
80

FloDB: Unlocking Memory in Persistent Key-Value Stores

Oana Balmau1, Rachid Guerraoui1, Vasileios Trigonakis2 ∗, and Igor Zablotchi1 †

1EPFL, {first.last}@epfl.ch
2Oracle Labs, {first.last}@oracle.com

Abstract
Log-structured merge (LSM) data stores enable to store and
process large volumes of data while maintaining good per-
formance. They mitigate the I/O bottleneck by absorbing up-
dates in a memory layer and transferring them to the disk
layer in sequential batches. Yet, the LSM architecture fun-
damentally requires elements to be in sorted order. As the
amount of data in memory grows, maintaining this sorted or-
der becomes increasingly costly. Contrary to intuition, exist-
ing LSM systems could actually lose throughput with larger
memory components.

In this paper, we introduce FloDB, an LSM memory
component architecture which allows throughput to scale on
modern multicore machines with ample memory sizes. The
main idea underlying FloDB is essentially to bootstrap the
traditional LSM architecture by adding a small in-memory
buffer layer on top of the memory component. This buffer
offers low-latency operations, masking the write latency of
the sorted memory component. Integrating this buffer in the
classic LSM memory component to obtain FloDB is not triv-
ial and requires revisiting the algorithms of the user-facing
LSM operations (search, update, scan). FloDB’s two layers
can be implemented with state-of-the-art, highly-concurrent
data structures. This way, as we show in the paper, FloDB
eliminates significant synchronization bottlenecks in classic
LSM designs, while offering a rich LSM API.

We implement FloDB as an extension of LevelDB,
Google’s popular LSM key-value store. We compare FloDB’s
performance to that of state-of-the-art LSMs. In short,
FloDB’s performance is up to one order of magnitude higher
than that of the next best-performing competitor in a wide
range of multi-threaded workloads.

∗ The project was completed while the author was at EPFL.
† Authors appear in alphabetical order.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.

EuroSys ’17, April 23-26, 2017, Belgrade, Serbia

© 2017 ACM. ISBN 978-1-4503-4938-3/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3064176.3064193

L0

Ln

fast buffer

...		

Disk
component

put, remove
concurrent

get, scan
concurrent

sorted level

FloDB

Figure 1: LSM data store using FloDB.

1. Introduction
Key-value stores are a crucial component of many systems
that require low-latency access to large volumes of data [1, 6,
12, 15, 16]. These stores are characterized by a flat data or-
ganization and simplified interface, which allow for efficient
implementations. However, the amount of data targeted by
key-value stores is usually larger than main memory; thus,
persistent storage is generally required. Since accessing per-
sistent storage is slow compared to CPU speed [41, 42], up-
dating data directly on disk yields a severe bottleneck.

To address this challenge, many key-value stores adopt
the log-structured merge (LSM) architecture [35, 36]. Ex-
amples include LevelDB [5], RocksDB [12], cLSM [26],
bLSM [39], HyperLevelDB [6] and HBase [11]. LSM data
stores are suitable for applications that require low latency
accesses, such as message queues that undergo a high num-
ber of updates, and for maintaining session states in user-
facing applications [12]. Basically, the LSM architecture
masks the disk access bottleneck, on the one hand, by
caching reads and, on the other hand, by absorbing writes
in memory and writing to disk in batches at a later time.
Although LSM key-value stores go a long way addressing
the challenge posed by the I/O bottleneck, their performance
does not however scale with the size of the in-memory com-
ponent, nor does it scale up with the number of threads.
In other words, and maybe surprisingly, increasing the in-
memory parts of existing LSMs only benefits performance
up to a relatively small size. Similarly, adding threads does
not improve the throughput of many existing LSMs, due to
their use of global blocking synchronization.

As we discuss in this paper, the two aforementioned scal-
ability limitations are inherent to the design of traditional

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211984263?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

81

LSM architectures. We circumvent these limitations by in-
troducing FloDB, a novel LSM memory component, de-
signed to scale up with the number of threads as well as with
its size in memory. Traditionally, LSMs have been employ-
ing a two-tier storage hierarchy, with one level in memory
and one level on disk. We propose an additional in-memory
level. In other words, FloDB is a two-level memory com-
ponent on top of the disk component (Figure 1), each in-
memory level being a concurrent data structure [2, 3, 23, 29].
The top in-memory level is a small and fast data structure,
while the bottom in-memory level is a larger, sorted data
structure. New entries are inserted in the top level and then
drained to the bottom level in the background, before being
stored onto disk.

This scheme has several advantages. First, it allows scans
and writes to proceed in parallel, on the bottom and on the
top levels respectively. Second, the use of a small, fast top-
level enables low-latency updates regardless of the size of
the memory component, whereas existing LSMs see their
performance drop as the memory component size increases.
Larger memory components can support longer bursts of
writes at peak throughput. Third, maintaining the bottom
memory layer sorted allows flushing to disk to proceed with-
out an additional—and expensive—sorting step.

We implement FloDB using a small high-performance
concurrent hash table [21] for the top in-memory level and
a larger concurrent skiplist [29] for the bottom in-memory
level. At a first glance, it might seem that implementing
FloDB requires nothing more than adding an extra hash
table-based buffer level on top of an existing LSM archi-
tecture. However, this seemingly small step entails subtle
technical challenges. The first challenge is to ensure effi-
cient data flow between the two in-memory levels, so as to
take full advantage of the additional buffer while not deplet-
ing system resources. To this end, we introduce the multi-
insert operation, a novel operation for concurrent skiplists.
The main idea is to insert n sorted elements in the skiplist in
one operation, using the spot of the previously inserted ele-
ment as a starting point for inserting the next elements, thus
reusing already traversed hops. The skiplist multi-insert is of
independent interest and can benefit previous single-writer
LSM implementations as well, by increasing the throughput
of updates to the memory component. The second challenge
is ensuring the consistency of user-facing LSM operations
while enabling a high level of concurrency between these
operations. In particular, FloDB is the first LSM system to si-
multaneously support consistent scans and in-place updates.

Our experiments show that FloDB outperforms current
key-value store solutions, especially in write-intensive sce-
narios. For instance, in a write-only workload, FloDB is
able to saturate the disk component throughput with just one
worker thread and continues to outperform the next best per-
forming system up to 16 worker threads, by a factor of 2x on
average. Moreover, for skewed read-write workloads, FloDB

obtains up to one order of magnitude better throughput than
its highest performing competitor.

To summarize, our contributions are threefold:
• FloDB, a two-level architecture for the log-structured

merge memory component. FloDB scales with the amount
of main memory, and has a rich API, where reads, writes
and scans can all proceed concurrently.

• A publicly available implementation in C++ of the FloDB
architecture as an extension of LevelDB, as well as an
evaluation thereof with up to 192GB memory compo-
nent size on a Xeon multicore machine.

• An algorithm for a novel multi-insert operation for con-
current skiplists. Besides FloDB, multi-insert can benefit
any other LSM architecture employing a skiplist.
Despite its advantages, we do not claim FloDB is a sil-

ver bullet; it does have limitations. First, as in all LSMs,
the steady-state throughput is bounded by the slowest com-
ponent in the hierarchy: writing the memory component to
disk. The improvements FloDB makes in the memory com-
ponent are orthogonal to potential disk-level improvements,
which go beyond the scope of this paper. Disk-level im-
provements could be used in conjunction with FloDB to
further boost the overall performance of LSMs. Second,
it is possible to devise workloads that prove problematic
for the scans of FloDB. For example, in write-intensive
workloads with heavy contention the performance of long-
running scans decreases. Third, for datasets much larger than
main memory, FloDB improves read performance less than
write performance. This is due to the fact that in LSMs read
performance largely depends on the effectiveness of caching,
which is also outside the scope of our paper.
Roadmap. The rest of this paper is organized as follows. In
Section 2, we give an overview of state-of-the-art LSMs and
their limitations. In Section 3, we present the FloDB archi-
tecture and the flow of its operations. In Section 4, we de-
scribe in more details the technical solutions we adopted in
FloDB. In Section 5, we report on the evaluation of FloDB’s
performance. In Section 6, we discuss related work and we
conclude in Section 7.

2. Shortcomings of Current LSMs
In this section, we give an overview of current LSM-based
key-value stores and highlight two of their significant limi-
tations that we address with this work.

2.1 LSM Key-Value Store Overview
Key-value stores [1, 4, 18, 19, 22, 24] represent each data
item by a key-value tuple (k, v), uniquely identified by the
key k. The basic operations in key-value stores are put, get
and remove. Put takes a key and a value and inserts the pair
in the store. If a data entry with the same key already exists,
the newly inserted entry will typically replace the existing
one. Get takes a key and returns the value associated to it in
the store or an indication that no pair with that key exists.

