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Numerical software, common in scientific computing or embedded systems, inevitably uses a finite-
precision approximation of the real arithmetic in which most algorithms are designed. In many applica-
tions, the roundoff errors introduced by finite-precision arithmetic are not the only source of inaccuracy,
and measurement and other input errors further increase the uncertainty of the computed results. Adequate
tools are needed to help users select suitable data types and evaluate the provided accuracy, especially for
safety-critical applications.

We present a source-to-source compiler called Rosa which takes as input a real-valued program with
error specifications and synthesizes code over an appropriate floating-point or fixed-point data type. The
main challenge of such a compiler is a fully automated, sound and yet accurate enough numerical error
estimation. We introduce a unified technique for bounding roundoff errors from floating-point and fixed-
point arithmetic of various precisions. The technique can handle nonlinear arithmetic, determine closed-form
symbolic invariants for unbounded loops and quantify the effects of discontinuities on numerical errors. We
evaluate Rosa on a number of benchmarks from scientific computing and embedded systems and, comparing
it to state-of-the-art in automated error estimation, show that it presents an interesting trade-off between
accuracy and performance.
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1. INTRODUCTION
Much of today’s software is numerical in nature. While domains such as scientific computing
and embedded systems may appear quite different, they have in common that many of their
algorithms are designed in real arithmetic, but ultimately have to be implemented in finite
precision. This inevitable approximation introduces roundoff errors, which individually may
be small, but can quickly accumulate or get magnified to become unacceptable. Additional
sources of imprecision, such as measurement and truncation errors, often increase the
uncertainty on the computed results further. Many of the developers of numerical software are
not experts in numerical analysis, and we thus need adequate tools to help them understand
whether the computed values meet the accuracy requirements and remain meaningful in the
presence of errors. This is particularly important for safety-critical systems.
Today, however, accuracy in numerical computations is implicit. Many developers write

floating-point code as if it was real-valued, making it easy to forget to verify the result’s

1A preliminary version of one part of this work appeared in the conference paper “Sound Compilation
of Reals”, presented at the 2014 ACM SIGPLAN-SIGACT International Conference on Principles of
Programming Languages (POPL). The current submission is a complete rewrite (except for algorithm 6) of
the preliminary version, presents new and improved techniques, as well as new experimental evaluation.
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8:2 E. Darulova and V. Kuncak

accuracy. This also introduces a mismatch between the real-valued algorithms one writes on
paper and the low-level implementation details of finite-precision arithmetic. Furthermore, a
finite-precision source code semantics prevents the compiler from applying many optimizations
(soundly), as, for instance, associativity no longer holds. Finally, with a lack of tool support,
programmers will often choose a “safe” default data type, often double floating-point precision,
whether or not it is appropriate.

We propose a different strategy. The developer writes the program in a real-valued
specification language and makes numerical error bounds explicit in pre- and postconditions.
Our source-to-source compiler then determines an appropriate data type for this code which
fulfills the specification but is as efficient as possible, and generates the corresponding target
program. Our tool supports floating-point as well as fixed-point arithmetic, the latter of
which is challenging to generate manually as the programmer has to determine fixed-point
formats statically.
Clearly, one of the key challenges of such a compiler is to determine how close a finite-

precision representation is to its ideal implementation in real numbers. While sound static
analyses exist which compute accurate error bounds for linear operations [Goubault and
Putot 2011; Darulova and Kuncak 2011], the presence of nonlinear arithmetic remains a
challenge. Roundoff errors and error propagation depend on the ranges of variables in complex
and non-obvious ways; even determining these ranges precisely for nonlinear code is hard.
Furthermore, due to numerical errors, the control flow in the finite-precision implementation
may diverge from the ideal real-valued one, taking a different branch and producing a
result that is far off of the expected one. Quantifying discontinuity errors is difficult due
to nonlinearity and many correlations between the branches, but also due to a lack of
smoothness or continuity of the underlying functions that arise in practice [Chaudhuri et al.
2011]. Finally, in general, roundoff errors grow in loops with every iteration, making it
impossible to find a non-trivial fixpoint. Even if an iteration bound is known, loop unrolling
approaches scale poorly when applied to nonlinear code.
We have addressed these challenges and present here our results towards the goal of a

verifying compiler for real arithmetic. In particular, we present

— a real-valued implementation and specification language for numerical programs with
uncertainties; we define its semantics in terms of verification constraints that they induce
(Section 3).

— an approximation procedure for computing precise range bounds for nonlinear expressions
which combines SMT solving with interval arithmetic (Section 4).

— an approach for sound and fully automatic error estimation for nonlinear expressions for
floating-point as well as fixed-point arithmetic of various precisions. We handle roundoff
and propagation errors separately with affine arithmetic [de Figueiredo and Stolfi 2004] and
a first-order Taylor approximation, respectively. While providing accuracy, this separation
also allows us to provide the programmer with useful information about the numerical
stability of the computation (Section 5).

— an extension of the error estimation to programs with simple loops, where we developed
a technique to express the total error as a function of the number of loop iterations
(Section 6).

— a sound and scalable technique to estimate discontinuity errors which crucially relies on
the use of a nonlinear SMT solver (Section 7).

— an approach that chooses, based on the error analysis, a data type from a finite set of
floating-point or fixed-point precisions which satisfies a given error specification (Section 2).

— an open-source implementation in a tool called Rosa which we evaluate on a number of
benchmarks from the scientific computing and embedded systems domain and compare to
state-of-the-art tools.
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2. A COMPILER FOR REALS
We first introduce Rosa’s specification language and give a high-level overview of the technical
challenges and our solutions on a number of examples.

A Real-Valued Specification Language Rosa is a ‘verifying’ source-to-source compiler which
takes as input a program written in a real-valued non-executable specification language
and outputs appropriate finite-precision code. The input program is written in a functional
subset of the Scala programming language and consists of a number of methods over the Real

data type. Figures 1, 3 and 4 show three such example methods. Pre- and postconditions
(require and ensuring clauses) allow the user to explicitly state possible absolute errors on
method inputs and maximum tolerable absolute errors on the output(s), respectively. Taking
into account all uncertainties and their propagation, Rosa chooses a data type from a range
of floating-point and fixed-point precisions and emits the corresponding implementation in
the Scala programming language.

By writing programs in a real-valued source language, programmers can reason about the
correctness of the real-valued algorithm, and leave the low-level implementation details to
the automated sound analysis in Rosa. Besides this separation of concerns, the real-valued
semantics also serves as an unambiguous ideal baseline against which to compute errors. We
believe that making numerical errors explicit in pre- and postconditions attached directly to
the source code makes it less likely that these will be forgotten or overlooked. Finally, such
a language opens the door to sound compiler optimizations exploiting properties which are
valid over reals, but not necessarily over finite-precision – as long as the accuracy specification
is satisfied. We leave these, however, to future work and focus here on the error analysis.

Compilation Algorithm If a method has a full specification (with a pre- and postcondition),
Rosa analyzes the numerical computation and selects a suitable finite-precision data type
which fulfills this specification and synthesizes the corresponding code. The user specifies
which data types are acceptable from a range of floating-point and fixed-point precisions,
ordered by preference or e.g. performance. Rosa searches through the data types, applying a
static analysis for each, and tries to find the first in the list which satisfies the specification.
While this analysis is currently repeated for each data type, parts of the computation can
be shared and we plan to optimize the compilation process in the future.

Rosa can also be used as an analysis tool. By providing one data type (without necessarily
a postcondition), Rosa will perform the analysis and report the results consisting of a
real-valued range and maximum absolute error of the result to the user. These analysis result
are also reported during the regular compilation process as they may yield useful insights.

