof of its correctness in an Appendix.

2. SYSTEM MODEL

We consider a multi-version key-value store, as in the vast
majority of CC systems [3, 27, 40, 41, 42]. We denote keys
by lower-case letters, e.g., x, and versions of keys by the
corresponding upper-case letters, e.g., X.

2.1 API

The key-value store provides the following operations:

e X < GET(z) : returns a version of key z, or L, if there
is no version identified by x.

e PUT(z,X) : creates a new version X of key z.

e (X,Y,..) « ROT(x,y,...) : returns a vector (X, Y, ...)
of versions of keys (z, y, ... ). A ROT returns L for a key
x, if there is no version identified by x.

In the remainder of this paper we focus on PUT and ROT
operations. DELETE can be treated as a special case of
PUT.

2.2 Partitioning and Replication

We target a key-value store whose data set is split into
N > 1 partitions. Each key is deterministically assigned
to one partition by a hash function, and each partition is
assigned to one server. A PUT(z, X) is sent to the partition
that stores z. Read requests within a ROT are sent to the
partitions that store the keys in the specified key set.

Each partition is replicated at M > 1 data centers (DC).
Our results hold for both single and replicated DCs. In the
case of replication, we consider a multi-master design, i.e.,
all replicas of a key accept PUT operations.

2.3 Properties of ROTs
2.3.1 LO ROTs.

We adopt the same terminology and definitions as in the
original formulation of latency-optimality [42]. An imple-
mentation provides LO ROTs if it satisfies three properties:
one-version, one-round and nonblocking. We now informally
describe these properties. A more formal definition is de-
ferred to § 6.

Nonblocking requires that a partition that receives a re-
quest to perform reads within a ROT can serve such reads
without being blocked by any external event (e.g., the ac-
quisition of a lock or the receipt of a message) *. One-round
requires that a ROT is served in two communication steps:
one step from the client to the servers to invoke the ROT,
and another step from the servers to the client to return the
results. One-version requires that servers return to clients
only one version of each requested key.

2.3.2 One-shot ROTs.

As in Lu et al. [42], we consider one-shot ROTs [33]: the
input arguments of a ROT specify all keys to be read, and
the individual reads within a ROT are sent in parallel to
the corresponding partitions. A read that depends on the
outcome of an earlier read has to be issued in a subsequent
ROT. We focus on one-shot ROTs for simplicity and because
our results generalize: multi-shot ROTs incur at least the
same overhead as one-shot ROTs.

2.4 Causal Consistency

The causality order is a happens-before relationship be-
tween any two operations in a given execution [2, 37]|. For
any two operations o and 3, we say that 8 causally depends
on «a, and we write @ ~ f, if and only if at least one of
the following conditions holds: i) a and (8 are operations in
a single thread of execution, and « happens before 3; ii)
Jx, X such that a creates version X of key x, and S reads
X; i1i) 3y such that o ~ v and v~ 3. If a is a PUT that
creates version X of x, and § is a PUT that creates version
Y of y, and a ~ 3, then (with a slight abuse of notation)
we also say Y causally depends on X, and we write X ~ Y.

A causally consistent data store respects the causality or-
der. Intuitively, if a client ¢ reads Y and X ~» Y, then any
subsequent read performed by ¢ on x returns either X or a
newer version. In other words, ¢ cannot read X’ : X’ ~» X.
A ROT operation returns item versions from a causally con-
sistent snapshot [40, 45]: if a ROT returns X and Y such
that X ~» Y, then there is no X’ such that X ~ X' ~ Y.

To circumvent trivial implementations of causal consis-
tency, we require that a version, once written, becomes even-
tually visible, meaning that it is available to be read by all
clients after some finite time [11].

Causal consistency does not establish an order among con-
current (i.e., not causally related) updates on the same key.
Hence, different replicas of the same key might diverge and
expose different values [67]. We consider a system that even-
tually converges: if there are no further updates, then even-
tually all replicas of any key take on the same value, for
instance using the last-writer-wins rule [64].

The meaning of the term nonblocking in this paper fol-
lows the definition in Lu et al. [42], and is different from
the definition used in the distributed transaction processing
literature [17, 58].
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Figure 1: Challenges in implementing CC ROTs. C; issues
ROT(z,y). If Ty returns Xo to C1, then T cannot return
Y1, because there is a version of x, Xi, such that Xy ~»
X1 A Y1 .

Hereafter, when we use the term causal consistency, even-
tual visibility and convergence are implied.

3. BACKGROUND

Challenges of CC ROTs. Even in a single DC, parti-
tions involved in a ROT cannot simply return the most re-
cent version of a requested key if one wants to ensure that
a ROT observes a causally consistent snapshot. Consider
the scenario of Figure 1, with two keys x and y, with initial
versions Xo and Yy, and residing on partitions p, and p,,
respectively. Client C; performs a ROT(z,y), and client Ca
performs a PUT(z, X1) and later a PUT(y, Y1). By asyn-
chrony, the read on x by C; arrives at p, before the PUT by
C> on z, and the read by C1 on y arrives at p, after the PUT
by C2 on y. In this case, py cannot return Y7 to C1, because
a snapshot consisting of X¢ and Y37, with Xo ~ X; ~ Y7,
violates the causal consistency property for snapshots (see
Section 2.4).

Existing non-LO solutions. COPS [40] and Eiger [41]
provide a first solution to the problem. In these protocols, a
ROT(z,y) returns the latest versions of = and y, combined
with meta-data that encodes their dependencies (a depen-
dency graph in COPS and a timestamp in Eiger). The client
uses this meta-data to determine whether the returned ver-
sions belong to a causally consistent snapshot. If not, then
the client issues a second round of requests for those keys
for which the versions it received do not belong to a causally
consistent snapshot. In these requests it includes the nec-
essary information for the server to identify which version
has to be returned for each of those keys. This protocol is
nonblocking, but requires (potentially) two rounds of com-
munication and two versions of key(s) being communicated.

Later designs [3, 27] opt for a timestamp-based approach,
in which each version has a timestamp ¢s that encodes causal-
ity (i.e., X ~ Y implies X.ts < Y.ts), and each ROT also is
assigned a snapshot timestamp (st). Upon receiving a ROT
request, a partition first makes sure that its local clock has
caught up to st [3], ensuring that all future versions have a
timestamp higher than st. Then, the partition returns the
most recent version with a timestamp < st. The snapshot
timestamp is picked by a transaction coordinator [3, 27].
Any server can be the coordinator of a ROT. The client
provides the coordinator with the highest timestamp it has

1 Req Snap
Pz
(Coord)

Snap ( 2

Figure 2: ROT implementation in the timestamp-based
approach, requiring 2 rounds of client-server communica-
tion. Numbered circles depict the order of operations. The
client always piggybacks on its requests the last snapshot
it has seen (not shown), so as to observe monotonically in-
creasing snapshots. Any server involved in a ROT can act
as its coordinator.

observed, and the coordinator picks the transaction times-
tamp as the maximum of the client-provided timestamp and
its own clock value. ? This protocol returns only a single
version of each key, but it always requires two rounds of com-
munication: one to obtain the snapshot and one to read the
key versions from said snapshot (as shown in Figure 2). In
addition, if physical clocks are used to encode timestamps [3,
27], the protocol is also blocking, because a partition may
need to wait for its physical clock to reach st.

LO CC ROTs. COPS-SNOW [42] is the first CC system
to implement LO ROTs. We depict in Figure 3 how the
COPS-SNOW protocol works using the same scenario as in
Figure 1. Each ROT is given a unique identifier. When a
ROT T reads Xy, p, records T1 as a reader of z. It also
records the (logical) time at which the read occurred. On
a later PUT on x, T; is added to the “old readers of x”,
the set of transactions that have read a version of x that is
no longer the most recent version, again together with the
logical time at which the read occurred.

When Cs sends its PUT on y to py, it includes in this
request that this PUT is dependent on X;. Partition py
interrogates p,; as to whether there are old readers of =z,
and, if so, records the old readers of x into the old reader
record of y, together with their logical time. When later
the read of 71 on y arrives, p, finds 71 in the old reader
record of y. py therefore knows that it cannot return Y;.
Using the logical time in the old reader record, it returns
the most recent version of y before that time, in this case
Yo. In the rest of the paper, we refer to this procedure as the
readers check. By virtue of the readers check, COPS-SNOW
is one-round, one-version and nonblocking.

