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Abstract

The concept of reaction variants and invariants for lumped reaction systems has been
known for several decades. Its applications encompass model identification, data recon-
ciliation, state estimation and control using kinetic models. In this thesis, the concept of
variants and invariants is extended to distributed reaction systems and used to develop new
applications to estimation, control and optimization.

The thesis starts by reviewing the material and heat balances and the concept of vari-
ants and invariants for several lumped reaction systems. Different definitions of variants
and invariants, in particular the vessel extents, are presented for the case of homogeneous
reaction systems, and transformations to variants and invariants are obtained. The exten-
sion to systems with heat balance and mass transfer is also reviewed.

The concept of extents is generalized to distributed reaction systems, which include
many processes involving reactions and described by partial differential equations. The
concept of extents and the transformation to extents are detailed for various configurations
of tubular reactors and reactive separation columns, as well as for a more generic framework
that is independent of the configuration.

New developments of the extent-based incremental approach for model identification
are presented. The approach, which compares experimental and modeled extents, results
in maximum-likelihood parameter estimation if the experimental extents are uncorrelated
and the modeled extents are unbiased. Furthermore, the identification problem can be
reformulated as a convex optimization problem that is solved efficiently to global optimality.

The estimation of unknown rates without the knowledge or the identification of the
rate models is described. This method exploits the fact that the variants computed from
the available measurements allow isolating the different rates. Upon using a Savitzky-Golay
filter for differentiation of variants, one can show that the resulting rate estimator is optimal
and obtain the error and variance of the rate estimates.

The use of variants and invariants for reactor control is also considered. Firstly, offset-
free control via feedback linearization is implemented using kinetic models. Then, it is
shown how rate estimation can be used for control via feedback linearization without ki-
netic models. By designing an outer-loop feedback controller, the expected values of the
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Abstract

controlled variables converge exponentially to their setpoints.

This thesis presents an approach to speed up steady-state optimization, which takes
advantage of rate estimation without rate models to speed up the estimation of steady
state for imperfectly known dynamic systems with fast and slow states. Since one can use
feedback control to speed up convergence of the fast part, rate estimation allows estimating
the steady state of the slow part during transient operation.

The application to dynamic optimization is also shown. Adjoint-free optimal control
laws are computed for all the types of arcs in the solution. In the case of reactors, the
concept of extents allows the symbolic computation of optimal control laws in a systematic
way. A parsimonious input parameterization is presented, which approximates the optimal
inputs well with few parameters. For each arc sequence, the optimal parameter values are
computed via numerical optimization.

The theoretical results are illustrated by simulated examples of reaction systems.

Keywords: Reaction systems, Variants, Invariants, Extents, Parameter estimation, Rate
estimation, Control, Steady-state optimization, Dynamic optimization.
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Résumé

Le concept de variants et d’invariants réactionnels pour les systèmes de réaction à para-
mètres localisés est connu depuis plusieurs décennies. Ses applications englobent l’identifi-
cation de modèles, la réconciliation de données, l’estimation d’état et la commande basée
sur des modèles cinétiques. Dans cette thèse, le concept de variants et d’invariants est étendu
aux systèmes de réaction à paramètres distribués et est utilisé pour développer de nouvelles
applications dans les domaines de l’estimation, de la commande et de l’optimisation.

La thèse commence par la révision des bilans de matière et d’énergie, et du concept de
variants et d’invariants pour plusieurs systèmes de réaction à paramètres localisés. Diffé-
rentes définitions de variants et d’invariants, en particulier celles des avancements générali-
sés, sont présentées dans le cas de systèmes réactionnels homogènes, et des transformations
en variants et invariants sont données. L’extension aux systèmes avec un bilan d’énergie et
un transfert de masse est également passée en revue.

Le concept d’avancement est généralisé aux systèmes de réaction à paramètres distri-
bués, qui se retrouvent dans de nombreux procédés réactionnels décrits par des équations
différentielles aux dérivées partielles. Le concept d’avancements et la transformation en
avancements sont détaillés pour différentes configurations de réacteurs tubulaires et de co-
lonnes de séparation réactive, ainsi que pour un cadre plus générique indépendant de la
configuration.

De nouveaux développements de l’approche incrémentale basée sur les avancements
pour l’identification de modèles sont présentés. L’approche, qui compare les avancements
expérimentaux et modélisés, aboutit à une estimation des paramètres dans le sens d’un
maximum de vraisemblance si les avancements expérimentaux ne sont pas corrélés et les
avancements modélisés ne sont pas biaisés. De plus, le problème d’identification peut être
reformulé comme un problème d’optimisation convexe qui est résolu efficacement dans le
sens d’une optimalité globale.

L’estimation de vitesses inconnues sans la connaissance ou l’identification de modèles
des vitesses est décrite. Cette méthode exploite le fait que les variants calculés à partir
des mesures disponibles permettent d’isoler les différentes vitesses. En utilisant un filtre
de Savitzky-Golay pour dériver les variants, on peut montrer que l’estimateur de vitesses
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Résumé

résultant est optimal et obtenir l’erreur et la variance associées à l’estimation de ces vitesses.

L’utilisation de variants et d’invariants pour la commande de réacteurs est également
considérée. Premièrement, une commande sans erreur avec une linéarisation par rétroac-
tion est mise en œuvre en utilisant des modèles cinétiques. Ensuite, il est montré comment
l’estimation de vitesses peut être utilisée pour la commande avec linéarisation par rétroac-
tion sans modèles cinétiques. En concevant un régulateur agissant par rétroaction dans la
boucle externe, les valeurs attendues des variables contrôlées convergent exponentiellement
vers leurs consignes.

Cette thèse présente une approche pour accélérer l’optimisation statique, qui tire parti
de l’estimation de vitesses sans modèles de vitesses pour accélérer l’estimation de l’état
stationnaire pour des systèmes dynamiques imparfaitement connus comprenant des états
rapides et lents. Comme il est possible d’utiliser la commande par rétroaction pour accélérer
la convergence vers l’état stationnaire de la partie rapide, l’estimation de vitesses permet
d’estimer l’état stationnaire de la partie lente pendant le fonctionnement transitoire.

L’application à l’optimisation dynamique est aussi montrée. Les lois de commande op-
timale sans adjoints sont calculées pour tous les types d’arcs dans la solution. Dans le cas
des réacteurs, le concept d’avancements permet le calcul symbolique de lois de commande
optimale de manière systématique. Un paramétrage parcimonieux des entrées est présenté,
qui approxime bien les entrées optimales avec peu de paramètres. Pour chaque séquence
d’arcs, les valeurs optimales des paramètres sont calculées par optimisation numérique.

Les résultats théoriques sont illustrés par des exemples simulés de systèmes réactionnels.

Mots-clés : Systèmes réactionnels, Variants, Invariants, Avancements, Estimation de
paramètres, Estimation de vitesses, Commande, Optimisation statique, Optimisation dyna-
mique.
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Nomenclature

Matrices are denoted by uppercase and boldface Latin, Greek or calligraphic symbols
(except matrices of densities, which are denoted by lowercase and boldface Greek symbols).
Vectors are denoted by lowercase and boldface Latin or Greek symbols (except vectors of en-
thalpies, which are denoted by uppercase and boldface Latin symbols). Scalars are denoted
by italic Latin or lowercase and italic Greek symbols (except distances, which are denoted by
uppercase calligraphic symbols). Sets, functionals, and functions of functions are denoted
by uppercase Greek or calligraphic symbols. For each group of symbols, the following order
is used: uppercase and boldface, lowercase and boldface, uppercase, lowercase.

Accents

(̄·) average or steady-state quantity /
reformulated function that uses or
checks the necessary conditions of
optimality

(̈·) second time derivative

(̇·) first time derivative

(̂·) modeled or reconciled quantity /
estimate or estimator / terminal
cost or constraint as a function of
the decision variables

(̃·) experimental or measured quan-
tity / extended state or function of
extended states / scaled variable

Calligraphic symbols

A matrix that relates rv to the avail-
able states y (ny × R)

C matrix that relates uin to the avail-
able states y (ny × p)

L transformation matrix to original
states or variables (for example,
numbers of moles or related quan-
tities)

M j matrix used to compute an opti-
mal control law for the input u j

(ρ j ×ρ j)

T transformation matrix to variants
or extents

A set that contains the number of
admissible standard deviations of
the controlled variables

C compact set that contains the op-
timal parameters ∆θ

D set of the spatial coordinates of a
distributed reaction system
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Nomenclature

E set of conserved quantities

E j auxiliary function defined recur-
sively in terms of r and used to
compute the estimators r̂n

H Hamiltonian function

J functional for the terminal cost as
a function of the input trajectory
and final time

Kn set of vectors of monomial powers
of a polynomial of degree n

L Lagrangian function

M set of candidate models

N normal distribution

O functional for the terminal equal-
ity constraints as a function of the
input trajectory and final time

R radius of tubular reactor

S set of species

T functional for the terminal in-
equality constraints as a function
of the input trajectory and final
time

X abstract species

Greek symbols

Γ diagonal matrix of desired expo-
nential convergence rates for the
controlled variables x (nx -dim.)

Σỹ variance-covariance matrix with
respect to the measurements ỹ

α vector of parameters appearing
linearly in the reaction rate law
(L-dim.)

β a vector of zero-order part (with
respect to the inputs u) of the
known dynamics of the fast or
controlled states x (nx -dim.)

χ vector of spatial coordinates (3-
dim.) / vector of concate-
nated terminal cost and con-
straints ((nω + nψ+ 1)-dim.)

η vector of Lagrange multipliers
that correspond to h (nh-dim.)

λ vector of adjoint variables that
correspond to x (nx -dim.)

µ vector of means / vector of
Lagrange multipliers that corre-
spond to g (ng -dim.)

ν vector of Lagrange multipliers
that correspond to ψ (nψ-dim.)

ω vector of terminal equality con-
straints (nω-dim.)

φ vector of rates that affect the num-
bers of moles (S-dim.)

φd vector of molar diffusion rates
(pd -dim.)

φm, f vector of molar rates of mass
transfer to phase F (pm, f -dim.)

ϕ vector of reaction rates in terms of
numbers of moles or related quan-
tities (R-dim.)

π vector of decision variables that
represent inputs or setpoints (nu-
dim.) / vector of Lagrange mul-
tipliers that correspond to h at θ
(nh-dim.)

ψ vector of terminal inequality con-
straints (nψ-dim.)
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Nomenclature

ρ diagonal matrix of pure compo-
nent densities (S-dim.)

τ vector of decision variables of
the dynamic optimization prob-
lem ((ns + 1+ nz − nx)-dim.)

θ̄ vector around which r as a func-
tion of θ is represented as a Taylor
series (N -dim.)

∆θ vector of deviation of the parame-
ters θ around θ̄ (N -dim.)

θ vector of parameters appearing
nonlinearly in the reaction rate
law (N -dim.)

ξ vector of Lagrange multipliers
that correspond to ω (nω-dim.)

ξin vector of batch extents of inlet (p-
dim.)

ξiv vector of invariants (q-dim.)

ξr vector of batch extents of reaction
(R-dim.)

ζ vector of adjoint variables that
correspond to z (nz-dim.)

ζi vector of adjoint variables that
correspond to zi (nz,i-dim.)

Φ set of admissible trajectories of
the available rates

Ψ set of admissible trajectories of
the available states

Θ set of possible parameters of a
model

α number of a conserved quantity in
a species / inverse of the time con-
stant of the dynamic relationship
between xs and their steady state
/ relative volatility

βq/γq auxiliary functions used to com-
pute the covariance of the differ-
entiation Savitzky-Golay filter

χ terminal cost or constraint

ε small parameter

ǫ f volumetric fraction of phase F

γ weights that specify a numerical
quadrature method

ν stoichiometric coefficient

ω inverse of the residence time

φ̇ angular speed of the stirrer

φ objective function / terminal cost

πi number of pieces of the cubic
splines in the ith time interval

ψ rates that affect the heat

ρ density

ρ j number of states xu j

σ standard deviation

τ fast time scale

θ entry point of a constraint h

υ volume in terms of numbers of
moles or related quantities

ξ j,i degree for which there is an opti-
mal control law for the input u j in
the ith time interval

ζ cost of the convex optimization
problem for estimation of param-
eters ∆θ

Latin symbols

0 vector or matrix of appropriate di-
mension with all elements being 0
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Nomenclature

1 vector or matrix of appropriate di-
mension with all elements being 1

A atomic matrix (S×Ed) / state ma-
trix of the linearized system

B input matrix of the linearized sys-
tem

Ba matrix of first-order part (with
respect to the inputs u) of the
known dynamics of the fast or
controlled states x (nx × nx)

Ccal matrix of calibration concentra-
tions (H × S)

Cx/Cz output matrix for the available
outputs y as a function of the fast
states x (ny × nx) / slow states z

(ny × nz)

D diagonal matrix of desired reduc-
tion of the time constants of the
actuators (nx -dim.)

Ed diffusion matrix (S × pd)

Em, f mass-transfer matrix for phase F
(S f × pm, f )

F matrix that relates ru to the fast or
controlled states x (nx × nr)

∆H vector of enthalpies of formation
(S-dim.)

∆Hd vector of enthalpies of diffusion
(pd -dim.)

∆Hm, f vector of enthalpies of mass trans-
fer to phase F (pm, f -dim.)

∆Hr vector of enthalpies of reaction
(R-dim.)

∆T Hr vector of enthalpies of reaction at
the reactor temperature (R-dim.)

H Hessian or second-order matrix /
matrix that relates ru to the slow
states z (nz × nr)

Ha matrix that specifies a linear rela-
tionship between the slow states z

and the available rates ha (nz×nz)

Hm vector of molar enthalpies (S-
dim.)

I identity matrix of appropriate di-
mension

Jd, f matrix of diffusion fluxes in phase
F (pd × 3)

K diagonal matrix of control gains

L matrix of linear combinations

Mw diagonal matrix of pure compo-
nent molecular weights (S-dim.)

N stoichiometric matrix (R× S)

P transformation matrix to invari-
ants (S × q)

Qb positive semidefinite matrix re-
lated to the vector vd−b

Qn/Qx matrix of first-order part of the re-
lation between inputs of the lin-
earized reaction system in terms
of na / xv (nu × nu)

R matrix of reaction rates

Rb,k localizing matrix related to the
monomial with powers k of the
vector vd−b

S matrix of molar sensitivities (S ×
W )

Sn/Sx selection matrix for the reaction
system in terms of na / xv
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Nomenclature

Ťin vector of inlet specific heats (p-
dim.)

Ta diagonal matrix of time constants
of the actuators (nu-dim.)

Ti diagonal matrix of integral times

Ua inverse matrix of Ba (nx × nx)

Vpr prognostic matrix (S ×W )

W weighting matrix

Win inlet-composition matrix (S × p)

Ycal matrix of calibration measure-
ments (H ×W )

Zin,h matrix of molar fractions of the
liquid inlets at the hth intermedi-
ate inlet/outlet (Sl × pl ,h), or to
the nth tray (Sl × pl ,n) if h is re-
placed by n

b vector that relates qex to the avail-
able states y (ny -dim.)

bn/bx vector of implicit variables of
the linearized reaction system in
terms of na / xv ((R+ 1)-dim.)

c vector of concentrations (S-dim.)

cp vector of molar heat capacities at
constant pressure (S-dim.)

δc vector of quantities related to con-
centrations (S-dim.)

dy vector of noise variables with re-
spect to the measurements of y

e vector of control errors (nx -dim.)

ei unit vector of the standard ba-
sis related to the ith reaction (Ri-
dim.)

f̌ j vector of dynamics of all the states
x except x j ((nx − 1)-dim.)

f vector of dynamics of the fast or
controlled states x (nx -dim.)

fu j vector of dynamics of xu j (ρ j-
dim.)

fin,h vector of molar flowrates of the
liquid inlets at the hth intermedi-
ate inlet/outlet (pl ,h-dim.), or to
the nth tray (pl ,n-dim.) if h is re-
placed by n

f̃ vector of dynamics of the ex-
tended states z (nz-dim.)

g gradient or first-order vector /
vector of inequality or mixed path
constraints (ng-dim.)

∆T hin vector of specific enthalpies of the
inlets with respect to the reactor
(p-dim.)

h vector of dynamics of the slow
states z (nz-dim.) / vector of
pure-state path constraints (nh-
dim.)

hin vector of specific enthalpies of the
inlets (p-dim.)

jd,z vector of diffusion fluxes in the z-
direction (pd -dim.)

k vector of monomial powers of a
Taylor series (N -dim.)

kin vector that specifies a linear rela-
tionship between uin and ω (p-
dim.)

kr vector that specifies a linear re-
lationship between rv and ω (R-
dim.)
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Nomenclature

δn vector of quantities related to
number of moles (S-dim.)

n vector of number of moles (S-
dim.)

n0 vector of initial numbers of moles
(S-dim.)

na vector of numbers of moles with
the minimal size needed to de-
scribe the reaction system ((R+p)-
dim.)

no vector of numbers of moles in na

with relative degree one with re-
spect to uin (p-dim.)

nt vector of numbers of moles in na

with relative degree two with re-
spect to uin (R-dim.)

~n inward-pointing normal vector (3-
dim.)

p j,i vector of parameters of the cu-
bic spline that describes the input
u j in the ith time interval (b j,iπi-
dim.)

pn/px vector of zero-order part of the re-
lation between inputs of the lin-
earized reaction system in terms
of na / xv (nu-dim.)

qi vector of dynamics of zi (nz,i-
dim.)

r vector of reaction rates (R-dim.)

ru vector of unknown rates (nr -dim.)

rv vector of reaction rates in moles
time

(R-
dim.)

s vector of functions that compute
an estimate of the steady state of
the slow states z (nz-dim.)

sa vector of available rates (ny -dim.)

sr/st vector of rates that represent the
derivative of xr / nt (R-dim.)

su vector of unknown dynamics of
the fast or controlled states x that
does not depend on ru (nx -dim.)

tn/tx vector of transformation to the
variables zn/zx of the linearized
reaction system ((R+ nu)-dim.)

t−1
n /t

−1
x vector of inverse transformation

from the variables zn/zx of the
linearized reaction system ((R +
nu)-dim.)

tr,i transformation vector from mea-
sured quantities to the ith exper-
imental extent of reaction (Wi-
dim.)

ū vector of actuator inputs (nu-
dim.)

δu vector of deviation variables re-
lated to the inputs u (nu-dim.)

u vector of inputs (nu-dim.)

uin vector of inlet mass/volumetric
flowrates (p-dim.)

v vector of new inputs of the lin-
earized system

vd vector of monomials up to degree
d in the N variables ∆θ (s(N , d)-
dim.)

v f vector of advective velocities in
phase F (3-dim.)

vm vector of molar volumes (S-dim.)

vn/vx vector of new inputs of the lin-
earized reaction system in terms
of na / xv (nu-dim.)
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Nomenclature

w̌in, j vector of weight fractions of the
jth inlet (S-dim.)

w vector of zero-order part (with re-
spect to the inputs u) of the dy-
namics of the fast or controlled
states x (nx -dim.)

win vector of volumetric extents of in-
let (p-dim.)

wiv vector of invariants (q-dim.)

wr vector of volumetric extents of re-
action (R-dim.)

x̌ j vector of all the states x except x j

((nx − 1)-dim.)

δx vector of deviation variables re-
lated to the fast or controlled
states x (nx -dim.)

x vector of fast or controlled states
(nx -dim.)

xu j vector of states that are reachable
by manipulating the input u j (ρ j-
dim.)

xc vector of subset of the fast states
with the same dimension as the
inputs u (nu-dim.)

xd vector of extents of diffusion (pd -
dim.)

xin vector of (vessel) extents of inlet
(p-dim.)

xiv vector of invariants (q-dim.)

xm, f vector of (vessel) extents of mass
transfer to phase F (pm, f -dim.)

xr vector of (vessel) extents of reac-
tion (R-dim.)

xv vector of vessel extents ((R + p)-
dim.)

y vector of measured quantities (W -
dim.) / vector of available states
or outputs (ny -dim.)

yiv vector of reaction invariants (q-
dim.)

yr vector of reaction variants (R-
dim.) / vector of variants with re-
spect to unknown rates (nr -dim.)

z vector of numbers of moles and
heat, or concentrations and tem-
perature ((S + 1)-dim.) / vector
of slow states, or extended states
(nz-dim.)

zin vector of inlet variants and reac-
tion invariants (p-dim.)

ziv vector of reaction and inlet invari-
ants (q-dim.)

zi vector of extended states in the ith
time interval (nz,i-dim.)

zn/zx vector of new states of the lin-
earized reaction system in terms
of na / xv ((R+ nu)-dim.)

zr vector of reaction variants and in-
let invariants (R-dim.)

A heat transfer area / cross-section
area of reactive separation col-
umn

B molar amount in the bottoms tank

D number of percentiles for dis-
cretization of the distribution /
molar amount in the distillate
tank

E number of conserved quantities
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Nomenclature

Ea,i activation energy of the ith reac-
tion

F cumulative distribution function
of a normally distributed random
variable

F−1 inverse distribution function of a
normally distributed random vari-
able

Fs volumetric flowrate of an inlet
stream for species s

G molar advective flowrate of the
gas phase

H enthalpy / number of samples

J cost function

L molar advective flowrate of the
liquid phase / number of param-
eters α

M stirrer torque / molar holdup in
the liquid phase on a tray

N number of trays / number of pa-
rameters θ

P pressure

Pa/Pb polynomial in the denominator /
numerator of the cost function for
estimation of parameters ∆θ

Pin, j pressure of the jth inlet

Q heat

R number of independent reactions
/ ideal gas constant

S number of species

∆T j difference between the tempera-
tures of the inlet and the outlet of
the jacket

T temperature of the reaction mix-
ture

Tin, j temperature of the jth inlet

T j jacket temperature

U overall heat transfer coefficient

V volume of the reaction mixture /
molar advective flowrate of the
vapor phase

Vt total volume

W number of measured quantities y

Z normally distributed random vari-
able

ak/bk coefficient of the polynomial Pa /

Pb

b j,i binary constant that specifies if
p j,i exists or not

bk/ck kth convolution coefficient of the
averaging filter / differentiation
filter

c constant or zero-order scalar

cin,s concentration of species s in an in-
let stream for that species

c j optimal control law for the jth in-
put

cp specific heat capacity

d degree of the polynomials in the
convex optimization problem for
estimation of parameters ∆θ

dℓ weighted integral of the rate rℓ

h sampling period

ki rate constant of the ith reaction

m mass of the reaction mixture
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Nomenclature

ñi number of switching times to arcs
specified by pure-state path con-
straints in the ith time interval

n degree of the reaction rate repre-
sented as a Taylor series

nω number of terminal equality con-
straints ω

nψ number of terminal inequality
constraints ψ

ng number of mixed path constraints
g

nh,l/nh,n molar holdup in the liquid phase
per unit length / of the nth tray

nh number of pure-state path con-
straints h

nr number of unknown rates ru

ns number of switching times consid-
ered as decision variables

nu number of inputs u

nx number of fast or controlled states
x

ny number of available states or out-
puts y and available rates sa

nz,i number of extended states zi

nz number of slow states z or ex-
tended states z

p number of independent inlets

pd number of diffusing species

pl ,h number of independent inlets at
the hth intermediate inlet/outlet,
or to the nth tray if h is replaced
by n

pm, f number of mass transfers to phase
F

ps partial pressure of species s

q number of invariants / number of
samples used by the differentia-
tion Savitzky-Golay filter

qex ,rem heat power that is not exchanged
with the jacket (exchanged with
the remaining environment)

qex exchanged heat power

ql volumetric flowrate in the column

qout outlet volumetric flowrate

qr x heat power produced by the reac-
tions

r̂n nth-order estimator of r

r radial coordinate / reaction rate
candidate / reflux ratio

r j number of time differentiations of
det(M j) needed to compute an
optimal control law for u j

s(N , d) number of monomials up to de-
gree d in N variables

∆t length of the time window used by
the differentiation Savitzky-Golay
filter

t time

t f final time

tm
i

mth intermediate time instant of
the cubic spline defined in the ith
time interval between t0

i
and t

πi

i

tup upper bound for the final time

u j inlet flowrate of the jacket / jth
input

uout outlet mass flowrate
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Nomenclature

vz advective velocity in the axial di-
rection

wic volumetric extent of initial condi-
tions

wm
i constant that specifies the position

of tm
i with respect to t0

i
and t

πi

i

xex (vessel) extent of heat exchange

x ic (vessel) extent of initial condi-
tions

x j state with dynamics affected by
the jth input

xr (vessel) extent of reaction related
to the rate candidate r

xs mole fraction of species s in the
liquid phase

ys mole fraction of species s in the
gas/vapor phase

z axial coordinate

Matrix and vector operators

(·)+ Moore-Penrose pseudoinverse of
the matrix (·)

(·)−1 inverse of the matrix (·)

(·)T transpose of the matrix (·)

∆l
j
(·) lth-order differentiator of the vec-

tor (·) with respect to the input u j

det(·) determinant of the matrix (·)

diag(·) diagonal elements of the matrix
(·) / diagonal matrix with diago-
nal elements from the vector (·)

‖ (·) ‖p p-norm of the vector or matrix (·)

rank(·) rank of the matrix (·)

tr(·) trace of the matrix (·)

Other operators

Dq(·, t) differentiation Savitzky-Golay fil-
ter of order 1 and window size q

applied to the function (·) on an
interval that ends at t

Rq(·, t) remainder term applied to the
function (·) on an interval that
ends at t, related to the filter Dq

W q(·, t) weighted average filter applied to
the function (·) on an interval that
ends at t, related to the filter Dq

∇(·) gradient or spatial derivative of
the function (·)

Br̂(·) bias associated with the estimator
r̂ given that the argument of r̂ has
expected value (·)

E[·] expected value of [·]

P[·] probability of [·]

Var[·] variance of [·]

int(·) interior of the set (·)

∂ (·) boundary of the set (·)

Subscripts

k running index for the vectors of
monomial powers of a Taylor se-
ries

0 related to initial conditions or pre-
exponential factors

B related to the bottoms tank

D related to the distillate tank

F related to fed species

I related to reactants that are not
fed
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Nomenclature

N related to stoichiometries

P related to products

R related to reactants

T related to the total amount of all
species

a related to available or known
quantities or functions, or a min-
imal set of variables needed to de-
scribe the reaction system

c related to a convex reformulation
or controlled variables

cal related to calibration quantities

d related to diffusion or linear de-
pendence

e running index for the conserved
quantities / related to reactions
with instantaneous equilibrium

ex related to heat exchange

f related to phase F or the final time

h running index for the positions of
intermediate inlets/outlets

i running index for the reactions, or
the time intervals and switching
times

i bc related to initial and boundary
conditions

ic related to initial conditions

iic related to initial and inlet flow
conditions

in related to inlet flow

iv related to invariants

j running index for the inlets, the
diffusing species, or the inputs /
related to the jacket

k running index for the mass trans-
fers, the coefficients of the dif-
ferentiation filter, the number of
reached steady states, or the path
constraints

ℓ running index for the functions
that compose a reaction rate law

l related to liquid phase

m running index for the time in-
stants / related to mass, mass
transfer or molar quantities

max maximum value

min minimum value

n related to the nth tray, non-
controlled variables, or numbers
of moles

o related to variables with relative
degree one, or variables in the
outer loop of a cascade control
scheme

out related to outlet flow

r related to reactions, reactor, or the
r-direction

ri running index for the subintervals
in the ith time interval

re f related to reference conditions

s running index for the species / re-
lated to slow reactions

t related to variables with relative
degree two

u related to unavailable or un-
known quantities or functions
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Nomenclature

v related to extensive quantities in
the vessel

w running index for the measured
quantities

x related to vessel extents

z related to the z-direction

Superscripts

∗ optimal value / vapor pressure

+ produced

− consumed

ǫ multiplied by the volumetric frac-
tion of the phase

m related to the mth intermediate
time instant of the cubic spline

n/(n) nth time derivative

RFV reaction-flow-variant form

RV reaction-variant form

UV unknown-variant form

s setpoint

u j related to the jth input

v multiplied by the volume of the
phase

vRFV vessel reaction-flow-variant form

vRV vessel reaction-variant form
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1 Introduction

Part of this chapter is adapted from the postprint of the following article [1]:

D. Rodrigues, S. Srinivasan, J. Billeter, and D. Bonvin. Variant and invariant states for
chemical reaction systems. Comput. Chem. Eng., 73:23–33, 2015.

Link: http://doi.org/10.1016/j.compchemeng.2014.10.009.

Copyright © 2014 Elsevier Ltd.

The author of this thesis contributed to that article by developing the main novel ideas and

writing a significant part of the text. Hence, the author retains the right to include the article

in this thesis since it is not published commercially and the journal is referenced as the original

source.

1.1 Motivation

Reaction systems are used by the process industry to convert raw materials into desired
products. In particular, the (bio)chemical industry generates products that include poly-
mers, organic chemicals, vitamins, vaccines and drugs. These processes not only involve
chemical reactions, but also deal with (i) material exchange via inlet/outlet flows, mass
transfers, convection, diffusion, and (ii) energy exchange via heating and cooling.

The models of the phenomena in these processes that involve reactions can be used
for several different tasks that improve their understanding, design and operational perfor-
mance. Three applications can be highlighted: (i) estimation, whereby various quantities
that characterize the process, such as its states or parameters, are estimated for monitoring,
prediction, diagnosis or use by other applications; (ii), control, which enforces operation of
the process in a safe and reliable manner and ensures product quality; and (iii) optimization,
which provides decision policies that use the available economic, human and environmen-
tal resources in the most efficient way, while fulfilling the requirements for a controlled and
feasible process operation [2, 3, 4].

Models of (bio)chemical reaction processes may be empirical in nature [5], but they are
typically first-principles models that describe the state evolution (the mass, the concentra-
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tions, the temperature) by means of balance equations of differential nature (e.g. continuity
equation, molar balances, heat balances) and constitutive equations of algebraic nature (e.g.
equilibrium relationships, rate expressions) [6]. These models usually include information
regarding the underlying reactions (e.g. stoichiometries, reaction kinetics, enthalpies of re-
action), the transfers of mass within and between phases, and the operating mode of the
reactor (e.g. initial conditions, external exchange terms, operating constraints).

The construction of these models, as well as their use during the process operation, relies
on the collection of experimental data both in the laboratory and during production [7].
These experimental data can be obtained from a range of process measurements, such as
temperature, pressure, pH, flow rate, chromatography, and calorimetric and spectroscopic
(mid-infrared, near-infrared and ultraviolet/visible) measurements. Unfortunately, these
measurements are typically corrupted by random measurement noise. Furthermore, since
a reliable description of reaction kinetics and transport phenomena represents the main
challenge in building first-principles models for reaction systems, this kinetic part of the
model can be more or less detailed, and can be subject to more or less error. Hence, the
modeling methods, the applications of models to operation, and their use of experimental
data should fulfill their task in a way that reduces the detrimental effect on the process
performance of errors and incompleteness in models and measurements [8].

The presence of all the physical phenomena, and in particular their interactions, compli-
cates the analysis and operation of reaction systems. The analysis would be much simpler
if one could somehow decouple the effect of the various phenomena and investigate each
phenomenon individually. Furthermore, some of the states in a model are often redundant,
as there are typically more states (balance equations) than there are independent sources
of variability (reactions, exchange terms). Consequently, in this thesis, the general objective
is to obtain representations of reaction systems that address these issues and allow the de-
velopment of new methods that improve estimation, control and optimization for reaction
systems.

1.2 State of the Art

As a result of the motivating remarks above, one would ideally like to have a system-
atic way of obtaining a system representation with (i) true variants, whereby each variant
depends only on one phenomenon, and (ii) invariants that express redundancies and can
be discarded, thereby reducing the dimensionality of the model. Although these concepts
of variants and invariants are well-known and straightforward for batch reaction systems,
it would be beneficial to generalize these concepts and their application to other reaction
systems. Let us summarize the previous and current efforts to obtain such a system repre-
sentation and to develop applications of this representation to improved analysis, design,
and operation of reaction systems.

Aris and Mah [9] were among the first authors to discuss the use of the knowledge
of the stoichiometric matrix for model reduction using the concept of extents. Fjeld, Asb-
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jørnsen and co-workers [10, 12, 11, 13] introduced the concepts of reaction variants and
reaction invariants and used them for modeling and control of continuous-stirred tank re-
actors. However, some of the reaction variants proposed in the literature encompass more
than the reaction contributions since they are also affected by the inlet and outlet flows.
Hence, Friedly [14, 15] proposed to compute the extents of equivalent batch reactions
for open heterogeneous reactors, associating the remainder to transport processes, while
Friedly and Rubin [16] provided linear transformations between concentrations and these
reaction variants and invariants. For open homogeneous reaction systems, Srinivasan et al.
[17] developed a nonlinear transformation of the numbers of moles to reaction variants,
flow variants, and reaction and flow invariants, thereby separating the effects of reactions
and flows. Later, Amrhein et al. [18] refined that transformation to make it linear (at the
price of losing the one-to-one property) and therefore more easily interpretable and ap-
plicable. They also showed that, for a reactor with an outlet flow, the concept of vessel
extent is most useful, as it represents the amount of material associated with a given pro-
cess (reaction, exchange) that is still in the vessel. Bhatt et al. [19] extended that concept to
heterogeneous gas-liquid reaction systems for the case of no reaction and no accumulation
in the film, the result being decoupled vessel extents of reaction, mass transfer, inlet and
outlet, as well as true invariants that are identically equal to zero.

In particular, the concept of extent of reaction is very useful to describe the dynamic
behavior of a chemical reaction since a reaction rate is simply the derivative of the corre-
sponding extent of reaction. Bonvin and Rippin [20] and Amrhein et al. [21] used batch
extents of reaction to identify the stoichiometric matrix and the number of independent
reactions without the knowledge of reaction kinetics via target factor analysis. The use of
extents instead of concentrations for multivariate calibration has also been proposed to re-
duce the number of required calibration samples and to increase the signal-to-noise ratio
[22, 23]. Owing to the concept of extents of reaction, the concentrations of all species can
be reconstructed without knowledge of kinetics when there are at least as many measured
species as independent reactions and the inlet and outlet flows are known [24, 23].

The connection between stoichiometric and atomic matrices and balances for species
and elements has been investigated by Schneider and Reklaitis [25], and this analysis has
been related with the concept of reaction invariants by Madron and Veverka [26]. The use
of knowledge about the stoichiometry to detect structural invariants in biological reaction
networks has also been documented [27].

Various implications of reaction variants/invariants have been studied in the literature.
For example, Srinivasan et al. [17] discussed the implications of reaction and flow vari-
ants/invariants for control-related tasks such as model reduction, state accessibility, state
reconstruction and feedback linearizability. On the one hand, control laws using reaction
variants have been proposed for continuous stirred-tank reactors [28, 29, 30, 31, 32], in
most cases using the kinetic model. In addition, Amrhein et al. [33] have shown that pre-
treating the calibration data and the spectral data to reaction-variant form is needed to
ensure correct prediction of the concentrations of the spectral data when reacting mixtures
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are used to generate the calibration data. Furthermore, the use of spectral data in reaction-
variant form for multivariate curve resolution [34, 35] avoids rank deficiency of the spectral
measurement matrix and eliminates the need to use rank augmentation techniques [36].

On the other hand, the fact that reaction invariants are independent of reaction progress
has also been exploited for process analysis, design and control. For example, reaction
invariants have been used to study the state controllability and observability of continuous
stirred-tank reactors [13, 37]. The concept of reaction invariants has also been instrumental
for the design of the so-called asymptotic observers [38, 39]. Furthermore, Waller and
Mäkilä [29] and Gustafsson and Waller [40] demonstrated the use of reaction invariants
to control pH, assuming that the equilibrium reactions are very fast. Aggarwal et al. [41]
considered multi-phase reactors operating at thermodynamic equilibrium and were able to
use the concept of reaction invariants, which they labeled invariant inventories, to reduce
the order of the dynamic model and use it for control. A systematic method to determine
reaction invariants has been presented and used to automate the task of formulating mole
balance equations for the non-reacting part (such as mixing and splitting operations) of
complex processes, thereby helping determine the number of degrees of freedom for process
synthesis [42, 43].

The versatility of the concept of reaction invariants has been shown by its use in many
different contexts, such as observer design for fuel cells [44] and efficiency computation for
complex chemical systems with power production [45], and also to reduce the number of
differential equations that describe the dynamic model of batch activated sludge processes
[46]. Schultz et al. [47] defined reaction invariants in the context of carrier-mediated trans-
port in membranes and used this concept to simplify the analysis of the transport. Barbosa
and Doherty [48], and later Ung and Doherty [49], developed a nonlinear transformation
to reaction-invariant compositions in reactive distillation columns to reduce the number
of degrees of freedom in process design. This transformation to reaction invariants was
later applied to reactive chromatography and membrane reactors [50], showing that the
dynamic behavior of these reaction-separation processes with fast (equilibrium) reactions
resembles the dynamic behavior of corresponding non-reactive systems in a reduced set
of transformed variables. An important question regarding the correct choice of reference
components required by this transformation has also been addressed [51, 52].

One of the main applications of the concept of variants and invariants is model reduc-
tion. In reaction systems that exhibit time-scale separation owing to the presence of fast
and slow reactions, it has been shown that the slow dynamics are described by a lower-
dimensional state space that is invariant with respect to the fast reactions [53]. In con-
tinuous stirred-tank reactors with multi-step biochemical reaction schemes, it was shown
how the computation of reaction invariants allows neglecting the dynamics of the fast steps
[54]. The use of invariants in model reduction for thin-film deposition systems has also
been proposed [55]. Furthermore, the model reduction provided by the concept of extents
has been useful to compute insightful optimal control laws for reaction systems with one or
two reactions [56, 57].
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Identification problems are commonly solved in one step using a simultaneous method,
where an overall kinetic model comprising rate expressions for all dynamic effects is iden-
tified. This method suffers from combinatorial complexity and can lead to convergence
problems and high parameter correlation [58]. As an alternative, the incremental methods
break down the original identification problem into a set of subproblems of lower com-
plexity, which allows the individual modeling of each dynamic effect. Incremental model
identification is performed by comparing the rates or extents computed from measured con-
centrations to the values predicted by the model [59]. This comparison can be done individ-
ually for each reaction. This way, several rate expressions can be compared to experimental
data, one at a time, until the correct expression has been found and the corresponding
parameters identified. The incremental methods exist in two variants, (i) the rate-based
approach that relies on a differential method of parameter estimation via rates [60, 61],
and (ii) the extent-based approach that uses an integral method of parameter estimation
via extents [18, 19]. Both the rate-based and the extent-based approach have been used
for parameter estimation in biological network models [62, 63]. The route over extents has
certain advantages, in particular in the presence of noisy and scarce measurements [58].

Incremental model identification in its extent-based form has been applied to open ho-
mogeneous and gas-liquid reaction systems and consists of two steps: first, measured con-
centrations are transformed into individual contributions of each dynamic effect, the ex-
tents; in a second step, the rate expressions are identified one at a time and the correspond-
ing rate parameters are estimated [64]. Reaction extents have been used extensively for the
kinetic identification of reaction systems using either concentration [58] or spectroscopic
[23] measurements. An extension regarding the incorporation of calorimetric measure-
ments into the extent-based identification framework has been proposed [65]. The extent-
based approach has also been used for identification of multiphase reaction systems with
instantaneous equilibria [66]. Regarding the implementation aspects, it has been claimed
recently that the use of the adjoint method can speed up the computation of gradients for
both the simultaneous and incremental approaches, in the context of kinetic identification
of plug-flow reactors and continuous stirred-tank reactors [67, 68].

Other applications of variants and invariants, in particular of extents, have been de-
veloped. The existence of invariants allows one to derive invariant relationships among
measured variables from the material and energy balances, which by itself allows the use of
data reconciliation techniques [69]. Moreover, the rate decoupling provided by the extents,
where each state is related to a single rate process, increases the likelihood of identifying
constraints on the shape of the extents, such as monotonicity and curvature. Both the invari-
ant relationships and the shape constraints have been used to improve data reconciliation
and state estimation in reaction systems [70, 71], in the latter case via the use of a receding-
horizon nonlinear Kalman filter that allows enforcing shape constraints during the update
procedure. In the context of multivariate curve resolution via alternating regression, the use
of the shape constraints and invariant relationships has also been shown to be advantageous
to improve the signal-to-noise ratio in the concentration estimates [35]. Invariant relation-
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ships derived from the element balances have been proposed recently as a way to reduce
the number of feasible reactions in the inference of chemical reaction networks [72]. Fur-
thermore, the invariant relationships have been used to compute reachable sets and bound
the solution of models of reaction systems subject to uncertainties or disturbances in their
parameters and inputs [73, 74]. The different applications of the rate decoupling provided
by variants and invariants have been recently reviewed [75]. Finally, it is also worth men-
tioning that the use of the concept of extent of reaction in the chemical education has been
a topic of active discussion [76, 77, 78].

1.3 Research Objectives

The general objectives of this doctoral work are (i) to develop the concept of variants and
invariants, in particular for other reaction systems, and (ii) to find new applications of this
concept that can improve process operation of reaction systems, namely through improved
analysis, estimation, control and optimization. In that sense, this doctoral work can be seen
as the continuation of the work developed by previous doctoral students from the same
research group, namely Amrhein [34], Bhatt [24], and Srinivasan [79]. These applications
could take advantage of the use of the concept of variants and invariants in the following
ways: (a) to decouple the various rate processes and certain signals related to them, (b) to
process measured data and reconstruct or predict, in the absence of a kinetic model, certain
quantities that can then be used for identification and model-free estimation, control and
optimization, and (c) to simplify the dynamic model, its analysis and the design of model-
based estimation, control and optimization schemes. This doctoral work will investigate
some areas that have been less developed so far, such as the transformation to variants and
invariants in distributed reaction systems, the control of reaction systems in the presence
and in the absence of kinetic models via the concept of variants and invariants, and the use
of variants and invariants for optimization.

1.4 Organization and Main Contributions of the Thesis

The content and main contributions of the chapters that compose this thesis are sum-
marized next.

Chapter 2: Concept of Variants and Invariants for Lumped Reaction Systems This chap-
ter introduces the material and heat balances for several lumped reaction systems, the con-
cept of variants and invariants, and the transformations used to obtain them. It starts with
a discussion about the concepts of independent stoichiometries and reaction rates in Sec-
tion 2.1, where it is shown that this independence can be assumed throughout the thesis
without loss of generality. Then, in Section 2.2, the model of homogeneous lumped reaction
systems is presented via the material balance and the heat balance, including for the par-
ticular case of batch and semi-batch homogeneous reactors. Similar models are developed
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for other cases of lumped reaction systems, namely for reaction systems with instantaneous
equilibria in Section 2.3 and multiphase reaction systems in Section 2.4. For the case of
homogeneous lumped reaction systems, and without considering the heat balance, sev-
eral transformations between quantities related to numbers of moles (including numbers
of moles in variant and vessel-variant forms) and different definitions of variants and in-
variants are presented in Section 2.5, namely reaction variants and invariants, reaction and
inlet variants and invariants, batch extents, and vessel extents. The transformation from
measured quantities related to numbers of moles to extents and to reconciled quantities
also related to number of moles is discussed. At the end of this chapter, several extensions
of the concept of extents and of the transformation to extents are shown in Section 2.6, for
homogeneous reaction systems described by concentrations, multiphase reaction systems,
and several lumped reaction systems with combined material and heat balances.

Chapter 3: Concept of Extents for Distributed Reaction Systems This chapter general-
izes the concept of extents discussed in the previous chapter to distributed reaction systems
with and without energy balance, which are described by partial differential equations that
depend on time and on one or more spatial coordinates. For each reaction system, the
balance equations are written, the concept of extents is defined, and the transformation to
extents is presented. Firstly, it is shown in Section 3.2 how to make the transition between
a homogeneous lumped reactor and a single-phase plug-flow reactor, which is the simplest
case of a distributed reaction system. Next, the discussion about the concept of extents con-
tinues with other cases of distributed reaction systems, such as single-phase and multiphase
one-dimensional tubular reactors and multiphase two-dimensional tubular reactors in Sec-
tion 3.3, as well as packed and tray reactive separation columns in Section 3.4. The concept
of extents is generalized in Section 3.5 to generic distributed reaction systems, showing that
the concept of extents and the transformation to extents exist in a generic framework that is
independent of the configuration and operating conditions. At the end, in Section 3.6, sev-
eral simulated case studies are presented for the cases of a single-phase plug-flow reactor,
a single-phase one-dimensional tubular reactor, a packed reactive absorption column and a
tray reactive distillation column.

Main contributions:

• The concept of extents and the transformation to extents are generalized to dis-
tributed reaction systems, such as tubular reactors, reactive separation columns,
and generic distributed reaction systems.

Chapter 4: Estimation of Kinetic Parameters via the Incremental Approach This chap-
ter presents a new development of the extent-based incremental approach for estimation
of kinetic parameters, which can be used to guarantee global and maximum-likelihood pa-
rameter estimation. It starts by presenting in Section 4.2 the typical formulation of the
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extent-based incremental approach, which allows one to identify each reaction individually,
and reduce the number of parameters to identify via optimization to the ones that appear
nonlinearly in the investigated rate law. For this, the extents are expressed as convolution
integrals, and the structure of the rate law is described by separating the parameters that
appear linearly and nonlinearly. Then, the identification problem is formulated as the com-
parison between experimental and modeled extents, it is shown that this problem can be
reformulated only with the parameters that appear nonlinearly in the rate law as decision
variables, and the method used to compute the solution is presented. Since this formulation
of the incremental approach does not generate maximum-likelihood parameter estimates,
two methods are proposed in Section 4.3 to address this issue: (i) a method to obtain
uncorrelated experimental extents from uncorrelated measurements; and (ii) a method to
obtain unbiased estimates of rates computed from experimental measurements, which re-
sults in unbiased modeled extents. It is proven that the use of these two methods results in
maximum-likelihood parameter estimation when the sampling frequency is large enough.
In addition, it is shown in Section 4.4 how to obtain global estimation of kinetic parame-
ters with the extent-based incremental approach. For this, the rate law is approximated by
a Taylor series expansion, and the approximate identification problem is reformulated as a
polynomial optimization problem and as a convex problem, namely a semidefinite program.
Then, it is proven that one can guarantee global and maximum-likelihood parameter esti-
mation by computing the solution to this convex problem. Simulated examples illustrate
the use of the methods in this chapter to obtain maximum-likelihood parameter estimation
and to deal with identification problems with multiple local minima, namely in Section 4.5.

Main contributions:

• Methods to obtain uncorrelated experimental extents and unbiased estimates of
rates computed from measurements are presented.

• The identification problem of the extent-based incremental approach is reformu-
lated as a convex problem, using only the parameters that appear nonlinearly in
the rate law as decision variables.

• The extent-based incremental approach can be used to guarantee global and
maximum-likelihood estimation of kinetic parameters.

Chapter 5: Estimation of Rate Signals without Kinetic Models This chapter discusses
the estimation of rate signals based on measurements and without the knowledge or the
identification of their kinetic models, which exploits the fact that the concept of variants
allows isolating the different rates. The general formulation of the dynamic system con-
sidered for rate estimation is introduced in Section 5.2, and it is shown how the rates can
be isolated via transformation to variants and which assumptions are needed to compute
these variants from available measurements. Since the rate estimation method presented
in this chapter relies on numerical differentiation, a specific differentiation method, the
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Savitzky-Golay filter, is described in Section 5.3, and analytical expressions are obtained
for the error, variance and covariance of the differentiated signals. Then, it is shown in
Section 5.4 that the rate estimator obtained with the differentiating Savitzky-Golay filter is
the optimal rate estimator based on convolution filters. The transformation to variants that
provides maximum-likelihood estimation of unknown rates is provided, and the resulting
analytical expressions for the error and variance of the rate estimates are given.

Main contributions:

• The transformation to variants is used to isolate the rate signals and estimate them
without identification of kinetic models.

• The optimal rate estimator based on convolution filters is obtained via numerical
differentiation using a Savitzky-Golay filter.

• Analytical expressions for the error and variance of the rate estimates are given.

Chapter 6: Reactor Control This chapter shows how the concept of variants can be used
for reactor control, both with and without kinetic models. In the case of control with kinetic
models, two cases are presented in Section 6.2, both via feedback linearization, which pro-
vide either offset-free control of vessel extents using the model in terms of vessel extents or
offset-free control of numbers of moles using the model in terms of numbers of moles. In the
case of control without kinetic models, one takes advantage of rate estimation without ki-
netic models to implement a control scheme via feedback linearization in Section 6.3. After
the description of the general dynamic system that is considered for control without kinetic
models, the evolution of the controlled variables and inputs via feedback linearization is
shown. As a consequence of the proposed design of the outer-loop feedback controller, it is
shown that the expected values of controlled variables converge exponentially to their set-
points, and an expression for the variance of the controlled variables is also obtained. This
allows assessing the stability of the closed-loop system, based on the expected value and
variance of the controlled variables. Then, a simulated example of control of temperature
and reactant concentrations in a CSTR illustrates the control scheme without kinetic models
and compares it with other controllers.

Main contributions:

• Offset-free control of vessel extents and numbers of moles via feedback lineariza-
tion is obtained using kinetic models.

• A reactor control scheme that does not rely on kinetic models is designed via rate
estimation and feedback linearization.

• Convergence of the controlled variables to their setpoints and closed-loop stability
is achieved without the use of kinetic models.
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Chapter 7: Fast Steady-state Optimization of Dynamic Systems This chapter addresses
the fast estimation of plant steady state for imperfectly known dynamic systems and its
application to fast steady-state optimization. It starts by presenting in Section 7.2 the as-
sumptions that need to be satisfied by the dynamic model considered for this approach,
which result in the existence of fast and slow states and an unknown part of the dynamics
that depends only on the fast states. For this type of dynamic systems, it is shown in Section
7.3 how measurement-based estimation of unknown rates without kinetic models can be
obtained. Then, it is described in Section 7.4 how the use of feedback control and estima-
tion of the unknown rates without kinetic models can be used to estimate the plant steady
state during the transient of the slow part, as soon as feedback control enforces conver-
gence of the fast part to steady state. The speed-up provided by feedback control of the fast
states is quantified, and the use of control via feedback linearization and rate estimation for
this purpose is described. The method used for steady-state estimation based on estimates
of the unknown rates is presented, and the quality of these steady-state estimates is also
quantified. The assumptions needed for the dynamic model with fast and slow states, the
feedback control scheme, and the steady-state estimation method are shown to be realistic
for the case of a generic continuous stirred-tank reactor (CSTR), where steady-state esti-
mation can also be implemented directly via the concept of extents. The fast estimation of
plant steady state is illustrated with a simulated example of a CSTR. In addition, the use
of fast estimation of plant steady state for real-time steady-state optimization is described
in Section 7.5. Several configurations for estimation of plant steady state are compared in
the context of real-time optimization, showing that the configuration with feedback control
and rate estimation is the fastest scheme. At the end, real-time steady-state optimization
with fast steady-state estimation is also illustrated with an example of a CSTR, which shows
that the optimization problem can be reformulated in terms of the fast part via rate esti-
mation and how this measurement-based optimization method deals with the presence of
measurement noise.

Main contributions:

• Fast estimation of plant steady state for imperfectly known dynamic systems with
fast and slow states is implemented via the use of feedback control and rate esti-
mation without kinetic models.

• The assumptions needed for fast estimation of plant steady state are shown to be
realistic for continuous stirred-tank reactors.

• Fast steady-state optimization is achieved by combining real-time steady-state op-
timization with fast estimation of plant steady state via feedback control and rate
estimation.

Chapter 8: Dynamic Optimization via Parsimonious Input Parameterization This chap-
ter discusses the use of a parsimonious input parameterization for dynamic optimization,
which takes advantage of the concept of extents in the cases of batch, semi-batch and contin-
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uous reactors. The first step is the formulation of the relevant class of dynamic optimization
problems in Section 8.2. Next, in Section 8.3, the analytical computation of adjoint-free
optimal control laws is presented for all the types of arcs that may occur in the optimal
solution, resulting in a finite set of plausible arc sequences. It is shown that this analytical
computation may benefit from the use of the concept of extents to convert the model of
batch, semi-batch and continuous reactors to a general framework. An alternative method
to approximate the adjoint-free optimal control laws using cubic splines is also presented.
Then, the generic idea of the approach used for parsimonious input parameterization of the
optimal inputs is presented in Section 8.4, which allows describing the dynamic model for
an arc sequence using switching times and initial conditions of certain arcs as input param-
eters. Details are given about the implementation of the numerical optimization method for
an arc sequence that is used to find the optimal parameter values, and it is shown how one
can use the solution to this optimization problem to verify whether the necessary conditions
of optimality given by the Pontryagin’s maximum principle are satisfied. The implications
of the reduction in the number of decision variables for global dynamic optimization are
discussed. Finally, some simulated examples are presented in Section 8.5 to illustrate the
developed methods: maximization of the profit and minimization of the batch time of a chlo-
rination reaction; maximization of the amount of product of an acetoacetylation reaction;
maximization of the amount of distillate of a batch distillation column; and maximization
of the amount of product of a non-isothermal reaction.

Main contributions:

• For a generic class of dynamic optimization problems, finite sets of plausible arc
sequences are constructed, where each arc that may occur is described by an
adjoint-free optimal control law.

• The analytical computation of adjoint-free optimal control laws is made possible
using the concept of extents or approximations of these control laws via cubic
splines.

• A parsimonious input parameterization that allows describing the dynamic model
for an arc sequence with few parameters, namely switching times and initial con-
ditions of the arcs, is presented.

Chapter 9: Conclusion. The main conclusions and contributions of the thesis are summa-
rized, some final remarks are mentioned, and an outlook for future work is provided.
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2 Concept of Variants and Invariants

for Lumped Reaction Systems

Part of this chapter is adapted from the postprint of the following article [1]:

D. Rodrigues, S. Srinivasan, J. Billeter, and D. Bonvin. Variant and invariant states for
chemical reaction systems. Comput. Chem. Eng., 73:23–33, 2015.

Link: http://doi.org/10.1016/j.compchemeng.2014.10.009.

Copyright © 2014 Elsevier Ltd.

The author of this thesis contributed to that article by developing the main novel ideas and

writing a significant part of the text. Hence, the author retains the right to include the article

in this thesis since it is not published commercially and the journal is referenced as the original

source.

2.1 Independent Reactions and Inlets

2.1.1 Reaction network

Let us consider a reaction system with S species living in the set S =
�
X1, . . . ,XS

	
and

Rd reactions. The system can be represented by the following reaction network:

S∑

s=1

ν−i,sXs →
S∑

s=1

ν+
i,sXs, ∀i = 1, . . . ,Rd , (2.1)

where ν−
i,s and ν+

i,s are nonnegative numbers that represent the relative consumption and
production of the sth species by the ith reaction, for all i = 1, . . . ,Rd and s = 1, . . . ,S. If
ν−

i,s > 0, then the sth species is a reactant of the ith reaction; if ν+
i,s > 0, then the sth species

is a product of the ith reaction.

The reaction network given above is quite general in the sense that it can be applied
to any reaction system with constant stoichiometries. In the case of a reversible reaction,
the reaction can be written as two irreversible reactions, one for the forward reaction and
another for the backward reaction. In the case of a reaction with catalysts or autocatalysts,
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Chapter 2. Concept of Variants and Invariants for Lumped Reaction Systems

these species can be included as a reactant and as a product in the same reaction.

The quantitative relationships among species that participate in reactions are known as
stoichiometries. Hence, the net production of the sth species by the ith reaction is given by
the stoichiometric coefficient νi,s, defined as

νi,s := ν+
i,s − ν

−
i,s. (2.2)

The stoichiometric matrix Nd of dimension Rd×S contains the stoichiometric coefficients
and is defined as

Nd :=







ν1,1 · · · ν1,S
...

...
...

νRd ,1 · · · νRd ,S







. (2.3)

The species in the reaction system are composed of a number of quantities that are
conserved by the reactions, namely atoms of different elements and electrical charges. Let
Ed denote the number of such conserved quantities living in the set E , and let αs,e denote the
number of the eth conserved quantity in the sth species. The atomic matrix A of dimension
S× Ed and rank E > 0 is then defined as

A :=







α1,1 · · · α1,Ed

...
...

...
αS,1 · · · αS,Ed







. (2.4)

For any stoichiometric matrix Nd , the Rd stoichiometries must satisfy a conservation
equation for each one of the Ed conserved quantities, that is,

ATNT
d = 0Ed×Rd

, (2.5)

which implies that the columns of NT
d

lie in the null space of AT. Hence, the rank of Nd ,
denoted as RN , cannot be greater than the dimension of the null space of AT.

Since AT has S columns, one can infer from the rank-nullity theorem that the dimension
of the null space of AT is S− E, which implies that

RN := rank(Nd)≤ S− E < S. (2.6)

Now let rd(t) denote the Rd -dimensional vector of reaction rates that correspond to the
stoichiometric matrix Nd . These reaction rates are typically functions of the S-dimensional
vector c(t) of concentrations of the S species and of the temperature T (t), which represent
the so-called reaction kinetics, but they are modeled here as time-varying signals rd(t),
without the explicit dependence on c(t) and T (t). One can observe that the net production
of the S species by the reactions at time t is given by NT

d
V (t)rd(t), where V (t) is the volume.

14
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2.1.2 Independent reactions

Note that the stoichiometries that correspond to the rows of the matrix Nd may be lin-
early independent or not. Furthermore, the reaction rates rd(t)may be linearly independent
or not over a given finite time interval t ∈ [t0, tH]. Ideally, one would like to describe the
net production by the reactions with linearly independent stoichiometries and linearly in-
dependent reaction rates (over a time interval). In that case, we would obtain independent
reactions, as described by the following definition [34]:

Definition 2.1 (Independent reactions). Let the net production of the S species by R reac-
tions at time t be given by NTV (t)r(t), where N is an R×S stoichiometric matrix, V (t) is the
volume, and r(t) is an R-dimensional vector of reaction rates. The R reactions are said to be
independent if (i) the rows of N, that is, the stoichiometries, are linearly independent, and
(ii) the reaction rates r(t) are linearly independent over a finite time interval t ∈ [t0, tH],
which is expressed by the condition βTr(t) = 0,∀t ∈ [t0, tH]⇔ β = 0R.

Hence, to obtain a model of the reaction system expressed only in terms of independent
reactions, one needs to obtain independent stoichiometries and independent reaction rates.

2.1.3 Transformation to independent stoichiometries and reaction rates

Let us recall that Nd is an Rd × S stoichiometric matrix of rank RN , where Rd is the
number of (possibly linearly dependent) stoichiometries. The stoichiometries in the matrix
Nd result from a linear combination, specified by an Rd × RN matrix LN of rank RN , of RN

linearly independent stoichiometries, specified by an RN×S matrix N of rank RN , which can
be written as

Nd = LN N. (2.7)

Let also Rd denote the Rd ×H matrix of reaction rates at the instants t1, . . . , tH of rank
Rr , where Rd is the number of (possibly linearly dependent for t ∈ {t1, . . . , tH}) reaction
rates and H > Rr . The reaction rates in the matrix Rd result from a linear combination,
specified by an Rd × Rr matrix Lr of rank Rr , of Rr linearly independent reaction rates,
specified by an Rr ×H matrix R of rank Rr , which can be written as

Rd = LrR. (2.8)

Two methods are presented in Appendix A.1 to decompose any matrix Md with Rd rows
and rank Rs as

Md = L̂sM̂, (2.9)

where L̂s is an Rd × Rs matrix of rank Rs and M̂ is an Rs × C matrix of rank Rs, that is,
with Rs linearly independent rows. Although a singular value decomposition could be used
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for this purpose, the goal here is to look for a more physically meaningful decomposition
in the context of independent reactions. Hence, these two methods can be used to obtain
independent stoichiometries (upon replacing C by S, M by N and the subscript s by N) or
independent reaction rates (upon replacing C by H, M by R and the subscript s by r).

Consequently, to obtain a model of the reaction system expressed only in terms of inde-
pendent reactions, the following steps are taken:

1. (i) One finds a matrix L̂N with columns that are a basis of the null space of KT
N , where

KN is a matrix with columns that are a basis of the null space of NT
d
, and one computes

N̂ =
�

L̂
T
N L̂N

�−1
L̂

T
NNd , or (ii) one verifies that there exists an RN × S matrix N̂ of in-

dependent stoichiometries and of rank RN such that Nd = NdN̂
T
�

N̂N̂
T
�−1

N̂, and one

computes L̂N = NdN̂
T
�

N̂N̂
T
�−1

. In both cases (i) and (ii), L̂N is an Rd × RN matrix of

rank RN , N̂ is an RN × S matrix of rank RN , and

Nd = L̂N N̂. (2.10)

2. (i) One finds a matrix L̂r with columns that are a basis of the null space of KT
r , where Kr

is a matrix with columns that are a basis of the null space of RT
d
, and one computes R̂=

�

L̂
T
r L̂r

�−1
L̂

T
r Rd , or (ii) one verifies that there exists an Rr ×H matrix R̂ of independent

reaction rates and of rank Rr such that Rd = RdR̂
T
�

R̂R̂
T
�−1

R̂, and one computes

L̂r = RdR̂
T
�

R̂R̂
T
�−1

. In both cases (i) and (ii), L̂r is an Rd × Rr matrix of rank Rr , R̂ is
an Rr ×H matrix of rank Rr , and

Rd = L̂r R̂. (2.11)

Note that this implies that there exists an Rr -dimensional vector of independent reac-
tion rates r̂(t) (for t ∈ {t1, . . . , tH}) such that

rd(th) = L̂r r̂(th), ∀h= 1, . . . , H. (2.12)

3. At this point, one can write that

NT
drd(th) = N̂

T
L̂

T
N L̂r r̂(th), ∀h= 1, . . . , H. (2.13)

Let us define the number of independent reactions R = min(RN ,Rr). Then, there are
two cases:
(i) if RN = R, then

N = N̂, (2.14)

r(t) = L̂
T
N L̂r r̂(t), (2.15)
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or (ii) if RN > R, then

N = L̂
T
r L̂N N̂, (2.16)

r(t) = r̂(t). (2.17)

In both cases (i) and (ii), N is an R×S matrix of rank R, r(t) is an R-dimensional vector
such that βTr(t) = 0,∀t ∈ [t0, tH]⇔ β = 0R, and

NT
drd(th) = NTr(th), ∀h= 1, . . . , H. (2.18)

Since it is known that the number of linearly independent stoichiometries is less than
the number of species, that is, RN < S, and R ≤ RN by definition of R, the number of
independent reactions is less than the number of species, that is, R< S.

In summary, one can assume without loss of generality that:

1. There are R independent reactions, and the number of independent reactions is less
than the number of species, that is, R< S.

2. The stoichiometric matrix N is of dimension R× S and of rank R.
3. The vector of reaction rates r(t) is of dimension R, and these R reaction rates are

independent over any given time interval.

2.1.4 Independent inlets

As mentioned above for the case of independent reactions, one would like to describe
the net supply by the inlet flows with linearly independent inlet compositions and linearly
independent inlet flowrates (over a time interval). In that case, we would obtain indepen-
dent inlets, as described by the following definition:

Definition 2.2 (Independent inlets). Let the net supply of the S species by p inlets at time
t be given by Winuin(t), where Win is an S × p inlet-composition matrix and uin(t) is a
p-dimensional vector of inlet flowrates. The p inlets are said to be independent if (i) the
columns of Win, that is, the inlet compositions, are linearly independent, and (ii) the inlet
flowrates uin(t) are linearly independent over a finite time interval t ∈ [t0, tH], which is
expressed by the condition βTuin(t) = 0,∀t ∈ [t0, tH]⇔ β = 0p.

To obtain a model of the reaction system expressed only in terms of independent inlets,
one needs to obtain independent inlet compositions and inlet flowrates, as shown for the
case of independent reactions.

2.2 Model of Homogeneous Reaction Systems

Let us consider an open homogeneous reactor with S species, R independent reactions,
p independent inlets and one outlet.

17
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2.2.1 Material balance equations, n(t)

The material balance is expressed by the S-dimensional vector n(t) of numbers of moles
of the S species, which are given by the ordinary differential equations (ODEs)

ṅ(t) = NTrv(t) +Win(t)uin(t)−ω(t)n(t), n(0) = n0, (2.19)

where rv(t) := V (t) r(t), with V (t) the volume and r(t) the R-dimensional vector of reaction
rates, uin(t) is the p-dimensional vector of inlet mass flowrates, ω(t) := uout (t)

m(t)
is the inverse

of the residence time, with uout(t) the outlet mass flowrate and m(t) the mass, N is the R×S

stoichiometric matrix, Win(t) is the S × p matrix of compositions of the inlets, whose jth
column is Win, j(t) :=M−1

w w̌in, j(t), with Mw the S-dimensional diagonal matrix of molecular
weights and w̌in, j(t) the S-dimensional vector of weight fractions of the jth inlet, and n0

are the initial numbers of moles.

This material balance holds independently of the operating conditions, that is, the way
the variables uin(t) and uout(t) are manipulated according to a control objective, or the way
the reaction rates r(t) vary due to the concentrations and temperature. Hence, this material
balance is also valid for nonisothermal homogeneous reactors.

The mass balance could be computed by the continuity equation

ṁ(t) = 1T
puin(t)−ω(t)m(t), m(0) = m0, (2.20)

where m0 is the initial mass. However, by expressing the mass as

m(t) = 1T
SMwn(t), (2.21)

one can observe that this mass balance and the material balance in Eq. (2.19) are linearly
dependent.

If necessary, the concentrations c(t) can be computed from the numbers of moles as
c(t) =

n(t)

V (t)
, with the volume given by V (t) =

m(t)

ρ(t)
, where the density ρ(t) is a function of

the concentrations and temperature. Hence, the concentrations can also be described by
the following ODEs:

ċ(t) =
ṅ(t)

V (t)
−

V̇ (t)

V (t)
c(t)

=
1

V (t)

�

NTrv(t) +Win(t)uin(t)−ω(t)n(t)
�

−
V̇ (t)

V (t)
c(t)

= NTr(t) +Win(t)
uin(t)

V (t)
−

�

ω(t) +
V̇ (t)

V (t)

�

c(t), c(0) =
n0

V0
, (2.22)
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where

ω(t) +
V̇ (t)

V (t)
=ω(t) +

ṁ(t)

m(t)
−
ρ̇(t)

ρ(t)
=

1T
puin(t)

m(t)
−
ρ̇(t)

ρ(t)
. (2.23)

Note that the concentrations c(t) are dependent since the concentration of one species
is determined by the remaining S − 1 concentrations, which means that only S − 1 concen-
trations are needed as states and only S − 1 of the ODEs (2.22) are necessary. This can be
shown by noticing that the concentrations are subject to the constraint

ρ(t) =
m(t)

V (t)
=

1T
SMwn(t)

V (t)
= 1T

SMwc(t), (2.24)

with ρ(t) a function of the concentrations and temperature. However, one additional state
is needed to express the dimension of the system, for example m(t), thus the number of
states needed to fully describe the system is S.

2.2.2 Heat balance equation, Q(t)

The energy balance is expressed by the enthalpy H(t), which is given by the ODE

Ḣ(t) = qex(t) + hin(t)
Tuin(t)−ω(t)H(t), H(0) = H0, (2.25)

where qex(t) is the exchanged heat power, and hin(t) is the p-dimensional vector of specific
enthalpies of the inlets. The enthalpy H(t) depends on the reactor temperature T (t), the
reactor pressure P(t) and the numbers of moles n(t). The exchanged heat power qex(t)

includes different sources, namely:

• The power exchanged with a heating/cooling jacket, given by the term UA(T j(t) −

T (t)), where U is the overall heat transfer coefficient, A is the heat transfer area, and
T j(t) is the jacket temperature.

• The power dissipated by the stirrer, given by the term M(t)φ̇(t), where M(t) is the
stirrer torque and φ̇(t) is its angular speed.

• The compression work, given by the term V (t)Ṗ(t).

Let us assume that the enthalpies of mixing are negligible, and let Hm(T, P) denote the
S-dimensional vector of molar enthalpies of the S species at the temperature T and pressure
p. Then, the enthalpy is given by

H(t) = Hm(T (t), P(t))Tn(t), (2.26)

and the specific enthalpies of the inlets are given by

hin, j(t) = Hm(Tin, j(t), Pin, j(t))
TWin, j(t), ∀ j = 1, . . . , p, (2.27)

where Tin, j(t) and Pin, j(t) are the temperature and the pressure of the jth inlet.
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The molar enthalpies are such that

∂Hm

∂ T
(T, P) = cp(T, P), (2.28)

∂Hm

∂ P
(T, P) = vm(T, P)−

∂ vm

∂ T
(T, p)T, (2.29)

with cp(T, P) and vm(T, P) the S-dimensional vectors of molar heat capacities at constant
pressure and molar volumes, at the temperature T and pressure P, for the state of matter
of the homogeneous phase.

Let us assume that the molar enthalpies do not depend on the pressure, that is,

∂Hm

∂ P
(T, P) = 0S, (2.30)

which implies that the molar heat capacities at constant pressure do not depend on the
pressure either since

∂ cp

∂ P
(T, P) =

∂

∂ P

�
∂Hm

∂ T
(T, P)

�

=
∂

∂ T

�
∂Hm

∂ P
(T, P)

�

= 0S . (2.31)

The enthalpy can also be expressed in differential form as

Ḣ(t) =
∂Hm

∂ T
(T (t), P(t))Tn(t)Ṫ (t) +Hm(T (t), P(t))Tṅ(t), (2.32)

which implies that the energy balance can be written as

cp(T (t), Pre f )
Tn(t)Ṫ (t) +Hm(T (t), Pre f )

Tṅ(t) = qex(t) +hin(t)
Tuin(t)−ω(t)H(t),

(2.33)

where Pre f is the reference pressure.

Let us now define the difference of the specific enthalpies of the inlets with respect to
the reactor as

∆T hin, j(t) :=
�
Hm(Tin, j(t), Pre f )−Hm(T (t), Pre f )

�T
Win, j(t)

=

∫ Tin, j(t)

T(t)

cp(θ , Pre f )
TWin, j(t)dθ , ∀ j = 1, . . . , p, (2.34)

which implies that

∆T hin(t)
T = hin(t)

T −Hm(T (t), Pre f )
TWin(t), (2.35)

and let ∆H denote the S-dimensional vector of molar enthalpies of formation of the S

species at the reference temperature Tre f and pressure Pre f .
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Then, the energy balance is expressed by the temperature T (t), which is given by the
ODE

Ṫ (t) =
qex(t) + hin(t)

Tuin(t)−ω(t)H(t)

cp(T (t), Pre f )
Tn(t)

−Hm(T (t), Pre f )
T NTrv(t) +Win(t)uin(t)−ω(t)n(t)

cp(T (t), Pre f )
Tn(t)

=
−∆T Hr(t)

Trv(t) + qex(t) +∆
T hin(t)

Tuin(t)

cp(T (t), Pre f )
Tn(t)

, T (0) = T0, (2.36)

where

∆T Hr(t) := NHm(T (t), Pre f )

= NHm,re f +N
�
Hm(T (t), Pre f )−Hm(Tre f , Pre f )

�

= N



∆H+

∫ T(t)

Tre f

cp(θ , Pre f )dθ



 (2.37)

is the R-dimensional vector of enthalpies of reaction at T (t), with Hm,re f := Hm(Tre f , Pre f )

the molar enthalpies of the species at the reference temperature Tre f and pressure Pre f .
Note that ∆T Hr(t) is not constant, and ∆T hin(t) is not constant either even if the com-
position and temperature of the inlets are constant, because they depend on the reactor
temperature T (t).

Note that it would also be possible to write the enthalpy as

H(t) = HT
m,re f n(t) + c̄p(t)

Tn(t)
�

T (t)− Tre f

�

, (2.38)

where c̄p(t) :=
∫ T(t)

Tre f
cp(θ , Pre f )dθ/

�

T (t)− Tre f

�

is the S-dimensional vector of average

molar heat capacities at constant pressure between T (t) and Tre f , and the specific en-
thalpies of the inlets as

hin, j(t) = HT
m,re f Win, j(t) + c̄p,in, j(t)

TWin, j(t)
�

Tin, j(t)− Tre f

�

, ∀ j = 1, . . . , p,

(2.39)

where c̄p,in, j(t) :=
∫ Tin, j(t)

Tre f
cp(θ , Pre f )dθ/

�

Tin, j(t)− Tre f

�

is the S-dimensional vector of

average molar heat capacities at constant pressure between Tin, j(t) and Tre f .

Let us define the heat as

Q(t) := c̄p(t)
Tn(t)

�

T (t)− Tre f

�

, (2.40)
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and the specific heats of the inlets as

Ťin, j(t) := c̄p,in, j(t)
TWin, j(t)

�

Tin, j(t)− Tre f

�

, ∀ j = 1, . . . , p, (2.41)

which implies that

Q(t) = H(t)−HT
m,re f n(t), (2.42)

and

Ťin(t)
T = hin(t)

T −HT
m,re f Win(t). (2.43)

Hence, the heat balance can also be expressed by the heat Q(t), according to

Q̇(t) = Ḣ(t)−HT
m,re f ṅ(t)

= qex(t) + hin(t)
Tuin(t)−ω(t)H(t)

−HT
m,re f

�

NTrv(t) +Win(t)uin(t)−ω(t)n(t)
�

= −∆HT
r rv(t) + qex(t) + Ťin(t)

Tuin(t)−ω(t)Q(t),

Q(0) = Q0 := c̄T
p,0n0

�

T0 − Tre f

�

, (2.44)

where∆Hr := NHm,re f = N∆H is the R-dimensional vector of enthalpies of reaction at Tre f .
Note that ∆Hr is constant, and Ťin(t) is also constant if the composition and temperature
of the inlets are constant.

Note that one can combine the material and heat balances by describing the system with

the states z(t) :=

�

n(t)

Q(t)

�

.

2.2.3 Balances in batch and semi-batch homogeneous reactors

In the case of batch homogeneous reactors, there are no inlets and no outlet, which
implies that p = 0 and ω(t) = 0. Hence, the material balance expressed by the numbers of
moles is given by

ṅ(t) = NTrv(t), n(0) = n0, (2.45)

whereas the heat balance expressed by the heat is given by

Q̇(t) = −∆HT
r rv(t) + qex(t), Q(0) = Q0. (2.46)

In the case of semi-batch homogeneous reactors, there is at least one inlet and no outlet,
which implies that p > 0 and ω(t) = 0.1 Hence, the material balance expressed by the

1Although the reactors with an outlet and no inlets are also classified in the literature as semi-batch reactors,
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numbers of moles is given by

ṅ(t) = NTrv(t) +Win(t)uin(t), n(0) = n0, (2.47)

whereas the heat balance expressed by the heat is given by

Q̇(t) = −∆HT
r rv(t) + qex(t) + Ťin(t)

Tuin(t), Q(0) = Q0. (2.48)

2.3 Model of Reaction Systems with Instantaneous Equilibria

Let us assume that, in an open homogeneous reactor, Re reaction rates re(t) are fast
(with instantaneous equilibrium) and Rs reaction rates rs(t) are slow. Furthermore, the fast
reaction rates are given by

re(t) =
1

ε
ϕe

�
n(t),Q(t)

�
, (2.49)

where ε is a small parameter and ϕ e

�
n(t),Q(t)

�
is an Re-dimensional vector.

2.3.1 Material balance equations, ns(t)

Let us consider the material balance discussed in Section 2.2. The classification of the
reaction rates as fast and slow allows us to write the dynamic model in Eq. (2.19) as

ṅ(t) = NT
e

V (t)

ε
ϕ e

�
n(t),Q(t)

�
+φs(t)−ω(t)n(t), n(0) = n0, (2.50)

where

φs(t) := NT
s rv,s(t) +Win(t)uin(t), (2.51)

with rv,s(t) := V (t)rs(t).

Upon defining the fast time scale τ = t

ε
, this system takes the form

d

dτ
n(t) = NT

e V (t)ϕ e

�
n(t),Q(t)

�
+ ε
�

φs(t)−ω(t)n(t)
�

, (2.52)

which implies that, when ε→ 0, the fast dynamics of the system are described by

d

dτ
n(t) = NT

e V (t)ϕ e

�
n(t),Q(t)

�
. (2.53)

Let us assume that the rank of the matrix NT
e is Re, that is, it has full column rank,

which can always be achieved via appropriate choice of the stoichiometries and reaction

in the remainder of this thesis the concept of semi-batch reactors refers only to the reactors with at least one
inlet and no outlet, also known as fed-batch reactors.
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Chapter 2. Concept of Variants and Invariants for Lumped Reaction Systems

rates according to the results in Section 2.1. Then, the quasi-steady-state constraints for the
system take the form

0Re
= ϕ e

�
n(t),Q(t)

�
. (2.54)

The system of differential-algebraic equations (DAEs) given by the differential equation
(2.50) and algebraic equation (2.54), which describes the slow dynamics of the system, is
of high index and leads to an indetermination that is typically handled via differentiation of
Eq. (2.54). The following alternative method is designed to deal with this situation.