Finite-precision Data-Types Rosa supports floating-point as well as fixed-point arithmetic
with various precisions. We will review here the most important details related to our
work, more thorough treatments can be found in [Goldberg 1991] and [Yates 2013]. An
IEEE754 [IEEE 2008] floating-point number consists of a sign bit and a number of exponent
and mantissa bits; 8 and 23, and 11 and 52 for single and double precision respectively.
Higher precisions, such as double-double or quad-double can be implemented in software.
In addition, the floating-point standard also defines special numbers including positive and
negative infinity and NaN (not a number). NaN in general signals an invalid operation such
as division by zero. The exponent can be positive and negative and since it is finite, overflow
and underflow occur when a value exceeds the representable range. On overflow, positive
or negative infinity is returned, whereas underflow results in zero. The large relative error
introduced by underflow can be mitigated by introducing denormal numbers. These have a
non-standard representation and fill the gap between the smallest standard floating-point
number and zero.

The floating-point standard defines several rounding modes of which we consider here (the
usually default) rounding to nearest. When numbers are rounded correctly and assuming no
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def sineWithError(x: Real): Real = {
require(x > -1.57079632679 && x < 1.57079632679 && x +/- 1e-11) // precondition

x - (x*x*x)/6.0 + (x*x*x*x*x)/120.0 - (x*x*x*x*x*x*x)/5040.0

} ensuring(res => res +/- 1.001e-11) // postcondition

Fig. 1. Approximation of sine with a Taylor expansion

denormals occur, the result of a binary floating-point arithmetic operation ◦F satisfies

x ◦F y = (x ◦R y)(1 + δ), |δ| ≤ εM , ◦ ∈ {+,−, ∗, /} (1)

where ◦R is the ideal operation in real numbers and εM is the machine epsilon that determines
the upper bound on the relative error and is precision-dependent. Square root satisfies an
analogous expression. Rosa uses this abstraction for determining individual roundoff errors.
Note that Rosa’s static analysis considers ranges of values and as long as that range does
not consist solely of denormals, Equation 1 provides a sound way of computing absolute
roundoff errors, even when the range includes denormals.
In this work, we regard overflow, a variable range of only denormal numbers and NaNs

as faults. Rosa’s static analysis determines when these potentially occur and issues a
corresponding error message. Our analysis can be straight-forwardly extended to handle
ranges of only denormal values by augmenting Equation 1, however, we found that in all our
examples this case never occurred and we thus choose the simpler solution.
Floating-point arithmetic requires dedicated support, either in hardware or in software,

because exponents and with it the radix points vary dynamically and need to be aligned
before arithmetic operations at runtime. Depending on the application, this support may
be too costly. An alternative is fixed-point arithmetic which can be implemented with
integers only, but which in return requires that the radix point alignments are precomputed
at compile time. While no standard exists, fixed-point values are usually represented as
(signed) bit vectors with an integer and a fractional part, separated by an implicit radix
point. At runtime, the alignments are then performed by bit-shift operations as illustrated
in Figure 2, which is the fixed-point implementation of the sine function from Figure 1.
These shift operations can also be handled by special language extensions for fixed-point
arithmetic [ISO/IEC 2008], they do require, however, the manual specification of the radix
point position, which is the challenging part of the compilation.

Fixed-point arithmetic can provide more precision than floating-point arithmetic for the
same bit length when the range of values is known and relatively small and thus a large
exponent range is not necessary. The unused exponent bits that would be ‘wasted’ by a
floating-point representation can be used for more precision in fixed-points.
For fixed-point arithmetic, we assume a uniform bit length for the entire program. We

further use truncation as the rounding mode for arithmetic operations. The absolute roundoff
error at each operation is determined by the fixed-point format, i.e. the (implicit) number of
fractional bits available. For more details please see Anta et al. [2010], whose fixed-point
semantics we follow. Furthermore, fixed-point arithmetic does not support square root in
a standardizes way, as the underlying integers do not provide that operation. If such a
function was added as, e.g. a library function with an error specification, then Rosa could
be straight-forwardly extended to support it as well.

2.1. Example 1: Straight-line Nonlinear Computations
We illustrate Rosa’s compilation process on the example in Figure 1, which shows the code
of a method which computes the sine function with a 7th order Taylor approximation. The
Real data type denotes an ideal real-valued variable without uncertainty or roundoff. The
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/*
@param x (x +/- 1.e-11)
@return ((-1.0003675439019308 <= result && result <= 1.0003675439019308 &&

(result +/- 3.8907801077969955e-09)))

*/
def sineWithError(x : Long): Long = {
require(-1.5707963268 <= x && x <= 1.5707963268)

val _tmp1 = ((x * x) >> 31)
val _tmp2 = ((_tmp1 * x) >> 30)
val _tmp3 = ((_tmp2 << 30) / 1610612736l)
val _tmp4 = ((x << 1) - _tmp3)
val _tmp5 = ((x * x) >> 31)
val _tmp6 = ((_tmp5 * x) >> 30)
val _tmp7 = ((_tmp6 * x) >> 31)
val _tmp8 = ((_tmp7 * x) >> 31)
val _tmp9 = ((_tmp8 << 28) / 2013265920l)
val _tmp10 = ((_tmp4 + _tmp9) >> 1)
val _tmp11 = ((x * x) >> 31)
val _tmp12 = ((_tmp11 * x) >> 30)
val _tmp13 = ((_tmp12 * x) >> 31)
val _tmp14 = ((_tmp13 * x) >> 31)
val _tmp15 = ((_tmp14 * x) >> 30)
val _tmp16 = ((_tmp15 * x) >> 31)
val _tmp17 = ((_tmp16 << 23) / 1321205760l)
val _tmp18 = (((_tmp10 << 1) - _tmp17) >> 1)
val result = _tmp18

}

Fig. 2. Sine function implemented in fixed-point arithmetic

require clause or precondition specifies the real-valued range of the input parameter x as
well as an initial absolute error of 1e-11, which may stem from previous computations or
measurement imprecisions.
We would like to make sure that the error on the result does not grow too large, so we

constrain the result’s absolute error by 1.001e-11. We do not specify a data type preference,
so that Rosa considers all (currently) supported ones: 8, 16 and 32 bit fixed-point arithmetic
as well as single, double, double-double and quad-double floating-point precision (in this
order). Rosa determines that 8 bit fixed-point precision potentially overflows and that 16 or
32 bit fixed-point and single-precision floating-point arithmetic is not accurate enough (total
error of 2.54e-4, 3.90e-9 and 2.49e-7 respectively). For double floating-point precision, Rosa
determines an error of 1.000047e-11, which is sufficiently small, so that it generates code
with the Double data type.