82

Memory
component

L0

Ln

skiplist/hash table

...		

Disk
component

put, remove, scan
sequential get

concurrent

Figure 2: High-level view of a typical LSM.

Remove takes a key and (logically) deletes the pair with that
key from the store, if such a pair exists. Additionally, many
key-value stores support scans [5, 12, 24]. A scan takes two
keys—a lower bound and an upper bound for the scan—
and returns all key-value pairs whose keys are between the
two input keys according to some comparator function. It
is common for scans to implement point-in-time semantics
(we call such scans serializable [37]): the returned view is
a consistent state of the data store at some point in time,
possibly from the past (before the scan was invoked).

The log-structured merge (LSM) architecture is aimed at
reducing the impact of high-latency storage on the perfor-
mance of data stores. In general, LSMs adopt a two-tier ar-
chitecture with one level in memory to absorb writes and one
level on disk to hold the bulk of the data. A high-level view
of a typical LSM data store is depicted in Figure 2. A typi-
cal LSM has two components: one residing in main memory
(the memory component) and one residing in persistent stor-
age (the disk component). The memory component acts as
a buffer/cache: updates (put and delete operations) are com-
pleted in the memory component and return immediately.
Reads (get operations) first check the memory component;
if a key-value pair with the given key is found, then the read
can return immediately, since the memory component con-
tains the most recent items. Otherwise, the read checks the
disk component as well. The disk component is structured
into several levels, where each level holds one or more sorted
files. If there is a strict requirement not to lose any data
in case of failure, then updates are appended to an on-disk
commit-log before being applied to the in-memory compo-
nent. This way, the recovery process can re-construct any
lost operations from the log.

A key procedure in LSMs is compaction [36], a back-
ground operation performed by one or more dedicated
threads. When the memory component reaches a certain
size, it is merged into the disk component and a new, empty
memory component is created. In order to allow new oper-
ations to complete during the compaction process, the old
memory component is made immutable but remains acces-
sible to readers, while write operations complete in the new
memory component. Broadly, compaction in LSMs consists
of (1) writing the immutable memory component to disk
and (2) reorganizing the on-disk hierarchy, i.e., merging and

moving files to different levels in the on-disk structure, to
maintain the sorted-file structure, with non-overlapping key
ranges between files on the same level.

2.2 Limitation—Scalability with Number of Threads
The presence of multiple processing cores can boost the
performance of LSM data stores. Although existing LSM
systems allow for some level of concurrency [6, 12, 26], they
leave significant opportunities for parallelism untapped.

For instance, LevelDB—a basis for many LSM key-
value stores—supports multiple writer threads, but serializes
writes by having threads deposit their intended writes in a
concurrent queue; the writes in this queue are applied to the
key-value store one by one by a single thread. Moreover,
LevelDB also requires readers to take a global lock during
each operation so as to access or update metadata. Hyper-
LevelDB [6] builds upon LevelDB, improving concurrency
by allowing concurrent updates; yet, expensive synchroniza-
tion is still needed in order to maintain the order of the
updates, through version numbers. RocksDB [12], a key-
value store also stemming from LevelDB, increases con-
currency by introducing multithreaded merging of the disk
components. While multithreaded compaction does indeed
improve overall performance, RocksDB still keeps points
of global synchronization to access in-memory structures
and to update version numbers, similarly to HyperLevelDB.
cLSM [26] goes even further by removing any blocking syn-
chronization from the read-only path, but system scalability
is still impaired by the use of global shared-exclusive locks
to coordinate between updates and background disk writes.
As we show in Section 5, these scalability bottlenecks in-
deed manifest in practice.

2.3 Limitation—Scalability with Memory Size
Existing LSM memory components can either be sorted
(e.g., skiplist) or unsorted (e.g., hash table) [7]. Both options
have their advantages and disadvantages, but surprisingly,
neither is able to scale to large memory components.

On the one hand, when a skiplist is used, in-order scans
are natural. Also, the compaction stage is little more than a
direct copy of the component to disk; thus it has low over-
head. However, writes require logarithmic time in the size of
the data structure to maintain the sorted order (reads satis-
fied directly from the memory component also require log-
arithmic time in the size of the data structure. With large
datasets, however, most reads are satisfied from the disk
component, so the memory component data structure choice
influences read latency less than write latency). Hence, as
can be seen in Figure 3, allocating more memory actu-
ally increases write latency. The figure shows the median
read and write latencies as functions of the memory com-
ponent size in RocksDB, one of the most popular state-of-
the-art LSMs. At the 99th percentile, we observed similar
read and write latency trends. Latencies are measured using
RocksDB’s readwhilewriting benchmark (from db_bench

83

Skiplist read while wri4ng RDB

0	

0.5	

1	

1.5	

2	

2.5	

128MB	 256MB	 512MB	 1GB	 2GB	 4GB	 8GB	

N
or
m
al
ize

d	
La
te
nc
y	

Memory	component	size	

Read	Latency		

Write	Latency	

Figure 3: RocksDB skiplist-based memory component.
Median read and write latencies, with increasing memory.

[14]), with eight reader threads and one writer thread acting
on a 1 million-entry database. The key size is 8 bytes and
the value size is 256 bytes. Latencies are normalized to the
128 MB memory component.

On the other hand, with a hash table, writes complete in
constant time, but in-order scans are not practical and the
compaction stage is more complex. Compaction requires full
sorting of the memory component before it can be written to
disk, to preserve the LSM structure. Indeed, our measure-
ments show that the mean compaction time for hash table-
based memory components is at least an order of magni-
tude higher than for skiplist-based memory components of
the same size: as the hash table becomes larger, it takes in-
creasingly longer to sort and persist to disk. In the time the
immutable memory component is sorted and persisted, it is
possible for the active (mutable) memory component to also
become full. In this case, the writers are delayed, since there
is no room to complete their operations in memory. As a
consequence, end-to-end write latency increases with mem-
ory size, as can be seen in Figure 4, which shows the same
experiment as Figure 3 with a hash table instead of a skiplist.

Therefore, for both the skiplist and the hash table, the
end-to-end system throughput plateaus or even decreases as
more memory is added. This limitation is inherent in the
single-level memory component of traditional LSMs and
limits LSM users from leveraging the abundance of memory
in modern multi-cores. In what follows, we show that it is
possible to combine the benefits of hash tables and skiplists,
to boost write throughput in LSMs while still allowing in-
order scans.

3. FloDB Design
Recall from the previous section that existing LSMs have
inherent scalability problems, both in terms of memory size
and in terms of number of threads. The latter is caused by
scalability bottlenecks, whereas the former stems from a
size–latency trade-off.

This trade-off manifests for both sorted and unsorted
memory components. A sorted component allows scans and
is straightforward to persist to disk, but has significantly

Hashtable read while wri4ng RDB

0	
0.5	
1	

1.5	
2	

2.5	
3	

3.5	
4	

128MB	 256MB	 512MB	 1GB	 2GB	 4GB	 8GB	

N
or
m
al
ize

d	
La
te
nc
y	

Memory	component	size	

Read	Latency	

Write	Latency	

Figure 4: RocksDB hash table-based memory component.
Median read and write latencies, with increasing memory.

higher access times as it gets larger. An unsorted component
can be fast regardless of size, but is not practical for scans
and needs to be sorted in linearithmic [40] time before being
flushed to disk, potentially delaying writers.

FloDB’s memory component architecture is designed to
circumvent these problems. The overarching goals of FloDB
are (1) to scale with the amount of memory given, (2) to
use minimal synchronization (for scaling up) and (3) to
leverage the memory component in order to improve write
performance without sacrificing read performance.

Below, we overview FloDB’s memory component archi-
tecture, as well as the main operations that leverage this new
structure: Get, Put, Delete, and Scan.

3.1 In-memory Levels
In short, the basic idea of FloDB is to use a two-level mem-
ory component, where one level is a small, fast data structure
and the second level is a larger, sorted data structure. This
design allows FloDB to break the size–latency trade-off, as
well as to minimize synchronization.

The first level, called the Membuffer, is small and fast
but not necessarily sorted. The second level, called the
Memtable, is larger, in order to capture a larger working set
and thus to better mask the high I/O latency. Moreover, the
Memtable keeps elements sorted, so it is directly flushable
to disk. Both levels are concurrent data structures, enabling
operations to proceed in parallel. Similarly to other LSMs,
data flows from the smallest component (the Membuffer)
down towards the largest component (the disk), as the vari-
ous levels get full.