The null space of the matrix Ne of rank Re has the dimension qe := S−Re. Let the S×qe

matrix Pe be such that its columns span the null space of Ne, that is, NePe = 0Re×qe
. Then,

one can define the Ss = qe numbers of moles of slow components that are unaffected by the
fast reactions as

ns(t) = PT
e n(t), (2.55)

and write the corresponding slow dynamics as

ṅs(t) = PT
e

�

NT
s rv,s(t) +Win(t)uin(t)

�

−ω(t)ns(t), ns(0) = PT
e n0, (2.56)

which are independent of the fast reactions.

2.3.2 Heat balance equation, Qs(t)

Let us consider the heat balance discussed in Section 2.2. The classification of the
reaction rates as fast and slow allows us to write the dynamic model in Eq. (2.44) as

Q̇(t) = −∆HT
r,e

V (t)

ε
ϕ e

�
n(t),Q(t)

�
+ψs(t)−ω(t)Q(t), Q(0) = Q0, (2.57)

where

ψs(t) := −∆HT
r,srv,s(t) + qex(t) + Ťin(t)

Tuin(t), (2.58)

with rv,s(t) := V (t)rs(t).

Upon defining the fast time scale τ = t

ε
, this system takes the form

d

dτ
Q(t) = −∆HT

r,eV (t)ϕ e

�
n(t),Q(t)

�
+ ε
�

ψs(t)−ω(t)Q(t)
�

, (2.59)

which implies that, when ε→ 0, the fast dynamics of the system are described by

d

dτ
Q(t) = −∆HT

r,eV (t)ϕ e

�
n(t),Q(t)

�
. (2.60)
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Let the S-dimensional vector ∆He be such that Ne∆He = ∆Hr,e. Then, one can define
the slow heat that is unaffected by the fast reactions as

Qs(t) = ∆HT
e n(t) +Q(t), (2.61)

and write the corresponding slow dynamics as

Q̇s(t) = ∆HT
e

�

NT
s rv,s(t) +Win(t)uin(t)

�

−∆HT
r,srv,s(t) + qex(t) + Ťin(t)

Tuin(t)

−ω(t)Qs(t), Qs(0) = ∆HT
e n0 +Q0, (2.62)

which is independent of the fast reactions.

Note that one can combine the material and heat balances by describing the system with

the states zs(t) :=

�

ns(t)

Qs(t)

�

.

2.3.3 Computation of solutions

It still needs to be shown how one could obtain the solution n(t) and Q(t) for the right-
hand side of Eqs. (2.56) and (2.62) from zs(t). For this, one can use the Re equations in
Eq. (2.54), the Ss equations in Eq. (2.55), and the equation in Eq. (2.61) to obtain the Re+

Ss + 1 = S + 1 variables n(t) and Q(t), provided that







∂ϕe

∂ n

�
n(t),Q(t)

� ∂ϕe

∂Q

�
n(t),Q(t)

�

PT
e 0Ss

∆HT
e 1







is nonsingular along the solution.

Hence, the system of DAEs given by the differential equations (2.56) and (2.62) and
algebraic equations (2.54), (2.55) and (2.61), which describes the slow dynamics of the
system, is of index 1. This implies that its solution does not require time differentiation.
Note that this is an extension of what had been shown previously only in the case of isother-
mal reaction systems [53]. Nevertheless, Appendix A.2 shows that the solution of the system
of DAEs of index 1 is the same as the solution obtained via differentiation of Eq. (2.54).

2.4 Model of Multiphase Reaction Systems

Let us now consider an open reactor with multiple phases. Let us also assume that the
reactor is lumped, that is, each phase is well mixed, the reactions take place only in the bulk
of each phase, and each phase exchanges material with the other phases by mean of steady-
state mass transfer, that is, with no accumulation in the boundary layers. The subscript
(·) f denotes quantities that are related to each phase F, where there are S f species, R f

independent reactions, pm, f mass transfers (that is, species transferring to or from phase F),
p f independent inlets and one outlet.
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Chapter 2. Concept of Variants and Invariants for Lumped Reaction Systems

2.4.1 Material balance equations, n f (t)

The material balance for phase F is expressed by the S f -dimensional vector n f (t) of
numbers of moles of the S f species in phase F, which are given by the ODEs

ṅ f (t) = NT
f rv, f (t) + Em, fφ

v
m, f (t) +Win, f (t)uin, f (t)−ω f (t)n f (t),

n f (0) = n f ,0, (2.63)

where rv, f (t) := Vf (t) r f (t), with Vf (t) the volume of phase F and r f (t) the R-dimensional
vector of reaction rates in phase F, uin, f (t) is the p f -dimensional vector of inlet mass

flowrates to phase F, ω f (t) :=
uout, f (t)

m f (t)
is the inverse of the residence time in phase F, with

uout, f (t) the outlet mass flowrate from phase F and m(t) the mass of phase F, N f is the
R f × S f stoichiometric matrix in phase F, Win, f (t) is the S f × p f matrix of compositions of
the inlets to phase F, whose jth column is Win, f , j(t) := M−1

w, f w̌in, f , j(t), with Mw, f the S f -
dimensional diagonal matrix of molecular weights and w̌in, f , j(t) the S f -dimensional vector
of weight fractions of the jth inlet to phase F, and n f ,0 are the initial numbers of moles
in phase F. Additionally, φv

m, f (t) := Vf (t)φm, f (t), with φm, f (t) the pm, f -dimensional vec-
tor of molar mass-transfer rates per unit of volume describing the material transferred to
phase F, and Em, f is an S f × pm, f matrix with each row having one element equal to 1 if the
corresponding species is transferred to phase F and the remaining elements equal to 0.

2.4.2 Heat balance equation, Q f (t)

Let cp, f (T, P) denote the S f -dimensional vector of molar heat capacities at constant
pressure, at the temperature T and pressure P, for the state of matter of phase F. Let us
define the heat in phase F as

Q f (t) := c̄p, f (t)
Tn f (t)

�

T f (t)− Tre f

�

, (2.64)

where c̄p, f (t) :=
∫ Tf (t)

Tre f
cp, f (θ , Pre f )dθ/

�

T f (t)− Tre f

�

is the S f -dimensional vector of av-

erage molar heat capacities at constant pressure between T f (t) and Tre f , with T f (t) the
temperature of phase F, and let us define the specific heats of the inlets to phase F as

Ťin, f , j(t) := c̄p,in, f , j(t)
TWin, f , j(t)

�

Tin, f , j(t)− Tre f

�

, ∀ j = 1, . . . , p f , (2.65)

where c̄p,in, f , j(t) :=
∫ Tin, f , j(t)

Tre f
cp, f (θ , Pre f )dθ/

�

Tin, f , j(t)− Tre f

�

is the S f -dimensional vec-

tor of average molar heat capacities at constant pressure between Tin, f , j(t) and Tre f , with
Tin, f , j(t) the temperature of the jth inlet to phase F.

Then, the heat balance for phase F can be expressed by the heat Q f (t) in phase F, which
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is given by the ODE

Q̇ f (t) = −∆HT
r, f rv, f (t)−∆HT

m, fφ
v
m, f (t) + qex , f (t) + Ťin, f (t)

Tuin, f (t)−ω f (t)Q f (t),

Q f (0) = Q f ,0 := c̄T
p, f ,0n f ,0

�

T f ,0− Tre f

�

, (2.66)

where ∆Hr, f := N f∆H f is the R f -dimensional vector of enthalpies of reaction in phase F at
Tre f , and ∆Hm, f := ET

m, f∆H f is the pm, f -dimensional vector of enthalpies of mass transfer
to phase F at Tre f , with ∆H f the S f -dimensional vector of molar enthalpies of formation
of the S f species in phase F at the reference temperature Tre f and pressure Pre f . Note
that ∆Hr, f and ∆Hm, f are constant, and Ťin, f (t) is also constant if the composition and
temperature of the inlets to phase F are constant.

Note that one can combine the material and heat balances by describing the system with

the states z f (t) :=

�

n f (t)

Q f (t)

�

.

2.5 Variants and Invariants for Homogeneous Reaction Systems

This section presents several transformations between original states related to the num-
bers of moles and a number of sets of variants and invariants. For the sake of simplicity,
only the case of homogeneous lumped reactors is analyzed, and the heat balance is not con-
sidered. In the following section, a particular transformation, namely the transformation to
extents, is detailed for lumped reaction systems with instantaneous equilibria, multiphase
lumped reaction systems, and lumped reaction systems with heat balance.

2.5.1 Numbers of moles in variant and vessel-variant forms

Let us start by introducing some variables related to the numbers of moles, called num-
bers of moles in variant and vessel-variant forms, which are necessary for some of the trans-
formations to variants and invariants. Then, the transformations between numbers of moles
and related quantities and several sets of variants and invariants are presented.

2.5.1.1 Numbers of moles in reaction-variant form

The numbers of moles in reaction-variant form nRV (t) represent the number of moles
of all the species that have been processed by the reactions until time t. These numbers of
moles in reaction-variant form are described by the ODE

ṅRV (t) = NTrv(t), nRV (0) = 0S , (2.67)
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and can be computed from the following equation, which results from integrating Eq. (2.19)
and isolating the terms that depend on the reactions:

nRV (t) = n(t)− n0 −

∫ t

0

Win(τ)uin(τ)dτ+

∫ t

0

ω(τ)n(τ)dτ. (2.68)

The computation of the variables nRV (t) requires knowledge of the inlet and outlet
flowrates, inlet composition and initial conditions and integration of n(t).

2.5.1.2 Numbers of moles in reaction-flow-variant form

The numbers of moles in reaction-flow-variant form nRFV (t) represent the number of
moles of all the species that have been processed by the reactions or have flowed into the
reactor via the inlets until time t. These numbers of moles in reaction-flow-variant form are
described by the ODE

ṅRFV (t) = NTrv(t) +Win(t)uin(t), nRFV (0) = 0S , (2.69)

and can be computed from the following equation, which results from integrating Eq. (2.19)
and isolating the terms that depend on the reactions and inlet flows:

nRFV (t) = n(t)− n0 +

∫ t

0

ω(τ)n(τ)dτ. (2.70)

The computation of the variables nRFV (t) requires knowledge of the outlet flowrate and
initial conditions and integration of n(t) but no knowledge of the inlet flowrates and inlet
composition.

2.5.1.3 Numbers of moles in vessel-reaction-variant form

The effect of the outlet flow on the initial and inlet flow conditions can be computed as
niic(t) by solving the ODE

ṅiic(t) =Win(t)uin(t)−ω(t)niic(t), niic(0) = n0. (2.71)

The numbers of moles in vessel-reaction-variant form nvRV (t) represent the number of
moles of all the species that have been processed by the reactions and are in the vessel at
time t, that is, discounting for the amount that has left the vessel via the outlet. These
numbers of moles in vessel-reaction-variant form are described by the ODE

ṅvRV (t) = NTrv(t)−ω(t)n
vRV (t), nvRV (0) = 0S, (2.72)

and can be computed from the following equation, which results from Eqs. (2.19) and
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(2.71):

nvRV (t) = n(t)− niic(t). (2.73)

The computation of the variables niic(t) and nvRV (t) requires knowledge of the inlet and
outlet flowrates, inlet composition and initial conditions but no integration of n(t). Note
that, in batch and semi-batch homogeneous reactors, nRV (t) and nvRV (t) are equal, and no
integration of n(t) is necessary to compute them.

2.5.1.4 Numbers of moles in vessel-reaction-flow-variant form

The effect of the outlet flow on the initial conditions can be computed as nic(t) by
solving the ODE

ṅic(t) = −ω(t)nic(t), nic(0) = n0. (2.74)

The numbers of moles in vessel-reaction-flow-variant form nvRFV (t) represent the num-
ber of moles of all the species that have been processed by the reactions or have flowed into
the reactor via the inlets and are in the vessel at time t, that is, discounting for the amount
that has left the vessel via the outlet. These numbers of moles in vessel-reaction-flow-variant
form are described by the ODE

ṅvRFV (t) = NTrv(t) +Win(t)uin(t)−ω(t)n
vRFV (t), nvRFV (0) = 0S , (2.75)

and can be computed from the following equation, which results from Eqs. (2.19) and
(2.74):

nvRFV (t) = n(t)−nic(t). (2.76)

The computation of the variables nic(t) and nvRFV (t) requires knowledge of the outlet
flowrate and initial conditions but no knowledge of the inlet flowrates and inlet composition
and no integration of n(t). Note that, in batch and semi-batch homogeneous reactors,
nRFV (t) and nvRFV (t) are equal, and no integration of n(t) is necessary to compute them.
Furthermore, in batch homogeneous reactors, all the variables nRV (t), nRFV (t), nvRV (t) and
nvRFV (t) are equal.
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2.5.2 From numbers of moles to reaction variants and invariants

2.5.2.1 Reaction variants and invariants yr(t) and yiv(t)

The reaction variant yr,i(t) represents an abstract variable that is influenced by the ith
reaction but not by the other reactions. These variants are described by the ODE

ẏr(t) = rv(t) +L
+Win(t)uin(t)−ω(t)yr(t), yr(0) =L

+n0, (2.77)

where L+ is the Moore-Penrose pseudoinverse of L , with L = NT. However, yr(t) are
not pure reaction variants in the presence of inlets since they are also flow variants, that is,
influenced by the inlet flows.

Let us assume that rank
�

NT
�

= R, which can always be achieved via appropriate choice
of the stoichiometries and reaction rates according to the results in Section 2.1. Since
rank

�

NT
�

= R, the null space ofL T is of dimension q := S−R and is described by the S×q

matrix P, that is, L TP = 0R×q. The q reaction invariants yiv(t) represent abstract variables
that are not influenced by the reactions. These invariants are described by the ODE

ẏiv(t) = P+Win(t)uin(t)−ω(t)yiv(t), yiv(0) = P+n0, (2.78)

where P+ is the Moore-Penrose pseudoinverse of P. However, yiv(t) are not true invariants
in the presence of inlets since they are also flow variants, that is, influenced by the inlet
flows.

Since rank (L ) = R, Eq. (2.19) can be reconstructed from Eqs. (2.77) and (2.78) using

n(t) =
�

L P
�
�

yr(t)

yiv(t)

�

. (2.79)

2.5.2.2 Transformation to variants and invariants

The reaction variants yr and the reaction invariants yiv can be computed from the num-
bers of moles n by inversion of Eq. (2.79). The reaction variants are given by the linear
transformation

yr(t) =L
+n(t), (2.80)

whereas the reaction invariants are given by the linear transformation

yiv(t) = P+n(t). (2.81)

The computation of the variables yr(t) and yiv(t) via linear transformation requires no
knowledge of the inlet and outlet flowrates, inlet composition and initial conditions and no
integration of n(t), but it does not allow obtaining pure reaction variants or true invariants.
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2.5.3 From numbers of moles to reaction and inlet variants and invariants

2.5.3.1 Reaction and inlet variants and invariants zr(t), zin(t) and ziv(t)

Let us assume that the inlet composition given by Win(t) is constant. The reaction
variant zr,i(t) represents an abstract variable that is influenced by the ith reaction but not
by the other reactions or by the inlet flows, while the inlet variant zin, j(t) represents an
abstract variable that is influenced by the jth inlet flow but not by the other inlet flows or
by the reactions. These variants are described by the ODE

�

żr(t)

żin(t)

�

=

�

rv(t)

uin(t)

�

−ω(t)

�

zr(t)

zin(t)

�

,

�

zr(0)
zin(0)

�

=L+n0, (2.82)

where L+ is the Moore-Penrose pseudoinverse of L , with L =
�

NT Win

�

. Now zr(t) are
pure reaction variants and flow invariants, while zin(t) are pure flow variants and reaction
invariants.

Let us also assume that rank
��

NT Win

��

= R+ p. Then, the null space of L T is of
dimension q := S − R− p and is described by the S × q matrix P, that is, L TP = 0(R+p)×q.
The q reaction invariants ziv(t) represent abstract variables that are influenced neither by
the reactions nor by the inlet flows. These invariants are described by the ODE

żiv(t) = −ω(t)ziv(t), ziv(0) = P+n0, (2.83)

where P+ is the Moore-Penrose pseudoinverse of P. Now ziv(t) are reaction and flow in-
variants, although they are not true invariants.

Since rank (L ) = R+ p, Eq. (2.19) can be reconstructed from Eqs. (2.82) and (2.83)
using

n(t) =
�

L P
�







zr(t)

zin(t)

ziv(t)







. (2.84)

2.5.3.2 Transformation to variants and invariants

The reaction variants zr , the flow variants zin and the reaction and flow invariants ziv

can be computed from the numbers of moles n by inversion of Eq. (2.84). The reaction
variants and the flow variants are given by the linear transformation

�

zr(t)

zin(t)

�

=L+n(t), (2.85)
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whereas the reaction and flow invariants are given by the linear transformation

ziv(t) = P+n(t). (2.86)

The computation of the variables zr(t), zin(t) and ziv(t) via linear transformation re-
quires knowledge of the inlet composition but no knowledge of the inlet and outlet flowrates
and initial conditions and no integration of n(t), and it allows obtaining pure reaction and
inlet variants but it does not allow obtaining true invariants.

2.5.4 From numbers of moles in reaction-variant form to batch extents

2.5.4.1 Batch extents ξr(t)

The batch extent of reaction ξr,i(t) represents the amount of material that has been
processed by the ith reaction until time t. These batch extents are described by the ODE

ξ̇r(t) = rv(t), ξr(0) = 0R. (2.87)

Eq. (2.19) can be reconstructed from Eq. (2.87) using

n(t) =Lξr(t) + n0 +

∫ t

0

Win(τ)uin(τ)dτ−

∫ t

0

ω(τ)n(τ)dτ, (2.88)

with L = NT.

2.5.4.2 Transformation to batch extents

The batch extents ξr can be computed from the numbers of moles n by inversion of
Eq. (2.88). If rank (L ) = R, then L TWL is invertible for any positive definite weighting
matrix W of dimension S, and the batch extents are given by the linear transformation

ξr(t) = T nRV (t), (2.89)

with T :=
�

L TWL
�−1
L TW and nRV (t) given by Eq. (2.68).

2.5.4.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P, that is, L TP = 0R×q. Then, the q invariants ξiv(t) = 0q are given by the linear
transformation

ξiv(t) = PTnRV (t). (2.90)
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The computation of the variables ξr(t) and ξiv(t) via linear transformation requires
knowledge of the inlet and outlet flowrates, inlet composition and initial conditions and
integration of n(t), and allows obtaining pure reaction variants and at least S−R invariants.

2.5.5 From numbers of moles in reaction-flow-variant form to batch extents

2.5.5.1 Batch extents ξr(t) and ξin(t)

The batch extents of reaction ξr(t) are described by Eq. (2.87).

The batch extent of inlet ξin, j(t) represents the amount of material that has flowed into
the reactor via the jth inlet until time t. These batch extents are described by the ODE

ξ̇in(t) = uin(t), ξin(0) = 0p. (2.91)

Let us assume that the inlet composition given by Win(t) is constant. Eq. (2.19) can be
reconstructed from Eqs. (2.87) and (2.91) using

n(t) =L

�

ξr(t)

ξin(t)

�

+ n0 −

∫ t

0

ω(τ)n(τ)dτ, (2.92)

with L =
�

NT Win

�

.

2.5.5.2 Transformation to batch extents

The batch extents ξr and ξin can be computed from the numbers of moles n by inver-
sion of Eq. (2.92). If rank (L ) = R+ p, then L TWL is invertible for any positive definite
weighting matrix W of dimension S, and the batch extents are given by the linear transfor-
mation

�

ξr(t)

ξin(t)

�

= T nRFV (t), (2.93)

with T :=
�

L TWL
�−1
L TW and nRFV (t) given by Eq. (2.70).

2.5.5.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P, that is, L TP = 0(R+p)×q . Then, the q invariants ξiv(t) = 0q are given by the linear
transformation

ξiv(t) = PTnRFV (t). (2.94)

The computation of the variables ξr(t), ξin(t) and ξiv(t) via linear transformation re-
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quires knowledge of the outlet flowrate, inlet composition and initial conditions and inte-
gration of n(t) but no knowledge of the inlet flowrates, and allows obtaining pure reaction
and inlet variants and at least S −R− p invariants.

2.5.6 From numbers of moles in vessel-reaction-variant form to vessel extents

2.5.6.1 Vessel extents xr(t)

The vessel extent of reaction xr,i(t) represents the amount of material that has been
processed by the ith reaction and is in the vessel at time t, that is, discounting for the
amount that has left the vessel via the outlet. These vessel extents are described by the ODE

ẋr(t) = rv(t)−ω(t)xr(t), xr(0) = 0R. (2.95)

Eq. (2.19) can be reconstructed from Eq. (2.95) using

n(t) =L xr(t) + niic(t), (2.96)

with L = NT.

2.5.6.2 Transformation to vessel extents

The vessel extents xr can be computed from the numbers of moles n by inversion of
Eq. (2.96). If rank (L ) = R, then L TWL is invertible for any positive definite weighting
matrix W of dimension S, and the vessel extents are given by the linear transformation

xr(t) = T nvRV (t), (2.97)

with T :=
�

L TWL
�−1
L TW and nvRV (t) given by Eq. (2.72).

2.5.6.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P, that is, L TP = 0R×q. Then, the q invariants xiv(t) = 0q are given by the linear
transformation

xiv(t) = PTnvRV (t). (2.98)

The computation of the variables xr(t) and xiv(t) via linear transformation requires
knowledge of the inlet and outlet flowrates, inlet composition and initial conditions but no
integration of n(t), and allows obtaining pure reaction variants and at least S−R invariants.

Since nRV (t) and nvRV (t) are equal in batch and semi-batch homogeneous reactors, the
batch extents ξr(t) and the invariants ξiv(t) are equal to the vessel extents xr(t) and the
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invariants xiv(t) in these reactors.

2.5.7 From numbers of moles in vessel-reaction-flow-variant form to vessel

extents

2.5.7.1 Vessel extents xr(t) and xin(t)

The vessel extents of reaction xr(t) are described by Eq. (2.95).

The vessel extent of inlet x in, j(t) represents the amount of material that has flowed into
the reactor via the jth inlet and is in the vessel at time t, that is, discounting for the amount
that has left the vessel via the outlet. These vessel extents are described by the ODE

ẋin(t) = uin(t)−ω(t)xin(t), xin(0) = 0p. (2.99)

Let us assume that the inlet composition given by Win(t) is constant. Eq. (2.19) can be
reconstructed from Eqs. (2.95) and (2.99) using

n(t) =L

�

xr(t)

xin(t)

�

+ nic(t), (2.100)

with L =
�

NT Win

�

.

2.5.7.2 Transformation to vessel extents

The vessel extents xr and xin can be computed from the numbers of moles n by in-
version of Eq. (2.100). If rank (L ) = R + p, then L TWL is invertible for any positive
definite weighting matrix W of dimension S, and the vessel extents are given by the linear
transformation

�

xr(t)

xin(t)

�

= T nvRFV (t), (2.101)

with T :=
�

L TWL
�−1
L TW and nvRFV (t) given by Eq. (2.75).

2.5.7.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P, that is, L TP = 0(R+p)×q . Then, the q invariants xiv(t) = 0q are given by the linear
transformation

xiv(t) = PTnvRFV (t). (2.102)

The computation of the variables xr(t), xin(t) and xiv(t) via linear transformation re-
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quires knowledge of the outlet flowrate, inlet composition and initial conditions but no
knowledge of the inlet flowrates and no integration of n(t), and allows obtaining pure re-
action and inlet variants and at least S− R− p invariants.

Since nRFV (t) and nvRFV (t) are equal in batch and semi-batch homogeneous reactors,
the batch extents ξr(t) and ξin(t) and the invariants ξiv(t) are equal to the vessel extents
xr(t) and xin(t) and the invariants xiv(t) in these reactors.

2.5.8 From numbers of moles to vessel extents

2.5.8.1 Vessel extents xr(t), xin(t) and x ic(t)

The vessel extents of reaction xr(t) and the vessel extents of inlet xin(t) are described
by Eqs. (2.95) and (2.99).

The vessel extent of initial conditions x ic(t) represents the amount of material that was
initially in the reactor and is in the vessel at time t, that is, discounting for the amount that
has left the vessel via the outlet. This vessel extent is described by the ODE

ẋ ic(t) = −ω(t)x ic(t), x ic(0) = 1. (2.103)

Note that, in batch and semi-batch homogeneous reactors, the vessel extent of initial
conditions x ic(t) is simply given by

x ic(t) = 1. (2.104)

Let us assume that the inlet composition given by Win(t) is constant. Eq. (2.19) can be
reconstructed from Eqs. (2.95), (2.99) and (2.103) using

n(t) =L







xr(t)

xin(t)

x ic(t)







, (2.105)

with L =
�

NT Win n0

�

. Note that this implies that the S numbers of moles n(t) can be
computed as a linear transformation of R+ p+ 1 vessel extents.

Furthermore, from Eqs. (2.96), (2.100) and (2.105), it is possible to show the following
relationships:

niic(t) =Winxin(t) + n0 x ic(t), (2.106)

nic(t) = n0 x ic(t). (2.107)
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2.5.8.2 Transformation to vessel extents

The vessel extents xr , xin and x ic can be computed from the numbers of moles n by
inversion of Eq. (2.105). If rank (L ) = R+ p+ 1, then L TWL is invertible for any positive
definite weighting matrix W of dimension S, and the vessel extents are given by the linear
transformation







xr(t)

xin(t)

x ic(t)






= T n(t), (2.108)

with T :=
�

L TWL
�−1
L TW.

2.5.8.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P, that is, L TP = 0(R+p+1)×q . Then, the q invariants xiv(t) = 0q are given by the
linear transformation

xiv(t) = PTn(t). (2.109)

The computation of the variables xr(t), xin(t), x ic(t) and xiv(t) via linear transforma-
tion requires knowledge of the inlet composition and initial conditions but no knowledge of
the inlet and outlet flowrates and no integration of n(t), and allows obtaining pure reaction
and inlet variants and at least S − R− p− 1 invariants.

2.5.9 From numbers of moles to extents in batch homogeneous reactors

2.5.9.1 Extents xr(t)

In batch homogeneous reactors, Eq. (2.45) can be reconstructed from Eq. (2.95) using

n(t) =L xr(t) + n0, (2.110)

with L = NT. Note that this implies that the S numbers of moles n(t) can be computed as
a linear transformation of R extents.

In these reactors, since p = 0 and ω(t) = 0,

niic(t) = n0 +

∫ t

0

Win(τ)uin(τ)dτ−

∫ t

0

ω(τ)n(τ)dτ= n0, (2.111)

nRV (t) = nvRV (t) = n(t)− n0, (2.112)

which implies that Eq. (2.110) is equivalent to Eqs. (2.88) and (2.96).
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2.5.9.2 Transformation to extents

The (batch) extents xr can be computed from the numbers of moles n by inversion of
Eq. (2.110). If rank (L ) = R, then L TWL is invertible for any positive definite weighting
matrix W of dimension S, and the extents are given by the linear transformation

xr(t) = T
�
n(t)− n0

�
, (2.113)

with T :=
�

L TWL
�−1
L TW.

2.5.9.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P, that is, L TP = 0R×q. Then, the q invariants xiv(t) = 0q are given by the linear
transformation

xiv(t) = PT �n(t)− n0
�

. (2.114)

The computation of the variables xr(t) and xiv(t) via linear transformation requires
knowledge of the initial conditions but no integration of n(t), and allows obtaining pure
reaction variants and at least S− R invariants.

2.5.10 From numbers of moles to extents in semi-batch homogeneous reac-

tors

2.5.10.1 Extents xr(t) and xin(t)

In semi-batch homogeneous reactors, Eq. (2.47) can be reconstructed from Eqs. (2.95)
and (2.99) using

n(t) =L

�

xr(t)

xin(t)

�

+ n0, (2.115)

with L =
�

NT Win

�

. Note that this implies that the S numbers of moles n(t) can be
computed as a linear transformation of R+ p extents.

In these reactors, since ω(t) = 0,

nic(t) = n0 −

∫ t

0

ω(τ)n(τ)dτ= n0, (2.116)

nRFV (t) = nvRFV (t) = n(t)− n0, (2.117)

which implies that Eq. (2.115) is equivalent to Eqs. (2.92) and (2.100).
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2.5.10.2 Transformation to extents

The (batch) extents xr and xin can be computed from the numbers of moles n by inver-
sion of Eq. (2.115). If rank (L ) = R+ p, then L TWL is invertible for any positive definite
weighting matrix W of dimension S, and the extents are given by the linear transformation

�

xr(t)

xin(t)

�

= T
�
n(t)− n0

�
, (2.118)

with T :=
�

L TWL
�−1
L TW.

2.5.10.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P, that is, L TP = 0(R+p)×q . Then, the q invariants xiv(t) = 0q are given by the linear
transformation

xiv(t) = PT �n(t)− n0
�

. (2.119)

The computation of the variables xr(t), xin(t) and xiv(t) via linear transformation re-
quires knowledge of the inlet composition and initial conditions but no knowledge of the
inlet flowrates and no integration of n(t), and allows obtaining pure reaction and inlet
variants and at least S− R− p invariants.

2.5.11 From numbers of moles to vessel extents in particular cases of open

homogeneous reactors

As mentioned before, the numbers of moles can be computed as a linear transforma-
tion of R + p + 1 vessel extents in the general case of homogeneous reaction systems, R

extents in batch homogeneous reactors, and R+ p extents in semi-batch homogeneous re-
actors. However, as shown in Appendix A.3, the numbers of moles can be computed as a
linear transformation of less than R+ p+ 1 vessel extents in some particular cases of open
homogeneous reactors.

These particular cases are the following: if (i) the initial conditions are a linear com-
bination of the stoichiometries and of the inlet compositions, only R+ p vessel extents are
needed; if (ii) the inverse of the residence time is a linear combination of reaction rates
and inlet flowrates, only R+ p vessel extents are needed; and if both (i) and (ii) hold, only
R + p − 1 vessel extents are needed. For example, if the initial conditions correspond to
a steady state, then condition (i) is satisfied; if the reactor is a homogeneous continuous
stirred-tank reactor (CSTR), which is an open homogeneous reactor with constant volume,
and the reactor contains a mixture with constant density or an ideal mixture (such that the
volume of the mixture is the sum of the volumes of each pure species), then condition (ii)
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is satisfied.

The linear transformations from vessel extents to numbers of moles for each case are also
shown in Appendix A.3. From these linear transformations, it is possible to obtain linear
transformations from numbers of moles to vessel extents and to invariants as presented
throughout this section.

2.5.12 From measured quantities to reconciled quantities

Let the vector δn of dimension S denote one of the quantities related to the numbers
of moles that has been presented in the previous sections, and let δñ be the corresponding
measured data, corrupted by zero-mean noise with variance-covariance matrix Σδñ. Then,
let us consider the problem of reconciling the measured data, which is an optimization
problem with the reconciled data δn̂ as decision variables, written as follows:2

min
δn̂

Jc(δn̂) = (δn̂− δñ)TΣ−1
δñ
(δn̂− δñ)

= δn̂T
Σ
−1
δñ
δn̂− 2δn̂T

Σ
−1
δñ
δñ+ δñT

Σ
−1
δñ
δñ (2.120)

s.t. PTδn̂= 0q.

The measured data δñ are reconciled due to invariant linear equality constraints on the
reconciled data δn̂. The columns of the S× q matrix P that specifies these constraints are a
basis of the null space of the (S− q)× S matrix L T of rank S − q, as expressed by

L
TP= 0(S−q)×q. (2.121)

This is equivalent to saying that the columns of L are a basis of the null space of PT,
that is

PT
L = 0q×(S−q). (2.122)

It is known that any optimization problem with decision variables δn̂ and constrained
by the linear equality constraints Aδn̂ = b can be converted to an equivalent optimization
problem, in which these constraints are discarded and δn̂ is replaced by δn̂s + Fx̂, where x̂

are the new decision variables, δn̂s is a particular solution of Aδn̂ = b and the columns of
F are a basis of the null space of A (for example, see [80], p. 132).

In the particular case of reconciliation of measured numbers of moles, one can observe
that the variables x̂ represent variants, namely batch extents or vessel extents. Furthermore,
for the linear equality constraints PTδn̂ = 0q, it is clear that 0S is a particular solution and
the columns ofL are a basis of the null space of PT. Then, if these constraints are discarded
and δn̂ is replaced by L x̂, where x̂ are the new decision variables, the constrained Problem

2The weighting matrix Σ−1
δñ

is symmetric and positive definite, thus of rank S.
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(2.120) can be converted to the equivalent unconstrained optimization problem

min
x̂

Ju(x̂) = x̂T
L

T
Σ
−1
δñ
L x̂− 2x̂T

L
T
Σ
−1
δñ
δñ+ δñT

Σ
−1
δñ
δñ. (2.123)

Since Problem (2.123) is unconstrained and the Hessian matrix H(Ju)(x̂) = 2L T
Σ
−1
δñ
L

is positive definite for all x̂,3 the solution x̂∗ of this problem is given by the stationarity
condition

0S−q =∇Ju(x̂
∗) = 2L T

Σ
−1
δñ
L x̂∗ − 2L T

Σ
−1
δñ
δñ. (2.124)

The matrix L T
Σ
−1
δñ
L is invertible, hence

x̂∗ =
�

L
T
Σ
−1
δñ
L
�−1
L

T
Σ
−1
δñ
δñ (2.125)

and the solution δn̂∗ of the constrained Problem (2.120), that is, the optimal reconciled
data, is

δn̂∗ =L x̂∗ =L
�

L
T
Σ
−1
δñ
L
�−1
L

T
Σ
−1
δñ
δñ. (2.126)

Since PTL = 0q×(S−q), the original linear equality constraints PTδn̂∗ = 0q are satisfied.

Note that x̂∗ and δn̂∗ result from a linear transformation of δñ that takes into account
the weighting matrix Σ−1

δñ
. Moreover, if there exists some x̃ such that the measured data

δñ=L x̃, then x̂∗ = x̃ and δn̂∗ =L x̃ = δñ.

2.6 Extensions to Other Lumped Reaction Systems

This section extends the transformation from numbers of moles to extents, shown for
homogeneous reaction systems described by numbers of moles and without heat balance, to
other lumped reaction systems, namely: homogeneous reaction systems described by con-
centrations; reaction systems with instantaneous equilibria; multiphase reaction systems;
and several lumped reaction systems described by combined material and heat balances.
The goal is to show the applicability of this transformation to a wide range of lumped reac-
tion systems.

3This can be shown as follows. The matrix Σ−1
δñ

is symmetric and positive definite, which implies that Σ−1
δñ
=

�

Σ
−1/2
δñ

�T
Σ
−1/2
δñ

. Since Σ−1/2
δñ

is of rank S and L is of rank S−q, the rank of Σ−1/2
δñ
L is S−q. Then, L T

Σ
−1
δñ
L =

L
T
�

Σ
−1/2
δñ

�T
Σ
−1/2
δñ
L =

�

Σ
−1/2
δñ
L
�T
Σ
−1/2
δñ
L is also of rank S− q, thus positive definite and invertible.
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2.6.1 Homogeneous reaction systems described by concentrations

2.6.1.1 Volumetric extents wr(t), win(t) and wic(t)

The volumetric extent of reaction wr,i(t) represents the amount of material that has
been processed by the ith reaction and is in the volume at time t. These volumetric extents
are described by the ODE

ẇr(t) = r(t)−

�

ω(t) +
V̇ (t)

V (t)

�

wr(t), wr(0) = 0R. (2.127)

The volumetric extent of inlet win, j(t) represents the amount of material that has flowed
into the reactor via the jth inlet and is in the volume at time t. These volumetric extents
are described by the ODE

ẇin(t) =
uin(t)

V (t)
−

�

ω(t) +
V̇ (t)

V (t)

�

win(t), win(0) = 0p. (2.128)

The volumetric extent of initial conditions wic(t) represents the amount of material that
was initially in the reactor and is in the volume at time t. This volumetric extent is described
by the ODE

ẇic(t) = −

�

ω(t) +
V̇ (t)

V (t)

�

wic(t), wic(0) =
1

V0
. (2.129)

Let us assume that the inlet composition given by Win(t) is constant. Eq. (2.22) can be
reconstructed from Eqs. (2.127), (2.128) and (2.129) using

c(t) =L







wr(t)

win(t)

wic(t)







, (2.130)

with L =
�

NT Win n0

�

.

Note that the volumetric extents wr(t), win(t) and wic(t) are dependent since one vol-
umetric extent is determined by the remaining R+ p volumetric extents, which means that
only R + p volumetric extents are needed as states and only R + p of the ODEs (2.127),
(2.128) and (2.129) are necessary. This can be shown by noticing that the volumetric ex-
tents are subject to the constraint

ρ(t) =
m(t)

V (t)
=

1T
SMwn(t)

V (t)
= 1T

SMwc(t) = 1T
SMwL







wr(t)

win(t)

wic(t)







, (2.131)
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with ρ(t) a function of the volumetric extents and temperature. However, one additional
state is needed to express the dimension of the system, for example m(t), thus the number
of states needed to fully describe the system is R+ p+ 1.

2.6.1.2 Transformation to volumetric extents

If rank (L ) = R+ p+ 1, the volumetric extents are given by the linear transformation







wr(t)

win(t)

wic(t)






= T c(t), (2.132)

with T :=
�

L TWL
�−1
L TW.

2.6.1.3 Transformation to invariants

The null space of L T is of dimension q := S − rank (L ) and is described by the S × q

matrix P. Then, the q invariants wiv(t) = 0q are given by the linear transformation

wiv(t) = PTc(t). (2.133)

2.6.2 Reaction systems with instantaneous equilibria

2.6.2.1 Vessel extents xr,s(t), xin(t) and x ic(t)

The vessel extent of slow reaction xr,s,i(t) represents the amount of material that has
been processed by the ith slow reaction and is in the vessel at time t, that is, discounting
for the amount that has left the vessel via the outlet. These vessel extents are described by
the ODE

ẋr,s(t) = rv,s(t)−ω(t)xr,s(t), xr,s(0) = 0Rs
. (2.134)

The vessel extents of inlet xin(t) and the vessel extent of initial conditions x ic(t) are
described by Eqs. (2.99) and (2.103).

Let us assume that the inlet composition given by Win(t) is constant. Eq. (2.56) can be
reconstructed from Eqs. (2.99), (2.103) and (2.134) using

ns(t) =L s







xr,s(t)

xin(t)

x ic(t)







, (2.135)

with L s = PT
e

�

NT
s Win n0

�

.
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2.6.2.2 Transformation to vessel extents

If rank
�
L s

�
= Rs + p+ 1, the vessel extents are given by the linear transformation







xr,s(t)

xin(t)

x ic(t)






= T sns(t), (2.136)

with T s :=
�

L T
s WL s

�−1
L T

s W.

2.6.2.3 Transformation to invariants

The null space ofL T
s is of dimension qs := Ss−rank

�
L s

�
and is described by the Ss×qs

matrix Ps. Then, the qs invariants xiv,s(t) = 0qs
are given by the linear transformation

xiv,s(t) = PT
s ns(t). (2.137)

2.6.3 Multiphase reaction systems

2.6.3.1 Vessel extents xr, f (t), xm, f (t), xin, f (t) and x ic, f (t)

The vessel extent of reaction xr, f ,i(t) represents the amount of material that has been
processed by the ith reaction in phase F and is in the vessel at time t, that is, discounting
for the amount that has left the vessel via the outlet. These vessel extents are described by
the ODE

ẋr, f (t) = rv, f (t)−ω f (t)xr, f (t), xr, f (0) = 0R f
. (2.138)

The vessel extent of mass transfer xm, f ,k(t) represents the amount of material that has
transferred to phase F via the kth mass transfer and is in the vessel at time t, that is,
discounting for the amount that has left the vessel via the outlet. These vessel extents are
described by the ODE

ẋm, f (t) = φ
v
m, f (t)−ω f (t)xm, f (t), xm, f (0) = 0pm, f

. (2.139)

The vessel extent of inlet x in, f , j(t) represents the amount of material that has flowed
into phase F in the reactor via the jth inlet and is in the vessel at time t, that is, discounting
for the amount that has left the vessel via the outlet. These vessel extents are described by
the ODE

ẋin, f (t) = uin, f (t)−ω f (t)xin, f (t), xin, f (0) = 0p f
. (2.140)

The vessel extent of initial conditions x ic, f (t) represents the amount of material that
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was initially in phase F in the reactor and is in the vessel at time t, that is, discounting for
the amount that has left the vessel via the outlet. This vessel extent is described by the ODE

ẋ ic, f (t) = −ω f (t)x ic, f (t), x ic, f (0) = 1. (2.141)

Let us assume that the inlet composition given by Win, f (t) is constant. Eq. (2.63) can
be reconstructed from Eqs. (2.138), (2.139), (2.140) and (2.141) using

n f (t) =L f









xr, f (t)

xm, f (t)

xin, f (t)

x ic, f (t)









, (2.142)

with L f =
h

NT
f

Em, f Win, f n f ,0

i

.

2.6.3.2 Transformation to vessel extents

If rank
�

L f

�

= R f + pm, f + p f + 1, the vessel extents are given by the linear transfor-
mation









xr, f (t)

xm, f (t)

xin, f (t)

x ic, f (t)









= T f n f (t), (2.143)

with T f :=
�

L T
f
WL f

�−1
L T

f
W.

2.6.3.3 Transformation to invariants

The null space ofL T
f

is of dimension q f := S f −rank
�

L f

�

and is described by the S f ×

q f matrix P f . Then, the q f invariants xiv, f (t) = 0q f
are given by the linear transformation

xiv, f (t) = PT
f n f (t). (2.144)

2.6.4 Combined material and heat balance equations

The combined material and heat balance equations for homogeneous reaction systems,
reaction systems with instantaneous equilibria, and multiphase reaction systems are de-
scribed in Appendix A.4.
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3 Concept of Extents for Distributed

Reaction Systems

This chapter is adapted from the postprint of the following article [81]:

D. Rodrigues, J. Billeter, and D. Bonvin. Generalization of the concept of extents to
distributed reaction systems. Chem. Eng. Sci., 171:558–575, 2017.

Link: http://doi.org/10.1016/j.ces.2017.05.051.

Copyright © 2017 Elsevier Ltd.

The author of this thesis contributed to that article by developing the main novel ideas,

implementing the simulations, and writing a significant part of the text. Hence, the author

retains the right to include the article in this thesis since it is not published commercially and

the journal is referenced as the original source.

3.1 Introduction

The chemical industry uses chemical reactions and physical transformations to convert
raw materials and energy into products. To operate these industrial chemical processes in
a reliable and efficient manner, process models are typically used for design, monitoring,
estimation, control and optimization. If each phase can be assumed to be well mixed, a
dynamic model describes the time evolution of the system via ordinary differential equations
(ODEs). The model consists of material and energy balances and includes information
about the reactions (stoichiometry, kinetics, enthalpies of reaction), the transfer of mass and
energy within and between phases, and the operating conditions (inlet and outlet flows,
initial conditions and exchanges with the environment). Details about chemical reactor
modeling and analysis can be found in many textbooks, for example [82, 83, 84].

The modeling of the rate processes at work is often challenging. The difficulty arises
from the coupling between the different chemical and physical effects, as in the case of
two-phase reaction systems, where the different reactions are inherently coupled with each
other and with the mass-transfer phenomena. For lumped reaction systems, the concept
of vessel extents is very useful, as the transformation of the original states (concentrations
and temperatures) to these extents allows isolating the contributions of the reactions, mass
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transfers and inlet flows [18, 19], as shown in Chapter 2.

In this chapter, the assumption of perfect mixing within each phase is relaxed. Inhomo-
geneity can result from either a technical flaw, as in reactors with poor mixing, or a technical
choice, as in tubular reactors [85], micro-reactors [86], reactive distillation columns [87] or
reactive absorption columns [88]. These distributed reaction systems (resolved in time and
space) are typically described by partial differential equations (PDEs) that couple the effects
of reaction, mass transfer, diffusion, and initial and boundary conditions. The coupling of
distributed reaction systems in time and space complicates their analysis. These systems are
also complex to analyze due to the existence of boundary conditions, which are not present
in lumped reaction systems.

The concept of extents, and of variant and invariant states in general, which aims at
decoupling the various rate processes at play and thereby simplifying their analysis, has
hardly been applied to distributed reaction systems. Yet, an early work describes the use of
variant and invariant states for the simulation of a plug-flow reactor, resulting in reduced
computational time [29]. Furthermore, a transformation to reaction-invariant compositions
in reactive distillation columns was proposed to reduce the number of degrees of freedom in
process design [49]. This transformation to reaction invariants was later applied to reactive
chromatography and membrane reactors [50].

This chapter considers the modeling of distributed reaction systems from a method-
ological standpoint. The concept of extents and the transformation of the original states
(concentrations and temperature) to these extents are discussed. Emphasis is given to the
conceptual understanding of extents. The introduction of the concept of extents for dis-
tributed reaction systems is expected to help design and operate this class of processes.

The chapter is organized as follows. Section 3.2 presents the extension of the concept
of extents from a lumped reaction system described by ODEs to a simple plug-flow reactor
described by PDEs. Section 3.3 describes tubular reactors in terms of extents for different
situations (single-phase, multiphase, one-dimensional, two-dimensional). Section 3.4 in-
troduces the concept of extents for reactive separation columns, such as packed and tray
columns. Section 3.5 presents the concept of extents for a generic multiphase distributed
reaction system. Section 3.6 discusses four case studies illustrating the use of extents, while
Section 3.7 concludes the chapter.

3.2 From Lumped to Distributed Reaction Systems

3.2.1 Single-phase lumped reactors

In single-phase lumped reactors, the concentrations and temperature are functions of
the time t only, the spatial coordinates being eliminated under the assumption that the
phase is isotropic (well mixed).
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3.2. From Lumped to Distributed Reaction Systems

3.2.1.1 Material balance equations, n(t)

Let us consider a lumped reactor. The S-dimensional vector of numbers of moles n(t) is
described by the ODE

d

dt
n(t) +ω(t)n(t) = NTrv(t) +Win(t)uin(t), n(0) = n0, (3.1)

where rv(t) := V (t)r(t), with r(t) the R-dimensional vector of reaction rates and V (t)

the volume, N is the R × S stoichiometric matrix, uin(t) is the p-dimensional vector of
inlet mass flowrates, Win(t) is the S × p inlet composition matrix, whose jth column is
Win, j(t) := M−1

w w̌in, j(t), with Mw the S-dimensional diagonal matrix of molecular weights

and w̌in, j(t) the S-dimensional vector of weight fractions of the jth inlet, andω(t) := uout (t)

m(t)

is the inverse of the residence time, with uout(t) the outlet mass flowrate and m(t) the mass.
The concentrations c(t) can be computed as n(t)

V (t)
. The initial conditions n0 are denoted IC

and the inlet flow conditions related to Win and uin are denoted IFC.

Remark 3.1. Throughout the chapter, the rates associated with each rate process are mod-
eled as signals that vary in time (and space), which hides the fact that the rates depend on
concentrations and temperature that vary in time (and space). For example, in this lumped
reactor, the reaction rates are written as r(t), but in fact they depend on c(t) and T (t). For
the sake of conciseness, the time dependence of the various variables is omitted as much as
possible in the remainder.

3.2.1.2 Effect of the outlet on the IC and IFC

The effect of the outlet flow on the initial and inlet flow conditions can be computed as
niic(t) by solving the ODE

d

dt
niic +ωniic =Winuin, niic(0) = n0. (3.2)

3.2.1.3 Vessel extents of reaction xr(t)

The vessel extent of reaction xr,i(t) represents the amount of material that has been
processed by the ith reaction and is in the vessel at time t, that is, discounting for the
amount that has left the vessel via the outlet. These vessel extents are described by the ODE

d

dt
xr +ωxr = rv, xr(0) = 0R. (3.3)

Eq. (3.1) can be reconstructed from Eqs. (3.2) and (3.3) using

n=L xr + niic, (3.4)

with L = NT.
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3.2.1.4 Transformation to vessel extents

The vessel extents xr can be computed from the numbers of moles n by inversion of
Eq. (3.4). If rank(L ) = R, then L TWL is invertible for any positive definite weighting
matrix W of dimension S, and the vessel extents of reaction are given by the linear transfor-
mation

xr = T δn, (3.5)

with T :=
�

L TWL
�−1
L T W, and δn := n− niic . Note that, for W = IS, T is the Moore-

Penrose pseudoinverse of L .

Remark 3.2. The vessel extents xr(t) described by ODE (3.3) and computed from n(t) via
Eq. (3.5) represent the R reaction variants in the system. As shown in Section 2.5, one
can describe and compute from n(t) additional vessel extents (of inlet flows and initial
conditions) as well as invariant quantities.

3.2.1.5 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.1.

3.2.2 Single-phase plug-flow reactors

In single-phase plug-flow reactors, the concentrations and temperature are functions of
the spatial coordinate z and the time t. It is assumed that the inlet of the reaction system is
located at z = 0 and z is positive along the reactor length.

3.2.2.1 Material balance equations, c(z, t)

Let us assume a distributed reaction system in the spatial dimension z without diffu-
sion (advection–reaction problem). The S-dimensional vector of concentrations c(z, t) is
described by the PDE

∂

∂ t
c(z, t) +

∂

∂ z

�
vz(z, t)c(z, t)

�
= NTr(z, t), (3.6)

where vz(z, t) is the advective velocity in the z-direction.

Eq. (3.6) is subject to the following initial conditions (IC) and advective boundary con-
ditions (BC):

c(z, 0) = c0(z), ∀z > 0 (IC),

c(0, t) = cin(t), ∀t ≥ 0 (BC).

Remark 3.3. For the sake of conciseness, the spatial and time dependences of the various
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variables are omitted as much as possible in the remainder.

3.2.2.2 Effect of advection on the IC and BC

The effect of advection on the initial and advective boundary conditions can be com-
puted as ci bc(z, t) by solving the PDE

∂

∂ t
ci bc +

∂

∂ z

�
vzci bc

�
= 0S, (3.7)

with the initial and boundary conditions

ci bc(z, 0) = c0(z), ∀z > 0 (IC), (3.8)

ci bc(0, t) = cin(t), ∀t ≥ 0 (BC). (3.9)

3.2.2.3 Extents of reaction xr(z, t)

The extent of reaction xr,i(z, t) represents the amount of material that has been pro-
cessed by the ith reaction and is at position z at time t. These extents are described by the
PDE

∂

∂ t
xr +

∂

∂ z

�
vzxr

�
= r, (3.10)

with xr(z, 0) = 0R,∀z > 0 (IC), and xr(0, t) = 0R,∀t ≥ 0 (BC).

Eq. (3.6) can be reconstructed from Eqs. (3.7) and (3.10) using

c=L xr + ci bc, (3.11)

with L = NT.

3.2.2.4 Transformation to extents

The extents xr can be computed from the concentrations c by inversion of Eq. (3.11). If
rank(L ) = R, the extents of reaction are given by the linear transformation

xr = T δc, (3.12)

with T :=
�

L TWL
�−1
L TW, and δc := c− ci bc.

3.2.2.5 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.2.
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3.3 Tubular Reactors

This section presents dynamic models for tubular reactors, building up from the simple
plug-flow model presented in the previous section by progressively increasing the complex-
ity of the model.

3.3.1 Single-phase one-dimensional tubular reactors

Since the concentrations vary with the spatial coordinate, the concentration gradients
might lead to significant diffusion if the flow of material is not dominated by advection.
Hence, the model of a single-phase one-dimensional tubular reactor considers diffusion
rates (advection–axial diffusion–reaction problem).

3.3.1.1 Material balance equations, c(z, t)

The concentrations c(z, t) are described by the PDE

∂

∂ t
c+

∂

∂ z

�
vzc
�
= NTr+ Edφd , (3.13)

where φd is the pd -dimensional vector of diffusion rates, Ed is an S × pd matrix with each
row having one element equal to 1 if the corresponding species diffuses and the remaining
elements equal to 0, and pd is the number of diffusing species. Note that the diffusion rates
might differ significantly for the various species, thus leading to the simplifying assumption
that some of the species do not diffuse at all.

Diffusion calls for the definition of a pd -dimensional vector of diffusion fluxes in the
z-direction, denoted jd,z(z, t), which is described by the PDE

∂

∂ z
jd,z = −φd , (3.14)

with the diffusive boundary conditions1

lim
z→∞

jd,z(z, t) = 0pd
, ∀t ≥ 0.

Eq. (3.13) is subject to the following initial and advective boundary conditions:

c(z, 0) = c0(z), ∀z > 0 (IC),

c(0, t) = cin(t) + cd(t), ∀t ≥ 0 (BC),

with cd(t) := −
Ed jd,z(0,t)

β vz (0,t)
. These initial and boundary conditions are also affected by those

1These boundary conditions correspond to what is called “approximation by a reactor of infinite length”,
since the boundary conditions are given at z = 0 and z → ∞ [89]. Note that the approach also applies when
different boundary conditions are assumed.
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3.3. Tubular Reactors

of Eq. (3.14). Note that β → ∞ if the boundary conditions are of the first type (Dirichlet
boundary conditions), whereas β = 1 if the boundary conditions are of the third type (Robin
boundary conditions) [90].

3.3.1.2 Effect of advection on the IC and BC

The effect of advection on the initial and advective boundary conditions can be com-
puted by solving Eq. (3.7), with the initial and boundary conditions given by Eqs. (3.8) and
(3.9).

3.3.1.3 Extents xr(z, t) and xd(z, t)

The extents of reaction xr(z, t) are described by Eq. (3.10), with the corresponding
initial and boundary conditions.

The extent of diffusion xd, j(z, t) represents the amount of material that has transferred
via the jth diffusion rate and is at position z at time t. These extents are described by the
PDE

∂

∂ t
xd +

∂

∂ z

�
vzxd

�
= φd , (3.15)

with xd(z, 0) = 0pd
,∀z > 0 (IC), and xd(0, t) = −

jd,z(0,t)

β vz(0,t)
,∀t ≥ 0 (BC).

Eq. (3.13) can be reconstructed from Eqs. (3.7), (3.10) and (3.15) using

c=L

�

xr

xd

�

+ ci bc, (3.16)

with L =
�

NT Ed

�

.

3.3.1.4 Transformation to extents

If rank (L ) = R+ pd , the extents of reaction and diffusion are given by the linear trans-
formation

�

xr

xd

�

= T δc, (3.17)

with T :=
�

L TWL
�−1
L T W, and δc := c− ci bc.

Remark 3.4. The rank condition associated with this linear transformation implies that pd ≤

S− R.
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3.3.1.5 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.3.

3.3.2 Multiphase one-dimensional tubular reactors

Let us now consider a one-dimensional tubular reactor with multiple phases. Let us
assume that each phase F is well mixed in the direction orthogonal to z and exchanges ma-
terial with other phases by mean of mass transfers (advection–axial diffusion–mass transfer–
reaction problem).

The subscript (·) f is introduced to denote quantities that are related to phase F. As each
phase occupies a certain fraction of the reactor volume, the variable ǫ f (z, t) defines the vol-
umetric fraction occupied by phase F at position z at time t. Then, for any variable y f (z, t)

that represents a certain quantity per unit volume of phase F, yǫ
f
(z, t) := ǫ f (z, t) y f (z, t)

defines the corresponding quantity per unit total volume.

3.3.2.1 Material balance equations, cǫ
f
(z, t)

The S f -dimensional vector of concentrations cǫ
f
(z, t) is described by the PDE

∂

∂ t
cǫ

f
+
∂

∂ z

�

v f ,zc
ǫ
f

�

= NT
f
rǫ

f
+ Em, fφ

ǫ
m, f + Ed, fφ

ǫ
d, f , (3.18)

whereφǫm, f is the pm, f -dimensional vector of molar mass-transfer rates per unit total volume
describing the material transferred to phase F, Em, f is an S f × pm, f matrix with each row
having one element equal to 1 if the corresponding species is transferred to phase F and the
remaining elements equal to 0, and pm, f is the number of species transferring to or from
phase F. Note that, if a given phase is fixed, its velocity v f ,z is zero.

The pd, f -dimensional vector of diffusion fluxes in the z-direction, denoted jǫ
d, f ,z(z, t), is

described by the PDE

∂

∂ z
jǫd, f ,z = −φ

ǫ
d, f , (3.19)

with the diffusive boundary conditions

lim
z→∞

jǫd, f ,z(z, t) = 0pd, f
, ∀t ≥ 0.

Eq. (3.18) is subject to the following initial and advective boundary conditions:

cǫ
f
(z, 0) = cǫ

f ,0(z), ∀z > 0 (IC),

cǫf (0, t) = cǫf ,in(t) + cǫd, f (t), ∀t ≥ 0 (BC),
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with cǫ
d, f (t) := −

Ed, f jǫ
d, f ,z(0,t)

β vf ,z (0,t)
.

3.3.2.2 Effect of advection on the IC and BC

The effect of advection on the initial and advective boundary conditions can be com-
puted as cǫ

i bc, f (z, t) by solving the PDE

∂

∂ t
cǫi bc, f +

∂

∂ z

�

v f ,zc
ǫ
i bc, f

�

= 0S f
, (3.20)

with the initial and boundary conditions

cǫi bc, f (z, 0) = cǫf ,0(z), ∀z > 0 (IC), (3.21)

cǫi bc, f (0, t) = cǫf ,in(t), ∀t ≥ 0 (BC). (3.22)

3.3.2.3 Extents xr, f (z, t), xm, f (z, t) and xd, f (z, t)

The extent of reaction xr, f ,i(z, t) represents the amount of material that has been pro-
cessed by the ith reaction in phase F and is at position z at time t. These extents are
described by the PDE

∂

∂ t
xr, f +

∂

∂ z

�

v f ,zxr, f

�

= rǫf , (3.23)

with xr, f (z, 0) = 0R f
,∀z > 0 (IC), and xr, f (0, t) = 0R f

,∀t ≥ 0 (BC).

The extent of mass transfer xm, f ,k(z, t) represents the amount of material that has trans-
ferred to phase F via the kth mass transfer and is at position z at time t. These extents are
described by the PDE

∂

∂ t
xm, f +

∂

∂ z

�

v f ,zxm, f

�

= φǫm, f , (3.24)

with xm, f (z, 0) = 0pm, f
,∀z > 0 (IC), and xm, f (0, t) = 0pm, f

,∀t ≥ 0 (BC).

The extent of diffusion xd, f , j(z, t) represents the amount of material that has transferred
via the jth diffusion rate in phase F and is at position z at time t. These extents are described
by the PDE

∂

∂ t
xd, f +

∂

∂ z

�

v f ,zxd, f

�

= φǫd, f , (3.25)

with xd, f (z, 0) = 0pd, f
,∀z > 0 (IC), and xd, f (0, t) = −

jǫ
d, f ,z (0,t)

β vf ,z(0,t)
,∀t ≥ 0 (BC).
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Eq. (3.18) can be reconstructed from Eqs. (3.20) and (3.23)-(3.25) using

cǫf =L f







xr, f

xm, f

xd, f






+ cǫi bc, f , (3.26)

with L f =
h

NT
f

Em, f Ed, f

i

.

3.3.2.4 Transformation to extents

If rank
�

L f

�

= R f + pm, f + pd, f , the extents of reaction, mass transfer and diffusion are
given by the linear transformation







xr, f

xm, f

xd, f






= T f δcǫf , (3.27)

with T f :=
�

L T
f
WL f

�−1
L T

f
W, and δcǫ

f
:= cǫ

f
− cǫ

i bc, f .

Remark 3.5. The rank condition associated with this linear transformation implies that
pm, f ≤ S f −R f − pd, f .

3.3.2.5 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.4.

3.3.3 Multiphase two-dimensional tubular reactors

Let us relax the assumptions of perfect radial mixing at each position z and consider a
tubular reactor of radius R where all the quantities depend on the axial coordinate z and
the radial distance r. Then, all the variables that were functions of z and t now become
functions of z, r and t. Furthermore, the concentration gradients in the r-direction gen-
erate diffusion fluxes in that direction (advection–axial and radial diffusion–mass transfer–
reaction problem).

3.3.3.1 Material balance equations, cǫ
f
(z, r, t)

The concentrations cǫ
f
(z, r, t) are described by the PDE in Eq. (3.18).

The pd, f -dimensional vectors of diffusion fluxes in the radial direction r and axial direc-
tion z, denoted jǫ

d, f ,r(z, r, t) and jǫ
d, f ,z(z, r, t), are described by the PDE

1

r

∂

∂ r

�

r jǫd, f ,r

�

+
∂

∂ z
jǫd, f ,z = −φ

ǫ
d, f , (3.28)
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with the diffusive boundary conditions

jǫd, f ,r(z, 0, t) = 0pd, f
, ∀z ≥ 0, ∀t ≥ 0,

jǫd, f ,r(z,R , t) = 0pd, f
, ∀z ≥ 0, ∀t ≥ 0,

lim
z→∞

jǫd, f ,z(z, r, t) = 0pd, f
, ∀r ∈ ]0,R[,∀t ≥ 0.

Eq. (3.18) is subject to the following initial and advective boundary conditions:

cǫf (z, r, 0) = cǫf ,0(z, r), ∀z > 0, ∀r ∈ ]0,R[ (IC),

cǫ
f
(0, r, t) = cǫ

f ,in(r, t) + cǫ
d, f (r, t), ∀r ∈ ]0,R[, ∀t ≥ 0 (BC),

with cǫ
d, f (r, t) := −

Ed, f jǫ
d, f ,z(0,r,t)

β vf ,z (0,r,t)
.

3.3.3.2 Effect of advection on the IC and BC

The effect of advection on the initial and advective boundary conditions can be com-
puted as cǫ

i bc, f (z, r, t) by solving Eq. (3.20), with the initial and boundary conditions

cǫi bc, f (z, r, 0) = cǫf ,0(z, r), ∀z > 0, ∀r ∈ ]0,R[ (IC),

cǫi bc, f (0, r, t) = cǫf ,in(r, t), ∀r ∈ ]0,R[, ∀t ≥ 0 (BC).

3.3.3.3 Extents xr, f (z, r, t), xm, f (z, r, t) and xd, f (z, r, t)

The extents of reaction xr, f (z, r, t) are computed via Eq. (3.23), with xr, f (z, r, 0) = 0R f
,

∀z > 0, ∀r ∈ ]0,R[ (IC) and xr, f (0, r, t) = 0R f
, ∀r ∈ ]0,R[, ∀t ≥ 0 (BC).

The extents of mass transfer xm, f (z, r, t) are computed via Eq. (3.24), with xm, f (z, r, 0) =
0pm, f

, ∀z > 0, ∀r ∈ ]0,R[ (IC) and xm, f (0, r, t) = 0pm, f
, ∀r ∈ ]0,R[, ∀t ≥ 0 (BC).

The extents of diffusion xd, f (z, r, t) are computed via Eq. (3.25), with xd, f (z, r, 0) =

0pd, f
, ∀z > 0, ∀r ∈ ]0,R[ (IC) and xd, f (0, r, t) = −

jǫ
d, f ,z(0,r,t)

β vf ,z(0,r,t)
, ∀r ∈ ]0,R[, ∀t ≥ 0 (BC).

Eq. (3.18) for cǫ
f
(z, r, t) can be reconstructed from Eqs. (3.20) and (3.23)-(3.25) using

Eq. (3.26).

3.3.3.4 Transformation to extents

If rank
�

L f

�

= R f + pm, f + pd, f , the extents of reaction, mass transfer and diffusion are
given by the linear transformation in Eq. (3.27).
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3.3.3.5 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.5.

3.4 Reactive Separation Columns

This section deals with reactive separation columns, such as those used in reactive dis-
tillation and reactive absorption. Two models are discussed, for packed and tray columns.
The main difference is that packed columns are typically modeled as distributed systems
described by PDEs, whereas tray columns can be modeled as staged processes described by
ODEs.

Unlike tubular reactors, reactive separation columns can have intermediate inlet and
outlet streams. A common simplification in the modeling of reactive separation columns
consists in considering only balances in the liquid phase L and neglecting the diffusion and
heat conduction rates2. For the sake of notation, it is assumed that the liquid inlet is located
at z = 0 and z is positive inside the column.

3.4.1 Packed reactive separation columns

If a reactive separation column of constant cross-section area A is modeled as a contin-
uous column with perfect radial mixing and no diffusion, the model is that of a plug-flow
reactor with additional mass transfer (advection–mass transfer–reaction problem).

3.4.1.1 Material balance equations, cǫ
l
(z, t)

The Sl-dimensional vector of concentrations cǫ
l
(z, t) is described by the PDE

∂

∂ t
cǫl +

∂

∂ z

�

vl ,zc
ǫ
l

�

= NT
l rǫl + Em,lφ

ǫ
m,l , (3.29)

where vl ,z(z, t) := L(z,t)
nh,l (z,t)

is the advective velocity, with L(z, t) the molar advective flowrate

of the liquid phase and nh,l(z, t) the molar holdup in the liquid phase per unit length.

Eq. (3.29) is subject to the following initial and advective boundary conditions:

cǫl (z, 0) = cǫl ,0(z), ∀z > 0 (IC),

cǫl (0, t) = cǫl ,in(t), ∀t ≥ 0 (BC).

Furthermore, the system is subject to constraints related to the pl intermediate inlet-

2Both the diffusion coefficients in liquids and the temperature gradients inside separation columns are rela-
tively small.
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s/outlets at the positions zh
3

cǫl (zh, t) = Zin,h
fin,h

ql(zh, t)
+ cǫl (z

−
h

, t)αl (zh, t),

∀h= 1, . . . , pl , ∀t ≥ 0, (3.30)

where αl(zh, t) := 1
vl,z (zh,t)

�

vl ,z(z
−
h

, t)−
qout,h(t)

Al(z
−
h

,t)

�

, fin,h(t) is the pl ,h-dimensional vector of

molar flowrates of the liquid inlets at the hth intermediate column inlet/outlet, Zin,h(t) is an
Sl × pl ,h matrix, whose jth column Zin,h, j(t) is the vector of molar fractions of the jth liquid
inlet at the hth intermediate inlet/outlet, ql(z, t) := vl ,z(z, t)A is the volumetric flowrate
in the column, qout,h(t) is the volumetric flowrate of the outlet at the hth intermediate
inlet/outlet, and Al(z, t) := ǫl(z, t)A is the cross-section area occupied by the liquid phase.

3.4.1.2 Effect of advection and intermediate outlets on the IC and BC

The effect of advection and intermediate outlet flows on the initial and advective bound-
ary conditions can be computed by solving Eq. (3.20), with the initial and boundary con-
ditions given by Eqs. (3.21) and (3.22), replacing the subscript f by l. In addition, for the
intermediate inlets/outlets at the positions zh,

cǫi bc,l(zh, t) = Zin,h
fin,h

ql(zh, t)
+ cǫi bc,l(z

−
h

, t)αl(zh, t),

∀h= 1, . . . , pl , ∀t ≥ 0.

3.4.1.3 Extents xr,l(z, t) and xm,l(z, t)

The extent of reaction xr,l ,i(z, t) represents the amount of material that has been pro-
cessed by the ith reaction in phase L and is at position z at time t. These extents are
described by Eq. (3.23), with the corresponding initial and boundary conditions, replacing
the subscript f by l, and the constraints

xr,l(zh, t) = xr,l(z
−
h

, t)αl (zh, t), ∀h= 1, . . . , pl , ∀t ≥ 0.

The extent of mass transfer xm,l ,k(z, t) represents the amount of material that has trans-
ferred to phase L via the kth mass transfer and is at position z at time t. These extents are
described by Eq. (3.24), with the corresponding initial and boundary conditions, replacing
the subscript f by l, and the constraints

xm,l(zh, t) = xm,l(z
−
h

, t)αl (zh, t), ∀h= 1, . . . , pl , ∀t ≥ 0.

3Eq. (3.30) results from the rearrangement of the material balance
cǫ

l
(z−

h
, t)ql(z

−
h

, t)+Zin,hfin,h = cǫ
l
(zh, t)ql(zh, t)+cǫ

l
(z−

h
, t)

qout,h

ǫl (z
−
h

,t)
for cǫ

l
(zh, t), where z−

h
indicates the axial position

right before the position of the hth intermediate column inlet/outlet.
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Eq. (3.29) can be reconstructed from cǫ
i bc,l(z, t) and the extents of reaction xr,l(z, t) and

of mass transfer xm,l(z, t) defined above using

cǫl =L l

�

xr,l

xm,l

�

+ cǫi bc,l , (3.31)

with L l =
�

NT
l

Em,l

�

.

3.4.1.4 Transformation to extents

If rank(L l) = Rl+ pm,l , the extents of reaction and mass transfer are given by the linear
transformation

�

xr,l

xm,l

�

= T l δcǫl , (3.32)

with T l :=
�

L T
l
WL l

�−1
L T

l
W, and δcǫ

l
:= cǫ

l
− cǫ

i bc,l .

3.4.1.5 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.6.

3.4.2 Tray reactive separation columns

This section considers the case of a reactive separation column with N trays. It is often
assumed for such columns that the liquid phase on each tray is perfectly mixed. Hence, the
system of Sl PDEs in Eq. (3.29) simplifies to a system of N · Sl ODEs that depend on time
only.

In the following, the equations are presented for a single tray, and the tray number
n = 1, . . . , N replaces the variable z used for packed columns in Section 3.4.1. Also, the
presence of inlet and outlet streams on the nth tray is handled by introducing the variables
Zin,n, fin,n and qout,n as in Section 3.4.1, replacing h by n.

3.4.2.1 Material balance equations, nl ,n(t)

The Sl-dimensional vector of concentrations cǫ
l ,n(t) on the nth tray is described by the

ODE

d

dt
cǫl ,n+∆

ωcǫl ,n+ωout,n cǫl ,n = NT
l rǫl ,n+ Em,lφ

ǫ
m,l ,n+ Zin,n

fin,n

Vt,n
,

cǫl ,n(0) = cǫl ,n,0, (3.33)
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where ωout,n(t) :=
qout,n(t)

Vl,n(t)
, with Vl ,n(t) := ǫl ,n(t)Vt,n the volume of the liquid phase on the

nth tray and Vt,n the total volume on the nth tray. We define the operator ∆ω applied to

any variable yl ,n as∆ω yl ,n :=ωl ,n yl ,n−ωl ,n−1 yl ,n−1, withωl ,n(t) := Ln(t)

nh,n(t)
, Ln(t) the molar

advective flowrate of the liquid phase that is transferred from the nth to the (n+ 1)st tray
and nh,n(t) the molar holdup in the liquid phase of the nth tray.

Multiplying Eq. (3.33) by Vt,n leads to an expression for nl ,n(t) := Vt,ncǫ
l ,n(t), the Sl -

dimensional vector of numbers of moles on the nth tray

d

dt
nl ,n+∆

ωnl ,n+ωout,n nl ,n = NT
l rv

l ,n+ Em,lφ
v
m,l ,n+ Zin,nfin,n,

nl ,n(0) = nl ,n,0, (3.34)

with rv
l ,n(t) := Vt,n rǫ

l ,n(t), and φv
m,l ,n(t) := Vt,nφ

ǫ
m,l ,n(t).

3.4.2.2 Effect of outlets and transfer between trays on the IC and IFC

The effect of the outlet flows and transfer of material between trays on the initial and
inlet flow conditions can be computed as niic,l ,n(t) by solving the ODE

d

dt
niic,l ,n+∆

ωniic,l ,n+ωout,n niic,l ,n = Zin,nfin,n,

niic,l ,n(0) = nl ,n,0. (3.35)

3.4.2.3 Extents xr,l ,n(t) and xm,l ,n(t)

The extent of reaction xr,l ,n,i(t) represents the amount of material that has been pro-
cessed by the ith reaction in phase L and is on the nth tray at time t. These extents are
described by the ODE

d

dt
xr,l ,n+∆

ωxr,l ,n+ωout,n xr,l ,n = rv
l ,n,

xr,l ,n(0) = 0Rl
. (3.36)

The extent of mass transfer xm,l ,n,k(t) represents the amount of material that has trans-
ferred to phase L via the kth mass transfer and is on the nth tray at time t. These extents
are described by the ODE

d

dt
xm,l ,n+∆

ωxm,l ,n+ωout,n xm,l ,n = φ
v
m,l ,n,

xm,l ,n(0) = 0pm,l
. (3.37)

Eq. (3.34) can be reconstructed from niic,l ,n(t) and the extents of reaction xr,l ,n(t) and
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of mass transfer xm,l ,n(t) defined above using

nl ,n =L l

�

xr,l ,n

xm,l ,n

�

+ niic,l ,n, (3.38)

with L l =
�

NT
l

Em,l

�

.

3.4.2.4 Transformation to extents

If rank(L l) = Rl+ pm,l , the extents of reaction and mass transfer are given by the linear
transformation

�

xr,l ,n

xm,l ,n

�

= T l δnl ,n, (3.39)

with T l :=
�

L T
l
WL l

�−1
L T

l
W, and δnl ,n := nl ,n− niic,l ,n.

3.4.2.5 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.7.

3.5 Generic Distributed Reaction Systems

In a generic distributed reaction system with three dimensions and multiple phases
(advection–diffusion–mass transfer–reaction problem), all quantities in each phase F can
be written as functions of the three spatial coordinates χ = (χ1,χ2,χ3) and the time t. Let
us assume that the domain of cǫ

f
(χ , t) is

¦

(χ , t) : χ ∈ D ⊂ R3 ∧ t ≥ 0
©

. The initial condi-
tions (for t = 0) are in the set IC = int(D), whereas the boundary conditions (for all t ≥ 0)
are in the set BC = ∂ (D).

For all χ ∈ BC , ~n(χ) is the inward-pointing vector normal to D at χ . The advective

boundary conditions are in the set aBC =
n

χ ∈ BC : vT
f
(χ, t)~n(χ)> 0

o

, with v f the vec-
tor of advective velocities, while the diffusive boundary conditions are in the set dBC =
n

χ ∈ BC : vT
f
(χ , t)~n(χ)≤ 0

o

.

3.5.1 Simplifications for specific reaction systems

For a specific reaction system, relevant assumptions allow simplifying the generic case
described above. The relevant simplifications are shown below for some of the systems
described in the previous sections.
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3.5.1.1 Packed reactive separation columns

For a packed column, χ reduces to the single spatial coordinate z. Advection is only
in the axial direction and, since there is perfect mixing at each axial position and no axial
diffusion, there is no radial diffusion and cǫ

f
and v f ,z are functions of z and t. With the

top of the column located at z = 0 and z being positive inside the column, the domain is
D = {z : z ≥ 0}. The initial conditions are given for all positions z > 0, and the advective

boundary conditions are given at z = 0, for t ≥ 0.

3.5.1.2 Multiphase two-dimensional tubular reactors

For a two-dimensional tubular reactor of radius R , χ reduces to the cylindrical coordi-
nates z and r. Advection is only in the axial direction, and cǫ

f
and v f ,z are functions of z,

r and t. With the reactor inlet located at z = 0 and z being positive inside the reactor, the
domain is D = {(z, r) : z ≥ 0∧ r ∈ [0,R]}. The initial conditions are given for all positions
z > 0 and r ∈ ]0,R[. The advective boundary conditions are given at the inlet position
z = 0, for r ∈ ]0,R[ and t ≥ 0. The diffusive boundary conditions are given at the center,
where r = 0, for z ≥ 0 and t ≥ 0, at the walls, where r =R , for z ≥ 0 and t ≥ 0, and at the
end of the (infinite) reactor, where z→∞, for r ∈ ]0,R[ and t ≥ 0.

3.5.1.3 Multiphase one-dimensional tubular reactors

For a one-dimensional tubular reactor, χ reduces to the spatial coordinate z. Since
there is perfect mixing at each axial position, there is no radial diffusion and cǫ

f
and v f ,z

are functions of z and t. The domain reduces to D = {z : z ≥ 0}. The initial conditions
are given for all positions z > 0. The advective boundary conditions are given at the inlet
position z = 0, for t ≥ 0, while the diffusive boundary conditions are given at the end of the
(infinite) reactor, where z→∞, for t ≥ 0.

3.5.1.4 Single-phase one-dimensional tubular reactors

For a single-phase one-dimensional tubular reactor, (i) there are no mass-transfer terms,
and (ii) the concentrations read c(z, t) and the velocity vz(z, t). For the rest, the situation is
the same as for the aforementioned multiphase one-dimensional case.