If we had specified a somewhat larger error, say 5e-9, then Rosa would determine that 32
bit fixed-point arithmetic is sufficient and generate the code in Figure 2. (All intermediate
results fit into 32 bits, but as we need up to 64 bits to perform the arithmetic operations,
we simulate the arithmetic here with the 64 bit Long data type.) Note that the generated
code includes a precondition, which is checked at runtime and throws an exception if the
given condition is violated. The generated precondition checks that inputs satisfy the range
bounds for which Rosa has computed error bounds, as otherwise these would not be sound.
While the real-valued specification talks about real-valued ranges and error bounds, the
generated precondition can (and does) only check the finite-precision input ranges (and not
the errors), i.e. the ranges include the errors but cannot check for them directly.
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def sine(x: Real): Real = {
require(-20 <= x && x <= 20)
x - x*x*x/6 + x*x*x*x*x/120

}

def pendulum(t: Real, w: Real, n: LoopCounter): (Real, Real) = {
require(-2 <= t && t <= 2 && -5 <= w && w <= 5 &&
-2.01 <= ~t && ~t <= 2.01 && -5.01 <= ~w && ~w <= 5.01)

if (n < 100) {
val h: Real = 0.01
val L: Real = 2.0
val m: Real = 1.5
val g: Real = 9.80665

val k1t = w
val k1w = -g/L * sine(t)
val k2t = w + h/2*k1w
val k2w = -g/L * sine(t + h/2*k1t)
val tNew = t + h*k2t
val wNew = w + h*k2w

pendulum(tNew, wNew, n++)
} else {
(t, w)

}
}

Fig. 3. Simulation of a pendulum

In order to determine which data type is appropriate, Rosa performs a static analysis
which computes a sound estimate of the worst-case absolute error. Since roundoff errors and
error propagation depend on the ranges of (all intermediate) computations, Rosa needs to
compute these as accurately as possible. We developed a technique which combines interval
arithmetic [Moore 1966] with a decision procedure for nonlinear arithmetic, providing
accuracy as well as automation (Section 4). Using a decision procedure allows Rosa to take
into account arbitrary additional constraints on the inputs, which, for example, neither
interval nor affine arithmetic [de Figueiredo and Stolfi 2004] can. Rosa decomposes the total
error into roundoff errors and propagated initial errors and computes each with a different
method (Section 5). Rosa uses affine arithmetic to keep track of accumulated roundoff errors,
while propagated errors are soundly estimated with a first-order Taylor approximation. The
latter is fully automatically and accurately computed with our interval and nonlinear decision
procedure combination.

2.2. Example 2: Loops with Constant Ranges
In general, numerical errors in loops grow with every iteration and thus standard abstract
interpretation approaches compute a trivial fixpoint of infinity. The only alternative today
to compute a sound absolute error bound for complex code is by unrolling. It turns out,
however, that our separation of errors into roundoff and propagation errors allows us to
express the total error as a function of the number of loop iterations. We have further
identified a class of loops for which we can derive a closed-form expression of the loop error
bounds. This expression, on one hand, constitutes an inductive invariant, and, on the other
hand, can be used to compute concrete error bounds. While this approach is limited to loops
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def jetApproxGoodFitWithError(x: Real, y: Real): Real = {
require(-5<=x && x<=5 && -5<=y && y<=5 && x +/- 0.001 && y +/- 0.001)
if (y < x) {
-0.317581 + 0.0563331*x + 0.0966019*x*x + 0.0132828*y +
0.0372319*x*y + 0.00204579*y*y

} else {
-0.330458 + 0.0478931*x + 0.154893*x*x + 0.0185116*y -
0.0153842*x*y - 0.00204579*y*y

}
}

Fig. 4. Approximation of a complex embedded controller

where the variable ranges are bounded, our experiments show that this approach can already
analyze interesting loops that are out of reach for current tools.

Figure 3 shows such an example: a Runge Kutta order 2 simulation of a pendulum.
t and w are the angle the pendulum forms with the vertical and the angular velocity,
respectively. We approximate the sine function with its 5th order Taylor series polynomial.
We focus here on roundoff errors between the system following the real-valued execution
and the system following the same dynamics but implemented in finite precision (we do not
attempt to capture truncation errors due to the numerical integration, nor due to the Taylor
approximation of sine). After 100 iterations, for instance, Rosa determines that the error on
the results is at most 8.82e-14 and 1.97e-13 (for t and w respectively) when implemented
in double-precision floating-point arithmetic and 7.38e-7 and 1.65e-6 in 32 bit fixed-point
arithmetic.

2.3. Example 3: Discontinuities
Embedded systems often use piece-wise approximations of more complex functions. In Figure 4
we show a possible piece-wise polynomial approximation of a fairly complex jet engine
controller. We obtained this approximation by fitting a polynomial to a sample of values of
the original function. Note that the resulting function is not continuous.
A precise constraint encoding the difference between the real-valued and finite-precision

computation when they take different paths includes variables that are tightly correlated.
This makes it hard for SMT solvers to cope with and makes linear approaches imprecise.
We explore the separation of errors idea again in order to soundly estimate errors due to
conditional branches and separate the real-valued difference from finite-precision artifacts.
The individual error components are easier to handle individually, yet preserve enough
accuracy.

In our example, the real-valued difference between the two branches is bounded by 0.0428
(making it arguably a reasonable approximation given the large possible range of results).
However, this is not a sound estimate for the discontinuity error in the presence of roundoff
and initial errors (in our example 0.001). With Rosa, we can confirm that the discontinuity
error is bounded by 0.0450 with double floating-point precision, with all errors taken into
account.

3. PROBLEM DEFINITION
Clearly, computing error bounds is the main technical challenge of our compiler for Reals.
Before we describe our solution in detail, we first precisely define the error computation
problem that Rosa is solving internally.
Formally, an input program consists of one or more methods given by the grammar

in Figure 5. args denotes possibly multiple arguments and the return value (res) can
be a single value or a tuple (denoted e.g. as (x, y)). The method body may consist of
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P ::= def mName(args): res = {
require(

∧
A)

( L | D )
} ensuring(res =>

∧
A)

A ::= x +/- const | S
S ::= S ∧ S | S ∨ S | ¬ S | C
L ::= if (n < const) mName(B, n + 1) else args
D ::= if (C) D else D | B
B ::= val x = F; B | (F, F, ...) | F

F ::= - F | F + F | F - F | F * F | F / F |
√
F | X

C ::= F ≤ F | F < F | F ≥ F | F > F
X ::= x | const

Fig. 5. Rosa’s input language

an arithmetic expression with the operators +,−, ∗, /,√, as well as immutable variable
declarations (val t1 = ...), non-recursive function calls and possibly nested conditionals.
Note that square root is only supported for floating-point arithmetic. Non-recursive method
calls are handled either by inlining the postcondition or the whole method body and by
proving the corresponding precondition. The specification language is functional, so we
represent loops as recursive functions (denoted L), where n denotes the integer loop iteration
counter.

The precondition given by the require clause defines a range bound for each input variable
as a <= x && x <= b representing x ∈ [a, b]. Optionally, initial absolute errors can be specified
with the +/- operator. If no errors are given explicitly, we assume roundoff as the initial
error. Additionally, the require clause may specify further constraints on the inputs, such as
x*x + y*y <= 20.0.
Overall Problem Definition Let us denote by P a real-valued function representing our
program and by x its input, where x is possibly multivariate. Denote by P̃ the corresponding
finite-precision implementation of the program which has the same syntax tree but with
operations interpreted in finite-precision arithmetic. Let x̃ denote the input to this finite-
precision program. The technical challenge of Rosa is to estimate the difference

max
x,x̃

|P (x)− P̃ (x̃)| (2)

that is, the worst-case absolute error on the result of the program. This error bound is
crucial for selecting an implementation data type.