COPS-SNOW, however, incurs a very high cost on PUTs.
We demonstrate this cost by slightly modifying our example.
Let us assume that hundreds of ROTs read X, before the
PUT(z, X1), as might well occur with a skewed workload in
which z is a hot key. Then, all these transactions must be
stored as readers and later as old readers of x, communicated
to py, and examined by p, on each incoming read from a
ROT. Let us further modify the example by assuming that

2The client cannot pick st itself, because its timestamp may
be arbitrarily far behind, compromising eventual visibility.
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Figure 3: COPS-SNOW design. C5 declares that Y; de-
pends on Xo. Before completing the PUT of Yi, p, runs
a “readers check” with p, and is informed that 71 has ob-
served a snapshot that does not include Y;.

C5 reads keys from partitions p; different from p, and p,
before writing Y1. Because C5 has established a dependency
on all the versions it has read, in order to compute the old
readers for y, p, needs to interrogate not only p, but all
the other partitions p;.

Challenges of geo-replication. Further complications
arise in a geo-replicated setting with multiple DCs. We as-
sume that new versions are replicated asynchronously, so
a new version X may arrive at a DC before its causal de-
pendencies. COPS, Eiger and COPS-SNOW deal with this
situation through a technique called dependency checking.
When X is replicated, the list of causal dependencies of X
is sent along (without the corresponding values). Before X
is installed, the system checks by means of dependency check
messages to other partitions that X’s causal dependencies
are present. When X’s dependencies have been installed in
the DC, X can be installed as well. In COPS-SNOW, in
addition, the readers check for X proceeds in a remote DC
as it does in the DC where X has been created.

An alternative technique, commonly used with timestamp-
based methods, is to use a stabilization protocol [3, 8, 27].
Variations exist, but in general each DC establishes a cutoff
timestamp below which it has received all remote versions.
Versions with a timestamp lower than this cutoff can be in-
stalled. Stabilization protocols are more lightweight than
dependency checking [27], but they lead to a complication
in making ROTs nonblocking, in that one needs to ensure
that the snapshot timestamp assigned to a ROT is below the
cutoff timestamp, so that there is no blocking upon reading.

4. CONTRARIAN

Contrarian implements all but one of the properties of
latency-optimal ROTs, without incurring the overhead that
stems from achieving all of them. In this section we describe
the salient aspects of the design of Contrarian, and the prop-
erties it achieves. We present a detailed description of the
protocols implemented in Contrarian in an Appendix.

4.1 Tracking causality

Contrarian uses logical timestamps and a stabilization
protocol to implement CC, but unlike what was described
in Section 3, it tracks causality using dependency wvectors,
with one entry per DC, instead of scalar timestamps, and

the stabilization protocol determines, in each DC, a wvector
of cutoff timestamps, also with one entry per DC [3]. We
refer to this vector as the Global Stable Snapshot (GSS).

The GSS encodes the set of remote versions that are sta-
ble in the DC. A version is stable in the DC when all its
dependencies have been received in the DC. A remote ver-
sion can be read by clients in a DC only when it is stable.
Determining when a remote version is stable is important to
achieve nonblocking ROTs. Assume Y ~» Z and Z is made
accessible to clients in DC; before Y is received in DC;.
Then, if a client in DC; reads Z and subsequently wants
to read y, the latter read might block waiting for Y to be
received in DC;. The dependencies of a version created in
DC; on other versions created in the same DC; are trivially
satisfied. Hence, versions created in DC; are stable in DC;
immediately after being created 2.

Encoding dependencies. Each version X tracks its causal
dependencies by means of a dependency vector DV, with
one entry per DC. If X.DV[i] = ¢, then X (potentially)
causally depends on all versions created in DC; with a times-
tamp up to ¢. Similarly, each client ¢ maintains a depen-
dency vector to track the set of versions on which ¢ depends.
The semantics of the entries of the dependency vector main-
tained by clients is the same as in the dependency vectors
of versions.

X.DV encodes the causal dependencies established by the
client ¢ that creates X by means of a PUT. When performing
the PUT, c piggybacks its dependency vector. The partition
that serves the PUT sets the remote entries of X.DV to the
values in the corresponding entries of the dependency vector
provided by the client. The local entry of X.DV is the
timestamp of X. This timestamp is enforced to be higher
than any timestamps in the dependency vector provided by
the client. This enforces causality: if Y ~» X, then the
timestamp of X is higher than the timestamp of Y.

X is considered stable in a remote DC, when all X's
dependencies have already been received in DC,.. This con-
dition is satisfied if the remote entries in X.DV are smaller
than or equal to the corresponding entries in the current
GSS of the partition that handles x in DC,.

GSS computation. The GSS is computed independently
within each DC. Each entry tracks a lower bound on the
set of remote versions that have been received in the DC.
If GSS[i] =t in a DC, it means that all partitions in the
DC have received all versions created in the i-th DC with
timestamp up to ¢.

The GSS is computed as follows. Every partition main-
tains a version vector V'V with one entry per DC. VV[m)]
is the timestamp of the latest version created by the parti-
tion, where m is the index of the DC. VVi],i # m, is the
timestamp of the latest update received from the replica in
the i—th DC. Periodically, the partitions in a DC exchange
their VV's and compute the GSS as the aggregate minimum
vector. Hence, the GSS encodes a lower bound on the set of
remote versions that have been received by every partition in
the DC. The partitions also move their local clocks forward,
if needed, to match the highest timestamp corresponding to
the local entry in any of the exchanged VVs.

3This also implies that the local entry of the GSS is not
used to track dependencies. However, the local entry is kept

in our discussion for simplicity, so that the i-th entry in the
GSS refers to the i-th DC.



To ensure that the G.SS progresses even in absence of up-
dates, a partition sends a heartbeat message with its current
clock value to its replicas if it does not process a PUT for a
given amount of time.

4.2 ROT implementation

Contrarian’s ROT protocol runs in 2 rounds, is one-version,
and nonblocking. In other words, it sacrifices one round in
latency compared to the theoretically LO protocol, but re-
tains the low cost of PUTSs in non-LO designs.

Contrarian uses the coordinator-based approach described
in Section 3 and shown in Figure 2. The client identifies the
partitions to read from, and selects one of them as the coor-
dinator for the ROT. The client sends its dependency vector
to the coordinator, which picks the snapshot corresponding
to the ROT and sends it back to the client. The client then
contacts the partitions involved in the ROT, communicating
the list of keys to be read and the snapshot of the ROT.

The ROT protocol uses a vector SV to encode a snapshot.
The local entry of SV is the maximum between the clock
at the coordinator and the highest local timestamp seen by
the client. The remote entries of SV are given by the entry-
wise maximum between the GSS at the coordinator and
the dependency vector of the client. Upon receiving a ROT
request with snapshot SV, a partition moves its own clock
to match the local entry of SV, if needed. A version Y
belongs to the snapshot encoded by SV if Y.DV < SV. For
any requested key, a partition returns the version belonging
with the highest timestamp that belongs to the specified
snapshot.

Freshness of the snapshots. The GSS is computed by
means of the minimum operator. Because logical clocks on
different partitions may advance at different paces, a lag-
gard partition in one DC can slow down the progress of the
GSS, thus increasing the staleness of the ROT snapshots.
A solution to this problem is to use loosely synchronized
physical clocks [3, 26, 27]. However, physical clocks cannot
be moved forward to match the timestamp of an incoming
ROT, which can compromise the nonblocking property [3].

To achieve fresh snapshots and nonblocking ROTs, Con-
trarian uses Hybrid Logical Physical Clocks (HLC) [35]. In
brief, an HLC is a logical clock that generates timestamps by
taking the maximum between the local physical clock and
the highest timestamp seen by the node plus one. On the one
hand, HL.Cs behave like logical clocks, so a server can move
its clock forward to match the timestamp of an incoming
ROT request, thereby preserving the nonblocking behavior
of ROTs. On the other hand, HLCs behave like physical
clocks, because they advance even in absence of events and
inherit the (loosely) synchronized nature of the underlying
physical clocks. Hence, the stabilization protocol identifies
fresh snapshots. The correctness of Contrarian does not de-
pend on the synchronization of the clocks, and Contrarian
preserves its properties even if it were to use plain logical
clocks.

4.3 ROT Properties

Nonblocking. Contrarian implements nonblocking ROT's
by using logical clocks and by including in the snapshot as-
signed to a ROT only remote versions that are stable in the
DC. Then, Contrarian’s ROT protocol is nonblocking, be-
cause 1) partitions can move the value of their local clock
forward to match the local entry of SV, and i) the remote

entries of SV correspond to a causally consistent snapshot
of remote versions that are already present in the DC.
Despite embracing the widely-used coordinator-based ap-
proach to ROTs, nonblocking ROTs in Contrarian improve
upon existing designs. These designs can block (or delay by
retrying) ROTs due to clock skew [3], to wait for the receipt
of remote version [26, 27, 46, 60], or to wait for the comple-
tion of a PUT operation in the DC where the ROT takes
place [4].
One-version. Contrarian achieves the one-version prop-
erty, because partitions read the version with the highest
timestamp within the snapshot proposed by the coordina-
tor.