The disk-level component is not our focus and is outside
the scope of this paper. Since the disk component and in-
memory handling of data are orthogonal to each other in
LSM key-value stores, the methods we show for in-memory
optimization can be used together with any mechanism for
persisting to disk. For instance, FloDB’s memory component
could be combined with a multithreaded compaction scheme
similar to RocksDB [12], or a technique that decreases write
amplification and thus obtains a better on-disk structure, as
in LSM-trie [43].

84

3.2 Operations
We give the high-level design of FloDB’s main operations.
In Section 4.4 we describe a concrete implementation of this
design. FloDB’s two-tier memory component allows very
simple basic operations (i.e., Get, Put, Delete) but incurs
additional complexity in the case of scans.
Get. Get operations in FloDB do not require synchronization
other than the synchronization in LSM data structures. The
Membuffer is the first to be searched, then the Memtable and
finally the disk. If the desired element is found at one of the
levels, the read can return immediately. Obviously, it is not
necessary to search in the lower levels once the element has
been found, because the higher levels in the hierarchy always
contain the freshest value.
Update. The Put and Delete operations are essentially iden-
tical. A delete is done by inserting a special tombstone value.
From this point on, we will refer to both Put and Delete oper-
ations as Update. First, the update is attempted in the Mem-
buffer. If there is no room in the Membuffer, then the update
is made directly in the Memtable. If the key already exists
in either the Membuffer or the Memtable, the corresponding
value is updated in-place.

The alternative approach to in-place updates is multi-
versioning: keeping several versions of the same key and dis-
carding the old versions only during the compaction phase.
Multi-versioning is used by all existing LSMs1. However,
the multi-versioning approach cannot leverage the locality
of skewed workloads. In fact, continually updating a single
key is enough to fill up the memory component and trigger
frequent flushes to disk. In contrast, with in-place updates,
repeated writes to the same key do not occupy additional
memory, so in-memory storage is in the order of the size
of the data. Updating in-place, combined with a large mem-
ory component, allows us to capture large, write-intensive,
skewed workloads efficiently, as we show in Section 5.
Scan. The main idea behind our Scan algorithm is to scan
the Memtable and the disk, while allowing concurrent up-
dates to complete in the Membuffer. One challenge with this
approach is that a scan in the Memtable might return a stale
value of a key which was still in the Membuffer when the
scan started. We solve this challenge by draining the Mem-
Buffer in the Memtable before a scan.

Another challenge is that if a scan takes a long time to
complete, if scans are called often, or if there are many
threads performing updates during scans, then the Mem-
buffer that is absorbing the updates might get full. In this
case, we allow the writers and scanners to proceed in par-
allel in the Memtable. However, if writers are allowed to
naively update the Memtable during a scan A, an entry that is
in A’s range might be modified while A is in progress, lead-

1 RocksDB does offer an in-place update option. However, activating this
option removes point-in-time consistency guarantees for snapshots. We
believe this is not a practical trade-off.

ing to inconsistencies. We solve this problem by introducing
per-entry sequence numbers at the level of the Memtable. In
this way, A can verify if a new value in its range has been
written in the Memtable since A started; if this is the case,
A is invalidated and restarts. A fallback mechanism is used
to ensure liveness (i.e., that a scan is not caused to restart in-
definitely by writers). It is important to note that our way of
using sequence numbers is different from multi-versioning
mentioned above; in our algorithm, when an update of an ex-
isting key k occurs in the Memtable, k’s value and sequence
numbers are updated in-place.

Summary. There are several benefits of FloDB’s two-level
design. First, a large fraction of writes complete in the Mem-
buffer, therefore FloDB gets the benefit of fast memory
components (typically reserved for overall unsorted memory
components, such as hash tables). Second, the sorted bottom
component allows scans and can be directly flushed to disk.
Third, the separation of levels enables writes and reads to
proceed in parallel with scans. Another benefit of the two-
layer hierarchy is that the overall size of the memory compo-
nent can be increased to obtain better performance (in con-
trast to existing systems). Finally, our design allows in-place
updates, while supporting consistent scans.

4. FloDB Implementation
We implement FloDB on top of Google’s LevelDB key-
value store [5]. The memory component of LevelDB is com-
pletely replaced with the FloDB architecture. We keep the
persisting and compaction mechanisms of LevelDB2.

In what follows, we discuss key implementation details
of FloDB: (1) our data structure choices for the Memtable
and Membuffer, (2) the mechanisms used to move data down
from level to level, (3) our novel multi-insert operation used
to streamline the flow of data between the Memtable and
Membuffer, as well as (4) the implementation of the user-
facing operations.

4.1 Memory Component Implementation
An important question that needs to be addressed when
implementing the FloDB architecture is what would make
good choices of data structures for the in-memory levels. To
make writes as fast as possible, a suitable choice for the first
level is a hash table [20]. As Figure 5 shows, a modern hash
table can provide a throughput of over 100 Mops/s, even
with billion-entry workloads. However, even though hash
tables are fast, they do not sort their entries, meaning that it is
not straightforward to iterate in-order over the data. For this
reason, a data structure that keeps data sorted and is easily

2 The original approach in LevelDB is to keep thread-local versions and one
shared version of the file-descriptor cache (fd-cache) in memory, acquiring
a global lock to access the shared version of the fd-cache when necessary.
In our preliminary tests, we found this global lock to be a major scalabil-
ity bottleneck. To remove this bottleneck, as part of our in-memory opti-
mizations, we replace the LevelDB fd-cache implementation with a more
scalable, concurrent hash table [8].

85

0

50

100

150

200

250

300

350

400

0
 10
 20
 30
 40

Th
ro

ug
hp

ut
 (M

op
/s

)

#Threads

32K
 1M
 33M
 1B

Figure 5: Performance of a concurrent hash table on a mixed
read-write workload with different numbers of threads and
dataset sizes (32K, 1M, 33M, 1B entries)

iterable, such as the skiplist [38] already used as the memory
component in traditional LSM implementations, is a good
choice for the second level.

Hence, FloDB’s in-memory hierarchy consists of a small
high-performance concurrent hash table [8, 21] and a larger
concurrent skiplist [9, 29]. The hash table stores key-value
tuples. The skiplist stores key-value tuples, along with se-
quence numbers, which are used for the Scan operation.

The size ratio between the Membuffer and the Memtable
presents a trade-off. On the one hand, a relatively small
Membuffer will fill up faster, forcing more updates to com-
plete in the Memtable. This is problematic because the
Memtable is slower, but also because Memtable-bound up-
dates might force more scans to restart. On the other hand, a
large Membuffer will take longer to drain into the Memtable,
which can delay scans.

4.2 Interaction Between Levels
Background threads. Since we do not expect data to be
static (i.e., data is constantly being inserted or updated),
FloDB has two mechanisms to move data across the levels
of the hierarchy: persisting and draining. Persisting moves
items from the Memtable to disk, through a dedicated back-
ground thread – an established technique in LSM imple-
mentations. Persisting is triggered when the Memtable be-
comes full. Draining moves items from the Membuffer to
the Memtable, and is done by one or more dedicated back-
ground threads. Draining is a continuously ongoing process,
since it is desirable to keep the Membuffer occupancy as low
as possible. Indeed, writes only benefit from the two level hi-
erarchy if they complete in the Membuffer.

Persisting. A standard technique in LSMs for persisting the
memory component to disk is to make the component im-
mutable, install a fresh, mutable component, and write the
old component to disk in the background. In this way, while
the old component is being persisted, writers can still pro-
ceed on the new component, and the data in the immutable
component is still visible to readers. However, the switch be-
tween memory components is typically done using locking.

e
mark

insert

delete

e

1	

2	

3	

Disk	

Membuffer
hash table

Memtable
skiplist

Figure 6: Draining steps.

FloDB has a more efficient RCU approach [27, 33, 34] to
switching the memory components, which never blocks any
updates or reads. When persisting, RCU is used first to make
sure that all pending updates to the immutable Memtable
have completed before allowing the background thread to
copy the Memtable to disk. Second, after the Memtable is
copied to disk, we use RCU to ensure that no reader threads
are reading the immutable Memtable before the background
thread can proceed to free it.

Draining. Draining (Figure 6) is done concurrently with up-
dates, reads, or other drains, by one or more delegated back-
ground threads, and proceeds as follows. To move a key-
value entry e from the Membuffer to the Memtable, e is first
retrieved and marked in the Membuffer. This is done to en-
sure that no other background thread is going to attempt to
also move e to the Memtable. Then, e is assigned a sequence
number (obtained via an atomic increment operation) and is
inserted in the Memtable by the background thread. Finally,
e is removed from the Membuffer. A special case of drain-
ing occurs at the beginning of a Scan. In order for a Scan
to be able to proceed only on the Memtable and disk lev-
els, but still include any recent updates that are still in the
Membuffer, a full drain of the Membuffer to the Memtable
is performed at the beginning of a scan. This type of drain
is done by making the current Membuffer immutable, in-
stalling a new Membuffer (using RCU), and then moving all
entries from the old Membuffer to the Memtable, similarly
to how the Memtable is persisted to disk.