The error bound x +/-λ defines the relationship |x− x̃| ≤ λ. The domains of x and x̃, over
which Equation 2 is to be evaluated, are given by the precondition in the require clause.
The real-valued range bounds xi ∈ [ai, bi] are given directly and the finite-precision ones
x̃i ∈ [ci, di] = [ai − λ, bi + λ] are derived from the real-valued range and the error bound.
Straight-line Nonlinear Code (F) When P consists of a nonlinear arithmetic expression only,
the syntactic program corresponds to a real-valued mathematical expression which is the
input to our core error computation procedure. Concretely, the input consists of a real-valued
function f : Rm → Rn over some inputs xi ∈ R, representing the arithmetic expressions
F, with corresponding finite-precision counter-parts f̃ and x̃. Note that for our analysis
all variables are real-valued; the finite-precision variable x̃ is considered as a noisy version
of x. Rosa performs the error computation with respect to some fixed target precision in
floating-point or fixed-point arithmetic; this choice provides error bounds for each individual
arithmetic operation. Then Equation 2 reduces to bounding the absolute error on the result
of evaluating f(x) in finite precision arithmetic (Section 5): maxx,x̃|f(x)− f̃(x̃)|.
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Loops (L) When the body of P is a loop, then the constraint reduces to computing the
overall error after k-fold iteration fk of f , where f corresponds to the arithmetic expression
of the loop body. We define for any function H: H0(x) = x, Hk+1(x) = H(Hk(x)). We are
then interested in bounding (Section 6):

max
x,x̃
|fk(x)− f̃k(x̃)|

Conditionals (D) For code containing branches, Equation 2 accounts also for the discontinuity
error. For example, if we let f1 and f2 be the real-valued functions corresponding to the
if and the else branch respectively with the branch condition c, then, if c(x) ∧ ¬c̃(x̃), the
discontinuity error is given by maxx,x̃|f1(x) − f̃2(x̃)|, i.e., it accounts for the case where
the real computation takes the if-branch, and the finite-precision one takes the else-branch.
The overall error on P from Equation 2 in this case must account for the maximum of
discontinuity errors between all pairs of paths, as well as propagation and roundoff errors
for each path (Section 7).
A note on relative error Our technique soundly overestimates the absolute error of the
computation. The relative error can be computed from this and from the range of the result
provided that the range does not include zero. Whenever this is the case, Rosa also reports
the relative error in addition to the absolute one.

3.1. Assumptions and Extensions
While the input and output language is a subset of Scala, the analysis is programming
language agnostic, as long as the IEEE 754 standard is supported and the regular language
compiler preserves the computation order. Adapting Rosa to a different front-end or back-end
is a straight-forward programming exercise.
Rosa currently supports analysis and code generation for floating-point and fixed-point

arithmetic of different precisions, currently these are 8, 16 and 32 bit fixed-point arithmetic
as well as single, double, double-double and quad-double floating-point precision, where
the latter two are implemented as software libraries [Bailey et al. 2013]. Extending Rosa to
other or non-standard precisions is straight-forward, provided that roundoff error bounds
are given for each arithmetic operation (they can depend on the variable’s ranges).
We further assume a uniform precision throughout the program, although an extension

to mixed-precision would be straight-forward, provided that the types for each variable are
given.

4. COMPUTING RANGES ACCURATELY
The first step to accurately estimating roundoff and propagation errors is to have a procedure
to estimate ranges as tightly as possible. This is important as these errors directly depend
on the ranges of all, including intermediate, values. Coarse range estimates may thus result
in inaccurate overall error bounds or they can make the analysis impossible due to spurious
divisions by zero, for example.

4.1. Interval and Affine Arithmetic
Traditionally, sound or guaranteed computations have been performed with interval arith-
metic [Moore 1966]. Interval arithmetic computes a bounding interval for each basic operation
as

x ◦ y = [min(x ◦ y),max(x ◦ y)] ◦ ∈ {+,−, ∗, /}
and analogously for square root. Interval arithmetic cannot track correlations between
variables (e.g. x− x 6= 0), and thus can introduce significant over-approximations of the true
ranges, especially when the computations are longer.
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Affine arithmetic [de Figueiredo and Stolfi 2004] partially addresses this loss of correlation
by representing possible values of variables as affine forms

x̂ = x0 +

n∑
i=1

xiεi

where x0 denotes the central value (of the represented interval) and each noise symbol εi,
ranging over [−1, 1], is a formal variable denoting a deviation from this central value. The
maximum magnitude of each noise term xiεi is given by the corresponding xi.

The range represented by an affine form is computed as

[x̂] = [x0 − rad(x̂), x0 + rad(x̂)], rad(x̂) =

n∑
i=1

|xi|

Note that the sign of the xis does not matter in isolation, it does, however, reflect the relative
dependence between values. E.g., take x = x0 + x1ε1, then

x− x = x0 + x1ε1 − (x0 + x1ε1) = x0 − x0 + x1ε1 − x1ε1 = 0

If we subtracted x′ = x0−x1ε1 instead, the resulting interval would have width 4∗x1 and not
zero. Linear operations are performed term wise and are computed exactly, whereas nonlinear
ones need to be approximated. We use linear approximations as proposed in [de Figueiredo
and Stolfi 2004] and as implemented in [Darulova and Kuncak 2011].
Affine arithmetic can thus track linear correlations, it is, however, not generally better

than interval arithmetic. For example, consider x ∗ y where x = [−5, 3], y = [−3, 1]. In
interval arithmetic, the result is [−9, 15], whereas for affine arithmetic it is [−13, 15]:

(−1 + 4ε1) ∗ (−1 + 2ε2) = 1− 4ε1 − 2ε2 + 8ε1ε2

[x ∗ y] = [1− 14, 1 + 14] = [−13, 15]

4.2. Range Estimation using Satisfiability Modulo Theories (SMT) Solvers
While interval and affine arithmetic are reasonably fast for range estimation, they tend to
introduce over-approximations, especially if the input intervals are not sufficiently small.
We propose a combination of interval arithmetic and a decision procedure for nonlinear
arithmetic, implemented in an SMT (Satisfiability Modulo Theories) constraint solver, to
obtain improved accuracy while maintaining automation.

Figure 6 shows our algorithm for computing the lower bound of a range. The computation
for the upper bound is symmetric. For each range to be computed, our technique computes
an initial sound estimate of the range with interval arithmetic. It then performs an initial
quick check to test whether the computed first approximation bounds are already tight. If
not, it uses the initial approximation as the starting point and narrows down the lower and
upper bounds using a binary search. At each step of the binary search our tool uses the
nonlinear nlsat solver within Z3 [De Moura and Bjørner 2008; Jovanović and de Moura 2012]
to confirm or reject the newly proposed bound. The search stops when either Z3 returns
unknown or times out, the difference between subsequent bounds is smaller than a precision
threshold, or the maximum number of iterations is reached. This stopping criterion can be
adjusted by the user.
Additional Constraints In our approach, since we are using Z3 to check the soundness of
range bounds, we can assert additional constraints and run the algorithm in Figure 6 with
respect to all of these. This is especially useful when taking into account branch conditions
from conditionals.
Optimizations Calling an SMT solver is fairly expensive so we want to minimize the number
of calls. The algorithm in Figure 6 presents parameters to do this: the maximum number
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def getRange(expr, precondition, precision, maxIterations):
z3.assertConstraint(precondition)
[aInit, bInit] = evalInterval(expr, precondition.ranges);

//lower bound
if z3.checkSat(expr < aInit + precision) == UNSAT
a = aInit
b = bInit
numIterations = 0
while (b-a) < precision ∧ numIterations < maxIterations
mid = a + (b - a) / 2
numIterations++
z3.checkSat(expr < mid) match
case SAT ⇒ b = mid
case UNSAT ⇒ a = mid
case Unknown ⇒ break

aNew = a
else
aNew = aInit

//upper bound symmetrically
bNew = ...
return: [aNew, bNew]

Fig. 6. Algorithm for computing the range of an expression

of iterations and the precision of the range estimate. Through our experiments we have
identified suitable default values, which seem to present a good trade-off between accuracy
and performance. In addition to these two parameters, if we are only interested in the
final range, we do not need to call Z3 and the algorithm in Figure 6 for every intermediate
expression but use interval arithmetic only instead. In principle, we could call Z3 only on
the full final expression, however, we found that this resulted in suboptimal results as this
expression often was too complex and Z3 would time out. We found a good compromise in
calling Z3 only every 10 arithmetic operations. All of these parameters can be adjusted by
the user.