Eventual visibility. Contrarian achieves eventual visibil-
ity, because every version is eventually included in every
snapshot corresponding to a ROT. Let X be a version cre-
ated on partition p, in DC;, and let ts be its timestamp.
o piggybacks its clock value (that is at least ts) during the
stabilization protocol. Therefore, each partition in DC; sets
its clock to be at least ts.

By doing so, Contrarian ensures that every coordinator in
DC; eventually proposes a ROT snapshot whose local entry
is > ts. Furthermore, every partition in DC}; eventually
sends a message with timestamp > ts to its replicas (either
by a replication or a heartbeat message). Hence, the i-th
entry in each remote V'V eventually reaches the value ts.
Therefore, every i-th entry in the GSS computed in every
DC eventually reaches the value ts. Because the remote
entries of ROT snapshots are computed starting from the
GSS, Contrarian ensures that X and its dependencies are
eventually stable in remote DCs and included in all ROT
snapshots.

5. EXPERIMENTAL STUDY

We show that the resource demands to perform PUT op-
erations in the LO design are in practice so high that they
not only affect the performance of PUTs, but also the per-
formance of ROTs, even with read-heavy workloads. In
particular, with the exception of scenarios corresponding to
very modest loads, where the two designs are comparable,
Contrarian achieves ROT latencies that are lower than the
state-of-the-art LO design. In addition, Contrarian achieves
higher throughput for all workloads we consider.

5.1 Experimental environment

Implementation and optimizations. We implement Con-
trarian and the COPS-SNOW design in the same C++ code-
base. Clients and servers use Google Protocol Buffers [28]
for communication. We call CC-LO the system that imple-
ments the design of COPS-SNOW. We improve its perfor-
mance over the original design by more aggressive eviction
of transactions from the old readers record. Specifically, we
garbage-collect a ROT id after 500 msec from its insertion
in the readers record of a key (vs. the 5 seconds of the origi-
nal implementation), and we enforce that each readers check
response message contains at most one ROT id per client,
i.e., the one corresponding to the most recent ROT of that
client. These two optimizations reduce by one order of mag-
nitude the number of ROT ids exchanged, approaching the
lower bound we derive in Section 6.

We use NTP [52] to synchronize clocks in Contrarian, the
stabilization protocol is run every 5 msec, and a partition



Table 1: Workload parameters considered in the evaluation. The default values are given in bold.

Parameter Definition Value Motivation
0.01 Extremely read-heavy workload
Write/read ratio (w) #PUTS/(#PUTs+#individual reads) 0.05 Default read-heavy parameter in YCSB [21]
0.1 Default parameter in COPS-SNOW [42]
[ Size of a ROT (p) [ # Partitions involved in a ROT [ 4,8,24 [ Application operations span multiple partitions [50] ]
8 Representative of many production workloads [6, 50, 56]
Size of values (b) Value size (in bytes). Keys take 8 bytes. 128 Default parameter in COPS-SNOW [42]
2048 Representative of workloads with Targe items
0.99 Strong skew typical of many production workloads [6, 14]
Skew in key popularity (z) Parameter of the zipfian distribution. 0.8 Moderate skew and default in COPS-SNOW [42]
0 No skew (uniform distribution) [14]

sends a heartbeat if it does not process a PUT for 1 msec
(similarly to previous systems [27, 60]).

Platform. We use an AWS platform composed of up to
3 DCs (Virginia, Oregon and Ireland). Each DC hosts 45
server virtual machines (VM), corresponding to 45 parti-
tions, and 45 client VMs. We use cb.xlarge instances (4
virtual CPUs and 8 GB of RAM) that run Ubuntu 16.04
and a 4.4.0-1022-aws Linux kernel.

Methodology. We generate different loads for the system
by spawning different numbers of client threads, which issue
operations in a closed loop. We spawn from 1 to 1,800 client
threads per DC, uniformly distributed across the client VMs.

Each point in the performance plots we report corresponds
to a different number of client threads (starting from 1 per
DC). We spawn as many client threads as necessary to sat-
urate the resources of the systems. Increasing the num-
ber of threads past that point leads the systems to deliver
lower throughput despite serving a higher number of client
threads. We do not report performance corresponding to se-
vere overload. Therefore, the performance plots of the two
systems may have a different number of points for the same
workload, because the systems may saturate with different
number of client threads.

Experiments run for 90 seconds. We have run each exper-
iment up to 3 times, with minimal variations between runs,
and we report the median result.

Workloads. Table 1 summarizes the workload parameters
we consider. We use read-heavy workloads, in which clients
issue ROTs and PUTs according to a given write/read ratio
(w), defined as #PUT/(#PUT + #READ). A ROT reading
k keys counts as kK READs. ROTs span a target number of
partitions (p), chosen uniformly at random, and read one
key per partition. Keys in a partition are chosen according
to a zipfian distribution with a given parameter (z). Every
partition stores 1M keys. Keys are 8 bytes long, and items
have a constant size (b).

We use a default workload with w = 0.05, i.e., the de-
fault value for the read-heavy workload in YCSB [21]; z =
0.99, which is representative of skewed workloads [6]; p =
4, which corresponds to small ROTs (which exacerbate the
extra communication in Contrarian); and b = 8, as many
production workloads are dominated by tiny items [6]. We
generate additional workloads by changing the value of one
parameter at a time, while keeping the other parameters at
their default values.

Performance metrics. We focus our study on the laten-
cies of ROTs, because, by design, CC-LO favors ROT la-
tencies over PUTs. As an aside, in our experiments CC-LO
incurs up to one order of magnitude higher PUT latencies

than Contrarian. We study how the latency of ROTs varies
as a function of system throughput and workload parame-
ters. We measure the throughput as the number of PUTs
and ROTs performed per second.

We focus on 95-th percentile latency, which is often used
to study the performance of key-value stores [38, 50]. By
reporting the 95-th percentile, we capture the behavior of
the vast majority of ROTs, and factor out the dynamics
that affect the very tail of the response time distribution. We
report and discuss the average and the 99-th percentile of the
ROT latencies for a subset of the experiments. As a final
note, the worst-case latencies achieved by Contrarian and
CC-LO are comparable, and on the order of a few hundreds
of milliseconds.

5.2 Default workload

Figures 4a and 4b show the performance of Contrarian
and CC-LO with the default workload running on 1 DC
and on 3 DCs, respectively. Figure 4c reports the readers
check overhead in CC-LO in a single DC. Figure 4d depicts
the average and the 99-th percentile of ROT latencies in a
single DC.

Latency. Contrarian achieves lower latencies than CC-
LO for nontrivial throughput values. Contrarian achieves
better latencies than CC-LO by avoiding the extra over-
head incurred by performing the readers check. This over-
head induces higher resource utilization, and hence higher
contention on physical resources. Ultimately, this leads to
higher latencies, even for ROTs.

ROTs in Contrarian become faster than in CC-LO start-
ing from loads corresponding to ~200 Kops/s in the single-
DC case and to ~350 Kops/s in the geo-replicated case,
ie., &~ 17% and ~ 12% of the maximum throughput achiev-
able by Contrarian. Contrarian achieves better latencies
than CC-LO in the geo-replicated case starting from a rel-
atively lower load than in the single-DC case. This result
is due to the higher replication costs in CC-LO, which has
to communicate the dependency list of a replicated version,
and perform the readers check in all DCs. CC-LO achieves
faster ROTs than Contrarian only at very moderate loads,
which correspond to under-utilization scenarios. At the low-
est load (corresponding to a single thread running per DC),
in the single-DC case ROTs in Contrarian take 0.31 msec
vs. 0.18 in CC-LO; in the geo-replicated scenario, ROTs in
Contrarian take 0.36 msec vs. 0.22 in CC-LO.

Throughput. Contrarian achieves a higher throughput
than CC-LO. Contrarian’s maximum throughput is 3.7x CC-
LO’s in the 1-DC case (1150 Kops/s vs. 310), and 5x in the
3-DC case (3000 Kops/s vs. 600). In addition, Contrarian
achieves a 2.6x throughput improvement when scaling from
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Figure 4: Performance with the default workload. Contrarian achieves better latencies (except at very modest load) and
higher throughput (a,b) by avoiding the extra overhead posed by CC-LO on PUTs (c). The effects of the overhead incurred
by CC-LO is more evident at the tail of the latency distribution (d).
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Figure 5: Performance with different w/r ratios. Contrarian achieves lower ROT latencies than CC-LO, except at very
moderate load and for the most read-heavy workload. Contrarian also consistently achieves higher throughput. Higher write
intensities hinder the performance of CC-LO because the readers check is triggered more frequently.