4.3 Skiplist Multi-inserts
Figure 5 and Figure 7 show that a concurrent skiplist is
roughly one to two orders of magnitude slower than a con-
current hash table of the same size. Thus, to enable a large
fraction of updates to proceed directly in the hash table, we
need to move items between levels as fast as possible.
Intuition. We introduce a new multi-insert operation for
concurrent skiplists, to increase the throughput of draining
threads. The intuition behind the multi-insert operation is
simple. To insert n elements in the skiplist, rather than call-
ing the insert operation n times, we insert these elements in

86

0

10

20

30

40

50

60

0
 10
 20
 30
 40

Th
ro

ug
hp

ut
 (M

op
/s

)

#Threads

32K
 1M
 33M
 1B

Figure 7: Performance of a concurrent skiplist on a mixed
read-write workload with different numbers of threads and
dataset sizes (32K, 1M, 33M, 1B entries).

only one multi-insert operation. The n elements are inserted
in ascending order, using the progress already made (i.e.,
hops traveled) to insert the previous elements as a starting
point for inserting the next elements.

Besides increasing draining throughput in FloDB, multi-
inserts could also benefit other applications making use of
concurrent skiplists. For instance, LSMs such as LevelDB
which make use of flat combining [28] for updates (Sec-
tion 2.2) could speed up their updates in the following way.
The combiner thread could apply all updates in a single
multi-insert operation, instead of applying them separately
one after the other. Even more, several combiner threads
could concurrently apply updates through multi-inserts.

Pseudocode. The pseudocode of the multi-insert operation
is shown in Algorithm 1. The operation input is an array
of (key, value) tuples. First, the input tuples are sorted in
ascending order. Then, for each tuple, its place in the skiplist
is located, using FindFromPreds. FindFromPreds searches
for the current element’s spot in the skiplist starting from the
predecessors of the previously inserted element (lines 5–8).
If the key of the stored predecessor on the current level
is larger than the key of the current element to insert, a
jump can be made directly to the stored predecessor from
the previous element. This is the core of the multi-insert
operation, where the path-reuse idea is applied. After the
spot in the skiplist is found for a tuple, the insertion of that
tuple proceeds similarly to a normal insert operation [29].

Concurrency. Multi-inserts are concurrent with each other,
as well as with simple inserts and reads. However, the cor-
rectness of the multi-insert relies on the fact that elements
are not concurrently removed from the skiplist. This is not
a problem in FloDB, by design; entries are removed from
the skiplist only when they are persisted to disk. Moreover,
while each insert in the multi-insert is atomic, the multi-
insert itself is not linearizable, in the sense that the entire
array of elements is not seen as inserted at a single point in
time (i.e., intermediary state is visible).

Neighborhoods. Key proximity is a major factor in the per-
formance of multi-insert. Intuitively, path reuse is maxi-

1 FindFromPreds(key , preds , succs):
2 // returns true iff key was found
3 // side -effect: updates preds and succs
4 pred = root
5 for level from levelmax downto 0:
6 if (preds[level].key > pred.key):
7 pred = preds[level]
8 curr = pred.next[level]
9 while(true):

10 succ = curr.next[level]
11 if (curr.key < key):
12 pred = curr
13 curr = succ
14 else:
15 break
16 preds[level] = pred
17 succs[level] = curr
18 return (curr.key == key)
19

20 MultiInsert(keys , values):
21 sortByKey(keys , values)
22 for i from 0 to levelmax:
23 preds[i] = root
24 for each key -value pair (k,v):
25 node = new node(k,v)
26 while(true):
27 if (FindFromPreds(k, preds , succs)):
28 SWAP(succs [0].val , v)
29 break
30 else:
31 for lvl from 0 to node.toplvl:
32 node.next[lvl] = succs[lvl]
33 if (CAS(preds [0]. next[0],
34 succs[0], node)):
35 for lvl from 1 to node.toplvl:
36 while(true):
37 if (CAS(preds[lvl].next[lvl],
38 succs[lvl], node)):
39 break
40 else:
41 FindFromPreds(k, preds , succs)
42 break

Algorithm 1: Multi-inserts

mized if the keys that are being multi-inserted in the skiplist
will end up close together in the skiplist. Figure 8 depicts the
results of an experiment comparing the throughput of simple
inserts against 5-key multi-inserts, as a function of the key
proximity, in an update-only test. In this experiment, a neigh-
borhood size of n for the key range means that all keys in a
multi-insert are at maximum 2n distance from each other. It
can clearly be seen that the multi-insert becomes more effi-
cient as the neighborhood size becomes smaller.

In FloDB, we create partitions inside the hash table, to
take advantage of the performance benefits of having keys
closer together in multi-inserts (the neighborhood effect).

87

0

1

2

3

4

5

6

7

8

10
 100
 1000
 10000
 None

Th
ro

ug
hp

ut
 (M

op
/s

)

Neighborhood size

Simple insert
 Multi-insert

Figure 8: Performance comparison of simple insertions
against multi-inserts with 5 keys/multi-insert. The initial
skiplist size is 100M elements.

When a key-value tuple is inserted in FloDB, the ℓ most
significant bits of the key are used to determine the partition
of the hash table where the tuple should be inserted. Then,
the rest of the key’s bits are hashed to determine the position
in the partition (i.e., the bucket). Because ℓ is a parameter, it
is possible to control the size of the neighborhood easily.

While our partitioning scheme leverages the performance
benefits of multi-insert, it also makes the hash table vulnera-
ble to data skew. If there exist popular keys that have a com-
mon prefix (which is the case if the data skew concerns a
certain key range), the buckets corresponding to the popu-
lar keys will become full faster than buckets corresponding
to less popular keys. This in turn will lead to a smaller pro-
portion of updates being able to complete in the Membuffer.
This effect of skewed workloads is discussed in Section 5.

4.4 Implementation of FloDB Operations
Algorithm 2 presents the pseudocode for the Get, Put and
Delete operations (to improve readability, we omit code for
entering and exiting RCU critical sections).
Get. The Get operation simply searches for a key on every
level, in the following order: the Membuffer (MBF), the
immutable Membuffer (IMM_MBF), if any, the Memtable
(MTB), the immutable Memtable (IMM_MTB), if any, and
finally on disk. Get returns the first occurrence of a key that it
encounters, which is guaranteed to be the freshest one, since
the levels are checked in the same order as the flow of data.
Update. As mentioned before, the Delete operation is a Put
with a special tombstone value, so we only need to describe
the latter operation. Essentially, the Put operation proceeds
by trying to insert a key-value pair e in the Membuffer
(line 10); if the target hash table bucket for e is not full,
the add to the Membuffer succeeds, and the operation re-
turns (line 11); otherwise e is inserted in the Memtable in-
stead (line 20). In addition, the full Put pseudocode in Al-
gorithm 2 also includes mechanisms for synchronizing with
the persisting thread and with concurrent scanners. First, if
inserting e into the Membuffer was unsuccessful, and the
pauseWriters flag is set, the writer helps with the draining of

1 Get(key):
2 for c in MBF IMM_MBF MTB IMM_MTB DISK:
3 if (c != NULL):
4 value = c.search(key)
5 if (value != not_found):
6 return value
7 return not_found
8

9 Put(key , value):
10 if (MBF.add(key , value) == success):
11 return
12 while pauseWriters:
13 if MBFNeedsDraining ():
14 IMM_MBF.helpDrain ()
15 else:
16 wait()
17 while MTB.size > MTB_TARGET_SIZE:
18 wait()
19 seq = globalSeqNumber.fetchAndIncrement ()
20 MTB.add(key , value , seq)
21

22 Delete(key):
23 Put(key , TOMBSTONE)

Algorithm 2: Basic operations

the immutable Membuffer if necessary or waits for the flag
to be unset otherwise (lines 12–16). As we explain below,
the pauseWriters flag is used by the Scan to signal to writ-
ers that the Membuffer is being completely drained into the
memtable, in preparation for a scan, and that writers should
either wait or help with the draining. Second, a writer waits
until there is room in the Memtable before starting its Put
(lines 17–18). This is typically a very short wait: only the
time for the persisting thread to prepare a new Memtable af-
ter the current one has become full.

Scan. The Scan operation takes two parameters as input:
lowKey and highKey. It returns an array of all the keys and
corresponding values in the data store that are between the
low and high input keys.

For clarity, we separate the presentation of the scan al-
gorithm in two parts. First we present the algorithm for a
scan that can proceed in parallel with reads and writes but
not with another scan. Then, we introduce the necessary ad-
ditions to also allow multithreaded scans.

