Sampling at the rate of innovation for ultrasound imaging and localization

Eric Bezzam

Supervisors: Adrien Besson*, Hanjie Pan[†], Dimitri Perdios*, Prof. Jean-Phillipe Thiran*

*Signal Processing Laboratory (LTS5) [†]Audiovisual Communication Laboratory (LCAV) École Polytechnique Fédérale de Lausanne

Master Project, July 5, 2018

Outline

Motivation

Sampling along channels Rate of innovation Pulse stream model for ultrasound Pulse stream under noise

Sampling across channels TOF matching with EDMs

Localization at the rate of innovation Non-destructive evaluation example

Proposed approach

Concluding remarks

How can we reduce data rate / increase frame rate?

To what extent can recent signal processing techniques (FRI, EDM) be applied to ultrasound imaging?

Ultrasound imaging

Comparing B-mode imaging transmission schemes. From "Ultrafast imaging in biomedical ultrasound" [Tanter and Fink, 2014].

SAMPLING ALONG CHANNELS

Rate of innovation: Number of degrees of freedom per unit of time. $^{\rm 1}$

Classic examples with *finite* rate of innovation (FRI):

- Bandlimited at baseband \Rightarrow RF signal.
- Bandlimited at carrier frequency \Rightarrow IQ demodulation.
- Finite pulse stream.

¹Coined by "Sampling signals with finite rate of innovation" [Vetterli et al., 2002].

Assume RF signal can be modeled as *T*-periodic *pulse stream*:

$$y(t) = \sum_{n \in \mathbb{Z}} \sum_{k=0}^{K-1} c_k \underbrace{h(t - t_k - nT)}_{\substack{\text{known pulse at} \\ \text{arbitrary positions}}}.$$
 (1)

2K parameters $\{c_k, t_k\}_{k=0}^{K-1}$ every period.

 $\mathsf{FRI} = (2K/T).$

Unlike BL case, FRI parameters not given directly by samples! Reconstruction involves finding mask that will yield parameters.²

²Also known as "annihilating filter" in "Sampling signals with finite rate of innovation" [Vetterli et al., 2002].

PULSE STREAM MODEL FOR ULTRASOUND

Assumptions:

- Homogeneous medium \Rightarrow constant speed of sound.
- ► No frequency attenuation while propagating through medium.
- Modeling transducer and reflective sources as point sources.
- Born approximation, no multiple scattering.
- Planar wavefront excitation.

Pulse shape (pulse-echo wavelet in literature)

 $h(t) = excitation * transducer_{(elec \rightarrow acoust)} * transducer_{(acoust \rightarrow elec)}$.

Master Project, Spring 2018

Plane wave insonification for higher frame rate

Time-of-flight (TOF) for element at x and point at $\mathbf{r}_k = [x_k, z_k]^T$:

$$\tau(\mathbf{r}_k, x, \theta) = \tau_{tx}(\mathbf{r}_k, \theta) + \tau_{rx}(\mathbf{r}_k, x)$$

= $(x_k \sin \theta + z_k \cos \theta)/c + \|\mathbf{r}_k - [x, 0]^T\|_2/c.$ (2)

Measurements / pulse parameters

For *K* reflectors $\{\mathbf{r}_k = [x_k, z_k]^T\}_{k=0}^{K-1}$ with reflectivity strengths $\{a_k\}_{k=0}^{K-1}$, we measure:

$$y(x,t) = \sum_{k=0}^{K-1} \underbrace{\frac{a_k}{2\pi \|\mathbf{r}_k - [x,0]^T\|_2}}_{c_k} h\left(t - \underbrace{\tau(\mathbf{r}_k, x, \theta)}_{t_k}\right).$$
(3)

"Time domain compressive beam forming of ultrasound signals" [David et. al, 2015].

Master Project, Spring 2018

13/31

- *K* ≫ 1′000 pulses.
- Finite duration (period) of $T \approx 65 \, \mu s.^3$
- RF sampling rate of $f_s = 20.8 \text{ MHz}$.
- IQ sampling rate of $f_s = 3.47$ MHz.
- ► M = 32 300 channels.

 $^3 {\rm For}~c=1540~{\rm m\,s}^{-1}$ and imaging depth of 5 cm.

Sampling rate for pulse stream given by $f_s \ge (2K/T)$.