1 to 3 DCs. By contrast, CC-LO improves its throughput
only by ~2x. Contrarian achieves higher throughput val-
ues and better scalability by avoiding the resource utiliza-
tion to perform the readers check and by implementing a
lightweight stabilization protocol.

Overhead analysis. Figure 4c reports, as a function of
the number of client threads, the average number of ROT
ids collected during a readers check. The same ROT id can
appear in the readers set of multiple keys. Hence, we re-
port both the total number of ROT ids collected, and the
number of distinct ones. The overhead of a readers check
grows linearly with the number of clients in the system. This
result matches our theoretical analysis (Section 6) and high-
lights the inherent scalability limitations of LO. For exam-
ple, at peak throughput, corresponding to 270 client threads,
a readers check collects on average 1023 ROT ids, of which
267 are distinct. Using 8 bytes per ROT id, the readers
check causes on average 9KB of data to be collected.

Tail vs. average latency. We now investigate the effect
of Contrarian’s and CC-LO’s design on the distribution of
ROT latencies. To this end, we report in Figure 4d the
average ROT latency and the 99-th percentile (1 DC). In

terms of the 99-th percentile, Contrarian wins over CC-LO
starting at a load value of approximately 100 Kops/s, much
lower than the load value at which Contrarian wins over CC-
LO for the 95-th percentile. In terms of the average, CC-
LO’s wins up to 290 Kops/s, which is close to CC-LO’s peak
throughput. This experiment shows that the extra overhead
imposed by LO does not affect all ROT's in the same way,
and that, in particular, its effect is more evident at the tail
of the distribution of ROT latencies. This result is explained
as follows. At one end of the spectrum, some ROTs do not
experience any reders check overhead, and benefit from the
one-round nature of CC-LO. Since the average latency is
computed over all ROTs, these “lucky” ROTS figure in the
calculation, resulting in a low average latency for CC-LO. At
the other end, some ROTs experience a great deal of readers
check overhead, and this overhead dwarfs the benefit of the
one-round natire of CC-LO. The 99-th percentile measures
the latency of these “unlucky” ROTs. More precisely, it is
the lower bound on the latency experienced by the slowest
1% of the ROTs. Since performance of key-value stores is
often quoted in terms of tail latencies, we argue that Con-
trarian offers an important advantage in this regard.
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Figure 6: Average overhead per readers check in CC-LO
as a function of w: # partitions involved, # keys checked
and # ROT ids exchanged (1 DC, 270 client threads).

5.3 Effect of write intensity

Figure 5 shows how the write intensity (w) of the workload
affects the performance of the systems in the 1-DC case (a)
and in the 3-DC case (b). Figure 6 reports the effect of write
intensity on the overhead to perform the readers check in
CC-LO (1 DC, 270 client threads).

Latency. Similar to what was seen with the default work-
load, for nontrivial load conditions Contrarian achieves lower
ROT latencies than CC-LO both with and without geo-
replication, and with all write intensity values. The best
case for CC-LO is with w = 0.01, when readers checks are
more rare.

Throughput. Contrarian achieves a higher throughput
than CC-LO in all scenarios, from a minimum of 2.33x in the
1-DC case for w=0.01 (1050 vs. 450 Kops/s) to a maximum
of 3.2x in the 3-DC case for w=0.1 (3200 vs. 1000 Kops/s).
The throughput of Contrarian grows with the write inten-
sity, because PUTs only touch one partition and are thus
faster than ROTs. Instead, higher write intensities hinder
the performance of CC-LO, because they cause more fre-
quent execution of the expensive readers check.

Overhead analysis. Surprisingly, the latency benefits of
CC-LO are not very pronounced, even at the lowest write
intensity. The explanation resides in the inherent tension
between the frequency of writes and their costs, as shown
Figure 6. On the one hand, a high write intensity leads
to frequent readers check on relatively few keys (because
few keys are read before performing a PUT). As a result,
fewer partitions need to be contacted on a readers check
and fewer ROT ids exchanged. On the other hand, a low
write intensity leads to more infrequent readers checks, that,
however, are more costly, because they lead to contacting
more partitions and exchanging more ROT ids.

5.4 Effect of skew in data popularity

Figure 7 depicts how the performance (a) and the readers
check overhead (b) vary with the skew in data popularity
(z). We analyze the single-DC case to factor out replication
dynamics (which are different in Contrarian and CC-LO)
and to focus on the inherent costs of LO.

Latency. Similar to earlier results, Contrarian achieves
ROT latencies that are lower than CC-LO’s for nontrivial
load conditions (> 150 Kops/s, i.e., less than 1/7 of Con-
trarian’s maximum throughput).

Throughput. Increased data popularity skew has little
effect on Contrarian, but it hampers the throughput of CC-
LO. The performance of CC-LO degrades, because a higher
skew causes longer causal dependency chains among opera-
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Figure 7: Effect of the skew in data popularity (1 DC).
Skew hampers the performance of CC-LO (a), as it leads to
long causal dependency chains among operations and thus to
much information exchanged during the readers check (b).

tions [11, 27], leading to a higher overhead incurred by the
readers checks.

Overhead analysis. With low skew, a key z is infrequently
accessed, so it is likely that many entries in the reader list
of & can be garbage-collected by the time x is involved in a
readers check. With higher skew levels, a few hot keys are
accessed most of the time, which causes the old reader record
to contain many fresh entries. High skew also leads to more
duplicates in the ROT ids retrieved from different partitions,
because the same ROT id is likely to be present in many the
old reader record. Figure 7b portrays these dynamics. The
reported plots also show that, at any skew level, the number
of ROT ids exchanged during a readers check grows linearly
with the number of clients (which matches the results of our
theoretical analysis in Section 6).

5.5 Effect of size of transactions

Figure 8 shows the performance of the systems while vary-
ing the number of partitions involved in a ROT (p). We
again focus on the single-DC platform.

Latency. Contrarian achieves ROT latencies that are lower
than or comparable to CC-LO’s for any number of partitions
involved in a ROT. The latency benefits of CC-LO over Con-
trarian at low load decrease as p grows, because contacting
more partitions amortizes the impact of the extra commu-
nication round needed by Contrarian to execute a ROT. At
the lowest load, with p = 4, the latency of ROTs in Contrar-
ian is 1.72x the one in CC-LO (0.31 msec vs. 0.18). With
p = 32, instead, the latency of ROTs in Contrarian is only
1.46x the one in CC-LO (0.6 msec vs. 0.41).

Throughput. Contrarian achieves a throughput increase
with respect to CC-LO that ranges from 3.4x (p = 4) to
4.25 (p = 32). Higher values of p amortize the extra resource
demands for contacting the coordinator in Contrarian, and
hence allow Contrarian to achieve a comparatively higher
throughput with respect to CC-LO.
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5.6 Effect of size of values

Figure 9 reports the performance of Contrarian and CC-
LO when manipulating values of different sizes (b). Larger
values naturally result in higher CPU and network costs for
marshalling, unmarshalling and transmission operations. As
a result, the maximum throughput of the systems decreases
and the latency increases.

Contrarian maintains its performance lead over CC-LO
for any value size we consider, except for throughput values
lower than 150 Kops/s. We could only experiment with
values of size up to 2 KB because of memory limitations
on our machines. We argue that with even bigger values
the performance differences between the two systems would
decrease. With bigger values, in fact, the performance of the
two systems would be primarily determined by the resource
utilization to store and communicate values, rather than by
differences in the designs.

6. THEORETICAL RESULTS

Our experimental study shows that the state-of-the-art
CC design for LO ROTSs delivers sub-optimal performance,
caused by the overhead (imposed on PUTS) for dealing with
old readers. One can, however, conceive of alternative CC
implementations. For instance, rather than storing old read-
ers at the partitions, one could contemplate an implementa-
tion which stores old readers at the client, when the client
does a PUT. This client could then forward this information
to other partitions on subsequent PUTs. Albeit in a differ-
ent manner, this implementation still communicates the old
readers between the partitions where causally related PUTs
are performed. One may then wonder: is there an implemen-
tation that avoids this overhead, in order not to exhibit the
performance issues we have seen with CC-LO in Section 57

We now address this question. We show that the extra
overhead on PUTs is inherent to LO. Furthermore, we show
that the extra overhead grows with the number of clients,
implying the growth with the number of ROTs and echo-
ing the measurement results we have reported in Section 5.
Our theorem applies to the system model described in Sec-
tion 2. We refine some aspects of the model for the purpose
of establishing our theoretical results. We provide a more
precise system model in Section 6.1, and a more precise def-
inition of LO in Section 6.2. Then we present our theorem
in Section 6.3 and its proof in Section 6.4.