3.5.2 Material balance equations, cǫ
f
(χ , t)

The concentrations cǫ
f
(χ , t) are described by the PDE4

∂

∂ t
cǫf +∇ ·

�

v f cǫT
f

�

= NT
f rǫf + Em, fφ

ǫ
m, f + Ed, fφ

ǫ
d, f . (3.40)

4For any two vectors v and y, the definition ∇ ·
�
vyT� := (∇ · v)y+ (v · ∇)y is used throughout this section.
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The existence of diffusion in all three coordinates χ requires defining a matrix of diffu-
sion fluxes of dimension pd × 3, denoted Jǫ

d, f (χ, t), which is described by the PDE

∇ · Jǫ T
d, f , j = −φ

ǫ
d, f , j, ∀ j = 1, . . . , pd , (3.41)

with the diffusive boundary conditions

Jǫd, f (χ , t)~n(χ) = 0pd, f
, ∀χ ∈ dBC , ∀t ≥ 0.

Eq. (3.40) is subject to the following initial and advective boundary conditions:

cǫ
f
(χ , 0) = cǫ

f ,0(χ), ∀χ ∈ IC (IC),

cǫf (χ , t) = cǫf ,in(χ , t) + cǫd, f (χ , t), ∀χ ∈ aBC ,∀t ≥ 0 (BC),

with cǫ
d, f (χ, t) := −

Ed, f Jǫ
d, f (χ ,t)~n(χ)

βv f (χ ,t)T~n(χ)
. These initial and boundary conditions are also affected

by those of Eq. (3.41).

3.5.3 Effect of advection on the IC and BC

The effect of advection on the initial and advective boundary conditions can be com-
puted as cǫ

i bc, f (χ, t) by solving the PDE

∂

∂ t
cǫi bc, f +∇ ·

�

v f cǫ T
i bc, f

�

= 0S f
, (3.42)

with the initial and boundary conditions

cǫi bc, f (χ , 0) = cǫf ,0(χ), ∀χ ∈ IC (IC),

cǫi bc, f (χ , t) = cǫf ,in(χ, t), ∀χ ∈ aBC , ∀t ≥ 0 (BC).

3.5.4 Extents xr, f (χ , t), xm, f (χ , t) and xd, f (χ , t)

The extent of reaction xr, f ,i(χ, t) represents the amount of material that has been pro-
cessed by the ith reaction in phase F and is at position χ at time t. These extents are
described by the PDE

∂

∂ t
xr, f +∇ ·

�

v f xT
r, f

�

= rǫf , (3.43)

with xr, f (χ , 0) = 0R f
, ∀χ ∈ IC (IC), and xr, f (χ , t) = 0R f

, ∀χ ∈ aBC , ∀t ≥ 0 (BC).

The extent of mass transfer xm, f ,k(χ , t) represents the amount of material that has trans-
ferred to phase F via the kth mass transfer and is at position χ at time t. These extents are
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described by the PDE

∂

∂ t
xm, f +∇ ·

�

v f xT
m, f

�

= φǫm, f , (3.44)

with xm, f (χ , 0) = 0pm, f
, ∀χ ∈ IC (IC) and xm, f (χ , t) = 0pm, f

, ∀χ ∈ aBC , ∀t ≥ 0 (BC).

The extent of diffusion xd, f , j(χ , t) represents the amount of material that has transferred
via the jth diffusion rate in phase F and is at position χ at time t. These extents are described
by the PDE

∂

∂ t
xd, f +∇ ·

�

v f xT
d, f

�

= φǫd, f , (3.45)

with xd, f (χ , 0) = 0pd, f
, ∀χ ∈ IC (IC), and xd, f (χ , t) = −

Jǫ
d, f (χ ,t)~n(χ)

βv f (χ ,t)T~n(χ)
, ∀χ ∈ aBC , ∀t ≥ 0

(BC).

Eq. (3.40) can be reconstructed from Eqs. (3.42)-(3.45) using Eq. (3.26).

3.5.5 Transformation to extents

If rank
�

L f

�

= R f + pm, f + pd, f , the extents of reaction, mass transfer and diffusion are
given by the linear transformation in Eq. (3.27).

3.5.6 Combined material and heat balance equations

The combined material and heat balance equations are described in Appendix B.1.8.

3.6 Case Studies

This section shows the application of the transformation to extents to four examples of
distributed reaction systems, namely, a single-phase plug-flow reactor (without diffusion), a
single-phase one-dimensional tubular reactor (with diffusion), a packed reactive absorption
column, and a tray reactive distillation column. The purpose of these case studies is to illus-
trate the concept of extents and how these extents can be computed in specific cases. The
discussion about the possible applications of the concept of extents in distributed reaction
systems is postponed to the final section of this chapter, although the results in this section
may already reveal that the decoupling of rate processes provided by the transformation to
extents is helpful for monitoring and fault diagnosis.

3.6.1 Single-phase plug-flow reactor

Let us consider the plug-flow reactor with a single fluid phase discussed in Section 3.2.2.
The liquid phase consists of solvent and the species A, B, C and D that are involved in the
R = 2 reactions A + B → C and 2B → D. For this system, the vector of concentrations is
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c= [ cA cB cC cD ]T, and the stoichiometric matrix is N=
�
−1 −1 1 0
0 −2 0 1

�

.

Initially, the reactor contains only solvent and the species A with a concentration starting
at 2 mol L−1 and decreasing exponentially along the reactor length. This defines the IC as
c0(z) = [ 2 0 0 0 ]T exp (−2z), ∀z > 0, which is useful to demonstrate that the concept of
extents and the linear transformation to extents can deal with arbitrary initial conditions5.
The reactor is fed with a mixture of solvent and species A and B with concentrations 2 and
1.5 mol L−1, respectively. This defines the advective BC as cin(t) = [ 2 1.5 0 0 ]T mol L−1,
∀t ≥ 0. The velocity along the z-direction is assumed to be constant at vz = 1.25 m s−1.
The reaction rates are given by the following kinetic laws:

r1 = k1cAcB, (3.46)

r2 = k2c2
B, (3.47)

with k1 = 0.1 L mol−1 s−1, k2 = 0.3 L mol−1 s−1 for a constant temperature.

Figure 3.1 shows the concentrations cA, cB, cC and cD simulated with Eq. (3.6) for z ∈

[0,1] m and t ∈ {0,0.1, . . . , 0.8} s (thin gray lines) and the steady state that is reached
when t →∞ (thick black line). Figure 3.2 shows the corresponding profiles of the variables
δcA and δcB. Since C and D are not initially present and are not fed through the inlet,
ci bc,C and ci bc,D are identically equal to zero and δcC and δcD are equal to cC and cD. The
extents of reaction xr,1 and xr,2 in Figure 3.2 are computed using the linear transformation
of Eq. (3.12) from δc. In this case, T exists because rank (L ) = R = 2, where L = NT.
However, even if this rank condition were not satisfied, one could compute the extents via
integration of Eq. (3.10) with the kinetic laws of Eqs. (3.46)–(3.47).

In Figures 3.1 and 3.2, one can observe that, as time increases, the initial conditions are
propagated toward the end of the reactor, while all the variables reach their steady-state
values upstream of the propagation wave of the inlet conditions.

The situation is slightly different when there is diffusion, which makes the sharp tran-
sitions caused by the propagation wave of the inlet conditions become smoother, as shown
next for the case of a single-phase one-dimensional tubular reactor.

3.6.2 Single-phase one-dimensional tubular reactor

Let us now assume that the pd = 2 species A and B diffuse, which results in the diffusion
matrix Ed =

� 1 0 0 0
0 1 0 0

�T. We have the situation of the single-phase one-dimensional tubular
reactor discussed in Section 3.3.1.

The reaction rates are given by Eqs. (3.46)–(3.47), while the diffusion rates obey the

5These initial conditions can be interpreted physically as the result of a change of conditions at time t = 0,
with the conditions before t = 0 being caused by a first-order reaction.
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Figure 3.1 – Concentrations c(z, t) in mol L−1 along the z axis (in m) of a plug-flow reactor
for different times in s (gray lines). The thick black lines indicate concentrations at steady
state.
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Figure 3.2 – Concentrations δc(z, t) and extents of reaction xr(z, t) in mol L−1 along the z

axis (in m) of a plug-flow reactor for different times in s (gray lines). The thick black lines
indicate concentrations and extents at steady state.
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following kinetic laws:

φd,A = DA

∂ 2cA

∂ z2 , (3.48)

φd,B = DB

∂ 2cB

∂ z2 , (3.49)

with DA = 1× 10−4 m2 s−1 and DB = 5× 10−4 m2 s−1 for a constant temperature.

Figure 3.3 shows the concentrations cA, cB, cC and cD simulated with Eq. (3.13) for
z ∈ [0,1] m and t ∈ {0,0.1, . . . , 0.8} s (thin gray lines) and the steady state that is reached
when t →∞ (thick black line). Figure 3.4 shows the corresponding profiles of the variables
ci bc,A, ci bc,B, computed via Eq. (3.7) and equal to those that would be found for the previous
plug-flow reactor, and the variables δcA and δcB. Since C and D are not initially present
and are not fed through the inlet, ci bc,C and ci bc,D are identically equal to zero and δcC and
δcD are equal to cC and cD. The extents of reaction xr,1 and xr,2 and of diffusion xd,A and
xd,B in Figure 3.5 are computed using the linear transformation of Eq. (3.17) from δc. In
this case, T exists because rank (L ) = R+ pd = 2+ 2= 4, where L =

�

NT Ed

�

. However,
even if this rank condition were not satisfied, one could compute the extents via integration
of Eqs. (3.10) and (3.15) with the kinetic laws of Eqs. (3.46)–(3.49).

Figures 3.3–3.5 show that, besides the effects of reaction and advective propagation of
the inlet conditions, already seen in Figures 3.1–3.2, the concentrations are also affected
by diffusion, which becomes more visible at later times. The effect of diffusion is captured
by the extents of diffusion that clearly indicate that diffusion affects the concentrations of
A and B upstream and downstream of the propagation wave of the inlet conditions. For
example, since the inlet contains B but the initial content of the reactor does not, the effect
of diffusion decreases the concentration of B upstream of the propagation wave (from the
high value associated with the boundary conditions) and increases it downstream (from the
zero value of the initial conditions). This effect causes a negative value of xd,B upstream
and a positive value downstream of the propagation wave of the inlet conditions.

3.6.3 Packed reactive absorption column

Let us consider the reactive absorption column discussed in Section 3.4.1. The column,
with a length of 4 m and an area A= 1 m3, contains a liquid phase consisting of solvent S
and the species A, B, C and D that are involved in the reversible reaction A + B ⇋ C + D
(Rl = 1). The column also contains a gas phase that is used to absorb species D (pm,l = 1),
the objective being here to produce the desired species C and remove the by-product D. The

vector of concentrations in the liquid phase is cǫ
l
=
�

cǫ
l ,A cǫ

l ,B cǫ
l ,C cǫ

l ,D cǫ
l ,S

�T
, the stoichio-

metric matrix is Nl = [−1 −1 1 1 0 ], and the mass-transfer matrix is Em,l = [ 0 0 0 1 0 ]T.

Initially, the liquid phase contains 2.0 mol L−1 of A, 1.3 mol L−1 of B and 8.0 mol L−1 of
solvent, so that the IC are cǫ

l ,0(z) = [ 2.0 1.3 0 0 8.0 ]T mol L−1, ∀z ∈ [0,4] m. The column is
fed from the bottom (z = 4 m) with the constant flowrate G = 20 mol s−1 of pure absorbing
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Figure 3.3 – Concentrations c(z, t) in mol L−1 along the z axis (in m) of a tubular reactor
for different times in s (gray lines). The thick black lines indicate concentrations at steady
state.
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Figure 3.4 – Concentrations ci bc(z, t) and δc(z, t) in mol L−1 along the z axis (in m) of a
tubular reactor for different times in s (gray lines). The thick black lines indicate concentra-
tions at steady state.
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Figure 3.5 – Extents of reaction xr(z, t) and of diffusion xd(z, t) in mol L−1 along the z axis
(in m) of a tubular reactor for different times in s (gray lines). The thick black lines indicate
extents at steady state.

gas. The column is also fed from the top (z = 0 m) with a liquid at the constant flowrate
fin = 113 mol s−1 and the constant velocity vl ,z(0, t) = 0.01 m s−1, ∀t ≥ 0. The composition
Zin is constant and equal to that of cǫ

l ,0. This results in BC corresponding to the constant

inlet concentration cǫ
l ,in(t) = Zin

fin

Avl,z (0,t)
, ∀t ≥ 0. The molar liquid flowrate L(z, t) is such

that the volumetric fraction εl(z, t) remains constant at each position. Figure 3.6 sketches
this reactive separation column.

The composition of the gas phase, given by the molar fractions y(z, t), is such that the
gas phase at positions z = 0 m, z = 0.05 m, . . ., z = 3.95 m is in equilibrium with the
liquid phase in the sections z ∈ ]0,0.05] m, z ∈ ]0.05,0.1] m, . . ., z ∈ ]3.95,4] m. This
equilibrium is given for species D by the equilibrium curve yD = KD xD, with the coefficient
KD = 10 and the molar fraction of D in the liquid phase xD. Assuming that the molar gas
flowrate G is the same along the column and there is no accumulation of gas at any position,
the mass-transfer rate reads

φǫm,l =
G

A

∂

∂ z
yD. (3.50)

The reaction rate is given by the following kinetic law:

rǫl = k1

cǫ
l ,Acǫ

l ,B

ǫl

− k2

cǫ
l ,C cǫ

l ,D

ǫl

, (3.51)

with k1 = 2.18 × 10−3 L mol−1 s−1 and k2 = 2.18 × 10−4 L mol−1 s−1 for a constant
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f
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 (A,B) G  (D)

Figure 3.6 – Schematic of the packed reactive absorption column described in Section 3.6.3.
The species present in the streams that enter and leave the column are shown in parenthe-
ses, with bold font used for the predominant species in each stream.

temperature.

Figure 3.7 shows the concentrations cǫ
l ,A, cǫ

l ,B, cǫ
l ,C and cǫ

l ,D simulated with Eq. (3.29) for
t ∈ [0,25] min and z ∈ {0,0.3,0.6,1.0,1.6,2.2,3.0,4.0} m. Figure 3.8 shows the corre-
sponding profiles of the variables δcǫ

l ,A and δcǫ
l ,B. Since C and D are not initially present

and are not fed through the liquid inlet, cǫ
i bc,l ,C and cǫ

i bc,l ,D are identically equal to zero and
δcǫ

l ,C and δcǫ
l ,D are equal to cǫ

l ,C and cǫ
l ,D. The extents of reaction xr,l ,1 and of mass transfer

xm,l ,D in Figure 3.8 are computed using the linear transformation of Eq. (3.32) from δcǫ
l
.

The linear transformation to extents exists because rank
�
L l

�
= Rl + pm,l = 1 + 1 = 2,

where L l =
�

NT
l

Em,l

�

. However, even if this rank condition were not satisfied, one could
compute the extents via integration of Eqs. (3.23) and (3.24), replacing the subscript f by
l, with the kinetic laws of Eqs. (3.50) and (3.51).

The extents in Figure 3.8 show the cumulative effect of each rate process as a function of
time for various positions in the column. The value of the extent of reaction is larger at the
bottom than at higher positions, which can be easily explained by the fact that the reaction
proceeds as the liquid flows down the column. The extent of mass transfer is positive near
the top and negative near the bottom. Indeed, near the top, the species D transfers from the
gas phase leaving the column, which is rich in D, to the liquid phase entering the column,
which is poor in D; near the bottom, D transfers from the liquid phase leaving the column
and rich in D to the gas phase entering the column and low in D. These effects are more
difficult to interpret if one considers the concentrations in Figure 3.7.
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Figure 3.7 – Concentrations cǫ
l
(z, t) in mol L−1 over time (in min) of a packed reactive

absorption column for different positions z (in m).
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Figure 3.8 – Concentrations δcǫ
l
(z, t) in mol L−1 and extents of reaction xr,l(z, t) and of mass
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3.6.4 Tray reactive distillation column

Let us consider the reactive distillation column discussed in Section 3.4.2. The column
has N = 4 trays and the liquid phase consists of solvent S and the species A, B, C, D and E
involved in the Rl = 2 reactions A + B → C + D and 2A + B→ 2D + E. On each tray, the
species A, D and S transfer between the liquid and vapor phases (pm,l = 3). The vector of
numbers of moles in the liquid phase on the nth tray is nl ,n = [ nl,n,A nl,n,B nl,n,C nl,n,D nl,n,E nl,n,S ]T,
the stoichiometric matrix is Nl =

�
−1 −1 1 1 0 0
−2 −1 0 2 1 0

�

, and the mass-transfer matrix is Em,l =
h

1 0 0 0 0 0
0 0 0 1 0 0
0 0 0 0 0 1

iT
.

Initially, the liquid phase on each tray contains 100 kmol of S and 13 kmol of B, which
defines the IC as nl ,n,0 = [ 0 13 0 0 0 100 ]T, ∀n= 1, . . . , N . The column is fed from the bottom
(n= 4) with the constant vapor flowrate G = 20 mol s−1 of pure A, and from the top (n = 1)
with the constant liquid flowrate fin,1 = 113 mol s−1 of the same composition as nl ,n,0. The
molar liquid flowrates Ln between the trays are such that the liquid volume on each tray
remains constant. At the top of the column (n = 1), the vapor goes through a condenser
(with no accumulation), and r = 5 mol s−1 is recycled to the liquid phase on tray n = 1.
Figure 3.9 sketches this reactive distillation column.

The composition of the vapor phase on the nth tray, given by the molar fractions yn,
is such that the vapor phase is in equilibrium with the liquid phase on that tray. For each
species s, with s ∈ {A,B,C,D,E,S}, this equilibrium is given by Raoult’s law, yn,s P = xn,s p∗s ,
with P the total pressure, xn,s the molar fraction of the species s in the liquid phase on the
nth tray, and p∗A = 14.496 bar, p∗D = 79.432 bar and p∗S = 0.292 bar the vapor pressures.
Assuming that the molar vapor flowrate G between the trays is the same along the column
and there is no accumulation of vapor on trays, the mass-transfer rates are given by

φv
m,l ,n =







r yn+ G
�
yn+1 − yn

�
, n= 1

G
�
yn+1 − yn

�
, n= 2, . . . , N .

(3.52)

Note that, due to the vapor feed of pure A at the bottom of the column, yN+1 = [ 1 0 0 0 0 0 ]T.
The reaction rates are given by the following kinetic laws:

r v
l ,n,1 = Vl ,n k1

�
nl,n,A

Vl,n

��
nl,n,B

Vl,n

�

, (3.53)

r v
l ,n,2 = Vl ,n k2

�
nl,n,A

Vl,n

�2�
nl,n,B

Vl,n

�

, (3.54)

with k1 = 2.18 × 10−3 L mol−1 s−1 and k2 = 2.18 × 10−4 L2 mol−2 s−1 for a constant
temperature.

Figure 3.10 shows the numbers of moles nl ,n,A, nl ,n,B, nl ,n,C and nl ,n,D simulated with
Eq. (3.34) for t ∈ [0,250] min and each of the 4 trays, n = 1, . . . , 4. Since A, C and D are
not initially present and are not fed through the liquid inlet, niic,l ,n,A, niic,l ,n,C and niic,l ,n,D
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Figure 3.9 – Schematic of the tray reactive distillation column described in Section 3.6.4.
The species present in the streams that enter and leave the column are shown in parenthe-
ses, with bold font used for the predominant species in each stream.

are identically equal to zero and δnl ,n,A, δnl ,n,C and δnl ,n,D are equal to nl ,n,A, nl ,n,C and
nl ,n,D. The quantities δnl ,n,B have a shape similar to nl ,n,B, as niic,l ,n,B remain approximately
equal to the initial conditions nl ,n,B,0 (results not shown). The extents of reaction xr,l ,n,1 and
xr,l ,n,2 and of mass transfer xm,l ,n,A and xm,l ,n,D in Figure 3.11 are computed using the linear
transformation of Eq. (3.39) from δnl ,n. The linear transformation to extents exists because
rank

�
L l

�
= Rl + pm,l = 2+ 3 = 5, where L l =

�

NT
l

Em,l

�

. However, even if this rank
condition were not satisfied, one could compute the extents via integration of Eqs. (3.36)
and (3.37) with the kinetic laws of Eqs. (3.52)–(3.54).

The extents in Figure 3.11 show the cumulative effect of each rate process as a function
of time for each tray. For all extents, the magnitude on the tray n = 4 (from the top) is
larger than on higher trays, because the extents on each tray take into account the effect
of the corresponding rate processes on the trays from the top to that tray. These effects are
more difficult to interpret if one considers the numbers of moles in Figure 3.10.

3.7 Conclusion

This chapter has provided a novel transformation to extents for generic distributed re-
action systems that include tubular reactors and reactive separation columns. As a con-
sequence, the well-known concept of extents for batch reactors, which has recently been
extended to open homogeneous and heterogeneous reactors [18, 19], as shown in Chapter
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Figure 3.10 – Numbers of moles nl ,n(t) in kmol over time (in minutes) on each of the 4
trays of a reactive distillation column.
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Figure 3.11 – Extents of reaction xr,l ,n(t) and of mass transfer xm,l ,n(t) in kmol over time
(in minutes) on each of the 4 trays of a reactive distillation column.
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2, has been generalized to distributed reaction systems.

In agreement with the definition of a vessel extent for lumped reaction systems, each
extent in a distributed reaction system describes uniquely and completely a particular rate
process, taking into account the amount that has been transported by advection to a farther
position and that has been removed by an outlet. The original concentration variables
can always be expressed as the linear transformation of the extents. In many cases, these
extents can, in turn, be obtained via the (inverse) linear transformation of the original
concentrations. This linear transformation uses structural information about the reaction
system, in particular its stoichiometry, the knowledge of the species that transfer between
phases and diffuse, as well as information about the initial and boundary conditions. For
distributed reaction systems, the initial and boundary conditions replace the initial and inlet
conditions required for the transformation of lumped reaction systems. The applicability of
these transformations for distributed reaction systems has been demonstrated via simulated
examples.

Possible extensions of the concept of extents presented in this chapter include alterna-
tive definitions of extents that require less strict rank conditions for the existence of the
linear transformation to extents and the connection between extents and analytical or semi-
analytical solutions to the PDEs that describe certain distributed reaction systems [91].

The generalization of the concept of extents to distributed reaction systems opens up
new perspectives for industrially relevant applications in terms of design, modeling, model
identification, model reduction, state reconstruction, data reconciliation, state estimation,
monitoring, fault diagnosis, control and optimization of distributed reaction systems. These
systems include one- and two-dimensional tubular reactors, three-dimensional reaction sys-
tems, micro-reactors, and reactive separation systems, such as reactive absorption or reac-
tive distillation columns. These perspectives for applications of the concept of extents in
distributed reaction systems are justified by the fact that some of these applications have
been investigated for lumped reaction systems, while others have already been mentioned
for the case of distributed reaction systems, namely design, modeling, monitoring and fault
diagnosis. For example, the concept of extents has been used for incremental model identi-
fication of plug-flow reactors [92].

In summary, a clear understanding of the concept of extents in distributed reaction
systems, which has been the main goal of this chapter, will certainly be helpful for the
future development of useful applications in chemical engineering.
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4 Estimation of Kinetic Parameters via

the Incremental Approach

This chapter is adapted from the postprints of the following articles [93, 94]:

D. Rodrigues, J. Billeter, and D. Bonvin. Global identification of kinetic parameters via
the extent-based incremental approach. Comput. Aided Chem. Eng., 40:2119–2124, 2017.

Link: http://doi.org/10.1016/B978-0-444-63965-3.50355-X.

Copyright © 2017 Elsevier Ltd.

D. Rodrigues, J. Billeter, and D. Bonvin. Maximum-likelihood estimation of kinetic pa-
rameters via the extent-based incremental approach. Comput. Chem. Eng., in press, 2018.

Link: http://doi.org/10.1016/j.compchemeng.2018.05.024.

Copyright © 2018 Elsevier Ltd.

The author of this thesis contributed to those articles by developing the main novel ideas,

implementing the simulations, and writing a significant part of the text. Hence, the author

retains the right to include the articles in this thesis since they are not published commercially

and the journal is referenced as the original source.

4.1 Introduction

The identification of reaction kinetics represents one of the main challenges in building
first-principles models for reaction systems. Although the literature on this topic is extensive
and includes several well-established textbooks [95, 96, 97], there remain significant chal-
lenges. This chapter addresses some of these challenges for lumped homogeneous reaction
systems. Typically, the identification task consists in confronting a set of candidate rate laws
to experimental data and identifying the rate laws and the kinetic parameters that provide
the best fit. This identification task can be performed via a simultaneous or an incremental
approach as discussed next.

• Simultaneous identification is performed by postulating a rate law for each reaction in
the model and estimating all kinetic parameters simultaneously. The modeled rates are
integrated numerically, and all the parameters are estimated together so as to minimize
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the deviations between model predictions and measurements. The procedure is re-
peated for all combinations of rate candidates, and the best combination is selected via
appropriate model discrimination techniques. The main advantage of the simultaneous
approach is that it leads to statistically optimal parameter estimates in the maximum-
likelihood sense. Although these parameter estimates are generally not unbiased, they
are consistent in the sense that the estimates converge to the true parameter values as
the number of data points tends to infinity [98]. However, simultaneous identification
can be computationally costly when there are many combinations of rate candidates
to be tested. Moreover, enforcing convergence to global optimality is often slow, diffi-
cult and dependent on the initial guesses due to the large number of parameters that
need to be estimated simultaneously. Finally, since structural mismatch in one part
of the model typically results in errors in all parameters, it is difficult to attribute the
mismatch to a particular part of the model.

• Incremental identification is performed in several steps by decomposing the identifica-
tion task into a set of smaller subproblems, with each subproblem corresponding to a
single reaction. Hence, since each reaction is investigated individually, only the rate
candidates for one reaction at a time need to be compared, and there are fewer param-
eters to be estimated simultaneously [59]. These parameters are estimated such that
the model predictions fit the experimental data of the corresponding reaction. Then,
the rate candidate with the best fit is selected.

Note that the estimation of kinetic parameters can be done using either the differential
or the integral method. In the differential method, the kinetic parameters are estimated by
fitting the candidate rate laws to the experimental rates that are generated through dif-
ferentiation of measured concentrations [99, 60, 61]. In the integral method, the kinetic
parameters are estimated by fitting the integral of the candidate rate laws to either experi-
mental numbers of moles (with the simultaneous approach) or experimental extents (with
the incremental approach) [64].

In the context of the incremental approach, the aforementioned differential and integral
methods are also known as rate-based and extent-based approaches. Hence, in extent-based
incremental identification, the measured numbers of moles are first transformed to exper-
imental extents via linear transformation as shown in Chapter 2, and then the rate laws
are identified individually by comparing the experimental extents to the modeled extents
that result from integration of the candidate rate laws. Compared to the rate-based ap-
proach, the extent-based incremental approach provides parameter estimates with less bias,
tighter confidence intervals and increased ability to discriminate among rate law candidates.
However, it also requires more computational effort due to the need to integrate the rates
numerically [58].

The main advantage of the incremental methods is that, thanks to the decoupling of the
estimation problems, the number of rate candidates can be kept low for each subproblem,
and convergence is faster. The main drawback is the fact that the candidate rate laws must
be evaluated using measured concentrations because each rate is simulated individually
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and there is no information about the other rates. Since the rates that are computed from
measured concentrations are typically biased, this bias is propagated to the identification
problem, and the parameter estimates are not statistically optimal. Hence, simultaneous
identification is typically performed in a final step, using the model structure identified via
the incremental approach. This procedure results in statistically optimal parameter esti-
mates and less computational effort than a purely simultaneous approach, because the rate
laws are fixed and good initial parameter values are available. An alternative is to use a
sequential approach, whereby the rate laws for the various reactions are identified sequen-
tially [100]. This approach shares the advantages of the simultaneous approach, provided
that the correct model structure is chosen at each step, while it lies in between the simulta-
neous and the incremental approaches in terms of computational effort.

A drawback of these kinetic identification approaches is that, since they typically rely
on local search methods, they can only converge to locally optimal parameters. This means
that, if the solution to the identification problem does not correspond to the global opti-
mum, the identified model may yield an incorrect description of the reaction system. Note
that the incremental approach is better suited to global optimization since each estimation
subproblem involves a small number of parameters. Taking these considerations into ac-
count, an incremental parameter estimation method has been proposed to obtain globally
optimal parameter estimates [101]. However, this estimation method is based on (i) the
rate-based incremental approach, which can have several disadvantages compared to the
extent-based approach as mentioned above, and (ii) branch-and-bound techniques, which
are known to exhibit a worst-case complexity that is exponential in the number of decision
variables.

This chapter presents a novel methodology for the identification of kinetic parameters
for lumped homogeneous reaction systems. The novelty consists in (i) adopting the extent-
based incremental approach, (ii) leading to statistically optimal parameter estimates in the
maximum-likelihood sense, and (iii) guaranteeing convergence to global optimality. The
global solution to this incremental approach has a quality similar to the global solution to
the simultaneous approach but with a much smaller computational effort. The proposed
approach does not rely on branch-and-bound techniques but rather on the reformulation of
the nonconvex optimization problem as a convex problem, thereby taking advantage of the
developments in polynomial optimization using sum-of-squares polynomials and semidefi-
nite programming [102].

The structure of the chapter is as follows. Section 4.2 reviews the concept of extents as
well as the procedure for model identification using the extent-based incremental approach.
Section 4.3 presents two important steps necessary to guarantee maximum-likelihood pa-
rameter estimates with the extent-based incremental approach. Section 4.4 discusses the
reformulation of the original identification problem as a convex optimization problem and
its solution. A simulated case study is presented in Section 4.5, while Section 4.6 concludes
the chapter.
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4.2 Extent-based Incremental Approach

This section reviews the fundamental features of extent-based incremental model iden-
tification. In incremental identification, each reaction is dealt with individually. Conse-
quently, for each reaction, only the rate candidates for that reaction need to be compared,
which requires estimating only the parameters of a given candidate at a time.

4.2.1 Concept of vessel extents

The concept of vessel extents is instrumental for the application of the extent-based
incremental approach to model identification. This concept is briefly described next.

Let us consider an open lumped homogeneous reactor with S species involved in R

independent reactions, p independent inlets and one outlet. The state of the reactor is
typically represented by the volume V (t), the S-dimensional vector of concentrations c(t)

and the temperature T (t). Upon defining the numbers of moles n(t) := V (t)c(t), one can
write the mole balance equations as

ṅ(t) = NT V (t) r(t) +Win uin(t)−ω(t)n(t), n(0) = n0, (4.1)

where r(t) is the R-dimensional vector of reaction rates, uin(t) is the p-dimensional vector
of inlet flowrates and ω(t) := uout (t)

m(t)
is the inverse of the residence time, with uout(t) the

outlet flowrate and m(t) the mass. Furthermore, N is the R× S stoichiometric matrix, Win

the S × p inlet-composition matrix, and n0 the S-dimensional vector of initial numbers of
moles.

The concept of vessel extents can also be used to represent the system dynamics [18].
The ith vessel extent of reaction, which represents the amount of material that has been
processed by the ith reaction and is in the vessel at time t, is described by the differential
equation

ẋr,i(t) = V (t) ri(t)−ω(t)xr,i(t), xr,i(0) = 0, i = 1, . . . ,R. (4.2)

The jth vessel extent of inlet, which represents the amount of material that has flowed
into the reactor via the jth inlet and is in the vessel at time t, is described by

ẋ in, j(t) = uin, j(t)−ω(t)x in, j(t), x in, j(0) = 0, j = 1, . . . , p. (4.3)

The vessel extent of initial conditions, which represents the amount of material that was
initially in the reactor and is in the vessel at time t, is described by

ẋ ic(t) = −ω(t)x ic(t), x ic(0) = 1. (4.4)

Consequently, upon considering the reaction rates and inlet flowrates as (endogenous
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and exogenous) inputs, the extents can be written as convolution integrals. The ith vessel
extent of reaction is

xr,i(t) =

∫ t

0

V (τ) ri(τ) e
−
∫ t

τ
ω(ζ)dζdτ, i = 1, . . . ,R, (4.5)

the jth vessel extent of inlet is

x in, j(t) =

∫ t

0

uin, j(τ) e
−
∫ t

τ
ω(ζ)dζdτ, j = 1, . . . , p, (4.6)

and the vessel extent of initial conditions is

x ic(t) = e−
∫ t

0
ω(ζ)dζ. (4.7)

Moreover, the numbers of moles are given by the linear combinations of extents

n(t) = NTxr(t) +Winxin(t) + n0 x ic(t), (4.8)

where the p-dimensional vector of extents of inlet xin and the extent of initial conditions x ic

can be computed from the knowledge of inlet and outlet flowrates, as shown in Section 2.5.

Then, provided that rank (N) = R, it is possible to compute x̃r from the measurements c̃

as

x̃r(t) =
�

NΣ−1
c̃

NT
�−1

NΣ−1
c̃

�
V (t) c̃(t)−Winxin(t)− n0 x ic(t)

�
, (4.9)

where (̃·) denotes noisy quantities and Σc̃ is the variance-covariance matrix of c̃.

Although the extent-based incremental approach is detailed here only for open lumped
homogeneous reactors, this approach can also be used for many other types of reaction
systems. Indeed, the concept of extents described in Eqs. (4.2)–(4.8) is rather general and
can be extended to heterogeneous reactors with mass transfer, reactors with heat balance,
reactors with instantaneous equilibria described by differential-algebraic equations as well
as tubular reactors and reactive separation columns described by partial differential equa-
tions, as shown in Chapters 2 and 3. Moreover, the expression of the extents as convolution
integrals presented in Eqs. (4.5)–(4.7) is also general and can even be demonstrated for
tubular reactors with reaction, advection, and diffusion [91].

4.2.2 Rate laws

The incremental approach deals with one rate candidate at a time. The rate candidates
for a given reaction correspond to plausible rate laws, with each decision variable being an
unknown kinetic parameter that belongs to an interval of real numbers.

Let us assume that each rate law is (i) a function of z(t) :=
�

c(t)T T (t)
�T

, and (ii)
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linear in the L parameters α =
�
α1, . . . ,αL

�
and nonlinear in the N parameters θ =

�
θ1, . . . ,θN

�
. Hence, we propose to express the reaction rate as

r
�
z(t),α,θ

�
= r0

�
z(t),θ

�
+

L∑

ℓ=1

αℓ rℓ
�
z(t),θ

�
. (4.10)

The goal is to estimate the kinetic parameters α and θ from measurements.

4.2.3 Identification problem

Considering the generic rate candidate r
�
z(t),α,θ

�
, the corresponding vessel extent of

reaction is

xr(t,α,θ ) =

∫ t

0

V (τ) r
�
z(τ),α,θ

�
e−
∫ t

τ
ω(ζ)dζdτ

= V (t) d0(t,θ ) +
L∑

ℓ=1

αℓV (t) dℓ(t,θ ), (4.11)

where

dℓ(t,θ ) :=

∫ t

0

V (τ)

V (t)
rℓ
�
z(τ),θ

�
e−
∫ t

τ
ω(ζ)dζdτ

=

∫ t

0

rℓ
�
z(τ),θ

� xic(t)/V (t)

xic(τ)/V (τ)
dτ, ∀ℓ= 0, . . . , L. (4.12)

In practice, the noisy measurements z̃ are available with the sampling period h at the
time instants tm := mh, for m = 0, . . . , H. Upon numerical integration via a quadrature
method specified by weights γm (for example, Simpson’s rule) and replacing rℓ

�
z(tm),θ

�

by its estimate r̂ℓ
�
z̃(tm),θ

�
, dℓ(t,θ ) is approximated by

d̂ℓ(t,θ ) :=

t

h∑

m=0

hγm r̂ℓ
�
z̃(tm),θ

� xic (t)/V (t)

xic(tm)/V (tm)
, ∀ℓ= 0, . . . , L. (4.13)

Remark 4.1. Note that the approximation of dℓ(t,θ ) by d̂ℓ(t,θ ) entails two different types
of errors, which occur because only noisy measurements at discrete time instants z̃(tm) are
available:

1. Propagation error (PE): This error is due to the propagation of noise in the measure-
ments to the modeled rate r̂ℓ

�
z̃(tm),θ

�
. Hence, the propagation error accounts for

the difference between the cases of noisy measurements z̃(tm) and noise-free measure-
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ments z(tm). It is defined as:

PEℓ(t,θ ) :=

t

h∑

m=0

hγm

�

r̂ℓ
�
z̃(tm),θ

�
− rℓ

�
z(tm),θ

�
�

xic (t)/V (t)

xic(tm)/V (tm)
, ∀ℓ= 0, . . . , L.

(4.14)

2. Integration error (IE): This error is due to the use of numerical integration that is
needed because the measurements are available only at discrete time instants. Hence,
the integration error would also occur if noise-free measurements z(tm) were available.
It is defined as:

IEℓ(t,θ ) :=

t

h∑

m=0

hγmrℓ
�
z(tm),θ

� xic (t)/V (t)

xic(tm)/V (tm)

−

∫ t

0

rℓ
�
z(τ),θ

� xic(t)/V (t)

xic (τ)/V (τ)
dτ, ∀ℓ= 0, . . . , L. (4.15)

It follows from the definitions of the propagation and integration errors in Remark 4.1
that:

d̂ℓ(t,θ )− dℓ(t,θ ) = PEℓ(t,θ ) + IEℓ(t,θ ), ∀ℓ= 0, . . . , L. (4.16)

If r is a rate candidate for the ith reaction, the identification problem of the extent-based
incremental approach for this rate candidate reads:

min
α,θ

J(α,θ ) =
H∑

m=1

�
x̂r(tm,α,θ )− x̃r,i(tm)

V (tm)

�2

, (4.17)

with the modeled extent

x̂r(tm,α,θ ) := V (tm) d̂0(tm,θ ) +
L∑

ℓ=1

αℓV (tm) d̂ℓ(tm,θ ) (4.18)

linear in α, and the experimental extents x̃r(tm) expressed as the linear transformation of
the concentrations c̃(tm) in Eq. (4.9).

Remark 4.2. The formulation of the identification problem in Eq. (4.17) assumes that each
element of c̃ is corrupted by independent and identically distributed (i.i.d.) noise with
respect to time, that is, the noise in c̃ is homoscedastic. In this case, one can infer from
Eq. (4.9) that each term

x̃r,i

V
is also corrupted by homoscedastic noise, whereas the noise

in x̃r,i is heteroscedastic. For this reason, the cost of the identification problem consists in
the sum of squares of differences between the modeled quantity x̂r

V
and the corresponding

experimental quantity
x̃r,i

V
rather than between x̂r and x̃r,i.
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4.2.4 Reformulation of the identification problem

The cost function in Eq. (4.17) is quadratic in α, that is,

J(α,θ ) = c(θ ) + 2αTg(θ ) +αTH(θ )α, (4.19)

with

c(θ ) :=
H∑

m=1

�

d̂0(tm,θ )−
x̃r,i(tm)

V (tm)

�2

, (4.20a)

g(θ ) :=
H∑

m=1

d̂(tm,θ )

�

d̂0(tm,θ )−
x̃r,i(tm)

V (tm)

�

, (4.20b)

H(θ ) :=
H∑

m=1

d̂(tm,θ )d̂(tm,θ )T, (4.20c)

where d̂(tm,θ ) :=
�

d̂1(tm,θ ) · · · d̂L(tm,θ )
�T

. Note that H(θ ) is invertible since H(θ ) ≻

0L×L.

The optimal parameters α can be computed for each θ as

α̂(θ ) = −H(θ )−1g(θ ), (4.21)

which allows an exact reformulation of the optimization problem described in Eq. (4.17)
with only the decision variables θ :

min
θ

J̄(θ ) = J
�

α̂(θ ),θ
�

= c(θ )− g(θ )TH(θ )−1g(θ ). (4.22)

One can also compute

∂ J̄

∂ θk

(θ ) =
∂ c

∂ θk

(θ ) + 2α̂(θ )T
∂ g

∂ θk

(θ ) + α̂(θ )T
∂H

∂ θk

(θ )α̂(θ ), ∀k = 1, . . . , N ,

(4.23)

analytically to speed up convergence of the optimization algorithm to a local minimum.

Remark 4.3. A similar separation of parameters has been proposed for the simultaneous
approach to avoid having to determine more parameters via optimization when the initial
conditions are unknown or rate measurements are considered [103]. However, it is assumed
here that the initial conditions are known and no rate measurements are considered. Hence,
it is not possible to separate any of the parameters with the simultaneous approach since
the modeled numbers of moles n̂(tm,α,θ ) depend nonlinearly on all the parameters α and
θ . This is due to the fact that, in the simultaneous approach, the modeled numbers of moles
result from the numerical integration of rates that are computed from modeled quantities
at arbitrary time instants ẑ(t,α,θ ). In contrast, in the incremental approach, the rates are
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computed from measured quantities at discrete time instants z̃(tm), which explains why the
modeled extent x̂r(tm,α,θ ) is linear in α.

Remark 4.4. The incremental approach does not provide statistically optimal parameters
in the maximum-likelihood sense for two main reasons: (i) if the experimental extents
x̃r,1, . . . , x̃r,R are correlated, this correlation is not taken into account by solving the identifi-
cation problem individually for each reaction; (ii) if the estimate of rℓ

�
z(tm),θ

�
computed

from the measurements z̃(tm) is biased, the numerical integration of these biased estimates
results in a biased value d̂ℓ(tm,θ ), which implies that the modeled extent x̂r(tm,α,θ ) is
also biased. The next section suggests methods to deal with these two issues. Note that the
propagation and integration errors mentioned in Remark 4.1 will always be present with
the incremental approach. However, these errors can be kept rather small provided that the
sampling is sufficiently frequent and the propagation error is unbiased.

4.3 Maximum-likelihood Estimation via the Extent-based Incre-

mental Approach

This section introduces a new feature of extent-based incremental model identification,
namely, the fact that this approach can be used to obtain maximum-likelihood parameter
estimates. For this, two methods are developed next: (i) a method to compute uncorrelated

experimental extents, which allows solving the identification problem individually for each
reaction without neglecting the correlation between the various experimental extents; and
(ii) a method to compute rate estimates with negligible bias, which results in modeled extents

with negligible bias and contributes to reduce the bias in the parameter estimates.

4.3.1 Computation of uncorrelated experimental extents

This subsection shows how one can compute uncorrelated experimental extents from a
set of measurements that depend linearly on these extents. Since the incremental approach
requires the knowledge of the relationship between extents and measured quantities, the
relationship between numbers of moles (or concentrations) and measured quantities needs
to be known. Hence, before discussing the computation of the experimental extents x̃r

from the noisy measurements ỹ, let us investigate the computation of the experimental
concentrations c̃ from ỹ via calibration. For the sake of simplicity, the time dependence is
omitted in the remainder of this subsection.

4.3.1.1 Computation of experimental concentrations from ỹ via calibration

Let us denote the W -dimensional vector of measured quantities as y, the corresponding
vector of noisy measurements as ỹ, and the S×W matrix of molar sensitivities as S.

85



Chapter 4. Estimation of Kinetic Parameters via the Incremental Approach

Assuming the measurement model

y= STc, (4.24)

c̃ can be computed from ỹ using an equation of the form

c̃= Vpr ỹ, (4.25)

where the prognostic matrix Vpr is any matrix that satisfies

VprS
T = IS. (4.26)

The matrix S can be computed via calibration using H experiments that yield the H×W

matrix of calibration measurements Ycal and the H × S matrix of calibration concentrations
Ccal of rank S:

S= C+
cal

Ycal , (4.27)

where C+
cal

:=
�

CT
cal

Ccal

�−1
CT

cal
is the Moore-Penrose pseudoinverse of Ccal .

The prognostic matrix Vpr can be computed from S in Eq. (4.27) in different ways. For
example:

• Provided that rank (S) = S, one can use S to compute c̃ from ỹ as

c̃=
�

SΣ−1
ỹ

ST
�−1

SΣ−1
ỹ

ỹ, (4.28)

where Σỹ is the variance-covariance matrix of ỹ. Then, the variance-covariance matrix
of c̃ is

Σc̃ =
�

SΣ−1
ỹ

ST
�−1

. (4.29)

Replacing S in Eq. (4.28) corresponds to a particular choice of Vpr , that is,

Vpr = CT
calCcal

�

CT
calYcalΣ

−1
ỹ

YT
calCcal

�−1
CT

calYcalΣ
−1
ỹ

. (4.30)

• Another particular choice that also satisfies Eq. (4.26) and uses S from Eq. (4.27) is

Vpr = CT
cal

�

YT
cal

�+
, (4.31)

which corresponds to principal component regression (PCR), if one considers Ycal as
the result of a singular value decomposition with a reduced number of singular values
[104].
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4.3.1.2 Computation of experimental extents from ỹ

From Eqs. (4.8) and (4.24), one can write the re-arranged measurement model as

V y= ST
�

NTxr +Winxin+ n0 x ic

�

. (4.32)

Provided that rank (N) = R and rank (S) = S, it is possible to relate x̃r to c̃ using Eq. (4.9)
and to ỹ using Eqs. (4.28) and (4.29):

x̃r =
�

NSΣ−1
ỹ

STNT
�−1

NSΣ−1
ỹ

�

V ỹ− ST �Winxin+ n0 x ic

�
�

. (4.33)

Eq. (4.33) can also be obtained directly from Eq. (4.32) if the less restrictive condition
rank (NS) = R is satisfied.

Remark 4.5. A consequence of Eq. (4.33) is that the experimental extents x̃r are typically
correlated, even if the measurements ỹ are uncorrelated.

4.3.1.3 Computation of uncorrelated experimental extents from ỹ

The goal is to use the measurements ỹ in a way that allows obtaining uncorrelated exper-
imental extents x̃r,1, . . . , x̃r,R. Assuming that the measurements ỹ are uncorrelated, a simple
way of generating uncorrelated experimental extents is to compute the various extents from
different measurements ỹ, which can be written as







x̃r,i =
∑W

w=1 ci,w ỹw

x̃r, j =
∑W

w=1 c j,w ỹw

⇒ i = j ∨ ci,w = 0∨ c j,w = 0, ∀w = 1, . . . ,W. (4.34)

In other words, one determines a partition ỹ1, . . . , ỹR of ỹ and computes each x̃r,i from
the corresponding ỹi, for all i = 1, . . . ,R.

Remark 4.6. Section 4.3.1 is built upon the assumptions of (i) a linear relationship between
the measured quantities y and the concentrations c, and (ii) the availability of uncorrelated
measurements ỹ. Alternatively, if these assumptions are not satisfied, the methodology
can still be adapted to generate uncorrelated experimental extents x̃r,1, . . . , x̃r,R from the
measurements ỹ (this is not discussed any further here). Note that, in the particular case of
kinetic modeling using spectroscopic measurements, it is typically assumed that (i) the Beer-
Lambert law is valid, which implies there exists a linear relationship between the measured
quantities y (absorbances) and the concentrations c, and (ii) the different measurements ỹ

at different wavelengths are uncorrelated [105]. However, the methodology in this section
is more general and not limited to spectroscopic measurements.

Consider the Wi-dimensional subset of measured quantities, yi, with the corresponding
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S×Wi submatrix of molar sensitivities Si. Then, Eq. (4.32) can be written as

V yi = ST
i

�

NTxr +Winxin+ n0 x ic

�

. (4.35)

Let us assume that yi is affected by only Ri reactions, with the corresponding extents of
reaction xr,i and the Ri × S stoichiometric submatrix Ni, which allows writing:

V yi = ST
i

�

NT
i xr,i +Winxin + n0 x ic

�

. (4.36)

Provided that rank
�
NiSi

�
= Ri, x̃r,i can be computed from ỹi as:

x̃r,i = T r,i

�

V ỹi − ST
i

�
Winxin + n0 x ic

�
�

, (4.37)

where T r,i :=
�

NiSiΣ
−1
ỹi

ST
i NT

i

�−1
NiSiΣ

−1
ỹi

and Σỹi
is the variance-covariance matrix of ỹi.

This implies that the experimental extent x̃r,i can be expressed as the linear transforma-
tion of the measurements

x̃r,i = t∗Tr,i

�

V ỹi − ST
i

�
Winxin + n0 x ic

�
�

, (4.38)

where t∗
r,i := T T

r,iei, with ei the Ri-dimensional unit vector of the standard basis (that is, a
vector with one element equal to 1 and all the other elements equal to 0) that selects the
extent of reaction xr,i out of xr,i. Note that t∗r,i is the solution to the optimization problem

min
tr,i

σ2
x̃r,i
(tr,i) = tT

r,iΣỹi
tr,i (4.39a)

s.t. NiSitr,i = ei, (4.39b)

which enforces minimal variance of x̃r,i, as shown in Appendix C.1. The equality constraint
in Eq. (4.39b) ensures that the result is correct in the noise-free case, that is,

tT
r,i

�

Vyi − ST
i

�
Winxin + n0 x ic

�
�

= tT
r,iS

T
i NT

i xr,i = eT
i xr,i = xr,i. (4.40)

If one can construct a partition ỹ1, . . . , ỹR of ỹ and the corresponding partition S1, . . . ,SR

of S such that, for each i = 1, . . . ,R, (i) the matrix ST
i NT

i that corresponds to the nonzero
columns of ST

i NT has full column rank, and (ii) the extents of reaction xr,i that correspond
to the nonzero columns of ST

i
NT include the extent xr,i, then the experimental extents

x̃r,1, . . . , x̃r,R computed from the uncorrelated measurements ỹ will be uncorrelated. This
is illustrated in the next example.

88



4.3. Maximum-likelihood Estimation via the Extent-based Incremental Approach

4.3.1.4 Example

Let us consider a semi-batch reactor (which implies that x ic = 1) with the reactions A +
B→ C and 2B→ D. The reactor is fed with species B. The stoichiometric matrix is

N =

�

nT
1

nT
2

�

=

�

−1 −1 1 0
0 −2 0 1

�

. (4.41)

Let us assume that there are W = 3 uncorrelated measurements of equal variance and
the matrix S has been calibrated as follows:

S=
�

s1 s2 s3

�

=









1 0 0
0 3 5
2 4 0
0 0 6









. (4.42)

The measurement model in Eq. (4.32) reads:

V







y1

y2

y3






=







1 0
1 −6
−5 −4







�

xr,1

xr,2

�

+







sT
1

sT
2

sT
3







�
Winxin + n0

�
. (4.43)

The matrix STNT =







1 0
1 −6
−5 −4







suggests selecting

y1 =
�

y1

�T
, S1 =

�

s1

�

, (4.44a)

y2 =
�

y2 y3

�T
, S2 =

�

s2 s3

�

, (4.44b)

with which Eq. (4.36) is satisfied with

NT
1 =

�

n1

�

, xr,1 =
�

xr,1

�T
, rank

�
N1S1

�
= rank (1) = 1, (4.45a)

NT
2 =

�

n1 n2

�

, xr,2 =
�

xr,1 xr,2

�T
, rank

�
N2S2

�
= rank

 �

1 −6
−5 −4

�T!

= 2.

(4.45b)

The experimental extents x̃r,1 and x̃r,2 are computed from Eq. (4.38) as:

x̃r,1 = V ỹ1 − sT
1

�
Winxin + n0

�
, (4.46a)

x̃r,2 = −5/34
�

V ỹ2 − sT
2

�
Winxin+ n0

��

− 1/34
�

V ỹ3 − sT
3

�
Winxin + n0

��

, (4.46b)
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which results from

T r,1 =
�

N1S1ST
1NT

1

�−1
N1S1 = 1, eT

1 = 1, (4.47a)

T r,2 =
�

N2S2ST
2NT

2

�−1
N2S2 =





2
17
−

3
17

−
5
34
−

1
34



 , eT
2 = [ 0 1 ] . (4.47b)

Since the measurements ỹw are uncorrelated for all w = 1, . . . ,W , the condition in
Eq. (4.34) is satisfied, and the extents x̃r,1 and x̃r,2 are uncorrelated.

4.3.2 Toward unbiased rate estimates

As mentioned before, the use of biased rate estimates in the incremental approach may
lead to bias in the parameter estimates. Hence, the goal of this section is to compute rate
estimates from measurements in a way that removes this bias as much as possible, ideally
resulting in unbiased rate estimates.

4.3.2.1 Iterative bias reduction

To be more precise, this section describes a way of iteratively generating a lesser and
lesser biased estimate r̂ of the rate r from the noisy measurement z̃ of the true variable
z. The measurement z̃ corresponds to a unique realization of the random variable Z that
follows a normal distribution with known variance σ2 and mean z (assuming that z̃ is
corrupted by additive zero-mean Gaussian noise). Hence, the estimator r̂(Z) should satisfy
the condition

E
�

r̂(Z)|Z ∼N (z,σ2)
�

≈ r(z). (4.48)

The bias associated with the estimator r̂(Z), which depends on z, is denoted as Br̂(z):

Br̂(z) = E
�

r̂(Z)|Z ∼N (z,σ2)
�

− r(z). (4.49)

Since the bias is typically nonzero, we want to reduce it as much as possible. However,
since the bias is a function of the unknown true value z, it may not be possible to remove it
exactly. Yet, it is possible to approximate this unknown bias by using the fictitious random
variable Z̃ , whose mean is the measurement z̃. The interesting feature of the estimator r̂(Z̃)

is that its bias,

Br̂(z̃) = E
�

r̂(Z̃)|Z̃ ∼N (z̃,σ2)
�

− r(z̃), (4.50)

is known. By using this expression to approximate the true bias, it is possible to iteratively
refine the estimator r̂(Z) by constructing estimators of increasing order.

Let r̂n(Z) denote the nth-order estimator of r(z). Given z̃, the corresponding estimate of
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r(z) is

r̂n(z̃) =

n∑

j=1

(−1) j+1
�

n

j

�

E j(z̃), (4.51)

with the function E j(x) defined recursively as

E1(x) = r(x), (4.52a)

E j(x) = E
�

E j−1(X )|X ∼N (x ,σ2)
�

, j = 2,3, . . . . (4.52b)

In particular, the first-order and second-order estimates are given by

r̂1(z̃) = r(z̃), (4.53a)

r̂2(z̃) = 2r(z̃)− E
�

r(Z̃)|Z̃ ∼N (z̃,σ2)
�

. (4.53b)

The idea behind the construction of the estimator r̂n(Z) is that, for each estimate r̂n(z̃),
one uses Br̂n(z̃) to approximate Br̂n(z) and reduce the bias as follows:

r̂n+1(z̃) = r̂n(z̃)− Br̂n(z̃). (4.54)

Appendix C.2 shows that this idea results in the estimator presented in Eq. (4.51).

Since this estimator is based on approximating the true bias Br̂n(z) by Br̂n(z̃), the ques-
tion remains whether increasing the order of the estimator reduces the true bias. It turns
out that there is no general answer to this question, as it actually depends on the rate r.
However, if the functional expression of the rate r is known, one can compute Br̂n(z) for all
the relevant values of z via simulation and check how much of the bias is reduced when the
order increases, as illustrated by the example at the end of this subsection. At this point, it is
useful to keep in mind that, in the context of the incremental approach, r is a rate candidate

with known functional expression and need not be the (unknown) true reaction rate. This
means that all the assumptions required for the procedure in this section hold.

Another question regards the computation of the function E j(x). For this, let Fx ,σ2

denote the cumulative distribution function of the random variable X ∼ N (x ,σ2) and let
F−1

x ,σ2 denote the corresponding inverse distribution function. Upon discretization of the
distribution of X by determining D percentiles X i such that

Fx ,σ2
�
X i

�
= P

�

X ≤ X i|X ∼N (x ,σ2)
�

=
i − 1/2

D
, i = 1, . . . , D, (4.55)
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E j(x) can be approximated by

E1(x) = r(x), (4.56a)

E j(x)≃

∑D

i=1 E j−1(X i)

D
=

∑D

i=1 E j−1

�

F−1
x ,σ2

�
i−1/2

D

��

D
, j = 2,3, . . . . (4.56b)

Note that, due to the recursive definition of E j(x), its computation requires the compu-
tation of r at D j−1 different points.

Remark 4.7. The delta method is typically used to compute the moments of a function of
a random variable (for example the first moment that corresponds to the expected value)
[106]. Appendix C.3 shows that the delta method is a particular case of the method pre-
sented here. To be more precise, the estimator r̂δ(Z) that results from the delta method
corresponds to r̂2(Z).

4.3.2.2 Example

The effect of the proposed iterative method for bias reduction is illustrated next. Let
us consider the rate r(z) = z

1+z
and assume that, in various experiments, the variable z

takes the values 0.1, 0.2, . . . , 0.9, 1, 1.2, . . . , 2.8, 3, 3.4, . . . , 5. For each value of z, the
random variable Z follows a normal distribution with mean z and variance σ2 = 0.01. Since
the distribution Z ∼N (z,σ2) is completely known at simulation time, one can compute the
values of E

�

r̂1(Z)
�

, E
�

r̂2(Z)
�

, E
�

r̂3(Z)
�

and E
�

r̂δ(Z)
�

and compare these values to r(z),
for each value of z. The bias of each estimator is given by Eq. (4.49). Since r̂1(Z) is expected
to be the estimator with the largest bias, one can compute the ratio between the bias of each
subsequent estimator and r̂1(Z), which has to be less than 1 to ensure bias reduction.

The result of this procedure is shown in Figure 4.1. The most important observation is
the fact that the estimators r̂2(Z), r̂3(Z) and r̂δ(Z) provide a bias reduction of 1.5 to 3 or-
ders of magnitude compared to r̂1(Z), and this for all values of z. Furthermore, it is possible
to verify that all the estimators have a similar standard deviation (results not shown). Note
that, due to the discretization of the distribution that is required to compute the expected
values, E

�

r̂δ(Z)
�

and E
�

r̂2(Z)
�

seem to be slightly different, but this difference reduces
with a finer discretization. It is also possible to observe that r̂3(Z) is the estimator that leads
to the smallest bias.

4.3.3 Maximum-likelihood parameter estimation

As shown in Appendix C.4, if one can write rℓ
�
z(t),θ

�
and its estimate r̂ℓ

�
z̃(t),θ

�

computed according to Section 4.3.2 as weighted sums of products of functions of only one
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Figure 4.1 – Performance of various rate estimators r̂n(Z) for z ∈ [0.1, · · · , 5]. Left: Ex-
pected value of the estimator r̂1(Z) ± one standard deviation (represented by the dashed
lines in light gray) compared to r(z) (dashed-dotted line in black). Right: bias of r̂1(Z) (in
light gray), r̂2(Z) (in gray), r̂3(Z) (in dark gray) and r̂δ(Z) (dotted line in gray), using a
logarithmic scale.

state, that is,

rℓ
�
z(t),θ

�
=

J∑

j=1

wℓ, j

S+1∏

s=1

rℓ, j,s(zs(t),θ ), ∀ℓ= 0, . . . , L, (4.57a)

r̂ℓ
�
z̃(t),θ

�
=

J∑

j=1

wℓ, j

S+1∏

s=1

r̂ℓ, j,s
�
z̃s(t),θ

�
, ∀ℓ= 0, . . . , L, (4.57b)

and all the measurements z̃(t) needed to compute r̂ℓ
�
z̃(t),θ

�
are uncorrelated and cor-

rupted by zero-mean noise, then r̂ℓ
�
z̃(t),θ

�
is an unbiased estimate of rℓ

�
z(t),θ

�
, and

lim
h→0

d̂ℓ(t,θ ) = dℓ(t,θ ), ∀ℓ = 0, . . . , L. (4.58)

From Eqs. (4.11), (4.17), (4.38) and (4.58), one can write:

lim
h→0

J(α,θ )

=

H∑

m=1

 

d0(tm,θ ) +
L∑

ℓ=1

αℓdℓ(tm,θ )−
x̃r,i(tm)

V (tm)

!2

=

H∑

m=1

�
xr(tm,α,θ )

V (tm)
− t∗Tr,i

�

ỹi(tm)− ST
i

�

Win

xin(tm)

V (tm)
+ n0

x ic(tm)

V (tm)

���2

, (4.59)

which implies that, if (i) ỹi(t) follows a multivariate normal distribution, (ii) t∗Tr,i is obtained
as shown in Section 4.3.1 such that the experimental extent x̃r,i(t) is uncorrelated with
the other experimental extents, and (iii) r is the ith reaction rate, then the minimization of
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J(α,θ ) corresponds to the maximum-likelihood estimation of the parameters α and θ when
h→ 0. Note that this result is possible if and only if unbiased rate estimates are available.

Remark 4.8. Appendix C.5 shows that, when r is the ith reaction rate and the sampling
period h tends to zero (that is, when the number of samples tends to infinity), the global
minimum of J(α,θ ) is reached for the true parameter values, thus convergence to the global
minimum of J(α,θ ) is required to compute these true values. In practice, the sampling pe-
riod is not zero, but if it is small enough, then PEℓ(t,θ ) ≈ 0 and IEℓ(t,θ ) ≈ 0, which
implies that d̂ℓ(t,θ ) ≈ dℓ(t,θ ), for all ℓ = 0, . . . , L. In that case, nearly all the error in
J(α,θ ) in Eq. (4.59) stems from measurement noise in ỹi(t), which implies that the dif-
ference between the maximum-likelihood parameter estimates and the parameter values
that correspond to the global minimum of J(α,θ ) is negligible. However, Problem (4.22)
may have several local minima. Since this optimization problem is unconstrained, the exis-
tence of more than one local minimum is a sufficient condition for having the gradients in
Eq. (4.23) equal to zero in more than one point. This means that a gradient-based optimiza-
tion algorithm can only guarantee convergence to global optimality if there is a single local
minimum. In addition, with the approach shown above, the functions d̂0(t,θ ), . . . , d̂L(t,θ )
need to be computed at each iteration since θ varies. Section 4.4 will present a convex
version of the extent-based incremental approach that overcomes these problems.

4.3.4 Example

This example illustrates the fact that unbiased rate estimates are necessary for reducing
bias in parameter estimation.

Consider a batch reactor of constant volume V , where a species with concentration
c is consumed according to a second-order kinetic law. This system is described by the
dynamical equation

ċ(t) = −kc(t)2, c(0) =
n0

V
= 5 kmol m−3, (4.60)

with k = 0.25 m3 kmol−1 h−1. The extent of reaction can be written as

ẋr(t) = V r
�
c(t), k

�
= V kc(t)2, (4.61)

which gives:

xr(t) = V

∫ t

0

kc(τ)2dτ. (4.62)

Let us assume that the reaction is conducted for 10 h, which results in the concentration
profile c(t) shown in Figure 4.2. Measurements c̃ of the true concentrations are avail-
able, and they are corrupted by zero-mean Gaussian noise with standard deviation equal to
0.1 kmol m−3. The goal of this identification problem is to estimate k from measurements.
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Figure 4.2 – True concentration profile c(t) of a species that varies according to Eq. (4.60).

Three sets of simulated measurements, each with 100 realizations of measurement noise,
are available for three different sampling periods h: the first for h = 12 s, which is equiva-
lent to a total of 10×3600

12
= 3000 samples for each realization; the second for h= 3 s (12000

samples); the third for h= 1 s (36000 samples).

An estimate k̂ is obtained for each realization, by using r̂1(z̃) for rate estimation and
applying the incremental model identification method. For each different sampling period,
the corresponding 100 estimates k̂ are plotted in a histogram. The left-hand side of Figure
4.3 shows the histograms for h = 12 s, h = 3 s, and h = 1 s. One can see that the value
of k̂ exceeds the true value of k = 0.25 m3 kmol−1 h−1 in 14 realizations for h = 12 s, in 1
realization for h= 3 s, and in 0 realizations for h= 1 s.

The use of the rate estimate r̂1(z̃) for kinetic model identification leads to the biased
estimate k̂, and this for any sampling period. Furthermore, a smaller sampling period does
not affect the bias but reduces the standard deviation, with the estimate becoming more
precisely centered around its biased mean.

These observations motivate the use of another rate estimator to reduce the bias in rate
estimation and thus also in parameter estimation. In particular, it is possible to assess the
effect of using r̂2(z̃) instead of r̂1(z̃) for the same sets of simulated measurements. The
estimates k̂ are obtained again for each realization, now by using r̂2(z̃) for rate estimation
and applying the incremental model identification method. For each sampling period, the
corresponding 100 estimates k̂ are plotted in a histogram. The right-hand side of Figure 4.3
shows the histograms for h= 12 s, h= 3 s, and h= 1 s. In addition, Table 4.1 compares the
values of the sample mean, the sample standard deviation and the sample bias of k̂ that are
obtained by using the two rate estimators for h= 12 s, h= 3 s, and h= 1 s.

These results show that the use of the rate estimator r̂2(z̃) for kinetic model identifica-
tion leads to a significant bias reduction, for any sampling period. Furthermore, a smaller
sampling period still reduces the standard deviation of k̂. With an estimator more precisely
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Figure 4.3 – Histogram of the estimate k̂ for 100 realizations of measurement noise with
sampling periods of 12 s (top), 3 s (middle) and 1 s (bottom), using r̂1(z̃) (at left) and r̂2(z̃)

(at right) for rate estimation.
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Table 4.1 – Estimation of k. Sample mean (s.m.), sample standard deviation (s.s.d.) and
sample bias of k̂ (that is, the difference between the sample mean and the true value), in
m3 kmol−1 h−1, for 100 realizations of measurement noise with sampling periods of 12 s,
3 s, and 1 s, using r̂1(z̃) and r̂2(z̃) for rate estimation.

h [s] Using r̂1(z̃) Using r̂2(z̃)

S.m.±s.s.d. of k̂ S.m. of k̂− k S.m.±s.s.d. of k̂ S.m. of k̂− k

12 0.24924± 0.00079 −7.591× 10−4 0.25006± 0.00079 0.587× 10−4

3 0.24920± 0.00041 −7.957× 10−4 0.25002± 0.00041 0.217× 10−4

1 0.24918± 0.00023 −8.196× 10−4 0.25000± 0.00023 −0.024× 10−4

centered around a mean that is very close to the true value, the estimate k̂ appears to be con-
sistent. Note that this example has clearly illustrated that the use of biased rate estimators
in incremental model identification can lead to biased parameter estimation.

4.4 Globally Optimal Estimation via the Extent-based Incremen-

tal Approach

This section presents a method that solves to global optimality the identification problem
resulting from the extent-based incremental approach.

4.4.1 Taylor series expansion of the rate law

Let us consider the rate law given in Section 4.2.2. The rate r can be written as a
multivariate Taylor series if r0, . . . , rL are infinitely differentiable functions and there exists
a vector θ̄ and a set P such that the Taylor series converges ∀∆θ ∈ P , that is,

lim
n→∞

∑

k∈Kn

1
k!
∂ kr

∂ θ k

�
z(t),α, θ̄

�
∆θ k 6=∞, ∀∆θ ∈ P , (4.63)

where ∆θ := θ − θ̄ is the deviation of θ around θ̄ , k :=
�
k1, . . . , kN

�
is the vector of

monomial powers, the set Kn :=
¦�

k1, . . . , kN

�
∈ NN

0 : 0≤ k1+ . . .+ kN ≤ n
©

in the case

of a polynomial of degree n, k! := k1! . . . kN !, ∆θ k :=
�

θ1 − θ̄1

�k1 . . .
�

θN − θ̄N

�kN , and
∂ k

∂ θ k := ∂ k1+...+kN

∂ θ
k1
1 ...∂ θ

kN
N

.

The reaction rate r can be represented as a Taylor series with respect to the parameters
θ :

r
�
z(t),α,θ

�
= lim

n→∞

∑

k∈Kn

1
k!

 

∂ kr0

∂ θ k

�
z(t), θ̄

�
+

L∑

ℓ=1

αℓ
∂ krℓ

∂ θ k

�
z(t), θ̄

�

!

∆θ k, ∀∆θ ∈ P .

(4.64)
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Note that θ̄ is not an initial guess for θ , but it should be chosen such that the Taylor
series converges for all the possible optimal values of θ . This convergence can be easily
verified from the knowledge of the functional expression of r. This is illustrated in the
following example.

Example – Michaelis-Menten kinetics

Consider a Michaelis-Menten rate law for an isothermal reaction:

r
�
z(t),α,θ

�
= αr1

�
z(t),θ

�
= α

z(t)

θ + z(t)
, (4.65)

where z(t) represents the concentration of substrate, α = Vmax and θ = Km, with Vmax the
maximal rate and Km the Michaelis constant.

This rate expression yields

∂ k r

∂ θ k

�
z(t),α,θ

�
= α

z(t) (−1)k k!

(θ + z(t))k+1
(4.66)

and

1
k!
∂ k r

∂ θ k

�
z(t),α, θ̄

�
∆θ k = α

z(t) (−1)k k!
�

θ̄ + z(t)
�k+1

k!
∆θ k = α

z(t)

θ̄ + z(t)

�

−
∆θ

θ̄ + z(t)

�k

. (4.67)

Since it is known that z(t) ≥ 0, the approach above is applicable if a constant θ̄ > 0 can

be chosen such that ∆θ ∈ P =
�

−θ̄ , θ̄
�

, because
�
�
�− ∆θ

θ̄+z(t)

�
�
� < 1 in that case. This implies

that, for all ∆θ ∈ P =
�

−θ̄ , θ̄
�

, the Taylor series converges since

lim
n→∞

n∑

k=0

1
k!
∂ k r

∂ θ k

�
z(t),α, θ̄

�
∆θ k = α

z(t)

θ̄ + z(t)
lim

n→∞

 
n∑

k=0

�

−
∆θ

θ̄ + z(t)

�k
!

6=∞. (4.68)

4.4.2 Approximate identification problem

From Eqs. (4.11) and (4.64), the vessel extent of reaction is

xr(t,α,θ ) = lim
n→∞

∑

k∈Kn

V (t) d0,k(t)∆θ
k+

L∑

ℓ=1

αℓ

∑

k∈Kn

V (t) dℓ,k(t)∆θ
k, ∀∆θ ∈ P ,

(4.69)

where

dℓ,k(t) :=

∫ t

0

1
k!
∂ krℓ

∂ θ k

�
z(τ), θ̄

� xic (t)/V (t)

xic(τ)/V (τ)
dτ, ∀ℓ= 0, . . . , L, ∀k ∈Kn. (4.70)
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In practice, upon numerical integration and replacing ∂ krℓ

∂ θ k

�
z(tm), θ̄

�
by its estimate

r̂ℓ,k
�
z̃(tm)

�
, dℓ,k(t) is approximated by

d̂ℓ,k(t) :=

t

h∑

m=0

hγm
1
k!

r̂ℓ,k
�
z̃(tm)

� xic(t)/V (t)

xic(tm)/V (tm)
, ∀ℓ= 0, . . . , L, ∀k ∈Kn. (4.71)

It follows from the definitions of the propagation and integration errors in Remark 4.1
(which would be analogous in this case) that:

d̂ℓ,k(t)− dℓ,k(t) = PEℓ,k(t) + IEℓ,k(t), ∀ℓ= 0, . . . , L, ∀k ∈Kn. (4.72)

If r is a rate candidate for the ith reaction, this leads to the identification problem

min
α,∆θ

Jc(α,∆θ ) =
H∑

m=1

�
x̂r(tm,α,∆θ )− x̃r,i(tm)

V (tm)

�2

, (4.73)

with x̂r(tm,α,∆θ ) :=
∑

k∈Kn
V (tm) d̂0,k(tm)∆θ

k +
∑L

ℓ=1αℓ
∑

k∈Kn
V (tm) d̂ℓ,k(tm)∆θ

k for
finite n.

4.4.3 Reformulation as a polynomial optimization problem

The cost function in Eq. (4.73) is quadratic in α, that is,

Jc(α,∆θ ) = cc(∆θ ) + 2αTgc(∆θ ) +α
THc(∆θ )α, (4.74)

where the elements of cc(∆θ ), gc(∆θ ) and Hc(∆θ ) are polynomials of degree 2n in ∆θ

with coefficients computed analytically from d̂0,k(tm), . . . , d̂L,k(tm) and
x̃r,i (tm)

V(tm)
, as follows:

cc(∆θ ) =
H∑

m=1






∑

k∈Kn

d̂0,k(tm)∆θ
k−

x̃r,i(tm)

V (tm)






2

, (4.75a)

gc(∆θ ) =
H∑

m=1






∑

k∈Kn

d̂k(tm)∆θ
k











∑

k∈Kn

d̂0,k(tm)∆θ
k−

x̃r,i(tm)

V (tm)




 , (4.75b)

Hc(∆θ ) =
H∑

m=1






∑

k∈Kn

d̂k(tm)∆θ
k











∑

k∈Kn

d̂k(tm)∆θ
k






T

, (4.75c)

where d̂k(tm) :=
�

d̂1,k(tm) · · · d̂L,k(tm)
�T

. Note that Hc(∆θ ) is invertible since Hc(∆θ )≻

0L×L.

99



Chapter 4. Estimation of Kinetic Parameters via the Incremental Approach

The optimal parameters α can be computed for each ∆θ as

α̂c(∆θ ) = −Hc(∆θ )
−1gc(∆θ ), (4.76)

which allows an exact reformulation of the optimization problem described in Eq. (4.73)
with only the decision variables ∆θ :

min
∆θ

J̄c(∆θ ) = Jc

�

α̂c(∆θ ),∆θ
�

= cc(∆θ )− gc(∆θ )
THc(∆θ )

−1gc(∆θ )

=
det
�
M(∆θ )

�

det
�
Hc(∆θ )

� , (4.77)

with M(∆θ ) :=
h

cc(∆θ ) gc(∆θ )
T

gc(∆θ ) Hc(∆θ )

i

, and where the denominator Pa(∆θ ) := det
�
Hc(∆θ )

�

and the numerator Pb(∆θ ) := det
�
M(∆θ )

�
are polynomials in ∆θ . The reformulation of

J̄c(∆θ ) as a rational function is possible since it is the determinant of the Schur comple-
ment of Hc(∆θ ) in M(∆θ ) [80]. One can then write Problem (4.77) as the polynomial
optimization problem

max
ζ

ζ s.t. Pb(∆θ )− Pa(∆θ )ζ≥ 0, ∀∆θ . (4.78)

Remark 4.9. Since the coefficients of Pa(∆θ ) and Pb(∆θ ) do not depend on ∆θ , they do
not have to be computed at each iteration. Hence, Problem (4.78) is an algebraic estimation
problem. In contrast, other identification methods result in dynamic estimation problems,
in the sense that the numerical integration needs to be repeated at each iteration of the
optimization algorithm.

4.4.4 Reformulation as a convex optimization problem

Let us denote the coefficients of Pa(∆θ ) and Pb(∆θ ) as ak and bk such that Pa(∆θ ) =∑

k∈K2d
ak∆θ

k and Pb(∆θ ) =
∑

k∈K2d
bk∆θ

k, with d ≥ n (L+ 1). Appendix C.6 shows
that, by using the equivalence of nonnegative polynomials and conical combination of sum-
of-squares polynomials on a compact set [102], Problem (4.78) can be written as the convex
semidefinite program (SDP) given in Eq. (C.34), with the coefficients ak and bk, ∀k ∈K2d ,
being computed only once prior to optimization.

This SDP is constrained by two linear matrix inequalities (LMIs) of sizes s(N , d) and
s(N , d − 1), where s(N , d) :=

�N+d

d

�
. One expects a small problem size since the numbers

L and N of model parameters are usually low in the incremental approach. The degree n

of the Taylor series should be sufficiently large to allow a good approximation of the rate
r, but not too large since, otherwise, the size of the SDP grows too much and the matrices
that describe it could become ill-conditioned.
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4.4.5 Computing solutions

The SDP (C.34) yields ζ∗, which is equal to the minimum cost J̄c(∆θ
∗), but it does not

provide an explicit way of finding the global solution ∆θ ∗ (and thus α∗).

For numerical reasons, the solutions to the primal and dual problems should be com-
bined to obtain the best solution∆θ ∗. Appendix C.7 shows how to compute∆θ ∗ from these
solutions.

Finally, the optimal values α∗ = α̂c(∆θ
∗) can be computed according to Eq. (4.76).