5. SOUNDLY ESTIMATING NUMERICAL ERRORS IN NONLINEAR EXPRESSIONS
Now we can address the first challenge of error estimation for a loop-free nonlinear function
without branches: maxx,x̃|f(x)− f̃(x̃)| where |x− x̃| ≤ λ and where the ranges for x and x̃
are given by the precondition. We will assume f : Rm → R for simplicity of exposition, but
the approach extends straight-forwardly to f : Rm → Rn by computing the error for each
output individually.

5.1. Error Estimation with Affine Arithmetic
Consider first the case when want to estimate roundoff errors only that is, we are interested in
maxx|f(x)− f̃(x)|, where the input errors are zero. Our procedure executes the computation
represented by f abstractly by computing an interval and an affine form for each AST node:

(range: Interval, ˆerr: AffineForm)

range represents the real-valued range, and ˆerr the accumulated worst-case errors, with
essentially one noise term for each roundoff error (together with artifacts from nonlinear
approximations). The finite-precision range is then given by range + [ ˆerr], where [ ˆerr] denotes
the interval represented by the affine form.
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For each arithmetic operation, our procedure

(1) computes the new range with our range procedure from Section 4
(2) propagates already accumulated roundoff errors
(3) computes the new roundoff error, which is then added to the propagated affine form.

Steps 2 and 3 are explained below. Since we compute the range at each intermediate node,
we also check for possible overflows, ranges containing only denormals, division by zero or
negative square root discriminants without extra effort.
Propagation of Errors with Affine Arithmetic (Step 2) For linear operations, errors are
propagated with the standard rules of affine arithmetic. For multiplication, division and
square root the error propagation depends on the range of values, so that we have to adapt
our computation to use the ranges computed with our Z3-backed procedure. In the following,
we denote the real range of a variable x by [x] and its associated error by the affine form
ˆerrx. When we write [x] ∗ ˆerry we mean that the interval [x] is converted into an affine form

and the multiplication is performed in affine arithmetic. Multiplication is then computed as

x ∗ y = ([x] + ˆerrx)([y] + ˆerry)

= [x] ∗ [y] + [x] ∗ ˆerry + [y] ∗ ˆerrx + ˆerrx ∗ ˆerry

Thus the first term contributes to the ideal range and the remaining three to the error affine
form. The larger the factors [x] and [y] are, the larger the computed errors will be so that a
tight range estimation is important for accuracy. Division is computed as

x

y
= x ∗ 1

y
= ([x] + ˆerrx)([1/y] + ˆerr1/y)

= [x] ∗ [ 1
y
] + [x] ∗ ˆerr 1

y
+ [

1

y
] ∗ ˆerrx + ˆerrx ∗ ˆerr 1

y

For square root, we first compute a linear approximation of square root as in our previous
work [Darulova and Kuncak 2011]:

√
x = α ∗ x+ ζ + θ

and then perform the affine multiplication component-wise.
Roundoff Error Computation (Step 3) Roundoff errors for floating-point arithmetic are
computed at each computation step using the abstraction from Equation 1 and the totalRange,
which is the real-valued range computed in step 1 plus the propagated roundoff errors from
step 2: εm * maxAbs(totalRange) where εm is the machine epsilon (and not an affine arithmetic
symbolic variable) and where the maxAbs function computes the maximum absolute value of a
range. For fixed-point arithmetic, the variable range determines how many bits are required
for the integer part to avoid overflow and thus how many bits remain for the fractional part.
This in turn determines the roundoff error [Anta et al. 2010]. The new roundoff error is then
added to ˆerr as a fresh noise term.

Note that for a new data type, only this roundoff computation needs to be modified.

5.2. Separation of Errors
We could use the affine arithmetic based procedure to track all errors, not only roundoff
errors, by simply adding the initial error as a fresh noise term at the beginning. Such an
approach treats all errors equally: the initial errors are propagated in the same way as
roundoff errors which are committed during the computation. We found, however, that the
over-approximation introduced by affine arithmetic for nonlinear computations increases
substantially as the magnitude of the noise terms (i.e. the errors) becomes larger. Instead,
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we separate the total error as follows:

|f(x)− f̃(x̃)| = |f(x)− f(x̃) + f(x̃)− f̃(x̃)|
≤ |f(x)− f(x̃)|+ |f(x̃)− f̃(x̃)|

(3)

The first term, |f(x)− f(x̃)|, captures the error on the result of f caused by the initial error
between x and x̃. The second term, |f(x̃)− f̃(x̃)|, covers the roundoff error committed when
evaluating f in finite precision, but without an input error. Thus, we separate the overall
error into the propagation of existing or initial errors, and the newly committed roundoff
errors.
We denote by σf : Rm → R the function which returns the maximum absolute roundoff

error committed when evaluating an expression f in finite-precision arithmetic: σf (x̃) =
|f(x̃) − f̃(x̃)|. We omit the subscript f , when it is clear from the context. Furthermore,
g : Rm → R denotes a function which bounds the difference in f , given a difference in its
inputs: |f(x)− f(y)| ≤ g(|x− y|). When m > 1, the absolute values are component-wise, e.g.
g(|x1− y1|, . . . , |xm− ym|), but when it is clear from the context, we will write g(|x− y|) for
clarity. Both σ and g are understood to work over an implicit input domain, given by the
precondition; we will drop the maxx,x̃ when it is clear from the context. Thus, the overall
worst-case numerical error is given by:

|f(x)− f̃(x̃)| ≤ g(|x− x̃|) + σ(x̃) (4)

The function σ is instantiated with the affine arithmetic based procedure from subsection 5.1.
Since roundoff errors are generally small, we found affine arithmetic suitable for this purpose.
In contrast, the propagation of existing errors (function g) is a continuous real-valued
property which depends on the slope of the function f . In order to compute this as accurately
as possible, we need to capture the end-to-end correlations between variables and thus have
to look at the function as a whole. We describe this procedure next.

5.3. Propagation Errors
We instantiate Equation 4 with g(x) = K · x, i.e. |f(x) − f(y)| ≤ K|x − y| which bounds
the deviation on the result due to a difference in the input by a linear function in the input
errors. The constant K (or vector of constants Ki in the case of a multivariate function) is to
be determined for each function f individually, and is usually called the Lipschitz constant.
We will use the in this context more descriptive name propagation coefficient. Note that we
need to compute the propagation coefficient K for the mathematical function f and not its
finite-precision counterpart f̃ .

Error amplification or diminution depends on the derivative of the function evaluated at
the value of the inputs. The steeper the function, i.e. the larger the derivative, the more
initial errors are magnified. For f : Rm → R we have

max
x,x̃
|f(x)− f(x̃)| ≤

m∑
i=1

Kiλi, where Ki = sup
x,x̃

∣∣ ∂f
∂wi

∣∣ (5)

where λi are the initial errors and wi denote the formal parameters of f . In order words, the
propagation coefficients are computed as a sound bound on the Jacobian. This computation
naturally extends component-wise to multiple outputs.