6.1 Assumptions

For the ease of definitions as well as proofs, we assume the
existence of an accurate real-time clock to which no parti-
tion or client has access. When we mention time, we refer
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Figure 9: Throughput vs 95-th percentile of ROT latencies
while varying the size of items (1 DC).

to this clock. Furthermore, when we say that two client op-
erations are concurrent, we mean that the durations of the
two operations overlap according to this clock.

Among other things, this clock allows us to give a precise
definition of eventual visibility. If PUT(z, X) starts at time
T (and eventually ends), then there exists a finite time 7x >
T such that any ROT that reads x and is issued at time
t > 7x returns either X or some X’ such that PUT(x, X")
starts no earlier than 7'; we say X is wisible since Tx.

We assume the same APIs as described in Section 2.1.
Clients and partitions exchange messages whose delays are
finite, but can be unbounded. The clock drift between the
local clocks of clients and partitions can be arbitrarily large
and infinite. We assume that reads do not rely on the clients’
local clocks. By doing so, eventual visibility does not depend
on the advancement of the clients’ clock, and depends solely
on the state of the key-value store and the actions under-
taken by the partitions implementing it.

We assume that an idle client does not send messages.
When performing an operation on some keys, a client sends
messages only to the partitions which store values for these
keys. Vice versa, a partition sends messages to client c only
when responding to an operation issued by c. Clients do
not communicate with each other, and issue a new operation
only after its previous operation returns. We assume at least
two partitions and a potentially growing number of clients.

6.2 Properties of LO ROT's

We adopt the definition of LO ROTs from [42], which
refers to three properties: one-round, one-version, and non-
blocking.

e One-round: For every ROT « of client ¢, ¢ sends one
message to each partition p involved in a and receives one
message from p.

e Nonblocking: For any partition p to which ¢ sends a mes-
sage, p eventually sends one message (the one defined in the
one-round property) to ¢, even if p receives no message from
a partition during «. This definition essentially states that
a partition cannot communicate with other partitions when
serving a ROT to decide which version of a key to return to
the ROT. This definition extends the more restrictive one
given in Section 2, which also disallows blocking p, e.g., by
the acquisition of a lock or for the expiration of a timer.
To establish our theoretical results, it suffices to disallow
blocking p by inter-partition communication during a ROT.
Because our proof holds for a more general definition of non-
blocking, it implies that the proof also holds for the more
restrictive definition in Section 2.

e One-version: Let M be the maximum amount of informa-
tion that, for each ROT « of client c, can be calculated by



any implementation algorithm based on the messages which
c receives during o. * Then, given any (non-empty) subset
of partitions, Par, and given the messages which c receives
from Par during a, M contains only one version per key for
the keys which Par stores and « reads.

6.3 The cost of LO

Definitions. We introduce some additional terminology
before we state the theorem

We say that a PUT operation o completes if i) o returns
to the client that issued «; and i7) the value written by «
becomes visible. We say that a PUT operation « is danger-
ous if a causally depends on some PUT that overwrites a
non-_L value.

If client ¢ issues a ROT operation that reads x, then we
say cis a reader of z. We call client ¢ an old reader of x, with
respect to PUT(y, Y1),® if ¢ issues a ROT operation which
(1) is concurrent with PUT(z, X1) and PUT(y, Y1) and (2)
returns Xo, where Xo ~ X1 ~ Yi.

Theorem 1 (Cost of LO ROTs). Achieving LO ROT re-
quires communication, potentially growing linearly with the
number of clients, before every dangerous PUT completes.

Intuition of the result. After a dangerous PUT on y
completes, partition p, needs to choose between the newest
version of y (i.e., the one written by the dangerous PUT)
and a previous one to be returned to an incoming ROT. The
knowledge of the old readers with respect to the dangerous
PUT allows p, to determine a version.

As the ROT must be nonblocking, p, cannot wait for mes-
sages containing that information during the ROT proto-
col after the dangerous PUT completes. As the ROT must
be one-round and one-version, the client which requests the
ROT cannot choose between versions sent in different rounds
or between multiple versions sent in the same round.

Thus p, needs the knowledge of old readers before or at
the latest by the time the dangerous PUT on y completes.
Assuming that there are D clients and since in the worst case
they can all be old readers, an LO ROT protocol needs, in
the worst case, at least D bits of information to encode the
old readers.

6.4 Proof

Proof overview. The proof assumes the scenario in Fig-
ure 10, which depicts executions in which Xo ~ X; ~ Y.
Without loss of generality we consider that such executions
are the result of client ¢,, doing four PUT operations in the
following order: PUT(z, Xo), PUT(y, Yo), PUT(z, X1) and
PUT(y, Y1); cw issues each PUT (except the first one) after
the previous PUT completes.

To prove Theorem 1, we consider the worst case: all clients
except ¢, can be readers. We identify similar executions
where a different subset of clients are readers. Let D be the
set of all clients except c,. We construct the set £ such
that each execution has one subset of D as readers. Hence £

4As values can be encoded in different ways in messages, we
use the amount of information in the messages. For example,
if a message contains X; and X; & X2, then in the plain-
text, there is only one version, yet some implementation can
calculate two versions from the plaintext. Our definition of
the one-version property excludes such messages as well as
such implementations.

5The definition of an old reader of & here specifies a certain
PUT on y is to emphasize the causal relation X; ~ Y.
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Figure 10: Two (in)distinguishable executions in the proof
of Theorem 1.

contains 2/P! executions in total. We later show that for at

least one execution in £ the communication carrying readers
grows linearly with |D|, and thereby prove Theorem 1.

2Pl executions £. Each execution F € £ is based on a sub-
set R of D as readers. Every client ¢ in R issues ROT(z, y)
at the same time ¢;. By the one-round property, ¢ sends two
messages Mg, req, My,req t0 Dz and p, respectively at ¢1. We
denote the event that p, receives my req by 72, the event
that p, receives my, req by ry. By the nonblocking property,
P and py can be considered to receive messages from c and
send messages to c at the same time £2.° Finally, ¢ receives
messages from p, and p, at the same time t3. We order
events as follows: Xy and Yy are visible, t1, 7, = ry = t2,
PUT(z, X1) is issued, t3, PUT(y, Y1) is issued. Let 7y, be
the time when PUT(y, Y1) completes. For every execution
in &, t1, t2, t3 take the same values while 7y, actually denotes
the maximum value of all executions in €.

To emphasize the burden on p,, we consider communica-
tion that precedes a message that p, receives: we say mes-
sage a precedes message b if (1) some process p sends b after
p receives a, or (2) 3 message ¢ such that a precedes ¢ and ¢
precedes b. To simplify the terminology, we also say a pre-
cedes b if a and b refer to the same message. The executions
in £ are the same until time ¢;. Since ¢1, these executions, es-
pecially, the communication between p, and p, may change.
We construct all executions in £ together: if at some time
point, in one execution, some server sends a message, then
we construct all other executions such that the same server
sends the same message except that the server is p., py or
contaminated by p, or p,. By contamination, we mean that
at some point, p, or p, sends message m but we are un-
able to construct all other executions to do the same; then
the message m and server s which receives m are contami-
nated and s can further contaminate other servers. In our
construction, we focus on the non-contaminated messages
which are received at the same time across all executions
in £. For other messages, if in at least two executions, the
same contaminated message m can be sent, then we let m
be received at the same time across these executions and be
considered as a non-contaminated message; otherwise, we
do not restrict the schedule.

We show that the worst-case execution exists, as promised
by our proof overview, in our construction of £. To do so,
we first show a property of &; i.e., for any two executions

5p. and py may receive messages at different times, and
spend unbounded time on local computation but eventually
send messages to ¢; in both cases, the proof still holds. The
same time to is assumed for the simplicity of presentation.



E1, E> in € (with different readers), the communication of
p. and p, must be different, as formalized in Lemma 1.”

Lemma 1 (Different readers, different messages). Consider
any two ezecutions Ev,Ey € E. In E;,i € {1,2}, denote by
M; the messages which p, and p, send to a process not in
D and which precede some message that p, receives during
[t1,7v1] in E;, and denote by str; the concatenation of or-
dered messages in M; ordered by the time when every mes-
sage is sent. Then stri # strs.