Single-threaded scans, multithreaded reads and writes.
The pseudocode for a single-threaded Scan is shown in Al-
gorithm 3 (again, we omit RCU critical section boundaries
for clarity). The first step is to freeze updates to the cur-
rent Membuffer and to the Memtable and to drain the cur-
rent Membuffer into the Memtable. For this, we pause the
background draining (line 4), signal writers to stop making
updates directly in the Memtable (line 5), and wait for all on-
going Memtable writes to complete (line 9). Note that scans
never completely block writers; even though writers cannot

88

update the Memtable between lines 5 and 13 of the scan,
they can try to update the Membuffer or help with the drain.
Helping ensures that the drain completes even if the scanner
thread is slow, and thus reduces the time in which the writers
are not allowed to update the Memtable.

Then, the current Membuffer is made immutable and a
new Membuffer that is meant to absorb future updates is
created (lines 6–8). The thread initiating the scan then starts
draining the Membuffer to the Memtable (line 10). After
the Membuffer has been drained, the scan gets a sequence
number (through an atomic increment operation) (line 12). It
is now safe to allow the background draining from the new
Membuffer and the writers to make updates on the Memtable
(lines 13–14), if necessary, because the sequence number of
the scan will be used to ensure consistency. The actual scan
operation (lines 15–28) starts now, first on the Memtable
and the immutable Memtable (if it exists) and finally on
disk. When a key that is in the scan range is encountered,
its sequence number is checked. If it is lower than the scan
sequence number, the key-value tuple is saved. If a key that
was already saved is encountered, the value corresponding
to the largest sequence number lower than the scan sequence
number is kept. Else, if the key sequence number is higher
than the scan sequence number, the scan restarts, because
a sequence number higher than the scan sequence number
may mean that the value corresponding to that key was
overwritten by a concurrent operation. Finally, the array of
saved keys and values is sorted and returned.

Restarts are expensive since they entail a full re-drain of
the Membuffer. To avoid scans restarting arbitrarily many
times in write-intensive workloads, we add a fallback mech-
anism, called fallbackScan, which is triggered when a scan
was forced to restart too many times. fallbackScan works
by blocking writers from the Memtable until it completes
scanning. In our experiments (Section 5), the fallback scan
is triggered rarely and does not add significant overhead.

Multithreaded scans. If multiple threads are scanning con-
currently, additional synchronization is required to avoid the
situation where several threads each create a copy of the
Membuffer and try to drain it. To this end, we distinguish
between two types of scans: master scan and piggybacking
scan. A master scan is a scan that starts when no other scan
is concurrently running. A piggybacking scan is a scan that
starts while some other scan is concurrently running. At any
given time, only one master scan may be running. We ensure
that the master scan executes lines 4–14 of Algorithm 3 and
that all scans execute lines 2 and 15–30. Piggybacking scans
will wait until the master scanner publishes the sequence
number obtained at line 12 and then proceed to the actual
scanning in lines 15–28. Note that it is possible for a piggy-
backing scan to start when no master scan is running if they
are concurrent with another piggybacking scan that started
while a master scan was running. This process can repeat it-
self, creating long chains of piggybacking scans that reuse

1 Scan(lowKey , highKey):
2 restartCount = 0
3 restart:
4 pauseDrainingThreads = true
5 pauseWriters = true
6 IMM_MBF = MBF
7 MBF = new MemBuffer ()
8 MemBufferRCUWait ()
9 MemTableRCUWait ()

10 IMM_MBF.drain()
11 IMM_MBF.destroy ()
12 seq = globalSeqNumber.fetchAndIncrement ()
13 pauseWriters = false
14 pauseDrainingThreads = false
15 results = ∅
16 for dataStructure in MTB IMM_MTB DISK:
17 iter = dataStructure.newIterator ()
18 iter.seek(lowKey)
19 while (iter.isValid () and
20 iter.key < highKey):
21 if iter.seq > seq:
22 restartCount += 1
23 if restartCount < RESTART_THRESHOLD:
24 goto restart
25 else:
26 return fallbackScan(lowKey , highKey)
27 results.add(iter.key , iter.value)
28 iter.next()
29 results.sort()
30 return results

Algorithm 3: Scan algorithm

the same sequence number of the master scan at the start of
the chain. We limit the length of these chains through a sys-
tem parameter, to avoid having a large percentage of scans
that restart due to the use of a stale sequence number.

When many scans run concurrently, the scheme described
above yields good performance, due to the piggybacking
mechanism that spreads the overhead of draining over many
scan calls and to the fact that piggybacking scans do not
re-drain the Membuffer when they restart. An optimization
for the low concurrency case is to also allow master scans
(in addition to piggybacking scans) to reuse the sequence
number of a previous master scan. This avoids fully draining
the Membuffer too often.
Correctness. In terms of safety, master scans that establish
a new scan sequence number are linearizable [30] with re-
spect to updates. The linearization point is on line 7 in Al-
gorithm 3, on the instruction that installs a new mutable
Membuffer. Draining the immutable Membuffer ensures that
all updates up to the linearization point are included in the
scan, and the sequence number obtained in line 12 ensures
that none of the updates after the linearization point are in-
cluded in the scan. Piggybacking scans (and master scans
that reuse an existing sequence number), however, are not

89

linearizable with respect to updates (but they are serializ-
able), since they can miss updates that have occurred after
their sequence number was established. If a more strict scan
consistency is required at the application-level, a scan can
be instructed to wait until it can establish a new sequence
number, or scan piggybacking can be disabled altogether.
Thus, all scans in FloDB can be linearizable with respect to
updates, at the cost of performance (every scan would have
to drain the Membuffer before proceeding, which is an ex-
pensive operation). In terms of liveness, all scans eventually
complete, due to the fallbackScan mechanism which cannot
be invalidated by writers and thus is guaranteed to return.

4.5 Implementation Trade-offs
As Section 5 shows, FloDB obtains better performance than
its competitors across a wide range of workloads. Nonethe-
less, FloDB’s performance does come at a cost: we trade
resource usage for performance. Connecting the two in-
memory levels requires at least one background thread (i.e.,
the draining thread) to run almost continuously in write-
intensive workloads. Moreover, FloDB’s scan operation
presents the following limitation. Although in theory a scan
on the range (−∞,+∞) (that would return a snapshot of the
entire database) could be invoked, large scans may restart
many times, triggering a costly block of all writers in or-
der to complete successfully. This scan algorithm is only
practical for small and medium scans.

5. Evaluation
In this section, we evaluate FloDB, confirming the following
design goals:
1. FloDB scales with the number of threads and performs

well compared to the state of the art in multi-threaded
read-only, write-only and mixed read-write workloads.

2. FloDB scales with memory—increasing the size of the
memory component leads to better performance.

3. FloDB’s in-place updates increase performance in skewed
workloads.

4. The FloDB memory component, taken separately, per-
forms better with both levels than with a single level.

5. FloDB is able to saturate the disk component throughput
and is capable of better performance, if connected to a
faster disk component.

5.1 Experimental Setup
We compare FloDB with three state-of-the-art LSM data
stores: LevelDB [5], RocksDB [12], and HyperLevelDB [6].
Our code is publicly available at:

https://lpd.epfl.ch/site/flodb.

Our evaluation does not include the recent cLSM sys-
tem [26], as the code for cLSM is proprietary. A preliminary
public implementation based on RocksDB exists [10]. This
incomplete implementation performs worse than RocksDB
in all of our experiments, therefore we do not include it

in our evaluation3. Separately from the implementation of
cLSM on top of RocksDB, some of the ideas of cLSM have
been integrated into RocksDB and can be enabled through
parameters [13]. We include this version of RocksDB in our
evaluation and label it "RocksDB/cLSM".

Unless stated otherwise, all systems are set up with a
128MB memory component and with all other parameters at
their default values. For FloDB, as we discuss in Section 4,
the choice of size ratio between the Memtable and the Mem-
buffer poses a trade-off. In our experiments, we split the to-
tal size of the memory component between the Membuffer
and the Memtable in 1/4 and 3/4 respectively (e.g., for a
128MB memory component, the Membuffer size is 32MB
and the Memtable size is 96MB). This split was determined
empirically to yield good results.

In all our experiments, the data set is roughly 300GB,
where each key-value entry has a key size of 8B and a value
size of 256B. The evaluation is performed on a 20-core ma-
chine, with two 10-core Intel Xeon E5-2680 v2 processors
operating at 2.8 GHz (with up to 40 virtual cores, if hyper-
threading is used). The machine has 32 KB of L1 data cache
and 256 KB of L2 cache per core, 25 MB of L3 cache per
processor, 256 GB of RAM, a 960 GB SSD Samsung 843T,
and is running Ubuntu 16.04. For our experiments, hyper-
threading was enabled and each thread was mapped to a dif-
ferent core whenever possible.