4.4.6 Maximum-likelihood parameter estimation

As shown in Appendix C.8, if one can write ∂ krℓ

∂ θ k

�
z(t), θ̄

�
and its estimate r̂ℓ,k

�
z̃(t)

�

computed according to Section 4.3.2 as weighted sums of products of functions of only one
state, that is,

∂ krℓ

∂ θ k

�
z(t), θ̄

�
=

J∑

j=1

wℓ,k, j

S+1∏

s=1

rℓ,k, j,s
�
zs(t)

�
, ∀ℓ = 0, . . . , L, ∀k ∈Kn, (4.79a)

r̂ℓ,k
�
z̃(t)

�
=

J∑

j=1

wℓ,k, j

S+1∏

s=1

r̂ℓ,k, j,s
�
z̃s(t)

�
, ∀ℓ = 0, . . . , L, ∀k ∈Kn, (4.79b)

and all the measurements z̃(t) needed to compute r̂ℓ,k
�
z̃(t)

�
are uncorrelated and corrupted

by zero-mean noise, then r̂ℓ,k
�
z̃(t)

�
is an unbiased estimate of ∂

krℓ

∂ θ k

�
z(t), θ̄

�
, and

lim
h→0

d̂ℓ,k(t) = dℓ,k(t), ∀ℓ= 0, . . . , L, ∀k ∈ Kn. (4.80)

From Eqs. (4.38), (4.69), (4.73), and (4.80), one can write:

lim
n→∞

lim
h→0

Jc(α,∆θ )

= lim
n→∞

H∑

m=1






∑

k∈Kn

d0,k(tm)∆θ
k +

L∑

ℓ=1

αℓ

∑

k∈Kn

dℓ,k(tm)∆θ
k−

x̃r,i(tm)

V (tm)






2

=

H∑

m=1

�
xr(tm,α,θ )

V (tm)
− t∗Tr,i

�

ỹi(tm)− ST
i

�

Win

xin(tm)

V (tm)
+ n0

x ic(tm)

V (tm)

���2

, (4.81)

which implies that, if (i) ỹi(t) follows a multivariate normal distribution, (ii) t∗Tr,i is obtained
as shown in Section 4.3.1 such that the experimental extent x̃r,i(t) is uncorrelated with the
other experimental extents, (iii) the Taylor series converges for the optimal ∆θ , and (iv) r

is the ith reaction rate, then the minimization of Jc(α,∆θ ) corresponds to the maximum-
likelihood estimation of the parameters α and θ when h→ 0 and n is large enough. Note
that this result is possible if and only if unbiased rate estimates are available.
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Figure 4.4 – Contour plot of the cost function J(Vmax , KD). The contour lines are
shown with a decreasing contrast for J(Vmax , KD) with increasing values in the set
{0.03,0.09,0.17,0.25,0.5,1,2,3,4,5,6,8,10}.

4.5 Simulated Example

This section illustrates the use of extent-based incremental model identification solved
to global optimality on a problem that exhibits more than one local minimum. For this, let
us consider a batch reactor of constant volume, in which the enzymatic decomposition S→
2 I and the product formation I→ P take place. The objective is to identify the maximal rate
Vmax and the inhibition constant KD of the enzymatic decomposition. The concentrations of
S, I and P are denoted as cS , cI and cP , and c =

�

cS cI cP

�T
. The stoichiometry is given

by N =
�
−1 2 0
0 −1 1

�

. The kinetics of the decomposition reaction expresses the behavior of
an enzyme with two binding sites of equal binding affinity, no cooperativity, and previously
known substrate inhibition [107]:

r(c,α,θ) = Vmax

cS

KD
+ 0.1

c2
S

K2
D

1+ 2 cS

KD
+

c2
S

K2
D

, (4.82)

with the parameter α = Vmax = 3 mol L−1 min−1 appearing linearly and the parameter
θ = KD = 0.32 mol L−1 appearing nonlinearly in the rate law, that is, L = 1 and N = 1. The
dynamics of cS is described by

ċS = −r(c,α,θ), cS(0) = cS,0 = 2 mol L−1. (4.83)

An experiment is run for 3 min and noise-free measurements of the concentration cS are
collected every 5 s. If the measurements c̃S were corrupted by noise, it would be possible
to compute unbiased estimates of r(c,α,θ) as shown in Section 4.3.2. In addition, if the
measurements c̃P were also available, one would be able to compute uncorrelated extents
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Figure 4.5 – Measured concentrations (circles) and fitted profiles that result from the so-
lution to the identification problem using standard (dashed line) and convex (solid line)
optimization algorithms.

x̃r,1 and x̃r,2 according to Section 4.3.1, using

x̃r,1 = V
�

cS,0 − c̃S

�

, (4.84a)

x̃r,2 = V
�

c̃P − cP,0

�

. (4.84b)

The noise-free case is considered here. Even in this case, the contour plot of the identifi-
cation cost function J(Vmax , KD) in Figure 4.4 shows the presence of two local minima. De-
pending on the initial guess that is used, a standard gradient-based optimization algorithm
may not converge to the correct values of the parameters Vmax and KD. For example, a stan-
dard optimization algorithm with user-supplied gradients and using the initial guess KD =

0.04 mol L−1 yields the solution V ∗max = 6.63 mol L−1 min−1, K∗D = 0.001 mol L−1, with
J(V ∗max , K∗D) = 0.0702. However, the convex optimization algorithm presented in Section
4.4, using n = 20 and θ̄ = 1 mol L−1, yields the global solution V ∗max = 3 mol L−1 min−1,
K∗D = 0.32 mol L−1, with J(V ∗max , K∗D) = 4.4× 10−9. Figure 4.5 shows that the fitted curves
that result from these two solutions are different, and only the convex algorithm predicts a
concentration profile that matches the measurements.

In addition, one can simulate the substrate concentration using a different initial condi-
tion, that is, cS,0 = 3 instead of 2 mol L−1. Figure 4.6 shows that the two models are indeed
significantly different.

4.6 Conclusion

This chapter has shown that extent-based incremental model identification can be used
to converge efficiently to global optimality. Several features of extent-based incremental
model identification contribute to this result. Firstly, the cost function that results from this
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Figure 4.6 – Simulated concentrations with a different initial condition corresponding to
the two models that were obtained using standard (dashed line) and convex (solid line)
optimization algorithms for model identification.

approach involves only the parameters of a single rate candidate and is a quadratic func-
tion of the parameters in which the rate expression is linear. Since these parameters can be
determined via matrix inversion, the number of parameters that need to be determined via
optimization is much smaller than in identification problems that result from the simultane-
ous approach. Secondly, this cost function can be approximated via a Taylor series expansion
as a rational function of the parameters that appear nonlinearly in the rate expression. This
rational function is used in the formulation of the identification problem as a polynomial
optimization problem with constant coefficients computed only once prior to optimization.
Finally, this polynomial optimization problem can be converted to an SDP, which can be
handled by SDP solvers that efficiently attain the global solution upon convergence.

As a consequence, guaranteed convergence to global optimality via the extent-based
incremental approach exists for virtually all identification problems in reaction systems,
provided that some mild technical conditions are satisfied. For many of these problems, it
would be practically infeasible to obtain global optimality via the standard simultaneous
approach, due to the large number of model parameters and the many possible combina-
tions of rate candidates. As shown by the simulated example in this chapter, identification
problems with more than one local minimum exist, and standard optimization algorithms
may converge to a local minimum that is not the global one.

This chapter has also shown that extent-based incremental model identification not
only converges to global optimality, but can also be used to provide maximum-likelihood
parameter estimates, with quality similar to simultaneous model identification. Maximum-
likelihood parameter estimation relies on (i) a method to obtain uncorrelated experimental
extents from a set of uncorrelated measurements that depend linearly on these extents,
and (ii) a method to obtain unbiased rate estimates computed from measurements cor-
rupted by zero-mean noise. In other words, the experimental extents are computed from
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measured concentrations such that they are uncorrelated, whereas the modeled extents
correspond to the integral of unbiased rate estimates computed from measured concentra-
tions. Both the computation of uncorrelated experimental extents and the use of unbiased
rate estimation contribute decisively to being able to estimate optimal parameters in the
maximum-likelihood sense. Future work shall focus on ensuring that uncorrelated exper-
imental extents can be obtained even when the measurements are correlated or depend
nonlinearly on the extents.

Another relevant extension of this work is the application of the extent-based incre-
mental approach to reaction systems other than the lumped homogeneous reaction systems
considered in this chapter. Since the concept of extents has been developed for other re-
action systems, as mentioned in Section 4.2.1, such an extension seems to be relatively
straightforward. In general, any reaction system can be described by a model in terms of
(ordinary or partial) differential and algebraic equations that express the material and heat
balances in the system. These models include reaction rates that can always be written as
analytical expressions that relate concentrations and temperature to reaction rates. Hence,
the existence of such analytical expressions assumed by the incremental approach does not
represent a limitation for the extension of the approach to other systems. The only aspect
that might hinder the use of the incremental approach in certain situations is the fact that
it requires that the reaction rates be expressed as functions of measured quantities. This is
realistic in the case of lumped homogeneous reaction systems but may be difficult in other
reaction systems due to experimental constraints. In summary, one can foresee that it will
be possible to design an extent-based incremental approach that guarantees globally opti-
mal, maximum-likelihood estimates of kinetic parameters for any reaction system where the
reaction rates can be expressed as functions of measured quantities.
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5 Estimation of Rate Signals without

Kinetic Models

Part of this chapter is adapted from the postprint of the following article [108]:

D. Rodrigues, M. Amrhein, J. Billeter, and D. Bonvin. Fast estimation of plant steady
state for imperfectly known dynamic systems, with application to real-time optimization.
Ind. Eng. Chem. Res., 57(10):3699–3716, 2018.

Link: http://doi.org/10.1021/acs.iecr.7b04631.

Copyright © 2018 American Chemical Society

The author of this thesis contributed to that article by developing the main novel ideas,

implementing the simulations, and writing a significant part of the text. Hence, the author

retains the right to include the article in this thesis since it is not published commercially and

the journal is referenced as the original source.

5.1 Introduction

Model identification, controller design, and process optimization are often regarded as
closely related tasks since the control laws and the optimal decision policies are typically
calculated using the plant model. For example, efficient control of reaction systems typically
requires good kinetic models to predict the dynamic effects, namely the reaction rates.

Since the identification of reaction systems can be rather difficult and time consuming,
one would ideally like to avoid it as much as possible. Hence, one could try to infer the
reaction rates directly from measurements, that is, without the help of a kinetic model,
which can be done if the various rates can be decoupled [99]. This decoupling would be an
alternative to the use of observers for measurement-based rate estimation without kinetic
models [2], the latter being difficult to design due to the coupling between the estimated
states and the estimated rates.

The concept of variants and invariants has been proposed to decouple the dynamic ef-
fects in reaction systems, thereby facilitating their analysis, control and monitoring [12, 11].
A finer separation of the various dynamic effects in both homogeneous and heterogeneous
open reaction systems has been proposed along with a linear transformation of the numbers
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of moles and heat to a particular type of variants in chemical reaction systems, the so-called
vessel extents [18, 19].

Since the concept of variants allows isolating the different rates in reaction systems, it
can also be used to estimate unknown rates without the need for identifying the correspond-
ing (kinetic) models. Subsequently, it is legitimate to ask whether applications of variants
to control and optimization can be found.

Regarding the case of reaction systems, this chapter introduces methods that will al-
low estimating reaction rates from concentration and temperature measurements via the
concept of variants, which will be applied in subsequent chapters.

This chapter is structured as follows. The systems considered in this chapter are de-
scribed in Section 5.2, a numerical differentiation filter that is relevant for the purpose of
rate estimation, the Savitzky-Golay filter, is presented in Section 5.3, and the rate estima-
tion method and its properties are shown in Section 5.4, while Section 5.5 concludes this
chapter.

5.2 System Description

Let us consider a system with nu inputs u(t) and a number of states, from which an
ny -dimensional vector of states y(t) is available1. An additional vector of states that are
unavailable may exist, but will not be considered in the following discussion.

Furthermore, in this system, there are nr rates ru whose values are unknown and ny

available rates sa whose values are known. These rates may depend on the available states
y(t) and the inputs u(t), which is represented as ru

�
y(t),u(t)

�
and sa

�
y(t),u(t)

�
. The

relation between these variables is given by the differential equations

ẏ(t) =L ru

�
y(t),u(t)

�
+ sa

�
y(t),u(t)

�
, y(0) = y0. (5.1)

In the remainder, ru and sa are written as time-variant signals ru(t) and sa(t) for the sake
of simplicity. However, only the measurements ỹ(t) and s̃a(t) of y(t) and sa(t), respectively,
are available with the sampling period h. Let us define the error variables







dy(t) := ỹ(t)− y(t)

dsa
(t) := s̃a(t)− sa(t)

. (5.2)

Furthermore, the measurements ỹ(t) and s̃a(t) are corrupted by zero-mean noise if and

1A variable is considered available if its value can be measured or computed from other measurements.
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only if







E
�

dy(t)
�

= 0ny

E
�

dsa
(t)
�

= 0ny

. (5.3)

Finally, the measurements ỹ(t −mh) at different time instants, for m = 1, . . . , H, where
H is an arbitrary number of sampling times, are independent and identically distributed if
and only if 2

Var





H∑

m=1

cmdy(t −mh)



 =

H∑

m=1

c2
mVar

�

dy(t −mh)
�

=

H∑

m=1

c2
mVar

�

dy(t)
�

. (5.4)

5.2.1 Transformation to variants

If

rank(L ) = nr , (5.5)

there exists an nr × ny transformation matrix T such that

T L = Inr
. (5.6)

Let us assume that the condition in Eq. (5.5) is satisfied. Upon defining the variants

yr(t) := T y(t), (5.7)

the application of T to Eq. (5.1) results in the new dynamic equations

ẏr(t) = T
�
L ru(t) + sa(t)

�
= ru(t) +T sa(t), yr(0) = T y0. (5.8)

Then, it becomes clear that yr(t), resulting from a linear transformation of the available
states y(t), corresponds to an nr -dimensional vector of states that are variant with respect
to the unknown rates ru(t). In fact, each rate variant in yr(t) depends on only one unknown
rate and contains all the information about that rate. As such, it is decoupled from all the
other unknown rates.

The measurements ỹr(t) can be defined as

ỹr(t) := T ỹ(t) (5.9)

2Note that the variance of a vector v, denoted as Var [v], corresponds to the covariance matrix Cov [v,v].
Furthermore, the elements on the diagonal of Var [v] form the vector σ2

v
.
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and the error variables dyr
(t) as

dyr
(t) := ỹr(t)− yr(t). (5.10)

To be applicable, the transformation T requires that at least nr elements of the vector
y(t) be measured. Note that other transformations could also be used, but they would
require stricter rank conditions and thus more measured quantities, and they would be less
suitable for data reconciliation in the presence of measurement noise.

The concept of variants presented above allows the estimation of unknown rates without
the use of rate models. To see how this is done, let us reformulate Eq. (5.8) for the noisy
signals, which yields the estimates of the unknown rates

r̂u(t) = ˙̃yr(t)−T s̃a(t). (5.11)

Hence, the estimation of the unknown rates ru(t) proceeds via differentiation of the vari-
ants ỹr(t) obtained from the measurements ỹ(t) and uses the knowledge of the quantities
s̃a(t).

5.3 Numerical Differentiation Using the Savitzky-Golay Filter

As already mentioned, the unknown rates ru(t) can be estimated without the use of a
rate model via differentiation of the variants ỹr(t). A differentiation filter with particularly
interesting properties, the Savitzky-Golay filter [109], is described in the next proposition.

Proposition 5.1. Let y be Lipschitz continuous, and let Dq(ỹ, t) be the differentiation Savitzky-

Golay filter of order 1 and odd window size q > 1 given for the point q of the window and

applied to the noisy function ỹ on the interval [t −∆t, t], with ∆t :=
�
q− 1

�
h. If Dq(ỹ, t) is

defined as

Dq(ỹ, t) :=
q−1∑

k=0

ck+1

h
ỹ(t −∆t + kh), (5.12)

where

ck+1 =
12
�

k−
q−1

2

�

q
�
q2− 1

� , k = 0, . . . ,q− 1, (5.13)

then the expected value of Dq(ỹ, t) is given by

E
�

Dq(ỹ, t)
�

= Dq(y, t) =

q−2∑

k=0

bk+1

∫ k+1

k

ẏ(t −∆t + ξh)dξ = ẏ(t)−Rq(ẏ, t), (5.14)
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where

Rq(ẏ, t) =

q−2∑

k=0

bk+1

∫ k+1

k

�
ẏ(t)− ẏ(t −∆t + ξh)

�
dξ, (5.15)

bk+1 =
6
�
q− 1− k

�
(k+ 1)

q
�
q2 − 1

� > 0, k = 0, . . . ,q− 2, (5.16)

q−2∑

k=0

bk+1 = 1, (5.17)

while the covariance of
∑H

m=1λ
m−1
1 hDq(dy, t−mh) and

∑H

m=1λ
m−1
2 hDq(dy, t−mh) and the

covariance of
∑H

m=1λ
m−1
1 hdx(t −mh) and

∑H

m=1λ
m−1
2 hDq(dy, t −mh), where −1< λ1 < 1

and −1< λ2 < 1, are given by

Cov





H∑

m=1

λm−1
1 hDq(dy, t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)





= Var
�

dy(t)
� βq(λ1,λ2, H)

1−λ1λ2
, (5.18)

Cov





H∑

m=1

λm−1
1 hdx(t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)





= Cov
�

dx(t),dy(t)
� hγq(λ1,λ2, H)

1−λ1λ2
, (5.19)

with

βq(λ1,λ2, H) =

min(H,q−1)∑

l=1

�

λl
2 +λ

l
1

��

1−
�
λ1λ2

�H−l
��

12(q−l)
q2(q2−1)

−
24(q2−l2)l

(q(q2−1))
2

�

+
�

1−
�
λ1λ2

�H
� 12

q
�
q2− 1

� , (5.20)

γq(λ1,λ2, H) =

q−1∑

k=max(q−1−H,0)

�

λ
−(k−q+1)
1

�

1−
�
λ1λ2

�H+k−q+1
��

ck+1, (5.21)

provided that the measurements ỹ(t) are corrupted by zero-mean noise, and the measurements

ỹ(t −mh) and x̃(t −mh) at different time instants, for m= 1, . . . , H, where H is an arbitrary

number of sampling times, are independent and identically distributed.
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Furthermore, if q is chosen as

q = 1+ 2 max

¨

1,

¢

αh−µ

¥«

, (5.22)

where 0< µ < 1 and α > 0 are adjustable parameters, and

lim
h→0

λ1− 1

h
= −τ−1, lim

h→0

λ2 − 1

h
= −τ−1, (5.23)

for some τ > 0, then

lim
h→0

Cov





H∑

m=1

λm−1
1 hDq(dy, t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)



= 0 (5.24)

and

lim
h→0

Cov





H∑

m=1

λm−1
1 hdx(t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)



= 0. (5.25)

Proof. See Appendix D.2.

5.4 Estimation of Unknown Rates via Numerical Differentiation

The Savitzky-Golay filter presented above is only one alternative among many that can
be used to obtain estimates of the unknown rates ru(t). However, one can show that, when
the unknown rates are constant, this Savitzky-Golay filter corresponds to the optimal rate
estimator based on convolution filters and on the available states y(t) and rates sa(t). The
following subsection shows how this optimal rate estimator based on convolution filters can
be constructed, under certain simplifying assumptions.

5.4.1 Rate estimator based on convolution filters

Let us recall that the rate estimates r̂u(t) can be computed as shown in Eq. (5.11), which
indicates that differentiation needs to be applied to ỹr .

A differentiating convolution filter can be used to design a linear rate estimator r̂u(t)

based on ỹr(t) and s̃a(t) available at the q equally spaced time instants t −∆t, t −∆t +

h, . . . , t in the time window [t −∆t, t], with ∆t :=
�
q− 1

�
h and h the sampling period.

The estimates r̂u(t) can be written as:

r̂u(t) =

q−1∑

k=0

ck+1

h
ỹr(t −∆t + kh)−

 
q−1∑

k=0

bk+1T s̃a(t −∆t + kh)

!

, (5.26)
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where c1, . . . , cq, b1, . . . , bq are adjustable convolution coefficients. Eq. (5.26) indicates that
the rate estimates are the result of an FIR (finite impulse response) convolution filter. For
analyzing the properties of these estimates, we need to introduce several additional assump-
tions.

Assumption 5.1. The unknown rates ru are constant in the time window [t −∆t, t], which

is the case if the states and the inputs that influence these rate expressions are constant.

Assumption 5.2. The known rates sa are constant between two successive time instants.

Assumption 5.3. The quantities ỹr(t) and s̃a(t) are corrupted by zero-mean noise, that is,

their expected values are yr(t) and sa(t).

Assumption 5.4. The noise in s̃a is negligible in comparison to the noise in ỹr .

Assumption 5.5. The noises at different time instants are independent and identically dis-

tributed.

When ru(t) is not constant (Assumption 5.1 violated), the estimates r̂u(t) will be biased.
Appendix D.3 investigates this bias and the variance of r̂u(t) when only Assumptions 5.2–
5.5 hold. It is shown that the bias depends only on the variations of the unknown rates in
the interval [t −∆t, t].

For the case of constant ru(t), that is, when Assumptions 5.1–5.5 hold, the Savitzky-
Golay filter [109] can be used to provide optimal rate estimates with minimal variance, as
shown in the next proposition.

Proposition 5.2. Let Eq. (5.8) and Assumptions 5.1–5.5 hold. Then, the rate estimator that

provides minimal variance among all unbiased rate estimators is given by Eq. (5.26) with

c∗k+1 =
12
�

k−
q−1

2

�

q
�
q2 − 1

� , ∀k = 0, . . . ,q− 1, (5.27)

b∗k+1 =
6
�
q− k− 1

�
(k+ 1)

q
�
q2 − 1

� , ∀k = 0, . . . ,q− 1, (5.28)

where the optimal coefficients c∗1, . . . , c∗q correspond to the coefficients of the differentiation

Savitzky-Golay filter of order 1 and window size q. Moreover, the variance is given by

Var
�

r̂u(t)
�
=

12

q
�
q2 − 1

�
Var
�

ỹr(t)
�

h2 . (5.29)

Proof. A sketch of the proof is given next. The complete proof can be found in Appendix D.4.

Since (i) any Savitzky-Golay filter is based on the local fit of a polynomial of a certain
order to the discrete signal ỹr , and (ii) ru is locally constant, the filter that provides minimal
variance is the Savitzky-Golay filter of lowest order that can yield the first derivative of ỹr ,
in this case of order 1.
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Note that the rate estimator given in Proposition 5.2 can also be used to estimate r̂u(t)

when ru(t) is not constant. In this case, however, it is no longer possible to guarantee
unbiased estimation with this estimator or any other, because no information about the true
rates ru(t) is available.

Remark 5.1. Instead of using a differentiating convolution filter, one could also design an ob-
server for rate estimation. Since it is assumed in this chapter that the rate model is unknown,
the use of model-based observers is excluded. However, one could still use an observer that
considers the known part of the dynamics in Eq. (5.8) to estimate the values ru(t) of the
unknown rates [2, 110]. Owing to the linear structure of Eq. (5.8), this observer would be
linear, that is, represented by a linear system with inputs ỹr(t) and s̃a(t) and outputs r̂u(t).
Then, for any order of the linear observer, it would be equivalent to an IIR (infinite impulse
response) convolution filter. However, for any BIBO (bounded-input bounded-output) sta-
ble IIR convolution filter, the impulse response tends to zero after some time, which means
that any linear observer would essentially be equivalent to an FIR convolution filter with
a sufficiently large window size. Since Proposition 5.2 provides the optimal rate estimator
that uses an FIR convolution filter with a given window size, an observer would not yield
better results.

5.4.2 Maximum-likelihood estimation of unknown rates

Different transformation matrices T that satisfy the condition in Eq. (5.6) can be found.
An example is the Moore-Penrose pseudoinverse of the matrixL . However, when only noisy
measurements are available, a better alternative is to consider an estimator of the unknown
rates ru(t) in the maximum-likelihood sense. The text below describes such a method to
compute T , using prior knowledge about the variance of the noisy measurements.

As shown in Proposition 5.1, if y is Lipschitz continuous,

Dq(y, t) =

q−2∑

k=0

bk+1

∫ k+1

k

ẏ(t −∆t + ξh)dξ

=

q−2∑

k=0

bk+1

∫ k+1

k

�
L ru(t −∆t + ξh) + sa(t −∆t + ξh)

�
dξ

=

q−2∑

k=0

bk+1

∫ k+1

k

L ru(t −∆t + ξh)dξ+
q−2∑

k=0

bk+1

∫ k+1

k

sa(t −∆t + kh)dξ

=L
�

ru(t)−Rq(ru, t)
�

+

q−2∑

k=0

bk+1sa(t −∆t + kh), (5.30)

since

sa(t −∆t + ξh) = sa(t −∆t + kh), (5.31)

for all k = 0, . . . ,q− 2 and for all ξ ∈ [k, k+ 1), if Assumption 5.2 holds.
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Let us define yUV (t), the unknown-variant form (UV ) of y(t), with the differential equa-
tion

ẏUV (t) =L
�

ru(t)−Rq(ru, t)
�

, yUV (0) = 0ny
, (5.32)

and the weighted sum of past values of s̃a as

W q(s̃a, t) :=
q−2∑

k=0

bk+1s̃a(t −∆t + kh), (5.33)

whose expected value, assuming that the measurements s̃a(t) are corrupted by zero-mean
noise as stated in Assumption 5.3, is

E
�

W q(s̃a, t)
�

=W q(sa, t) =

q−2∑

k=0

bk+1sa(t −∆t + kh). (5.34)

Then, Eq. (5.30) can be reformulated as

ẏUV (t) = Dq(y, t)−W q(sa, t). (5.35)

This leads to the definition of the approximation of ẏUV (t), which uses measured quan-
tities as follows:

˜̇yUV (t) = Dq(ỹ, t)−W q(s̃a, t). (5.36)

The difference between the real value and the approximation of ẏUV (t) is given by

˜̇yUV (t)− ẏUV (t) = Dq(ỹ, t)−W q(s̃a, t)−Dq(y, t) +W q(sa, t)

= Dq(dy, t), (5.37)

if the noise in s̃a is negligible in comparison to the noise in ỹr , that is, if Assumption 5.4
holds.

This implies that

E
�

˜̇yUV (t)− ẏUV (t)
�

= 0ny
, (5.38)

if ỹ is corrupted by zero-mean noise, which is similar to Assumption 5.3.

Furthermore, if one defines

Σẏ := Var
�

˜̇yUV (t)− ẏUV (t)
�

(5.39)

and assumes that the measurements ỹ(t −mh) at different time instants, for m = 1, . . . , H,
where H is an arbitrary number of sampling times, are independent and identically dis-
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tributed, which is similar to Assumption 5.5, then

Σẏ = Var
�

Dq(dy, t)
�

=
Var
�

dy(t)
�

h2 βq(0,0, H)

=
Var
�

dy(t)
�

h2

12

q
�
q2 − 1

� . (5.40)

Hence, if one assumes that

˜̇yUV (t)− ẏUV (t) ∼N (0ny
,Σẏ), (5.41)

where N (µ,Σ) denotes the normal distribution with mean µ and variance-covariance Σ,
then Eqs. (5.32) and (5.36) imply that r̂u(t), the maximum likelihood estimator of ru(t)−

Rq(ru, t), corresponds to the minimization of the weighted least squares problem

min
r̂u(t)

�
˜̇yUV (t)−L r̂u(t)

�T
Σ
−1
ẏ

�
˜̇yUV (t)−L r̂u(t)

�

(5.42)

and is given by

r̂u(t) = T ˜̇yUV (t) = Dq(ỹr , t)−T W q(s̃a, t), (5.43)

where

T =
�

L
T
Σ
−1
ẏ
L

�−1
L

T
Σ
−1
ẏ

, (5.44)

which satisfies Eq. (5.6), and ỹr(t) are defined as in Eq. (5.9), using T from Eq. (5.44).

According to Eq. (5.43), the estimation of the unknown rates ru(t) proceeds via appli-
cation of a differentiation filter to the variants yr(t) that are obtained via transformation of
the available state vector y(t), and the knowledge of the previous values of the available
rates sa(t). Note that Eq. (5.43) can be obtained from Eq. (5.8) if one replaces ru(t) by
r̂u(t), ẏr(t) by Dq(ỹr , t), and sa(t) by W q(s̃a, t).

5.4.3 Error of the estimates of unknown rates

The next proposition shows the final result of this section, which concerns the error and
variance of the estimates of the unknown rates ru(t).

Proposition 5.3. Let the condition in Eq. (5.5) be satisfied, the transformation matrix T be

given by Eq. (5.44), ỹr(t) be defined as in Eq. (5.9), Dq(ỹr , t) be defined as in Eq. (5.12),
W q(s̃a, t) be defined as in Eq. (5.33), and r̂u(t) be defined as in Eq. (5.43). Then,

r̂u(t)− ru(t) = −Rq(ru, t) +T Dq(dy, t), (5.45)
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and

Var
�

r̂u(t)
�
= T ΣẏT

T =
�

L
T
Σ
−1
ẏ
L

�−1
. (5.46)

Proof. One has to simply notice that, from Eqs. (5.32), (5.37), (5.43), and (5.44),

r̂u(t)− ru(t) = r̂u(t)−T L ru(t)

= T
�

˜̇yUV (t)− ẏUV (t)
�

−T LRq(ru, t)

= −Rq(ru, t) +T Dq(dy, t) (5.47)

and

Var
�

r̂u(t)
�
= T Var

�
˜̇yUV (t)

�

T
T = T ΣẏT

T =
�

L
T
Σ
−1
ẏ
L

�−1
. (5.48)

5.5 Conclusion

This chapter has shown how to compute the unknown rates ru(t) from the available
measurements, using knowledge about the structural relationship, given by the matrix L ,
between the available states y(t) on the one hand and the unknown rates ru(t) and the
available rates sa(t) on the other hand. The variants yr(t) are variant with respect to the
unknown rates ru(t). The unknown rates ru(t) are estimated via numerical differentiation
of the variants yr(t) that are computed from the available states y(t) via an appropriate
linear transformation, without the use of any rate model. For this, the rank of L must be
equal to the number of estimated unknown rates nr , which implies that the number of states
that are available has to be greater than or equal to nr . Only one parameter needs to be
tuned, namely, the parameter of the differentiation filter (the number of samples q in the
case of the Savitzky-Golay filter) used for numerical differentiation of variants yr(t).

The implications of this estimation of rate signals without kinetic models for monitoring
and diagnosis are obvious. Furthermore, the next two chapters present the implications
of rate estimation with respect to control without kinetic models and estimation of plant
steady state, which can then be used for real-time optimization.
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6 Reactor Control

Part of this chapter is adapted from the postprint of the following article [111]:

D. Rodrigues, J. Billeter, and D. Bonvin. Control of reaction systems via rate estimation
and feedback linearization. Comput. Aided Chem. Eng., 37:137–142, 2015.

Link: http://doi.org/10.1016/B978-0-444-63578-5.50018-9.

Copyright © 2015 Elsevier B.V.

The author of this thesis contributed to that article by developing the main novel ideas,

implementing the simulations, and writing a significant part of the text. Hence, the author

retains the right to include the article in this thesis since it is not published commercially and

the journal is referenced as the original source.

6.1 Introduction

Various control structures for homogeneous reactors based on reaction variants, exten-
sive variables, and inventories have been proposed throughout the years. For example,
Hammarström [28] claimed that the control of reaction and control variants in homoge-
neous reactors is useful to reduce the number of controlled and measured variables. Geor-
gakis [112] was among the first to suggest the use of extensive variables for efficient design
of multivariable and nonlinear controllers for process units, namely reactors. Farschman
et al. [113] proposed a structure called inventory control, whereby a certain type of ex-
tensive variables called inventories are controlled efficiently via input-output feedback lin-
earization, although the proposed structure implies the use of a kinetic model for estimation
of reaction rates in the case of reactor control. Aggarwal et al. [41] expressed the model
of multi-phase reaction systems operating at thermodynamic equilibrium in terms of reac-
tion invariants and used this formulation for inventory control of these invariant quantities,
labeled as invariant inventories. Hoang et al. [31] proposed to use the fact that the reac-
tion invariants are exponentially stable to control only the reaction variants, although at the
price of requiring the use of a kinetic model to compute the reaction rates. In an earlier and
more restricted version of the developments presented in this chapter and also in the pre-
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vious one, Rodrigues et al. [111] proposed temperature control in homogeneous reactors
without the use of kinetic models, which was enabled by the estimation of the unknown
reaction rates via numerical differentiation. Then, Zhao et al. [32] took advantage of this
possibility to propose another scheme for control of reaction variants, but this time without
the use of kinetic models since the reaction rates can be estimated from measurements with-
out a kinetic model. However, there does not exist a systematic way of taking advantage of
multiple measurements of variables that are not directly controlled to simplify the design
of multiple-input multiple-output (MIMO) control of the temperature and concentrations
(or their extensive counterparts, the heat and numbers of moles) in homogeneous reac-
tors, in particular without the use of a kinetic model. The development of such systematic
procedures is the main objective of this chapter.

This chapter starts by presenting in Section 6.2 a control approach that uses the kinetic
model to achieve offset-free control of as many controlled variables as the number of manip-
ulated variables and to set the closed-loop time constants of all the variables that represent
the reaction system. Then, a feedback linearization approach that is based on the estimation
of unknown rates using the concept of variants is presented in Section 6.3, thus allowing
effective control without the use of rate models for these unknown rates. In particular, the
possibility of controlling homogeneous reactors without the use of kinetic models is investi-
gated. The reaction rates are estimated without the use of kinetic models and then used via
a feedback-linearization scheme to control the reactor temperature and reactant concentra-
tions by manipulating the amount of heat that is exchanged with the environment and the
inlet flowrates in a homogeneous reactor. Finally, Section 6.4 concludes the chapter.

6.2 Control with Kinetic Models

6.2.1 System description

As shown in Section 2.5, the S-dimensional vector of numbers of moles n(t) in a ho-
mogeneous reaction system with R independent reactions and p independent inlets can be
obtained from the linear transformation of vessel extents

n(t) = NTxr(t) +Winxin(t) + n0 x ic(t), (6.1)

where N is the R× S stoichiometric matrix, Win is the S × p inlet-composition matrix, n0 is
the S-dimensional vector of initial numbers of moles, xr(t) is the R-dimensional vector of
vessel extents of reaction, xin(t) is the p-dimensional vector of vessel extents of inlet, and
x ic(t) is the vessel extent of initial conditions. For the sake of simplicity, the developments
in this section deal only with the case of a constant x ic. For example, (i) x ic = 1 in reactors
without outlet, and (ii) x ic = 0 in reactors with outlet once the effect of the initial conditions
is removed.1 Moreover, the mass m can be obtained from the linear combination of the

1In practice, this is the case after 5 residence times. For example, this can be ensured by flushing the reactor
with one or several inlets until this condition is satisfied.
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numbers of moles

m(t) = 1T
SMwn(t), (6.2)

where Mw is the S-dimensional diagonal matrix of molecular weights.

According to Eqs. (6.1) and (6.2), it is possible to obtain all the variables n(t) and m(t)

from the R+ p vessel extents of reaction and inlet. These vessel extents xv(t) :=

�

xr(t)

xin(t)

�

are described by the differential equations

ẋr(t) = rv(t)−ω(t)xr(t), xr(0) = 0R, (6.3a)

ẋin(t) = uin(t)−ω(t)xin(t), xin(0) = 0p, (6.3b)

where uin(t) is the p-dimensional vector of inlet flowrates, ω(t) is the inverse of the resi-
dence time, and

rv(t) := υ
�
n(t)

�
ϕ
�
n(t)

�
, (6.4)

with υ(n) the volume and ϕ(n) the R-dimensional vector of reaction rates expressed as a
function of the numbers of moles.

It is also possible to obtain all the variables n(t) and m(t) from only R+ p numbers of
moles na(t). To show this, note that

na(t) = NT
axr(t) +Win,axin(t) + na,0 x ic, (6.5)

which implies that one can solve Eq. (6.5) for the vessel extents xv(t) and reconstruct the
numbers of moles n(t) from Eq. (6.1). This results in

n(t) =LT a

�

na(t)− na,0 x ic

�

+ n0 x ic, (6.6)

where T a :=
�

NT
a Win,a

�−1
and L :=

�

NT Win

�

.

Hence, to control all the variables in the system, one needs to consider only xv(t) or
na(t) as controlled variables. The manipulated variables are uin(t) and possibly ω(t). In
the case of the control of xv(t), note that the R vessel extents of reaction xr(t) typically
have relative degree two with respect to uin(t), while the p vessel extents of inlet xin(t)

have relative degree one with respect to uin(t). As shown in the sequel, it is also helpful to
keep this feature when the control of na(t) is considered.

For this reason, it is assumed that R numbers of moles na(t) have relative degree two
with respect to uin(t) and are denoted nt(t), and the remaining p numbers of moles na(t)

have relative degree one with respect to uin(t) and are denoted no(t), which is typically true

if the p inlets contain p species. These numbers of moles na(t) :=

�

nt(t)

no(t)

�

are described
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by the differential equations

ṅt(t) = φ
v
r,t(t)−ω(t)nt(t), nt(0) = nt,0, (6.7a)

ṅo(t) = NT
orv(t) +Win,ouin(t)−ω(t)no(t), no(0) = no,0, (6.7b)

where

φv
r,t(t) := NT

t υ
�
n(t)

�
ϕ
�
n(t)

�
. (6.8)

Then, one can replace nt(t) and no(t) in Eq. (6.6). This results in

n(t) =LT t

�

nt(t)− nt,0 x ic

�

+LT o

�

no(t)− no,0 x ic

�

+ n0 x ic, (6.9)

where T a =
�

T t T o

�

, with T t of dimension (R+ p)×R and T o of dimension (R+ p)× p.

Let nu denote the number of manipulated variables. Two cases can be considered: (i)
if only the inlet flowrates uin(t) are manipulated and ω(t) is known in advance (which is
always the case in reactors without outlet), then nu = p; (ii) if ω(t) is also manipulated as
part of the control scheme, then nu = p+ 1. In both cases, one would like to set the closed-
loop time constants of all the variables, while obtaining offset-free control of nu variables.

Section 6.2.2 details how one can use feedback linearization and linear feedback control
to set the closed-loop time constants of all the variables, while obtaining offset-free control
of the mass and nu − 1 vessel extents, with emphasis on the case nu = p. Section 6.2.3
obtains similar results, but with offset-free control of the mass and nu−1 numbers of moles.
Section 6.2.4 illustrates the performance of this control scheme via a simulated example.

Complete knowledge of the dynamic model and perfect measurements of R+ p states
(either xv(t) or na(t)) are assumed to prove these results. However, the plant-model mis-
match and the bias caused by measurement errors are typically significant in reaction sys-
tems. These deviations from the ideal case can be treated as disturbances to the linear
system that is obtained with feedback linearization. Then, one can still specify bounds for
these disturbances and design robust linear feedback controllers to ensure similar results in
the presence of these disturbances.

6.2.2 Offset-free control of vessel extents

Let us assume that we would like to obtain offset-free control of the mass and nu − 1
vessel extents, where R of these vessel extents are xr , and the remaining nu − 1− R vessel
extents are part of xin and are denoted xin,c, which implies that nu − 1 ≥ R.2 Let us define

2The vessel extents of inlet are partitioned as xin(t) =

�
xin,n(t)

xin,c(t)

�

, with xin,n = Sx ,nxin of dimension p− (nu−

1)+R and xin,c = Sx ,cxin of dimension nu−1−R. If the mass m is not controlled, offset-free control of nu vessel
extents (instead of nu − 1) can be obtained, and all the occurences of nu − 1 in this section are changed to nu,
but no guarantee can be given regarding the dimension of the system.
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sr as the right-hand side of Eq. (6.3a), that is,

sr(t) := rv(t)−ω(t)xr(t). (6.10)

One would like to manipulate the p flowrates uin (and possibly the inverse of the resi-
dence time ω) to implement feedback linearization, such that the R vessel extents xr , the R

rates sr , the mass m and the nu − 1− R vessel extents xin,c obey the dynamics

ẋr(t) = sr(t), (6.11a)

ṡr(t) = vr(t), (6.11b)

ṁ(t) = vm(t), (6.11c)

ẋin,c(t) = vin,c(t), (6.11d)

where vr(t), vm(t), and vin,c(t) are new inputs. That is, one would like to obtain

żx (t) = Azx(t) +Bvx(t), (6.12)

with the (R+ nu)-dimensional vector of new states

zx (t) :=









xr(t)

sr(t)

m(t)

xin,c(t)









, (6.13)

the nu-dimensional vector of new inputs

vx(t) :=







vr(t)

vm(t)

vin,c(t)







, (6.14)

the (R+ nu)× (R+ nu) state matrix

A :=









0R×R IR 0R 0R×(nu−1−R)

0R×R 0R×R 0R 0R×(nu−1−R)

0T
R 0T

R 0 0T
nu−1−R

0(nu−1−R)×R 0(nu−1−R)×R 0nu−1−R 0(nu−1−R)×(nu−1−R)









, (6.15)

and the (R+ nu)× nu input matrix

B :=









0R×R 0R 0R×(nu−1−R)

IR 0R 0R×(nu−1−R)

0T
R 1 0T

nu−1−R

0(nu−1−R)×R 0nu−1−R Inu−1−R









, (6.16)
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which implies that the linear system specified by A and B is controllable.

Note that it is possible to compute zx(t) from the knowledge of xv(t) and ω(t) if one
notes that xr(t) and xin,c(t) are part of xv(t) and one uses Eqs. (6.4) and (6.10) for sr(t)

and Eq. (6.2) for m(t), with n(t) given by Eq. (6.1). Furthermore, since

ṡr(t) =
∂ rv(t)

∂ n
ṅ(t)−ω(t)ẋr(t)− ω̇(t)xr(t)

=
∂ rv(t)

∂ n

�

NTrv(t) +Winuin(t)−ω(t)n(t)
�

−ω(t)
�
rv(t)−ω(t)xr(t)

�

− ω̇(t)xr(t), (6.17)

ṁ(t) = 1T
SMw

�

NTrv(t) +Winuin(t)−ω(t)n(t)
�

= 1T
puin(t)−ω(t)m(t), (6.18)

the change of variables zx(t) = tx

�
xv(t)

�
transforms Eqs. (6.3a)-(6.3b) into the form

żx (t) = Azx (t) + B
�

Qx

�
xv(t)

�
uin(t) + px

�
xv(t)

�
�

, (6.19)

with

Qx

�
xv(t)

�
:=







∂ rv(t)

∂ n
Win

1T
p

Sx ,c







, (6.20a)

px

�
xv(t)

�
:=







∂ rv(t)

∂ n
NT

0T
R

0(nu−1−R)×R







rv(t)−ω(t)







∂ rv(t)

∂ n
n(t) + rv(t)−ω(t)xr(t)

m(t)

xin,c(t)







− ω̇(t)







xr(t)

0
0nu−1−R







, (6.20b)

if ω(t) and its derivative ω̇(t) are known in advance (nu = p).

Then, the feedback linearization law that achieves the desired linearized dynamics is

uin(t) = Qx

�
xv(t)

�−1
�

vx(t)− px

�
xv(t)

�
�

, (6.21)

if nu = p.3

Eq. (6.11) corresponds to a controllable linear system, where the states are the R vessel
extents xr , the R rates sr , the mass m and the nu − 1− R vessel extents xin,c. Then, it is
possible to set the closed-loop time constants of these R+ nu variables and to obtain offset-

3If ω(t) and its derivative ω̇(t) are also manipulated as part of the control scheme (nu = p+ 1), then ω(t)
becomes an additional state of the system, and Eqs. (6.19)–(6.21) are formulated in terms of the manipulated

variables
�

uin(t)

ω̇(t)

�

instead of uin(t). Hence, all the results in this section also hold for the case nu = p+ 1.
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free control of the nu variables xr(t), m(t) and xin,c(t) to the setpoints xs
r(t), ms(t) and

xs
in,c(t) by choosing the feedback control laws

vr(t) = ẍs
r(t) + 2Kr

�

ẋs
r(t)− rv(t) +ω(t)xr(t)

�

+K2
r

�

xs
r(t)− xr(t)

�

, (6.22a)

vm(t) = ṁs(t) + Km (m
s(t)−m(t)) , (6.22b)

vin,c(t) = ẋs
in,c(t) +Kin,c

�

xs
in,c(t)− xin,c(t)

�

. (6.22c)

Furthermore, it is possible to prove that this control strategy sets the closed-loop time
constants of all the variables. Let us notice that the following equality always holds:

hx

�
zx(t),bx(t)

�
:=

�

sr(t)−υ
�
n(t)

�
ϕ
�
n(t)

�
+ω(t)xr(t)

m(t)− 1T
SMwn(t)

�

= 0R+1, (6.23)

where n(t) is given by Eq. (6.1) and

bx(t) := xin,n(t). (6.24)

Hence, one can specify the R+ 1 equations hx

�
zx(t),bx(t)

�
= 0R+1 in the 2R+ nu + 1

variables zx(t) and bx(t), where R+ nu of these variables (that is, zx(t)) are controlled.
According to the implicit function theorem, if ∂ hx

∂ bx

�
zx (t),bx(t)

�
is invertible, bx (t) is a

unique function of zx(t), which implies that the closed-loop time constants of the remaining
R + 1 variables bx(t) can also be set. This is equivalent to the existence of an inverse
transformation t−1

x (zx(t)), which implies that the transformation tx is a diffeomorphism.
Note that

∂ hx

∂ bx

�
zx(t),bx (t)

�
=




−
∂ rv(t)

∂ n
WinST

x ,n

−1T
SMwWinST

x ,n



 . (6.25)

However, this approach obtains offset-free control of the mass and nu−1 vessel extents,
which is typically not the goal of a control scheme. Ideally, one would like to set the closed-
loop time constants of all the variables, while obtaining offset-free control of the mass and
nu− 1 numbers of moles. The following section details how it is possible to achieve this.

6.2.3 Offset-free control of numbers of moles

Let us assume that we would like to obtain offset-free control of the mass and nu − 1
numbers of moles, where R of these numbers of moles are nt , and the remaining nu− 1−R

numbers of moles are part of no and are denoted no,c, which implies that nu − 1 ≥ R.4 Let

4The numbers of moles with relative degree one with respect to uin are partitioned as no(t) =

�
no,n(t)

no,c(t)

�

,

with no,n = Sn,nno of dimension p− (nu− 1) + R and no,c = Sn,cno of dimension nu − 1−R. If the mass m is not
controlled, offset-free control of nu numbers of moles (instead of nu−1) can be obtained, and all the occurences
of nu−1 in this section are changed to nu, but no guarantee can be given regarding the dimension of the system.
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us define st as the right-hand side of Eq. (6.7a), that is,

st(t) := φv
r,t(t)−ω(t)nt(t). (6.26)

One would like to manipulate the p flowrates uin (and possibly the inverse of the resi-
dence time ω) to implement feedback linearization, such that the R numbers of moles nt ,
the R rates st , the mass m and the nu − 1− R numbers of moles no,c obey the dynamics

ṅt(t) = st(t), (6.27a)

ṡt(t) = vt(t), (6.27b)

ṁ(t) = vm(t), (6.27c)

ṅo,c(t) = vo,c(t), (6.27d)

where vt(t), vm(t), and vo,c(t) are new inputs. That is, one would like to obtain

żn(t) = Azn(t) + Bvn(t), (6.28)

with the (R+ nu)-dimensional vector of new states

zn(t) :=









nt(t)

st(t)

m(t)

no,c(t)









, (6.29)

the nu-dimensional vector of new inputs

vn(t) :=







vt(t)

vm(t)

vo,c(t)







, (6.30)

the (R+ nu)× (R+ nu) state matrix

A :=









0R×R IR 0R 0R×(nu−1−R)

0R×R 0R×R 0R 0R×(nu−1−R)

0T
R 0T

R 0 0T
nu−1−R

0(nu−1−R)×R 0(nu−1−R)×R 0nu−1−R 0(nu−1−R)×(nu−1−R)









, (6.31)

and the (R+ nu)× nu input matrix

B :=









0R×R 0R 0R×(nu−1−R)

IR 0R 0R×(nu−1−R)

0T
R 1 0T

nu−1−R

0(nu−1−R)×R 0nu−1−R Inu−1−R









, (6.32)
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which implies that the linear system specified by A and B is controllable.

Note that it is possible to compute zn(t) from the knowledge of na(t) and ω(t) if one
notes that nt(t) and no,c(t) are part of na(t) and one uses Eqs. (6.8) and (6.26) for st(t)

and Eq. (6.2) for m(t), with n(t) given by Eq. (6.9). Furthermore, since

ṡt(t) =
∂φv

r,t(t)

∂ n
ṅ(t)−ω(t)ṅt(t)− ω̇(t)nt(t)

=
∂φv

r,t(t)

∂ n

�

NTrv(t) +Winuin(t)−ω(t)n(t)
�

−ω(t)
�

φv
r,t(t)−ω(t)nt(t)

�

− ω̇(t)nt(t), (6.33)

ṁ(t) = 1T
SMw

�

NTrv(t) +Winuin(t)−ω(t)n(t)
�

= 1T
puin(t)−ω(t)m(t), (6.34)

the change of variables zn(t) = tn

�
na(t)

�
transforms Eqs. (6.7a)-(6.7b) into the form

żn(t) = Azn(t) +B
�

Qn

�
na(t)

�
uin(t) + pn

�
na(t)

�
�

, (6.35)

with

Qn

�
na(t)

�
:=







∂φv
r,t (t)

∂ n
Win

1T
p

Sn,cWin,o







, (6.36a)

pn

�
na(t)

�
:=







∂φv
r,t (t)

∂ n
NT

0T
R

Sn,cN
T
o







rv(t)−ω(t)







∂φv
r,t (t)

∂ n
n(t) +φv

r,t(t)−ω(t)nt(t)

m(t)

no,c(t)







− ω̇(t)







nt(t)

0
0nu−1−R







, (6.36b)

if ω(t) and its derivative ω̇(t) are known in advance (nu = p).

Then, the feedback linearization law that achieves the desired linearized dynamics is

uin(t) = Qn

�
na(t)

�−1
�

vn(t)− pn

�
na(t)

�
�

, (6.37)

if nu = p.5

Eq. (6.27) corresponds to a controllable linear system, where the states are the R num-
bers of moles nt , the R rates st , the mass m and the nu−1−R numbers of moles no,c. Then,

5If ω(t) and its derivative ω̇(t) are also manipulated as part of the control scheme (nu = p+ 1), then ω(t)
becomes an additional state of the system, and Eqs. (6.35)–(6.37) are formulated in terms of the manipulated

variables
�

uin(t)

ω̇(t)

�

instead of uin(t). Hence, all the results in this section also hold for the case nu = p+ 1.
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it is possible to set the closed-loop time constants of these R+ nu variables and to obtain
offset-free control of the nu variables nt(t), m(t) and no,c(t) to the setpoints ns

t(t), ms(t)

and ns
o,c(t) by choosing the feedback control laws

vt(t) = n̈s
t(t) + 2Kt

�

ṅs
t(t)−φ

v
r,t(t) +ω(t)nt(t)

�

+K2
t

�

ns
t(t)− nt(t)

�

, (6.38a)

vm(t) = ṁs(t) + Km (m
s(t)−m(t)) , (6.38b)

vo,c(t) = ṅs
o,c(t) +Ko,c

�

ns
o,c(t)− no,c(t)

�

. (6.38c)

Furthermore, it is possible to prove that this control strategy sets the closed-loop time
constants of all the variables. Let us notice that the following equality always holds:

hn

�
zn(t),bn(t)

�
:=

�

st(t)−NT
tυ
�
n(t)

�
ϕ
�
n(t)

�
+ω(t)nt(t)

m(t)− 1T
SMwn(t)

�

= 0R+1, (6.39)

where n(t) is given by Eq. (6.9) and

bn(t) := no,n(t). (6.40)

Hence, one can specify the R+ 1 equations hn

�
zn(t),bn(t)

�
= 0R+1 in the 2R+ nu + 1

variables zn(t) and bn(t), where R+ nu of these variables (that is, zn(t)) are controlled. Ac-
cording to the implicit function theorem, if ∂ hn

∂ bn

�
zn(t),bn(t)

�
is invertible, bn(t) is a unique

function of zn(t), which implies that the closed-loop time constants of the remaining R+ 1
variables bn(t) can also be set. This is equivalent to the existence of an inverse transforma-
tion t−1

n (zn(t)), which implies that the transformation tn is a diffeomorphism. Note that

∂ hn

∂ bn

�
zn(t),bn(t)

�
=




−
∂φv

r,t (t)

∂ n
LT oST

n,n

−1T
SMwLT oST

n,n



 . (6.41)

6.2.4 Simulated example

This section shows the performance of the proposed control scheme for a simulated
reaction system. This reaction system corresponds to a continuous homogeneous reactor
with S = 5 species (A, B, C, D, and the solvent S), where the density and residence time
are constant and equal to 1 kg/L and 10 min, respectively, and the R = 2 reactions A + B
→ C and 2 B → D take place. This reactor is fed with p = 3 inlet streams, where the first
contains solvent and A with a composition of 1.5 mol/kg, the second contains solvent and
B with a composition of 2.0 mol/kg, and the third contains only solvent. Furthermore, the
reaction rates are rv,1 = k1nAnB/V and rv,2 = k2n2

B/V , with k1 = 0.053 L/mol/min and k2

= 0.128 L/mol/min.

Since the residence time is constant and known, the inverse of the residence time and its
derivative are known in advance, and we have the case nu = p = 3. The system starts at the
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Figure 6.1 – Trajectories of (i) the numbers of moles with relative degree two with respect
to the inlet flowrates at left, and (ii) the numbers of moles with relative degree one with
respect to the inlet flowrates at right.

steady state that corresponds to the mass m = 1 kg and the numbers of moles nC = 0.0265
mol and nD = 0.032 mol. The objective of the control scheme is to obtain offset-free control
of the R = nu − 1 = 2 numbers of moles nt =

�
nC
nD

�

and the mass m and to set the closed-

loop time constants of all the variables (including the p numbers of moles no =
h nA

nB
nS

i

)
as described in Section 6.2.3, such that the system is driven to a new steady state within
15 min. More precisely, at the initial time, the setpoint ms remains equal to 1 kg and
the setpoints ns

t become equal to
�

0.028
0.028

�

mol, while the closed-loop time constants of the

variables m(t) and nt(t) are set to 2 min by choosing Km = 1/2 min−1 and Kt =
h

1/2 0
0 1/2

i

min−1.

The state trajectories for this simulated example are shown in Figure 6.1. One can
observe that the variables nt(t) follow the trajectory of a critically damped second-order
system until they reach the steady state that corresponds to the setpoints ns

t . At the same
time, the variables no(t) also converge to steady state within the specified time. The mass
remains constant and equal to 1 kg throughout the 15 min of this simulation (results not
shown). The inlet flowrates that are manipulated to fulfill these control objectives are shown
in Figure 6.2. It is also possible to see that these inlet flowrates become constant after 15
min.

6.3 Control without Kinetic Models

6.3.1 System description

Let us recall the dynamic model presented in Eq. (5.1) for the available states y(t). Let us
suppose that, out of the available states y(t), one would like to control an nx -dimensional
vector of available states x(t). The nu inputs u(t) can be seen as additional rates whose
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Figure 6.2 – Trajectories of the inlet flowrates.

values are known and can be manipulated, at least indirectly. Furthermore, in addition to
the structure of the dynamic model for y(t) presented in Eq. (5.1), it is assumed that (i)
the known part of the dynamic model for x(t) is affine in u(t), and (ii) the unknown part is
independent of u(t) and depends only on x(t). This implies that one can write

ẋ(t) = Fru

�
x(t)

�
+β a

�
y(t)

�
+ Ba

�
y(t)

�
u(t), x(0) = x0. (6.42)

If

rank
�
Ba

�
y(t)

��
= nx = nu, (6.43)

it is possible to find an nx × nx matrix Ua such that

Ua(t) = Ba

�
y(t)

�−1. (6.44)

The objective is to control the variables x(t) to the setpoints xs(t) by manipulating the
variables u(t). The proposed control scheme includes two steps, namely, the estimation of
the unknown rates shown before and the control of x(t) via feedback linearization.

6.3.2 Control via feedback linearization and rate estimation

The task of the controller consists in forcing the convergence of the controlled variables
x(t) towards their reference trajectories xs(t).

The controller described in this subsection can be seen as the implementation of an
approach that builds on input-output feedback linearization. For this, the new inputs v(t)

are defined as an approximation of the right-hand side of the dynamic equations of x(t) in
Eq. (6.42). This approximation consists in replacing β a

�
y(t)

�
by β̃ a(t), ru

�
x(t)

�
by r̂u(t),
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and Ba

�
y(t)

�
by B̃a(t), which yields

v(t) = w̃(t) + B̃a(t)u(t), (6.45)

with

w̃(t) = Fr̂u(t) + β̃ a(t), (6.46)

which is the approximation of

w(t) = Fru

�
x(t)

�
+β a

�
y(t)

�
. (6.47)

For the sake of simplicity, the functions ru

�
x(t)

�
, β a

�
y(t)

�
, and Ba

�
y(t)

�
are denoted

as time-variant signals ru(t), β a(t), and Ba(t) in the remainder of this section.

It is assumed here that the actuators possess first-order dynamics. Let Ta be the nu-
dimensional diagonal matrix of time constants of the actuators and h the sampling period,
which means that there exists an actuator input ū(t) such that, for all ζ ∈ [0,h),

u(t + ζ) = ū(t) + exp
�

−T−1
a ζ
�

(u(t)− ū(t)) . (6.48)

Moreover, the controller outputs are denoted as ˜̄u(t), with the difference between the
controller outputs and the actuator inputs given by the disturbance variables

dū(t) = ˜̄u(t)− ū(t). (6.49)

Then, the relationship between the new inputs v(t) and the manipulated variables ˜̄u(t)
is known. To acknowledge that fact, one solves Eq. (6.45) for u(t) and assigns the result to
a weighted average of u(t + ζ) and ū(t + ζ) for ζ in [0,h), which results in

h−1

∫ h

0

��

Inx
−D
�

ū(t + ζ) +Du(t + ζ)
�

dζ = B̃a(t)
−1 (v(t)− w̃(t)) , (6.50)

where D is a constant, diagonal nx -dimensional matrix of desired reduction of the time
constants of the actuators.

Then, if Eq. (6.48) is replaced in the equation above and the resulting integral is solved,
that leads to

ū(t) +DTah−1
�

Inx
− exp

�

−T−1
a h
��

(u(t)− ū(t)) = B̃a(t)
−1 (v(t)− w̃(t)) . (6.51)

Finally, if one solves for ū(t), the result is

ū(t) =
�

Inx
+W

�

B̃a(t)
−1 (v(t)− w̃(t))−Wu(t), (6.52)
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where

W=
�

Inx
−DTah−1

�

Inx
− exp

�

−T−1
a h
���−1

DTah−1
�

Inx
− exp

�

−T−1
a h
��

, (6.53)

which is equivalent to the feedback linearization law in the next proposition if ū(t) and u(t)

are replaced by ˜̄u(t) and ũ(t), respectively.

Hence, the control law for the controller outputs ˜̄u(t) and its influence on the inputs
u(t + h) and the controlled variables x(t + h) are given as follows.

Proposition 6.1. Let the rank condition in Eq. (6.43) and the assumptions of Proposition 5.3

be satisfied, ru be Lipschitz continuous, and the controller outputs be given by

˜̄u(t) =
�

Inx
+W

�

Ũa(t)
�

v(t)− β̃ a(t)− Fr̂u(t)
�

−Wũ(t), (6.54)

where

Ũa(t) = B̃a(t)
−1 = Ua(t)

�

Inx
− dUa

(t)
�

. (6.55)

Then, u(t + h) and x(t + h) are given by Eqs. (E.1) and (E.2), where

dβ̄ a
(t) = dβ a

(t) + Ũa(t)
−1
�

Inx
+W

�−1 �
dū(t) +Wdu(t)

�
, (6.56)

assuming that, for all ζ in [0,h), Ba(t + ζ) and β a(t + ζ) remain constant.

Proof. See Appendix E.1.

Simultaneously, v(t) should be defined according to an outer-loop feedback control
strategy that forces the controlled variables x(t) to converge towards their reference tra-
jectories xs(t) at a desired rate and ensures that the controlled variables are stable. Such a
strategy is described below, in two steps: the first step shows the result of the application of
the controller in the discrete-time case, while the second step shows the same result in the
continuous-time case, when the sampling period h tends to zero.

Proposition 6.2. Let Γ be a constant, diagonal positive definite nx -dimensional matrix of

desired exponential convergence rates for the variables x(t) and the conditions in Proposition

6.1 and in Eqs. (5.3) and (5.4) be satisfied, and let us assume that

v(t) =
xs(t + h)− xs(t)

h
+ Γ (xs(t)− x̃(t)) . (6.57)

Then, if

D= Inx
, (6.58)
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the expected value of x(t) is given by

E [x(t)]

= xs(t) +
�

Inx
− hΓ

�n �
x(t − nh)− xs(t − nh)

�

+

n∑

m=1

�

Inx
− hΓ

�m−1
h2F

 
q−2∑

k=0

bk+1

∫ k+1

k

ṙu(t −mh −∆t + ξh) (ξ− k)dξ

!

+

n∑

m=1

�

Inx
− hΓ

�m−1
h2F

 
q−2∑

k=0

bk+1

∫ q−1

k+1

ṙu(t −mh −∆t + ξh)dξ

!

+

n∑

m=1

�

Inx
− hΓ

�m−1
h2F

∫ 1

0

(1− ξ) ṙu(t −mh + ξh)dξ, (6.59)

with

ṙu(t) =
dru(t)

dt
=
∂ ru

∂ x
(t)ẋ(t), (6.60)

whereas the ith diagonal element of the covariance matrix of x(t) is given by

σ2
xi
=

h2
Γ

2
i,i

�

1−
�

1− hΓ i,i

�2n
�

1−
�

1− hΓ i,i

�2 Var
h

dxi
(t) + Γ−1

i,i dβ̄a,i
(t)
i

+
βq(1− hΓ i,i, 1− hΓ i,i, n)

1−
�

1− hΓ i,i

�2 (FT )i Var
�

dy(t)
�

(FT )Ti

+ 2
hΓ i,iγq(1− hΓ i,i, 1− hΓ i,i, n)

1−
�

1− hΓ i,i

�2 Cov
h

dxi
(t) + Γ−1

i,i dβ̄a,i
(t),dy(t)

i

(FT )Ti ,

i = 1, . . . , nx , (6.61)

assuming that the noise in Ũa(t) is negligible.

Proof. See Appendix E.2.

Proposition 6.3. Let the conditions of Proposition 6.2 be satisfied and h→ 0. If D= Inx
, then

lim
h→0

E [ẋ(t)] = E [v(t)] , (6.62)

and each variable x i(t) is expected to decay exponentially to its setpoint x s
i (t), for i = 1, . . . , nx ,

with time constant equal to 1
Γ i,i

.

Finally, if D= Inx
, the following result is verified:

lim
h→0

σ2
xi
= 0, i = 1, . . . , nx . (6.63)
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Proof. See Appendix E.3.

In Figure 6.3, one can see that the proposed control scheme includes three steps, namely,
the estimation of the unknown rates, feedback linearization and feedback control.

Remark 6.1. The fact that this control scheme is based on input-output feedback lineariza-
tion becomes clear if one observes that the manipulated rates ˜̄u(t) given by Eq. (6.54) can
be written as an affine function of the new inputs v(t),

˜̄u(t) =
�

Inx
+W

�

Ũa(t) (v(t)− w̃(t))−Wũ(t), (6.64)

which results, when the condition in Eq. (6.58) is satisfied, in an integral relationship be-
tween the new inputs v(t) and the controlled variables x(t), given by Eq. (6.62) in the
continuous-time case. This implies that one can design a feedback controller that forces
each element of the vector of control errors xs(t)− x(t) to converge exponentially to zero
with time constants given by the corresponding elements of the diagonal of Γ−1, by using
the control laws in Eqs. (6.54) and (6.57). Note that the latter control law uses xs(t + h),
which ideally requires prior knowledge of the reference signals xs(t).

Remark 6.2. For some variables in y(t), it may not be possible to include them in x(t) such
that Eqs. (6.42) and (6.43) hold simultaneously. In that case, an alternative is the use
of a cascade control scheme, which consists in (i) controlling x(t) via rate estimation and
feedback linearization in the inner loop, and (ii) controlling some of the remaining states
y(t) via proportional-integral (PI) control in the outer loop, denoted as the ny,o-dimensional
vector yo(t) with setpoints ys

o(t). In the particular case of reactor control, one can control
the temperature and reactant concentrations via rate estimation and feedback linearization
in the inner loop, as shown in the example of Section 6.3.4, while the product concentrations
are controlled in the outer loop, which is not illustrated by any example in this chapter. A
way to construct such a cascade control scheme is to use an outer-loop feedback control law
such as

ẋs(t) =




ẋs

o(t)

Ko

�

ys
o(t)− ỹo(t) + T−1

i,o

∫ t

0

�

ys
o(τ)− ỹo(τ)

�

dτ
�



 , xs(0) = xs
0, (6.65)

with the ny,o-dimensional diagonal matrices Ko and Ti,o of controller gains and integral
times and the (nx − ny,o)-dimensional vector xo(t) of selected components of x(t) with
setpoints xs

o(t), which implies that offset-free control of the nx = nu variables xo(t) and
yo(t) is guaranteed. In Figure 6.4, one can see the proposed cascade control scheme, which
includes an outer-loop feedback controller, in addtion to the estimation of the unknown
rates, feedback linearization, and inner-loop feedback control already shown in Figure 6.3.

6.3.3 Stability

The results given in Eqs. (6.59) and (6.61) provide a way to assess the stability of the
controlled variables x(t). LetM be the set of all the models that can describe the unknown

134



6.3. Control without Kinetic Models
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Figure 6.3 – Control based on feedback linearization and estimation of the unknown rates.
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Figure 6.4 – Cascade control based on feedback linearization and estimation of the unknown
rates.
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rates ru

�
x(t)

�
. For each model m ∈ M , let Θ(m) ⊂ Rnp(m) denote the set that contains all

the possible values of the np(m) parameters of that model. Finally, let Ψ ⊂ R×Rny denote
the set of all the admissible trajectories of the available states

�
t,y(t)

�
and Φ ⊂ R × Rny

denote the admissible trajectories of the available rates
�

t, sa(t)
�
. One can assess stability

of x(t) by verifying the condition

�
∀τ<t ‖ x(τ)− xs(τ) ‖∞< L

�
⇒‖ E [x(t)] +ασx− xs(t) ‖∞< L, (6.66)

for some L and all m ∈ M ,θ ∈ Θ(m),
�

t,y(t)
�
∈ Ψ,

�
t, sa(t)

�
∈ Φ and α ∈ A , where the

setA specifies the probability of maintaining ‖ x(t)− xs(t) ‖∞< L.

6.3.4 Simulated example

Let us consider the simulation of a system that consists of a jacketed homogeneous CSTR
(that is, an open homogeneous reactor of constant volume) with S species, R independent
reactions, p inlet streams and one outlet stream. According to Section 2.2, the states are
the S-dimensional vector of numbers of moles n(t) and the heat of the reaction mixture

Q(t) = m(t)cp(t)
�

T (t)− Tre f

�

, (6.67)

where T (t) is the temperature of the reaction mixture, Tre f is the temperature of the refer-
ence state, which corresponds to the liquid state at 1 bar and 298.15 K,

m(t) = 1T
SMwn(t) (6.68)

is the total mass in the reactor, with Mw being the S-dimensional diagonal matrix of molec-
ular weights of the species in the reactor, and

cp(t) =
cT

pn(t)

m(t)
(6.69)

is the specific heat capacity at constant pressure of the reaction mixture, with cp being the
S-dimensional vector of molar heat capacities of the species in the reactor.

One can also consider as an additional state the heat of the jacket

Q j(t) = m jcp, j

�

T j(t)− Tre f

�

, (6.70)

where m j is the total mass of the jacket, cp, j is the specific heat capacity at constant pressure
of the jacket, and T j(t) is the mean temperature of the jacket.
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Then, the mole and heat balances of the reactor can be written as

�

Q̇(t)

ṅ(t)

�

︸ ︷︷ ︸

ẏ(t)

=

�

−∆HT
r

NT

�

︸ ︷︷ ︸

A

rv(t) +

�

1
0S

�

︸ ︷︷ ︸

b

qex(t) +

�

Ť
T
in

Win

�

︸ ︷︷ ︸

C

uin(t)−ω(t)

�

Q(t)

n(t)

�

︸ ︷︷ ︸

y(t)

,

�

Q(0)
n(0)

�

︸ ︷︷ ︸

y(0)

=

�

Q0

n0

�

︸ ︷︷ ︸

y0

, (6.71)

with

qex(t) := UA
�

T j(t)− T (t)
�

+ qex ,rem(t), (6.72)

and the heat balance of the jacket can be written as

Q̇ j(t) = u j(t)cp, j∆T j(t)− UA
�

T j(t)− T (t)
�

, (6.73)

where N is the R× S stoichiometric matrix, Win is the S × p inlet-composition matrix, ∆Hr

is the R-dimensional vector of enthalpies of reaction, Ťin is the p-dimensional vector of
inlet specific heats, rv(t) is the R-dimensional vector of overall reaction rates, U and A are
the overall heat transfer coefficient and the heat transfer area of the jacket, respectively,
qex ,rem(t) is the heat power that is exchanged with the remaining environment, uin(t) is

the p-dimensional vector of inlet flowrates, ω(t) := uout (t)

m(t)
is the inverse of the residence

time, with uout(t) the outlet flowrate, u j(t) is the inlet flowrate of the jacket, and ∆T j(t) is
the difference between the temperatures of the inlet and the outlet of the jacket. The state
vector y(t) and the vector b are both of dimension S+1, while the matrixA has dimension
(S+ 1)× R and the matrix C has dimension (S+ 1)× p.

In this system that consists of a jacketed reactor, the manipulated variables correspond to
the inlet flowrate of the jacket u j(t) and the inlet flowrates uin(t). We would like to control
the heat Q(t) and certain elements of the vector of numbers of moles n(t). However, since
u j(t) does not affect directly Q(t) and n(t), at first sight it is not possible to satisfy the
condition in Eq. (6.43), which is required for this control scheme without kinetic models.

To solve this problem, one can consider the jacket as an actuator with first-order dynam-
ics. For this, let us define qex , j(t) := UA

�

T j(t)− Tre f

�

and qex ,r(t) := UA
�

T (t)− Tre f

�

,
which implies that

qex(t) = qex , j(t)− qex ,r(t) + qex ,rem(t). (6.74)

Then, one can observe that the actuator output qex , j(t) not only affects directly Q(t) but

137



Chapter 6. Reactor Control

also possesses first-order dynamics since

q̇ex , j(t) = UAṪ j(t)

=
UAQ̇ j(t)

m jcp, j

=
UA

m jcp, j

�

u j(t)cp, j∆T j(t)− qex , j(t) + qex ,r(t)
�

= T−1
a,Q

�

q̄ex , j(t)− qex , j(t)
�

, (6.75)

with the time constant

Ta,Q :=
m jcp, j

UA
, (6.76)

and the actuator input

q̄ex , j(t) := u j(t)cp, j∆T j(t) + qex ,r(t), (6.77)

which can be related to the manipulated variable u j(t) if ∆T j(t) and qex ,r(t) are measured.

The corresponding measured quantities are given by

q̃ex , j(t) = UA
�

T̃ j(t)− Tre f

�

, (6.78)

q̃ex ,r(t) = UA
�

T̃ (t)− Tre f

�

, (6.79)

˜̄qex , j(t) = ũ j(t)cp, j∆T̃ j(t) + q̃ex ,r(t), (6.80)

which implies that the controller output ˜̄qex , j(t) can be enforced by manipulating

ũ j(t) =
˜̄qex , j(t)− q̃ex ,r(t)

cp, j∆T̃ j(t)
. (6.81)

It is assumed that the constant reactor volume V (t) is given by the sum of the mass of
the individual species divided by the constant density of the reaction mixture ρ, that is,

V (t) =
1T

SMw

ρ
n(t) =

1T
SMw

ρ
n0. (6.82)

In a homogeneous CSTR, since

1T
SMwNT = 0T

R, (6.83)

1T
SMwWin = 1T

p, (6.84)

1T
SMwn0 = m0, (6.85)
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Table 6.1 – Values of the molecular weights of species A, B, C, and D.

Species A B C D

mw [kg kmol−1] 67.09 84.08 151.17 168.16

Table 6.2 – Values of the rate constants of reactions R1 and R2.

Reaction R1 R2

A[l kmol−1 s−1] 1.692× 105 7.232× 103

Ea [kJ kmol−1] 20000 10000

the inverse of the residence time is

ω(t) =
1T

p

m0
uin(t) = kT

inuin(t), (6.86)

thereby keeping the volume constant as follows:

V̇ (t) =
1T

SMw

ρ
ṅ(t) =

1T
SMw

ρ

�

NTrv(t) +Winuin(t)
�

− V (t)ω(t) =
1T

puin(t)−m0ω(t)

ρ

= 0. (6.87)

In this particular simulated example, let us consider the acetoacetylation of pyrrole in
a homogeneous reactor of constant volume with S = 4 species (A: pyrrole; B: diketene;
C: 2-acetoacetylpyrrole; D: dehydroacetic acid), R = 2 reactions (A + B → C, 2B → D),
p = 2 inlets (of A and B) and 1 outlet, the flowrate of which is adjusted to keep the volume
constant [114].

For this simulation, the following values are used: N=
�
−1 −1 1 0
0 −2 0 1

�

,∆Hr =
�
−70
−50

�

×103

kJ kmol−1, WT
in =

h
67.09−1 0 0 0

0 84.08−1 0 0

i

kmol kg−1, Ťin = 0p at Tre f = 298.15 K, rv,1 =

V k1cAcB, rv,2 = V k2c2
B, where c(t) = n(t)/V (t), k1 = A1 exp

�

−
Ea,1

RT

�

, k2 = A2 exp
�

−
Ea,2

RT

�

.
The values of the molecular weights of these species are given in Table 6.1, and all the
necessary information about the reactions R1 and R2, namely the values of A1, A2, Ea,1, Ea,2,
is provided in Table 6.2. The volume is constant at V = 90.16 L. Furthermore, it is assumed
that the density and the specific heat capacity are constant and equal to 0.9978 kg L−1 and
1.439 kJ kg−1 K−1, respectively, which results in the constant heat capacity mcp = 129.5
kJ K−1.

The system is initially at steady state corresponding to the inputs q̄ex = −4.9 × 103

kJ min−1 and ūin =
h

ūin,A
ūin,B

i

=
�

40
15

�

kg min−1, which corresponds to the initial values nT
0 =
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[0.833 0.093 0.143 0.028] kmol and Q0 = 3.37× 103 kJ (equivalent to T0 = 324.2 K).

Measurements of y(t), qex , j(t), qex ,r(t), qex ,rem(t), uin(t) and ω(t) are available with
the sampling period h = 0.4 s. The measurement errors in qex ,rem(t), uin(t) and ω(t) are
negligible in comparison to the ones in y(t), qex , j(t) and qex ,r(t). The standard deviation
of the concentration measurements is 0.5% of the maximum concentration of each species,
while the standard deviation of the temperature measurements is 0.5 K. This results in the
variance-covariance matrix Σy = diag

��

652 0.0042 0.0012 0.0012 0.000252
��

.

Two different control objectives are tested:

1. The first objective is to control the numbers of moles nA(t) and nB(t) to the reference
signals ns

A(t) and ns
B(t), while Q(t) is controlled to the setpoint Q0, by manipulating

the inlet flowrates of the jacket u j(t), of A uin,A(t), and of B uin,B(t). In this case, the
reference signals tend exponentially to 1.04nA,0 and 1.04nB,0, with a time constant of
the exponential convergence of 0.2 min.

2. The second objective is to implement control of temperature and concentration of A,
that is, to control the heat Q(t) and the number of moles nA(t) to the setpoints Q0 and
nA,0, by manipulating the inlet flowrates of the jacket u j(t) and of A uin,A(t) to reject a
15 kg min−1 step disturbance in the inlet flowrate of B uin,B(t).

With this information, the following assignments can be made for the controller via
feedback linearization in the first case, with the second case being constructed in a similar
way:







































x(t) =







Q(t)

nA(t)

nB(t)







, y(t) =

�

Q(t)

n(t)

�

,

F=







−∆HT
r

NT
A

NT
B







, L =A , ru

�
x(t)

�
= rv(t),

β a

�
y(t)

�
=

�

1
02

�
�

qex ,rem(t)− qex ,r(t)
�

, sa(t) =
�

b C
�
�

qex(t)

uin(t)

�

−ω(t)y(t),

Ba

�
y(t)

�
=







1 Ťin

0 Win,A

0 Win,B






−







Q(t)

nA(t)

nB(t)







�

0 kT
in

�

, u(t) =

�

qex , j(t)

uin(t)

�

,

Ta =

�

Ta,Q 0T
2

02 02×2

�

, ū(t) =

�

q̄ex , j(t)

uin(t)

�

.