The main intuition behind Lemma 1 is that if commu-
nication were the same regardless of readers, py would be
unable to distinguish readers from old readers. Suppose now
by contradiction that stri = stra. Then our construction of
& allows us to construct an special execution E* based on
E; (as well as E1). Let the subset of D for E; be R; for
i €{1,2}. W.Lo.g., Ri\R2 # 0. We construct E* such that
clients in R1\R2 are old readers (and show that E* breaks
causal consistency due to old readers).

Execution E* with old readers. In E*, both R; and R2
issue ROT(z,y) at t;. To distinguish between events (and
messages) resulting from R; and Rz, we use superscripts 1
and 2 to denote the events, respectively. For simplicity of
notations, in F2, we call the two events at the server-side
(i-e., p» and py receive messages from Rs respectively) also
r2 and ri, illustrated in Figure 10a. In E*, we now have four
events at the server-side: 7., r;‘,, r2, 7“5. We construct E*
based on Es by scheduling r2 and 7"5 in E* at t2 (the same
time as 72 and rfj in E»), and postponing r; (as well as 72),
as illustrated in Figure 10b. The ordering of events in E™ is
thus different from FE2. More specifically, the order is: Xp
and Y, are visible, t1, v} = rJ = t2, PUT(z, X1) is issued,
PUT(y, Y1) is issued, Ty, , 7, (for every client in R1\R2 as r;
has occurred), r2 (for every client in R2\R1, not shown in
Figure 10b), R1\ Rz returns ROT. By asynchrony, the order
is legitimate, which results in old readers R1\Ra.

Proof of Lemma 1. Our proof is by contradiction. As str; =
stre, according to our construction, p, does not receive any
message preceded by some different contaminated message
in F1 and E3. Therefore even if we replace rfﬁ in F> for r}n
in E* (as in E1), then by 7y,, py is unable to distinguish
between Eo and E*.

Previously, our construction of Es is until 7y,. Let us
now extend F> so that F» and E™ are the same after 7y, .
Namely, in Fs, after 7v,, every client ¢; € R1\R2 issues
ROT(z,y); and as illustrated in Figure 10, 'r; is scheduled
at the same time in F> and in E*.

Let ¥ be the return value of ¢1’s ROT in either execution.
By eventual visibility, in E2, vy, = Yi. We now examine
E*. By eventual visibility, as t; is after Xo and Yy are
visible, vz, v, # L. As ri is before PUT(z, X1) is issued,
vy # Xi1. By py’s indistinguishability between E and E™,
and according to the one-version property, v, = Y7 as in F».
Thus in E*, v, = Xo and vy = Y1, a snapshot that is not
causally consistent. A contradiction. O

"Lemma 1 abstracts the way of communication between p,
and p, so that it is independent of certain implementations,
and covers the following example implementations of com-
munication for old readers as in CC-LO, as the example
introduced at the beginning of this section, as well as the
following: py keeps asking p, whether a reader of y is a
reader which returns X, to determine whether all readers
that return Xo have arrived at p, (so that there is no old
reader with respect to Y7).
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Lemma 1 demonstrates a property for any two executions
in £, which implies another property of &£: if for any two
executions, communication has to be different, then for all
executions, the number of possibilities of what is communi-
cated grows with the number of elements in £. Recall that
|€] is a function of |D|. Hence, we connect the communica-
tion and |D| in Lemma 2.

Lemma 2 (Lower bound on the cost). Before PUT(y, Y1)
completes, in at least one execution in &, the communication
of pe and py takes at least L(|D|) bits where L is a linear
function.

Proof of Lemma 2. We index each execution E by the set
R of clients which issue ROT(z,y) at time ¢;. We have
therefore 2/P! executions: € = {E(R)|R C D}. Let b(R)
be the messages which p, and p, send in E(R) as defined
in Lemma 1, and let B = {b(R)|R C D}. By Lemma 1,
we can show that Vbi,ba € B b1 # ba. Then |B| = |€| =
2/P1, Therefore, it is impossible that every element in B
has fewer than |D| bits. In other words, in £, we have at
least one execution E = E(R) where b(R) takes at least
log, (2!P!) = |D| bits, a linear function in |D|. O

Recall that |D| is a variable that grows linearly with the
number of clients. Thus following Lemma 2, we find £ con-
tains a worst-case execution that supports Theorem 1 and
we thus complete the proof of Theorem 1.

Remark on implementations. The proof shows the nec-
essary communication of readers when each client issues one
operation. Here we want to make the link back to the im-
plementation of LO ROTs in CC-LO. One may wonder in
particular about the relationship between the transaction
identifiers that are sent as old readers in CC-LO, and the
worst-case communication linear in the number of clients
derived in the theorem. In fact, the CC-LO implementa-
tion considers that clients may issue multiple transactions
at the same time, and then different ROTSs of a single client
should be considered as different readers, hence the use of
transaction identifiers to distinguish one from another.

A final comment is on a straw-man implementation where
each operation is attached to the output of a Lamport Clock
[37] (called logical time below) alone. Such implementa-
tion (without communication of potentially old readers) still
fails. The problem is that the number of increments in logi-
cal time after ROT's is at most the number of all ROTs, i.e.,
|D|. Then for some E; and E», Lemma 1 does not hold, i.e.,
the communication is the same. Although when issuing the
ROT, client ¢ in R1\R2 can send logical time to servers, the
logical time sent in E2 and E™ is the same and thus does not
help py to distinguish between E; and E*, resulting in the
violation of causal consistency again. Hence communication
of readers, as Theorem 1 indicates, is still required for this
straw-man implementation.

7. RELATED WORK

CC systems. Table 2 classifies existing systems with ROT
support according to the cost of performing ROT and PUT
operations. COPS-SNOW is the only LO system. COPS-
SNOW achieves LO at the expense of more costly writes,
which carry detailed dependency information and incur ex-
tra communication overhead.



Table 2: Characterization of CC systems with ROTs support, in a geo-replicated setting. N, M and K represent, respectively,
the number of partitions, DCs, and clients in a DC. { indicates a single-master system, and P represents the number of DCs
that act as master for at least one partition. ¢ <+ s, resp., s <> s, indicates client-server, resp. inter-server, communication.

] ROT latency optimality Write cost
System Nonblocking | #Rounds | #Versions Communication Meta-data Clock

| cors| seos [ceors [sos
COPS [40] v <2 <2 1 - |deps| - Logical
Eiger [41] v <2 <2 1 - |deps| - Logical
ChainReaction [4] X > 2 1 1 >1 |deps| M Logical
Orbe [26] X 2 1 1 - NxM - Logical
GentleRain [27] X 2 1 1 - 1 - Physical
Cure [3] X 2 1 1 - M - Physical
OCCULTT [46] v/ >1 >1 1 - 0o(P) - Hybrid
POCC [60] X 2 1 1 - M - Physical
COPS-SNOW [42] v 1 1 1 O(N)  |deps] O(K) Logical
Contrarian v 2 1 1 - M - Hybrid

ROTs in COPS and Eiger might require two rounds of
client-server communication and rely on fine-grained proto-
cols to track and check the dependencies of replicated up-
dates (see Section 3), which limit their scalability [3, 26,
27, 61]. ChainReaction uses a potentially-blocking and po-
tentially multi-round protocol based on a per-DC sequencer
node. Orbe, GentleRain, Cure and POCC use a coordinator-
based approach similar to Contrarian but use physical clocks
and hence may block ROTs because of clock skew. In addi-
tion, Orbe and Gentlerain may block ROTs to wait for the
receipt of remote updates. Occult uses a primary-replica ap-
proach and uses HLCs to avoid blocking due to clock skew.
Occult implements ROTs that run in potentially more than
one round and that potentially span multiple DCs (i.e., it
does not tolerate cross-DC network partitions).

By contrast, Contrarian uses HLCs to implement ROTs
that are nonblocking, one-version, complete in 2 rounds of
communication and tolerate cross-DC network partitions.

Other CC systems include SwiftCloud [68], Bolt-On [11],
Saturn [19], Bayou [54, 63], PRACTI [15], ISIS [18], lazy
replication [36], causal memory [2], EunomiaKV [30] and
CausalSpartan [57]. These systems either do not support
ROTs, or target a different model from the one considered
in this paper, e.g., they do not implement sharding the data
set in partitions. Our theoretical results require at least
two partitions. Investigating the cost of LO in other system
models is an avenue for future work.