We formally derive the computation of the propagation coefficients Ki for a multivariate
function f : Rm → R in the following. Let h : [0, 1]→ R such that h(θ) := f(y + θ(z − y)).
Without loss of generality, assume y < z. Then h(0) = f(y) and h(1) = f(z) and d

dθh(θ) =
∇f(y + θ(z − y)) · (z − y). By the mean value theorem: f(z) − f(y) = h(1) − h(0) =
h′(ζ), where ζ ∈ [0, 1].
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|f(z)− f(y)| = |h′(ζ)| = |∇f(y + ζ(z − y)) · (z − y)|

=
∣∣( ∂f

∂w1

∣∣∣∣
s

, . . . ,
∂f

∂wm

∣∣∣∣
s

)
· (z − y)

∣∣, s = y + ζ(z − y)

=
∣∣ ∂f
∂w1

· (z1 − y1) + · · ·+
∂f

∂wm
· (zm − ym)

∣∣
≤

m∑
i=1

∣∣ ∂f
∂wi

∣∣ · ∣∣zi − yi∣∣ (**)

where the partial derivatives are evaluated at s = y+ζ(z−y) (which we omit for readability).
The value of s in (**) is constrained to be in s ∈ [y, z], so for a sound analysis we have
to determine the maximum absolute value of the partial derivative over [y, z]. y and z in
our application range over the values of x and x̃ respectively, so we compute the maximum
absolute value of ∂f

∂xi
over all possible values of x and x̃. With |yi − zi| ≤ λi we finally

obtain Equation 5.

Bounding Partial Derivatives Rosa first computes the partial derivatives in Equation 5
symbolically and then soundly bounds them over all possible values of x and x̃. Both interval
and affine arithmetic suffer from possibly large over-approximations due to nonlinearity
and loss of correlations. Furthermore, they cannot take additional constraints into account,
for example from branch conditions (e.g. y < x) or user defined constraints on the inputs.
We use the range computation from Section 4 which allows us to take these into account,
making the computed propagation coefficients much more accurate.

Recall that the arithmetic operations permitted are {+,−, ∗, /,√}, and thus the derivatives
could be in principle discontinuous or undefined. Rosa detects these cases automatically
during the range bound computation, and reports them as errors.

Sensitivity to Input Errors Beyond providing a way to compute the propagated initial errors,
Equation 5 also makes the sensitivity of the function f to input errors explicit. The user
can use this knowledge, for example, to determine which inputs need to be obtained more
precisely, e.g. by better measurements. We report the values of K back to the user.

5.4. Relationship with Affine Arithmetic
Both our presented propagation procedure and propagation using affine arithmetic perform
approximations. The question arises then, when is it preferable to use one over the other?
Our experience and experiments show empirically that for longer nonlinear computations,
error propagation based on Lipschitz continuity gives better results, whereas for shorter
and linear computations this is not the case. In this section, we present an analysis of this
phenomenon based on a small example.
Suppose we want to compute x ∗ y − x2. For this discussion we consider propagation

only and disregard roundoff errors. We consider the case where x and y have an initial
error of δxε1 and δyε2 respectively, where εi ∈ [−1, 1] are the formal noise symbols of affine
arithmetic. Without loss of generality, we assume δx, δy ≥ 0. We first derive the expression
for the error with affine arithmetic, using the definition of multiplication from subsection 5.1.
We denote by [x] the evaluation of the real-valued range of the variable x. The total range of
x is then the real-valued range plus the error: [x] + δxε1, where ε1 ∈ [−1, 1]. Multiplying out,
and removing the [x][y]− [x]2 term (since it is not an error term), we obtain the expression
for the error of x ∗ y − x2:
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([y]δxε1 + [x]δyε2 + δxδyε3)− (2[x]δxε1 + δxδxε4)

= ([y]− 2[x])δxε1 + [x]δyε2 + δxδyε3 + δxδxε4
(6)

ε3 and ε4 are fresh noise symbols introduced by the nonlinear approximation.
Now we use our second method and compute the propagation coefficients:

∂f

∂x
= y − 2x

∂f

∂y
= x

so that the error is given by∣∣∣[y + δyε2 − 2(x+ δxε1)]
∣∣∣δx + ∣∣∣[x+ δxε1]

∣∣∣δy (7)

We obtain this expression by instantiating Equation (**) with the expressions representing
the ranges of x and y. Note that these ranges include the errors.

Multiplying out Equation 7 we obtain:∣∣∣[y − 2x]
∣∣∣δx + ∣∣∣[x]∣∣∣δy + 2δxδy + δxδx (8)

In summary, with affine arithmetic, we need to compute the ranges used for propagation at
each computation step, i.e. in Equation 6 we compute [x] and [y] separately. In contrast, with
the Lipschitz-based technique, we evaluate [y−2x] and [x], where we can take all correlations
between the variables x and y into account. It is these correlations that improve the computed
error bounds. For instance, if we choose x ∈ [1, 5] and y ∈ [−1, 2] and we, say, know that
x < y, then by a step-wise computation we obtain [y] − 2[x] = [−1, 2] − 2[1, 5] = [−11, 0]
whereas taking the correlations into account, we can narrow down the range of x to [1, 2]
and obtain [y − 2x] = [−1, 2] − 2[1, 2] = [−5, 0]. Hence, since we compute the maximum
absolute value of these ranges for the error computation, affine arithmetic will use the factor
11, whereas our Lipschitz-based approach will use 5.

But, comparing Equation 8 with Equation 6, we also see that the term δxδx is included twice
with our Lipschitz-based approach, whereas in the affine propagation it is only included once.
We conclude that a Lipschitz-based error propagation is most useful for longer computations
where it can leverage correlations. In other cases, we keep the existing affine arithmetic-based
technique. It does not require a two-step computation, so we want to use it for smaller
expressions. We remark that for linear operations the two approaches are equivalent.

5.5. Refactoring
As discussed, affine arithmetic works best for computing error bounds when the expression
is shorter and the errors are small, whereas propagation coefficients are preferable otherwise.
We use this principle inside Rosa not only to distinguish between roundoff errors and
the method’s input errors but also inside the method body if it contains local variable
declarations. For example, consider the following code snippet:

val a = f1(x)
f2(x, a)

a is declared locally, and becomes an input variable to the computation in f2. Similarly,
the errors on a become input errors in f2. Rosa will thus compute the errors on a by using
propagation coefficients to compute the propagation and affine arithmetic to compute the
roundoff errors. When computing the error on f2, the total error on a is propagated together
with the error on x with propagation coefficients. The roundoff errors from computing a have
thus become initial errors for the computation of f2. In practice, this strategy often leads to
improved error bounds, as it keeps the expressions treated by affine arithmetic short. We
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currently rely on the programmer to refactor the code, but this could also be automated in
the future.

5.6. Implementation
We have implemented Rosa in the Scala programming language. Internally, we use a rational
data type implemented on top of Java’s BigIntegers for all our computations. This lets us
easily interface with Z3 which also uses rationals and also to avoid having to deal with
roundoff errors internally.