(6.88)

Hence, the parameters of the feedback-linearization controller used for this system
are mostly determined by readily available information, namely, the stoichiometry, the
enthalpies of reaction, the inlet composition and specific heat, and the inlet and outlet
flowrates. There is no information about the rate laws.
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Figure 6.5 – Reference tracking with respect to the numbers of moles of A and B, without
measurement noise. (a), (c) and (e): Profiles of temperature and numbers of moles of A
and B (controlled variables) for feedback-linearization control (thick line) and PI control
(thin line), with the setpoint shown by the dashed line; (b), (d) and (f): Inlet flowrate of
the jacket, of A, and of B (manipulated variables); (g) and (h): Estimated (solid lines) and
true (dashed lines) reaction rates.
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Figure 6.6 – Reference tracking with respect to the numbers of moles of A and B, with mea-
surement noise (standard deviation: 0.5% of the maximum concentration of each species
for concentration measurements, 0.5 K for temperature measurements). (a), (c) and (e):
Profiles of temperature and numbers of moles of A and B (controlled variables) for feedback-
linearization control (thick line) and PI control (thin line), with the setpoint shown by the
dashed line; (b), (d) and (f): Inlet flowrate of the jacket, of A, and of B (manipulated
variables); (g) and (h): Estimated (solid lines) and true (dashed lines) reaction rates.
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Figure 6.7 – Rejection of a step disturbance in the inlet flowrate of B, without measurement
noise. (a) and (c): Profiles of temperature and numbers of moles of A (controlled variables)
for feedback-linearization control (thick line) and PI control (thin line), with the setpoint
shown by the dashed line; (b) and (d): Inlet flowrate of the jacket and of A (manipulated
variables); (e) and (f): Estimated (solid lines) and true (dashed lines) reaction rates.
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Figure 6.8 – Rejection of a step disturbance in the inlet flowrate of B, with measurement
noise (standard deviation: 0.5% of the maximum concentration of each species for con-
centration measurements, 0.5 K for temperature measurements). (a) and (c): Profiles of
temperature and numbers of moles of A (controlled variables) for feedback-linearization
control (thick line) and PI control (thin line), with the setpoint shown by the dashed line;
(b) and (d): Inlet flowrate of the jacket and of A (manipulated variables); (e) and (f):
Estimated (solid lines) and true (dashed lines) reaction rates.
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Control via feedback linearization is implemented, using the matrix Γ = diag ([3 1 1])
min−1 of exponential convergence rates, the matrix D = diag ([0.5 0 0]) of desired reduc-
tion of the time constants of the actuators, and a differentiation filter of window size q = 25
for the estimation of the unknown rates. To simulate the step disturbance of uin,B(t), the
controller output is simply replaced by a constant value.

The feedback-linearization control is compared to the following controllers:

• For temperature control, cascade scheme consisting of PI control in the outer loop with
the gain Ko = 3 and the integral time constant Ti,o = 0.2 min and P control in the inner
loop with the gain Ki = −2 kg−1 K−1 min−1.

• For concentration control of A and B, PI control with the gain K = 5 kg−1 kmol−1 min−1

and the integral time constant Ti = 0.2 min.

Figures 6.5 and 6.6 show that the feedback-linearization scheme is able to track the
reference signals more quickly and precisely than the PI controller, whereas Figures 6.7
and 6.8 show that the feedback-linearization scheme is able to reject the disturbance more
quickly than the PI controller. However, if the standard deviation of the concentration
measurements is larger than about 1% of the maximum concentration of each species, the
estimated reaction rates become too imprecise or delayed (due to the choice of a larger
window size q), and the advantage of feedback linearization over PI control is less clear
(results not shown).

6.4 Conclusion

This chapter has considered reactor control with and without kinetic models, in both
cases using the concept of variants and invariants.

The first part of this chapter has proposed a control scheme via feedback linearization
in the presence of a kinetic model. With this control scheme, it has been possible to achieve
offset-free control of a subset of the states and set the closed-loop time constants of all the
states, for descriptions of the reaction system using either numbers of moles or extents.

The second part of this chapter has considered the control of a subset x(t) of the avail-
able states y(t) of a generic system. Control is implemented without the knowledge of a
rate model and possesses the following main features:

• The controller is mostly based on the structural information about the dynamic rela-
tionship between the controlled states x(t) and the unknown rates ru

�
x(t)

�
, the known

rates β a

�
y(t)

�
and the inputs u(t), and between the available states y(t) and the un-

known rates ru(t) and the available rates sa(t). This dynamic relationship needs to be
known for estimation of the unknown rates.

• Two conditions need to be satisfied: the rank of Ba must be equal to the number of
controlled states nx and inputs nu; the rank of L must be equal to the number of (es-
timated) unknown rates nr , which implies that the number of states that are available
has to be greater than or equal to nr . Ideally, the measurements of the available states
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and available rates are corrupted by zero-mean noise.
• The controller has three types of tunable parameters with practical meaning, namely:

the diagonal matrix D, in which each element of the diagonal specifies the desired
reduction of the time constant of each actuator that corresponds to an input in u(t);
the diagonal matrix Γ , in which each element of the diagonal corresponds to the inverse
of the time constant of the exponential decay of each controlled variable in x(t); and
the parameter of the differentiation filter (the number of samples q in the case of
the Savitzky-Golay filter) used for the estimation of the unknown rates ru(t). The
parameters D, Γ and q need to be chosen to guarantee closed-loop stability, according
to their influence on the expected value and variance of x(t).

• Instead of linearizing the system around a given steady state, this controller imple-
ments feedback linearization and uses estimation of unknown rates without knowledge
of rate models, which simplifies control design significantly and enables control even
when the values of the states are not similar to the corresponding steady-state values.
The feedback linearization and the rate estimation set a rate of variation for the con-
trolled variables and allow tracking a trajectory by forcing the control error to decay
exponentially to zero.

• The resulting controller is a multiple-input multiple-output (MIMO) controller, which
shows good performance for the case of frequent and precise measurements of several
output variables. In the case of low measurement noise, feedback linearization coupled
to rate estimation can outperform PI control for the purpose of disturbance rejection
and setpoint tracking.

• The integral component of a hypothetical PID controller is not needed to eliminate the
steady-state error, if it is assumed that all the measurements are corrupted by zero-
mean noise, and would only be needed otherwise.

• A simulated example has shown that these conditions are generally satisfied in a re-
alistic control problem, for example, the control of temperature and reactant concen-
trations in a homogeneous CSTR without kinetic models for the reaction rates, that is,
without knowledge of the rate laws.
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7 Fast Steady-state Optimization of

Dynamic Systems

This chapter is adapted from the postprint of the following article [108]:

D. Rodrigues, M. Amrhein, J. Billeter, and D. Bonvin. Fast estimation of plant steady
state for imperfectly known dynamic systems, with application to real-time optimization.
Ind. Eng. Chem. Res., 57(10):3699–3716, 2018.

Link: http://doi.org/10.1021/acs.iecr.7b04631.

Copyright © 2018 American Chemical Society

The author of this thesis contributed to that article by developing the main novel ideas,

implementing the simulations, and writing a significant part of the text. Hence, the author

retains the right to include the article in this thesis since it is not published commercially and

the journal is referenced as the original source.

7.1 Introduction

Kinetic modeling, response-surface modeling and static real-time optimization of contin-
uous processes, among other tasks, require visiting various successive operating points and
assessing the steady-state values at these points. It is important to reduce the total amount
of time spent by the plant in this exploratory and potentially suboptimal operation, which
depends on the number of steady-state evaluations and the time needed for each evalua-
tion. Although a small number of evaluations is often mentioned as a desirable property of
the aforementioned applications, less attention has been given to trying to reduce the time
needed for each evaluation, which typically requires convergence of the plant to steady
state or at least experimental estimation of plant steady state. Note also that, depending on
the dominant time constant of the plant, the time necessary to reach steady state may be
rather long and represent the main limiting factor. Hence, the objective of this chapter is to
investigate methods to speed up the estimation of plant steady state for imperfectly known
dynamic systems.

Some contributions have addressed the problem of fast estimation of plant steady state
and plant gradients. Typically, this has been done by identifying ARX, ARMAX or Ham-
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merstein dynamic models to infer steady-state information from data collected during tran-
sient operation [115, 116, 117, 118, 119, 120, 121]. These approaches for dynamic model
identification rely on the excitation of the plant, using for example pseudo-random binary
sequence signals, and require the collection of many data before the dynamic model can be
used to predict the steady-state behavior accurately [122, 123].

One of the main applications that requires the knowledge of plant steady state at succes-
sive operating points is the steady-state optimization of continuous processes, often referred
to as static real-time optimization (RTO). Static RTO is typically implemented via some it-
erative scheme that uses steady-state measurements to drive the plant to optimality despite
the presence of plant-model mismatch. This mismatch is caused, for example, by an in-
correct choice of the model structure, uncertainty associated with parameter estimation,
changes in the cost and constraints due to modified economic and operational objectives, or
changes in parameters due to changing operating conditions, fouling or the presence of im-
purities. At each iteration, constant inputs are applied to the plant and, once steady state has
been reached, the outputs are measured to evaluate the values of the cost and constraints
of the optimization problem. Several RTO approaches have been proposed. The classical
strategy is the two-step approach, which, however, may fail to reach plant optimality upon
convergence [124, 125]. Hence, other approaches, such as Integrated System Optimization
and Parameter Estimation (ISOPE) [126] and Modifier Adaptation (MA) [127, 128], have
been developed to enforce the necessary conditions of optimality (NCO) upon convergence.
Other approaches, such as Extremum-Seeking Control, Self-Optimizing Control and NCO
Tracking, directly adapt the inputs through control schemes that drive the plant toward op-
timality [129, 130, 131, 132]. In the case of systems with time-scale separation, it has been
possible to speed up RTO by treating the slow processes as a source of plant-model mis-
match [133]. Furthermore, in the case of parametric plant-model mismatch, it is possible to
reach plant optimality in a single transition to steady state by estimating the plant gradients
and applying RTO during transient operation [134, 135].

This work proposes a novel way of speeding up the estimation of plant steady state for
the case of dynamic systems characterized by fast and slow states. For this to happen, the
slow states must not affect the fast states. Furthermore, it is necessary that the uncertain or
unknown part of the plant dynamics does not depend on the slow states. Fast estimation of
plant steady state is achieved through (i) the use of feedback control to speed up the fast
part of the plant, and (ii) the measurement-based estimation of rate signals, which allows
computing the steady state of the slow part of the plant. It must be emphasized here that the
estimation of rate signals is done without the knowledge of rate models, which corresponds
to industrial practice with significant plant-model mismatch. In this work, the approach for
fast estimation of plant steady state is applied to static RTO, thus enabling what is called
fast static RTO. The approach is illustrated via the optimization of a continuous stirred-tank
reactor (CSTR).

The chapter is organized as follows. Section 7.2 presents the dynamic model of the class
of systems considered in this chapter. Section 7.3 shows how to implement measurement-
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based rate estimation without a rate model. Then, Section 7.4 describes how rate estimation
can be used to implement fast estimation of plant steady state by (i) speeding up the re-
sponse of the fast part via feedback control, and (ii) using the estimated rates to compute
the steady state of the slow part during transient operation. The implementation of fast
estimation of plant steady state is illustrated on a simulated CSTR. Section 7.5 describes
how the fast estimation of plant steady state can be used in the context of static RTO. Its
implementation is illustrated on the same simulated CSTR. Finally, Section 7.6 concludes
the chapter.

7.2 System Description

This section describes the general features of the systems for which fast estimation of
plant steady state will be proposed in this chapter.

7.2.1 Dynamic model with fast and slow states

Let us consider a time-invariant nonlinear dynamic system with the input vector u(t) of
dimension nu. This system consists of two subsystems with the states x(t) of dimension nx

and the states z(t) of dimension nz:

ẋ(t) = f
�
x(t),u(t)

�
, x(0) = x0, (7.1)

ż(t) = h
�
x(t),z(t),u(t)

�
, z(0) = z0, (7.2)

where f(x,u) and h(x,z,u) are bounded.

As can be seen from Eqs. (7.1)–(7.2), a particularity of this system is the following fact:

Assumption 7.1. The states z(t) do not affect the states x(t). As a consequence, x(t) and z(t)

correspond to fast and slow dynamics, respectively.

Indeed, since z(t) do not affect x(t), steady state for x only requires that u be at steady
state. However, steady state for z requires that both u and x be at steady state. Hence, u

and x may be at steady state, with z still in transient mode.

Another particularity of this system, which will be considered throughout this chapter,
is that a part of its dynamics is unknown and satisfies the following assumption:

Assumption 7.2. The unknown part of the dynamics depends only on the fast states x(t).

Consequently, let us introduce the following notations without any additional assump-
tion:

• The vector field f(x,u) is expressed as the sum f(x,u) := fu(x,u) + fa(x,u), where the
subscripts (·)u and (·)a indicate unknown and known (available) functions, respectively.
Similarly, the vector field h(x,z,u) is expressed as the sum of unknown and known
parts, h(x,z,u) := hu(x,u) + ha(x,z,u).

• The vector field hu(x,u) is expressed as known linear combinations of the nr un-
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known rate functions ru(x,u), that is, hu(x,u) := Hru(x,u), with H a known (nz × nr)-
dimensional matrix. The vector field fu(x,u) can be expressed as known linear combi-
nations of the same unknown rate functions ru(x,u) plus the additional term su(x,u),
that is, fu(x,u) := Fru(x,u) + su(x,u), with F a known (nx × nr)-dimensional matrix.

Note that Assumption 7.2 implies that (i) the functions su(x,u) and ru(x,u) are unknown
but independent of the slow states z, and (ii) the known functions fa(x,u) and ha

�
x,z,u

�

allow computing the values fa(t) and ha(t) from knowledge of x(t), z(t) and u(t).

In continuous processes, the system moves from one steady state to the next following
changes in the inputs. Let us consider the fast subsystem at the (k− 1)st steady state x̄k−1,
that is, x(tk−1) = x̄k−1. With Assumptions 7.1 and 7.2, and the notations presented above,
the system dynamics read:

ẋ(t) = F ru

�
x(t),u(t)

�
+ su

�
x(t),u(t)

�
+ fa

�
x(t),u(t)

�
, x(tk−1) = x̄k−1, (7.3)

ż(t) = Hru

�
x(t),u(t)

�
+ ha

�
x(t),z(t),u(t)

�
, z(tk−1) = zk−1, (7.4)

where (̄·) denotes a steady-state value, which means that (x̄k−1, z̄k−1) is the steady state
that corresponds to the inputs ūk−1. Note that the slow states z(tk−1) are not necessarily at
steady state yet, and the initial condition zk−1 may be different from the steady-state values
z̄k−1. If, at time tk−1, the inputs are changed to new values, the system will reach a new
steady state with the inputs ūk and the states x̄k and z̄k. The outputs y(t) of dimension ny

are expressed as linear combinations of the states, that is,

y(t) = Cx x(t) +Cz z(t), (7.5)

and are available as ỹ(t), where (̃·) denotes noisy measurements.

Furthermore, we will consider the following assumption throughout the chapter:

Assumption 7.3. The eigenvalues of
∂ ha

∂ z
(x,z,u) have strictly negative real parts. This implies

that (i)
∂ ha

∂ z

�
x,z,u

�
is invertible, and (ii) z(t) is open-loop stable since hu(x,u) is bounded.

7.2.2 Example: Fast and slow states in a CSTR

As an example of the system given by Eqs. (7.3)–(7.4), a homogeneous CSTR with S

species, R independent reactions, p inlet streams and one outlet stream is considered next.
The volume V and the density ρ are assumed to be constant, and the specific heat capacity
cp is assumed to depend only on temperature. The S species are separated into two groups:

1. SP species that are not fed to the reactor and whose concentrations have no effect on
the reaction rates. The corresponding vector of numbers of moles is represented by nP

(mostly products);
2. SR = S−SP remaining species that are fed to the reactor or whose concentrations influ-

ence the reaction rates. The corresponding vector of numbers of moles is represented
by nR (mostly reactants). Among these SR species, SF species are fed to the reactor,
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with SF ≤ p, while SI = SR−SF species are not fed. It is also assumed that, for SF inlet
streams, each of them is composed of a single species and possibly solvents (with the
inlet mass fractions of these species specified by the SF × SF diagonal matrix W̌in,F ),
and the remaining (p− SF ) inlet streams contain only solvents.

Furthermore, let Q := Vρ c̄p(T − Tre f ) denote the heat of the reaction mixture, with T

being the reactor temperature, Tre f the reference temperature and c̄p the average specific
heat capacity between T and Tre f , and assume that the inlets are at the temperature Tre f .

The heat and mole balances can be written as:






Q̇(t)

ṅR(t)

ṅP(t)






=







−∆HT
r

NT
R

NT
P







V ϕ
�
Q(t),nR(t)

�
+







1 0T
p

0SR
Win,R

0SP
0SP×p







�

qex(t)

uin(t)

�

−ω(t)







Q(t)

nR(t)

nP(t)







,

(7.6)

which shows that Q(t) and nR(t) are fast states and nP(t) are slow states since nP(t) do
not affect the dynamics of the remaining states. In Eq. (7.6), ∆Hr are the enthalpies of
reaction, NR and NP the stoichiometric submatrices involving the reactants and the products,
respectively, ϕ

�
Q(t),nR(t)

�
the R reaction rates expressed as functions of the fast states,

qex(t) the heat exchange power, uin(t) the p inlet flowrates, ω(t) := kT
inuin(t) the inverse

of the residence time, with kin :=
1p

ρV
, and

Win,R :=M−1
w,R

�

W̌in,F 0SF×(p−SF )

0SI×SF
0SI×(p−SF )

�

, (7.7)

with Mw,R the diagonal matrix of molecular weights of the reactants. The stoichiometric
submatrices NR and NP are constant and can be determined via target factor analysis [20].
Note that, owing to the definition of the heat Q, the enthalpies of reaction ∆Hr are constant
and not temperature dependent since they correspond to the enthalpies at the reference
temperature Tre f , and not at the reactor temperature T . Moreover, these enthalpies are
also known since they can be computed as ∆Hr = NR∆HR+NP∆HP , where ∆HR and ∆HP

are the enthalpies of formation of the reactants and products at Tre f . More details about
the notation can be found in Section 2.2.
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It is possible to write Model (7.6) in the general form given by Eqs. (7.3)–(7.4) by
assigning

x(t) :=

�

Q(t)

nR(t)

�

, z(t) := nP(t), u(t) :=

�

qex(t)

uin(t)

�

,

(7.8a)

ru

�
x(t)

�
:= rv(t), su

�
x(t),u(t)

�
:= 0SR+1, (7.8b)

fu

�
x(t),u(t)

�
:=

�

−∆HT
r

NT
R

�

rv(t), F :=

�

−∆HT
r

NT
R

�

, (7.8c)

fa

�
x(t),u(t)

�
:=
�

b C
�
�

qex(t)

uin(t)

�

−

�

Q(t)

nR(t)

�
�

0 kT
in

�
�

qex(t)

uin(t)

�

, (7.8d)

hu

�
x(t),u(t)

�
:= NT

P rv(t), H := NT
P , (7.8e)

ha

�
z(t),u(t)

�
:= −kT

inuin(t)nP(t), (7.8f)

with

rv(t) := V ϕ
�
Q(t),nR(t)

�
, b :=

�

1
0SR

�

, C :=

�

0T
p

Win,R

�

. (7.8g)

Note that the assumptions in this example are realistic for many reaction systems. In-
deed, it is often known that the reaction rates are not affected by the concentrations of some
products (in particular, if the reactions are elementary, but not if they are autocatalytic or
product-inhibited), which implies that these concentrations are part of the slow states z. On
the other hand, since the product concentrations enter the formulation of many optimiza-
tion problems, it is beneficial to estimate their steady-state values as quickly as possible.

7.3 Measurement-based Rate Estimation

A measurement-based rate estimation method is developed next to estimate the rates
ru(t) from the inputs and the noisy output measurements. This method is similar to the one
presented in Chapter 5. For the kth iteration, as soon as the states x(t) and the inputs u(t)

converge to the steady-state values x̄k and ūk, this rate estimation yields the steady-state
values ˆ̄ru,k. Note that this rate estimation is nonparametric and does not rely on rate models.
The feasibility of this rate estimation method depends on the additional assumptions that
are made regarding the structure of the dynamic model and the available outputs, as shown
next.

7.3.1 Relationship between unknown rates and outputs

The aim is to estimate the unknown rates ru(t) from available signals, in this case the
inputs u(t) and the measured outputs ỹ(t). For this, we will introduce a few additional
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assumptions to be able to express Eqs. (7.3)–(7.5) as a dynamic model for the outputs y(t)

where the rates ru

�
x(t),u(t)

�
are the only unknown part.

Assumption 7.4. Cx and Cz are such that Cx fa

�
x(t),u(t)

�
+ Cz ha

�
x(t),z(t),u(t)

�
can be

computed as known functions of the inputs u(t) and the outputs y(t), that is, sa

�
y(t),u(t)

�
:=

Cx fa

�
x(t),u(t)

�
+Cz ha

�
x(t),z(t),u(t)

�
.

Assumption 7.5. Cx is such that the unknown functions su

�
x(t),u(t)

�
are not sensed by the

outputs, that is, Cx su

�
x(t),u(t)

�
= 0ny

.

From Eqs. (7.3)–(7.5) and Assumptions 7.4 and 7.5, the dynamics of the outputs y(t)

read:

ẏ(t) =L ru

�
x(t),u(t)

�
+ sa

�
y(t),u(t)

�
, y(0) = Cx x0 +Cz z0, (7.9)

with L := Cx F + Cz H. Hence, ru

�
x(t),u(t)

�
is the only unknown part in Eq. (7.9) and

can be estimated by solving Eq. (7.9), provided that the matrix L has full column rank, as
expressed by the following assumption:

Assumption 7.6. L is a known (ny × nr)-dimensional matrix with rank (L ) = nr .

The following proposition shows how the rates ru(t) can be estimated to yield the esti-
mates r̂u(t) and the corresponding steady-state values ˆ̄ru,k.

Proposition 7.1. Let the states x(t) and z(t) and the outputs y(t) be described by Eqs. (7.3)–
(7.5) and Assumptions 7.4–7.6 hold, which implies that y(t) evolve dynamically as shown in

Eq. (7.9).

Then, the estimates r̂u(t) can be computed from the inputs u(t), the measurements ỹ(t),

and the estimated derivatives ˙̃y(t), as follows:

r̂u(t) = T
�

˙̃y(t)− sa

�
ỹ(t),u(t)

�
�

, (7.10)

where the (nr × ny)-dimensional matrix T is such that T L = Inr
.

The steady-state rates ˆ̄ru,k can then be computed as:

ˆ̄ru,k = T
�

˙̃y(tk)− sa

�
Cx x̄k +Cz z̃(tk), ūk

�
�

. (7.11)

Proof. Applying the linear transformation specified by the matrix T to Eq. (7.9) yields
Eq. (7.10). Since y(tk) = Cx x̄k + Cz z(tk) when the steady state x̄k is reached at the time
instant tk, one can obtain Eq. (7.11).

In particular, let us suppose that (i) the outputs y(t) are all the fast states x(t), which
guarantees Assumption 7.4, (ii) su(x,u) = 0nx

, which guarantees Assumption 7.5, and (iii)
F is a known (nx×nr)-dimensional matrix with rank (F) = nr , which guarantees Assumption
7.6. Note that these conditions are typically satisfied in the CSTR example shown above.
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Then, the estimates r̂u(t) can be computed from the inputs u(t), the measurements x̃(t),
and the estimated derivatives ˙̃x(t), as follows:

r̂u(t) = T
�

˙̃x(t)− fa

�
x̃(t),u(t)

�
�

, (7.12)

where the (nr × nx)-dimensional matrix T is such that T F = Inr
.

The steady-state rates ˆ̄ru,k can then be computed as:

ˆ̄ru,k = T
�˙̃x(tk)− fa(x̄k, ūk)

�
. (7.13)

7.3.2 Rate estimator based on convolution filters

One can use a convolution filter to estimate the rates r̂u(t) from the measurements ỹ(t)

and the rates s̃a(t), with s̃a(t) computed from the known functions sa(y,u), the inputs u(t),
and the measurements ỹ(t). Note that ru

�
x(t),u(t)

�
becomes constant upon convergence

of x(t) and u(t) to x̄k and ūk. For the sake of simplicity, the functions ru and sa are written
as time-variant signals in the remainder of this section.

Let us recall the concept of variants, which have been formulated and used for rate
estimation in a generic sense in Chapter 5. Given a set of nr unknown rates, the variants
are also of dimension nr , with each variant depending on only one unknown rate and
containing all the information about that rate. As such, a variant is decoupled from all the
other unknown rates. The concept of reaction variants for homogeneous reactors is a well-
known example of variants [12]. Hence, upon defining the states yr(t) := T y(t), Eq. (7.9)
results in:

ẏr(t) = ru(t) +T sa(t), (7.14)

which implies that yr(t) are variants. Then, the rate estimates r̂u(t) can be computed as:

r̂u(t) = ˙̃yr(t)−T s̃a(t), (7.15)

which indicates that differentiation needs to be applied to ỹr . The differentiating convolu-
tion filter presented in Section 5.4.1 can be used for this purpose.

In particular, when ru reaches steady state, Assumption 5.1 is verified, the results in
Proposition 5.2 also hold for the steady-state rate estimates ˆ̄ru,k by substituting t with tk,
and ˆ̄ru,k can be computed without bias from ỹr and s̃a in the interval

�
tk −∆t, tk

�
as:

ˆ̄ru,k =

q−1∑

k=0

ck+1

h
ỹr(tk −∆t + kh)−

 
q−1∑

k=0

bk+1T s̃a(tk −∆t + kh)

!

. (7.16)
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7.4 Fast Estimation of Plant Steady State

The concept of measurement-based rate estimation without a rate model is used in this
section to speed up the estimation of plant steady state. This is done in two steps: (i)
feedback control is applied to speed up the convergence of the fast states x to steady state,
and (ii) estimation of the steady state of z is performed as soon as the fast states x reach
steady state, that is, still during the transient of the slow states.

7.4.1 Speeding up x(t) via feedback control

Assuming that the fast states x are accessible, their steady state x̄k can typically be
reached faster via the use of feedback control. For this, the states x are the controlled
variables (CVs), xs are the setpoints, while the inputs u are the manipulated variables (MVs)
that also converge to ūk at steady state.

7.4.1.1 Response speed

We provide a way of assessing how much time can be saved by enforcing steady state
faster for x via feedback control. This quantitative assessment uses the concept of eigenval-
ues (or time constants). For this, the slow system in Eq. (7.2) need not be considered since
the states z do not affect x. The fast system in Eq. (7.1) is linearized around the steady-state
values x̄k−1 and ūk−1:

δẋ(t) = Aδx(t) + Bδu(t), δx(tk−1) = 0, (7.17)

where δx(t) := x(t)− x̄k−1, δu(t) := u(t)− ūk−1, A := ∂ f

∂ x
(x̄k−1, ūk−1), B := ∂ f

∂ u
(x̄k−1, ūk−1).

In the absence of feedback control, the response speed is given by the eigenvalues of
A. On the other hand, if one considers proportional control with the gain matrix K, the
dominant time constant can be reduced since it is linked to the eigenvalues of (A− BK).

7.4.1.2 Control via feedback linearization

One could use multivariable control such as pole placement or optimal control [136].
However, these approaches require a dynamic process model, which is assumed to be lacking
in this study. Alternatively, one can take advantage of the rate estimates and use the control
approach that relies on rate estimation and input-output feedback linearization presented
in Section 6.3, as shown next.

Feedback control is needed to drive the fast states x(t) as quickly as possible to the
steady-state setpoints x̄s. On the other hand, the inputs u(t) should have low sensitivity
with respect to measurement noise, in particular when the steady state x̄ is reached, because
ū and x̄ are used jointly to estimate the plant steady state. The control scheme via feedback
linearization described next is quite appropriate to achieve these two goals.
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Let us consider Eq. (7.3) with (i) su(x,u) = 0nx
, (ii) fa affine in u, namely fa(x,u) :=

β a(x)+Ba(x)u, and (iii) ru independent of u. With these additional assumptions, Eq. (7.3)
becomes:

ẋ(t) = F ru

�
x(t)

�
+β a

�
x(t)

�
+ Ba

�
x(t)

�
u(t). (7.18)

Furthermore, let nx = nu and Ba

�
x(t)

�
be invertible. Introducing the new inputs v(t)

to represent the right-hand side of Eq. (7.18) results in the following feedback linearization
law:

u(t) = Ba

�
x̃(t)

�−1
�

v(t)− F r̂u(t)−β a

�
x̃(t)

�
�

. (7.19)

One can design a feedback controller that forces the control error e(t) := xs(t)− x(t)

to converge exponentially to zero at the rates specified by the diagonal matrix Γ , that is,
ė(t) = −Γ e(t). This can be obtained when ẋ(t) = v(t) by using the control law

v(t) = ẋs(t) + Γ
�
xs(t)− x̃(t)

�
. (7.20)

Note that the control law in Eq. (7.20) uses ẋs(t), which ideally requires prior knowledge
of the setpoints xs(t). To avoid very large derivatives, the setpoints can be forced to obey
the dynamic relationships

ẋs(t) = α
�
x̄s − xs(t)

�
. (7.21)

This way, with the control laws in Eqs. (7.20)–(7.21), the states x(t) can be driven
quickly, with the dominant time constant α−1, to the steady states x̄s, and this independently

of the controller gains Γ .

However, note that the key relationship ẋ(t) = v(t) holds only if the error between the
estimated values r̂u(t) and the true values ru

�
x(t)

�
is negligible. In practice, according to

Appendix D.3, there will be a bias between the estimated values r̂u(t) and the true values
ru

�
x(t)

�
before steady state is reached. This estimation bias acts as a disturbance that

affects the control error. By expressing v(t) in Eq. (7.19) from Eq. (7.20) and using the
resulting equation to express u(t) in Eq. (7.18), the control error reads:

ė(t) = −Γ e(t) + F
�

r̂u(t)− ru

�
x(t)

�
�

, e(0) = xs(0)− x(0). (7.22)

The estimation bias will be small if the unknown rates are continuous and do not vary
much over the time window [t −∆t, t], as shown in Appendix D.3. Reducing the size q of
the filter window is likely to reduce the bias (since ∆t decreases) but will result in a larger
variance, as shown by Eq. (5.29).

As indicated by Eq. (7.22), the impact of the estimation bias on the control error can be
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reduced by the use of large gains Γ until the fast states reach steady state. Once these states
are nearly constant, the unknown rates become constant as well, and their estimated values
approach the true values. This allows reducing the gains Γ , thereby obtaining smoother
input and state profiles for accurate estimation of the plant steady state.

7.4.1.3 Example: Control of a CSTR

In the CSTR example, besides the structure already given in Eq. (7.8), it is also possible
to define

Ba

�
x(t)

�
:=
�

b C
�

−

�

Q(t)

nR(t)

�
�

0 kT
in

�

, β a

�
x(t)

�
:= 0SR+1. (7.23)

Hence, one computes the physical inputs u(t) according to Eqs. (7.19)–(7.20):

�

qex(t)

uin(t)

�

= Ba

�
x̃(t)

�−1

��

Q̇s(t)

ṅs
R(t)

�

+ Γ

��

Qs(t)

ns
R(t)

�

−

�

Q̃(t)

ñR(t)

��

−

�

−∆HT
r

NT
R

�

r̂v(t)

�

.

(7.24)

Note that Ba

�
x(t)

�
is invertible if and only if SI = SR−SF ≤ 1, that is, if there is at most

one non-fed species that affects the reaction rates, a very likely situation. Hence, the fast
states of a CSTR can typically be controlled quite efficiently. Note also that the control law
in Eq. (7.24) does not rely on kinetic models since the values of the reaction rates rv(t) are
estimated from measurements of flowrates, reactor temperature, reactor volume and some
of the concentrations. However, the procedure requires the knowledge of stoichiometry,
inlet concentrations and reaction enthalpies.

7.4.2 Estimation of plant steady state during transient operation

This section shows how one can estimate the steady state of the slow states z during
transient operation.

7.4.2.1 Rate-based estimation of z̄k

Using the static version of Eq. (7.4), the steady-state values z̄k of the slow states are
estimated from x̄k and ūk from the static relationship:

H ˆ̄ru,k + ha(x̄k, ˆ̄zk, ūk) = 0nz
. (7.25)

Since ∂ ha

∂ z

�
x,z,u

�
is invertible according to Assumption 7.3, the implicit function theo-

rem implies that the solution ˆ̄zk to Eq. (7.25) is unique.
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In particular, if ha

�
x(t),z(t),u(t)

�
can be expressed as linear combinations of z(t) as:

ha

�
x(t),z(t),u(t)

�
:=Ha

�
x(t),u(t)

�
z(t), (7.26)

with Ha

�
x(t),u(t)

�
being an (nz × nz)-dimensional matrix, then the steady-state values z̄k

are estimated explicitly as

ˆ̄zk = −Ha(x̄k, ūk)
−1 H ˆ̄ru,k, (7.27)

since Ha(x,u) = ∂ ha

∂ z

�
x,z,u

�
is invertible.

The slow states ˆ̄zk are computed as an nz-dimensional function s(x̄k, ūk, ˆ̄ru,k), either
implicitly from Eq. (7.25) or explicitly from Eq. (7.27). This estimation can be performed
before the slow states z(t) converge to their steady-state values z̄k. This implies that one
only needs to wait for the steady state of the fast states x to estimate the steady state of the
slow states z. This steady state of z is a stable equilibrium point and can be reached without
feedback control of z since z is open-loop stable according to Assumption 7.3.

Remark 7.1. The assumption that hu(x,u) in Eq. (7.4) does not depend on the slow states z

is needed because the steady-state rates H ˆ̄ru,k need to be reached as soon as the fast states
x reach steady state. Without this assumption, it would be necessary to wait for the steady
state of z to obtain the steady-state rates H ˆ̄ru,k.

The following proposition quantifies the quality of the estimates ˆ̄zk in terms of their
variance.

Proposition 7.2. Let ˆ̄ru,k be estimated as shown in Section 7.3.2, the inputs ūk be computed

according to the control laws presented in Section 7.4.1.2, and the estimates ˆ̄zk be given by the

function

ˆ̄zk = s(x̄k, ūk, ˆ̄ru,k). (7.28)

Then, the variance of ˆ̄zk is

Var
�
ˆ̄zk

�
=
∂ s

∂ ūk

(x̄k, ūk, ˆ̄ru,k)Ba

�
x̄k

�−1
F Var

�
ˆ̄ru,k

�

FT
�

Ba

�
x̄k

�−1
�T ∂ s

∂ ūk

(x̄k, ūk, ˆ̄ru,k)
T

+
∂ s

∂ ˆ̄ru,k
(x̄k, ūk, ˆ̄ru,k)Var

�
ˆ̄ru,k

� ∂ s

∂ ˆ̄ru,k
(x̄k, ūk, ˆ̄ru,k)

T. (7.29)

In particular, if ˆ̄zk is computed from Eq. (7.27), then

∂ s

∂ ū j,k
(x̄k, ūk, ˆ̄ru,k) = −Ha(x̄k, ūk)

−1 ∂Ha

∂ ū j,k
(x̄k, ūk) ˆ̄zk, ∀ j = 1, . . . , nu, (7.30)

∂ s

∂ ˆ̄ru,k
(x̄k, ūk, ˆ̄ru,k) = −Ha(x̄k, ūk)

−1 H. (7.31)
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Proof. The proof is given in Appendix F.1.

7.4.2.2 Example: Estimation of plant steady state during transient operation of a

CSTR

The reaction rates and steady-state values in a CSTR are easily estimated using the
concept of extents presented in Section 2.5. The approach is detailed next for the case of
steady-state estimation.

Let us recall an important result from the concept of extents. The states Q(t), nR(t) and
nP(t) can be expressed as combinations of the various extents, as shown in Section 2.5:

�

Q(t)

nR(t)

�

=

�

−∆HT
r

NT
R

�

xr(t) +
�

b C
�
�

xex(t)

xin(t)

�

+

�

Q0

nR,0

�

x ic(t), (7.32)

nP(t) = NT
Pxr(t) + nP,0x ic(t), (7.33)

where xr are the R extents of reaction, xex the extent of heat exchange, xin the p extents of
inlet, and x ic the extent of initial conditions. These extents are described in their differential
form as:

ẋr(t) = rv(t)−ω(t)xr(t), xr(0) = 0R, (7.34)

ẋex(t) = qex(t)−ω(t)xex(t), xex(0) = 0, (7.35)

ẋin(t) = uin(t)−ω(t)xin(t), xin(0) = 0p, (7.36)

ẋ ic(t) = −ω(t)x ic(t), x ic(0) = 1. (7.37)

Let us assume that the heat Q and the numbers of moles nR are controlled by manip-
ulating qex and uin. Then, as soon as feedback control enforces convergence of Q(t) and
nR(t) to the steady-state setpoints Q̄s and n̄s

R, the manipulated variables also converge to
q̄ex and ūin. It follows that, at steady state, one can compute the extent of heat exchange
as x̄ex =

q̄ex

ω̄
, the extents of inlet as x̄in =

ūin

ω̄
, and the extent of initial conditions as x̄ ic = 0.

As a result, the extents of reaction at steady state, x̄r =
r̄v

ω̄
, can be estimated without kinetic

models as

ˆ̄xr = T

��

Q̄

n̄R

�

−
�

b C
�
�

x̄ex

x̄in

��

, (7.38)

where T is such that T

�

−∆HT
r

NT
R

�

= IR.

Finally, the steady-state values ˆ̄nP can be computed as:

ˆ̄nP = NT
P
ˆ̄xr , (7.39)

which can be done before nP(t) reaches steady state.
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Remark 7.2. The CSTR model in Eq. (7.8) has the linear structure of Eq. (7.26). As a result,
Ha

�
u(t)

�
:= −ω(t)ISP

is a diagonal matrix with all diagonal elements equal to −ω(t),
which allows simplifying Eq. (7.27) and leads to the same result, as follows:

ˆ̄nP = ˆ̄z= −H−1
a (ū)H

ˆ̄ru = NT
P

ˆ̄rv

ω̄
= NT

P
ˆ̄xr . (7.40)

Remark 7.3. If the temperature and the concentrations of all the species that affect the
reaction rates are controlled, then, when Q(t) and nR(t) reach steady state, the reaction
rates also reach the steady-state values r̄v . From that point on, the numbers of moles nP

follow the dynamics

ṅP(t) = NT
P r̄v − ω̄nP(t). (7.41)

This implies that the residence time ω̄−1 becomes the dominant time constant associated
with the states nP . Since the steady states n̄P do not have to be reached to estimate ˆ̄ru and
ˆ̄z, the time constant ω̄−1 is a measure of the time saved thanks to rate estimation. This time
constant can be compared to α−1 and ∆t, which express the time needed to reach x̄ and
estimate ˆ̄ru and ˆ̄z.

In summary, in this work, instead of waiting for the steady state of the (slow) product
concentrations, one can take advantage of (i) feedback control to speed up the convergence
of the (fast) reactant concentrations, and (ii) measurement-based rate estimation to esti-
mate the steady-state product concentrations as soon as the fast states reach steady state.

7.4.3 Example: Fast estimation of plant steady state in a CSTR

This section illustrates the fast estimation of plant steady state for a homogeneous CSTR
of constant volume and constant density. The purpose is to illustrate how the choice of
CVs and MVs and the use of feedback control and rate estimation can improve the speed at
which the plant steady state can be estimated.

7.4.3.1 Plant description

We consider a CSTR with the two reactions A + B→ C and 2B→ D. The same reaction
system has already been investigated with regard to both control (in Section 6.3) and op-
timization [137]. We briefly present the balance equations, using the same notation as in
Section 2.2. The states are the heat Q and the numbers of moles nA, nB, nC and nD. Assum-
ing that the volume and the density of the reaction mixture remain constant and the inlet
streams are at reference conditions and do not contribute to the heat balance, the dynamic
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equations read:

Q̇(t) = −∆HT
r rv(t) + qex(t)−

FA(t) + FB(t)

V
Q(t), Q(0) = Q0, (7.42a)

ṅA(t) = NT
Arv(t) + cin,AFA(t)−

FA(t) + FB(t)

V
nA(t), nA(0) = nA,0, (7.42b)

ṅB(t) = NT
Brv(t) + cin,BFB(t)−

FA(t) + FB(t)

V
nB(t), nB(0) = nB,0, (7.42c)

ṅC(t) = NT
Crv(t)−

FA(t) + FB(t)

V
nC(t), nC(0) = nC,0, (7.42d)

ṅD(t) = NT
Drv(t)−

FA(t) + FB(t)

V
nD(t), nD(0) = nD,0, (7.42e)

with

rv(t) := V ϕ
�
Q(t), nA(t), nB(t)

�
. (7.43)

In this model, FA is the volumetric flowrate of the inlet stream for species A with con-
centration cin,A, and FB is the volumetric flowrate of the inlet stream for species B with
concentration cin,B. The outlet flowrate is assumed to be equal to the sum of the inlet
flowrates. The inputs are qex(t), FA(t) and FB(t).

The corresponding steady-state model reads:

0= −∆HT
r r̄v + q̄ex −

F̄A + F̄B

V
Q̄, (7.44a)

0= NT
Ar̄v + cin,A F̄A −

F̄A + F̄B

V
n̄A, (7.44b)

0= NT
Br̄v + cin,B F̄B−

F̄A + F̄B

V
n̄B, (7.44c)

0= NT
Cr̄v −

F̄A + F̄B

V
n̄C, (7.44d)

0= NT
Dr̄v −

F̄A + F̄B

V
n̄D, (7.44e)

with

r̄v := V ϕ(Q̄, n̄A, n̄B). (7.45)

In this dynamic model, the fast states are Q(t), nA(t) and nB(t), while the slow states
are nC(t) and nD(t). Note that the fast states affect the slow states, but the slow states do
not affect the fast states. Hence, the states and inputs of the generic Model (7.3)–(7.4) are:

u(t) :=
�

qex (t)
FA(t)

FB(t)

�

, x(t) :=
�

Q(t)
nA(t)

nB(t)

�

, z(t) :=
h

nC(t)

nD(t)

i

, (7.46)
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which results in the following definitions:

ru

�
x(t),u(t)

�
:= rv(t), su

�
x(t),u(t)

�
:= 0SR+1, (7.47)

fu

�
x(t),u(t)

�
:=





−∆HT
r

NT
A

NT
B



rv(t), F :=





−∆HT
r

NT
A

NT
B



, (7.48)

fa

�
x(t),u(t)

�
:=
�

1 0 0
0 cin,A 0
0 0 cin,B

��
qex (t)

FA(t)

FB(t)

�

−
FA(t)+FB(t)

V

�
Q(t)
nA(t)
nB(t)

�

, (7.49)

hu

�
x(t),u(t)

�
:=
�

NT
C

NT
D

�

rv(t), H :=
�

NT
C

NT
D

�

, (7.50)

ha

�
z(t),u(t)

�
:= − FA(t)+FB(t)

V

h
nC(t)

nD(t)

i

. (7.51)

Regarding the control aspect, it is possible to use feedback linearization to drive the
fast states Q(t), nA(t) and nB(t) to the setpoints Q̄s, n̄s

A and n̄s
B by manipulating the inputs

qex(t), FA(t) and FB(t). Control via rate estimation and feedback linearization is used here
since it is known from previous work that this control scheme is quite efficient to control
the temperature and the concentrations of species that are fed to the reactor, as shown in
Section 6.3. The choice of the fast states Q, nA and nB as CVs is straightforward.

7.4.3.2 Simulation model and measurements

The parameter values used in the simulation are taken from [137], except for the rate
constants that have been modified and the heat exchange rates and flowrates that have have
been increased approximately 200 times. The model parameters and operating conditions
are given in Table 7.1. The CSTR is simulated using the following rate laws:

qex(t) = UA(T j(t)− T (t)), (7.52)

rv,1(t) = V k1,re f exp

�
Ea,1

R

�

1

Tre f

−
1

T (t)

��

nA(t)

V

nB(t)

V
, (7.53)

rv,2(t) = V k2,re f exp

�
Ea,2

R

�

1

Tre f

−
1

T (t)

���
nB(t)

V

�2

, (7.54)

which of course are assumed to be unknown for the purpose of rate estimation.

The concentration measurements are corrupted with additive zero-mean Gaussian noise
with a standard deviation of 1% of the corresponding maximal concentration, while the
temperature measurements are corrupted with additive zero-mean Gaussian noise with a
standard deviation of 0.08 K. The concentrations of A and B are assumed to be measured
every 1.5 s for the purpose of feedback control.
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Table 7.1 – Model parameters and operating conditions.

Variable Value Units
k1,re f 1.06 l mol−1 min−1

k2,re f 2.56 l mol−1 min−1

Ea,1 20 kJ mol−1

Ea,2 10 kJ mol−1

R 8.314 kJ kmol−1 K−1

Tre f 298.15 K
UA 100 kJ min−1 K−1

(−∆Hr,1) 70 kJ mol−1

(−∆Hr,2) 100 kJ mol−1

cin,A 2.0 mol l−1

cin,B 1.5 mol l−1

V 500 l
Vρcp 736.3 kJ K−1

7.4.3.3 Fast estimation of plant steady state

The procedure requires the tuning of two main parameters, namely, the window size
∆t of the differentiation filter used for rate estimation and the controller gains Γ used for
feedback control. With respect to controller tuning, we propose to use large controller
gains until the fast states reach steady state and then smaller gains to reduce the signal
variability. Two rate estimates with different window sizes of the differentiation filter will
be considered.

Figure 7.1 presents these simulation results. The top row shows the evolution of the
CVs, which are the fast states Q(t), nA(t) and nB(t), while the second row shows the time
profile of the MVs, which are the inputs qex(t), FA(t) and FB(t). The setpoint of Q(t)

remains unchanged, while the setpoint of nA(t) is increased and the setpoint of nB(t) is
decreased. The first two columns of the last two rows represent the rate estimates r̂v,1(t)

and r̂v,2(t) for window sizes of the differentiation filter of ∆t = 3 min (first column) and
∆t = 10 min (second column), as well as the values of the simulated reaction rates rv,1(t)

and rv,2(t). Note that the rate estimates obtained with the smallest window size are used to
manipulate qex(t), FA(t) and FB(t) via feedback control, whereas the estimates that result
from the largest window size are used to estimate the steady-state values of the reaction
rates r̄v,1 and r̄v,2, the inputs q̄ex , F̄A and F̄B and the slow states n̄C and n̄D. The last column
of the last two rows represents the time profiles of the slow states nC(t) and nD(t) and the
corresponding steady-state estimates at each instant.

The controller gains for the control of nA(t) and nB(t) are reduced by a factor of 5 when
the fast states reach steady state, which occurs after 6 min. The initial controller gains
cause a large variability of the inputs, which results in a large variability of the reaction
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rates. Hence, the controller should not be more aggressive at this stage, not because of
stability issues, but because the induced variability impacts the precision of the estimated
rates. However, these large controller gains are useful since they result in fast convergence
of the CVs to their setpoints. The reaction rate estimates obtained with the smallest window
size exhibit a larger variability than the estimates that result from the largest window size.
Nevertheless, the former estimates are more suited for feedback control since they provide
faster estimation of the reaction rates, while the latter estimates are more suited for steady-
state estimation owing to their smaller variance. The combination of large controller gains
that enforce the convergence of the fast states to steady state after 6 min with the rate
estimator that uses a window size of 10 min for steady-state estimation allows accurate
estimation of the steady-state reaction rates, inputs and slow states after approximately 16
min. Note that, at that time, nC(t) and nD(t) are still moving, which shows that the plant
steady state can be estimated before it is actually reached.

One advantage of the method used for measurement-based rate estimation in this study
is that the variance of the rate estimates can be computed analytically from the variance
of the individual measurements according to Eq. (5.29). Figure 7.2 shows the standard
deviations of the two rate estimates for different window sizes ∆t of the differentiation
filter, including the sizes of 3 min and 10 min that are used in this study.

7.5 Static Real-time Optimization

This section discusses the application to static real-time optimization of the approach
for fast estimation of plant steady state presented in the previous sections.

7.5.1 Four RTO configurations

Measurement-based rate estimation and feedback control can be used to speed up the
estimation of plant steady state in four distinct RTO configurations: (i) without feedback
control and without rate estimation (Figure 7.3), which is the classical configuration (for
example, see [138], where the classical formulation of the Williams-Otto reactor problem
is given, with some of the decision variables being physical inputs rather than setpoints
for controlled states or outputs of the reactor), (ii) with feedback control but without rate
estimation (Figure 7.4), (iii) without feedback control but with rate estimation (Figure 7.5),
and (iv) with feedback control and with rate estimation (Figure 7.6). The main features are
as follows (described here for the kth iteration):

1. Feedback control (Figures 7.4 and 7.6) helps drive x(t) quickly to the steady-state
setpoints x̄s

k
by manipulating the inputs u(t). Note that, if the number of states x

is larger than the number of inputs u, one typically specifies the setpoints x̄s
c,k of a

subset or a linear combination of the fast states, the cardinality of which corresponds
to the number of inputs. The setpoints x̄s

c should be such that (i) all the admissible
values of the inputs ū can be reached by choosing some values of the setpoints x̄s

c,
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Figure 7.1 – Fast estimation of plant steady state, with large controller gains (first 6 min)
followed by small controller gains. Time profiles of the CVs (top row), the MVs (second
row), the reaction rates (last two rows, with ∆t = 3 min in the first column and ∆t =

10 min in the second column), and the slow states nC(t) and nD(t) (last column of the
last two rows). Blue lines represent measured CVs, MVs computed via feedback control,
and estimated reaction rates; black lines represent estimated steady-state values (for the
reaction rates and the slow states); green lines represent true (simulated) values; dashed
red lines represent setpoints; and solid red lines represent true steady-state values.
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Figure 7.2 – Standard deviations of the rate estimates r̂v,1 (blue line) and r̂v,2 (green line)
as functions of the window size ∆t of the differentiation filter.

and (ii) the values of the setpoints x̄s
c lead to unique inputs ū. In the discussion about

RTO configurations that follows, it should be noted that (i) the RTO configurations
without feedback control (i) and (iii) do not exclude the use of low-level controllers
for relatively simple tasks such as the control of inlet flowrates or heat exchange power
via manipulation of valve openings, and (ii) these configurations can also include cases
where a feedback controller is used to stabilize the plant, and not to speed up the plant
steady state. In contrast, in the RTO configurations with feedback control (ii) and (iv),
the feedback controller is intentionally designed to speed up convergence of the fast
states x(t) to steady state.

2. In the absence of rate estimation (Figures 7.3 and 7.4), one has to wait for both x(t)

and z(t) to reach x̄k and z̄k, whereas rate estimation (Figures 7.5 and 7.6) eliminates
the need to wait for the slow states z(t) to reach the steady states z̄k.

3. We propose to compute ˆ̄zk from x̄k and ūk in two steps: (i) as soon as x(t) and u(t)

converge to x̄k and ūk, the rate-estimation block yields ˆ̄ru,k; (ii) then, the steady-state-
estimation block computes ˆ̄zk from ˆ̄ru,k either implicitly using Eq. (7.25) or explicitly
using Eq. (7.27).

4. At the end of the kth iteration, static RTO computes optimal values for the inputs
ūk+1 (in the absence of feedback control) or for the setpoints x̄s

c,k+1(in the presence of
feedback control). The RTO problem reads (formulated here for the generic decision
variables π̄ that represent either inputs or setpoints):

π̄k+1 = arg min
π̄

Jk(π̄) (7.55a)

s.t. gk(π̄)≤ 0, (7.55b)
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Static RTO Plant

Dynamic operationWait for steady state x̄ and z̄

k+ 1→ k
ūk

x̃(t)

z̃(t)ūk+1

x̄k, z̄k, ūk

Figure 7.3 – Standard static RTO without feedback control and without rate estimation.
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u(t)x̄s

c,k

x̃(t)

z̃(t)x̄s
c,k+1

x̄k, z̄k, ūk

Figure 7.4 – Static RTO with feedback control but without rate estimation.

where Jk and gk are the cost and constraints expressed as functions of the steady-state
variables π̄ at the end of the kth iteration.
To implement RTO, one typically optimizes the plant model via standard constrained
optimization methods such as the sequential quadratic programming, interior point or
active set algorithms [139]. However, in this study, a complete model is not available as
only the rate functions fa(x,u) and ha

�
x,z,u

�
in Eqs. (7.3)–(7.4) are known, while the

rates ˆ̄ru,k are estimated as time signals. Hence, one is forced to use an optimization al-
gorithm that does not rely on a plant model, using for example evolutionary algorithms,
NCO tracking with barrier-penalty function [137], or gradient-based optimization al-
gorithms, whereby the gradients are estimated experimentally via finite-difference or
similar methods, as proposed later in this chapter.

7.5.2 Comparison of RTO configurations

The static RTO schemes with rate estimation in Figures 7.5 and 7.6 are necessarily faster
than the corresponding schemes without rate estimation in Figures 7.3 and 7.4, because one
does not need to wait for the plant to reach steady state. In Figures 7.5 and 7.6, at each
iteration, dynamic operation can be stopped as soon as the states x reach steady state,
whereas in Figures 7.3 and 7.4 the dynamic operation ends when both x and z reach steady
state. Note that, with rate estimation, it is not necessary to control z, because the states z

do not affect x, and controlling z would not speed up reaching steady state for x. Hence,
even if both x and z were controlled in Figure 7.4, the time needed for x and z to reach
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Figure 7.5 – Static RTO without feedback control but with rate estimation.
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Figure 7.6 – Static RTO with feedback control and with rate estimation.
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steady state would not be any shorter than the time needed for x to reach steady state when
x is controlled. Moreover, to achieve similar closed-loop time responses, the controller gains
necessary to control the fast states x are typically lower than those necessary to control both
x and z, thereby making the control scheme with only x less sensitive to measurement noise.
Finally, the states x may be controllable in situations where the states x and z together are
not controllable.

Comparing Figures 7.5 and 7.6, one can expect the steady state x̄k to be reached faster
when x is controlled. The objective of the control scheme in Figure 7.6 is to drive the fast
states x(t) to the constant setpoints x̄s

k
in the shortest possible time after a step change in the

setpoints x̄s
c,k. This time is shorter than the time needed in Figure 7.5 after a step change

in the inputs ūk. This shows that the scheme with rate estimation and feedback control
in Figure 7.6 represents the fastest static RTO scheme, although at the price of requiring
frequent measurements of x for feedback control.

7.5.3 Example: Static real-time optimization of a CSTR

This section shows the application of fast estimation of plant steady state to static RTO of
the homogeneous CSTR of constant volume and constant density presented in Section 7.4.3.

7.5.3.1 Reformulation of the optimization problem

The use of control implies that the steady-state setpoints n̄s
A and n̄s

B can be seen as the
decision variables for the RTO problem. Note that this differs from [137], where F̄A and F̄B

were used as decision variables. However, both sets of decision variables determine a unique
steady state, for which a cost function and a set of constraint functions can be written. Let
us consider the optimization problem formulated in [137], but with n̄s

A and n̄s
B as decision

variables:

max
n̄s

A,n̄s
B

φ =

�
F̄A + F̄B

�2
�

n̄C

V

�2

F̄Acin,A
(7.56a)

s.t. g1 =
F̄A + F̄B

Fout,max

− 1≤ 0 (7.56b)

g2 =

F̄A+F̄B

V
Q̄− q̄ex

qr,max

− 1≤ 0 . (7.56c)

The objective function φ of this maximization problem corresponds to the product of
yield and productivity, whereas the constraints are related to the maximal outlet flowrate,
Fout,max = 76.7 l min−1, and the maximal heat power that can be generated by the reac-
tions, qr,max = 3333 kJ min−1. Note that the cost function −φ still depends on the slow
variable n̄C. Here, the heat setpoint Q̄s is kept constant for the sake of simplicity, but it
could be considered as another decision variable as well.
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As soon as nA(t) and nB(t) have converged toward their setpoints, qex(t), FA(t), FB(t)

and the reaction rates become constant. The rates r̄v can be evaluated via rate estimation.
This, in turn, determines the values of the cost and constraints. In our example, Eq. (7.44d)
allows expressing n̄C as a function of r̄v , which yields the estimate

ˆ̄nC =
V

F̄A+ F̄B
NT

C
ˆ̄rv. (7.57)

The number of moles n̄C can be replaced by its estimate in the cost function of Prob-
lem (7.56), which can then be reformulated in terms of the fast quantities F̄A, F̄B and ˆ̄rv:

max
n̄s

A,n̄s
B

φ =

�

NT
C
ˆ̄rv

�2

F̄Acin,A
(7.58a)

s.t. g1 =
F̄A + F̄B

Fout,max

− 1≤ 0 (7.58b)

g2 =

F̄A+F̄B

V
Q̄− q̄ex

qr,max

− 1≤ 0. (7.58c)

As soon as convergence to the setpoints n̄s
A and n̄s

B is enforced by the controller, q̄ex ,
F̄A, F̄B and r̄v can be estimated and the values of the cost and constraints can be evaluated.
Since it is expected that an efficient controller enforces fast convergence (less than 6 min
in this particular example), the time needed to evaluate the cost and constraints can be
reduced significantly, compared to the time that would be needed for the open-loop system
to reach steady state (up to 48 min in this particular example).

An important issue is the effect of measurement noise in the computation of the cost
and constraints, in particular if this computation depends on estimated quantities such as
estimated reaction rates. This problem can be alleviated by using more data points for the
estimation of the reaction rates, which implies that one has to wait a bit longer before the
values of the cost and constraints can be obtained. In other words, a tradeoff between noise
reduction and fast optimization needs to be considered in each application.

7.5.3.2 Implementation aspects

Two important implementation aspects are discussed next.

1. Active constraints
If one knew a priori the constraints that are active at the plant optimum, this knowledge
could be used to simplify the solution to the RTO problem. In this study, for instance,
the two constraints are active at the optimum. Since there are two decision variables,
one could reach the optimum without explicit optimization simply by adjusting the two
decision variables to activate the two constraints.
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However, we assume here that the set of active constraints at the optimum is unknown,
which corresponds to the assumption made in [137]. This is the case when there are
significant changes in operating conditions or economic environment. Furthermore,
even when the set of active constraints is known, the number of decision variables
may be larger than the number of active constraints. In that case, explicit optimiza-
tion relying on plant steady state is still necessary to find the optimal values of the
unconstrained decision variables.

2. RTO versus model-based optimization
For real-time optimization, a standard constrained optimization algorithm that imple-
ments an active set method, namely, the fmincon active set algorithm from MATLAB, is
used here. There is an important difference when an optimization algorithm is used for
RTO or for model-based optimization. In RTO, the values of the cost and constraints
stem from plant measurements, whereas, in model-based optimization, these values
are computed using the model. For RTO algorithms that use gradient information, the
gradients need to be estimated experimentally via finite-difference or similar methods.
Then, in both RTO and model-based optimization, the gradients are used to estimate
the Hessian matrix. Since a reliable estimate of the Hessian is needed to compute ac-
ceptable step lengths and directions, the gradient estimates at each iteration must be
both accurate and precise, that is, the error due to truncation and measurement noise
must be small.

7.5.3.3 Simulated real-time optimization

The real-time optimization problem formulated above is simulated using first n̄s
A and n̄s

B
as decision variables (case of controlled plant), and then F̄A and F̄B (open-loop plant).

1. RTO results with n̄s
A and n̄s

B as decision variables (controlled plant)
Figures 7.7, 7.8 and 7.9 illustrate the RTO performance using n̄s

A and n̄s
B as decision

variables. The scheme reaches the plant optimum after 8 iterations, while remaining
(nearly) feasible. Each blue circle represents one plant run (that is, one plant opera-
tion between two successive steady states) in the space of decision variables, while the
blue line corresponds to the progress of the RTO algorithm, starting from the initial
point (n̄s

A, n̄s
B) = (204.4,51.1)mol. Note that three plant runs are necessary for each

RTO iteration, namely, one run with the nominal values of the decision variables and
two additional runs (one for each decision variable) to compute the gradients via fi-
nite differences. Hence, most of the blue circles do not coincide with the blue line since
they correspond to points that are necessary to compute gradients via finite differences,
while the blue line represents only the nominal points. The step away from each nom-
inal point to compute the gradient with respect to a decision variable corresponds to
2.5% of the initial value of that decision variable. Furthermore, these perturbations
are made in the direction of lower values of n̄s

A and n̄s
B, because this direction is known

to represent a smaller risk of constraint violation. Gradient estimation via finite dif-
ferences is preferred for this RTO algorithm because an alternative gradient estimation
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Figure 7.7 – Evolution of the objective function φ(n̄s
A, n̄s

B) over the RTO iterations.

based on previously visited points would either require smaller steps between iterations
or result in large truncation error and inaccurate gradient estimates. Moreover, since
the gradients are also used in the estimation of the Hessian matrix through a rank-one
update based on the BFGS algorithm, it is recommended for the sake of accuracy not to
use another rank-one update for gradient estimation such as the one used in the dual
optimization approach [140].
Figure 7.10 shows a representative plant run (transient operation) for specific values
of the decision variables n̄s

A and n̄s
B. The top row of the figure shows the time profiles of

the CVs, namely, Q(t), nA(t) and nB(t). The second row shows the MVs qex(t), FA(t)

and FB(t). The next two rows represent the reaction rates rv,1(t) and rv,2(t), the jacket
and reactor temperatures T j(t) and T (t), and the numbers of moles nC(t) and nD(t).
The time needed to reach the steady states n̄A and n̄B and estimate the reaction rates
r̄v,1 and r̄v,2 is 16 min. The first 6 min are required for the CVs to converge to the
setpoints n̄s

A and n̄s
B. The true values of nA(t) and nB(t) in green converge quickly

to their setpoints in red. However, one also observes that, during these 6 min, the
variability of FA(t) and FB(t) is quite large, which in turn causes large variability in
the estimated reaction rates. Hence, in the following 10 min, the controller gains are
decreased to reduce the variability of the MVs and allow a more precise estimation of
the reaction rates. At the end of the plant run, the window size of the convolution filter
used for measurement-based rate estimation is increased from 3 to 10 min to obtain
very precise values of the rate estimates. Then, the values of the MVs F̄A and F̄B that
are used for evaluating the cost and constraints are computed from the reaction-rate
estimates ˆ̄rv,1 and ˆ̄rv,2.
It is seen that one needs 10 min after the convergence of the CVs to be able to infer
the cost and constraints with high precision. This high precision of the MVs and rate
estimates is needed because the gradient estimation is highly sensitive to measurement
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noise. Since the gradients are used in the estimation of the Hessian matrix, the gradient
estimates must be rather precise. Ultimately, if the estimated gradients and Hessian are
not sufficiently precise, the optimization algorithm will not reach plant optimality.
For example, consider the hypothetical situation where the optimization algorithm has
access to the true values of the reaction rates and the inlet flowrates corrupted with
a small amount of zero-mean Gaussian noise (standard deviation of 0.4% for reaction
rates and 0.04% for inlet flowrates). The RTO algorithm would stop prematurely as
soon as one of the constraints becomes active, thus yielding a suboptimal solution
(results not shown). This fact demonstrates how important it is to measure the cost and
constraints with high precision, particularly so when the cost and constraint gradients
are nearly parallel as in this example (as can be inferred from the contour lines in
Figures 7.7, 7.8 and 7.9). Since, in this study, one can compute analytically both
the variance of the rate estimates from Eq. (5.29) and the variance of the steady-state
estimates from Eq. (7.29), one can also compute the variance of the cost and constraint
gradients. This fact can be used to adjust the time needed to estimate the steady
state such that a specific target for the variance of the cost and constraint gradients is
reached.
On the other hand, the fact that the cost and constraint gradients are nearly parallel
also implies that the cost does not improve much when one of the constraints becomes
active. Let us imagine that the RTO algorithm stops as soon as one of the constraints
becomes active. Then, a slightly suboptimal but relatively good cost value is obtained
(11.3 mol l−1 min−1, slightly lower than the optimal value of 11.8 mol l−1 min−1, but
clearly better than the initial value of 10.5 mol l−1 min−1).
We assumed here that the rate model is unknown and no model-based Hessian is avail-
able, which calls for a low noise level or a relatively long waiting time to obtain steady-
state estimates with high precision. In practice, however, it may be unrealistic to obtain
such a high precision, and one may have to accept some optimality loss. Another possi-
ble strategy would consist in (i) having shorter runs when the constraints are not active
and thus high precision is not needed, and (ii) increasing the run length when higher
precision is needed due to active constraints.

2. RTO results with F̄A and F̄B as decision variables (open-loop plant)
Figures 7.11, 7.12 and 7.13 demonstrate that RTO using F̄A and F̄B as decision vari-
ables and starting from the initial point (F̄A, F̄B) = (23.3,36.7) l/min converges to plant
optimality after 8 iterations as well. Again, three plant runs are necessary for each RTO
iteration to estimate the gradients. In this particular problem, the cost and constraint
gradients are less parallel, which implies that this case does not require as much preci-
sion in the gradients. In contrast to the previous case, in which n̄s

A and n̄s
B are used as

decision variables, only the steady-state concentrations of C and D are measured here.
However, one observes in Figure 7.14 that 48 min are necessary to reach the plant
steady state and obtain the measurements needed to compute the cost and constraints.
Within the same lapse of time, RTO using n̄s

A and n̄s
B as decision variables would have

completed one entire iteration, that is, three plant runs!
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Figure 7.11 – Evolution of the objective function φ(F̄A, F̄B) over the RTO iterations.
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Figure 7.12 – Evolution of the constraint function g1(F̄A, F̄B) over the RTO iterations (the
shaded area is infeasible).
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Figure 7.13 – Evolution of the constraint function g2(F̄A, F̄B) over the RTO iterations (the
shaded area is infeasible).

7.6 Conclusion

This chapter has presented a novel method that uses feedback control and measurement-
based rate estimation to estimate the plant steady state quickly, that is, before the plant
reaches steady state. This approach is possible for systems with a particular structure,
namely, when some of the states do not affect the remaining states. In the context of
real-time optimization, this implies that each iteration takes less time, which means that the
time needed to drive the plant to optimality will be shorter.

The approach that has been presented includes the following ideas:

• One identifies a certain number of states that can be driven relatively quickly to steady
state by manipulating appropriate inputs via feedback control. Note that this time to
steady state may be much shorter than the time needed for the open-loop plant to reach
steady state.

• Then, the cost and constraint functions of the RTO problem are reformulated so as
to be expressed in terms of the fast (controlled) states. This reformulation is always
possible, and it typically involves certain rates that depend only on fast states.

• However, since this approach is meant to be data-driven and not model-based, the
reaction rates are estimated as time signals from output measurements, that is, without
the use of rate models.

• The rates can be estimated as soon as their steady-state values have been reached,
which avoids having to drive the slow states to steady state.

• The decision variables of the RTO problem correspond to setpoints of the controlled
plant. Each time the decision variables are changed, feedback control drives the vari-
ables used in the computation of the cost and constraints toward their steady-state
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values; and dashed red lines represent setpoints.
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values in the shortest possible time.

Currently, the main limitation of this approach is its sensitivity to noise. This is par-
ticularly evident when the approach is applied to model-free static RTO since the use of a
data-driven optimization algorithm restricts the admissible amount of noise in the steady-
state estimates. The effect of noise would be less important if one waited for the plant to
settle to steady state, because one would be able to apply noise reduction techniques that
are particularly suited to constant signals. However, the time reduction inherent to the ap-
proach presented in this chapter provides a strong incentive to overcome these difficulties.
Hence, it would be useful to investigate the use of alternative methods for feedback control,
measurement-based rate estimation and real-time optimization to deal specifically with the
issue of noise, while maintaining or even reducing the time needed to estimate the plant
steady state. For example, with regard to real-time optimization, one could use algorithms
that take advantage of the availability of an approximate model to reduce the detrimental
effect of noise via the use of a model-based Hessian matrix. Note that this is possible even
when the rate models are uncertain and the model-free techniques presented in this chapter
are used for rate estimation, feedback control and steady-state estimation.

The various steps of the approach, namely, measurement-based rate estimation, feed-
back control, and optimization, require some parameters that need to be tuned appropri-
ately. However, for many of these parameters, it is unclear how to choose or tune them.
This tuning task appears to be challenging due to the coupling of the effects of the various
parameters. Hence, the investigation of parameter tuning would be quite useful toward the
successful implementation of these methods in practice.

In summary, this chapter has presented an approach that combines the concepts of rate
estimation and feedback control to speed up the estimation of plant steady state. The
ability to estimate steady-state values quickly is very relevant in the context of static RTO. If
successfully implemented, this approach may lead to more flexible and adaptive operation
of continuous processes. It is also expected that this chapter will trigger more research on
the topic of fast steady-state estimation for dynamical systems.
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8 Dynamic Optimization via

Parsimonious Input Parameterization

Part of this chapter is adapted from the postprint of the following article [141]:

D. Rodrigues and D. Bonvin. Parsimonious input parameterization for dynamic opti-
mization problems. Comput. Aided Chem. Eng., 44:769–774, 2018.

Link: http://doi.org/10.1016/B978-0-444-64241-7.50123-3.

Copyright © 2018 Elsevier B.V.

The author of this thesis contributed to that article by developing the main novel ideas,

implementing the simulations, and writing a significant part of the text. Hence, the author

retains the right to include the article in this thesis since it is not published commercially and

the journal is referenced as the original source.

8.1 Introduction

In the case of continuous processes operated at steady state, the optimization problems
are formulated with time-independent decision variables that represent the steady state
of the process to be optimized. These problems are typically called static optimization
problems, due to the static nature of the variables in the problem. Even for large-scale
processes, efficient optimization algorithms have been developed, which allow computing
an optimal steady state of the model of complex processes with relatively low computational
effort [142].

However, in the case of batch processes that are not operated at steady state, the opti-
mization problems are more complex since they are infinite-dimensional, that is, involving
decision variables that represent time-varying input trajectories over a certain time horizon.
The optimization of these input trajectories results in the so-called dynamic optimization
problems since they correspond to processes of dynamic nature, where steady state is not
reached. In these problems, also known as optimal control problems, in addition to the
economic cost and operational constraints at the end of the time horizon, there exist path
constraints along the trajectory as well, which also make these problems more complex
[143]. For these problems, specialized techniques have been developed, which can be di-
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vided into two main categories: indirect and direct methods. Indirect methods attempt to
solve the problem by seeking a solution to the necessary conditions of optimality of the dy-
namic optimization problem, using for example Pontryagin’s Maximum Principle [144, 145]
or the Hamilton-Jacobi-Bellman equation [143, 146]. On the other hand, direct methods
reformulate the original infinite-dimensional problem as a finite-dimensional problem via
discretization. In direct sequential methods, the inputs are discretized [147, 148], whereas
in direct simultaneous methods, both the inputs and states are discretized [149, 150]. Direct
multiple shooting represents an intermediate alternative, whereby the states are discretized
only at some control stage times [151, 152].

Dynamic optimization methods that rely on local numerical optimization are well es-
tablished [153]. However, the local optima attained by these optimization algorithms may
be suboptimal with respect to the global optimum by a significant margin. Although these
methods typically attain local optimality, they could be extended to global optimality. How-
ever, the worst-case complexity scales exponentially with the number of decision variables
[154]. This implies that only problems with a relatively low number of decision variables
can be solved to global optimality, which represents a major hindrance to the use of global
optimization for complex optimization problems since the computational effort becomes
prohibitive. For example, if one uses direct sequential methods, the number of decision
variables is equal to the number of input parameters, which is proportional to the number
of intervals of the piecewise-constant input parameterization often used by these methods
[155]. Hence, the use of direct methods for global optimization either calls for a rather
coarse input parameterization or results in intractable problems.

An apparent way to avoid these difficulties is to use an input parameterization that can
approximate the optimal inputs well with a limited number of parameters. This chapter
proposes a parsimonious input parameterization, whereby the parameters correspond to
(i) switching times between arcs, and (ii) a few parameters used to describe sensitivity-
seeking arcs. This parameterization helps reduce the number of decision variables of the
optimization problem, resulting in a much smaller number of decision variables than tra-
ditional direct simultaneous or direct sequential methods. A similar parameterization has
been applied to the dynamic optimization of switched systems [156]. However, to the au-
thor’s knowledge, it has not been proposed for problems with inequality constraints or in
the context of global optimization.

Hence, this chapter presents a way to move toward finding global solutions to a generic
class of dynamic optimization problems by applying the concept of parsimonious input pa-
rameterization. The parsimonious input parameterization is useful not only for finding
global solutions to dynamic optimization problems, but also for dynamic real-time opti-
mization in the presence of plant-model mismatch, which also requires a small number of
decision variables. This document also shows how one can apply this method in the context
of dynamic optimization of batch, semi-batch and continuous reactors.

The method is divided in two parts. Firstly, after presenting the problem formulation in
Section 8.2, the optimal control laws are generated in Section 8.3 for all the possible types
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of arcs that may occur in the optimal solution, and a finite set of plausible arc sequences is
postulated from these types of arcs. In the case of batch, semi-batch or continuous reactors,
one takes advantage of the concept of extents to convert the model of any of these reactors
into a general framework, which allows the symbolic computation of adjoint-free optimal
control laws in a uniform and systematic fashion. In the second part in Section 8.4, each
arc sequence is described by a small number of parameters that include switching times
and initial conditions for the sensitivity-seeking arcs. These arcs may be parsimoniously
described by either cubic splines with few parameters or optimal control laws generated via
symbolic computation. Then, the parsimonious input parameterization approach is applied
to find the correct arc sequence. For each arc sequence, the optimal parameter values are
computed as the solution to a numerical optimization problem that can also be used to
check whether the resulting input trajectory satisfies the necessary conditions of optimality
given by the Pontryagin’s maximum principle. The reduction in the number of decision
variables is such that the problem is often amenable to global optimization. Then, if a
global solution is found for each arc sequence, the arc sequence with the best optimal cost
will be globally optimal. The procedure is illustrated in Section 8.5 via the optimization of
simulated semi-batch reactors and batch distillation columns. Finally, Section 8.6 concludes
the chapter.

8.2 Problem Formulation

The class of dynamic optimization problems considered in this chapter is formulated in
the Mayer form as

min
u(·),t f

J
�
u(·), t f

�
= φ

�
x(t f ), t f

�
, (8.1a)

s.t. O
�
u(·), t f

�
=ω

�
x(t f ), t f

�
= 0nω

, (8.1b)

T
�
u(·), t f

�
=ψ

�
x(t f ), t f

�
≤ 0nψ

, (8.1c)

ẋ(t) = f
�
x(t),u(t)

�
, x(t0) = x0, (8.1d)

g
�
x(t),u(t)

�
≤ 0ng

, (8.1e)

h
�
x(t)

�
≤ 0nh

, (8.1f)

where t0 is the initial time, t f ∈
�

t0, tup

�

is the finite final time, with tup being an up-
per bound for t f , u(t) is the nu-dimensional vector of piecewise-continuous inputs for all
t ∈
�

t0, t f

�

with trajectory u(·), x(t) is the nx -dimensional vector of piecewise-continuously

differentiable states for all t ∈
�

t0, t f

�

, f(x,u) and g(x,u) are an nx -dimensional func-
tion and an ng-dimensional function, smooth for all (x,u) ∈ Rnx × Rnu , h(x) is an nh-
dimensional function, smooth for all x ∈ Rnx , and φ(x, t), ω(x, t), and ψ(x, t) are a
scalar function, an nω-dimensional function, and an nψ-dimensional function, smooth for
all (x, t) ∈ Rnx×[t0, tup]. Moreover, it is assumed that the functions g(x,u) and h(1)(x,u) :=
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ḣ(x) = ∂ h

∂ x
(x)f(x,u) depend explicitly on u, which is equivalent to the conditions

∂ gk

∂ u
(x,u)T 6= 0nu

, ∀k = 1, . . . , ng , (8.2a)

∂ h
(1)
k

∂ u
(x,u)T 6= 0nu

, ∀k = 1, . . . , nh. (8.2b)

Note that a time-invariant problem formulation is considered in Problem (8.1).

8.3 Adjoint-free Optimal Control Laws

This section presents the method used to compute adjoint-free optimal control laws for a
generic system. In addition, the mass and heat balances for batch, semi-batch and continu-
ous reactors (or any reactors whose inverse of the residence time is constant) are formulated
using the concept of extents, and it is shown how one can combine these elements in a way
that allows the automatic computation of optimal control laws for these reactors.

8.3.1 Analytical computation of adjoint-free optimal control laws

This subsection presents the method of computation of adjoint-free optimal control laws
introduced in [157], whereas the next subsection shows how it can be applied in the case
of batch, semi-batch and continuous reactors through the use of the concept of extents.

Most often, the optimal input trajectories that correspond to the solution to any given
optimal control problem consist of a finite number of arcs. For a given arc, each optimal
input is determined by either an active path constraint or a single condition that expresses
physical compromises and trade-offs and depends exclusively on the system dynamics, pro-
vided that the functionalsJ

�
u(·), t f

�
, O
�
u(·), t f

�
and T

�
u(·), t f

�
are written in the Mayer

form.1 In both cases, the optimal input or one of its time derivatives can be written as a
function of the states, the inputs and the time derivatives of the inputs, with no dependence
on any adjoint variables. Moreover, the resulting optimal control laws (but not necessarily
the control values) are independent of the initial conditions and the terminal constraints of
the problem [157].

