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In this supplementary material, we first provide additional
detail on the handling of the irregular vertices of the Cube-
Mesh CNNs of Section 3.1. We also report a quantitative
comparison between the forward-pass time for convolution
operations on unstructured meshes and similar operations
running on structured meshes such as the ones produced by
our re-meshing algorithm. We then give analytical defini-
tions of the 2D and 3D deformation parameterizations of
Sections 5.1 and 5.2. Finally we specify the flow conditions
for all reported experiments.

1. Handling Singular Points for Semi-Regular
Quad-Meshes

As discussed in Section 3.1 of the paper, when mapping a
surface onto a cube-mesh, we have to deal with irregular ver-
tices, which correspond to the corners of the cube and have
three neighbors instead of four. To perform convolutions
efficiently we first unfold the cube surface onto a plane. As
illustrated by Fig. 1, we can then simply pad irregular cor-
ners with the feature values associated to cube edges. This
enables us to use standard convolutional kernels even in
the neighborhood of irregular vertices. Furthermore, since
we use Geodesic Convolutions, the irregularity is naturally
handled by the interpolation operation.

2. Computational Efficiency
We provide a quantitative comparison between the forward-
pass time of 5 convolution consecutive operations running
on unstructured meshes and similar operations running on
structured meshes such as the ones produced by our re-
meshing algorithm. We use a Nvidia Titan X GPU and a
Tensorflow implementation.

• Standard Convolution: Exec. Time 0.00098 s. Such a
speed is possible thanks to the regular grid organiza-
tion.
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Figure 1. Handling the singularities of the Quad-Mesh for convo-
lution purposes.

• Graph Laplacian Convolution Sparse of (Kipf &
Welling, 2016): Exec. Time 0.00889 s. The model
of (Kipf & Welling, 2016) has limited expressivity
because the convolutions are performed by averaging
neighbouring features using Adjacency matrices.

• Geometric Convolution Dense of (Monti et al., 2016):
Exec. Time 0.27200 s. It corresponds to the dense
version as implemented in the public code of (Monti
et al., 2016). TensorFlow uses GPU computation with
dense adjacency matrices. The main drawback is the
memory requirements, which limit the graph size and
the number of features.

3. Airfoil Parameterization in 2D
In this section we will first briefly describe the standard
NACA airfoil 4 digit parameterization (Jacobs et al., 1948),
which, confusingly involves 3 degrees of freedom. We then
discussed our extension to 19 degrees of freedom.

NACA 4 digit. Without loss of generality, we can assume
that the airfoil is of unitary cord length and let 0 ≤ x ≤ 1
the coordinate that defines the position along that length.
Let us further consider the airfoil thickness t, maximum
camber m , along with its location p. To compute the airfoil
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shape, we first define the mean camber line

yc =


m

p2
(
2px− x2

)
, 0 ≤ x ≤ p

m

(1− p)2
(
(1− 2p) + 2px− x2

)
, p ≤ x ≤ 1

and the airfoil thickness to camber yt as

5t
[
0.2969

√
x− 0.1260x− 0.3516x2 + 0.2843x3 − 0.1015x4] .

Since the thickness needs to be applied perpendicular to the
camber line, the coordinates (xU , yU ) and (xL, yL), of the
upper and lower airfoil surface, respectively, become

xU = x− yt sin θ, yU = yc + yt cos θ, (1)
xL = x+ yt sin θ, yL = yc − yt cos θ, (2)

where

θ = arctan

(
dyc
dx

)
, (3)

dyc
dx

=


2m

p2
(p− x), 0 ≤ x ≤ p

2m

(1− p)2
(p− x), p ≤ x ≤ 1

(4)

Thus, the wing shape is entirely defined by the choice of t,
m , and p.

18-parameter foils. We increase the number of degrees of
freedom by that writing the 3 parameters t,m, p as quadratic
functions of x, that is,

t(x) = t0 + t1x+ t2x
2

m(x) = m0 +m1x+m2x
2

p(x) = p0 + p1x+ p2x
2

where the the pi, mi, and qi control the new degrees of
freedom. Moreover we allow the lower and upper airfoil
surfaces to be associated two two different camber lines,
hence doubling the total number of degrees of freedom to
2× (3 + 3 + 3).

4. Surface Parameterization in 3D
As discussed in Section 5.2, we parametrize 3D shape de-
formations using a transformation function fC : R3 → R3

that applies to the vertices of an initial shape X0, where
C is a 21D vector. For clarity, let us split the 21 com-
ponents of C into three groups, one for each axis C =
{Cx

i }i=0...6∪{Cy
i }i=0...6∪{Cz

i }i=0...6. As show in Fig. 2,

Lx, Ly, Lz , denote the maximal size over each dimension
and let (x, y, z) be the coordinates of a specific vertex X .
We write

fC(X)x = Cx
0 + x[Cx

1 + Cx
2 x

+ Cx
3 cos(

y

Ly
2π) + Cx

4 cos(
z

Lz
2π)

+ Cx
5 sin(

y

Ly
2π) + Cx

6 sin(
z

Lz
2π)] ,

fC(X)y = Cy
0 + y[Cx

1 + Cy
2 y

+ Cy
3 cos(

x

Lx
π) + Cy

4 cos(
x

Lx
2π)

+ Cy
5 sin(

x

Lx
π) + Cy

6 sin(
x

Lx
2π)] ,

fC(X)z = Cz
0 + z[Cx

1 + Cz
2z

+ Cz
3 cos(

x

Lx
π) + Cz

4 cos(
x

Lx
2π)

+ Cz
5sin(
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π) + Cz

6sin(
x
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2π)] .

This simple parametric transformation provides enough free-
dom to generate sophisticated shapes. Furthermore, the
initial shape corresponds to setting all the parameters to 0,
except from Cx

1 , C
y
1 , C

z
1 , which are set to 1.

Figure 2. Schematic representation of car optimization.

5. Flow conditions in 2D.
The 2D foil simulator we used was XFoil (Drela, 1989). We
considered viscous subsonic flows, with physical parameters
Reynolds=9e5, Angle of Attack=0.0. The parameters were
set for a concrete application: optimizing the shape of an
hydrofoil for a student boat competition.

6. Flow conditions in 3D.
The 3D CFD simulator used was ANSYS Fluent (Inc.,
2011). We considered a viscous k-epsilon turbulence model
with Reynolds=4e6. This values refer to the optimization
of car bodies, that is length of about 2m, and flow speed of
100km/h.
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