5.7. Comparison with the State-of-the-Art
We compare Rosa to two other tools which can automatically quantify numerical errors:
Fluctuat [Goubault and Putot 2011] (version from January 2015) and FPTaylor [Solovyev
et al. 2015] (version from April 2015).
Fluctuat is an abstract interpreter which uses affine arithmetic for computing both the

ranges of variables and for the error bounds. In order to combat the over-approximations
introduced by affine arithmetic, Fluctuat can add constraints on noise terms [Ghorbal et al.
2010]. Further, Fluctuat uses Taylor approximations locally to handle division and square
root [Ghorbal et al. 2009], but the expansion is hard coded and does not consider the global
expression.
Another technique employed by Fluctuat is interval subdivision, where the user can

designate up to two variables in the program whose ranges will be subdivided, analyzed
separately and the results then merged. This procedure works for floating-point arithmetic
as the decimal point is dynamic. For fixed-point arithmetic, however, the global ranges are
needed at each point to determine the static fixed-point formats. These can be obtained with
interval subdivision, but because the errors cannot be evaluated over the smaller ranges,
the benefits will be reduced. Naturally, interval subdivision increases the runtime of the
analysis, especially for multivariate functions, and the optimal subdivision strategy may not
always be obvious. Interval subdivision could be also used in place of our SMT-supported
range computation; the procedure would, however, not be able to take into account arbitrary
correlations between variables or additional constraints. We choose here to compare our
SMT-based technique against Fluctuat with and without subdivision to obtain a good
comparison between the techniques. In the future, we expect a combination of different
techniques to work best.
Fluctuat also has a procedure for computing discretization errors, and can handle loops

either by computing fixpoints or by unrolling. Finally, Fluctuat also separates errors similarly
to our presented approach, although it does not treat the individual parts fundamentally
differently as we do. We want to note that our formalism has also enabled the unified
treatment of loops and discontinuities.
FPTaylor [Solovyev et al. 2015] is a recent tool for computing the roundoff errors of

nonlinear expressions, including transcendental functions. It relies similarly to Rosa on
Taylor series, but does the expansion with respect to errors, whereas we expand with
respect to the function’s parameters. Furthermore, FPTaylor uses global optimization as
the backend solver, which enables the use of transcendental functions (Z3’s nlsat solver only
supports arithmetic). FPTaylor currently only supports error computation for straight-line
computations in floating-point arithmetic.

Like Rosa, both Fluctuat and FPTaylor also compute relative errors from absolute errors,
whenever the resulting range does not straddle zero.

Another framework that can be used for estimating numerical errors is the Frama-C
framework [CEA-LIST 2015] with the Gappa front-end [Boldo and Marché 2011; Linderman
et al. 2010]. Gappa supports automated roundoff error computation based on interval or
affine arithmetic and can additionally take hints from the user to enable proving very precise
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properties. In this paper, we focus on automated techniques, and since those inside Gappa
are subsumed by Fluctuat we choose to compare Rosa only against the latter.
Some of the techniques used by Rosa and Fluctuat have also been employed in the area

of synthesis of fixed-point programs, i.e. the determination of the number of integer and
fractional bits needed [Mallik et al. 2007; Jha and Seshia 2013; Lee et al. 2006; Gaffar et al.
2004; Jha and Seshia 2013; Kinsman and Nicolici 2009]. These are, however, mostly specific
to fixed-point arithmetic and we thus review them further in Section 8.

5.8. Experimental Results
We have chosen a number of benchmarks from the domains of scientific computing and
embedded systems [Anta et al. 2010; Woodford and Phillips 2012] to evaluate the accuracy
and performance of our technique. The tool and all benchmarks are open-source and available
at https://github.com/malyzajko/rosa.

We perform all tests in double floating-point precision as this is the only precision supported
by both Fluctuat and FPTaylor. In our experience, while the absolute errors naturally change
with varying precisions and data types, relative differences when comparing different tools
on the same precision data type remain similar. This is because the differences between
analyzing absolute errors for fixed-point or floating-point arithmetic with techniques like
ours are minor.
Experiments were performed on a desktop computer running Ubuntu 14.04.1 with a

3.5GHz i7 processor and 16GB of RAM, and using the unstable branch (as of 10 December
2014) of Z3.

All three tools have a number of settings that affect the trade-off between accuracy and
performance and it is impossible for us to capture them all. In our experiments we have thus
chosen to focus on accuracy first, i.e. we tried to choose the setting which resulted in the
tightest error bounds, unless the performance suffered disproportionately by this choice.

Table I shows our experimental results in terms of accuracy (absolute errors computed)
and performance (running time of tool). Running times for Rosa and FPTaylor are rounded
to two decimal digits. For Fluctuat, however, we report times rounded to seconds, because
Fluctuat itself does not report the total running times and we had to run the analysis via a
GUI which made more precise timing measurements infeasible. We consider three flavors of
our benchmarks: inputs with roundoff errors only, inputs with initial larger uncertainties
and inputs with an additional nonlinear constraint.

Inputs with Roundoff In the first set of benchmarks in Table I we assume only roundoff as
the initial error on inputs. We compare against Fluctuat without and with subdivisions.
For the subdivisions, we uniformly chose 20 subdivisions for the two inputs where the
effect was largest. While choosing more is certainly possible, we found the running time
increased rapidly and disproportionately with the accuracy gains. For FPTaylor we used
default settings with the improved rounding model, approximate optimization and the
branch and bound optimization procedure, which we believe are the most accurate settings.
The annotation ’(ref)’ marks benchmarks that are refactored. Rosa’s technique in general
benefits from such a refactoring (see subsection 5.5), but this is also sometimes the case for
Fluctuat when subdivisions are used.

FPTaylor is mostly able to compute the tightest error bounds on these benchmarks, but
we observe that the differences (except for the jet example) are in many cases quite small.
FPTaylor’s computation is also the most time consuming in the majority of cases, although
again the differences are often small.

Inputs with Uncertainties The second set of benchmarks features inputs with uniform uncer-
tainty of 1e-11, aiming to compare the different tools ability to estimate error propagation
accurately. The tools’ settings are the same as for the first set of testcases. Except for the
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Table I. Absolute errors computed by Rosa, Fluctuat and FPTaylor for double-precision floating-point arithmetic.
(r) marks refactored benchmarks, (e) marks benchmarks with additional input errors

Absolute errors Running time in seconds
benchmark Rosa Fluctuat Fluctuat

(subdiv)
FPTaylor Rosa Fluctuat Fluctuat

(subdiv)
FPTaylor

with roundoff errors only

doppler 4.15e-13 3.90e-13 1.54e-13 1.35e-13 7.44 1 2 6.03
doppler (r) 2.42e-13 3.90e-13 1.40e-13 1.35e-13 6.85 1 2 6.82
jet 5.33e-09 4.08e-08 2.10e-11 1.17e-11 94.39 1 2 11.87
jet (r) 4.91e-09 4.08e-08 1.88e-11 1.17e-11 76.22 1 2 11.47
rigidBody 3.65e-11 3.65e-11 3.65e-11 3.61e-11 0.74 1 2 5.40
rigidBody (r) 3.65e-11 3.65e-11 3.65e-11 3.61e-11 0.66 1 2 4.64
sine 5.74e-16 7.97e-16 7.41e-16 5.52e-16 1.32 1 1 5.08
sineOrder3 9.96e-16 1.15e-15 1.09e-15 8.90e-16 0.24 1 1 3.73
sqroot 2.87e-13 3.21e-13 3.21e-13 2.87e-13 0.49 1 1 6.78
turbine1 5.99e-14 9.20e-14 2.21e-14 2.11e-14 4.93 1 2 7.54
turbine1 (r) 5.15e-14 9.26e-14 2.21e-14 2.11e-14 1.19 1 2 7.08
turbine2 7.68e-14 1.29e-13 2.87e-14 2.62e-14 1.43 1 2 5.76
turbine2 (r) 6.30e-14 1.34e-13 2.87e-14 2.62e-14 0.92 1 2 6.27
turbine3 4.62e-14 6.99e-14 1.34e-14 1.55e-14 3.19 1 2 6.51
turbine3 (r) 4.02e-14 7.03e-14 1.32e-14 1.55e-14 1.18 1 2 6.74