CC is also implemented by systems that support differ-
ent consistency levels [24], implement strong consistency on
top of CC [12], and combine different consistency levels de-
pending on the semantics of operations [13, 39] or on target
SLAs [5, 62]. Our theorem provides a lower bound on the
overhead of LO ROTs with CC. Hence, any system that im-
plements CC or a strictly stronger consistency level cannot
avoid such overhead. We are investigating how the lower
bound on this overhead varies depending on the consistency
level, and what is its effect on performance.

Theoretical results on CC. Lamport introduces the con-
cept of causality [37], and Hutto and Ahamad [32] provide
the first definition of CC, later revisited from different an-
gles [1, 23, 48, 66]. Mahajan et al. prove that real-time
CC is the strongest consistency level that can be obtained
in an always-available and one-way convergent system [44].
Attiya et al. introduce the observable CC model and show
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that it is the strongest that can be achieved by an eventually
consistent data store implementing multi-value registers [7].

The SNOW theorem [42] shows that LO can be achieved
by any system that ¢) is not strictly serializable [53] or i)
does not support write transactions. Based on this result,
the SNOW paper suggests that any protocol that matches
one of these two conditions can be improved to be LO. In
this paper, we prove that achieving LO in CC implies an
extra cost on writes, which is inherent and significant.

Bailis et al. study the overhead of replication and de-
pendency tracking in geo-replicated CC systems [10]. By
contrast, we investigate the inherent cost of LO CC designs,
i.e., even in absence of (geo-)replication.

8. CONCLUSION

Causally consistent read-only transactions (ROT) are an
attractive primitive for large-scale systems, as they eliminate
a number of anomalies and ease the task of developers. Be-
cause many applications are read-dominated, low latency of
ROTs is key to overall system performance. It would there-
fore appear that latency-optimal (LO) ROTs, which provide
a nonblocking, single-version and single-round implementa-
tion, are particularly appealing.

In this paper we show that, surprisingly, LO induces a
resource utilization overhead that can actually jeopardize
performance. We show this results from two angles. First,
we present an almost LO protocol that, by avoiding the
aforesaid overhead, achieves better performance than the
state-of-the-art LO design. Then, we prove that the over-
head posed by LO is inherent to causal consistency, i.e., can-
not be avoided by any implementation. We provide a lower
bound on such overhead, showing that it grows linearly with
the number of clients.
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Table 3: Definition of symbols.

Symbol Definition

N Number of partitions

M Number of replicas per partition

m Index used to refer to the local DC

d A version (k,v, sr, DV)

c A client (in the local DC)
DV, Dependency vector at client c
o The m—th replica of the n—th partition

GSS)! Global stable snapshot of p;’
Clock,) Physical clock time of p;'
HLCT! Hybrid clock time of py'
Vv Hybrid version vector of p;
SV Snapshot vector of a ROT
APPENDIX

A. CONTRARIAN. PROTOCOLS

Table 3 introduces the notation we use in our discussion.
Algorithm 1 and Algorithm 2 report the pseudo-code of the
protocols implemented, respectively, by clients and servers.
We focus on the protocols for PUT and ROT operations.

A.1 Meta-data

Version. A version d is a tuple (k,v,sr, DV). k,v is the
key-value pair specified by the client when creating the ver-
sion by means of a PUT. sr is the source replica of d, i.e.,
the id of the DC in which d has been created. DV is a
dependency vector with M entries. DV[m] is the update
timestamp of d, which is assigned to d upon creation by
means of a PUT operation. DV[j] =t means that d poten-
tially causally depends on versions created in the j-th DC
with an update timestamp up to ¢.

Client. Each client ¢ maintains a dependency vector DV,
with M entries. DV, summarizes the causal dependencies
established by ¢ similarly to what is done by the dependency
vector of versions. c¢ piggybacks DV, on each PUT request
to encode the dependencies of the newly created version,
and on each ROT request to ensure the monotonicity of the
snapshot observed by ¢ (i.e., to ensure that the snapshot
from which the ROT reads includes all versions on which ¢
potentially depends).

Server. Each server p;' has access to a monotonically in-
creasing (hardware) physical clock, Clock,;’, and maintains
a (software) hybrid clock HLC;".

prt also maintains two vector clocks of HLCs with one
entry per DC: the version vector VV,;* and the global sta-
ble snapshot GSS;'. VV;"[m] is the version clock of p;!
and corresponds to the update timestamp of the latest PUT
completed on p;', or the timestamp included in the latest
heartbeat sent by p;'. VV,*[i],i # m, indicates the times-
tamp of the latest version received by p;' that has been
received from the replica in the i—th DC.

GSSTi] = t,i # m, means that py' is aware that all
nodes in the m—th DC have received all versions created in
the i—th DC with update timestamp up to ¢t. Hence, p;'

knows that it can read these versions without blocking. The
local entry of GSS," is not used because versions created in
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the m-th DC are trivially already present in the m-th DC.
We keep such local entry in our description for the sake of
simplicity, because it allows us to refer to the i-th entry of
the GSS when evaluating the visibility predicate on versions
created in the i-th DC.

A.2 Protocols

PUT. ¢ sends a PUT-Req (k, v, DV.) message to the parti-
tion p;' that is responsible for key k. The request specifies
the key-value pair k,v to be written and the dependency
vector of ¢. Upon receiving c¢’s request, p;' first updates
GSS]' to be entry-wise at least as high as the latest one
seen by ¢, represented by DV, (Algorithm 2 Line 2). This
ensures that p]' exposes to later operations a snapshot of
the data store that includes all dependencies of the newly
created version.

Then, p;" determines the HLC update timestamp ut to as-
sign to the new version of k to be created, which we denote
d. ut is computed as the maximum of the current physical
clock value on p;'; the highest timestamp seen by the client
plus one, and the current value of the HLC on p;" plus one
(Algorithm 2 Line 3). By this assignment, ut reflects causal-
ity, i.e., X ~ Y implies that the update timestamp of X is
lower than update the timestamp of Y. p)' sets the depen-
dency meta-data of d as follows (Algorithm 2 Lines 4-7).
The remote entries of d.DV are set to the corresponding
values in DV,. The local entry in d.DV is ut. Then, p;' in-
serts d in the version chain of key k£ and updates its version
vector (Algorithm 2 Lines 8-9). Then, p;; replies to ¢ with
its current HLC value. This is used by ¢ to update DV,[m)|
(Algorithm 1 Line 4). Finally, p' replicates d by sending
to its replicas a copy of d. Upon receiving such replication
message, a replica p, inserts a copy of d in the version chain
corresponding to d.k and sets V'V, [m] to ut (Algorithm 2
Lines 12-14).

ROT. c initiates a ROT operation by identifying the set of
partitions that store at least one key to be read (Algorithm 1
Lines 7-8). One of these partitions is chosen as coordinator,
which we note peoorda (Algorithm 1 Line 9).

¢ sends t0 Peoorda & Snap-Req (DV.) message, which pro-
vides the dependency vector of ¢. Upon receiving the re-
quest from ¢, peoora updates HLC)' and GSS; using, re-
spectively, the local and remote entries in DV, (Algorithm
2 Lines 16-17). Then, pcoora builds the snapshot vector SV

Algorithm 1 Client ¢ at data center m.

1: function PUT (key k, value v)
send (PUT-Req k,v, DV.) to pi server
receive (PUTReply ut) from py
DV.[m] <+ ut > Update client’s local dependency
. end function

Xi + {k € x : p["stores key k}
M+ p:ixi #0
Peoord < random in IT

> Involved partitions

3
4
5
6: function RO-TX(key-set x)
7
8
9 > Coordinator partition

send (Snap-Req DV,.) to pcoord
11: receive (Snap-Resp SV') from peoord
12: DV, + maz{DV,, SV} > Update snapshot known to c
13: send (ROT-Req SV, x;) to p* Vp;* € II
14: for p* € II do
15: receive (ROT-Resp D;, HLC]™) from p}"
16: DV.[m] <~ max{DV.[m], HLC["}
17: end for
18: return |J D;, Vp]" €11 > Return received versions

19: end function




Algorithm 2 Server p;' serving clients requests.

1: upon receive (PUT-Req k, v, DV,) from ¢ do
> Update HLC and generate timestamps that reflects causality
H HLC]' < max{Clock,",max{DV,.} + 1, HLC," + 1}

> Update GSS to include c¢’s dependencies.