5.2 General Performance
We compare FloDB, LevelDB, RocksDB and HyperLevelDB
using read-only (Figure 10), write-only (50% inserts, 50%
deletes; Figure 9), and mixed workloads (Figure 11, Fig-
ure 12 and Figure 13). We run three types of mixed work-
loads. The first is balanced between updates and reads (50%
reads, 25% inserts, 25% deletes). The second has only one
writer thread, while the other threads in the system are read-
ing. The third mixed workload consists of 95% updates and
5% scans, where each scan has a range of 100 keys. With
these settings, 100 operations involve around 95 updates,
thus 95 keys updated, and around 5 scans at 100 keys read
per scan, thus 500 keys read. Therefore, in the 5% scan
workload, around 84% of key accesses are reads (500 key
reads out of 595 total accesses), while 16% are updates (95
key reads out of 595 total accesses). For scans, unless oth-
erwise stated, we measure throughput as the number of keys
accessed per second, as in Golan-Gueta et al. [26].

Each experiment consists of a number of threads concur-
rently performing operations on the data store – searching,
inserting or deleting keys – continually. Each operation is
chosen at random, according to the given workload proba-

3 cLSM improves upon classic LSM implementations by replacing the
memory component with a highly concurrent data structure. Intuitively,
we believe FloDB would perform better than a full cLSM implementation,
since in addition to highly-concurrent data structures, FloDB also has a two-
tier structure that enables scalability with memory component size.

https://lpd.epfl.ch/site/flodb

90

0

0.5

1

1.5

2

2.5

3

1 2 4 8 16

Th
ro

ug
hp

ut
 (M

op
s/

s)

Number of threads

FloDB
RocksDB
RocksDB/cLSM
HyperLevelDB
LevelDB

Average	persistence	
throughput

Figure 9: Write-only workload.

0
1
2
3
4
5
6
7

1 2 4 8 16 32 64 128

Th
ro

ug
hp

ut
 (M

op
s/

s)

Number of threads

FloDB
RocksDB
RocksDB/cLSM
HyperLevelDB
LevelDB

Figure 10: Read-only workload, sequential initialization.

bility distribution, and performed on a key drawn uniformly
at random, unless otherwise stated.

Before running the experiment, the database is initial-
ized as follows. For the mixed workloads, key-value tuples
covering half of the dataset are inserted in random order in
the database. For the read-only workload, the same data is
inserted in sorted order. The in-order initialization of the
database creates an optimal structure on-disk for all four sys-
tems, which allows us to analyze performance whilst mini-
mizing the effect of the compaction algorithm used. When
initializing FloDB sequentially, the hash table is disabled to
preserve the ordering of the inserted keys. After inserting the
initial data, we wait until draining to disk and compactions
have completed before starting the experiment. The write-
only workload is run on a fresh data store, to minimize the
effects of background compaction on performance.
Write-only. Figure 9 shows the throughput of the four sys-
tems as a function of the number of threads. FloDB out-
performs the next best performing system, HyperLevelDB,
by a factor ranging from 1.9x to 3.5x. Note the dashed line
which indicates the average throughput of FloDB’s persist-
ing thread (around 1.2 millions of key-value pairs per sec-
ond). FloDB manages to saturate this persistence through-
put already with one thread, due to the fact that the hash
table is kept empty by the draining thread, making the writer
thread’s inserts complete directly in the hash table. FloDB’s
memory component is capable of even higher throughput

0

0.2

0.4

0.6

0.8

1 2 4 8 16

Th
ro

ug
hp

ut
 (M

op
s/

s)

Number of threads

FloDB
RocksDB
RocksDB/cLSM
HyperLevelDB
LevelDB

Figure 11: Mixed read-write workload.

0

0.2

0.4

0.6

0.8

1

1 2 4 8 16

Th
ro

ug
hp

ut
 (M

op
s/

s)

Number of threads

FloDB RocksDB RocksDB/cLSM
HyperLevelDB LevelDB

Figure 12: Mixed workload: one writer, many readers.

(as we show in Section 5.5), but, in this case, the persis-
tence throughput is a bottleneck. RocksDB and LevelDB
use a single-writer design: writes by concurrent threads are
appended to a queue and applied sequentially by a single
write leader. Due to this concurrency bottleneck, LevelDB
and RocksDB do not scale with the number of threads. On
the other hand, HyperLevelDB’s higher write concurrency
allows it to scale, improving upon LevelDB by up to 4x.
Read-only. Figure 10 shows the results of the read-only
experiment, with sequential initialization. Due to the large
dataset size and the size of the memory components, vir-
tually all reads go to disk. LevelDB and HyperLevelDB
are limited by LevelDB’s concurrency control: each read
operation requires two critical sections on the global mu-
tex lock. FloDB and RocksDB both scale up to 64 threads,
due to their improved parallelism of reads. It can be seen
how FloDB’s simplified Get operation, as well as its use of
high-performance concurrent data structures lead to a sig-
nificant improvement over LevelDB (by up to two orders of
magnitude), even if the compaction algorithm is largely un-
changed. RocksDB, as well as its cLSM variant, also have
a highly concurrent Get operation and, in addition, an op-
timized disk component, which allow them to outperform
FloDB as the thread count is increased beyond 16.
Mixed. Figure 11, Figure 12 and Figure 13 show the through-
put of the five systems in the three mixed workloads. FloDB
outperforms the other key-value stores in all three scenarios.

91

0
0.5

1
1.5

2
2.5

3
3.5

4

1 2 4 8 16

Th
ro

ug
hp

ut
 (M

op
s/

s)

Number of threads

FloDB
RocksDB
RocksDB/cLSM
HyperLevelDB
LevelDB

Figure 13: Mixed scan-write workload.

It can be seen that the read and write throughputs are not
independent: as writes proceed, new files are created on disk
(as the immutable skiplists are persisted). These files have
not been fully compacted yet, thus slowing down reads that
touch these files. Note that scans are faster than reads for the
same number of key-value pairs accessed. This is because
the scanned entries are close to each other on disk. Once
the first item is located, the scan only needs to iterate within
the same file or in adjacent files, as opposed to reads, which
need to locate the correct file for every item.

It is interesting to observe that HyperLevelDB performs
well in the scan experiment (within 43%–90% of FloDB).
This is due to HyperLevelDB’s efficient compaction, which
in our experiments produced more than 200 times less files
than RocksDB for the same number of key-value entries.

We also examine the effect of the scan ratio on the perfor-
mance of FloDB. Figure 14 shows the results of five mixed
scan-write experiments with 16 threads, where the ratio of
scans in the workload is varied from 2% to 50%. The left
part of the figure shows throughput in operations per sec-
ond (broken down into scans and writes), while the right
part of the figure shows throughput in keys accessed per
second. As expected, with increasing scan ratios, the num-
ber of operations per second decreases. This is due to the
fact that each individual scan takes longer than a write to
complete. On the other hand, increasing the scan ratio actu-
ally increases the number of keys accessed per second. With
fewer writes to interfere, more scans complete without the
need to restart. Also, a scan contributes 100 times more to
the key-throughput than a write, therefore a higher scan ra-
tio naturally yields higher key-throughput.

Furthermore, we evaluate the scan restart rate, by mea-
suring how often the heavyweight fallback mechanism is in-
voked (described in Section 4.4). We vary the scan range
(from 10 keys to 10000 keys), the size of the memory com-
ponent (from 128MB to 4GB) and the number of threads
(from 1 to 16). In all of our experiments, the ratio of fall-
back scans to total completed scans was less than 1%. Thus,
the scan fallback mechanism does not significantly penalize
low- and medium- range scans.

5.3 Memory Component Size
In Section 2.3 we discuss the inherent inability of the classic
LSM architecture, with a single-level memory component,
to scale with the size of the memory component. In this
experiment, we show how FloDB scales with the memory-
size due to its two-tier design. We evaluate the scalability of
FloDB, RocksDB, HyperLevelDB and LevelDB when the
size of the memory component is increased. The benchmark
uses a write-only workload with 16 threads, and the size of
the memory component is varied from 128MB to 192GB.

An experiment showing steady state write performance
would produce similar results to Figure 9, because of the
persistence bottleneck. Since optimizing the disk component
is outside the scope of this paper, to showcase scalability
with the memory component, we run this experiment as a 10-
second write burst (empirically chosen such that the system
is not limited to its steady-state write throughput).