Let the input u j be an element of u, for some j = 1, . . . , nu.2 The control laws express

1Note that some of the functionals J
�
u(·), t f

�
, O
�
u(·), t f

�
and T

�
u(·), t f

�
may depend on integrals of

functions of the states and inputs. In that case, those functionals are written in the Bolza form and not in
the Mayer form. For example, for the cost functional J

�
u(·), t f

�
, if there are scalar functions φ̌

�
x(t f ), t f

�
and

lJ
�
x(t),u(t)

�
such that J

�
u(·), t f

�
= φ̌

�
x(t f ), t f

�
+
∫ t f

t0
lJ
�
x(t),u(t)

�
dt , then the functional J

�
u(·), t f

�
is in

the Bolza form. The conversion to the Mayer form typically requires the inclusion of a new state with derivative
lJ
�
x(t),u(t)

�
. However, if the functionals in the Bolza form depend on integrals of linear functions of the

derivatives f
�
x(t),u(t)

�
of the states, they can easily be converted to the Mayer form. For example, if there is a

scalar function φ̌
�
x(t f ), t f

�
and a vector lJ such that J

�
u(·), t f

�
= φ̌

�
x(t f ), t f

�
+ lT
J

∫ t f

t0
f
�
x(t),u(t)

�
dt , then

the functionalJ
�
u(·), t f

�
can simply be written asJ

�
u(·), t f

�
= φ

�
x(t f ), t f

�
= φ̌

�
x(t f ), t f

�
+lT
J

�

x(t f )− x0

�

.
2For the sake of simplicity, the dependence of the states x, the inputs u and their time derivatives on the time
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the optimal input u j or one of its time derivatives in terms of the states and possibly the
inputs and their time derivatives, thus resulting in an adjoint-free optimal control law c j .
Each input arc is of one of the following three types [157]:

• Arc type 1: If the optimal input u j is determined by the active mixed path constraint
gk(x,u)≤ 0, for some k = 1, . . . , ng , then the control law

u j = c j(x,u) (8.3)

enforces

gk(x,u) = 0. (8.4)

• Arc type 2: If the optimal input u j is determined by the active pure-state path constraint
hk(x)≤ 0, for some k = 1, . . . , nh, then the control law

u j = c j(x,u) (8.5)

enforces

h
(1)
k
(x,u) = 0. (8.6)

• Arc type 3: If the optimal input u j is not determined by any active path constraints,
then the control law

u
(ξ j)

j
= c j(x,u(ξ1−1)

1 , . . . ,u1, . . . ,u
(ξnu
−1)

nu
, . . . ,unu

) (8.7)

enforces

det
�

M j

�

= 0. (8.8)

Let xu j be the ρ j states that can be reached by manipulating u j, with dynamics

ẋu j = fu j(x,u). (8.9)

Then, one can construct the (ρ j ×ρ j) matrix

M j :=
h
∂ f

uj

∂ u j
(x,u) ∆ j

∂ f
uj

∂ u j
(x,u) · · · ∆

ρ j−1
j

∂ f
uj

∂ u j
(x,u)

i

, (8.10)

t is omitted in all the text concerning analytical computation of adjoint-free optimal control laws.
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using symbolic computations and the operators ∆ j, . . . ,∆
ρ j−1
j

defined as

∆l
jv :=









∂ v

∂ x
f(x,u)−

∂ fu j

∂ xu j
(x,u)v+

∞∑

n=0

∂ v

∂ u(n)
u(n+1), l = 1

∆ j

�

∆l−1
j v

�

, l = 2, . . . ,ρ j − 1

, (8.11)

for any vector field v of dimension ρ j.
However, the input u j and its time derivatives may not appear explicitly in the function
det
�

M j

�

. Hence, as a general approach to find the optimal input u j when it is not

determined by active path constraints, the function det
�

M j

�

is subject to time differ-

entiation until u j or one of its time derivatives appears in dr j

dt
r j

�

det
�

M j

��

, for some

r j . Let u
(ξ j)

j
be the highest-order time derivative of u j that appears in dr j

dt
r j

�

det
�

M j

��

.
Then, the control law enforces

dr j

dt r j

�

det
�

M j

��

= 0. (8.12)

If u j and its time derivatives do not appear in dr j

dt
r j

�

det
�

M j

��

for any r j, then the
optimal input u j is never of this type, and it is always determined by an active path
constraint according to one of the other types. For example, if a time derivative of
det
�

M j

�

is identically equal to zero while u j and its time derivatives do not appear in

any of the lower-order time derivatives of det
�

M j

�

, it is possible to guarantee that u j

and its time derivatives will not appear in dr j

dt
r j

�

det
�

M j

��

for any r j.
Note that, if there are inputs that depend on each other, one may need to solve a system
of equations to find the optimal control law for each input.

In the remainder, the input arcs of types 1 and 2 are labeled constraint-seeking, while
the input arcs of type 3 are sensitivity-seeking. Note that switching between arcs can happen
any time, except for the switching to arcs of type 2 that can only occur when the states x

satisfy hk(x) = 0, for some k = 1, . . . , nh.

8.3.2 Computation of adjoint-free optimal control laws for reactors using ex-

tents

Let us consider a homogeneous reactor with R independent reactions and p indepen-
dent inlets, where uin(t) is the p-dimensional vector of inlet mass flowrates, qex(t) is the
exchanged heat power, and the inverse of the residence timeω is constant. This reactor may
be either a batch or semi-batch reactor without outlet (ω = 0) or a continuous stirred-tank
reactor (CSTR) with constant outlet volumetric flowrate (constant ω > 0) where the effect
of the initial conditions has vanished (after sufficiently long operation). The numbers of
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moles n(t) and the heat Q(t) in this reactor are equal to the linear combinations of extents

�

n(t)

Q(t)

�

=

�

NT

−∆HT
r

�

xr(t) +

�

Win

Ť
T
in

�

xin(t) +

�

0S

1

�

xex(t) +

�

n0

Q0

�

x ic, (8.13)

where n0 is the S-dimensional vector of initial numbers of moles, Q0 is the initial heat, N is
the R× S stoichiometric matrix, ∆Hr is the R-dimensional vector of enthalpies of reaction,
Win is the S × p inlet-composition matrix, Ťin is the p-dimensional vector of inlet specific
heats, xr(t) is the R-dimensional vector of extents of reaction, xin(t) is the p-dimensional
vector of extents of inlet, xex(t) is the extent of heat exchange, and x ic is the extent of
initial conditions, which is equal to 1 in a reactor without outlet (ω= 0) and equal to 0 in a
reactor with outlet (constant ω> 0) where the effect of the initial conditions has vanished.

Note that Eq. (8.13) can easily be extended to the case of heterogeneous reactors whose
inverse of the residence time in each phase is constant (in particular, heterogeneous batch
and semi-batch reactors), by taking into account the numbers of moles and heats in the
different phases and by appending the extents of mass transfer to the extents of reaction.
However, for the sake of simplicity, this chapter considers the case of a homogeneous reactor.

Hence, the state vector of dimension nx := R+ p+ 1 that represents this system is

x(t) :=







xr(t)

xin(t)

xex(t)







, (8.14)

whereas the input vector of dimension nu := p+ 1 is

u(t) :=

�

uin(t)

qex(t)

�

. (8.15)

The dynamic equations that describe the system can be written compactly as

ẋ(t) = f
�
x(t),u(t)

�
, x(t0) = x0, (8.16)

by defining

f
�
x(t),u(t)

�
:=

�

rv(t)

u(t)

�

−ωx(t), (8.17)

where rv(t) := υ
�
n(t),Q(t)

�
ϕ
�
n(t),Q(t)

�
, with υ(n,Q) the volume and ϕ(n,Q) the R-

dimensional vector of reaction rates expressed as a function of the numbers of moles and
heat, which depend on x(t) as shown in Eq. (8.13). Hence, this system is input-affine.

If the state x j is the element of x such that

ẋ j = f j(x,u) := u j −ωx j, (8.18)
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then it is possible to define the following vectors of dimension ρ j := R+ 1:

xu j :=

�

xr

x j

�

, (8.19)

fu j (x,u) :=

�

rv

u j

�

−ωxu j . (8.20)

Before analyzing particular reactor cases, let us define the state vector x̌ j as the comple-
ment of the state x j (all the states x except x j), and the vector f̌ j(x,u) as the corresponding
complement of f j(x,u) (the right-hand side of the dynamic equations of all the states x

except x j).

For illustrative purposes, let us derive the expressions of the columns ofM j for the cases
of 1 independent reaction (ρ j − 1= R= 1) and 2 independent reactions (ρ j − 1= R= 2):

∂ fu j

∂ u j

(x,u) =

�

0R

1

�

, (8.21)

∆ j

∂ fu j

∂ u j

(x,u) =
∂

∂ x

�

∂ fu j

∂ u j

(x,u)

�

f(x,u)−
∂ fu j

∂ xu j
(x,u)

∂ fu j

∂ u j

(x,u)

+

∞∑

n=0

∂

∂ u(n)

�

∂ fu j

∂ u j

(x,u)

�

u(n+1)

=
∂

∂ x

��

0R

1

��

f(x,u)−
∂

∂ xu j

��

rv

u j

�

−ωxu j

��

0R

1

�

+

∞∑

n=0

∂

∂ u(n)

��

0R

1

��

u(n+1)

= −

 



∂ rv

∂ xr

∂ rv

∂ x j

0T
R 0



−ωIR+1

!�

0R

1

�

=




−
∂ rv

∂ x j

ω



 , (8.22)
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∆2
j
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∂
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 . (8.23)

From the previous sequence, it becomes clear that, since this system is input-affine,
the columns of M j are polynomial functions of u j and its time derivatives, which im-
plies that det

�

M j

�

and its time derivatives are also polynomial functions of u j and its
time derivatives, resulting in a finite number of solutions that satisfy the condition in
Eq. (8.12). Furthermore, there is a single solution that satisfies the condition in Eq. (8.12)

if ∂

∂ u
(ξ j )

j

�
dr j

dt
r j

�

det
�

M j

���

is independent of u
(ξ j)

j
and nonzero for any attainable values

of x. For example, in the context of reaction systems, this is the case when
∂ det(M j)
∂ u
(R−2)
j

or

∂
∂ u j

�
dr j

dt
r j

�

det
�

M j

���

is nonzero for any attainable values of x, which occurs in many

optimal control problems.

Hence, as shown in Appendix G.1, one can prove that:

1. For reactors with one independent reaction, when the optimal input u j is not deter-
mined by any active path constraints, it is determined by the scalar function

d

dt

�

det
�

M j

��

=
∂

∂ x̌ j

�

∂ rv

∂ x j

�

f̌ j(x,u) +
∂

∂ x j

�

∂ rv

∂ x j

�
�

u j −ωx j

�

, (8.24)
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since u j and its time derivatives do not appear in

det
�

M j

�

=
∂ rv

∂ x j

. (8.25)

2. For reactors with two independent reactions, when the optimal input u j is not deter-
mined by any active path constraints, it is determined by the scalar function

det
�

M j

�

= det
��

∂ rv

∂ x j

∂
∂ x̌ j

�
∂ rv

∂ x j

�

f̌ j(x,u)−
�
∂ rv

∂ xr
− 2ωIR

�
∂ rv

∂ x j

��

+ det
��

∂ rv

∂ x j

∂
∂ x j

�
∂ rv

∂ x j

���
�

u j −ωx j

�

. (8.26)

For any number of independent reactions, one can use symbolic computation software
to compute the function det

�

M j

�

and its time derivatives automatically and to obtain the
optimal input u j or one of its time derivatives that satisfies the condition in Eq. (8.12) when
the input is not determined by any active path constraints.

Note that the use of extents is essential here. The extents are needed to obtain the
minimal number of states reached by u j and a matrixM j that loses full rank if and only if
u j is sensitivity-seeking, that is, if and only if u j is described by an optimal control law. In
other words, it would not be possible to achieve the same result with the numbers of moles
and the heat as states of the optimal control problem.

The analytical approach for the computation of adjoint-free optimal control laws shown
above is quite useful to get an analytical characterization of the constraint-seeking and
sensitivity-seeking input arcs. However, when the number of reachable states ρ j grows
beyond 4 or 5 (that is, 3 or 4 independent reactions in reaction systems), the size and com-
plexity of the matrix M j may become intractable, which complicates the characterization
of sensitivity-seeking arcs. Fortunately, many reaction systems can be described, or at least
approximated very well, by a model with only a few independent reactions, which renders
this analytical approach quite useful for many reaction systems. On the other hand, for
other systems, including some reaction systems, a more practical approach may be needed.
Nevertheless, it is desirable to retain the high level of accuracy provided by the analytical
approach.

8.3.3 Approximation of adjoint-free optimal control laws using cubic splines

The idea is to replace the analytical characterization of sensitivity-seeking input arcs by
a description of these arcs using cubic splines (that is, piecewise-cubic functions). Since
the optimal input profiles in these arcs are smooth functions, they can be approximated by
cubic splines with only a few parameters. Piecewise-constant, piecewise-linear or piecewise-
quadratic functions could also be used, but these would typically require more parameters
for the same quality of approximation. Note that the slight differences between the exact
optimal inputs and the optimal inputs described by cubic splines often introduce only a
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negligible difference in cost since small variations in sensitivity-seeking arcs typically have
a much smaller impact on the cost than small variations in constraint-seeking arcs [157].

A cubic spline with π pieces and defined in an interval
�

t0, tπ
�

starts at the point
(t0, y0), passes through the π − 1 intermediate points (t1, y1), . . . , (tπ−1, yπ−1) and ends
up at the point (tπ, yπ). This cubic spline is typically parameterized by the π+ 1 coordi-
nates y0, . . . , yπ and 2 conditions at the endpoints t0 and tπ (for example, on the second
derivatives). Hence, π+ 3 parameters are needed to describe the cubic spline.

In this chapter, to enable the computation of sensitivity-seeking input arcs described by
cubic splines via forward integration of differential equations, a different interpretation is
assigned to these π+ 3 parameters. For the input u j , these parameters are the following:
three parameters correspond to the initial value u j(t

0), the initial first derivative u̇ j(t
0) and

the initial second derivative ü j(t
0), while the remaining π parameters p j correspond to the

third derivatives in the π intervals of the cubic spline. Hence, the input u j can be described
by the differential equation

u
(3)
j
(t) = p j,1, t ∈

�

t0, t1
�

; . . . ; u
(3)
j
(t) = p j,π, t ∈

�

tπ−1, tπ
�

, (8.27)

with the three initial values u j(t
0), u̇ j(t

0), and ü j(t
0).

In the remainder, these π+ 3 parameters will be considered as initial conditions for the
sensitivity-seeking input arc. Note that the locations of the intermediate points are not input
parameters since they are fixed at tm := (1−wm) t0+wmtπ for all m ∈ {0,1, . . . ,π}, where
wm is a constant that specifies the relative position of the intermediate point tm with respect
to t0 and tπ, with 0= w0 < w1 < . . . < wπ = 1.

8.4 Parsimonious Input Parameterization

8.4.1 Basic idea

The advantage of the approaches shown in the previous section is that they allow re-
ducing the types of arcs that may appear in the optimal solution to a finite number, which
results in a finite number of arc sequences if one assumes an upper bound on the num-
ber of arcs that are present in the optimal solution. Hence, instead of solving the original
infinite-dimensional problem, one can simply perform numerical optimization for each arc
sequence, using the switching times between arcs and the initial conditions of the arcs as
decision variables. Then, one can either compare the optimal value of the cost function
for that arc sequence to the optimal values provided by other sequences or check whether
that arc sequence is optimal using the necessary conditions of optimality stated by the PMP
(Pontryagin’s maximum principle).

The generic idea of this approach, labeled parsimonious input parameterization, was
first proposed by [157]. The updated version of this approach proposed here consists of the
following steps:
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1. Set the current optimal cost to infinity, generate a finite set of plausible arc sequences
from all the input arcs that can occur, and choose an initial arc sequence.

2. Use a direct sequential approach to compute via numerical optimization (i) the optimal
switching times to arcs of type 1, and (ii) the optimal switching times to and the initial
conditions for arcs of type 3, which correspond to the optimal solution that uses the
chosen arc sequence. At each iteration:
(a)Integrate the states and inputs forward in time and store their time profiles.
(b)Integrate the adjoint variables backward in time, using the stored states and inputs,

and store their time profiles.
(c)Compute the sensitivities with respect to the switching times and the initial con-

ditions for the sensitivity-seeking arcs, using the stored states, inputs, and adjoint
variables.

3. Check if the optimal cost for the chosen arc sequence is better than the current optimal
cost and, if so, update the current optimal cost and arc sequence. Alternatively, check
the necessary conditions of optimality for the solution returned by the optimization
algorithm, using the states, inputs, adjoint variables, and Lagrange multipliers that
were computed for that solution.

4. Choose a different arc sequence and repeat Steps 2-4 until all arc sequences are inves-
tigated.

The optimization in Step 2 typically uses algorithms that require the computation of
gradients with respect to the decision variables at each iteration. The execution of this step
is facilitated by the fact that the states can be computed via forward integration of the dy-
namic equations since the inputs can be generated simultaneously without knowledge of the
value of the adjoint variables. Once the forward integration is complete, one can integrate
backward in time to obtain the corresponding adjoint variables, which enables the compu-
tation of the gradients with respect to the decision variables and allows checking whether
the necessary conditions of optimality are satisfied upon convergence of the optimization
algorithm. The next subsections give more details about this implementation.

Remark 8.1. Note that, if the optimization in Step 2 can be solved to global optimality for
each arc sequence, then the input trajectory with the best cost will be globally optimal.
To enforce global optimality, one could approximate the terminal cost and constraints as
explicit polynomial functions of the decision variables and compute the global solution to
this polynomial optimization problem via reformulation as a semidefinite program [158].
Note that the fact of having fewer decision variables facilitates the whole procedure.

8.4.2 Dynamic model of an arc sequence

Let us consider a given arc sequence that includes ns + 1 arcs of types 1 and 3, where
ns is the number of switching times to these arcs (one of these arcs starts at t0, which is not
counted as a switching time). These switching times t1, . . . , tns

are considered as decision
variables, while the switching times to arcs of type 2 are not decision variables since they
depend on the states and cannot occur arbitrarily. We show next that, if one considers this
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arc sequence and a set of rules that specify which inputs need to be adjusted when a pure-
state path constraint becomes active, the inputs u(·) are fully defined by the switching times
t1, . . . , tns

, the final time t f , and the initial conditions of the sensitivity-seeking arcs, which
become the decision variables of the problem.

Note that, in addition to the switching times t1, . . . , tns
considered as decision variables,

other switchings between arcs occur when a pure-state path constraint hk

�
x(t)

�
≤ 0, for

some k = 1, . . . , nh, becomes active. In that case, the inputs u(t) are simply adjusted such
that this path constraint remains active and all the path constraints remain feasible. Note
that it is always possible to adjust at least one input to make the new active path con-
straint remain active as guaranteed by Eq. (8.2b). The times at which a transition between
arcs occur are called effective switching times in the remainder, and they include both the
switching times considered as decision variables and the times at which a pure-state path
constraint becomes active. However, the case of arc sequences with active pure-state path
constraints is not detailed in this section, and it is described in Appendix G.2 instead.

Let us describe the inputs in the ith time interval
�

t i−1, t i

�
, for some i = 1, . . . , ns + 1,

with tns+1 = t f . For each input u j , with j = 1, . . . , nu, there is a degree ξ j,i ≥ 0 for

which a feedback law explicitly gives u
(ξ j,i)

j
(t) as a function of the states, the inputs, the

time derivatives of the inputs, and the optional parameter vector p j,i (that is, the con-
stant third derivatives in the πi pieces of the cubic spline if u j is described by a cubic
spline in this interval). This differential relationship requires specifying the initial con-

ditions u
(ξ j,i−1)
j

(t i−1), . . . ,u j(t i−1). The vector p j,i is of dimension b j,iπi, where b j,i is a
binary constant that specifies whether p j,i exists or not, and each element p j,i,m is used only
for t ∈

�

tm−1
i

, tm
i

�

, with the πi + 1 time instants t0
i
, t1

i
. . . , t

πi

i
specified by the constants

w0
i , w1

i . . . , w
πi

i
. Then, the feedback law can be described as follows:

u
(ξ j,i)

j
(t) = c j,i

�
x(t),p j,i,u

(ξ1,i−1)
1 (t), . . . ,u1(t), . . . ,u

(ξnu ,i−1)
nu

(t), . . . ,unu
(t)
�
, (8.28)

with

u̇
(ξ j,i−1)
j

(t) = u
(ξ j,i)

j
(t), u

(ξ j,i−1)
j

(t i−1) = u
ξ j,i−1
j,i ,

...

u̇ j(t) = u
(1)
j
(t), u j(t i−1) = u0

j,i. (8.29)

Note that it is possible to have ξ j,i = 0, and, in this case, u j is given by static feedback.
However, if ξ j,i > 0, the feedback is dynamic, and it is fully determined only if the initial

conditions u
ξ j,i−1
j,i , . . . ,u0

j,i are specified. Then, upon defining the nz,i := b1,iπi + ξ1,i + . . .+
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bnu,iπi + ξnu,i states and initial conditions

zi(t) :=






















p̃1,i(t)

ũ
ξ1,i−1
1,i (t)

...
ũ0

1,i(t)
...

p̃nu,i(t)

ũ
ξnu ,i−1
nu,i (t)

...
ũ0

nu,i(t)






















, zi,0 :=






















p1,i

u
ξ1,i−1
1,i

...
u0

1,i
...

pnu,i

u
ξnu,i−1
nu,i

...
u0

nu,i






















, (8.30)

one can describe their dynamics for t ∈
�

t i−1, t i

�
as

żi(t) = qi

�
x(t),zi(t)

�
, zi(t i−1) = zi,0. (8.31)

Then, it is possible to write that, for all i = 1, . . . , ns + 1, and for all t ∈
�

t i−1, t i

�
,

qi

�
x(t),zi(t)

�
=






















0b1,iπi

c1,i
�
x(t),zi(t)

�

...
ũ1

1,i(t)
...

0bnu ,iπi

cnu,i
�
x(t),zi(t)

�

...
ũ1

nu,i(t)






















, (8.32)

and, for all i = 1, . . . , ns + 1, and for all t /∈
�

t i−1, t i

�
,

qi

�
x(t),zi(t)

�
= 0nz,i

. (8.33)

Then, for the complete arc sequence, one defines the nz := nx + nz,1 + . . . + nz,ns+1

extended states

z(t) :=









x(t)

z1(t)
...

zns+1(t)









(8.34)
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and uses the control laws

u(t) = c̃
�
z(t)

�
, (8.35)

where, for all j = 1, . . . , nu, for all i = 1, . . . , ns + 1, and for all t ∈
�

t i−1, t i

�
,

c̃ j

�
z(t)

�
=







ũ0
j,i(t), if ξ j,i > 0

c j,i
�
x(t),zi(t)

�
, if ξ j,i = 0

, (8.36)

which implies that the inputs u(t) are continuous for all t ∈
�

t0, t f

�

that is not an effective
switching time. Moreover, the inputs that correspond to a particular arc sequence, given
by the control laws c̃

�
z(t)

�
, can be fully characterized by a finite number of switching

times t1, . . . , tns
and initial conditions z1,0, . . . ,zns+1,0. Then, one can eliminate the input

dependencies and rewrite the functions in Problem 8.1 in terms of z, that is,

φ̃
�
z(t f ), t f

�
:= φ

�
x(t f ), t f

�
, (8.37a)

ω̃
�
z(t f ), t f

�
:=ω

�
x(t f ), t f

�
, (8.37b)

ψ̃
�
z(t f ), t f

�
:=ψ

�
x(t f ), t f

�
, (8.37c)

f̃
�
z(t)

�
:=










f
�

x(t), c̃
�
z(t)

�
�

q1
�
x(t),z1(t)

�

...
qns+1

�
x(t),zns+1(t)

�










, (8.37d)

g̃
�
z(t)

�
:= g

�

x(t), c̃
�
z(t)

�
�

, (8.37e)

h̃
�
z(t)

�
:= h

�
x(t)

�
, (8.37f)

h̃
(1)�

z(t)
�

:= h(1)
�

x(t), c̃
�
z(t)

�
�

, (8.37g)

with the initial conditions

z0 :=









x0

z1,0
...

zns+1,0









. (8.38)

The system equations now read:

ż(t) = f̃
�
z(t)

�
, z(t0) = z0. (8.39)
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8.4.3 Numerical optimization for a given arc sequence

To check whether a given arc sequence and the inputs that result from its feedback laws
are the optimal solution to Problem (8.1), one uses the fact that any input trajectory u(·)

implementing that arc sequence is given by some switching times and initial conditions for
the sensitivity-seeking arcs. Then, if the solutions u(·) to Problem (8.1) are restricted to a
particular arc sequence, the functionals J , O , and T reduce to the functions φ̂, ω̂ and ψ̂ of
the switching times t1, . . . , tns

, the final time t f , and the initial conditions z1,0, . . . ,zns+1,0,
which is more convenient for numerical optimization. This numerical optimization problem
corresponds to

min
t1,...,tns

,t f ,z1,0,...,zns+1,0
φ̂(t1, . . . , tns

, t f ,z1,0, . . . ,zns+1,0) = φ̃
�
z(t f ), t f

�
, (8.40a)

s.t. ω̂(t1, . . . , tns
, t f ,z1,0, . . . ,zns+1,0) = ω̃

�
z(t f ), t f

�
= 0nω

, (8.40b)

ψ̂(t1, . . . , tns
, t f ,z1,0, . . . ,zns+1,0) = ψ̃

�
z(t f ), t f

�
≤ 0nψ

, (8.40c)

ż(t) = f̃
�
z(t)

�
, z(t0) = z0, (8.40d)

g̃
�
z(t)

�
≤ 0ng

, (8.40e)

h̃
�
z(t)

�
≤ 0nh

. (8.40f)

A direct sequential approach is used to find the switching times, final time, and initial
conditions of the sensitivity-seeking arcs that are a solution to Problem (8.40), which is
the restriction of Problem (8.1) to a particular arc sequence. Then, for any values of the
decision variables τ :=

�

t1, . . . , tns
, t f ,z1,0, . . . ,zns+1,0

�

, the terminal cost and constraints

χ̂(τ) :=







φ̂(τ)

ω̂(τ)

ψ̂(τ)







(8.41)

can be computed via numerical integration of Eq. (8.39) and evaluation of the functions

χ̃
�
z(t f ), t f

�
:=







φ̃
�
z(t f ), t f

�

ω̃
�
z(t f ), t f

�

ψ̃
�
z(t f ), t f

�







. (8.42)

These values are passed to the numerical optimization algorithm with the purpose of
computing the optimal values of τ. However, the gradients of χ̂ with respect to the decision
variables τ also need to be supplied to the numerical optimization algorithm. These gra-
dients can be computed via adjoint sensitivity analysis, which is efficient when the number
of functions χ̂ is small and facilitates checking the necessary conditions of optimality, as
shown later. For this, each time Eq. (8.39) is integrated forward from t0 to t f to compute
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the states z(t), the adjoint variables

ζ(t) :=









λ(t)

ζ1(t)
...

ζns+1(t)









(8.43)

that correspond to a single function χ̃ are computed by integrating backward from t f to t0

ζ̇(t) = −
∂ f̃

∂ z

�
z(t)

�T
ζ(t), ζ(t f ) =

∂ χ̃

∂ z

�
z(t f ), t f

�T. (8.44)

Furthermore, for each instant θ at which h̃k

�
z(θ−)

�
< 0 and h̃k

�
z(θ)

�
= 0, for some

k = 1, . . . , nh, which is equivalent to saying that h̃k

�
z(t)

�
≤ 0 becomes active at t = θ and

that θ is an entry point, it holds that:

ζ(θ−) = ζ(θ)−
∂ h̃k

∂ z

�
z(θ−)

�T

�

f̃
�
z(θ−)

�
− f̃
�
z(θ)

��T
ζ(θ)

h̃
(1)
k

�
z(θ−)

� . (8.45)

Note that this integration requires the interpolation of the states z(t), whose values are
known for a finite number of time points after the forward integration step.

The gradients of the functions χ̂ with respect to the decision variables τ are obtained
from

∂ χ̂

∂ t i

(τ)T =

πi−1∑

m=1

wm
i δ(t

m
i ) + δ(t i) +

πi+1−1∑

m=1

�

1−wm
i+1

�

δ(tm
i+1), ∀i = 1, . . . , ns,

(8.46)

∂ χ̂

∂ t f

(τ)T =

πns+1−1
∑

m=1

wm
ns+1δ(t

m
ns+1) + f̃

�
z(t−

f
)
�T
ζ(t f ) +

∂ χ̃

∂ t

�
z(t f ), t f

�T, (8.47)

∂ χ̂

∂ zi,0
(τ)T = ζi(t0), ∀i = 1, . . . , ns + 1, (8.48)

where δ(t) :=
�

f̃
�
z(t−)

�
− f̃
�
z(t)

��T
ζ(t).

It would also be possible to compute higher-order derivatives of χ̂ with respect to the
decision variables, which would require the computation of derivatives of the states z(t) and
adjoint variables ζ(t) with respect to these decision variables. However, this computation is
out of the scope of this chapter.

Another important aspect for successful numerical optimization is scaling. The values
of the decision variables should be scaled, as well as the gradients with respect to these
decision variables. The variables t1, . . . , tns

are transformed to the new variables t̃1, . . . , t̃ns
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and scaled with respect to their original interval [t0, t f ] to the interval [0,1], whereas the
variable t f is transformed to t̃ f and scaled with respect to its original interval [t0, tup] to
[0,1], where tup is the upper bound on the value of t f . The conversion between original
and scaled variables is given by the following equations:

t̃ i =
t i − t0

t f − t0
⇔ t i = t0 +

�

t f − t0

�

t̃ i , ∀i = 1, . . . , ns, (8.49)

t̃ f =
t f − t0

tup − t0
⇔ t f = t0 +

�

tup − t0

�

t̃ f , (8.50)

which implies that the gradients of the functions χ̂ with respect to the scaled decision
variables are given by

∂ χ̂

∂ t̃ i

(τ)T =
�

t f − t0

� ∂ χ̂

∂ t i

(τ)T, ∀i = 1, . . . , ns, (8.51)

∂ χ̂

∂ t̃ f

(τ)T =
�

tup − t0

� ∂ χ̂

∂ t f

(τ)T. (8.52)

8.4.4 Checking the PMP conditions

To check whether the solution specified by the optimal switching times and initial con-
ditions of the sensitivity-seeking arcs for a particular arc sequence satisfies the necessary
conditions of optimality given by the PMP, one defines the states

x̄(t) :=









x(t)

x̄1(t)
...

x̄ns+1(t)









(8.53)

and replaces the inputs u(t) by the control laws

u(t) = ū(t) + c̃
�
x̄(t)

�
, (8.54)

where ū(t) is a vector of input perturbations. This implies that, if ū(t) is continuous for
all t ∈

�

t0, t f

�

that is not an effective switching time, the same holds for u(t). Moreover,
the inputs that correspond to a particular arc sequence can still be fully characterized by a
finite number of switching times t1, . . . , tns

and initial conditions z1,0, . . . ,zns+1,0 since one
can simply take ū(t) = 0nu

in that case. Then, one can rewrite the problem functions and
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the initial conditions as

φ̄
�
x̄(t f ), t f

�
:= φ

�
x(t f ), t f

�
, (8.55a)

ω̄
�
x̄(t f ), t f

�
:=ω

�
x(t f ), t f

�
, (8.55b)

ψ̄
�
x̄(t f ), t f

�
:=ψ

�
x(t f ), t f

�
, (8.55c)

f̄
�
x̄(t), ū(t)

�
:=










f
�

x(t), ū(t) + c̃
�
x̄(t)

�
�

q1
�
x(t), x̄1(t)

�

...
qns+1

�
x(t), x̄ns+1(t)

�










, (8.55d)

ḡ
�
x̄(t), ū(t)

�
:= g

�

x(t), ū(t) + c̃
�
x̄(t)

�
�

, (8.55e)

h̄
�
x̄(t)

�
:= h

�
x(t)

�
, (8.55f)

h̄
(1)�

x̄(t), ū(t)
�

:= h(1)
�

x(t), ū(t) + c̃
�
x̄(t)

�
�

, (8.55g)

x̄0 := z0. (8.55h)

The system equations now read:

˙̄x(t) = f̄
�
x̄(t), ū(t)

�
, x̄(t0) = x̄0. (8.56)

Hence, an equivalent reformulation of the original problem is constructed, which is used
to check whether a solution with ū(t) = 0nu

satisfies the necessary conditions of optimality.
This reformulated problem reads

min
ū(·),t1,...,tns

,t f ,z1,0,...,zns+1,0

ˆJ (ū(·),τ) = φ̄
�
x̄(t f ), t f

�
, (8.57a)

s.t. Ô (ū(·),τ) = ω̄
�
x̄(t f ), t f

�
= 0nω

, (8.57b)

T̂ (ū(·),τ) = ψ̄
�
x̄(t f ), t f

�
≤ 0nψ

, (8.57c)

˙̄x(t) = f̄
�
x̄(t), ū(t)

�
, x̄(t0) = x̄0, (8.57d)

ḡ
�
x̄(t), ū(t)

�
≤ 0ng

, (8.57e)

h̄
�
x̄(t)

�
≤ 0nh

. (8.57f)

Upon convergence of the optimization algorithm to the optimal values of the decision
variables t∗1, . . . , t∗ns

, t∗
f
, z∗1,0, . . . ,z∗ns+1,0 for the particular arc sequence used in Problem

(8.40), the necessary conditions of optimality for Problem (8.57) can finally be checked for
ū(t) = 0nu

. These conditions are the following: if (ū∗(·), t∗1, . . . , t∗ns
, t∗

f
,z∗1,0, . . . ,z∗ns+1,0) is a

solution to Problem (8.57) and x̄∗(·) is the corresponding nz-dimensional trajectory of states,
then there exist an nz-dimensional trajectory of adjoint variables λ̄

∗
(·), an ng-dimensional

trajectory of Lagrange multipliers µ̄∗(·), an nh-dimensional trajectory of Lagrange multi-
pliers η̄∗(·), an nω-dimensional vector of Lagrange multipliers ξ̄

∗
, and an nψ-dimensional
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vector of Lagrange multipliers ν̄∗ such that the conditions in Eqs. (G.10)–(G.34) in Ap-
pendix G.3 are satisfied. These conditions can be readily checked from the states, inputs,
adjoint variables and Lagrange multipliers that are computed for the solution to Problem
(8.40), as explained also in Appendix G.3.

8.5 Examples

In this section, the solution to specific dynamic optimization problems is shown. The
first example corresponds to the maximization of the profit and the minimization of the
batch time in an isothermal semi-batch reactor, the second corresponds to the maximization
of the final amount of product in an isothermal semi-batch reactor, the third corresponds
to the maximization of the amount of distillate in a batch distillation column subject to
constraints on both the distillate and bottoms purities, and the fourth corresponds to the
maximization of the final amount of product in a non-isothermal semi-batch reactor.

8.5.1 Maximization of profit and minimization of batch time in a chlorination

reactor

The following example, which is a modified version of a case study presented in [19],
corresponds to the chlorination of butanoic acid in the liquid phase3 of an isothermal (at
the temperature T = 323 K) homogeneous semi-batch reactor containing S = 6 species
(chlorine or Cl2, butanoic acid or BA, monochlorobutanoic acid or MBA, hydrochloric acid
or HCl, dichlorobutanoic acid or DBA, and the solvent ethanol or Solv), whose numbers of
moles n(t) are given by Eq. (8.13), which means that they can be written as linear functions
of the extents x(t).

These S = 6 species are involved in the R = 2 reactions R1 : BA+ Cl2 → MBA+HCl
that produces the main product MBA, and R2 : BA+ 2Cl2 → DBA+ 2HCl that produces the
side product DBA. Initially, the reactor contains 13 kmol of BA and 100 kmol of Solv. Then,
the reactor is fed with p = 1 inlet, composed exclusively of Cl2, with the flowrate uin(t)

in kg s−1 subject to the bounds uin,min = 0 and uin,max = 5 kg s−1. Hence, the structural
matrices that characterize the system are the following:

N=

�

−1 −1 1 1 0 0
−2 −1 0 2 1 0

�

, (8.58)

Win =
�

0.07100−1 0 0 0 0 0
�T

mol kg−1, (8.59)

n0 =
�

0 13000 0 0 0 100000
�T

mol. (8.60)

3In practice, very high pressures would be needed to ensure that Cl2 is in the liquid state. However, this fact
has not been considered important in this context, due to the illustrative nature of this example.
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Table 8.1 – Physical properties of the species in the reaction system of Problems (8.63) and
(8.64).

Species Cl2 BA MBA HCl DBA Solv

mw (kg mol−1) 0.07100 0.08812 0.12252 0.03645 0.15697 0.04600
ρ (kg L−1) 1.09300 0.85917 1.08553 1.48626 1.07000 0.79000

Table 8.2 – Numerical values used for Problems (8.63) and (8.64).

Variable Value Units

k1,1 0.475783 L mol−1 s−1

k2 0.1 L mol−1

o 10 $ s−1

c 1 $ kg−1

pMBA 200 $ mol−1

mMBA 1 -
nconv 11.7 kmol
nCl2,0 0 kmol
nBA,0 13 kmol
nSolv,0 100 kmol
uin,min 0 kg s−1

uin,max 5 kg s−1

Vmax 10000 L

The reaction rates rv,1(t) and rv,2(t) are

rv,1(t) = k1

nBA(t)nCl2(t)

V (t)
, k1 =

k1,1

0.4
exp
�

5.34− 3760
T[K]

�

, (8.61a)

rv,2(t) = k2

nCl2(t)

V (t)
rv,1(t), (8.61b)

with the rate constants k1,1 = 0.475783 L mol−1 s−1, k2 = 0.1 L mol−1, and the volume

V (t) = 1T
Sρ
−1Mwn(t) = V0 +

�

Vr,1 Vr,2 Vin

�

x(t), (8.62)

where Vr,1 := 1T
Sρ
−1MwN1, Vr,2 := 1T

Sρ
−1MwN2, and Vin := 1T

Sρ
−1MwWin, from the S-

dimensional diagonal matrices of densities ρ and of molecular weights Mw, knowing that
the species in this reaction system are characterized by the physical properties in Table 8.1.

Two different problems have been formulated for this reactor. All the numerical values
used in these examples are summarized in Table 8.2. The first problem is the maximization
of the profit of a single batch, taking into account the S-dimensional vector of prices of sale
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p =
�

0 0 200 0 0 0
�T

$ mol−1, the inlet cost c = 1 $ kg−1 and the operating cost per
unit of time o = 10 $ s−1. Hence, this problem is formulated as

max
u(·),t f

J
�
u(·), t f

�
= pTn(t f )− c x in(t f )− o t f , (8.63a)

s.t. ẋ(t) = f
�
x(t),u(t)

�
=

�

rv(t)

uin(t)

�

, x(t0) = 0R+1, (8.63b)

g
�
x(t),u(t)

�
=

�

uin(t)− uin,max

uin,min− uin(t)

�

≤ 02. (8.63c)

Figure 8.1 shows the input trajectories obtained for the optimal solution to Problem
(8.63) with the parsimonious input parameterization and the analytical characterization of
the sensitivity-seeking input arcs. The solution consists of 4 arcs: in the first arc, u∗in(t) =

uin,max ; in the second arc, uin,min < u∗in(t) < uin,max ; in the third arc, u∗in(t) = uin,max ; in
the fourth arc, u∗in(t) = uin,min. This results in an input trajectory described by the 3 input
parameters t1, t2, t3, which is equivalent to 4 decision variables since t f is a free final time.
The optimal switching times are t∗1 = 14.2 s, t∗2 = 5918.4 s, t∗3 = 5982.1 s, and the optimal
final time is t∗

f
= 6258.4 s. The optimal profit is 2.467× 106 $.

The second problem is the minimization of the batch time required for a weighted sum of
the final numbers of moles, specified by the S-dimensional vector m =

�

0 0 1 0 0 0
�T

,
to reach the number of converted moles nconv = 0.9 nBA,0 = 11.7 kmol, subject to an upper
bound on the volume Vmax = 10000 L. Hence, this problem is formulated as

min
u(·),t f

J
�
u(·), t f

�
= φ

�
x(t f ), t f

�
= t f , (8.64a)

s.t. T
�
u(·), t f

�
=ψ

�
x(t f ), t f

�
= nconv −mTn(t f )≤ 0, (8.64b)

ẋ(t) = f
�
x(t),u(t)

�
=

�

rv(t)

uin(t)

�

, x(t0) = 0R+1, (8.64c)

g
�
x(t),u(t)

�
=

�

uin(t)− uin,max

uin,min− uin(t)

�

≤ 02, (8.64d)

h
�
x(t)

�
= V (t)− Vmax ≤ 0. (8.64e)

Figure 8.2 shows the input trajectories obtained for the optimal solution to Problem
(8.64) with the parsimonious input parameterization and the analytical characterization of
the sensitivity-seeking input arcs. The solution consists of 4 arcs: in the first arc, u∗

in
(t) =

uin,max ; in the second arc, uin,min < u∗in(t) < uin,max ; in the third arc, u∗in(t) = uin,max ; in the
fourth arc, uin,min < u∗in(t) < uin,max is adjusted to keep the path constraint h̄1

�
x̄∗(t)

�
≤ 0

active. This results in an input trajectory described by the 2 input parameters t1, t2, which
is equivalent to 3 decision variables since t f is a free final time. The optimal switching times
are t∗1 = 70.0 s, t∗2 = 899.0 s, and the optimal final time is t∗

f
= 1306.15 s. There is also

an effective switching time t∗3,1 = 1264.8 s at the beginning of the fourth arc. The optimal

202



8.5. Examples

cost is φ̄
�
x̄∗(t∗

f
), t∗

f

�
= 1306.15 s, the terminal constraint ψ̄

�
x̄∗(t∗

f
), t∗

f

�
is active, and the

corresponding Lagrange multiplier is ν̄ ∗ = 1.244 s mol−1. Hence, the necessary conditions
of optimality in Eqs. (G.22)–(G.24) are satisfied.

Note that, despite the different cost functions and terminal constraints of these two
problems, all the arcs of the optimal input u∗in(t) in both cases are either determined by the
path constraints that are related to the input bounds and to the maximal volume or given
by an optimal control law that can be determined according to the method described in
Section 8.3. More specifically, this optimal control law is given by the following expression:

u∗in = k1nCl2 Mw,Cl2

(V + 2k2nCl2)(nBA+
nCl2

2
) + nBAnCl2 Vr,1 +

k2nBAn2
Cl2

V
Vr,2

V (V − VinMw,Cl2 nCl2)
. (8.65)

In both cases, it is also possible to observe that the remaining necessary conditions of op-
timality are fully satisfied since H̄

�
x̄∗(t), ū∗(t), λ̄

∗
(t), t∗

f
, x̄∗(t∗

f
), ξ̄
∗
, ν̄ ∗
�

satisfies the condi-

tion in Eq. (G.20), ∂L
∂ ū

�
x̄∗(t), ū∗(t), λ̄

∗
(t), µ̄∗(t), η̄∗(t)

�
satisfies the condition in Eq. (G.26),

and µ̄∗(t) and ḡ
�
x̄∗(t), ū∗(t)

�
(inferred from u∗(t)) satisfy the conditions in Eqs. (G.27)–

(G.29). Additionally, for the optimal solution to Problem (8.64), η̄∗(t) and h̄
�
x̄∗(t)

�
satisfy

the conditions in Eqs. (G.30)–(G.34), and, at the only entry point θ (whose value π̄∗(θ) is
indicated by a circle that coincides with the value of η̄∗(θ)), the conditions in Eqs. (G.17)–
(G.18) are also satisfied.

8.5.2 Maximization of the amount of product in an acetoacetylation reactor

The following example, which is a modified version of a case study presented in [132]
for a reaction system studied by [114], describes the acetoacetylation of pyrrole in the
liquid phase of an isothermal homogeneous semi-batch reactor with constant density. There
are S = 5 species in the reactor (pyrrole or A, diketene or B, 2-acetoacetyl pyrrole or C,
dehydroacetic acid or D, and oligomers or E), whose numbers of moles n(t) are given by
Eq. (8.13), which means that they can be written as linear functions of the extents x(t).

These S = 5 species are involved in the R= 3 reactions R1 : A+ B→ C that produces the
main product C, and R2 : 2B→ D and R3 : B→ E that produce the side products D and E.
Initially, the reactor of volume V0 = 1 L contains a mixture of A, B, C and D. Then, B is fed
via p = 1 inlet with the concentration cin,B = 5 mol L−1 and the flowrate uin(t) in L min−1

subject to the bounds uin,min = 0 and uin,max = 2× 10−3 L min−1. Hence, the structural
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Figure 8.1 – Trajectories of the states, inputs, adjoint variables, Lagrange multipliers, re-
formulated Hamiltonian function and stationarity conditions for the optimal solution to
Problem (8.63) with the parsimonious input parameterization and the analytical character-
ization of the sensitivity-seeking input arc.
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Figure 8.2 – Trajectories of the states, inputs, adjoint variables, Lagrange multipliers, re-
formulated Hamiltonian function and stationarity conditions for the optimal solution to
Problem (8.64) with the parsimonious input parameterization and the analytical character-
ization of the sensitivity-seeking input arc.
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Table 8.3 – Numerical values used for Problem (8.71).

Variable Value Units

k1 0.053 L mol−1 min−1

k2 0.128 L mol−1 min−1

k3 0.028 min−1

cin,B 5 mol L−1

nA,0 0.72 mol
nB,0 0.05 mol
nC,0 0.08 mol
nD,0 0.01 mol
V0 1 L
cB,max 0.025 mol L−1

cD,max 0.15 mol L−1

t f ,max 250 min
uin,min 0 L min−1

uin,max 2 ×10−3 L min−1

matrices that characterize the system are the following:

N=







−1 −1 1 0 0
0 −2 0 1 0
0 −1 0 0 1







, (8.66)

Win =
�

0 5 0 0 0
�T

mol L−1, (8.67)

n0 =
�

0.72 0.05 0.08 0.01 0
�T

mol. (8.68)

The reaction rates rv,1(t), rv,2(t) and rv,3(t) are

rv,1(t) = k1
nA(t)nB(t)

V (t)
, (8.69a)

rv,2(t) = k2
n2

B(t)

V (t)
, (8.69b)

rv,3(t) = k3nB(t), (8.69c)

with the rate constants k1 = 0.053 L mol−1 min−1, k2 = 0.128 L mol−1 min−1, and k3 =

0.028 min−1, and the volume

V (t) = V0 + x in(t). (8.70)

The problem consists in maximizing the final amount of product C in less than t f ,max =

250 min, subject to upper bounds on the final concentrations of B and D, namely cB,max =
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0.025 mol L−1 and cD,max = 0.15 mol L−1. All the numerical values used in this example
are summarized in Table 8.3. Hence, this problem is formulated as

max
u(·),t f

J
�
u(·), t f

�
= nC(t f ), (8.71a)

s.t. T
�
u(·), t f

�
=ψ

�
x(t f ), t f

�
=







nB(t f )− cB,max V (t f )

nD(t f )− cD,max V (t f )

t f − t f ,max






≤ 03, (8.71b)

ẋ(t) = f
�
x(t),u(t)

�
=

�

rv(t)

uin(t)

�

, x(t0) = 0R+1, (8.71c)

g
�
x(t),u(t)

�
=

�

uin(t)− uin,max

uin,min− uin(t)

�

≤ 02. (8.71d)

Figure 8.3 shows the input trajectories obtained for the optimal solution to Problem
(8.71) with the parsimonious input parameterization and the analytical characterization of
the sensitivity-seeking input arcs. The solution consists of 3 arcs: in the first arc, u∗in(t) =

uin,max ; in the second arc, uin,min < u∗in(t) < uin,max ; in the third arc, u∗in(t) = uin,min.
This results in an input trajectory described by the 3 input parameters t1, t2, u0

1,2, which
is equivalent to 4 decision variables since t f is a free final time. The optimal switching
times are t∗1 = 5.57 min, t∗2 = 230.01 min, and the optimal final time is t∗

f
= 250 min. The

optimal initial condition of the dynamic feedback of the second arc, which corresponds to
the initial value of u∗in(t) in this arc, is u0∗

1,2 = 1.299 × 10−3 L min−1. The optimal cost

is n∗C(t
∗
f
) = 0.5137 mol, all the terminal constraints ψ̄

∗�
x̄∗(t∗

f
), t∗

f

�
are active, and the

corresponding Lagrange multipliers are ν̄ ∗ =
�

0.1816 0.7625 5.7× 10−4
�

. Hence, the
necessary conditions of optimality in Eqs. (G.22)–(G.24) are satisfied.

Again, all the arcs of the optimal input u∗
in
(t) are either determined by the path con-

straints that are related to the input bounds or given by an optimal control law that can
be determined according to the method described in Section 8.3. In this case, since the
number of reactions is R = 3, the optimal value of u∗in(t) results from dynamic feedback.
More specifically, this optimal control law is given by the following expression:

u̇∗in=
2cin,BV (8k2

2n4
B+4c2

in,Bu2
in

V 2−cin,BnBuinV (5uin+7k3V ))

2cin,BnBV 2(−nB+cin,BV )

+
2cin,BV (2k2n2

B(4nBuin+5k3nBV−6cin,BuinV )+n2
B(u

2
in
+5k3uinV+3k2

3V 2))

2cin,BnBV 2(−nB+cin,BV )

+
k2
1nAn2

B(−2nAnB+n2
B+6cin,BnAV−2cin,BnBV )

2cin,BnBV2(−nB+cin,BV )

−
2k1nAnB(2k2n2

B(nB−5cin,BV )+V (k3nB(nB−6cin,BV )+cin,Buin(−5nB+7cin,BV )))

2cin,BnBV2(−nB+cin,BV )
. (8.72)

It is also possible to observe that the remaining necessary conditions of optimality
are fully satisfied since H̄

�
x̄∗(t), ū∗(t), λ̄

∗
(t), t∗

f
, x̄∗(t∗

f
), ξ̄
∗
, ν̄ ∗
�

satisfies the condition in

Eq. (G.20), ∂L
∂ ū

�
x̄∗(t), ū∗(t), λ̄

∗
(t), µ̄∗(t), η̄∗(t)

�
satisfies the condition in Eq. (G.26), and
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Figure 8.3 – Trajectories of the states, inputs, adjoint variables, Lagrange multipliers, re-
formulated Hamiltonian function and stationarity conditions for the optimal solution to
Problem (8.71) with the parsimonious input parameterization and the analytical character-
ization of the sensitivity-seeking input arc.

208



8.5. Examples

µ̄∗(t) and ḡ
�
x̄∗(t), ū∗(t)

�
(inferred from u∗(t)) satisfy the conditions in Eqs. (G.27)–(G.29).

Since the sensitivity-seeking optimal control law is relatively complicated, it is worth
using a more practical approach to parameterize the sensitivity-seeking arc, namely its de-
scription using cubic splines. Figure 8.4 shows the input trajectories obtained for the optimal
solution to Problem (8.71) with the parsimonious input parameterization and the descrip-
tion of the sensitivity-seeking input arc using cubic splines. The solution consists of 3 arcs:
in the first arc, u∗in(t) = uin,max ; in the second arc, uin,min < u∗in(t) < uin,max , and a cubic
spline with π= 1 piece and no intermediate points is used; in the third arc, u∗in(t) = uin,min.
This results in an input trajectory described by the 6 input parameters t1, t2, u0

1,2, u1
1,2,

u2
1,2, p1,2, which is equivalent to 7 decision variables since t f is a free final time. The op-

timal switching times are t∗1 = 5.61 min, t∗2 = 229.99 min, and the optimal final time is
t∗

f
= 250 min. The optimal initial conditions for the second arc include the initial value,

initial derivative, initial second derivative, and the constant third derivative of the cubic
spline (with π2 = 1 piece) that describes u∗in(t) in this arc: u0∗

1,2 = 1.294× 10−3 L min−1,
u1∗

1,2 = −1.88× 10−6 L min−2, u2∗
1,2 = 6.6× 10−9 L min−3, p∗1,2 = 0.7× 10−12 L min−4. The

optimal cost is n∗C(t
∗
f
) = 0.5137 mol, all the terminal constraints ψ̄

∗�
x̄∗(t∗

f
), t∗

f

�
are ac-

tive, and the corresponding Lagrange multipliers are ν̄ ∗ =
�

0.1816 0.7625 5.7× 10−4
�

.
Hence, the necessary conditions of optimality in Eqs. (G.22)–(G.24) are satisfied.

It is interesting to note that the parameterization of the sensitivity-seeking arcs using
cubic splines also satisfies the necessary conditions of optimality, and this parameterization
also results in inputs and a cost that are virtually indistinguishable from the optimal inputs
and optimal cost obtained with the analytical characterization of the sensitivity-seeking arcs.

Finally, it is also possible to compare the input trajectories obtained with both (i) the
parsimonious parameterization and the description of the sensitivity-seeking input arc us-
ing cubic splines and (ii) the piecewise-constant parameterization of a direct method im-
plemented using ACADO, a toolkit for dynamic optimization [155]. Figure 8.5 shows these
input trajectories and the cost as a function of the number of input parameters. The parsi-
monious parameterization outperforms the piecewise-constant parameterization using the
same number of parameters (6 parameters), which results in a rather coarse input trajectory
and provides a worse cost, that is, n∗C(t

∗
f
) = 0.5103 mol; about 50 parameters are needed

for the piecewise-constant parameterization to obtain an equally smooth input trajectory
with a similar cost.

8.5.3 Maximization of the amount of distillate in a batch distillation column

The following example is the reformulation of the problem proposed in [159] for a
binary batch distillation column, where the objective is the maximization of the amount of
distillate, subject to constraints on the molar fraction of the component B in the distillate
(at least xB,D,min = 0.8) and bottoms (at most xB,B,max = 0.2), in less than t f ,max = 3 h. The
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Figure 8.4 – Trajectories of the states, inputs, adjoint variables, Lagrange multipliers, re-
formulated Hamiltonian function and stationarity conditions for the optimal solution to
Problem (8.71) with the parsimonious input parameterization and the description of the
sensitivity-seeking input arc using cubic splines.
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Figure 8.5 – Input trajectories (left) and cost (right) for the optimal solution to Problem
(8.71). Solid lines represent the parsimonious parameterization using 6 parameters, and
dashed lines represent the piecewise-constant parameterization of a direct method.

problem can be formulated mathematically using numbers of moles as states as follows:

max
r(t)

D(t f ) (8.73a)

s.t. nB,D(t f )≥ xB,D,minD(t f ), (8.73b)

nB,B(t f )≤ xB,B,max B(t f ), (8.73c)

t f ≤ t f ,max , (8.73d)

Ḋ = V (1− r), D(0) = 0, (8.73e)

Ḃ = V (r − 1), B(0) = B0, (8.73f)

ṅB,B = V (−yB,B) + V r xB,1, nB,B(0) = xB,0B0, (8.73g)

ṅB,1 = V (yB,B − yB,1) + V r(xB,2− xB,1), nB,1(0) = xB,0M , (8.73h)

ṅB,2 = V (yB,1 − yB,2) + V r(xB,3− xB,2), nB,2(0) = xB,0M , (8.73i)

ṅB,3 = V (yB,2 − yB,3) + V r(yB,3 − xB,3), nB,3(0) = xB,0M , (8.73j)

ṅB,D = V (1− r)yB,3, nB,D(0) = 0, (8.73k)

0≤ r(t) ≤ 1, (8.73l)

with xB,B :=
nB,B

B
, xB,n :=

nB,n

M
for n = 1,2,3, and yB,n =

αxB,n

1+(α−1)xB,n
for n = B, 1,2,3. In this

model, B and D are the molar amounts in the bottoms and in the distillate tank, nB,B, nB,n

and nB,D are the number of moles of B in the bottoms, the liquid phase of the nth tray and
the distillate tank, xB,B and yB,B are the molar fractions of B in the liquid phase and in the
vapor of the bottoms, xB,n and yB,n are the molar fractions of B in the liquid phase and in
the vapor of the nth tray, V = 50 kmol h−1 is the vapor flow rate in the column, α = 2.25
is the relative volatility, B0 = 115 kmol is the initial charge in the bottoms, xB,0 = 0.4 is
the molar fraction of B in the initial charge, M = 5 kmol is the liquid holdup on each tray,
and r := L

V
is the internal reflux ratio, with L the liquid flow rate in the column. All the
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Table 8.4 – Numerical values used for Problem (8.76).

Variable Value Units

V 50 kmol h−1

α 2.25 -
B0 115 kmol
xB,0 0.4 -
M 5 kmol
xB,D,min 0.8 -
xB,B,max 0.2 -
t f ,max 3 h

numerical values used in this example are summarized in Table 8.4.

Reduced-order model. Note that the 7 states in Problem (8.73) can be reduced to only
5 states, by using the state transformation

D(t) = MT,D(t), (8.74a)

B(t) = B0 −MT,D(t), (8.74b)

nB,B(t) = xB,0B0 −MB,1(t), (8.74c)

nB,1(t) = xB,0M +MB,1(t)−MB,2(t), (8.74d)

nB,2(t) = xB,0M +MB,2(t)−MB,3(t), (8.74e)

nB,3(t) = xB,0M +MB,3(t)−MB,D(t), (8.74f)

nB,D(t) = MB,D(t), (8.74g)

where MT,D(t) is the net number of moles of all species that has transferred from tray 3 to
the distillate tank, and MB,1(t), MB,2(t), MB,3(t), MB,D(t) are the net numbers of moles of
B that have transferred from the bottoms to tray 1, from tray 1 to tray 2, from tray 2 to tray
3, and from tray 3 to the distillate tank, respectively. These new states x(t) are described by
the differential equations

ṀT,D = V (1− r), MT,D(0) = 0, (8.75a)

ṀB,1 = V (yB,B − r xB,1), MB,1(0) = 0, (8.75b)

ṀB,2 = V (yB,1 − r xB,2), MB,2(0) = 0, (8.75c)

ṀB,3 = V (yB,2 − r xB,3), MB,3(0) = 0, (8.75d)

ṀB,D = V (1− r)yB,3, MB,D(0) = 0. (8.75e)
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With this reduced-order model, the optimization problem can be written as

max
u(·),t f

J
�
u(·), t f

�
= D(t f ), (8.76a)

s.t. T
�
u(·), t f

�
=ψ

�
x(t f ), t f

�
=







xB,D,minD(t f )− nB,D(t f )

nB,B(t f )− xB,B,maxB(t f )

t f − t f ,max






≤ 03, (8.76b)

ẋ(t) = f
�
x(t),u(t)

�
=















V (1− r(t))

V

�
αnB,B(t)/B(t)

1+(α−1)nB,B(t)/B(t)
− r(t)nB,1(t)/M

�

V

�
αnB,1(t)/M

1+(α−1)nB,1(t)/M
− r(t)nB,2(t)/M

�

V

�
αnB,2(t)/M

1+(α−1)nB,2(t)/M
− r(t)nB,3(t)/M

�

V (1− r(t))
αnB,3(t)/M

1+(α−1)nB,3(t)/M















,

x(t0) = 05, (8.76c)

g
�
x(t),u(t)

�
=

�

r(t)− 1
−r(t)

�

≤ 02. (8.76d)

Even with these 5 states, the analytical approach to parameterize sensitivity-seeking arcs
would yield very complex results. In fact, the analytical parameterization would already be
quite complex if a similar problem were solved for a batch distillation columm with 2 trays
instead of 3 trays. Then, for this problem, cubic splines are very useful to parameterize the
sensitivity-seeking arcs.

Figure 8.6 shows the input trajectories obtained for the optimal solution to Problem
(8.76) with the parsimonious input parameterization and the description of the sensitivity-
seeking input arcs using cubic splines. The solution consists of 3 arcs: in the first arc,
r∗(t) = 1; in the second arc, 0 < r∗(t) < 1, and a cubic spline with π = 2 pieces and
an intermediate point specified by w1 = 0.875 is used; in the third arc, r∗(t) = 0. This
results in an input trajectory described by the 7 input parameters t1, t2, u0

1,2, u1
1,2, u2

1,2,
p1,2,1, p1,2,2, which is equivalent to 8 decision variables since t f is a free final time. The
optimal switching times are t∗1 = 0.3595 h, t∗2 = 2.8834 h, and the optimal final time is
t∗

f
= 3 h. The optimal initial conditions for the second arc include the initial value, initial

derivative, initial second derivative, and the constant third derivative in the π2 = 2 pieces
of the cubic spline that describes r∗(t) in this arc: u0∗

1,2 = 0.6711, u1∗
1,2 = 0.0406 h−1, u2∗

1,2 =

−0.0052 h−2, p∗1,2,1 = 0.0036 h−3, p∗1,2,2 = 46.1526 h−3. The optimal cost is D∗(t∗
f
) =

40.3228 kmol, all the terminal constraints ψ̄
∗�

x̄∗(t∗
f
), t∗

f

�
are active, and the corresponding

Lagrange multipliers are ν̄ ∗ =
�

5.3073 0.1722 7.9199
�

. Hence, the necessary conditions
of optimality in Eqs. (G.22)–(G.24) are satisfied.

It is also possible to observe that the remaining necessary conditions of optimality
are almost fully satisfied since not only H̄

�
x̄∗(t), ū∗(t), λ̄

∗
(t), t∗

f
, x̄∗(t∗

f
), ξ̄
∗
, ν̄ ∗
�

but also
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Figure 8.6 – Trajectories of the states, inputs, adjoint variables, Lagrange multipliers, re-
formulated Hamiltonian function and stationarity conditions for the optimal solution to
Problem (8.76) with the parsimonious input parameterization and the description of the
sensitivity-seeking input arc using cubic splines.
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∂L
∂ ū

�
x̄∗(t), ū∗(t), λ̄

∗
(t), µ̄∗(t), η̄∗(t)

�
satisfy the conditions in Eqs. (G.20) and (G.26) in an

approximate way, and µ̄∗(t) and ḡ
�
x̄∗(t), ū∗(t)

�
(inferred from u∗(t)) satisfy the conditions

in Eqs. (G.27)–(G.29).

It is interesting to note in this case that H̄
�
x̄∗(t), ū∗(t), λ̄

∗
(t), t∗

f
, x̄∗(t∗

f
), ξ̄
∗
, ν̄ ∗
�

and
∂L
∂ ū

�
x̄∗(t), ū∗(t), λ̄

∗
(t), µ̄∗(t), η̄∗(t)

�
are only approximately equal to zero, due to the pa-

rameterization of the sensitivity-seeking arc using cubic splines. However, this slight devia-
tion from the necessary conditions of optimality is of reduced practical importance since the
exact optimal inputs and the corresponding optimal cost would be virtually indistinguish-
able from the inputs and cost obtained with this parsimonious parameterization.

8.5.4 Maximization of the amount of product in a non-isothermal semi-batch

reactor

The following example is an adaptation of a dynamic optimization problem that was
originally presented in [157], which corresponds to a non-isothermal reaction in a homo-
geneous semi-batch reactor. The same reference also proposed a locally optimal solution
with 3 arcs, although subsequent references showed that two other local solutions with 5
arcs and better cost exist [160, 159]. However, only the solution with the best known cost,
known as analytical solution 3 in [160], will be investigated here. The semi-batch reactor
in this example contains S = 4 species (A, B, C, or D), whose numbers of moles n(t) and
heat Q(t) are given by Eq. (8.13), which means that they can be written as linear functions
of the extents x(t).

These S = 4 species are involved in the R= 2 reactions R1 : A+ B→ C that produces the
main product C, and R2 : C → D that produces the side product D. Initially, the reactor of
volume V0 = 1 L contains 10 mol of A and 1.1685 kmol of B at the temperature T0 = 323 K.
Then, B is fed via p = 1 inlet with the concentration cin,B = 20 mol L−1 and the flowrate
uin(t) in L h−1 subject to the bounds uin,min = 0 and uin,max = 1 L h−1. Furthermore,
the reactor exchanges the heat power qex(t) in MJ h−1 subject to the bounds qex ,min =

−3 MJ h−1 and qex ,max = 1 MJ h−1, the inlet does not contribute to the heat balance since
its temperature is equal to the reference temperature Tre f = 273 K, the reaction mixture
is characterized by the constant volumetric heat capacity ρcp = 1.5 × 10−3 MJ L−1 K−1

and the reaction enthalpies are ∆Hr,1 = −0.030 MJ mol−1 and ∆Hr,2 = −0.010 MJ mol−1.
Note that, in contrast to the previous references that considered the same example, the
temperature T (t) is not considered here as an input, but rather as a variable that can be
computed from the states, not only for consistency with the previous parts of this chapter,
but also because this corresponds to the more realistic situation where the temperature
is not piecewise-continuous but rather piecewise-continuously differentiable. Instead of
the temperature, another variable will be considered as an input, namely the exchanged
heat power qex(t), which can typically be assumed to be piecewise-continuous. Hence, the
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structural matrices that characterize the system are the following:

N=

�

−1 −1 1 0
0 0 −1 1

�

, ∆Hr =

�

−0.030
−0.010

�

MJ mol−1, (8.77)

Win =
�

0 20 0 0
�T

mol L−1, Ťin = 0 MJ L−1, (8.78)

n0 =
�

10 1.1685 0 0
�T

mol, Q0 = V0ρcp

�

T0 − Tre f

�

. (8.79)

The reaction rates rv,1(t) and rv,2(t) are

rv,1(t) = k1(t)
nA(t)nB(t)

V (t)
, k1(t) = k1,0 exp

�

−
Ea,1

RT(t)

�

, (8.80a)

rv,2(t) = k2(t)nC(t), k2(t) = k2,0 exp
�

−
Ea,2

RT(t)

�

, (8.80b)

with the rate constants k1,0 = 4 L mol−1 h−1, k2,0 = 800 h−1, the activation temperatures
Ea,1

R
= 6000

8.31
K and

Ea,2

R
= 20000

8.31
K, the volume

V (t) = V0 + x in(t), (8.81)

and the temperature

T (t) =
Q(t)

V (t)ρcp

+ Tre f . (8.82)

The problem consists in maximizing the final amount of product C in this non-isothermal
reactor in less than t f ,max = 0.5 h, subject to an upper bound on the volume Vmax = 1.1 L,
lower and upper bounds on the temperature Tmin = 293 K and Tmax = 323 K, and an
upper bound on the heat power produced by the reactions qr x ,max = 0.15 MJ h−1. All the
numerical values used in this example are summarized in Table 8.5. Note that, in contrast to
the previous examples, there are multiple inputs, namely u(t) =

�

uin(t) qex(t)
�T

. Hence,
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Table 8.5 – Numerical values used for Problem (8.83).

Variable Value Units

k1,0 4 L mol−1 h−1

k2,0 800 h−1

Ea,1/R 6000/8.31 K
Ea,2/R 20000/8.31 K
∆Hr,1 -0.030 MJ mol−1

∆Hr,2 -0.010 MJ mol−1

cin,B 20 mol L−1

ρcp 1.5 ×10−3 MJ L−1 K−1

Tre f 273 K
nA,0 10 mol
nB,0 1.1685 mol
nC,0 0 mol
V0 1 L
T0 323 K
t f ,max 0.5 h
uin,min 0 L h−1

uin,max 1 L h−1

qex ,min -3 MJ h−1

qex ,max 1 MJ h−1

Vmax 1.1 L
Tmin 293 K
Tmax 323 K
qr x ,max 0.15 MJ h−1
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this problem is formulated as

max
u(·),t f

J
�
u(·), t f

�
= nC(t f ), (8.83a)

s.t. T
�
u(·), t f

�
=ψ

�
x(t f ), t f

�
= t f − t f ,max ≤ 0, (8.83b)

ẋ(t) = f
�
x(t),u(t)

�
=







rv(t)

uin(t)

qex(t)







, x(t0) = 0R+2, (8.83c)

g
�
x(t),u(t)

�
=









uin(t)− uin,max

uin,min − uin(t)

qex(t)− qex ,max

qex ,min− qex(t)









≤ 04, (8.83d)

h
�
x(t)

�
=









V (t)− Vmax

T (t)− Tmax

Tmin− T (t)

−∆HT
r rv(t)− qr x ,max









≤ 04. (8.83e)

Figure 8.7 shows the input trajectories obtained for the optimal solution to Problem
(8.83) with the parsimonious input parameterization and the description of the sensitivity-
seeking input arcs using cubic splines. The solution consists of 5 arcs: in the first arc,
since the path constraint h̄4

�
x̄∗(t)

�
≤ 0 becomes active immediately, u∗in(t) = uin,max , and

qex ,min < q∗ex(t) < qex ,max is adjusted to keep the path constraint h̄4
�
x̄∗(t)

�
≤ 0 active; in the

second arc, uin,min < u∗in(t) < uin,max is adjusted to keep the path constraint h̄4
�
x̄∗(t)

�
≤ 0

active, and qex ,min < q∗ex(t) < qex ,max is adjusted to keep the path constraint h̄3
�
x̄∗(t)

�
≤ 0

active; in the third arc, u∗in(t) = uin,min to keep the path constraint h̄1
�
x̄∗(t)

�
≤ 0 active,

and qex ,min < q∗ex(t) < qex ,max is adjusted to keep the path constraint h̄4
�
x̄∗(t)

�
≤ 0 active;

in the fourth arc, u∗
in
(t) = uin,min to keep the path constraint h̄1

�
x̄∗(t)

�
≤ 0 active, and

qex ,min < q∗ex(t) < qex ,max is adjusted to keep the path constraint h̄2
�
x̄∗(t)

�
≤ 0 active;

in the fifth arc, u∗in(t) = uin,min to keep the path constraint h̄1
�
x̄∗(t)

�
≤ 0 active, and

qex ,min < q∗ex(t) < qex ,max , and a cubic spline with π = 1 piece and no intermediate points
is used. This results in an input trajectory described by the 5 input parameters t1, u0

2,2,
u1

2,2, u2
2,2, p2,2, which is equivalent to 6 decision variables since t f is a free final time. The

single optimal switching time is t∗1 = 0.3828 h, and the optimal final time is t∗
f
= 0.5 h. The

optimal initial conditions for the fifth arc include the initial value, initial derivative, initial
second derivative, and the constant third derivative of the cubic spline (with π2 = 1 piece)
that describes q∗ex(t) in this arc: u0∗

2,2 = −0.2858 MJ h−1, u1∗
2,2 = 1.0477 MJ h−2, u2∗

2,2 =

0.0654 MJ h−3, p∗2,2 = 0.0023 MJ h−4. There are also 4 effective switching times t∗1,1 ≈ 0 h,
t∗1,2 = 0.0233 h, t∗1,3 = 0.2701 h, t∗1,4 = 0.3445 h at the beginning of the first, second,
third, and fourth arcs. The optimal cost is n∗C(t

∗
f
) = 2.0529 mol, the terminal constraint

ψ̄
�
x̄∗(t∗

f
), t∗

f

�
is active, and the corresponding Lagrange multiplier is ν̄∗ = 1.8225 mol s−1.

Hence, the necessary conditions of optimality in Eqs. (G.22)–(G.24) are satisfied.
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As in the previous problems, all the arcs of the optimal inputs u∗in(t) and q∗ex(t) are either
determined by the path constraints that are related to the input bounds and to the maximal
volume, the minimal and maximal temperatures, and the maximal heat power produced by
the reactions, or given by an optimal control law that can be determined according to the
method described in Section 8.3. Let us analyze the situation for each arc.

In the first and third arcs, the optimal input q∗ex(t) is determined by the pure-state path
constraint h̄4

�
x̄∗(t)

�
≤ 0 such that it remains active. In this case, the optimal control law is

given by the expression:

q∗ex =∆HT
r rv

+ρcp




u∗in

�

T − Tre f

�

− Tu∗in

∆Hr,1k1nA

�

cin,BV − nB

�

∆Hr,1k1nAnB
Ea,1

RT
+∆Hr,2k2nCV

Ea,2

RT

+T
∆Hr,1k2

1nAnB
�
nA+ nB

�
+∆Hr,2k2V

�
k2nCV − k1nAnB

�

∆Hr,1k1nAnB
Ea,1

RT
+∆Hr,2k2nCV

Ea,2

RT




 . (8.84)

In the second and fourth arcs, the optimal input q∗ex(t) is determined by the pure-state
path constraints h̄3

�
x̄∗(t)

�
≤ 0 and h̄2

�
x̄∗(t)

�
≤ 0 such that they remain active. In both

cases, the optimal control law is given by the expression:

q∗ex =∆HT
r rv +ρcpu∗in

�

T − Tre f

�

. (8.85)

In the second arc, the optimal input u∗
in
(t) is determined by the pure-state path con-

straint h̄4
�
x̄∗(t)

�
≤ 0 such that it remains active, while h̄3

�
x̄∗(t)

�
≤ 0 is also active. In this

case, the optimal control law is given by the expression:

u∗in =
∆Hr,1k2

1nAnB
�
nA+ nB

�
+∆Hr,2k2V

�
k2nCV − k1nAnB

�

∆Hr,1k1nA

�

cin,BV − nB

� . (8.86)

In the fifth arc, the optimal input q∗ex(t) is sensitivity-seeking, and the input arc is de-
scribed using a cubic spline. However, since this reaction system is relatively simple, it
would also be possible to use an analytical characterization of this sensitivity-seeking input
arc. Then, the 4 input parameters needed to describe the cubic spline would not be neces-
sary, and the input trajectory would be described by only 1 input parameter, the switching
time t1, or 2 decision variables if the free final time t f is also considered. In that case, the
optimal control law would be given by the expression:

q∗ex =∆HT
r rv +ρcp




u∗in

�

T − Tre f

�

− Tu∗in
cin,BV − nB

nB

�
Ea,1

RT
−

Ea,2

RT

� − T
k1nAnB

nC
Ea,2

RT




 . (8.87)
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Figure 8.7 – Trajectories of the states, inputs, adjoint variables, Lagrange multipliers, re-
formulated Hamiltonian function and stationarity conditions for the optimal solution to
Problem (8.83) with the parsimonious input parameterization and the description of the
sensitivity-seeking input arc using cubic splines.
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It is also possible to observe that the remaining necessary conditions of optimality
are fully satisfied since H̄

�
x̄∗(t), ū∗(t), λ̄

∗
(t), t∗

f
, x̄∗(t∗

f
), ξ̄
∗
, ν̄ ∗
�

satisfies the condition in

Eq. (G.20), ∂L
∂ ū

�
x̄∗(t), ū∗(t), λ̄

∗
(t), µ̄∗(t), η̄∗(t)

�
satisfies the condition in Eq. (G.26), and

µ̄∗(t) and ḡ
�
x̄∗(t), ū∗(t)

�
(inferred from u∗(t)) satisfy the conditions in Eqs. (G.27)–(G.29).

Additionally, η̄∗(t) and h̄
�
x̄∗(t)

�
satisfy the conditions in Eqs. (G.30)–(G.34), and, at the

entry points θ (whose values π̄∗(θ) are indicated by circles that coincide with the corre-
sponding values of η̄∗(θ)), the conditions in Eqs. (G.17)–(G.18) are also satisfied.

8.6 Conclusion

This chapter has presented a parsimonious input parameterization that describes the
optimal input quite accurately with fewer parameters than direct methods for a generic
class of dynamic optimization problems, thereby reducing the number of decision variables
and making it a valid candidate for global dynamic optimization and dynamic real-time
optimization. At the same time, the resulting dynamic optimization method retains the at-
tractive features of direct sequential methods, that is, the ability to compute the terminal
costs and constraints and their derivatives with respect to the decision variables via numer-
ical integration of ordinary differential equations.

This parameterization relies on the formulation of adjoint-free optimal control laws for
each arc in the sequences that compose the optimal inputs, with these optimal inputs being
described as functions of the states and the inputs, and not as a function of any adjoint
variables. These adjoint-free optimal control laws are generated for two different types of
arcs: (i) constraint-seeking arcs, where the control laws result from the constraints; and (ii)
sensitivity-seeking arcs, where the control laws are analytically computed from the system
dynamics or are determined by a description using cubic splines. In the case of batch,
semi-batch and continuous reactors, the analytical description of sensitivity-seeking optimal
control laws is enabled by the representation of the dynamic model in terms of extents.
Subsequently, this method can also be used to automatically generate solutions that satisfy
the Pontryagin’s maximum principle.

The goal of this chapter has not been to present a full procedure for global dynamic
optimization and dynamic real-time optimization, but rather to argue that a careful choice
of the input parameterization is important for global dynamic optimization and dynamic
real-time optimization since their efficiency strongly depends on the number of decision
variables. In summary, this method, which is based on the enumeration of a finite number
of arc sequences that may appear in the solution to a given problem, corresponds to a novel
approach that aims at finding the global solution to dynamic optimization problems even in
the presence of plant-model mismatch.