3: GSS, + max{GSS]", DV.}

4: ut «+ HLCT™

5: create new item d

6: DV < DV,; DV[m] + ut

7: d < k;v;m; DV >

8: insert d in the version chain of key k

9: VV " [m] < ut

10: send (PUTReply HLC]") to client

11: send (Replicate d) to p,,,i1 =0...M,i#m

12: upon receive (Replicate d) from p!, do

13: insert d in version chain of key d.k

14: VV™i] < d.DV[4]

15: upon receive (Snap-Req DV.) from ¢ do

16: HLC]" < maxz{HLC]", DV.[m]} > Update HLC
> Update GSS to include c¢’s dependencies.

17: GSS)" <+ max{GSS,", DV}

18: SV «+ GSS™; SV[m] «+ HLC"

19: send (Snap-Resp SV) to ¢

20: upon receive (ROT-req SV, x) from ¢ do

21: HLC]" < maxz{HLC]",SV[m]} > Update HLC
> Install snapshot corresponding to SV

22: GSS «+ maz{GSS]", SV}

23: D+ 0 > Set of versions to return.

24. for k € x do > Find freshest visible versions of k

25: Dy «+—d:dk==kANd.DV < SV

26: d < version with highest update timestamp € Dy,

27: end for

28: send (ROT-RespD, HLC]) to ¢

29: upon 7 ongoing PUT A time with no PUT > A do

30: HLC]" < maxz{Clock]', HLC"}

31: VvV [m] < HLC)"

32: send (HEARTBEAT V'V, [m]) to p,,Vi=0...M,i #m

33: upon receiving (HEARTBEAT ht) from pJ, do

V'V, ™[j]«+ht

> Stabilization
upon every Ag time do
> Update GSS

35:

36: GSS™[j] + min{VV,"[j]},Vj=0...M—1,Vi=0...N—1
> Advance local clock

37: ty < maz{VV/"[m]},Vi=0...N —1

38: HLC]" + maz{HLC]", tm}

for the ROT. The remote entries of the vector correspond to
GSS;. The local entry corresponds to HLC} (Algorithm
2 Line 18). Updating GSS;* and HLC}", and building SV
starting from them ensures that the snapshot visible to the
ROT is at least as fresh as the one accessed by ¢ so far.
Peoord Teplies to ¢ with SV.

Upon receiving the snapshot vector SV for the ROT, ¢
first updates its DV, to be at least as high as SV entry-wise
(Algorithm 1 Line 12). Then, ¢ sends a message ROT-Req
(x:,SV) to each partition p;" that stores at least one key
to be read. Upon receiving such a message, a partition first
updates its own HLC and GSS (Algorithm 2 Lines 21-22).
Then, for each key in x;, the partition returns to ¢ the ver-
sion with the highest update timestamp that belongs to the
snapshot defined by SV (Algorithm 2 Lines 23-27). The
partition also returns to ¢ the current value of its hybrid
clock. The client updates the local entry of its dependency
vector with such hybrid clock value (Algorithm 1 Line 16),
collects all returned versions, and returns them to the ap-
plication (Algorithm 1 Line 15).
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Stabilization. Periodically, nodes within a DC exchange
their version vectors. GSS)" is computed as aggregate min-
imum of all these vectors (Algorithm 2 Line 36). Hence,
GSS'i) = t,i # m indicates that p; is aware that all par-
titions within the m-th DC have received all updates with
update timestamp up to time ¢ originated from the i-th DC.

pn also advances H LC)" to match the highest local entry
in the exchanged version vectors (Algorithm 2 Lines 37-38).
This ensures that recently created local versions are included
in future ROT snapshots.

To enhance the scalability of the stabilization protocol,
in our prototype partitions within a DC are arranged in a
tree [3, 27]. The aggregation of the GSS is performed from
the leaves up to the root of the tree. The GSS is then
propagated down the tree from the root partition.

If a partition does not receive PUT requests, its version
clock does not advance and the GSS computed in other DCs
cannot progress. To ensure the progress of the GSS, if p;'
does not receive a PUT request for a given amount of time,
it sends a heartbeat message with its updated version clock
(Algorithm 2 Lines 29-32). Heartbeat messages and update
replication messages are sent (and received) in order of in-
creasing timestamps. Upon receiving a heartbeat message
from p¢, with timestamp ht, p™ sets the i-th entry of its
version vector to ht (Algorithm 2 Lines 33-34).

B. CORRECTNESS

We provide an informal proof sketch showing that Con-
trarian achieves causal consistency.

Lemma 3. If ¢ has established a dependency towards X,
then DV, > X.DV.

Proof. We consider three cases, corresponding to the three
scenarios that lead to establishing a causal dependency (see
Section 2.4). i) If ¢ has written X on p, the lemma follows
from the fact that X.DV is built starting from DV., and
that after X is written, ¢ sets the local entry of DV, to
be equal to the value of the hybrid clock on p,, which in
turn is higher than or equal to the timestamp of X. i)
If ¢ has read X, then c has issued a ROT with a snapshot
vector SV > X.DV. Then, the lemma follows because upon

returning from the ROT, DV, > SV. iii) If ¢ has read
Z : X ~ Z, then the lemma follows by induction, assuming

that X.DV > Z.DV and using the previous two cases as
base steps in the inductive process. (|

Lemma 4. If X ~ Y, then X.DV <Y.DV.

Proof. Assume client ¢ writes Y. When performing the
PUT(y,Y) operation on py, ¢ provides its dependency vector
DV,. By Lemma 3, if ¢ has established a dependency on X,
DV, > X.DV. Then, the lemma holds because p, enforces
that the remote entries of Y. DV are at least as high as the
corresponding entries in DV,, and that the local entry of
Y.DV is strictly higher than any entry in DV.. O

Lemma 5. Assume X ~ Y and that ¢ has established a de-
pendency towards Y. Then, any later ROT by c that targets
x returns a version of x, X', such that X'>5X.

Proof. If ¢ depends on Y, then DV, > Y.DV by Lemma
3. If X' ~ X ~ Y, then X'.DV < X.DV < Y.DV by
Lemma 4, and the timestamp of X’ is strictly lower than



the timestamp of X by construction (Algorithm 2 Lines 1-
7). Then, any ROTs issued by c¢ has a snapshot vector
SV > DV., which includes X. Hence, the lemma follows
because a partition returns the version of a key with the
highest timestamp within a snapshot (Algorithm 2 Lines
24-27). O

Lemma 6. Assume X ~» X'~ Y and c issues a ROT(z,y)
operation. If ¢ reads Y within said ROT, then c reads X'.

Proof. Let the ROT be assigned a snapshot vector SV, with
local entry ts. If Y is read within the ROT, then Y.DV <
SV. We distinguish between two cases: X' is remote and
X' is local.

X’ is remote. The remote entries of SV are built start-
ing from the corresponding entries of the GSS, which only
includes remote versions whose causal dependencies have al-
ready been received in the DC. Because X' ~ Y, X'.DV <
Y.DV < SV. Hence, if Y is read by the ROT, X’ has already
been received by the corresponding partition p,. Moreover,
because X ~+» X', the timestamp of X is lower than the
timestamp of X', and the ROT returns the version of x
within SV with the highest timestamp.

X' is local. There are three sub-cases to consider. In the
first case, X’ has been already created on p, by the time
the ROT arrives on p;. Then, because X' ~ Y, X'.DV <
Y.DV < SV, so X' is visible to the ROT. Hence, p, returns
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X’ to the ROT because X ~ X’ and hence the timestamp
of X is lower than the one of X’.

In the second case, the PUT(x, X’) operation that creates
X’ has not arrived yet on p, by the time the ROT arrives
on p;. Then, as soon as the ROT message arrives on pg,
pz moves its HLC to be at least as high as ts. Hence, when
the PUT operation creates X’, X’ is assigned a timestamp
that is strictly higher than ts. Therefore, neither X’ nor any
Y : X’ ~» Y are visible within the snapshot defined by SV,
whose local entry is ts.

In the third case, the PUT(x,X’) operation and the ROT
request are concurrent, and X' is assigned a timestamp lower
than ts. Because PUT(x,X’) has not completed by the time
the ROT reads  on p, p. might not return X’ to the
ROT, even if X'.DV < SV. However, this cannot lead to
breaking CC because it is impossible for Y : X’ ~» Y to
have a timestamp < ts. In fact, before serving the read
operation within the ROT, p, moves its HLC to be at least
as high as ts. This means that any later reply messages
sent by p, to any clients carry a timestamp at least as high
as ts (Algorithm 2 Line 10, 19 and 28). Hence, the local
entry of the dependency value of any clients that establish a
dependency towards X' is at least as high as ts (Algorithm
1 Line 4, 12 and 16). As a consequence, any Y’ : X' ~» Y’
has a timestamp higher than ¢s and, hence, is not visible to
the ROT according to SV.

O