Figure 15 shows that FloDB outperforms the next best
performing system by at least 2.3x for every memory com-
ponent size, and up to an order of magnitude for the mem-
ory component sizes above 4GB. In the case of RocksDB,
LevelDB and HyperLevelDB, we can see how the through-
put is degrading as the memory is increased, because it be-
comes slower to make updates into a larger-sized skiplist.
On the other hand, in FloDB, the penalty of inserting into a
large-sized skiplist is avoided, by absorbing the updates in
the smaller and fast hash table.

5.4 In-place Updates
We evaluate the benefits of in-place updates on a skewed
workload: 2% of the dataset is accessed by 98% of oper-
ations (a common evaluation approach for skewed work-
loads [26]). The benchmark uses a mixed workload (50%
reads, 50% updates) with 16 threads and the size of the
memory component is again varied from 128MB to 192GB.
As Figure 16 shows, FloDB’s throughput is on average 8x
higher than that of the next best-performing system, and
up to 17x higher for the 128GB size. In-place updates on
a large memory component enable FloDB to capture the
skewed workload in the large memory component experi-
ments. Indeed, 2% of the 300GB dataset amounts to roughly
6GB of entries that are accessed most of the time. Thus,
with in-place updates, the memory components above 8GB
can capture most of the workload in memory, leading to
high throughput (up to 8 Mops/s). In contrast, the other sys-
tems do not provide in-place updates and cannot capture
the skewed workload at any memory size. Unsurprisingly,
FloDB is outperformed by the other systems at lower mem-
ory sizes. This is due to the hash table partitioning mech-
anism, which is sensitive to data skew, especially at small
sizes (Section 4.3).

5.5 Membuffer and Multi-insert Draining
In this write-only experiment, we explore how the two-level
memory component, along with the multi-insert draining en-

92

0

0.2

0.4

0.6

0.8

1

2% 5% 10% 25% 50%

Th
ro

ug
hp

ut
 (M

op
s/

se
c)

Scan %

Write Throughput

Scan Throughput

0

1

2

3

4

5

6

2% 5% 10% 25% 50%

Th
ro

ug
hp

ut
 (M

ke
ys

/s
ec

)

Scan %

Throughput (Mkeys/sec)

Figure 14: Impact of scan ratio on operation- and key- throughput.

0
1
2
3
4
5
6
7

128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB 32GB 64GB 128GB 192GB

Th
ro

ug
hp

ut
 (M

op
s/

s)

Memory component size

FloDB
RocksDB
RocksDB/cLSM
HyperLevelDB
LevelDB

Figure 15: Write-only workload, increasing memory component size.

0

2

4

6

8

10

128MB 256MB 512MB 1GB 2GB 4GB 8GB 16GB 32GB 64GB 128GB 192GB

Th
ro

ug
hp

ut
 (M

op
s/

s)

Memory component size

FloDB
RocksDB
RocksDB/cLSM
HyperLevelDB
LevelDB

Figure 16: Mixed read-write workload, 98%-2% skew, increasing memory component size.

hance the write performance in FloDB. We compare dif-
ferent variants of FloDB: (1) FloDB with the Membuffer
disabled and the Memtable accounting for the whole mem-
ory component size, which is the classic LSM design (No
HT), (2) FloDB with both in-memory levels and simple in-
sert draining (HT, simple insert SL), and (3) FloDB with
both in-memory levels and multi-insert draining (HT, multi-
insert SL). To exhibit the potential performance of FloDB in
write-dominated scenarios, in this experiment we disable the
disk persisting and compaction. Instead of being persisted to
disk, the immutable Memtables are dropped so that only the
throughput of the in-memory component is captured.

Figure 17 conveys the throughput as a function of the
memory component size, with 8 threads for the three con-
figurations. We also present a single-thread configuration—
the first column cluster—to emphasize the benefits of multi-
insert in single-writer scenarios. The proportion of entries
inserted directly in the hash table are highlighted in the
black boxes. We make several observations. First, the ab-
sence of the Membuffer is detrimental in FloDB: as ex-
pected, the No HT FloDB variant decreases in throughput as
more memory is added, whereas both two-tier variants scale
with memory size. Second, the proportion of updates that
complete directly in the Membuffer increases with the mem-

93

0

1

2

3

4

5

6

7

8

1GB, 1t
 1GB, 8t
 2GB, 8t
 4GB, 8t
 8GB, 8t

Th
ro

ug
hp

ut
 (M

op
s/

s)

Memory component size

HT, multi-insert SL

HT, simple insert SL

No HT

FLODB	Focus	On	memory	component	8thds	u100		

Keys inserted in HT

Figure 17: Effects of Membuffer and multi-insert draining.
Boxed areas show proportion of direct Membuffer updates.

ory size, explaining the increase in overall throughput. Third,
in the single-writer scenario, multi-inserts boost throughput
by 3.1x compared to the single layer case and by 2x com-
pared to the simple-insert FloDB variant. Finally, we see
that the disk component is indeed the bottleneck: FloDB
can reach a throughput of over 7 Mops/s without disk per-
sistence, compared to 1.2 Mops/s with disk persisting (Fig-
ure 9). Therefore, future advancements in disk components
will directly improve end-to-end performance.

6. Related Work
Many key-value stores have adopted the LSM model. In
Section 2.2 we briefly give an overview of concurrent LSMs
and their scalability bottlenecks. In this section, we discuss
each of them more generally, as well as overview other
related key-value stores.

LevelDB [5] is one of the earliest persistent LSM-based
key-value stores and numerous modern LSMs are built on
top of it [6, 12, 26]. In order to address concurrency in the
memory component, LevelDB uses a global mutex lock to
synchronize threads. Reads need to acquire the lock briefly
at the beginning and end of the get operation. Writes are se-
rialized through a write leader which combines [28] the
updates of threads concurrent to it and applies them se-
quentially. The compaction process of LevelDB is single-
threaded. HyperLevelDB [6] addresses the write and com-
paction issues in LevelDB. HyperLevelDB replaces Lev-
elDB’s sequential memory component with a concurrent
one, which allows writers to apply their updates in paral-
lel on the memory component. However, writers still need
to acquire a global mutex lock at the start and end of each
operation, which is a scalability bottleneck. RocksDB [12]
improves upon LevelDB, by (a) carefully reducing the size
and number of critical sections on the global lock and (b)
caching metadata locally in order to reduce the number
of synchronized accesses to global metadata. Furthermore,
RocksDB introduces multithreaded disk-to-disk compaction
which runs in parallel with memory-to-disk persistence.

cLSM [26] is also based on LevelDB with the design goal
of increasing scalability. cLSM replaces the global mutex

lock with a global reader-writer lock and uses a concurrent
memory component. Thus, operations can proceed in paral-
lel, but need to block at the start and end of each concurrent
compaction. cLSM also uses RCU during the critical section
when a memory component becomes immutable and a new
one is installed. However, the use of RCU in cLSM blocks
writers, whereas our RCU-based memory component switch
never blocks readers or writers, only background threads.

Other approaches seek to improve single-threaded LSM
performance, e.g., bLSM [39] proposes carefully scheduling
the compaction process to reduce its negative impact on
write performance. LSM-trie [43] organizes data on disk in
a way that reduces write amplification and minimizes index
size, thus making room for stronger Bloom filters, which in
term lead to faster searches on disk. Since both bLSM and
LSM-trie target the disk component, they are orthogonal to
our improvements of the memory component.

Significant work has also been done in the direction of
concurrent in-memory key-value stores, such as Masstree [32],
MICA [31], KiWi [17], and MemC3 [25]. Their main goal
is to have scalable performance as the number of threads is
increased. Nonetheless, these systems make the assumption
that all of the data they need to store fits in main memory.

7. Conclusion
LSM is the architecture of choice for many state-of-the-art
key-value stores. LSMs allow writes to complete from mem-
ory, thus masking the significant latency of I/O. However,
existing LSMs are not designed to benefit from the ample
memory sizes of modern multicore machines. Their through-
put scales neither to large memory components, nor with the
number of threads, due to synchronization bottlenecks.

We address these limitations of current LSMs through
FloDB, a novel two-tier memory component architecture
that allows LSMs to scale with memory, as well as with
the number of threads. The main idea behind FloDB is to
add a buffer level on top of the classic LSM architecture,
in order to hide the increased latency that comes with a
large sorted memory component. We implement FloDB us-
ing highly concurrent data structures, and obtain a persistent
key-value store, where reads, updates and scans can pro-
ceed in parallel. FloDB outperforms state-of-the-art LSM
key-value stores, especially in write-intensive scenarios. The
concepts that form the basis of FloDB are implementation
independent. This opens the possibility for our proposed im-
provements to be combined with optimizations to other lev-
els of the LSM architecture.