Maximum K for given f_s and $T(= 65 \,\mu s)$:

- RF: 675 pulses.
- ► IQ: 112 pulses.

Upper bound on model order for sampling/data rate reduction!

- Sparse strong reflectors are most suitable, e.g. tracking microbubbles.
- ► Need to "oversample" for robustness to noise.

PULSE STREAM UNDER NOISE

16/31

- 1. Additive noise.
- 2. Pulse shape estimate error.
- 3. Model order error.

Increasing sampling rate to achieve robustness against noise.

Denoising approaches

- 1. Cadzow iterative denoising and total least-squares (standard).⁴
 - Separately denoise and obtain parameters.
 - With more measurements, exploit low rank property.
 - Fast(er) but sensitive to pulse estimate errors.
- 2. Pan's generalized FRI framework (general).⁵
 - Simultaneously denoise and obtain parameters.
 - Cast as inverse problem (non-convex).
 - Can be less sensitive to modeling errors but expensive.

⁵From "Towards Generalized FRI sampling with an application to source resolution in radioastronomy" [Pan et al., 2017].

⁴ "Sparse Sampling of Signal Innovations" [Blu et al., 2008].

Comparing denoising approaches

Additive noise to samples of:

- 10 pulses oversampled $10 \times$.
- 20 pulses oversampled $5 \times$.

Pulse shape estimate error for denoising:

• 10 pulses oversampled $10 \times$.

Master Project, Spring 2018

Recovering 20 strong reflectors among 38'519 reflectors with amplitudes $35\,dB$ lower, emulating speckle.

Critical sampling of 30 pulses, no denoising.

Recovering 20 strong reflectors among 38'519 reflectors with amplitudes $35 \, dB$ lower, emulating speckle.

 $3\times$ oversampling for 30 pulses; standard with 4 iterations of Cadzow.

Recovering 20 strong reflectors among 38'519 reflectors with amplitudes $35 \, dB$ lower, emulating speckle.

 $3\times$ oversampling for 30 pulses; 1 random initialization.

Delay-and-sum beamforming with no apodization of:

- ► True RF signals (left).
- Resynthesized RF signals from estimated parameters with standard denoising (right).

6.7/1.1 sampling rate reduction; 20/3.4 compression from RF/IQ.

SAMPLING ACROSS CHANNELS

24 / 31

Localization with time-of-flights (TOFs)

Reflector position from TOFs of two elements.

Master Project, Spring 2018

TOF matching with Euclidean Distance Matrices (EDMs)

- How to know which TOFs to pair?
- Modification of echo-sorting algorithm that exploits rank of EDMs.⁶

⁶"Euclidean Distance Matrices" [Dokmanic et al., 2015].

26 / 31

TOF matching with Euclidean Distance Matrices (EDMs)

- How to know which TOFs to pair?
- Modification of echo-sorting algorithm that exploits rank of EDMs.⁶

⁶ "Euclidean Distance Matrices" [Dokmanic et al., 2015].

26/31

TOF matching with Euclidean Distance Matrices (EDMs)

- How to know which TOFs to pair?
- Modification of echo-sorting algorithm that exploits rank of EDMs.⁶

K TOFs, M channels $\Rightarrow K^M$ combinations.

⁶ "Euclidean Distance Matrices" [Dokmanic et al., 2015].

LOCALIZATION AT THE RATE OF INNOVATION

27 / 31

Non-destructive evaluation motivation

Drilled holes in aluminum block.

- 1. Plane-wave imaging (increase frame rate).
- 2. Pulse stream recovery + denoising to estimate TOFs (reduction of sampling rate if K sufficiently small).
 - NDE: $f_s = 50 \text{ MHz} \rightarrow 7.14 \text{ MHz}.$
- 3. EDM-based test for TOF matching (reduce number of channels).
 - NDE: $M = 64 \rightarrow 8$.

Non-destructive evaluation example (cont.)

Concluding remarks

• Exploiting low rank (according to FRI) for:

- Pulse stream recovery.
- TOF matching.
- ► Finding the right application is key ⇒ few strong reflectors for rate reduction.
 - ► For medical ultrasound, high model order is unsuitable.
 - Localization for NDE is promising. More data to validate.
 - Sufficient denoising is crucial.
- Extending to other transmit scheme so that $N_{tx} = N_{rx}$.