In future work, it would be useful to be able to express the terminal cost and constraints
of the dynamic optimization problems as explicit polynomial functions of the decision vari-
ables, which is typically required by global optimization algorithms. After achieving this
goal, the performance of this approach for global dynamic optimization will be assessed
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and compared to existing approaches, and its connection with other methods that enforce
convergence to the plant optimum will be investigated.

222



9 Conclusion

9.1 Final Remarks

This thesis has presented the concepts of variants and invariants for lumped reaction
systems, and in particular the concept of extents, in Chapter 2, and it has generalized the
concept of extents to distributed reaction systems in Chapter 3. Then, these concepts have
been applied to estimation, control, and optimization of reaction systems. In Chapter 4,
the concept of extents has been used for estimation of kinetic parameters via the extent-
based incremental approach, while in Chapter 5 the concept of variants has been used
for estimation of unknown rate signals without identification of kinetic models. Then, in
Chapter 6, the concept of extents has been applied to efficient reactor control with kinetic
models, and the estimation of unknown rate signals has been used to implement control
in the absence of kinetic models, while Chapter 7 has taken advantage of feedback control
and estimation of unknown rate signals to speed up the estimation of plant steady state and
the steady-state optimization of imperfectly known dynamic systems. Finally, the concept of
extents has been used in Chapter 8 to convert the model of several reactors to a framework
that allows the computation of optimal control laws for dynamic optimization problems so
as to provide a more efficient parameterization of the optimal inputs. From this summary,
it is clear that the applications of the concept of variants and invariants encompass model-
based applications, as in Chapters 4, 6, and 8, and data-driven applications, as in Chapters
5, 6, and 7.

The next paragraphs summarize the main conclusions of the chapters in this thesis.

Chapter 2: Concept of Variants and Invariants for Lumped Reaction Systems This chap-
ter has presented the dynamic models of several lumped reaction systems in terms of ma-
terial balances described by the numbers of moles and heat balances described by the heat.
Then, several transformations between the original states related to the numbers of moles
and different concepts of variants and invariants have been detailed for the case of ho-
mogeneous reaction systems. In addition, the concept of extents and the transformations
between numbers of moles and extents have been shown for the cases of reaction systems
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with instantaneous equilibria, multiphase reaction systems, and reaction systems with heat
balance. Although the concepts of variants and invariants and the transformations to and
from variants and invariants were already known for all these lumped reaction systems prior
to this thesis, this chapter has summarized this knowledge and presented a complete and
systematic overview of these concepts.

Chapter 3: Concept of Extents for Distributed Reaction Systems This chapter has gen-
eralized the concept of extents and the transformation to extents to generic distributed
reaction systems that include tubular reactors and reactive separation columns. Each extent
in a distributed reaction system describes uniquely and completely a particular rate pro-
cess, taking into account the amount that has been transported by advection to a farther
position and that has been removed by an outlet. The definition of extents, as well as the
linear transformations between original concentration variables and extents, are similar to
the case of vessel extents for lumped reaction systems. The generalization of the concept of
extents to distributed reaction systems opens up new perspectives for industrially relevant
applications for distributed reaction systems. These perspectives for applications of the con-
cept of extents in distributed reaction systems are justified by the fact that some of these
applications have been investigated for lumped reaction systems.

Chapter 4: Estimation of Kinetic Parameters via the Incremental Approach This chap-
ter has shown that the extent-based incremental approach for model identification and es-
timation of kinetic parameters can be used not only to converge efficiently to global opti-
mality, but also to provide maximum-likelihood parameter estimates, with quality similar
to simultaneous model identification. The cost function that results from this approach
involves only the parameters of a single rate candidate and is a quadratic function of the
parameters in which the rate expression is linear, which means that this cost function can
be approximated via a Taylor series expansion as a rational function of the parameters that
appear nonlinearly in the rate expression. The resulting polynomial optimization problem
can be converted to an SDP, which can be handled by solvers that efficiently attain the global
solution upon convergence. Furthermore, maximum-likelihood parameter estimation relies
on a method to compute uncorrelated experimental extents from measured concentrations,
and a method to obtain unbiased rate estimates computed from measurements, resulting in
modeled extents that correspond to the integral of unbiased rate estimates.

Chapter 5: Estimation of Rate Signals without Kinetic Models This chapter has shown
how to compute unknown rates from the available measurements, using knowledge about
the structural relationship between the available states and the unknown and available
rates. The unknown rates are estimated via numerical differentiation of variants that are
computed from available states via an appropriate linear transformation, without the use of
any rate model. These variants depend on the unknown rates. Only one parameter needs
to be tuned, the parameter of the differentiation filter. The implications of rate estimation
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with respect to control without kinetic models and estimation of plant steady state have
been presented in the following two chapters.

Chapter 6: Reactor Control This chapter has considered reactor control with and with-
out kinetic models, in both cases using the concept of variants and invariants. The first
part of this chapter has proposed a control scheme via feedback linearization in the pres-
ence of a kinetic model, which achieves offset-free control of a subset of the states and sets
the closed-loop time constants of all the states that describe the reaction system. The sec-
ond part of this chapter has considered the control of a subset of the available states of a
generic system without the knowledge of a rate model, based on the structural information
about the dynamic relationship between the states and rates in the system. This controller
is based on feedback linearization and estimation of the unknown rates, and requires few
conditions and tunable parameters in addition to the ones needed for rate estimation. This
control scheme simplifies significantly MIMO control design, allows forcing the control error
to decay exponentially to zero, and eliminates the steady-state error even without any in-
tegral component. This controller can outperform PI control for the purpose of disturbance
rejection and setpoint tracking in a realistic reactor control problem.

Chapter 7: Fast Steady-state Optimization of Dynamic Systems This chapter has pre-
sented a novel method that uses feedback control and measurement-based rate estimation
to estimate the plant steady state before the plant reaches steady state. This approach is
possible for systems where some of the states do not affect the other states. In the con-
text of real-time optimization, this implies that each iteration takes less time, which means
that the time needed to drive the plant to optimality will be shorter. With this approach,
certain fast states are driven quickly to steady state via feedback control, and the cost and
constraint functions of the RTO problem are expressed in terms of the fast states, typically
involving certain rates that depend only on fast states. The rates are estimated from output
measurements, without the use of rate models, as soon as their steady-state values have
been reached. The decision variables of the RTO problem correspond to setpoints of the
controlled plant. Currently, the applicability of this approach is limited by its sensitivity to
noise and the difficulty of tuning certain parameters.

Chapter 8: Dynamic Optimization via Parsimonious Input Parameterization This chap-
ter has presented a parsimonious input parameterization that describes the optimal input
quite accurately with fewer parameters than direct methods for a generic class of dynamic
optimization problems. Adjoint-free optimal control laws are computed for each arc in
the sequences that compose the optimal inputs, where these arcs can be of two different
types: (i) constraint-seeking arcs, where the control laws result from the constraints; and
(ii) sensitivity-seeking arcs, where the control laws are analytically computed from the sys-
tem dynamics or are determined by a description using cubic splines. In the case of the
analytical description of sensitivity-seeking optimal control laws for batch, semi-batch and
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continuous reactors, this description takes advantage of the representation of the dynamic
model in terms of extents. The implications of this approach and possible future extensions
for global dynamic optimization and dynamic real-time optimization have been discussed.

9.2 Outlook and Perspectives

Although this thesis has consolidated and generalized the concept of variants and invari-
ants, particularly the concept of extents, and investigated novel applications to estimation,
control, and optimization of reaction systems, several extensions can be envisaged at this
point. This section explores some directions for future work on the concept and applications
of variants and invariants.

Interconnected and plant-wide systems The extension of the concept of variants and
invariants and its application to interconnected and plant-wide systems was one of the
original objectives of this doctoral work. These systems are composed of more than one
unit operation, in contrast to the systems considered in this thesis, which only included the
reactor as a single unit operation. For example, a simple proof of concept would consist in
a system composed of a reactor, a simple separation system, such as a flash column, and
a recycling loop for a part of the outlet stream into the reactor. In particular, it would be
useful to investigate whether variants and invariants can be used to describe links between
different units, for example in the form of extents of recycling, or to decouple dynamic
effects in unit operations in series or in parallel, and in which conditions this is possible.
The objective would be to simplify the understanding of networks and plant-wide systems,
and to provide new tools for process intensification, for example.

This topic has been the object of research during this doctoral work. However, it was
found that, although the concept of variant and invariant states can be easily extended to
simple systems, such as a reactor connected to a flash unit, it is not yet clear how the ap-
plication of variants and invariants could be helpful to improve the analysis of these simple
systems with respect to the analysis that can be done using the original states (concentra-
tions or numbers of moles). This lack of incentive arises from the fact that, in processing
units without reaction, the dynamic effects are already decoupled. This indicates that the
concept of variants and invariants is most useful for unit operations with reactions that
affect several states in the original representation of the system.

Nevertheless, the analysis of this extension to interconnected and plant-wide systems
from a different angle or with a specific application in mind might yield more interesting
results. It is also worth mentioning that the field of distributed and interconnected network
systems has recently received much attention from the scientific community working on
control, which may generate future interest in the network systems that are typically found
in the chemical and biotechnological industries.
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Reaction systems described by population balances A relevant class of reaction systems
that has not been investigated using the concept of variants and invariants corresponds
to the reaction systems described by population balances, which are very common in the
case of polymerization reactions. In these reaction systems, instead of a finite and typically
small number of species, there is a potentially infinite number of species with a distribution
of different molecular weights, which can be generated from one another by adding or
removing monomers from their structure. These reaction systems are typically described by
partial differential equations even in the case of lumped reaction systems.

Although this class of reaction systems has not been investigated, it is likely that the
concept of variants and invariants and its application to model identification for reaction
systems described by population balances can be extended in a relatively simple way from
the concept of extents and its application to model identification for distributed reaction
systems, which are also described by partial differential equations.

Systems with more balance equations than rates This thesis has focused on the develop-
ment and application of the concept of variants and invariants to reaction systems. However,
in principle, the same concept exists for any system with a similar structure. This structure
is valid for any system described by balance equations with several dynamic effects or rates
that affect various states simultaneously, especially if the number of balance equations is
greater than the number of rates. For any system with this structure, the extension of
the concept of variants and invariants and its applications presented in this thesis would
be straightforward. In fact, all the developments in this thesis for data-driven applications
(namely rate estimation, control, and steady-state optimization) have already used a generic
formulation that would allow their immediate use for any system with this structure.

Hence, an interesting task for future work would be to conduct a survey of the dynamic
systems that are known in different fields of engineering or even other disciplines, with the
goal of finding new classes of dynamic systems that share the same properties. Then, it
would also be interesting to assess whether there exist unsolved problems related to these
classes of dynamic systems that could benefit from the developments made in the context
of reaction systems, and conversely, whether the investigation of other classes of dynamic
systems can be helpful in the context of reaction systems, or even to obtain new ideas about
relevant research topics in the field of dynamic systems.

Optimization Prior to this doctoral work, very few applications of variants and invariants
to optimization had been reported. In this thesis, applications to both steady-state and
dynamic optimization have been developed, in the former case without the use of kinetic
models, and in the latter case with the use of kinetic models. Furthermore, the application
of the concept of extents to estimation of kinetic parameters also had some interesting
consequences with respect to the simplification and global optimality of the solution to the
underlying optimization problems. These facts open up new perspectives for research of
new applications of the concept of variants and invariants to optimization.
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A Appendix of Chapter 2

A.1 Decomposition of Matrices with Linearly Dependent Rows

The two methods to decompose matrices with linearly dependent rows proceed as fol-
lows:

1. Let us suppose that it is previously known or it is found through computation that there
exists an Rd × (Rd − Rs) matrix Ks of rank Rd − Rs with columns that are a basis of the
null space of MT

d
, that is,

KT
s Md = KT

s LsM = 0(Rd−Rs)×C . (A.1)

Since M has full row rank, the previous condition implies that

KT
s Ls = 0(Rd−Rs)×Rs

, (A.2)

which means that the columns of Ls are a basis of the null space of KT
s . Now, note

that any matrix L̂s with columns that are a basis of the null space of KT
s satisfies the

condition

L̂s = LsV̂s, (A.3)

where V̂s is an invertible Rs × Rs matrix. Then, if one chooses

M̂ =
�

L̂
T
s L̂s

�−1
L̂

T
s Md , (A.4)

which also implies that

M̂ =
�

L̂
T
s L̂s

�−1
L̂

T
s L̂sV̂

−1
s M= V̂

−1
s M (A.5)

is of full row rank, one can show that the rows M̂ are correct candidates for the linearly
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independent rows since

L̂sM̂= L̂sV̂
−1
s M =Md . (A.6)

2. Another possibility is to guess that the rows of Md are a linear combination of the Rs

linearly independent rows specified by a matrix M̂ of rank Rs, which can be written as

Md = L̂sM̂, (A.7)

for some Rd × Rs matrix L̂s of rank Rs.
If this guess is correct, then L̂s is of full column rank and is given by

L̂s =MdM̂
T
�

M̂M̂
T
�−1

, (A.8)

which means that one can verify if the guess is correct by checking if the condition

Md =MdM̂
T
�

M̂M̂
T
�−1

M̂ (A.9)

holds. In that case, the matrix M̂ satisfies the condition

M̂ = V̂
−1
s M, (A.10)

where V̂s is an invertible Rs × Rs matrix, which also implies that

L̂s = LsV̂sM̂M̂
T
�

M̂M̂
T
�−1

= LsV̂s. (A.11)

A.2 Equivalence of Descriptions of Reaction Systems with In-

stantaneous Equilibria

This section shows that the model of reaction systems with instantaneous equilibria
described by the system of DAEs given by the differential equations (2.56) and (2.62) and
algebraic equations (2.54), (2.55) and (2.61) is equivalent to the description obtained via
differentiation of Eq. (2.54). For the sake of simplicity, the dependence on time is omitted.

The algebraic equations (2.54), (2.55) and (2.61) enforce the following constraint im-
plicitly:







0Re

ṅs

Q̇s






=





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∂ϕe

∂ n

�
n,Q

� ∂ϕe

∂Q

�
n,Q

�

PT
e 0Ss

∆HT
e 1







�

ṅ

Q̇

�

. (A.12)
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Furthermore, the differential equations (2.56) and (2.62) imply that
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

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0Re
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�

. (A.13)

This means that the system of DAEs enforces the following constraint implicitly:

�

ṅ
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�

=


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
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∂ϕe
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. (A.14)

On the other hand, from Eqs. (2.50) and (2.57) and differentiation of Eq. (2.54), it
would be known that

0Re
=
∂ϕe

∂ z

�
n,Q

�

��

NT
e

−∆HT
r,e

�

V

ε
ϕe

�
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φs −ωn

ψs −ωQ

��

, (A.15)

which implies that

V

ε
ϕe

�
n,Q

�
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�

∂ϕe

∂ z
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e

−∆HT
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, (A.16)

provided that ∂ϕe

∂ z

�
n,Q

�

�

NT
e

−∆HT
r,e

�

is nonsingular.

If this equation is replaced into Eqs. (2.50) and (2.57), it yields the following result:
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(A.17)

Hence, the two descriptions in Eqs. (A.14) and (A.17) are equivalent since
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A.3 Number of Vessel Extents in Open Homogeneous Reactors

This section shows that the numbers of moles can be computed as a linear transforma-
tion of less than R+ p + 1 vessel extents in some particular cases of open homogeneous
reactors. Two relevant examples of these particular cases are the CSTRs with constant den-
sity or with an ideal mixture and the open homogeneous reactors with initial conditions
that correspond to a steady state.

A.3.1 CSTR with constant density or with an ideal mixture

This section shows that, not only for the case of a homogeneous CSTR with constant
density but also for a homogeneous CSTR with an ideal mixture, the inverse of the residence
time is a linear combination of reaction rates and inlet flowrates.

Proposition A.1. For any homogeneous CSTR with S species, R independent reactions and p

independent inlets that contains an ideal mixture (such that the volume of the mixture is the

sum of the volumes of each pure species), the inverse of the residence time ω(t) is the linear

combination of reaction rates and inlet flowrates

ω(t) = kT
r rv(t) + kT

inuin(t), (A.19)

with

kT
r =

1T
Sρ
−1Mw

1T
Sρ
−1Mwn0

NT, (A.20)

kT
in =

1T
Sρ
−1Mw

1T
Sρ
−1Mwn0

Win, (A.21)

where ρ is the diagonal matrix of densities.

Proof. In a reactor with an ideal mixture, one can assume that the volume V (t) is given by

V (t) = 1T
Sρ
−1Mwn(t), (A.22)

and, since the volume is constant in a CSTR,

1T
Sρ
−1Mwn(t) = 1T

Sρ
−1Mwn0. (A.23)

This implies that the inverse of the residence time must be given by

ω(t) =
1T

Sρ
−1Mw

1T
Sρ
−1Mwn0

�

NTrv(t) +Winuin(t)
�

, (A.24)
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to keep the volume constant, as follows:

0= 1T
Sρ
−1Mwṅ(t)

= 1T
Sρ
−1Mw

�

NTrv(t) +Winuin(t)−ω(t)n(t)
�

= 1T
Sρ
−1Mw

�

NTrv(t) +Winuin(t)
�

− 1T
Sρ
−1Mwn0ω(t). (A.25)

Remark A.1. In a reactor with constant density, the volume is given by a particular case of
the equation that gives the volume of a reactor with an ideal mixture, if one replaces ρ by
ρIS. Since

1T
SMwNT = 0T

R, (A.26)

1T
SMwWin = 1T

p, (A.27)

1T
SMwn0 = m0, (A.28)

the inverse of the residence time ω(t) is given by Eq. (A.19), with Eqs. (A.20) and (A.21)
being replaced by

kT
r = 0T

R, (A.29)

kT
in =

1T
p

m0
. (A.30)

A.3.2 Initial conditions and steady state

This section shows that, for any open homogeneous reactor, the numbers of moles are
a linear transformation of only R + p vessel extents if the initial conditions are a linear
combination of the stoichiometries and of the inlet compositions, and, in particular, if these
initial conditions correspond to a steady state.

Proposition A.2. For any open homogeneous reactor with S species, R independent reactions,

p independent inlets and one outlet whose initial numbers of moles are given by the linear

combination

n0 = NTvr +Winvin, (A.31)

the numbers of moles are the linear transformation of R vessel extents of reaction xr(t) and p

vessel extents of inlet xin(t)

n(t) = NTxr(t) +Winxin(t), (A.32)
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where the vessel extents are described by the ODEs

ẋr(t) = rv(t)−ω(t)xr(t), xr(0) = vr , (A.33)

ẋin(t) = uin(t)−ω(t)xin(t), xin(0) = vin. (A.34)

In particular, if the numbers of moles are initially at steady state n̄0, then

xr(0) = vr =
r̄v

ω̄
, (A.35)

xin(0) = vin =
ūin

ω̄
, (A.36)

with r̄v , ūin and ω̄ the reaction rates, inlet flowrates and inverse of the residence time at steady

state.

Proof. This proposition can be proven by checking the consistency of the initial conditions

n(0) = NTxr(0)+Winxin(0)

= NTvr +Winvin

= n0, (A.37)

and ODEs

ṅ(t) = NTẋr(t) +Winẋin(t)

= NT �rv(t)−ω(t)xr(t)
�
+Win

�
uin(t)−ω(t)xin(t)

�

= NTrv(t) +Winuin(t)−ω(t)N
Txr(t)−ω(t)Winxin(t)

= NTrv(t) +Winuin(t)−ω(t)n(t). (A.38)

Finally, let us note that, at steady state,

0S = NTr̄v +Winūin− ω̄n̄0, (A.39)

which implies that

n̄0 = NT r̄v

ω̄
+Win

ūin

ω̄
. (A.40)

A.3.3 Constrained outlet

This section shows that, for any open homogeneous reactor where the inverse of the
residence time is a linear combination of reaction rates and inlet flowrates, the numbers of
moles are a linear transformation of R+ p vessel extents, or only R+ p− 1 vessel extents if
the initial conditions are at steady state, and these linear transformations can be obtained
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in the case of any homogeneous CSTR with an ideal mixture or with constant density.

Proposition A.3. For any open homogeneous reactor with S species, R independent reactions,

p independent inlets and one outlet where the inverse of the residence time is the linear combi-

nation of reaction rates and inlet flowrates

ω(t) = kT
r rv(t) + kT

inuin(t), (A.41)

the numbers of moles are the linear transformation of R vessel extents of reaction xr(t) and p

vessel extents of inlet xin(t)

n(t) =
�

NT − n0kT
r

�

xr(t) +
�

Win− n0kT
in

�

xin(t) + n0, (A.42)

where the vessel extents are described by the ODEs

ẋr(t) = rv(t)−ω(t)xr(t), xr(0) = 0R, (A.43)

ẋin(t) = uin(t)−ω(t)xin(t), xin(0) = 0p. (A.44)

Proof. This proposition can be proven by checking the consistency of the initial conditions

n(0) =
�

NT− n0kT
r

�

xr(0)+
�

Win− n0kT
in

�

xin(0)+ n0

= n0, (A.45)

and ODEs

ṅ(t) =
�

NT − n0kT
r

�

ẋr(t) +
�

Win− n0kT
in

�

ẋin(t)

=
�

NT − n0kT
r

��
rv(t)−ω(t)xr(t)

�
+
�

Win − n0kT
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��
uin(t)−ω(t)xin(t)

�

= NTrv(t) +Winuin(t)− n0

�

kT
r rv(t) + kT

inuin(t)
�

−ω(t)
�

NT − n0kT
r

�

xr(t)−ω(t)
�

Win− n0kT
in

�

xin(t)

= NTrv(t) +Winuin(t)

−ω(t)
�

NT − n0kT
r

�

xr(t)−ω(t)
�

Win− n0kT
in

�

xin(t)−ω(t)n0

= NTrv(t) +Winuin(t)−ω(t)n(t). (A.46)

Proposition A.4. For any homogeneous CSTR with S species, R independent reactions and p

independent inlets that contains an ideal mixture, the numbers of moles are the linear trans-

formation of R vessel extents of reaction xr(t) and p vessel extents of inlet xin(t)

n(t) =

�

IS −
n01T

Sρ
−1Mw

1T
Sρ
−1Mwn0

�
�

NTxr(t) +Winxin(t)
�

+ n0, (A.47)

where the vessel extents are described by Eqs. (A.43) and (A.44).
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Proof. According to Eq. (A.19), the transformation in Eq. (A.42) from the vessel extents
described by Eqs. (A.43) and (A.44) is valid for a CSTR with an ideal mixture, by taking
Eqs. (A.20) and (A.21), which results in

n(t) =

�

NT− n0
1T

Sρ
−1Mw

1T
Sρ
−1Mwn0

NT

�

xr(t) +

�

Win − n0
1T

Sρ
−1Mw

1T
Sρ
−1Mwn0

Win

�

xin(t) + n0.

(A.48)

Remark A.2. In the case of a homogeneous CSTR with constant density, the transformation
in Eq. (A.42) becomes

n(t) = NTxr(t) +

 

Win−
n01T

p

m0

!

xin(t) + n0. (A.49)

Proposition A.5. For any open homogeneous reactor with S species, R independent reactions,

p independent inlets and one outlet where the inverse of the residence time is the linear combi-

nation of reaction rates and inlet flowrates

ω(t) = kT
r rv(t) + kT

inuin(t), (A.50)

the numbers of moles are the linear transformation of R vessel extents of reaction xr(t), p− 1
vessel extents of inlet xin(t) and one vessel extent of initial conditions x ic(t)

n(t) =

�

NT−
win,l

kin,l
kT

r

�

xr(t) +

�

Win−
win,l

kin,l
kT

in

�

Sl ,pxin(t) +
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n0 −
win,l

kin,l

�

x ic(t)

+
win,l

kin,l
, (A.51)

if l ∈
�
1, . . . , p

	
is such that kin,l 6= 0, where ST

l ,p =

�

Il−1 0l−1 0(l−1)×(p−l)

0(p−l)×(l−1) 0p−l Ip−l

�

is a

matrix that selects all but the lth element of a p-dimensional vector, šT
l ,p =

h

0T
l−1 1 0T

p−l

i

is

a vector that selects the lth element of a p-dimensional vector, kin,l = kT
inšl ,p, win,l =Winšl ,p,

and the vessel extents are described by the ODEs

ẋr(t) = rv(t)−ω(t)xr(t), xr(0) = 0R, (A.52)

ẋin(t) = ST
l ,puin(t)−ω(t)xin(t), xin(0) = 0p−1, (A.53)

ẋ ic(t) = −ω(t)x ic(t), x ic(0) = 1. (A.54)

Proof. Since

Sl ,pST
l ,p+ šl ,pšT

l ,p = Ip, (A.55)
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one can observe that

0= kT
r rv(t) + kT

in

�

Sl ,pST
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l ,puin(t)−ω(t), (A.56)

which implies that, if l ∈
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and
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. (A.58)

Then, this proposition can be proven by checking the consistency of the initial conditions
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and ODEs
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ẋr(t) +

�

Win−
win,l

kin,l
kT

in

�
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Proposition A.6. For any homogeneous CSTR with S species, R independent reactions and p

independent inlets that contains an ideal mixture, the numbers of moles are the linear trans-

formation of R vessel extents of reaction xr(t), p−1 vessel extents of inlet xin(t) and one vessel

extent of initial conditions x ic(t)

n(t) =

�

IS −
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

�
�

NTxr(t) +WinSl ,pxin(t) + n0 x ic(t)
�

+
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

n0, (A.61)

where the vessel extents are described by Eqs. (A.52), (A.53) and (A.54).

Proof. According to Eq. (A.19), the transformation in Eq. (A.51) from the vessel extents
described by Eqs. (A.52), (A.53) and (A.54) is valid for a CSTR with an ideal mixture, by
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taking Eqs. (A.20) and (A.21), which results in

n(t) =

�

NT−
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

NT

�

xr(t) +

�

Win −
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

Win

�

Sl ,pxin(t)

+

�

n0 −
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

n0

�

x ic(t) +
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

n0. (A.62)

Remark A.3. In the case of a homogeneous CSTR with constant density, since

kin,l =
1T

p šl ,p

m0
=

1

m0
, (A.63)

kT
inSl ,p =

1T
pSl ,p

m0
=

1T
p−1

m0
, (A.64)

the transformation in Eq. (A.51) becomes

n(t) = NTxr(t) +
�

WinSl ,p−win,l1
T
p−1

�

xin(t) +
�

n0 −win,lm0

�

x ic(t) +win,lm0.

(A.65)

Proposition A.7. For any open homogeneous reactor with S species, R independent reactions,

p independent inlets and one outlet whose numbers of moles are initially at steady state n̄0

and where the inverse of the residence time is the linear combination of reaction rates and inlet

flowrates

ω(t) = kT
r rv(t) + kT

inuin(t), (A.66)

the numbers of moles are the linear transformation of R vessel extents of reaction xr(t) and

p− 1 vessel extents of inlet xin(t)

n(t) =

�

NT−
win,l

kin,l
kT

r

�

xr(t) +

�

Win−
win,l

kin,l
kT

in

�

Sl ,pxin(t) +
win,l

kin,l
, (A.67)

if l ∈
�
1, . . . , p

	
is such that kin,l 6= 0, where ST

l ,p =

�

Il−1 0l−1 0(l−1)×(p−l)

0(p−l)×(l−1) 0p−l Ip−l

�

is a

matrix that selects all but the lth element of a p-dimensional vector, šT
l ,p =

h

0T
l−1 1 0T

p−l

i

is

a vector that selects the lth element of a p-dimensional vector, kin,l = kT
inšl ,p, win,l =Winšl ,p,

and the vessel extents are described by the ODEs

ẋr(t) = rv(t)−ω(t)xr(t), xr(0) =
r̄v

ω̄
, (A.68)

ẋin(t) = ST
l ,puin(t)−ω(t)xin(t), xin(0) =

ST
l ,pūin

ω̄
, (A.69)
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with r̄v , ūin and ω̄ the reaction rates, inlet flowrates and inverse of the residence time at steady

state.

Proof. As shown before, if l ∈
�
1, . . . , p

	
is such that kin,l 6= 0,

ṅ(t) =

�

NT−
win,l

kin,l
kT

r

�

rv(t) +

�

Win −
win,l

kin,l
kT

in

�

Sl ,pST
l ,puin(t)

−ω(t)

�

n(t)−
win,l

kin,l

�

. (A.70)

Now, let us note that, at steady state,

0S =

�

NT−
win,l

kin,l
kT

r

�

r̄v +

�

Win −
win,l

kin,l
kT

in

�

Sl ,pST
l ,pūin − ω̄

�

n̄0 −
win,l

kin,l

�

, (A.71)

which implies that

n̄0 =

�

NT−
win,l

kin,l
kT

r

�

r̄v

ω̄
+

�

Win −
win,l

kin,l
kT

in

�

Sl ,p

ST
l ,pūin

ω̄
+

win,l

kin,l
. (A.72)

Then, this proposition can be proven by checking the consistency of the initial conditions

n(0) =

�

NT −
win,l

kin,l
kT

r

�

xr(0) +

�

Win−
win,l

kin,l
kT

in

�

Sl ,pxin(0)+
win,l

kin,l

=

�

NT −
win,l

kin,l
kT

r

�

r̄v

ω̄
+

�

Win−
win,l

kin,l
kT

in

�

Sl ,p

ST
l ,pūin

ω̄
+

win,l

kin,l

= n̄0, (A.73)
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and ODEs

ṅ(t) =

�

NT−
win,l

kin,l
kT

r

�

ẋr(t) +

�

Win−
win,l

kin,l
kT

in

�

Sl ,pẋin(t)

=

�

NT−
win,l

kin,l
kT

r

�

�
rv(t)−ω(t)xr(t)

�

+

�

Win −
win,l

kin,l
kT

in

�

Sl ,p

�

ST
l ,puin(t)−ω(t)xin(t)

�

=

�

NT−
win,l

kin,l
kT

r

�

rv(t) +

�

Win −
win,l

kin,l
kT

in

�

Sl ,pST
l ,puin(t)

−ω(t)

�

NT −
win,l

kin,l
kT

r

�

xr(t)−ω(t)

�

Win−
win,l

kin,l
kT

in

�

Sl ,pxin(t)

=

�

NT−
win,l

kin,l
kT

r

�

rv(t) +

�

Win −
win,l

kin,l
kT

in

�

Sl ,pST
l ,puin(t)

−ω(t)

�

n(t)−
win,l

kin,l

�

. (A.74)

Proposition A.8. For any homogeneous CSTR with S species, R independent reactions and p

independent inlets whose numbers of moles are initially at steady state n̄0 and that contains an

ideal mixture, the numbers of moles are the linear transformation of R vessel extents of reaction

xr(t) and p− 1 vessel extents of inlet xin(t)

n(t) =

�

IS −
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

�
�

NTxr(t) +WinSl ,pxin(t)
�

+
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

n0,

(A.75)

where the vessel extents are described by Eqs. (A.68) and (A.69).

Proof. According to Eq. (A.19), the transformation in Eq. (A.67) from the vessel extents
described by Eqs. (A.68) and (A.69) is valid for a CSTR with an ideal mixture, by taking
Eqs. (A.20) and (A.21), which results in

n(t) =

�

NT−
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

NT

�

xr(t) +

�

Win −
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

Win

�

Sl ,pxin(t)

+
win,l1

T
Sρ
−1Mw

1T
Sρ
−1Mwwin,l

n0. (A.76)
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Remark A.4. In the case of a homogeneous CSTR with constant density, since

kin,l =
1T

p šl ,p

m0
=

1

m0
, (A.77)

kT
inSl ,p =

1T
pSl ,p

m0
=

1T
p−1

m0
, (A.78)

the transformation in Eq. (A.67) becomes

n(t) = NTxr(t) +
�

WinSl ,p−win,l1
T
p−1

�

xin(t) +win,lm0. (A.79)

A.4 Combined Material and Heat Balance Equations

A.4.1 Homogeneous reaction systems

The vessel extent of heat exchange xex(t) represents the amount of energy that has
transferred via heat exchange and is in the vessel at time t, that is, discounting for the
amount that has left the vessel via the outlet. This vessel extent is described by the ODE

ẋex(t) = qex(t)−ω(t)xex(t), xex(0) = 0. (A.80)

Let us assume that the inlet composition given by Win(t) and the inlet composition and
temperature given by Ťin(t) are constant. Eqs. (2.19) and (2.44) can be reconstructed from
Eqs. (2.95), (2.99), (2.103) and (A.80) using

z(t) =L









xr(t)

xex(t)

xin(t)

x ic(t)









, (A.81)

with L =

�

NT 0 Win n0

−∆HT
r 1 Ť

T
in Q0

�

.

If rank (L ) = R+ p+ 2, the vessel extents are given by the linear transformation









xr(t)

xex(t)

xin(t)

x ic(t)









= T z(t), (A.82)

with T :=
�

L TWL
�−1
L TW.

The null space of L T is of dimension q := S + 1 − rank (L ) and is described by the
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(S+1)×q matrix P. Then, the q invariants xiv(t) = 0q are given by the linear transformation

xiv(t) = PTz(t). (A.83)

A.4.2 Reaction systems with instantaneous equilibria

Let us assume that the inlet composition given by Win(t) and the inlet composition and
temperature given by Ťin(t) are constant. Eqs. (2.56) and (2.62) can be reconstructed from
Eqs. (2.99), (2.103), (2.134) and (A.80) using

zs(t) =L s









xr,s(t)

xex(t)

xin(t)

x ic(t)









, (A.84)

with L s =

�

PT
e 0Ss

∆HT
e 1

�


NT

s 0 Win n0

−∆HT
r,s 1 Ť

T
in Q0



.

If rank
�
L s

�
= Rs + p+ 2, the vessel extents are given by the linear transformation









xr,s(t)

xex(t)

xin(t)

x ic(t)









= T szs(t), (A.85)

with T s :=
�

L T
s WL s

�−1
L T

s W.

The null space of L T
s is of dimension qs := Ss + 1 − rank

�
L s

�
and is described by

the (Ss + 1)× qs matrix Ps. Then, the qs invariants xiv,s(t) = 0qs
are given by the linear

transformation

xiv,s(t) = PT
s zs(t). (A.86)

A.4.3 Multiphase reaction systems

The vessel extent of heat exchange xex , f (t) represents the amount of energy that has
transferred to phase F via heat exchange and is in the vessel at time t, that is, discounting
for the amount that has left the vessel via the outlet. This vessel extent is described by the
ODE

ẋex , f (t) = qex , f (t)−ω f (t)xex , f (t), xex , f (0) = 0. (A.87)

Let us assume that the inlet composition given by Win, f (t) and the inlet composition
and temperature given by Ťin, f (t) are constant. Eqs. (2.63) and (2.66) can be reconstructed
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from Eqs. (2.138), (2.139), (2.140), (2.141) and (A.87) using

z f (t) =L f











xr, f (t)

xm, f (t)

xex , f (t)

xin, f (t)

x ic, f (t)











, (A.88)

with L f =




NT

f
Em, f 0 Win, f n f ,0

−∆HT
r, f −∆HT

m, f 1 Ť
T
in, f Q f ,0



.

If rank
�

L f

�

= R f + pm, f + p f + 2, the vessel extents are given by the linear transfor-
mation











xr, f (t)

xm, f (t)

xex , f (t)

xin, f (t)

x ic, f (t)











= T f z f (t), (A.89)

with T f :=
�

L T
f
WL f

�−1
L T

f
W.

The null space of L T
f

is of dimension q f := S f + 1− rank
�

L f

�

and is described by
the (S f + 1)× q f matrix P f . Then, the q f invariants xiv, f (t) = 0q f

are given by the linear
transformation

xiv, f (t) = PT
f z f (t). (A.90)
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B.1 Combined Material and Heat Balance Equations

B.1.1 Single-phase lumped reactors

The heat Q(t) is described by the ODE

d

dt
Q+ωQ =

�

−∆HT
r

�

rv + Ť
T
inuin, Q(0) = Q0, (B.1)

where Q(t) := c̄p(t)
Tn(t)

�

T (t)− Tre f

�

, with T (t) the temperature and the S-dimensional

vector of average molar heat capacities c̄p(t) :=
∫ T(t)

Tre f
cp(θ)dθ/

�

T (t)− Tre f

�

between T (t)

and Tre f , ∆Hr := N∆H is the R-dimensional vector of enthalpies of reaction, with ∆H

the S-dimensional vector of enthalpies of formation at temperature Tre f , and Ťin(t) is a
p-dimensional vector, whose jth element is the specific heat of the jth inlet Ťin, j(t) :=
c̄p,in, j(t)

TWin, j(t)
�

Tin, j(t)− Tre f

�

at temperature Tin, j(t), with the S-dimensional vector

of average molar heat capacities c̄p,in, j(t) :=
∫ Tin, j(t)

Tre f
cp(θ)dθ/

�

Tin, j(t)− Tre f

�

between

Tin, j(t) and Tre f .

Let us define z :=
� n

Q

�
. The effect of the outlet flow on the initial and inlet flow

conditions can be computed as ziic(t) :=
h

niic(t)

Qiic (t)

i

by solving the ODE

d

dt
ziic +ωziic =

h
Win

Ť
T
in

i

uin, ziic(0) =
� n0

Q0

�

. (B.2)

Eqs. (3.1) and (B.1) can be reconstructed using

z =L xr + ziic , (B.3)

with L =
h

NT

−∆HT
r

i

. If rank(L ) = R, the vessel extents of reaction are given by the linear
transformation in Eq. (3.5), replacing δn by δz := z− ziic.
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B.1.2 Single-phase plug-flow reactors

The volumetric heat h(z, t) is described by the PDE

∂

∂ t
h+

∂

∂ z

�
vzh
�
=
�

−∆HT
r

�

r, (B.4)

where h(z, t) := c̄p(z, t)Tc(z, t)
�

T (z, t)− Tre f

�

, with the average molar heat capacities

c̄p(z, t) :=
∫ T(z,t)

Tre f
cp(θ)dθ/

�

T (z, t)− Tre f

�

.

Eq. (B.4) is subject to the following initial and advective boundary conditions:

h(z, 0) = h0(z), ∀z > 0 (IC),

h(0, t) = hin(t), ∀t ≥ 0 (BC).

Let us define z :=
� c

h

�
. The effect of advection on the initial and advective boundary

conditions can be computed as zi bc(z, t) :=
h

ci bc(z,t)
hi bc(z,t)

i

by solving the PDE

∂

∂ t
zi bc +

∂

∂ z

�
vzzi bc

�
= 0S+1, (B.5)

with the initial and boundary conditions

zi bc(z, 0) =
h

c0(z)
h0(z)

i

, ∀z > 0 (IC), (B.6)

zi bc(0, t) =
h

cin(t)

hin(t)

i

, ∀t ≥ 0 (BC). (B.7)

Eqs. (3.6) and (B.4) can be reconstructed using

z =L xr + zi bc, (B.8)

with L =
h

NT

−∆HT
r

i

. If rank(L ) = R, the extents of reaction are given by the linear transfor-
mation in Eq. (3.12), replacing δc by δz := z− zi bc.

B.1.3 Single-phase one-dimensional tubular reactors

The volumetric heat h(z, t) is described by the PDE

∂

∂ t
h+

∂

∂ z

�
vzh
�
=
�

−∆HT
r

�

r+
�

−∆HT
d

�

φd +φc +φex , (B.9)

where ∆Hd := ET
d
∆H is the pd -dimensional vector of enthalpies of diffusion, φc is the rate

of heat conduction, and φex is the rate of heat exchange from external sources.

Diffusion is described by Eq. (3.14), with the corresponding boundary conditions, while
heat conduction calls for the definition of the heat conduction flux in the z-direction, de-
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noted jc,z(z, t), which is described by the PDE

∂

∂ z
jc,z = −φc, (B.10)

with the conductive boundary conditions

lim
z→∞

jc,z(z, t) = 0, ∀t ≥ 0.

Eq. (B.9) is subject to the following initial and advective boundary conditions:

h(z, 0) = h0(z), ∀z > 0 (IC),

h(0, t) = hin(t) + hd(t) + hc(t), ∀t ≥ 0 (BC),

with hd(t) := − (
−∆HT

d) jd,z(0,t)

β vz(0,t)
and hc(t) := −

jc,z (0,t)
β vz(0,t)

. These initial and boundary conditions
are also affected by those of Eqs. (3.14) and (B.10).

Let us define z :=
� c

h

�
. The effect of advection on the initial and advective boundary

conditions can be computed by solving Eq. (B.5), with the initial and boundary conditions
given by Eqs. (B.6) and (B.7).

Extent of heat conduction The extent of heat conduction xc(z, t) represents the amount
of energy that has transferred via heat conduction and is at position z at time t. This extent
is described by the PDE

∂

∂ t
xc +

∂

∂ z

�
vz xc

�
= φc , (B.11)

with xc(z, 0) = 0,∀z > 0 (IC) and xc(0, t) = hc(t),∀t ≥ 0 (BC).

Extent of heat exchange The extent of heat exchange xex(z, t) represents the amount of
energy that has transferred via heat exchange and is at position z at time t. This extent is
described by the PDE

∂

∂ t
xex +

∂

∂ z

�
vz xex

�
= φex , (B.12)

with xex(z, 0) = 0,∀z > 0 (IC) and xex(0, t) = 0,∀t ≥ 0 (BC).

Eqs. (3.13) and (B.9) can be reconstructed using

z =L

�
xr
xd

xc+xex

�

+ zi bc, (B.13)

with L =
�

NT Ed 0S

−∆HT
r −∆HT

d
1

�

. If rank (L ) = R+ pd + 1, the extents are given by the linear
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transformation
�

xr
xd

xc+xex

�

= T δz, (B.14)

with T :=
�

L TWL
�−1
L TW, and δz := z− zi bc.

B.1.4 Multiphase one-dimensional tubular reactors

The volumetric heat hǫ
f
(z, t) is described by the PDE

∂

∂ t
hǫf +

∂

∂ z

�

v f ,zh
ǫ
f

�

=
�

−∆HT
r, f

�

rǫf +
�

−∆HT
m, f

�

φǫm, f

+
�

−∆HT
d, f

�

φǫd, f +φ
ǫ
c, f +φ

ǫ
ex , f , (B.15)

where ∆Hm, f := ET
m, f∆H f is the pm, f -dimensional vector of enthalpies of mass transfer to

phase F.

Diffusion is described by Eq. (3.19), with the corresponding boundary conditions, while
the heat conduction flux in the z-direction, denoted jǫ

c, f ,z(z, t), is described by the PDE

∂

∂ z
jǫc, f ,z = −φ

ǫ
c, f , (B.16)

with the conductive boundary conditions

lim
z→∞

jǫc, f ,z(z, t) = 0, ∀t ≥ 0.

Eq. (B.15) is subject to the following initial and advective boundary conditions:

hǫ
f
(z, 0) = hǫ

f ,0(z), ∀z > 0 (IC),

hǫf (0, t) = hǫf ,in(t) + hǫd, f (t) + hǫc, f (t), ∀t ≥ 0 (BC),

with hǫ
d, f (t) :=−

�

−∆HT
d, f

�

jǫ
d, f ,z (0,t)

β vf ,z (0,t)
, and hǫ

c, f (t) := −
jǫ
c, f ,z (0,t)

β vf ,z(0,t)
.

Let us define zǫ
f

:=
�

cǫ
f

hǫ
f

�

. The effect of advection on the initial and advective boundary

conditions can be computed as zǫ
i bc, f (z, t) :=

�
cǫ

i bc, f (z,t)

hǫ
i bc, f (z,t)

�

by solving the PDE

∂

∂ t
zǫi bc, f +

∂

∂ z

�

v f ,zz
ǫ
i bc, f

�

= 0S f +1, (B.17)
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with the initial and boundary conditions

zǫi bc, f (z, 0) =
�

cǫ
f ,0(z)

hǫ
f ,0(z)

�

, ∀z > 0 (IC), (B.18)

zǫi bc, f (0, t) =

�
cǫ

f ,in(t)

hǫ
f ,in(t)

�

, ∀t ≥ 0 (BC). (B.19)

Extent of heat conduction The extent of heat conduction xc, f (z, t) represents the amount
of energy that has transferred via heat conduction in phase F and is at position z at time t.
This extent is described by the PDE

∂

∂ t
xc, f +

∂

∂ z

�

v f ,z xc, f

�

= φǫc, f , (B.20)

with xc, f (z, 0) = 0,∀z > 0 (IC) and xc, f (0, t) = hǫ
c, f (t),∀t ≥ 0 (BC).

Extent of heat exchange The extent of heat exchange xex , f (z, t) represents the amount of
energy that has transferred to phase F via heat exchange and is at position z at time t. This
extent is described by the PDE

∂

∂ t
xex , f +

∂

∂ z

�

v f ,z xex , f

�

= φǫex , f , (B.21)

with xex , f (z, 0) = 0,∀z > 0 (IC) and xex , f (0, t) = 0,∀t ≥ 0 (BC).

Eqs. (3.18) and (B.15) can be reconstructed using

zǫf =L f





xr, f
xm, f
xd, f

xc, f +xex , f



+ zǫi bc, f , (B.22)

with L f =

�
NT

f
Em, f Ed, f 0S f

−∆HT
r, f −∆HT

m, f −∆HT
d, f 1

�

. If rank
�

L f

�

= R f + pm, f + pd, f +1, the extents are

given by the linear transformation





xr, f
xm, f
xd, f

xc, f +xex , f



= T f δzǫf , (B.23)

with T f :=
�

L T
f
WL f

�−1
L T

f
W, and δzǫ

f
:= zǫ

f
− zǫ

i bc, f .

B.1.5 Multiphase two-dimensional tubular reactors

The volumetric heat hǫ
f
(z, r, t) is described by the PDE in Eq. (B.15).

Diffusion is described by Eq. (3.28), with the corresponding boundary conditions, while
the heat conduction fluxes in the radial direction r and axial direction, denoted jǫ

c, f ,r(z, r, t)
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and jǫ
c, f ,z(z, r, t), are described by the PDE

1

r

∂

∂ r

�

r jǫc, f ,r

�

+
∂

∂ z
jǫc, f ,z = −φ

ǫ
c, f , (B.24)

with the conductive boundary conditions

jǫ
c, f ,r(z, 0, t) = 0, ∀z ≥ 0, ∀t ≥ 0,

jǫc, f ,r(z,R , t) = 0, ∀z ≥ 0, ∀t ≥ 0,

lim
z→∞

jǫc, f ,z(z, r, t) = 0, ∀r ∈ ]0,R[, ∀t ≥ 0.

Eq. (B.15) is subject to the following initial and advective boundary conditions:

hǫf (z, r, 0) = hǫf ,0(z, r), ∀z > 0, ∀r ∈ ]0,R[ (IC),

hǫ
f
(0, r, t) = hǫ

f ,in(r, t) + hǫ
d, f (r, t) + hǫ

c, f (r, t),

∀r ∈ ]0,R[, ∀t ≥ 0 (BC),

with hǫ
d, f (r, t) := −

�

−∆HT
d, f

�

jǫ
d, f ,z (0,r,t)

β vf ,z (0,r,t)
and hǫ

c, f (r, t) := −
jǫ
c, f ,z (0,r,t)

β vf ,z (0,r,t)
.

Let us define zǫ
f

:=
�

cǫ
f

hǫ
f

�

. The effect of advection on the initial and advective boundary

conditions can be computed as zǫ
i bc, f (z, r, t) :=

�
cǫ

i bc, f (z,r,t)

hǫ
i bc, f (z,r,t)

�

by solving Eq. (B.17) with the

initial and boundary conditions

zǫi bc, f (z, r, 0) =
�

cǫ
f ,0(z,r)

hǫ
f ,0(z,r)

�

, ∀z > 0, ∀r ∈ ]0,R[ (IC),

zǫi bc, f (0, r, t) =

�
cǫ

f ,in(r,t)

hǫ
f ,in(r,t)

�

, ∀r ∈ ]0,R[, ∀t ≥ 0 (BC).

Extent of heat conduction The extent of heat conduction xc, f (z, r, t) is computed using
Eq. (B.20), with xc, f (z, r, 0) = 0, ∀z > 0, ∀r ∈ ]0,R[ (IC) and xc, f (0, r, t) = hǫ

c, f (r, t),
∀r ∈ ]0,R[, ∀t ≥ 0 (BC).

Extent of heat exchange The extent of heat exchange xex , f (z, r, t) is computed using
Eq. (B.21), with xex , f (z, r, 0) = 0, ∀z > 0, ∀r ∈ ]0,R[ (IC) and xex , f (0, r, t) = 0, ∀r ∈

]0,R[, ∀t ≥ 0 (BC).

Eqs. (3.18) and (B.15) can be reconstructed using Eq. (B.22). If rank
�

L f

�

= R f +

pm, f + pd, f + 1, the extents are given by the linear transformation in Eq. (B.23).
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B.1.6 Packed reactive separation columns

The volumetric heat hǫ
l
(z, t) is described by the PDE

∂

∂ t
hǫ

l
+
∂

∂ z

�

vl ,zh
ǫ
l

�

=
�

−∆HT
r,l

�

rǫ
l

+
�

−∆HT
m,l

�

φǫm,l +φ
ǫ
ex ,l . (B.25)

Eq. (B.25) is subject to the following initial and advective boundary conditions:

hǫl (z, 0) = hǫl ,0(z), ∀z > 0 (IC),

hǫl (0, t) = hǫl ,in(t), ∀t ≥ 0 (BC).

Furthermore, the system is subject to constraints related to the pl intermediate inlet-
s/outlets at the positions zh

1

hǫl (zh, t) = ȟ
T
in,h

fin,h

ql(zh, t)
+ hǫl (z

−
h

, t)αl (zh, t)

∀h= 1, . . . , pl , ∀t ≥ 0, (B.26)

where ȟin,h(t) is a pl ,h-dimensional vector, whose jth element is the molar heat of the jth liq-
uid inlet at the hth intermediate inlet/outlet ȟin,h, j(t) := c̄T

p,l ,h, j(t)Zin,h, j(t)
�

Th, j(t)− Tre f

�

at temperature Th, j(t), with the S-dimensional vector of average molar heat capacities

c̄p,l ,h, j(t) :=
∫ Th, j(t)

Tre f
cp,l(θ)dθ/

�

Th, j(t)− Tre f

�

between Th, j(t) and Tre f .

Let us define zǫ
l

:=
h

cǫ
l

hǫ
l

i

. The effect of advection and intermediate outlet flows on the
initial and advective boundary conditions can be computed by solving Eq. (B.17), with the
initial and boundary conditions given by Eqs. (B.18) and (B.19), replacing the subscript f

by l. In addition, for the intermediate inlets/outlets at the positions zh,

zǫi bc,l(zh, t) =

�
Zin,h

ȟ
T
in,h

� fin,h

ql(zh, t)
+ zǫi bc,l(z

−
h

, t)αl (zh, t),

∀h= 1, . . . , pl , ∀t ≥ 0.

Extent of heat exchange The extent of heat exchange xex ,l(z, t) represents the amount of
energy that has transferred to phase L via heat exchange and is at position z at time t. This
extent is described by Eq. (B.21), with the corresponding initial and boundary conditions,
replacing the subscript f by l, and the constraints

xex ,l(zh, t) = xex ,l(z
−
h

, t)αl(zh, t), ∀h= 1, . . . , pl , ∀t ≥ 0.

1Eq. (B.26) results from the rearrangement of the heat balance

hǫ
l
(z−

h
, t)ql(z

−
h

, t) + ȟ
T

in,hfin,h = hǫ
l
(zh, t)ql(zh, t)+ hǫ

l
(z−

h
, t)

qout,h

ǫl (z
−
h

,t)
for hǫ

l
(zh, t).
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Eqs. (3.29) and (B.25) can be reconstructed using

zǫl =L l

� xr,l
xm,l
xex ,l

�

+ zǫi bc,l , (B.27)

with L l =

�
NT

l
Em,l 0Sl

−∆HT
r,l −∆HT

m,l 1

�

. If rank(L l) = Rl + pm,l + 1, the extents are given by the

linear transformation
� xr,l

xm,l
xex ,l

�

= T l δzǫ
l
, (B.28)

with T l :=
�

L T
l
WL l

�−1
L T

l
W, and δzǫ

l
:= zǫ

l
− zǫ

i bc,l .

B.1.7 Tray reactive separation columns

The volumetric heat hǫ
l ,n(t) on the nth tray is described by the ODE

d

dt
hǫl ,n+∆

ωhǫl ,n+ωout,n hǫl ,n =
�

−∆HT
r,l

�

rǫl ,n

+
�

−∆HT
m,l

�

φǫm,l ,n+φ
ǫ
ex ,l ,n+ ȟ

T
in,n

fin,n

Vt,n
,

hǫl ,n(0) = hǫl ,n,0. (B.29)

Multiplying Eq. (B.29) by Vt,n leads to the following expression for Q l ,n := Vt,nhǫ
l ,n(t),

the heat on nth tray

d

dt
Q l ,n+∆

ωQ l ,n+ωout,nQ l ,n =
�

−∆HT
r,l

�

rv
l ,n

+
�

−∆HT
m,l

�

φv
m,l ,n+φ

v
ex ,l ,n+ ȟ

T
in,nfin,n,

Q l ,n(0) = Q l ,n,0, (B.30)

with φv
ex ,l ,n(t) := Vt,nφ

ǫ
ex ,l ,n(t).

Let us define zl ,n :=
h

nl,n
Ql,n

i

. The effect of the outlet flows and transfer of material and
energy between trays on the initial and inlet flow conditions can be computed as ziic,l ,n(t) :=
h

niic,l,n(t)

Qiic,l,n (t)

i

by solving the ODE

d

dt
ziic,l ,n+∆

ωziic,l ,n+ωout,n ziic,l ,n =

�
Zin,n

ȟ
T
in,n

�

fin,n,

ziic,l ,n(0) =
h

nl,n,0
Ql,n,0

i

. (B.31)

Extent of heat exchange The extent of heat exchange xex ,l ,n(t) represents the amount of
energy that has transferred to phase L via heat exchange and is on the nth tray at time t.
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This extent is described by the ODE

d

dt
xex ,l ,n+∆

ωxex ,l ,n+ωout,n xex ,l ,n = φ
v
ex ,l ,n,

xex ,l ,n(0) = 0. (B.32)

Eqs. (3.34) and (B.30) can be reconstructed using

zl ,n =L l

� xr,l,n
xm,l,n
xex ,l,n

�

+ ziic,l ,n, (B.33)

with L l =

�
NT

l
Em,l 0Sl

−∆HT
r,l −∆HT

m,l 1

�

. If rank(L l) = Rl + pm,l + 1, the extents are given by the

linear transformation
� xr,l,n

xm,l,n
xex ,l,n

�

= T l δzl ,n, (B.34)

with T l :=
�

L T
l
WL l

�−1
L T

l
W, and δzl ,n := zl ,n− ziic,l ,n.

B.1.8 Generic distributed reaction systems

The volumetric heat hǫ
f
(χ , t) is described by the PDE

∂

∂ t
hǫf +∇ ·

�

v f hǫf
T
�

=
�

−∆HT
r, f

�

rǫf +
�

−∆HT
m, f

�

φǫm, f

+
�

−∆HT
d, f

�

φǫd, f +φ
ǫ
c, f +φ

ǫ
ex , f . (B.35)

The existence of heat conduction in all three coordinates χ requires defining a row
vector of heat conduction fluxes of dimension 3, denoted Jǫ

c, f (χ, t), which is described by
the PDE

∇ · Jǫ T
c, f = −φ

ǫ
c, f , (B.36)

with the conductive boundary conditions

Jǫc, f (χ , t)~n(χ) = 0, ∀χ ∈ dBC , ∀t ≥ 0.

Eq. (B.35) is subject to the following initial and advective boundary conditions:

hǫf (χ , 0) = hǫf ,0(χ), ∀χ ∈ IC (IC),

hǫf (χ, t) = hǫf ,in(χ , t) + hǫd, f (χ , t) + hǫc, f (χ, t),

∀χ ∈ aBC , ∀t ≥ 0 (BC),
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with hǫ
d, f (χ , t) := −

�

−∆HT
d, f

�

Jǫ
d, f (χ ,t)~n(χ)

βv f (χ ,t)T~n(χ)
and hǫ

c, f (χ , t) := −
Jǫ

c, f (χ ,t)~n(χ)

βv f (χ ,t)T~n(χ)
. These initial and

boundary conditions are also affected by those of Eqs. (3.41) and (B.36).

Let us define zǫ
f

:=
�

cǫ
f

hǫ
f

�

. The effect of advection on the initial and advective boundary

conditions can be computed as zǫ
i bc, f (χ , t) :=

�
cǫ

i bc, f (χ ,t)

hǫ
i bc, f (χ ,t)

�

by solving the PDE

∂

∂ t
zǫi bc, f +∇ ·

�

v f zǫ T
i bc, f

�

= 0S f +1, (B.37)

with the initial and boundary conditions

zǫi bc, f (χ, 0) =
�

cǫ
f ,0(χ)

hǫ
f ,0(χ)

�

, ∀χ ∈ IC , (IC),

zǫi bc, f (χ , t) =

�
cǫ

f ,in(χ ,t)

hǫ
f ,in(χ ,t)

�

, ∀χ ∈ aBC , ∀t ≥ 0 (BC).

Extent of heat conduction The extent of heat conduction xc, f (χ , t) represents the amount
of energy that has transferred via heat conduction in phase F and is at position χ at time t.
This extent is described by the PDE

∂

∂ t
xc, f +∇ ·

�

v f xT
c, f

�

= φǫc, f , (B.38)

with xc, f (χ , 0) = 0, ∀χ ∈ IC (IC), and xc, f (χ , t) = hǫ
c, f (χ , t), ∀χ ∈ aBC , ∀t ≥ 0 (BC).

Extent of heat exchange The extent of heat exchange xex , f (χ , t) represents the amount of
energy that has transferred to phase F via heat exchange and is at position χ at time t. This
extent is described by the PDE

∂

∂ t
xex , f +∇ ·

�

v f xT
ex , f

�

= φǫex , f , (B.39)

with xex , f (χ, 0) = 0, ∀χ ∈ IC (IC), and xex , f (χ , t) = 0, ∀χ ∈ aBC , ∀t ≥ 0 (BC).

Eqs. (3.40) and (B.35) can be reconstructed using Eq. (B.22). If rank
�

L f

�

= R f +

pm, f + pd, f + 1, the extents are given by the linear transformation in Eq. (B.23).
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C.1 Experimental Extents with Minimal Variance

It is known that any optimization problem with the decision variables tr,i and con-
strained by the linear equality constraints Atr,i = b can be converted to an equivalent opti-
mization problem, in which these constraints are discarded and tr,i is replaced by tr,i,s+Fvr,i,
where vr,i are the new decision variables, tr,i,s is a particular solution to Atr,i = b and the
columns of F are a basis of the null space of A [80].

It is clear that Σ−1
ỹi

ST
i NT

i

�

NiSiΣ
−1
ỹi

ST
i NT

i

�−1
ei is a particular solution to the linear equal-

ity constraints NiSitr,i = ei and there is a Wi ×
�
Wi − Ri

�
matrix Pi whose columns are a

basis of the null space of NiSi. Then, if these constraints are discarded and tr,i is replaced
by

tr,i = Σ
−1
ỹi

ST
i NT

i

�

NiSiΣ
−1
ỹi

ST
i NT

i

�−1
ei + Pivr,i

= T T
r,iei + Pivr,i, (C.1)

where vr,i are the new decision variables, the constrained optimization Problem (4.39) can
be converted to the equivalent unconstrained optimization problem

min
vr,i

σ2
x̃r,i ,u
(vr,i) =

�

eT
i T r,i + vT

r,iP
T
i

�

Σỹi

�

T
T
r,iei + Pivr,i

�

= vT
r,iP

T
i Σỹi

Pivr,i + 2vT
r,iP

T
i Σỹi
T

T
r,iei + eT

i T r,iΣỹi
T

T
r,iei. (C.2)

Since Problem (C.2) is unconstrained and the Hessian matrix of σ2
x̃r,i ,u
(vr,i), 2PT

i Σỹi
Pi,

is positive definite for all vr,i, the solution v∗r,i to this problem is given by the stationarity
condition

0Wi−Ri
= 2PT

i Σỹi
Pivr,i + 2PT

i Σỹi
T

T
r,iei. (C.3)
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Since the matrix PT
i Σỹi

Pi is invertible and NiSiPi = 0Ri×(Wi−Ri)
,

v∗r,i = −
�

PT
i Σỹi

Pi

�−1
PT

i Σỹi
T

T
r,iei

= −
�

PT
i Σỹi

Pi

�−1
PT

i ST
i NT

i

�

NiSiΣ
−1
ỹi

ST
i NT

i

�−1
ei

= 0Wi−Ri
, (C.4)

and the solution t∗r,i of the constrained optimization Problem (4.39) is

t∗r,i = T
T
r,iei + Piv

∗
r,i

= T T
r,iei. (C.5)

C.2 Proof of Unbiased Rate Estimation

This proof is constructed via induction.

For r̂0(z̃), it holds that

r̂0(z̃) = 0= −

 
−1∑

k=0

Br̂k (z̃)

!

, (C.6)

Br̂0(z̃) = E
�

r̂0(Z̃)|Z̃ ∼N (z̃,σ2)
�

− r(z̃) = −r(z̃). (C.7)

Hence, for r̂n+1(z̃), with n= 0,1, . . ., it holds that

r̂n+1(z̃) = r̂n(z̃)− Br̂n(z̃) = −

 
n−1∑

k=0

Br̂k(z̃)

!

− Br̂n(z̃) = −

 
n∑

k=0

Br̂k (z̃)

!

, (C.8)

Br̂n+1(z̃) = E
�

r̂n+1(Z̃)|Z̃ ∼N (z̃,σ2)
�

− r(z̃)

= E
�

r̂n(Z̃)|Z̃ ∼N (z̃,σ2)
�

− r(z̃)− E
�

Br̂n(Z̃)|Z̃ ∼N (z̃,σ2)
�

= Br̂n(z̃)− E
�

Br̂n(Z̃)|Z̃ ∼N (z̃,σ2)
�

. (C.9)

Let us express Br̂n(z̃) as the sum

Br̂n(z̃) =

n+1∑

j=1

φn+1, jE j(z̃). (C.10)

In the case of Br̂0(z̃), one can verify that

Br̂0(z̃) = −r(z̃) = −E1(z̃), (C.11)
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which means that

φ1,1 = −1. (C.12)

In the case of Br̂n(z̃), with n= 1,2, . . ., one can also verify that

Br̂n(z̃) = Br̂n−1(z̃)− E
�

Br̂n−1(Z̃)|Z̃ ∼N (z̃,σ2)
�

=

n∑

j=1

φn, jE j(z̃)−






n∑

j=1

φn, j E
�

E j(Z̃)|Z̃ ∼N (z̃,σ2)
�






=

n∑

j=1

φn, jE j(z̃)−






n∑

j=1

φn, jE j+1(z̃)






=

n∑

j=1

φn, jE j(z̃)−






n+1∑

j=2

φn, j−1E j(z̃)






=

n+1∑

j=1

φn+1, jE j(z̃), (C.13)

which means that

φn+1, j =







φn,1, j = 1

φn, j −φn, j−1, j = 2, . . . , n

−φn,n, j = n+ 1

. (C.14)

Moreover, one can show that

n∑

k=0

Br̂k(z̃) =

n∑

k=0






k+1∑

j=1

φk+1, jE j(z̃)




 =

n+1∑

j=1






n∑

k= j−1

φk+1, j




E j(z̃) =

n+1∑

j=1

Φn+1, jE j(z̃),

(C.15)

by defining

Φn+1, j =

n+1∑

k= j

φk, j. (C.16)

In particular, for n= 0 and n= 1,

Φ1,1 = φ1,1 = −1= (−1)1
�1

1

�
, (C.17)

Φ2,1 = φ1,1 +φ2,1 = φ1,1 +φ1,1 = −2= (−1)1
�2

1

�
, (C.18)

Φ2,2 = φ2,2 = −φ1,1 = 1= (−1)2
�2

2

�
. (C.19)

257



Appendix C. Appendix of Chapter 4

In general, for n= 2,3, . . ., one can show that

Φn+1, j =

n∑

k= j

φk, j +φn+1, j

=

(

Φn, j +φn+1, j , j = 1, . . . , n

φn+1, j , j = n+ 1

=







Φn, j +φn,1, j = 1

Φn, j +φn, j −φn, j−1, j = 2, . . . , n

−φn,n, j = n+ 1

=











Φn,1 +Φn,1 −Φn−1,1, j = 1

Φn, j +Φn, j −Φn−1, j −Φn, j−1 +Φn−1, j−1, j = 2, . . . , n− 1

Φn,n+Φn,n −Φn,n−1 +Φn−1,n−1, j = n

−Φn,n, j = n+ 1

=











2Φn,1−Φn−1,1, j = 1

2Φn, j −Φn−1, j −Φn, j−1 +Φn−1, j−1, j = 2, . . . , n− 1

2Φn,n−Φn,n−1 +Φn−1,n−1, j = n

−Φn,n, j = n+ 1

, (C.20)

therefore, if






Φn−1, j = (−1) j
�n−1

j

�
, j = 1, . . . , n− 1

Φn, j = (−1) j
�n

j

�
, j = 1, . . . , n

, (C.21)
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which is satisfied for n= 2, then it follows that

Φn+1, j =














2 (−1)1
�n

1

�
− (−1)1

�n−1
1

�
, j = 1

2 (−1) j
�n

j

�
− (−1) j

�n−1
j

�
− (−1) j−1

�
� n

j−1

�
−
�n−1

j−1

�
�

, j = 2, . . . , n− 1

2 (−1)n
�n

n

�
− (−1)n−1

�
� n

n−1

�
−
�n−1

n−1

�
�

, j = n

− (−1)n
�n

n

�
, j = n+ 1

=













−2n+ (n− 1) , j = 1

(−1) j
�

2
�n

j

�
−
�n−1

j

�
+
� n

j−1

�
−
�n−1

j−1

�
�

, j = 2, . . . , n− 1

(−1)n (2+ n− 1) , j = n

(−1)n+1 , j = n+ 1

=











− (n+ 1) , j = 1

(−1) j
�
�n

j

�
+
� n

j−1

�
�

, j = 2, . . . , n− 1

(−1)n (n+ 1) , j = n

(−1)n+1 , j = n+ 1

= (−1) j
�

n+ 1

j

�

, j = 1, . . . , n+ 1, (C.22)

which implies that this condition is satisfied for all n= 0,1, . . .. Consequently,

r̂n+1(z̃) = −

 
n∑

k=0

Br̂k(z̃)

!

= −






n+1∑

j=1

Φn+1, jE j(z̃)




 =

n+1∑

j=1

(−1) j+1
�

n+ 1

j

�

E j(z̃).

(C.23)

C.3 Unbiased Rate Estimation via the Delta Method

First, let us show how the delta method can be applied to the unbiased estimation of
the rate r. The delta method requires that an nth-degree Taylor series expansion of the rate
r around z be valid for any value of z̃ with a probability density greater than α, that is,

r(z̃) =

n∑

k=0

r(k)(z)

k!
(z̃ − z)k , ∀z̃ :

1

σ
φ

�
z̃ − z

σ

�

> α, (C.24)
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where φ is the probability density function of the standard normal distribution. In that case,

E
�

r(Z)|Z ∼N (z,σ2)
�

=

∫ ∞

−∞

r(z̃)
1

σ
φ

�
z̃ − z

σ

�

dz̃

=

n∑

k=0

r(k)(z)

k!
σk

∫ ∞

−∞

�
z̃ − z

σ

�k 1

σ
φ

�
z̃ − z

σ

�

dz̃

=

n∑

k=0

r(k)(z)

k!
σk

∫ ∞

−∞

x kφ (x)dx

=

⌊n/2⌋∑

k=0

r(2k)(z)

(2k)!
σ2k (2k− 1)!!

= r(z) +

⌊n/2⌋∑

k=1

r(2k)(z)

(2k)!
σ2k (2k− 1)!!, (C.25)

where k!! denotes the double factorial of k, which is the product of all the odd integers up
to k if k is odd. This implies that

E



r(Z)−

⌊n/2⌋∑

k=1

r(2k)(z)

(2k)!
σ2k (2k− 1)!!|Z ∼N (z,σ2)



= r(z), (C.26)

meaning that r(Z)−
∑⌊n/2⌋

k=1
r(2k)(z)

(2k)!
σ2k (2k− 1)!! is an unbiased estimator of r(z). However,

since z is unknown, the estimator r̂δ given by the delta method will have to correspond to
the substitution of z by z̃ in the expression of this estimator, which yields the estimate

r̂δ(z̃) = r(z̃)−

⌊n/2⌋∑

k=1

r(2k)(z̃)

(2k)!
σ2k (2k− 1)!!= 2r(z̃)−

⌊n/2⌋∑

k=0

r(2k)(z̃)

(2k)!
σ2k (2k− 1)!!.

(C.27)

Then, taking Eq. (C.25) into account yields the following result:

r̂δ(z̃) = 2r(z̃)− E
�

r(Z̃)|Z̃ ∼N (z̃,σ2)
�

= 2E1(z̃)−E2(z̃)

= r̂2(z̃). (C.28)

Hence, the application of the delta method to unbiased rate estimation is equivalent to
a particular case of the aforementioned more general method.
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C.4 Unbiased Rate Estimation via the Extent-based Incremental

Approach

Let us show that, if Eq. (4.57) is satisfied and all the measurements z̃(t) needed to
compute r̂ℓ

�
z̃(t),θ

�
are uncorrelated and corrupted by zero-mean noise, then r̂ℓ

�
z̃(t),θ

�

is an unbiased estimate of rℓ
�
z(t),θ

�
, and Eq. (4.58) holds.

According to Section 4.3.2, r̂ℓ, j,s
�
z̃s(t),θ

�
can be assumed to be an unbiased estimate

of rℓ, j,s
�
zs(t),θ

�
for all s = 1, . . . ,S + 1 if z̃s(t) is corrupted by zero-mean noise. Hence,

if Eq. (4.57) is satisfied and all the measurements z̃(t) needed to compute r̂ℓ
�
z̃(t),θ

�
are

uncorrelated and corrupted by zero-mean noise, then

E
�

r̂ℓ
�
z̃(t),θ

��
= E






J∑

j=1

wℓ, j

S+1∏

s=1

r̂ℓ, j,s
�
z̃s(t),θ

�






=

J∑

j=1

wℓ, j

S+1∏

s=1

E
�

r̂ℓ, j,s
�
z̃s(t),θ

��

=

J∑

j=1

wℓ, j

S+1∏

s=1

rℓ, j,s
�
zs(t),θ

�

= rℓ
�
z(t),θ

�
, ∀ℓ= 0, . . . , L, (C.29)

which shows that r̂ℓ
�
z̃(t),θ

�
is indeed an unbiased estimate of rℓ

�
z(t),θ

�
.

Then,

lim
h→0

E
�

d̂ℓ(t,θ )
�

= lim
h→0

t

h∑

m=0

hγmrℓ
�
z(tm),θ

� xic(t)/V (t)

xic(tm)/V (tm)

=

∫ t

0

rℓ(z(τ),θ )
xic(t)/V (t)

xic(τ)/V (τ)
dτ

= dℓ(t,θ ), ∀ℓ= 0, . . . , L, (C.30)

and, if the measurements at different time instants are uncorrelated,

lim
h→0

Var
�

d̂ℓ(t,θ )
�

= lim
h→0

t

h∑

m=0

h2γ2
m Var

�
r̂ℓ
�
z̃(tm),θ

��
�

xic(t)/V (t)

xic(tm)/V (tm)

�2

= lim
h→0

th

∑ t

h

m=0 γ
2
m Var

�
r̂ℓ
�
z̃(tm),θ

��
�

xic (t)/V (t)

xic(tm)/V (tm)

�2

t

h

= 0, ∀ℓ= 0, . . . , L, (C.31)

which implies that Eq. (4.58) holds.
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C.5 Global Solution to the Identification Problem

The following equations show that, if r is the ith reaction rate and α∗ and θ ∗ are the
true values of the parameters, a global minimum of J(α,θ ) is attained for these values of
the parameters, when h→ 0:

lim
h→0

J(α,θ )

H
= lim

H→∞

H∑

m=1

1

H

 

d0(tm,θ ) +
L∑

ℓ=1

αℓdℓ(tm,θ )−
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H→∞

H∑
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1

H

 

xr(tm,α,θ )− xr,i(tm)
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+

E
�
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V (tm)
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=

H∑
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1

H

�
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V (tm)

�2
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H→∞

H∑
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H

 

E
�

x̃r,i(tm)
�
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!2
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H∑
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H
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E
�

x̃r,i(tm)
�
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V (tm)

=

H∑

m=1

1

H

�
xr(tm,α,θ )− xr,i(tm)

V (tm)

�2

+

H∑

m=1

1

H
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
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�
x̃r,i(tm)

V (tm)
− E

�
x̃r,i(tm)

V (tm)

��2




+

H∑
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2

H

xr(tm,α,θ )− xr,i(tm)

V (tm)

E
�

x̃r,i(tm)
�

− E
�

x̃r,i(tm)
�

V (tm)

=

H∑

m=1

1

H

�
xr(tm,α,θ )− xr,i(tm)

V (tm)

�2

+ Var

�
x̃r,i(t)

V (t)

�

, ∀α,θ , (C.32)

lim
h→0

J(α∗,θ ∗)

H
=

H∑

m=1

1

H

�
xr(tm,α∗,θ ∗)− xr,i(tm)

V (tm)

�2

+ Var

�
x̃r,i(t)

V (t)

�

= Var

�
x̃r,i(t)

V (t)

�

≤ lim
h→0

J(α,θ )

H
, ∀α,θ . (C.33)

C.6 Proof of the Reformulation as a Convex Optimization Prob-

lem

Let us assume that the optimal ∆θ is in the compact set C =
n

y :
∑

q∈K2
cqyq ≥ 0

o

.
This proof shows that, by using the equivalence of nonnegative polynomials and conical
combination of sum-of-squares polynomials on a compact set [102], Problem (4.78) can be
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written as the convex semidefinite program (SDP)

max
ζ,Q0,Q1

ζ (C.34a)

s.t. Q0 � 0s(N ,d)×s(N ,d) (C.34b)

Q1 � 0s(N ,d−1)×s(N ,d−1) (C.34c)

bk − akζ = tr
�

R0,kQ0

�

+
∑

q∈K2
k−q∈K2d

cq tr
�

R1,k−qQ1

�

, ∀k ∈K2d , (C.34d)

where R0,k and R1,k are localizing matrices such that

∑

k∈K2d

R0,k∆θ
k = vd(∆θ )vd(∆θ )

T, (C.35a)

∑

k∈K2d

R1,k∆θ
k = vd−1(∆θ )vd−1(∆θ )

T, (C.35b)

with the s(N , d)-dimensional vector of monomials up to degree d in the N variables ∆θ
defined as

vd(∆θ )
T :=

�

1,∆θ1, · · · ,∆θN ,∆θ2
1, · · · ,∆θ1∆θN , · · · ,∆θ2

N , · · · ,∆θ d
1 , · · · ,∆θ d

N

�

.
(C.36)

Note that, if Pa(∆θ ) and Pb(∆θ ) are univariate polynomials (N = 1), Problems (4.78)
and (C.34) are equivalent with d = n (L+ 1). In the case of multivariate polynomials
(N ≥ 2), the equivalence between these optimization problems is obtained for some d ≥

n (L+ 1), by starting with d = n (L + 1) and increasing d until rank
�∑

k∈K2d
R0,kµk

�

=

rank
�∑

k∈K2d
R1,kµk

�

, where µk is the dual variable of the constraint in Eq. (C.34d), ∀k ∈

K2d [158].

Let us proceed with the proof. Since it is assumed that the optimal ∆θ is in a compact

set C =
n

y :
∑

q∈K2
cqyq ≥ 0

o

, the feasibility of the constraint on the cost function J̄c(∆θ ),

J̄c(∆θ )− ζ ≥ 0, ∀∆θ ∈ C , (C.37)

is still equivalent to the nonnegativity of a polynomial in ∆θ , as follows:

det
�
M(∆θ )

�
− det

�
Hc(∆θ )

�
ζ ≥ 0, ∀∆θ ∈ C . (C.38)

Let us introduce ak and bk such that they correspond to the coefficients of the polyno-
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mials det
�
Hc(∆θ )

�
and det

�
M(∆θ )

�
, respectively, which means that they satisfy

det
�
Hc(∆θ )

�
=
∑

k∈K2d

ak∆θ
k, (C.39a)

det
�
M(∆θ )

�
=
∑

k∈K2d

bk∆θ
k, (C.39b)

where d ≥ n (L + 1).