Acknowledgements
We wish to thank our shepherd, Jens Teubner, and the anony-
mous reviewers for their helpful comments on improving the
paper. This work has been supported in part by the European
Research Council (ERC) Grant 339539 (AOC) and by the
Swiss National Science Foundation (SNSF) Grant 166306.

94

References
[1] Apache Cassandra. http://cassandra.apache.org.

[2] libcds: Library of lock-free and fine-grained algorithms. http://li
bcds.sourceforge.net.

[3] Intel Thread Building Blocks: a C++ template library for task paral-
lelism. http://www.threadingbuildingblocks.org.

[4] Project voldemort: A distributed key-value storage system. http:
//project-voldemort.com.

[5] LevelDB, a fast and lightweight key/value database library by
Google, 2005. https://github.com/google/leveldb, commit
2d0320a458d0e6a20fff46d5f80b18bfdcce7018.

[6] HyperLevelDB, a fork of LevelDB intended to meet the needs
of HyperDex while remaining compatible with LevelDB,
2014. https://github.com/rescrv/HyperLevelDB, commit
40ce80173a8d72443c5f92e3c072a54ed910bab9.

[7] RocksDB hash-based memtable implementations, 2014.
https://github.com/facebook/rocksdb/wiki/Hash-based
-memtable-implementations.

[8] CLHT, a very fast and scalable (lock-based and lock-free) concurrent
hash table with cache-line sized buckets, 2015. https://github.com
/LPD-EPFL/CLHT.

[9] ASCYLIB, a concurrent-search data-structure library with over 40
implementantions of linked lists, hash tables, skip lists, binary search
trees, queues, and stacks, 2016. https://github.com/LPD-EPFL/AS
CYLIB.

[10] Public implementation of the cLSM algorithm, on top of RocksDB,
2016. https://github.com/guyg8/rocksdb/commits/write_thr
oughput.

[11] Apache HBase, a distributed, scalable, big data store, 2016. http:
//hbase.apache.org/.

[12] RocksDB, a persistent key-value store for fast storage
environments, 2016. http://rocksdb.org/, commit
efd013d6d8ef3607e9c004dee047726538f0163d.

[13] RocksDB commit describing how to enable cLSM features,
2016. https://github.com/facebook/rocksdb/commit/7d87f02
799bd0a8fd36df24fab5baa4968615c86.

[14] RocksDB performance benchmarks, 2016. https://github.com/f
acebook/rocksdb/wiki/Performance-Benchmarks.

[15] A. S. Aiyer, M. Bautin, G. J. Chen, P. Damania, P. Khemani,
K. Muthukkaruppan, K. Ranganathan, N. Spiegelberg, L. Tang, and
M. Vaidya. Storage infrastructure behind facebook messages: Using
HBase at scale. IEEE Data Engineering Bulletin, 35(2), 2012.

[16] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Work-
load analysis of a large-scale key-value store. ACM SIGMETRICS
Performance Evaluation Review, 40(1), 2012.

[17] D. Basin, E. Bortnikov, A. Braginsky, G. Golan Gueta, E. Hillel,
I. Keidar, and M. Sulamy. Brief announcement: A key-value map for
massive real-time analytics. PODC 2016.

[18] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Bur-
rows, T. Chandra, A. Fikes, and R. E. Gruber. Bigtable: A distributed
storage system for structured data. ACM Transactions on Computer
Systems, 26(2), 2008.

[19] B. F. Cooper, R. Ramakrishnan, U. Srivastava, A. Silberstein, P. Bo-
hannon, H.-A. Jacobsen, N. Puz, D. Weaver, and R. Yerneni. PNUTS:
Yahoo!’s hosted data serving platform. Proceedings of the VLDB En-
dowment, 1(2), 2008.

[20] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to
Algorithms. MIT Press, 2009.

[21] T. David, R. Guerraoui, and V. Trigonakis. Asynchronized concur-
rency: The secret to scaling concurrent search data structures. ASP-
LOS 2015.

[22] G. DeCandia, D. Hastorun, M. Jampani, G. Kakulapati, A. Lakshman,
A. Pilchin, S. Sivasubramanian, P. Vosshall, and W. Vogels. Dynamo:
Amazon’s highly available key-value store. ACM SIGOPS Operating
Systems Review, 41(6), 2007.

[23] J. Duffy. Concurrent Programming on Windows. Microsoft Windows
Development Series. Pearson Education, 2008.

[24] R. Escriva, B. Wong, and E. G. Sirer. Hyperdex: A distributed,
searchable key-value store. SIGCOMM Computer Communication
Review, 42(4), 2012.

[25] B. Fan, D. G. Andersen, and M. Kaminsky. MemC3: Compact
and concurrent memcache with dumber caching and smarter hashing.
NSDI 2013.

[26] G. Golan-Gueta, E. Bortnikov, E. Hillel, and I. Keidar. Scaling con-
current log-structured data stores. Eurosys 2015.

[27] D. Guniguntala, P. E. McKenney, J. Triplett, and J. Walpole. The
read-copy-update mechanism for supporting real-time applications on
shared-memory multiprocessor systems with linux. IBM Systems
Journal, 47(2), 2008.

[28] D. Hendler, I. Incze, N. Shavit, and M. Tzafrir. Flat combining and
the synchronization-parallelism tradeoff. SPAA 2010.

[29] M. Herlihy and N. Shavit. The Art of Multiprocessor Programming,
Revised Reprint. Morgan Kaufmann Publishers Inc., 1st edition, 2012.

[30] M. P. Herlihy and J. M. Wing. Linearizability: A correctness condi-
tion for concurrent objects. ACM Transactions on Programming Lan-
guages and Systems, 12(3), 1990.

[31] H. Lim, D. Han, D. G. Andersen, and M. Kaminsky. MICA: A holistic
approach to fast in-memory key-value storage. management, 15(32),
2014.

[32] Y. Mao, E. Kohler, and R. T. Morris. Cache craftiness for fast multi-
core key-value storage. Eurosys 2012.

[33] P. E. McKenney and J. D. Slingwine. Read-copy update: Using
execution history to solve concurrency problems. PDCS 1998.

[34] P. E. McKenney, D. Sarma, A. Arcangeli, A. Kleen, O. Krieger, and
R. Russell. Read copy update. Ottawa Linux Symposium 2001.

[35] P. O’Neil, E. Cheng, D. Gawlick, and E. O’Neil. The log-structured
merge-tree (LSM-tree). Acta Informatica, 33(4), 1996.

[36] J. Ousterhout and F. Douglis. Beating the I/O bottleneck: A case for
log-structured file systems. ACM SIGOPS Operating Systems Review,
23(1), 1989.

[37] C. H. Papadimitriou. The serializability of concurrent database up-
dates. J. ACM, 26(4), 1979.

[38] W. Pugh. Skip lists: A probabilistic alternative to balanced trees.
Communications of the ACM, 33(6), 1990.

[39] R. Sears and R. Ramakrishnan. bLSM: a general purpose log struc-
tured merge tree. SIGMOD/PODS 2012. ACM, 2012.

[40] R. Sedgewick and K. Wayne. Algorithms. Pearson Education, 4th
edition, 2014.

[41] A. Tanenbaum and H. Bos. Modern Operating Systems. Prentice Hall,
2014.

[42] G. Wu, X. He, and B. Eckart. An adaptive write buffer management
scheme for flash-based SSDs. ACM Transactions on Storage, 8(1),
2012.

[43] X. Wu, Y. Xu, Z. Shao, and S. Jiang. LSM-trie: An LSM-tree-based
ultra-large key-value store for small data items. USENIX ATC 2015.

http://cassandra.apache.org
http://libcds.sourceforge.net
http://libcds.sourceforge.net
http://www.threadingbuildingblocks.org
http://project-voldemort.com
http://project-voldemort.com
https://github.com/google/leveldb
https://github.com/rescrv/HyperLevelDB
https://github.com/facebook/rocksdb/wiki/Hash-based-memtable-implementations
https://github.com/facebook/rocksdb/wiki/Hash-based-memtable-implementations
https://github.com/LPD-EPFL/CLHT
https://github.com/LPD-EPFL/CLHT
https://github.com/LPD-EPFL/ASCYLIB
https://github.com/LPD-EPFL/ASCYLIB
https://github.com/guyg8/rocksdb/commits/write_throughput
https://github.com/guyg8/rocksdb/commits/write_throughput
http://hbase.apache.org/
http://hbase.apache.org/
http://rocksdb.org/
https://github.com/facebook/rocksdb/commit/7d87f02799bd0a8fd36df24fab5baa4968615c86
https://github.com/facebook/rocksdb/commit/7d87f02799bd0a8fd36df24fab5baa4968615c86
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks
https://github.com/facebook/rocksdb/wiki/Performance-Benchmarks