This definition results in

det
�
M(∆θ )

�
− det

�
Hc(∆θ )

�
ζ =

∑

k∈K2d

�
bk − akζ

�
∆θ k. (C.40)

Moreover,

vd(∆θ )
TQ0vd(∆θ ) = tr

�

vd(∆θ )vd(∆θ )
TQ0

�

=
∑

k∈K2d

tr
�

R0,kQ0

�

∆θ k (C.41)

and
∑

q∈K2

cq∆θ
qvd−1(∆θ )

TQ1vd−1(∆θ ) =
∑

q∈K2

cq∆θ
q tr
�

vd−1(∆θ )vd−1(∆θ )
TQ1

�

=
∑

q∈K2

cq∆θ
q
∑

k∈K2d

k−q∈K2d

tr
�

R1,k−qQ1

�

∆θ k−q

=
∑

k∈K2d

∑

q∈K2
k−q∈K2d

cq tr
�

R1,k−qQ1

�

∆θ k, (C.42)

which implies that it is equivalent to write

det
�
M(∆θ )

�
− det

�
Hc(∆θ )

�
ζ

= vd(∆θ )
TQ0vd(∆θ ) +

∑

q∈K2

cq∆θ
qvd−1(∆θ )

TQ1vd−1(∆θ ), ∀∆θ , (C.43)

and

bk − akζ = tr
�

R0,kQ0

�

+
∑

q∈K2
k−q∈K2d

cq tr
�

R1,k−qQ1

�

, ∀k ∈K2d . (C.44)

From the equivalence of nonnegative polynomials and conical combination of sum-of-
squares polynomials on a compact set, one can show that the feasibility of Eq. (C.38) is
equivalent to the feasibility of a set of LMIs since the following three conditions are equiva-
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lent:

det
�
M(∆θ )

�
− det

�
Hc(∆θ )

�
ζ ≥ 0, ∀∆θ ∈ C , (C.45)

∃Q0,Q1 :














Q0 � 0s(N ,d)×s(N ,d)

Q1 � 0s(N ,d−1)×s(N ,d−1)

det
�
M(∆θ )

�
− det

�
Hc(∆θ )

�
ζ

= vd(∆θ )
TQ0vd(∆θ ) +

∑

q∈K2

cq∆θ
qvd−1(∆θ )

TQ1vd−1(∆θ ), ∀∆θ

,

(C.46)

∃Q0,Q1 :













Q0 � 0s(N ,d)×s(N ,d)

Q1 � 0s(N ,d−1)×s(N ,d−1)

bk − akζ = tr
�

R0,kQ0

�

+
∑

q∈K2
k−q∈K2d

cq tr
�

R1,k−qQ1

�

, ∀k ∈K2d

. (C.47)

Then, Eq. (C.45) is feasible if and only if there exist symmetric and positive semidefinite
matrices Q0 and Q1 such that, for each k ∈ K2d , bk − akζ is equal to a linear combination
of the elements of Q0 and Q1 specified by the matrices R0,k and R1,k−q, for all q ∈ K2 such
that k− q ∈K2d .

C.7 Computing the Solution ∆θ ∗

This proof shows that, for the primal problem, vd(∆θ
∗) lies in the null space of Q∗0,

whereas for the dual problem, vd(∆θ
∗) lies in the row space of L∗0, where L0 is the dual vari-

able of the LMI (C.34b). An algorithm that computes the solutions∆θ ∗ using the knowledge
of the space where vd(∆θ

∗) lies is described in [158].

C.7.1 Using the solution to the primal problem

One can note that ∆θ ∗ is indeed the global solution to the original problem if and only
if

(

J̄c(∆θ )− ζ
∗ ≥ 0, ∀∆θ ∈ C

J̄c(∆θ
∗)− ζ∗ = 0

, (C.48)
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which is equivalent to

(

det
�
M(∆θ )

�
− det

�
Hc(∆θ )

�
ζ∗ ≥ 0, ∀∆θ ∈ C

det
�
M(∆θ ∗)

�
− det

�
Hc(∆θ

∗)
�
ζ∗ = 0

. (C.49)

Since the solution Q∗0,Q∗1 of the SDP (C.34) must be feasible, the condition











Q∗0 � 0s(N ,d)×s(N ,d)

Q∗1 � 0s(N ,d−1)×s(N ,d−1)

bk− akζ
∗ = tr

�

R0,kQ∗0

�

+
∑

q∈K2
k−q∈K2d

cq tr
�

R1,k−qQ∗1

�

, ∀k ∈K2d

(C.50)

is satisfied, which, along with Eqs. (C.43) and (C.44), implies that

0≤ det
�
M(∆θ )

�
− det

�
Hc(∆θ )

�
ζ∗

= vd(∆θ )
TQ∗0vd(∆θ ) +

∑

q∈K2

cq∆θ
qvd−1(∆θ )

TQ∗1vd−1(∆θ ), ∀∆θ ∈ C . (C.51)

Hence, from Eqs. (C.48) and (C.51), a sufficient and necessary condition to find ∆θ ∗ ∈
C is

vd(∆θ
∗)TQ∗0vd(∆θ

∗) +
∑

q∈K2

cq∆θ
∗qvd−1(∆θ

∗)TQ∗1vd−1(∆θ
∗) = 0. (C.52)

From Eqs. (C.50) and (C.52), one can see that

(

Q∗0 � 0s(N ,d)×s(N ,d)

vd(∆θ
∗)TQ∗0vd(∆θ

∗) = 0
, (C.53)

which implies that Q∗0 has at least one eigenvalue equal to 0, while all the other eigenvalues
are positive.

From the eigenvalue decomposition

Q∗0 =

s(N ,d)∑

l=1

λlulu
T
l (C.54)

and Eq. (C.53), one can see that

0= vd(∆θ
∗)TQ∗0vd(∆θ

∗) =

s(N ,d)∑

l=1

λl

�

uT
l vd(∆θ

∗)
�2

, (C.55)

therefore ∆θ ∗ must be such that vd(∆θ
∗) lies in the null space of Q∗0.
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C.7.2 Using the solution to the dual problem

Since the Lagrangian of Problem (C.34) is

L (ζ,Q0,Q1,L0,L1,µ)

=













ζ+ tr(L0Q0) + tr(L1Q1) +
∑

k∈K2d

�
bk− akζ

�
µk

−
�∑

k∈K2d
tr
�

R0,kQ0

�

µk

�

−

�
∑

k∈K2d

∑

q∈K2
k−q∈K2d

cq tr
�

R1,k−qQ1

�

µk

�

, if

¨

L0 � 0s(N ,d)×s(N ,d)

L1 � 0s(N ,d−1)×s(N ,d−1)

∞, otherwise

,

(C.56)

the dual of that problem is

min
L0,L1,µ

max
ζ,Q0,Q1

L (ζ,Q0,Q1,L0,L1,µ)

= min
L0,L1,µ

∑

k∈K2d

bkµk (C.57a)

s.t. 1=
∑

k∈K2d

akµk (C.57b)

L0 � 0s(N ,d)×s(N ,d) (C.57c)

L1 � 0s(N ,d−1)×s(N ,d−1) (C.57d)

L0 =
∑

k∈K2d

R0,kµk (C.57e)

L1 =
∑

k∈K2d

∑

q∈K2
k−q∈K2d

cqR1,k−qµk. (C.57f)

In the dual Problem (C.57), L0 is the dual variable of the LMI (C.34b), L1 is the dual vari-
able of the LMI (C.34c) and µk is the dual variable of the equality constraint in Eq. (C.34d),
∀k ∈ K2d .

Since both the primal Problem (C.34) and the dual Problem (C.57) are convex SDPs,
strong duality holds and the optimal value of the objective function is equal in both cases,
which implies that the solution µ∗ must satisfy

ζ∗ =
∑

k∈K2d

bkµ
∗
k. (C.58)

Let us assume that ∆θ ∗(1), . . . ,∆θ ∗(G) are the G global solutions to Problem (4.77).

267



Appendix C. Appendix of Chapter 4

Note that, for all l = 1, . . . , G, there exist ρl > 0 such that













∑

k∈K2d

�
bk− akζ

∗�
G∑

l=1

ρl∆θ
∗(l)

k
= 0

∑

k∈K2d

ak

G∑

l=1

ρl∆θ
∗(l)

k
> 0

, (C.59)

otherwise ζ∗ would not be the optimum of the primal Problem (C.34). Then, it is possible
to show that µ∗ is a solution to the dual Problem (C.57) if it is such that

µ∗k =

G∑

l=1

λl∆θ
∗(l)

k, ∀k ∈ K2d , (C.60)

where

λl =
ρl

∑

k∈K2d
ak

∑G

l=1ρl∆θ
∗(l)

k
> 0, ∀l = 1, . . . , G. (C.61)

This implies that

∑

k∈K2d

akµ
∗
k =

∑

k∈K2d

ak

∑G

l=1ρl∆θ
∗(l)

k

∑

k∈K2d
ak

∑G

l=1ρl∆θ
∗(l)

k
= 1 (C.62)

and

ζ∗ =
∑

k∈K2d

akζ
∗µ∗k. (C.63)

Note that, according to Eqs. (C.60) and (C.63), the solution µ∗ satisfies
∑

k∈K2d

bkµ
∗
k− ζ

∗ =
∑

k∈K2d

�
bk− akζ

∗�µ∗k

=
∑

k∈K2d

�
bk− akζ

∗�
G∑

l=1

λl∆θ
∗(l)

k

= 0, (C.64)

and this solution yields the optimal value of the objective function shown in Eq. (C.58).

Finally, one can show that the remaining constraints are also satisfied by the solution µ∗
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because, in that case, one can set

L∗0 =
∑

k∈K2d

R0,k

G∑

l=1

λl∆θ
∗(l)

k

=

G∑

l=1

λl

∑

k∈K2d

R0,k∆θ
∗(l)

k

=

G∑

l=1

λlvd(∆θ
∗(l))vd(∆θ

∗(l))T, (C.65a)

L∗1 =
∑

k∈K2d

∑

q∈K2
k−q∈K2d

cqR1,k−q

G∑

l=1

λl∆θ
∗(l)

k

=

G∑

l=1

λl

∑

q∈K2

cq∆θ
∗(l)

q
∑

k∈K2d

k−q∈K2d

R1,k−q∆θ
∗(l)

k−q

=

G∑

l=1

λl

∑

q∈K2

cq∆θ
∗(l)

q
vd−1(∆θ

∗(l))vd−1(∆θ
∗(l))T, (C.65b)

which satisfies the constraints


















L∗0 � 0s(N ,d)×s(N ,d)

L∗1 � 0s(N ,d−1)×s(N ,d−1)

L∗0 =
∑

k∈K2d

R0,kµ
∗
k

L∗1 =
∑

k∈K2d

∑

q∈K2
k−q∈K2d

cqR1,k−qµ
∗
k

. (C.66)

From Eq. (C.65a), it is possible to observe that, for each solution ∆θ ∗, vd(∆θ
∗) lies in

the space spanned by the eigenvectors of L∗0 that correspond to its positive eigenvalues, that
is, the row space of L∗0.

C.8 Unbiased Rate Estimation via the Convex Extent-based In-

cremental Approach

Let us show that, if Eq. (4.79) is satisfied and all the measurements z̃(t) needed to
compute r̂ℓ,k

�
z̃(t)

�
are uncorrelated and corrupted by zero-mean noise, then r̂ℓ,k

�
z̃(t)

�
is

an unbiased estimate of ∂
krℓ

∂ θ k

�
z(t), θ̄

�
, and Eq. (4.80) holds.

According to Section 4.3.2, r̂ℓ,k, j,s
�
z̃s(t)

�
can be assumed to be an unbiased estimate
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of rℓ,k, j,s
�
zs(t)

�
for all s = 1, . . . ,S + 1 if z̃s(t) is corrupted by zero-mean noise. Hence,

if Eq. (4.79) is satisfied and all the measurements z̃(t) needed to compute r̂ℓ,k
�
z̃(t)

�
are

uncorrelated and corrupted by zero-mean noise, then

E
�

r̂ℓ,k
�
z̃(t)

��

= E






J∑

j=1

wℓ,k, j

S+1∏

s=1

r̂ℓ,k, j,s
�
z̃s(t)

�






=

J∑

j=1

wℓ,k, j

S+1∏

s=1

E
�

r̂ℓ,k, j,s
�
z̃s(t)

��

=

J∑

j=1

wℓ,k, j

S+1∏

s=1

rℓ,k, j,s
�
zs(t)

�

=
∂ krℓ

∂ θ k

�
z(t), θ̄

�
, ∀ℓ= 0, . . . , L, ∀k ∈Kn, (C.67)

which shows that r̂ℓ,k
�
z̃(t)

�
is indeed an unbiased estimate of ∂

krℓ

∂ θ k

�
z(t), θ̄

�
.

Then, similarly to Eqs. (C.30) and (C.31), one can show that

lim
h→0

E
�

d̂ℓ,k(t)
�

= dℓ,k(t), ∀ℓ= 0, . . . , L, ∀k ∈ Kn, (C.68)

and, if the measurements at different time instants are uncorrelated,

lim
h→0

Var
�

d̂ℓ,k(t)
�

= 0, ∀ℓ= 0, . . . , L, ∀k ∈Kn, (C.69)

which implies that Eq. (4.80) holds.
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D.1 Numerical Differentiation Using the Savitzky-Golay Filter

Proposition D.1. Let y(n−1) be Lipschitz continuous, and let S p,n,q,w(ỹ, t) be the p-th differ-

entiation Savitzky-Golay filter [109] of order n and odd window size q > 1 given for the point

w + 1 of the window and applied to the noisy function ỹ on the interval [t − ∆t, t], with

∆t :=
�
q− 1

�
h. If S p,n,q,w(ỹ, t) is defined as

S p,n,q,w(ỹ, t) :=
p!

hp

q−1∑

k=0

�

cp,n,w

�

k+1
ỹ(t −∆t + kh), (D.1)

where

�

cp,n,w

�

k+1
=

n∑

m=p

�m

p

��

w −
q−1

2

�m−p �
Cn

�

k+1,m+1

=

n∑

i=0

�

k−
q−1

2

�i �

ap,n,w

�

i+1
, k = 0, . . . ,q− 1, (D.2)

with

�
Cn

�

k+1,m+1 =

n∑

i=0

�

k−
q−1

2

�i �
An

�

i+1,m+1 , k = 0, . . . ,q− 1, m = 0, . . . , n,

(D.3)

�

ap,n,w

�

i+1
=

n∑

m=p

�m

p

��

w −
q−1

2

�m−p �
An

�

i+1,m+1 , i = 0, . . . , n, (D.4)

where An is the unique solution to

GnAn = In+1, (D.5)
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with

�
Gn

�

l+1,i+1 =

q−1∑

k=0

�

k−
q−1

2

�i+l
, l = 0, . . . , n, i = 0, . . . , n, (D.6)

then the expected value of S p,n,q,w(ỹ, t) is given by

E
�

S p,n,q,w(ỹ, t)
�

= y(p)(t −∆t +wh)

−
p!

hp

�
∑q−1

k=0

�

cp,n,w

�

k+1

∫ k

w

y(n)(t−∆t+wh)−y(n)(t−∆t+ξh)

(n−1)!
hn (k− ξ)n−1 dξ

�

, (D.7)

while the covariance of
∑H

m=1λ
m−1
1

hp

p!
S p,n,q,w(dy, t −mh) and

∑H

m=1λ
m−1
2

hp

p!
S p,n,q,w(dy, t −

mh) and the covariance of
∑H

m=1λ
m−1
1 hdx(t − mh) and

∑H

m=1λ
m−1
2

hp

p!
S p,n,q,w(dy, t −mh),

where −1< λ1 < 1 and −1< λ2 < 1, are given by

Cov





H∑

m=1

λm−1
1

hp

p!
S p,n,q,w(dy, t −mh),

H∑

m=1

λm−1
2

hp

p!
S p,n,q,w(dy, t −mh)





= Var
�

dy(t)
� β ′p,n,q,w(λ1,λ2, H)

1−λ1λ2
, (D.8)

Cov





H∑

m=1

λm−1
1 hdx(t −mh),

H∑

m=1

λm−1
2

hp

p!
S p,n,q,w(dy, t −mh)





= Cov
�

dx(t),dy(t)
� hγ′p,n,q,w(λ1,λ2, H)

1−λ1λ2
, (D.9)

with

β ′p,n,q,w(λ1,λ2, H) =

min(H,q−1)∑

l=1

λl
2

�

1−
�
λ1λ2

�H−l
� q−1∑

k=l

�

cp,n,w

�

k+1

�

cp,n,w

�

k−l+1

+

min(H,q−1)∑

l=1

λl
1

�

1−
�
λ1λ2

�H−l
� q−1∑

k=l

�

cp,n,w

�

k+1

�

cp,n,w

�

k−l+1

+
�

1−
�
λ1λ2

�H
�

q−1∑

k=0

�

cp,n,w

�2

k+1
, (D.10)

γ′p,n,q,w(λ1,λ2, H) =

q−1∑

k=max(q−1−H,0)

�

λ
−(k−q+1)
1

�

1−
�
λ1λ2

�H+k−q+1
���

cp,n,w

�

k+1
,

(D.11)
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provided that the measurements ỹ(t) are corrupted by zero-mean noise, and the measurements

ỹ(t −mh) and x̃(t −mh) at different time instants, for m= 1, . . . , H, where H is an arbitrary

number of sampling times, are independent and identically distributed.

Proof. Note that the definition of Cn implies that

q−1∑

k=0

�

k−
q−1

2

�l �
Cn

�

k+1,m+1 =

n∑

i=0

q−1∑

k=0

�

k−
q−1

2

�i+l �
An

�

i+1,m+1

=

n∑

i=0

�
Gn

�

l+1,i+1
�
An

�

i+1,m+1

=







0, l 6= m

1, l = m
, l = 0, . . . , n, m = 0, . . . , n.

(D.12)
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The previous equality results in

q−1∑

k=0

(k−w)l
�

cp,n,w

�

k+1

=

q−1∑

k=0

(k−w)l

 
n∑

m=p

�m

p

��

w −
q−1

2

�m−p �
Cn

�

k+1,m+1

!

=

q−1∑

k=0

n∑

m=p

�m

p

��

w −
q−1

2

�m−p �
Cn

�

k+1,m+1






l∑

j=0

�l

j

��

k−
q−1

2

� j � q−1
2
−w

�l− j






=

n∑

m=p

�m

p

��

w −
q−1

2

�m−p






l∑

j=0

�l

j

�� q−1
2
−w

�l− j

 
q−1∑

k=0

�

k−
q−1

2

� j �
Cn

�

k+1,m+1

!





=







0, l = 0, . . . , p− 1
∑l

m=p

�m

p

��

w −
q−1

2

�m−p � l

m

�� q−1
2
−w

�l−m
, l = p, . . . , n

=







0, l = 0, . . . , p− 1
∑l−p

m=0

�m+p

p

��

w −
q−1

2

�m � l

m+p

�� q−1
2
−w

�l−p−m
, l = p, . . . , n

=







0, l = 0, . . . , p− 1
l!

p!(l−p)!

∑l−p

m=0
(l−p)!

m!(l−p−m)!

�

w −
q−1

2

�m � q−1
2
−w

�l−p−m
, l = p, . . . , n

=







0, l = 0, . . . , p− 1
l!

p!(l−p)!
0l−p, l = p, . . . , n

=







0, l 6= p

1, l = p
, l = 0, . . . , n. (D.13)
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Consequently,

q−1∑

k=0

�

cp,n,w

�

k+1

∫ k

w

p!
(k− ξ)n−1

(n− 1)!
dξ =

p!

(n− 1)!

 
q−1∑

k=0

�

cp,n,w

�

k+1

�

−
(k− ξ)n

n

�k

w

!

=
p!

n!

 
q−1∑

k=0

(k−w)n
�

cp,n,w

�

k+1

!

=







0, n 6= p

1, n= p
. (D.14)

From the fact that the measurements ỹ(t) are corrupted by zero-mean noise and the fact
that y(n−1) is Lipschitz continuous, the expected value of S p,n,q,w(ỹ, t) is

E
�

S p,n,q,w(ỹ, t)
�

= S p,n,q,w(y, t)

=
p!

hp

q−1∑

k=0

�

cp,n,w

�

k+1
y(t −∆t + kh)

=
p!

hp

 
q−1∑

k=0

�

cp,n,w

�

k+1

 
n−1∑

l=0

y(l)(t −∆t +wh)

l!

�
(k−w)h

�l

!!

+
p!

hp

�∑q−1
k=0

�

cp,n,w

�

k+1

∫ kh

wh

y(n)(t−∆t+τ)

(n−1)!

�
kh −τ

�n−1 dτ
�

=

n−1∑

l=0

y(l)(t −∆t +wh)
p!hl−p

l!

 
q−1∑

k=0

(k−w)l
�

cp,n,w

�

k+1

!

+ h−p
�∑q−1

k=0

�

cp,n,w

�

k+1

∫ k

w
p!y(n)(t −∆t + ξh)hn (k−ξ)

n−1

(n−1)!
dξ
�

, (D.15)

which implies that, for p = 0, . . . , n− 1,

E
�

S p,n,q,w(ỹ, t)
�

= S p,n,q,w(y, t)

= y(p)(t −∆t +wh) + h−p
�∑q−1

k=0

�

cp,n,w

�

k+1

∫ k

w
p!y(n)(t −∆t +ξh)hn (k−ξ)

n−1

(n−1)!
dξ
�

= y(p)(t −∆t +wh)

−
p!

hp

�
∑q−1

k=0

�

cp,n,w

�

k+1

∫ k

w

y(n)(t−∆t+wh)−y(n)(t−∆t+ξh)

(n−1)!
hn (k− ξ)n−1 dξ

�

, (D.16)
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and

E
�

S p,p,q,w(ỹ, t)
�

= S p,p,q,w(y, t)

= h−p
�
∑q−1

k=0

�

cp,p,w

�

k+1

∫ k

w
p!y(p)(t −∆t + ξh)hp (k−ξ)

p−1

(p−1)!
dξ
�

= y(p)(t −∆t +wh)

−
p!

hp

�
∑q−1

k=0

�

cp,p,w

�

k+1

∫ k

w

y(p)(t−∆t+wh)−y(p)(t−∆t+ξh)

(p−1)!
hp (k− ξ)p−1 dξ

�

. (D.17)

The fact that the measurements ỹ(t − mh) and x̃(t − mh) at different time instants,
for m = 0, . . . , H, are independent and identically distributed results in the covariance of
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∑H

m=1λ
m−1
1

hp

p!
S p,n,q,w(dy, t −mh) and

∑H

m=1λ
m−1
2

hp

p!
S p,n,q,w(dy, t −mh)

Cov




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1
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p!
S p,n,q,w(dy, t −mh),

H∑

m=1

λm−1
2

hp

p!
S p,n,q,w(dy, t −mh)




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
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
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


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
∑H

m′=1
m′=m−l

λm′−1
2 (cp,n,w)k−l+1



Var[dy(t−∆t+(k−m)h)]




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
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


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�
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�
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�
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�
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(D.18)
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and in the covariance of
∑H

m=1λ
m−1
1 hdx(t −mh) and
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m′=1
m′=m+k−q+1

λm′−1
2 (cp,n,w)k+1









Cov[dx(t−mh),dy(t−mh)]






= Cov
�

dx(t),dy(t)
�

q−1∑

k=max(q−1−H,0)

hλ
−(k−q+1)
1

�

1−
�
λ1λ2

�H+k−q+1
�

1−λ1λ2

�

cp,n,w

�

k+1

= Cov
�

dx(t),dy(t)
� hγ′p,n,q,w(λ1,λ2, H)

1−λ1λ2
. (D.19)

D.2 Proof of Proposition 5.1

Since Dq(ỹ, t) = S 1,1,q,q−1(ỹ, t), the following equations are a consequence of Appendix
D.1:

G1 =




q 0

0
q(q2−1)

12



 , (D.20)

A1 = G−1
1 =





1
q

0

0 12
q(q2−1)



 , (D.21)

�
C1
�

k+1,m+1 =

1∑

i=0

�

k−
q−1

2

�i �
A1
�

i+1,m+1 , k = 0, . . . ,q− 1, m= 0,1,

(D.22)
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ck+1 =
�

c1,1,q−1

�

k+1

=

1∑

m=1

m
�

q−1
2

�m−1 �
C1
�

k+1,m+1

=
�
C1
�

k+1,2

=

1∑

i=0

�

k−
q−1

2

�i �
A1
�

i+1,2

=
12
�

k−
q−1

2

�

q
�
q2 − 1

� , k = 0, . . . ,q− 1. (D.23)

These results have the following consequences:

q−1∑

k=0

c2
k+1 =

12

q
�
q2 − 1

� , (D.24)

q−1∑

k=l

ck+1ck−l+1 =
12
�
q− l

�

q2 �q2 − 1
� −

24
�

q2− l2
�

l
�
q
�
q2 − 1

��2 , l = 0, . . . ,q− 1. (D.25)

It can also be proven that

q−2∑

k=0

bk+1 = 1. (D.26)

From the proposition in Appendix D.1 and the fact that the measurements ỹ(t) are cor-
rupted by zero-mean noise, it is possible to find the expected value of Dq(ỹ, t) and Rq(ẏ, t)
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since

E
�

Dq(ỹ, t)
�

= Dq(y, t)

=

q−1∑

k=0

ck+1

∫ k

q−1

ẏ(t −∆t + ξh)dξ

= −

q−1∑

k=0

ck+1

∫ q−1

k

ẏ(t −∆t + ξh)dξ

= −

q−1∑

k=0

ck+1

 
q−2∑

k′=k

∫ k′+1

k′
ẏ(t −∆t + ξh)dξ

!

= −

q−2∑

k′=0





k′∑

k=0

ck+1





∫ k′+1

k′
ẏ(t −∆t + ξh)dξ

=

q−2∑

k′=0





k′∑

k=0

12
�

q−1
2
− k
�

q
�
q2 − 1

�





∫ k′+1

k′
ẏ(t −∆t + ξh)dξ

=

q−2∑

k′=0




12

(k′+1)(q−1)
2

−
(k′+1)k′

2

q
�
q2 − 1

�






∫ k′+1

k′
ẏ(t −∆t + ξh)dξ

=

q−2∑

k′=0

�

6
�
q− 1− k′

��
k′ + 1

�

q
�
q2 − 1

�

�∫ k′+1

k′
ẏ(t −∆t + ξh)dξ (D.27)

and

bk+1 =
6
�
q− 1− k

�
(k+ 1)

q
�
q2 − 1

� > 0, k = 0, . . . ,q− 2, (D.28)

which implies that

E
�

Dq(ỹ, t)
�

=

q−2∑

k=0

bk+1

∫ k+1

k

ẏ(t −∆t + ξh)dξ

= ẏ(t)−

 
q−2∑

k=0

bk+1

∫ k+1

k

�
ẏ(t)− ẏ(t −∆t + ξh)

�
dξ

!

= ẏ(t)−Rq(ẏ, t), (D.29)

and, from the fact that the measurements ỹ(t − mh) and x̃(t − mh) at different time in-
stants, for m = 0, . . . , H, are independent and identically distributed, the covariance of
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∑H

m=1λ
m−1
1 hDq(dy, t −mh) and

∑H

m=1λ
m−1
2 hDq(dy, t −mh)

Cov





H∑

m=1

λm−1
1 hDq(dy, t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)





= Var
�

dy(t)
�

min(H,q−1)∑

l=1

λl
2

�

1−
�
λ1λ2

�H−l
�

1−λ1λ2

 
q−1∑

k=l

ck+1ck−l+1

!
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�

dy(t)
�

min(H,q−1)∑

l=1

λl
1

�

1−
�
λ1λ2

�H−l
�

1−λ1λ2

 
q−1∑

k=l

ck+1ck−l+1

!

+ Var
�

dy(t)
� 1−

�
λ1λ2

�H

1−λ1λ2

 
q−1∑

k=0

c2
k+1

!

= Var
�

dy(t)
�

min(H,q−1)∑

l=1

�

λl
2 +λ

l
1

��

1−
�
λ1λ2

�H−l
�

1−λ1λ2

�
12(q−l)

q2(q2−1)
−

24(q2−l2)l

(q(q2−1))
2

�

+ Var
�

dy(t)
� 1−

�
λ1λ2

�H

1−λ1λ2

12

q
�
q2− 1

�

= Var
�

dy(t)
� βq(λ1,λ2, H)

1−λ1λ2
(D.30)

and the covariance of
∑H

m=1λ
m−1
1 hdx(t −mh) and

∑H

m=1λ
m−1
2 hDq(dy, t −mh)

Cov





H∑

m=1

λm−1
1 hdx(t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)





= Cov
�

dx(t),dy(t)
�

q−1∑

k=max(q−1−H,0)

h
λ
−(k−q+1)
1

�

1−
�
λ1λ2

�H+k−q+1
�

1−λ1λ2
ck+1

= Cov
�

dx(t),dy(t)
� hγq(λ1,λ2, H)

1−λ1λ2
. (D.31)

Note that, for any µ such that 0< µ < 1,

lim
h→0

q− 1= 2α lim
h→0

h−µ =∞. (D.32)
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This implies that

lim
h→0

Cov





H∑

m=1

λm−1
1 hDq(dy, t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)





= Var
�

dy(t)
�

lim
h→0

βq(λ1,λ2, H)

1−λ1λ2

= 0 (D.33)

and

lim
h→0

Cov





H∑

m=1

λm−1
1 hdx(t −mh),

H∑

m=1

λm−1
2 hDq(dy, t −mh)





= Cov
�

dx(t),dy(t)
�

lim
h→0

hγq(λ1,λ2, H)

1−λ1λ2

= Cov
�

dx(t),dy(t)
�

lim
h→0

τ
�

1−
p

λ1λ2

�

γq(λ1,λ2, H)

1−λ1λ2

= 0. (D.34)

D.3 Bias and Variance of the Rate Estimator

Lemma D.2. Consider the rate estimator r̂u(t) given in Eq. (5.26) and let Assumptions 5.2–5.5

hold. Then, the bias, variance and autocorrelations of the estimator r̂u(t) are:

E
�

r̂u(t)
�
− ru(t) =

q−2∑

k=0

bk+1

∫ k+1

k

�
ru(t −∆t + ξh)− ru(t)

�
dξ, (D.35)

Var
�

r̂u(t)
�
=

 
q−1∑

k=0

c2
k+1

!

Var
�

ỹr(t)
�

h2 , (D.36)

Cov
�

r̂u(t), r̂u(t − lh)
�
=

 
q−1∑

k=l

ck+1ck−l+1

!

Var
�

ỹr(t)
�

h2 , ∀l = 0, . . . ,q− 1,

(D.37)

if and only if











c1 + b1 = 0

ck+1+ bk+1− bk = 0, ∀k = 1, . . . ,q− 1

bq = 0
∑q−2

k=0 bk+1− 1= 0

. (D.38)

Proof. Since the functions yr are Lipschitz continuous (due to the fact that yr is described
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by a differential equation, with ẏr bounded), it can be shown that, for all k = 0, . . . ,q− 2,

h

∫ k+1

k

ẏr(t −∆t + ξh)dξ = yr(t −∆t + (k+ 1)h)− yr(t −∆t + kh), (D.39)

which, along with Eq. (5.26) and Assumption 5.3, implies that the expected value of the
estimator r̂u(t) is:

E
�

r̂u(t)
�
=

q−1∑

k=0

ck+1

h
yr(t −∆t + kh)−

 
q−1∑

k=0

bk+1T sa(t −∆t + kh)

!

=

q−2∑

k=0

bk+1

h

�
yr(t −∆t + kh)− yr(t −∆t + (k+ 1)h)

�

+

q−1∑

k=0

ck+1

h
yr(t −∆t + kh)

+

q−2∑

k=0

bk+1

∫ k+1

k

ẏr(t −∆t + ξh)dξ−

 
q−1∑

k=0

bk+1T sa(t −∆t + kh)

!

=
c1 + b1

h
yr(t −∆t) +

q−1∑

k=1

ck+1+ bk+1− bk

h
yr(t −∆t + kh)

−
bq

h
yr(t)− bqT sa(t)

+

q−2∑

k=0

bk+1

∫ k+1

k

ẏr(t −∆t + ξh)dξ−

 
q−2∑

k=0

bk+1T sa(t −∆t + kh)

!

.

(D.40)
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Then, it follows from Assumption 5.2 that the bias of the estimator r̂u(t) is

E
�

r̂u(t)
�
− ru(t) =

c1 + b1

h
︸ ︷︷ ︸

0

yr(t −∆t) +

q−1∑

k=1

ck+1+ bk+1− bk

h
︸ ︷︷ ︸

0

yr(t −∆t + kh)

−
bq

h
︸︷︷︸

0

yr(t)− bq
︸︷︷︸

0

T sa(t)

+

q−2∑

k=0

bk+1

∫ k+1

k

ru(t −∆t + ξh)dξ−

 
q−2∑

k=0

bk+1

!

︸ ︷︷ ︸

1

ru(t)

+

q−2∑

k=0

bk+1T

 ∫ k+1

k

sa(t −∆t + ξh)dξ− sa(t −∆t + kh)

!

︸ ︷︷ ︸

0

=

q−2∑

k=0

bk+1

∫ k+1

k

�
ru(t −∆t + ξh)− ru(t)

�
dξ (D.41)

if and only if the following conditions hold:











c1 + b1 = 0

ck+1+ bk+1− bk = 0, ∀k = 1, . . . ,q− 1

bq = 0
∑q−2

k=0 bk+1− 1= 0

. (D.42)

Taking into account the general form of the estimator r̂u(t) in Eq. (5.26) and Assump-
tions 5.4–5.5, the variance and the autocorrelations of this estimator are given by:

Var
�

r̂u(t)
�
= Var





q−1∑

k=0

ck+1

h
ỹr(t −∆t + kh)−

 
q−1∑

k=0

bk+1T s̃a(t −∆t + kh)

!



= Var





q−1∑

k=0

ck+1

h
ỹr(t −∆t + kh)





=

q−1∑

k=0

c2
k+1

h2 Var
�

ỹr(t −∆t + kh)
�

=

 
q−1∑

k=0

c2
k+1

!

Var
�

ỹr(t)
�

h2 , (D.43)
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Cov
�

r̂u(t), r̂u(t − lh)
�

= Cov





q−1∑

k=0

ck+1

h
ỹr(t −∆t + kh),

q−1∑

k=0

ck+1

h
ỹr(t −∆t + kh − lh)





=

q−1∑

k=l

ck+1ck−l+1

h2 Var
�

ỹr(t −∆t + kh− lh)
�

=

 
q−1∑

k=l

ck+1ck−l+1

!

Var
�

ỹr(t)
�

h2 , ∀l = 0, . . . ,q− 1. (D.44)

D.4 Proof of Proposition 5.2

The convolution coefficients c1, . . . , cq, b1, . . . , bq of the optimal estimator r̂u(t) minimize
the variance of the estimator, Var

�
r̂u(t)

�
, while also ensuring that it is unbiased, that is, its

expected value E
�

r̂u(t)
�

is equal to ru(t). These conditions imply that these coefficients are
given by the solution to the following optimization problem, for any nonzero nr -dimensional
vector a:

min
c1,...,cq,b1,...,bq

aTVar
�

r̂u(t)
�

a (D.45a)

s.t. E
�

r̂u(t)
�
− ru(t) = 0. (D.45b)

The cost function to minimize is given by Eq. (D.36) in Lemma D.2. Furthermore,
Assumption 5.1 implies that the bias in Eq. (D.35) equals zero if and only if the constraints
in Eq. (D.38) are satisfied. Hence, the optimal convolution coefficients c∗1, . . . , c∗q , b∗1, . . . , b∗q
correspond to the solution to the following optimization problem:

min
c1,...,cq,b1,...,bq

 
q−1∑

k=0

c2
k+1

!

aT Var
�

ỹr(t)
�

h2 a (D.46a)

s.t. c1 + b1 = 0, (D.46b)

ck+1 + bk+1− bk = 0, ∀k = 1, . . . ,q− 1, (D.46c)

bq = 0, (D.46d)
q−2∑

k=0

bk+1− 1= 0. (D.46e)
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This optimization problem is equivalent to

min
b1,...,bq−1

�
−b1

�2
+

q−2∑

k=1

�
bk − bk+1

�2
+ b2

q−1 (D.47a)

s.t.
q−2∑

k=0

bk+1− 1= 0, (D.47b)

for which the Lagrangian function is:

L (b1, . . . , bq−1,λ) =
�
−b1

�2
+

q−2∑

k=1

�
bk − bk+1

�2
+ b2

q−1+λ

 
q−2∑

k=0

bk+1− 1

!

. (D.48)

Since the optimization problem (D.47) is convex, the global solution is obtained by
solving the following system of equations:
















0= ∂L
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�
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�
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0= ∂L
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(b∗1, . . . , b∗q−1,λ∗) = 2

�

b∗2 − b∗1

�

+ 2
�

b∗2 − b∗3

�

+λ∗

...

0= ∂L
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�

b∗q−1− b∗q−2

�

+ 2b∗q−1+λ
∗

0= ∂L
∂ λ
(b∗1, . . . , b∗q−1,λ∗) =
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k=0 b∗

k+1− 1

, (D.49)

which gives







b∗
k+1 =

6(q−k−1)(k+1)

q(q2−1)
, ∀k = 0, . . . ,q− 1

λ∗ = − 24
q(q2−1)

, (D.50)

and implies:

c∗k+1 =
12
�

k−
q−1

2

�

q
�
q2− 1

� , ∀k = 0, . . . ,q− 1. (D.51)

The corresponding value of the variance is:

Var
�

r̂u(t)
�
=

 
q−1∑

k=0

c∗k+1
2
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ỹr(t)
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h2 . (D.52)
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E.1 Proof of Proposition 6.1

We would like to prove that, under the conditions in Proposition 6.1, the following
equations hold:

u(t + h) =
�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

Ũa(t) (v(t)−w(t))
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���
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���
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(t), (E.1)
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First, let us note that

Ũa(t)
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implies that
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−Wũ(t), (E.4)

which results in

u(t + ζ) =
�

Inx
− exp

�

−T−1
a ζ
��

ū(t) + exp
�

−T−1
a ζ
�

u(t)

=
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)
�

v(t)− β̃ a(t)− Fr̂u(t)
�

−
�

Inx
− exp

�

−T−1
a ζ
��

Wũ(t)

−
�

Inx
− exp

�

−T−1
a ζ
��

dū(t) + exp
�

−T−1
a ζ
�

u(t)

=
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t) (v(t)−w(t))

+
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

u(t)

−
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)F
�
r̂u(t)− ru(t)

�

−
�

Inx
− exp

�

−T−1
a ζ
���

dū(t) +Wdu(t)
�

−
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)dβ a
(t)

=
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t) (v(t)−w(t))

+
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

u(t)

+
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)FRq(ru, t)

−
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)FT Dq(dy, t)

−
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)dβ̄ a
(t) (E.5)
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and

u(t + h) =
�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

Ũa(t) (v(t)−w(t))

+
�

exp
�

−T−1
a h
��

Inx
+W

�

−W
�

u(t)

+
�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

Ũa(t)FRq(ru, t)

−
�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

Ũa(t)FT Dq(dy, t)

−
�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

Ũa(t)dβ̄ a
(t). (E.6)

The proposition can be completely proven by replacing u(t + ζ) in Eq. (6.42), which
yields

ẋ(t + ζ) = Fru(t + ζ) +β a(t)

+ Ba(t)
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t) (v(t)−w(t))

+ Ba(t)
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

u(t)

+ Ba(t)
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)FRq(ru, t)

− Ba(t)
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)FT Dq(dy, t)

− Ba(t)
�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

Ũa(t)dβ̄ a
(t)

=
�

Inx
− dUa

(t)
�

v(t)

− Ba(t)
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

Ũa(t)v(t)

+ F

∫ ζ

0

ṙu(t +τ)dτ+ dUa
(t)
�
Fru(t) +β a(t)

�

+ Ba(t)
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

u(t)

+ Ba(t)
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

Ũa(t)w(t)

+
�

Inx
− dUa

(t)
�

FRq(ru, t)

− Ba(t)
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

Ũa(t)FRq(ru, t)

−
�

Inx
− dUa

(t)
�

FT Dq(dy, t)

+ Ba(t)
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

Ũa(t)FT Dq(dy, t)

−
�

Inx
− dUa

(t)
�

dβ̄a
(t)

+ Ba(t)
�

exp
�

−T−1
a ζ
��

Inx
+W

�

−W
�

Ũa(t)dβ̄ a
(t), (E.7)
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x(t + ζ) = x(t) +

∫ ζ

0

ẋ(t +τ)dτ

= x(t) +

∫ ζ

0

�
ẋ(t +τ)− Fru(t +τ)

�
dτ+ ζFru(t)

+ F

∫ ζ

0

(ζ−τ) ṙu(t +τ)dτ

= x(t) +

∫ ζ

0

�

ẋ(t +τ)− F

∫ τ

0

ṙu(t +τ
′)dτ′

�

dτ

+ F

∫ ζ

0

(ζ−τ) ṙu(t +τ)dτ

= x(t) + ζ
�

Inx
− dUa

(t)
�

v(t)

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

−Wζ
�

Ũa(t)v(t)

+ F

∫ ζ

0

(ζ−τ) ṙu(t +τ)dτ+ ζdUa
(t)w(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

−Wζ
�

u(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

−Wζ
�

Ũa(t)w(t)

+ ζ
�

Inx
− dUa

(t)
�

FRq(ru, t)

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

−Wζ
�

Ũa(t)FRq(ru, t)

− ζ
�

Inx
− dUa

(t)
�

FT Dq(dy, t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

−Wζ
�

Ũa(t)FT Dq(dy, t)

− ζ
�

Inx
− dUa

(t)
�

dβ̄ a
(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a ζ
���

Inx
+W

�

−Wζ
�

Ũa(t)dβ̄ a
(t), (E.8)
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and

x(t + h) = x(t) + h
�

Inx
−dUa

(t)
�

v(t)

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)v(t)

+ F

∫ h

0

�
h − ζ

�
ṙu(t + ζ)dζ+ hdUa

(t)w(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

u(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)w(t)

+ h
�

Inx
− dUa

(t)
�

FRq(ru, t)

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)FRq(ru, t)

− h
�

Inx
− dUa

(t)
�

FT Dq(dy, t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)FT Dq(dy, t)

− h
�

Inx
− dUa

(t)
�

dβ̄ a
(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)dβ̄ a
(t). (E.9)

E.2 Proof of Proposition 6.2

First of all, let us prove that

v(t) =
xs(t + h)− xs(t)

h
+ Γ (xs(t)− x̃(t)) (E.10)

implies that

v(t) = ẋs(t) +
h

2
ẋs(t+h)−ẋs(t)

h
−

∫ h

0

2ζ−h

2h
ẍs(t + ζ)dζ+ Γ (xs(t)− x̃(t)) . (E.11)
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For that, one should note that

xs(t + h)− xs(t)

=

∫ h

0

�
ẋs(t + ζ)− ẋs(t + h)

�
dζ+ hẋs(t + h)

=

∫ h

0

�
ẋs(t + ζ)− ẋs(t + h)

�
dζ

+ h

 

ẋs(t) +

∫ h

0

ẍs(t + ζ)dζ+ h

2
ẋs(t+h)−ẋs(t)

h
− 1

2

∫ h

0

ẍs(t + ζ)dζ

!

= hẋs(t) +
h2

2
ẋs(t+h)−ẋs(t)

h
+

∫ h

0

�
ẋs(t + ζ)− ẋs(t + h)

�
dζ+ h

2

∫ h

0

ẍs(t + ζ)dζ

= hẋs(t) +
h2

2
ẋs(t+h)−ẋs(t)

h
+

∫ h

0

ẋs(t + ζ)dζ− [ζẋs(t + ζ)]
h

0 +

∫ h

0

h

2
ẍs(t + ζ)dζ

= hẋs(t) +
h2

2
ẋs(t+h)−ẋs(t)

h
−

∫ h

0

ζẍs(t + ζ)dζ+

∫ h

0

h

2
ẍs(t + ζ)dζ

= hẋs(t) +
h2

2
ẋs(t+h)−ẋs(t)

h
−

∫ h

0

�

ζ−
h

2

�

ẍs(t + ζ)dζ. (E.12)

The control law in Eq. (6.57), along with Eqs. (E.1) and (E.2), implies that

x(t + h) = x(t) + h

�
xs(t + h)− xs(t)

h
+ Γ (xs(t)− x(t))

�

+υx (t)

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)Γ (x
s(t)− x(t))

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)ẋ
s(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
��

u(t) + Ũa(t)w(t)
�

= xs(t + h) +υx (t)

+
�

Inx
− hΓ

�

(x(t)− xs(t))

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)Γ (x(t)− xs(t))

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)ẋ
s(t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
��

u(t) + Ũa(t)w(t)
�

= xs(t + h) +υx (t)

+Mx (x(t)− xs(t)) +Mu

�

u(t) + Ũa(t)w(t)− Ũa(t)ẋ
s(t)
�

, (E.13)

with

Mx = Inx
− hΓ + Ba(t)

�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)Γ , (E.14)
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Mu = Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

, (E.15)

υx(t)

= hdUa
(t)Γ (x(t)− xs(t)) + hdUa

(t) (w(t)− ẋs(t))

+ F

∫ h

0

�
h− ζ

�
ṙu(t + ζ)dζ

− hdUa
(t)

h

2
ẋs(t+h)−ẋs(t)

h
+ hdUa

(t)

∫ h

0

2ζ−h

2h
ẍs(t + ζ)dζ

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)
h

2
ẋs(t+h)−ẋs(t)

h

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)

∫ h

0

2ζ−h

2h
ẍs(t + ζ)dζ

+ h
�

Inx
− dUa

(t)
�

FRq(ru, t)

− Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)FRq(ru, t)

− h
�

Inx
− dUa

(t)
�

FT Dq(dy, t)

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)FT Dq(dy, t)

− h
�

Inx
− dUa

(t)
��

Γdx(t) + dβ̄a
(t)
�

+ Ba(t)
�

Ta

�

Inx
− exp

�

−T−1
a h
���

Inx
+W

�

−Wh
�

Ũa(t)
�

Γdx(t) + dβ̄a
(t)
�

.

(E.16)

In particular, if

D= Inx
, (E.17)

then

Mu = Ba(t)
�

Inx
−DTah−1

�

Inx
− exp

�

−T−1
a h
���−1

Ta

�

Inx
− exp

�

−T−1
a h
��

− Ba(t)
�

Inx
−DTah−1

�

Inx
− exp

�

−T−1
a h
���−1

DTa

�

Inx
− exp

�

−T−1
a h
��

= 0nx×nx
, (E.18)

Mx = Inx
− hΓ +MuŨa(t)Γ

= Inx
− hΓ , (E.19)
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υx(t) = h
�

Inx
− dUa

(t)
�

FRq(ru, t) + F

∫ h

0

�
h − ζ

�
ṙu(t + ζ)dζ

+ hdUa
(t)Γ (x(t)− xs(t)) + hdUa

(t) (w(t)− ẋs(t))

− hdUa
(t)

h

2
ẋs(t+h)−ẋs(t)

h
+ hdUa

(t)

∫ h

0

2ζ−h

2h
ẍs(t + ζ)dζ

− h
�

Inx
− dUa

(t)
��

FT Dq(dy, t) + Γdx(t) + dβ̄ a
(t)
�

, (E.20)

which can be represented as

x(t)− xs(t) =
�

Inx
− hΓ

�n �
x(t − nh)− xs(t − nh)

�

+

n∑

m=1

�

Inx
− hΓ

�m−1
υx(t −mh). (E.21)

Note that, since

Rq(ru, t −mh) =

q−2∑

k=0

bk+1

∫ k+1

k

�
ru(t −mh)− ru(t −mh −∆t + ξh)

�
dξ

= −

q−2∑

k=0

bk+1

∫ k+1

k

(ξ− k)
�
−ṙu(t −mh −∆t + ξh)

�
hdξ

+

q−2∑

k=0

bk+1
�
(ξ− k)

�
ru(t −mh)− ru(t −mh −∆t + ξh)

��k+1
k

= h

q−2∑

k=0

bk+1

∫ k+1

k

(ξ− k) ṙu(t −mh −∆t + ξh)dξ

+

q−2∑

k=0

bk+1
�
ru(t −mh)− ru(t −mh−∆t + (k+ 1)h)

�

= h

q−2∑

k=0

bk+1

∫ k+1

k

(ξ− k) ṙu(t −mh −∆t + ξh)dξ

+ h

q−2∑

k=0

bk+1

∫ q−1

k+1

ṙu(t −mh −∆t + ξh)dξ, (E.22)
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the expected value of x(t) is given by

E [x(t)]

= xs(t) +
�

Inx
− hΓ

�n �
x(t − nh)− xs(t − nh)

�

+

n∑

m=1

�

Inx
− hΓ

�m−1
hFRq(ru, t −mh)

+

n∑

m=1

�

Inx
− hΓ

�m−1
F

∫ h

0

�
h − ζ

�
ṙu(t −mh + ζ)dζ

= xs(t) +
�

Inx
− hΓ

�n �
x(t − nh)− xs(t − nh)

�

+

n∑

m=1

�

Inx
− hΓ

�m−1
h2F

 
q−2∑

k=0

bk+1

∫ k+1

k

ṙu(t −mh −∆t + ξh) (ξ− k)dξ

!

+

n∑

m=1

�

Inx
− hΓ

�m−1
h2F

 
q−2∑

k=0

bk+1

∫ q−1

k+1

ṙu(t −mh −∆t + ξh)dξ

!

+

n∑

m=1

�

Inx
− hΓ

�m−1
h2F

∫ 1

0

(1− ξ) ṙu(t −mh + ξh)dξ, (E.23)
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whereas the ith diagonal element of the covariance matrix of x(t) is given by

σ2
xi
= Var

�
x i(t)

�

= Var





n∑

m=1

�

1− hΓ i,i

�m−1
h
�

Γdx(t −mh) + dβ̄a
(t −mh)

+ FT Dq(dy, t −mh)
�

i

i

= Γ i,iVar





n∑

m=1

�

1− hΓ i,i

�m−1
h
�

dxi
(t −mh) + Γ−1

i,i dβ̄a,i
(t −mh)

�


Γ i,i

+ (FT )i Var





n∑

m=1

�

1− hΓ i,i

�m−1
hDq(dy, t −mh)



 (FT )Ti

+ Γ i,iCov





n∑

m=1

�

1− hΓ i,i

�m−1
h
�

dxi
(t −mh) + Γ−1

i,i dβ̄a,i
(t −mh)

�

,

n∑

m=1

�

1− hΓ i,i

�m−1
hDq(dy, t −mh)



 (FT )Ti

+ (FT )i Cov





n∑

m=1

�

1− hΓ i,i

�m−1
hDq(dy, t −mh) ,

n∑

m=1

�

1− hΓ i,i

�m−1
h
�

dxi
(t −mh) + Γ−1

i,i dβ̄a,i
(t −mh)

�


 Γ i,i

=
h2
Γ

2
i,i

�

1−
�

1− hΓ i,i

�2n
�

1−
�

1− hΓ i,i

�2 Var
h

dxi
(t) + Γ−1

i,i dβ̄a,i
(t)
i

+
βq(1− hΓ i,i, 1− hΓ i,i, n)

1−
�

1− hΓ i,i

�2 (FT )i Var
�

dy(t)
�

(FT )Ti

+ 2
hΓ i,iγq(1− hΓ i,i, 1− hΓ i,i, n)

1−
�

1− hΓ i,i

�2 Cov
h

dxi
(t) + Γ−1

i,i dβ̄a,i
(t),dy(t)

i

(FT )Ti ,

i = 1, . . . , nx , (E.24)

assuming that the noise in Ũa(t) is negligible.

E.3 Proof of Proposition 6.3

First of all, note that

lim
h→0

Mτ/h
x =

�

lim
h→0

�

Inx
+ h−1

�

Mx − Inx

�

h
�1/h

�τ

= exp
�

lim
h→0

h−1
�

Mx − Inx

�
�τ

.

(E.25)
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Hence, as a consequence of Appendix E.2, if the condition in Eq. (6.58) is satisfied, then

lim
h→0

x(t)− xs(t) = exp
�

nh lim
h→0

h−1
�

Mx − Inx

�
�
�
x(t − nh)− xs(t − nh)

�

+ lim
h→0

n∑

m=1

exp
�

(m− 1)h lim
h→0

h−1
�

Mx − Inx

�
�

υx(t −mh)

= exp
�
nh (−Γ )

��
x(t − nh)− xs(t − nh)

�

+

∫ nh

0

exp (τ (−Γ )) lim
h→0

h−1υx(t −τ)dτ. (E.26)

Since Inx
− hΓ is the matrix of eigenvalues of Mx , for each eigenvalue

λi = 1− hΓ i,i, i = 1, . . . , nx , (E.27)

the following result is verified:

lim
h→0

λi − 1

h
= −Γ i,i, i = 1, . . . , nx , (E.28)

with Γ i,i > 0.

This shows that the condition in Eq. (5.23) is also satisfied. Since this is a sufficient
condition for Eqs. (5.24) and (5.25), the result is that

lim
h→0

σ2
xi
= 0, i = 1, . . . , nx . (E.29)

Moreover, since ru is Lipschitz continuous and the noise in Ũa(t) is negligible,

lim
h→0

h−1υx(t) = lim
h→0

FRq(ru, t) + lim
h→0

hF

∫ 1

0

(1− ξ) ṙu(t + ξh)dξ

− FT Dq(dy, t)− Γdx(t)− dβ̄ a
(t)

= −FT Dq(dy, t)− Γdx(t)− dβ̄a
(t), (E.30)

which results in

lim
h→0

E [ẋ(t)] = lim
h→0

E
�

x(t + h)− x(t)

h

�

=
xs(t + h)− xs(t)

h
+ Γ (xs(t)− x(t))

= E [v(t)] (E.31)

and

lim
h→0

E [x(t)− xs(t)] = exp
�
−nhΓ

��
x(t − nh)− xs(t − nh)

�
. (E.32)
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F Appendix of Chapter 7

F.1 Proof of Proposition 7.2

At steady state at time tk, one can assume x̃(tk) = xs(tk) = x̄k. The feedback control
laws in Eqs. (7.19)–(7.20) then give:

ūk = −Ba

�
x̄k

�−1
�

F ˆ̄ru,k +β a

�
x̄k

�
�

. (F.1)

Since the estimate of the slow states at steady state is

ˆ̄zk = s(x̄k, ūk, ˆ̄ru,k)

= s
�

x̄k,−Ba

�
x̄k

�−1
F ˆ̄ru,k −Ba

�
x̄k

�−1
β a

�
x̄k

�
, ˆ̄ru,k

�

, (F.2)

and the only variable subject to the effect of noise is ˆ̄ru,k, the variance of the estimate ˆ̄zk is
given by:

Var
�
ˆ̄zk

�
=
∂ s

∂ ūk

(x̄k, ūk, ˆ̄ru,k)Ba

�
x̄k

�−1
F Var

�
ˆ̄ru,k

�

FT
�

Ba

�
x̄k

�−1
�T ∂ s

∂ ūk

(x̄k, ūk, ˆ̄ru,k)
T

+
∂ s

∂ ˆ̄ru,k
(x̄k, ūk, ˆ̄ru,k)Var

�
ˆ̄ru,k

� ∂ s

∂ ˆ̄ru,k
(x̄k, ūk, ˆ̄ru,k)

T. (F.3)

In particular, if

s(x̄k, ūk, ˆ̄ru,k) = −Ha(x̄k, ūk)
−1 H ˆ̄ru,k, (F.4)
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then

∂ s

∂ ū j,k
(x̄k, ūk, ˆ̄ru,k) = Ha(x̄k, ūk)

−1 ∂Ha

∂ ū j,k
(x̄k, ūk)Ha(x̄k, ūk)

−1 H ˆ̄ru,k

= −Ha(x̄k, ūk)
−1 ∂Ha

∂ ū j,k
(x̄k, ūk) ˆ̄zk, ∀ j = 1, . . . , nu, (F.5)

∂ s

∂ ˆ̄ru,k
(x̄k, ūk, ˆ̄ru,k) = −Ha(x̄k, ūk)

−1 H. (F.6)
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G Appendix of Chapter 8

G.1 Adjoint-free Optimal Control Laws for Reactors

G.1.1 One independent reaction

One can show that

det
�

M j

�

= det
�h

∂ f
uj

∂ u j
(x,u) ∆ j

∂ f
uj

∂ u j
(x,u)

i�

= det

 


0 − ∂ rv

∂ x j

1 ω





!

=
∂ rv

∂ x j

, (G.1)

d

dt

�
det
�

M j

��
=
∂

∂ x

�

∂ rv

∂ x j

�

f(x,u)

=
∂

∂ x̌ j

�

∂ rv

∂ x j

�

f̌ j(x,u) +
∂

∂ x j

�

∂ rv

∂ x j

�
�

u j −ωx j

�

. (G.2)
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G.1.2 Two independent reactions

One can show that

det
�

M j

�

= det
�h

∂ f
uj

∂ u j
(x,u) ∆ j

∂ f
uj

∂ u j
(x,u) ∆2

j
∂ f

uj

∂ u j
(x,u)

i�

= det











0R −
∂ rv

∂ x j

�
∂ rv

∂ xr
− 2ωIR

�
∂ rv

∂ x j
− ∂
∂ x̌ j

�
∂ rv

∂ x j

�

f̌ j(x,u)

1 ω ω2











+ det











0R −
∂ rv

∂ x j
− ∂
∂ x j

�
∂ rv

∂ x j

�
�

u j −ωx j

�

1 ω 0











= det
��

∂ rv

∂ x j

∂
∂ x̌ j

�
∂ rv

∂ x j

�

f̌ j(x,u)−
�
∂ rv

∂ xr
− 2ωIR

�
∂ rv

∂ x j

��

+ det
��

∂ rv

∂ x j

∂
∂ x j

�
∂ rv

∂ x j

���
�

u j −ωx j

�

. (G.3)

G.2 Arc Sequences with Active Pure-state Path Constraints

If a pure-state path constraint becomes active, the choice of the new feedback laws
for the inputs is made according to a set of rules that specify the feedback laws by taking
into account the path constraint that becomes active and the correspondence between each
path constraint that was active and the input that was being adjusted to make it remain
active before the effective switching time. In particular, some constraints can already be
active when the feedback laws are initialized according to the arc that was specified for
the interval that starts at t i. If there is a pure-state path constraint such that hk

�
x(t i)

�
=

0∧ h
(1)
k

�
x(t i),u(t i)

�
> 0, for some k = 1, . . . , nh, the set of rules that was mentioned above

is used to determine a new set of feedback laws. The process is repeated until there are no
such path constraints.

The changes in the arc sequence due to pure-state path constraints imply that the degree

ξ j,i for which a feedback law explicitly gives u
(ξ j,i)

j
(t) as a function of the states, the inputs,

and the time derivatives of the inputs may not be constant for all j = 1, . . . , nu. Nevertheless,
at least it is known that this degree cannot increase, because the new feedback laws are
always static rather than dynamic.

Hence, let us suppose that, in the interval
�

t i−1, t i

�
, there are ñi switchings to different

arcs of type 2, and let us describe the arcs in the rith subinterval t ∈
�

t i,ri−1, t i,ri

�

, for some
ri = 1, . . . , ñi + 1, where t i,0 corresponds to t i−1 and t i,ñi+1 corresponds to t i . For each
input u j , with j = 1, . . . , nu, there is a degree ξ j,i,ri

for which a feedback law explicitly gives

u
(ξ j,i,ri

)

j
(t) as a function of the states, the inputs, and the time derivatives of the inputs, as
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follows:

u
(ξ j,i,ri

)

j
(t) = c j,i,ri

�
x(t),p j,i,u

(ξ1,i,ri
−1)

1 (t), . . . ,u1(t), . . . ,u
(ξnu ,i,ri

−1)
nu

(t), . . . ,unu
(t)
�
,

(G.4)

with

u̇
(ξ j,i,ri

−1)
j

(t) = u
(ξ j,i,ri

)

j
(t), u

(ξ j,i,ri
−1)

j
(t i,ri−1) = ũ

ξ j,i,ri
−1

j,i (t i,ri−1),

...

u̇ j(t) = u
(1)
j
(t), u j(t i,ri−1) = ũ0

j,i(t i,ri−1). (G.5)

Then, it is possible to write that, for all i = 1, . . . , ns+1, for all ri = 1, . . . , ñi+1, and for
all t ∈

�

t i,ri−1, t i,ri

�

,

qi

�
x(t),zi(t)

�
=






















0b1,iπi+ξ1,i−ξ1,i,ri

c1,i,ri

�
x(t),zi(t)

�

...
ũ1

1,i(t)
...

0bnu,iπi+ξnu,i−ξnu ,i,ri

cnu,i,ri

�
x(t),zi(t)

�

...
ũ1

nu,i(t)






















, (G.6)

and, for all i = 1, . . . , ns + 1, and for all t /∈
�

t i−1, t i

�
,

qi

�
x(t),zi(t)

�
= 0nz,i

. (G.7)

Then, for the complete arc sequence, one uses the control laws

u(t) = c̃
�
z(t)

�
, (G.8)

where, for all j = 1, . . . , nu, for all i = 1, . . . , ns + 1, for all ri = 1, . . . , ñi + 1, and for all
t ∈
�

t i,ri−1, t i,ri

�

,

c̃ j

�
z(t)

�
=







ũ0
j,i(t), if ξ j,i,ri

> 0

c j,i,ri

�
x(t),zi(t)

�
, if ξ j,i,ri

= 0
. (G.9)
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G.3 Checking the PMP Conditions

The necessary conditions of optimality for Problem (8.57) are the following:

1. The switching times t∗1, . . . , t∗ns
and the initial conditions z∗1,0, . . . ,z∗ns+1,0 satisfy the con-

ditions

∂ ˆJ

∂ t i

(ū∗(·), t∗1, . . . , t∗ns
, t∗f ,z∗1,0, . . . ,z∗ns+1,0)

T

+





∂ Ô
∂ ti
(ū∗(·), t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)

∂ T̂
∂ ti
(ū∗(·), t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)





T�
ξ̄
∗

ν̄∗

�

= 0,

∀i = 1, . . . , ns, (G.10)

∂ ˆJ

∂ zi,0
(ū∗(·), t∗1, . . . , t∗ns

, t∗f ,z∗1,0, . . . ,z∗ns+1,0)
T

+






∂ Ô
∂ zi,0
(ū∗(·), t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)

∂ T̂
∂ zi,0
(ū∗(·), t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)






T�
ξ̄
∗

ν̄ ∗

�

= 0nz,i
,

∀i = 1, . . . , ns + 1. (G.11)

2. The states x̄∗(t) are continuous at each instant t ∈
h

t0, t∗
f

i

, and the differential equa-
tions of the states

˙̄x∗(t) = f̄
�
x̄∗(t), ū∗(t)

�
(G.12)

are satisfied at each instant t ∈
h

t0, t∗
f

i

that is not an effective switching time, with
the initial conditions

x̄∗(t0) = x̄0. (G.13)

3. The adjoint variables λ̄
∗
(t) are continuous at each instant t ∈

h

t0, t∗
f

i

that is not an
entry point, the differential equations of the adjoint variables

˙̄λ∗(t) = −
∂ f̄

∂ x̄

�
x̄∗(t), ū∗(t)

�T
λ̄
∗
(t)

−
∂ ḡ

∂ x̄

�
x̄∗(t), ū∗(t)

�T
µ̄∗(t)−

∂ h̄
(1)

∂ x̄

�
x̄∗(t), ū∗(t)

�T
η̄∗(t) (G.14)

are satisfied at each instant t ∈
h

t0, t∗
f

i

that is not an effective switching time, the
transversal conditions

λ̄
∗
(t∗f ) =

∂ φ̄

∂ x̄

�
x̄∗(t∗f ), t∗f

�T
+





∂ ω̄
∂ x̄

�
x̄∗(t∗

f
), t∗

f

�

∂ ψ̄

∂ x̄

�
x̄∗(t∗

f
), t∗

f

�





T�
ξ̄
∗

ν̄ ∗

�

(G.15)
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are satisfied at the terminal time, and the conditions

λ̄
∗
(θ−) = λ̄

∗
(θ) +

∂ h̄

∂ x̄

�
x̄∗(θ−)

�T
π̄∗(θ) (G.16)

are satisfied at each entry point θ , where the nh-dimensional vector of Lagrange multi-
pliers π̄∗(θ) satisfies the conditions

π̄∗(θ)≥ η̄∗(θ), (G.17)

h̄k

�
x̄∗(θ)

�
π̄∗k(θ) = 0, ∀k = 1, . . . , nh. (G.18)

4. The reformulated Hamiltonian function, defined as

H̄
�
x̄∗(t), ū∗(t), λ̄

∗
(t), t∗f , x̄∗(t∗f ), ξ̄

∗
, ν̄∗
�

:= f̄
�
x̄∗(t), ū∗(t)

�T
λ̄
∗
(t)

+
∂ φ̄

∂ t

�
x̄∗(t∗f ), t∗f

�T

+





∂ ω̄
∂ t

�
x̄∗(t∗

f
), t∗

f

�

∂ ψ̄

∂ t

�
x̄∗(t∗

f
), t∗

f

�





T�
ξ̄
∗

ν̄ ∗

�

, (G.19)

satisfies the condition

H̄
�
x̄∗(t), ū∗(t), λ̄

∗
(t), t∗f , x̄∗(t∗f ), ξ̄

∗
, ν̄∗
�
= 0 (G.20)

at each instant t ∈
h

t0, t∗
f

i

.
5. The conditions

ω̄
�
x̄∗(t∗f ), t∗f

�
= 0nω

, (G.21)

ψ̄
�
x̄∗(t∗f ), t∗f

�
≤ 0nψ

, (G.22)

ν̄∗ ≥ 0nψ
, (G.23)

ψ̄k

�
x̄∗(t∗f ), t∗f

�
ν̄∗k = 0, ∀k = 1, . . . , nψ, (G.24)

are satisfied.
6. The Lagrangian function, defined as

L
�
x̄∗(t), ū∗(t), λ̄

∗
(t), µ̄∗(t), η̄∗(t)

�
:= f̄
�
x̄∗(t), ū∗(t)

�T
λ̄
∗
(t)

+ ḡ
�
x̄∗(t), ū∗(t)

�T
µ̄∗(t)

+ h̄
(1)�

x̄∗(t), ū∗(t)
�T
η̄∗(t), (G.25)
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satisfies the stationarity conditions

0nu
=
∂L

∂ ū

�
x̄∗(t), ū∗(t), λ̄

∗
(t), µ̄∗(t), η̄∗(t)

�T

=
∂ f̄

∂ ū

�
x̄∗(t), ū∗(t)

�T
λ̄
∗
(t)

+
∂ ḡ

∂ ū

�
x̄∗(t), ū∗(t)

�T
µ̄∗(t) +

∂ h̄
(1)

∂ ū

�
x̄∗(t), ū∗(t)

�T
η̄∗(t) (G.26)

at each instant t ∈
h

t0, t∗
f

i

.
7. The conditions

ḡ
�
x̄∗(t), ū∗(t)

�
≤ 0ng

, (G.27)

µ̄∗(t)≥ 0ng
, (G.28)

ḡk

�
x̄∗(t), ū∗(t)

�
µ̄∗k(t) = 0, ∀k = 1, . . . , ng , (G.29)

are satisfied at each instant t ∈
h

t0, t∗
f

i

.
8. The conditions

h̄
�
x̄∗(t)

�
≤ 0nh

, (G.30)

h̄k

�
x̄∗(t)

�
< 0∨ h̄

(1)
k

�
x̄∗(t), ū∗(t)

�
≤ 0, ∀k = 1, . . . , nh, (G.31)

η̄∗(t) ≥ 0nh
, (G.32)

˙̄η∗(t) ≤ 0nh
, (G.33)

h̄k

�
x̄∗(t)

�
η̄∗k(t) = 0, ∀k = 1, . . . , nh, (G.34)

are satisfied at each instant t ∈
h

t0, t∗
f

i

.

Now, let us investigate how these conditions can be checked from the solution to Prob-
lem (8.40). First of all, let us note that the conditions in Eqs. (G.12), (G.13), (G.21), (G.22),
(G.27), (G.30) and (G.31) are necessarily satisfied for any feasible solution. Moreover, upon
convergence of numerical optimization, the values of the decision variables t∗1, . . . , t∗ns

, t∗
f
,

z∗1,0, . . . ,z∗ns+1,0 and of the Lagrange multipliers ξ̄
∗

and ν̄ ∗ that correspond to the terminal
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constraints in Eqs. (G.21) and (G.22), respectively, are such that the conditions

∂ φ̂

∂ t i

(t∗1, . . . , t∗ns
, t∗f ,z∗1,0, . . . ,z∗ns+1,0)

T

+





∂ ω̂
∂ ti
(t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)

∂ ψ̂

∂ ti
(t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)





T�
ξ̄
∗

ν̄ ∗

�

= 0, ∀i = 1, . . . , ns, (G.35)

∂ φ̂

∂ z∗
i,0

(t∗1, . . . , t∗ns
, t∗f ,z∗1,0, . . . ,z∗ns+1,0)

T

+






∂ ω̂
∂ z∗

i,0
(t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)

∂ ψ̂

∂ z∗
i,0
(t∗1, . . . , t∗ns

, t∗
f
,z∗1,0, . . . ,z∗ns+1,0)






T�
ξ̄
∗

ν̄ ∗

�

= 0nz,i
, ∀i = 1, . . . , ns + 1,

(G.36)

are satisfied, which ensures that the conditions in Eqs. (G.10) and (G.11) are also satisfied.

Then, if u∗(t) is adjusted to ensure that the path constraints are satisfied, one can also
show that

∂ ḡk

∂ x̄
(x̄∗(t),0nu

)Tµ̄∗k(t) = 0nz
, ∀k = 1, . . . , ng , (G.37)

∂ h̄
(1)
k

∂ x̄
(x̄∗(t),0nu

)Tη̄∗k(t) = 0nz
, ∀k = 1, . . . , nh, (G.38)

at each instant t ∈
h

t0, t∗
f

i

.

The first set of equalities above is valid because, either µ̄∗
k
(t) is equal to zero due to

the fact that the corresponding constraint ḡk(x̄
∗(t),0nu

) ≤ 0 is inactive, or the constraint is
active and u∗(t) is adjusted according to x̄∗(t) such that ḡk(x̄

∗(t),0nu
) remains identically

equal to zero until the next effective switching time, leading ∂ ḡk

∂ x̄
(x̄∗(t),0nu

) to be equal to
zero as well.

The second set of equalities above is valid because, either η̄∗
k
(t) is equal to zero due

to the fact that the corresponding constraint h̄k

�
x̄∗(t)

�
≤ 0 is inactive, or the constraint

is active and u∗(t) is adjusted according to x̄∗(t) such that both h̄k

�
x̄∗(t)

�
and its time

derivative h̄
(1)
k
(x̄∗(t),0nu

) remain identically equal to zero until the next effective switching

time, leading
∂ h̄
(1)
k

∂ x̄
(x̄∗(t),0nu

) to be equal to zero as well.

This means that, if

˙̄λ∗(t) = −
∂ f̄

∂ x̄
(x̄∗(t),0nu

)Tλ̄
∗
(t) (G.39)

is satisfied at each instant t ∈
h

t0, t∗
f

i

that is not an effective switching time, then Eq. (G.14)
also holds.
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Furthermore, if one considers the adjoint variables
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, (G.40)

and the Lagrange multipliers

π̄∗(θ) = π̄∗
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(θ) +

h

π̄∗ω̄(θ) π̄
∗
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i
�

ξ̄
∗
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(G.41)

at each entry point θ , where λ̄
∗

φ̄(t), λ̄
∗

ω̄(t) and λ̄
∗

ψ̄(t) are the adjoint variables that were

computed for the solution to the problem, these variables satisfy, for each χ̄ ∈
¦
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with
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Then, the conditions in Eqs. (G.14), (G.15), (G.16) and (G.18) are necessarily satisfied
since
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for each instant t ∈
h
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i

that is not an effective switching time,
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at the terminal time, and

λ̄
∗
(θ−) = λ̄

∗

φ̄(θ
−) +

h

λ̄
∗

ω̄(θ
−) λ̄

∗

ψ̄(θ
−)
i
�

ξ̄
∗

ν̄∗

�

= λ̄
∗

φ̄(θ) +
h

λ̄
∗

ω̄(θ) λ̄
∗

ψ̄(θ)
i
�

ξ̄
∗

ν̄∗

�

+
∂ h̄

∂ x̄

�
x̄∗(θ−)

�T

�

π̄∗
φ̄
(θ) +

h

π̄∗ω̄(θ) π̄
∗
ψ̄
(θ)
i
�

ξ̄
∗

ν̄∗

��

= λ̄
∗
(θ) +

∂ h̄

∂ x̄

�
x̄∗(θ−)

�T
π̄∗(θ) (G.46)

and
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at each entry point θ .

Then, for each instant t ∈
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, the condition in Eq. (G.20), written as

0= f̄
�
x̄∗(t), ū∗(t)
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(G.48)

implies that, if the states, inputs and adjoint variables that were computed for the solution
are available for N time instants t1, . . . , tN , the linear system of equations
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Ω
∗
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(G.49)
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must be satisfied, with
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Ω
∗ =








f̄(x̄∗(t1),0nu
)Tλ̄
∗

ω̄(t1) +
∂ ω̄
∂ t

�
x̄∗(t∗

f
), t∗

f

�T

...
f̄(x̄∗(tN ),0nu

)Tλ̄
∗

ω̄(tN ) +
∂ ω̄
∂ t

�
x̄∗(t∗

f
), t∗

f

�T








, (G.51)

Ψ
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. (G.52)

Then, one needs to confirm if the conditions in Eqs. (G.23) and (G.24) are satisfied for
the Lagrange multipliers ν̄∗.

Finally, for each instant t ∈
h

t0, t∗
f

i

, one can obtain the Lagrange multipliers µ̄∗(t) and
η̄∗(t) by solving the linear system of equations in Eq. (G.26) for µ̄∗(t) and η̄∗(t) subject to
the conditions in Eqs. (G.29) and (G.34). Then, one needs to confirm if the conditions in
Eqs. (G.17), (G.28), (G.32) and (G.33) are satisfied.
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identification of surface catalytic reaction systems. In SCS Fall Meeting 2014, Zurich,
Switzerland, 2014.

Link: http://chemistrycongresses.ch/index.php?option=com_scs&layout=preview&from=all&id=622&tmpl=component
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Curriculum vitae

Outreach activities

Invited seminars in other universities

• D. Rodrigues, S. Srinivasan, N. Bhatt, J. Billeter, M. Amrhein, and D. Bonvin. Incre-
mental model identification of reaction systems. KTH Royal Institute of Technology,
Stockholm, Sweden, 2018.

Link: https://www.kth.se/ac/calendar/seminars/incremental-model-identification-of-reaction-systems-1.796542

• D. Rodrigues, S. Srinivasan, N. Bhatt, J. Billeter, M. Amrhein, and D. Bonvin. Incremen-
tal model identification of reaction systems. Universidade de Santiago de Compostela,
Santiago de Compostela, Spain, 2017.

Link: http://www.itmati.com/en/node/27136

Institutional responsibilities

• Treasurer and member of the Board of the local group of the Board of European Students
of Technology in Lisbon (from June 2011 until May 2012)

Supervision of students

Adrien Oulevey (master project) Spring 2016/2017
Abeynaya Gnanasekaran (internship) Summer 2015
Matteo Keller (master project) Spring 2014/2015
Vibhuti Chhabra (master project) Spring 2013/2014

Teaching activities

Control Systems (hands-on laboratory sessions) Fall - From 2014/2015
until 2017/2018

Process Control (problem sessions) Spring - From 2014/2015
until 2016/2017

Dynamical Systems (problem sessions) Spring - From 2015/2016
until 2016/2017

Active memberships in scientific societies

• Member number 9901790216 of AIChE (American Institute of Chemical Engineers) since
2016
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Curriculum vitae

Prizes and awards

• "Best Students of UTL/Santander Totta Award" for the best final year students of the for-
mer Technical University of Lisbon (UTL) in 2012
• Awarded with merit scholarship by UTL for outstanding academic performance (best stu-
dent in the degree) in 2007, 2008, 2010 and 2011

Personal skills

Language skills

Portuguese Mother tongue
English CEFR level C2 - proficient user

Certificate in Advanced English, Grade A - December 2010
French CEFR level B2 - independent user

Certificate from the EPFL Language Center - January 2016

Technical skills and competences

• Typesetting (LATEX) and programming (C, MATLAB, Mathematica) tools and languages
• Experience with Windows, Mac OS, Linux, Office, Adobe Reader, Adobe Illustrator, Lab-
VIEW
• Operation of diverse lab equipment (microscopes, filters, columns, reactors, spectrome-
ters, etc)
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