total 201 15 27 102
total (-jet) 31 13 23 78

with input errors

doppler (re) 1.83e-11 5.45e-11 2.21e-11 1.82e-11 12.35 1 2 6.90
jet (re) 3.36e-7 4.67e-4 1.37e-7 3.85e-8 75.96 1 2 12.44
turbine1 (re) 4.61e-10 1.82e-9 6.02e-10 4.61e-10 1.14 1 2 7.98
turbine2 (re) 5.87e-10 2.82e-9 6.14e-10 5.86e-10 0.88 1 2 9.12
turbine3 (re) 3.33e-10 1.24e-9 2.53e-10 3.32e-10 1.12 1 2 7.47
rigidBody (re) 1.50e-7 1.50e-7 1.50e-7 1.50e-7 1.035 1 2 5.48
sine (e) 1.00e-11 2.09e-11 1.01e-11 1.00e-11 1.285 1 1 5.57

total 94 7 13 55
total (-jet) 18 6 11 43

with input constraint

doppler (r) 1.76e-14 1.09e-13 4.84e-14 1.57e-14 6.93 1 2 4.70
doppler (re) 4.67e-13 1.37e-11 6.28e-12 4.77e-13 11.10 1 2 10.07
jet (r) 4.91e-9 4.08e-8 1.88e-11 1.48e-11 83.55 1 2 1730.16
jet (re) 3.36e-7 4.67e-4 1.37e-7 - 80.87 1 2 -
rigidBody (r) 1.66e-11 3.65e-11 3.34e-11 1.52e-11 12.53 1 2 60.65
rigidBody (re) 8.84e-8 1.50e-7 1.15e-7 6.78e-8 12.52 1 2 283.44
turbine1 (r) 4.26e-14 8.66e-14 2.21e-14 2.48e-14 2.42 1 2 5.69
turbine1 (re) 4.61e-10 1.94e-9 6.51e-10 4.59e-10 1.75 1 2 108.36
turbine2 (r) 5.26e-14 1.45e-13 2.44e-14 2.92e-14 1.53 1 2 5.11
turbine2 (re) 5.87e-10 3.02e-9 6.33e-10 4.84e-10 1.79 1 2 36.80
turbine3 (r) 3.55e-14 7.32e-14 9.50e-15 1.49e-14 4.02 1 2 10.39
turbine3 (re) 3.33e-10 1.33e-09 2.30e-10 2.76e-10 4.25 1 2 315.91

total 223 12 24 2571
total (-jet) 59 10 20 841
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jet example, which is difficult for Z3, Rosa computes essentially as tight error bounds as
FPTaylor with a smaller running time.

Inputs with Nonlinear Constraint For the last set of benchmarks, we have constrained the
inputs with a nonlinear constraint of the form x ∗x+ y ∗ y+ z ∗ z < c, where x, y, z are input
variables and c is a meaningful benchmark-specific constant. This constraint is representative
of constraints that cannot be captured by a linear technique like affine arithmetic. In Rosa,
this constraint can be specified naturally in the precondition. In Fluctuat, it is possible to
enclose the computation in an if-condition (if (constr) ...) and the affine terms will be
constrained with a linearized branch condition. We used the ’Constraints on noise symbols’
setting. FPTaylor provides syntax to specify additional constraints, however these are only
supported with Z3 as the backend, and hence without the improved rounding model. We
observe that no one tool consistently provides the most accurate error estimates, but that
FPTaylor’s technique turns out to be quite expensive in this case.

6. LOOPS
We have identified a class of loops for which the propagation of errors idea allows us to
express the numerical errors as a function of the number of iterations. Concretely, we assume
a single non-nested loop without conditional branches for which the ranges of variables
are bounded and fixed statically. We do not attempt to prove that ranges are preserved
across loop iterations; we leave the discovery of suitable inductive invariants that imply
range bounds for future work. Our approach does not include all loops, in particular our
proposed approach is only applicable to forward computations and not, for instance, iterative
algorithms. For these, tracking roundoff errors across loop iterations is not meaningful. Our
technique does cover a number of interesting patterns though, including simulations of initial
value problems in physics. We note that the alternative for analyzing numerical errors in
general nonlinear loops is unrolling, as computations of fixpoints return top, respectively
the error bound infinity, on all but some very specialized loops. Loop unrolling, however, as
our experiments show, does not scale well when the computations are nonlinear.

6.1. General Error Propagation
Representing the computation of the loop body by f , recall that we want to compute
the overall error after k-fold iteration fk of f : maxx,x̃|fk(x) − f̃k(x̃)|. f, g and σ are now
vector-valued, f, g, σ : Rn → Rn, because we are nesting the potentially multivariate
function f . In essence, we want to compute the effect of iterating Equation 4.

Theorem: Let g be such that |f(x)−f(y)| ≤ g(|x−y|), it satisfies g(x+y) ≤ g(x)+g(y)
and is monotonic. Further, σ and λ satisfy |f(x̃)− f̃(x̃)| ≤ σ(x̃) and |x− x̃| ≤ λ as before.
The absolute value is taken component-wise. Then the numerical error after k iterations is
given by

|fk(x)− f̃k(x̃)| ≤ gk(|x− x̃|) +
k−1∑
i=0

gi(σ(f̃k−i−1(x̃))) (9)

Thus, the overall error after k iterations can be decomposed into the initial error propagated
through k iterations, and the roundoff error from the ith iteration propagated through the
remaining iterations.
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Proof: We show this by induction. The base case k = 1 is covered by our treatment of
straight-line computations (subsection 5.2). By adding and subtracting f(f̃k−1(x̃)) we get |f

k(x)1 − f̃k(x̃)1|
...

|fk(x)n − f̃k(x̃)n|



≤

 |f
k(x)1 − f(f̃k−1(x̃))1|

...
|fk(x)n − f(f̃k−1(x̃))n|

+

 |f(f̃
k−1(x̃))1 − f̃k(x̃)1|

...
|f(f̃k−1(x̃))n − f̃k(x̃)n|


Applying the definitions of g and σ

≤ g

 |f
k−1(x)1 − f̃k−1(x̃)1|

...
|fk−1(x)n − f̃k−1(x̃)n|

+ σ(f̃k−1(x̃))

then using the induction hypothesis and monotonicity of g,

≤ g

(
gk−1(~λ) +

k−2∑
i=0

gi(σ(f̃k−i−1(x̃)))

)
+ σ(f̃k−1(x̃))

then using g(x+ y) ≤ g(x) + g(y), we finally have

≤ gk(~λ) +
k−1∑
i=1

gi(σ(f̃k−i−1(x̃))) + σ(f̃k−1(x̃))

= gk(~λ) +

k−1∑
i=0

gi(σ(f̃k−i−1(x̃))) �

6.2. Closed Form Expression
We instantiate the propagation function g as before using propagation coefficients. These
can be, however, different for each loop iteration if the ranges of variables change. Thus,
evaluating Equation 9 as given, with a fresh set of propagation coefficients for each iteration
i, amounts to loop unrolling, but with a loss of correlation between each loop iteration. We
observe that when the ranges are bounded (as by our assumption), then we can compute
K as a matrix of propagation coefficients, and similarly obtain σ(f̃ i) = σ as a vector of
constants, both valid for all iterations. From this, we obtain a closed-form for the expression
of the error:

|fk(x)− f̃k(x̃)| ≤ Kkλ+

k−1∑
i=1

Kiσ + σ = Kkλ+

k−1∑
i=0

Kiσ

where λ is the vector of initial errors. Denoting by I the identity matrix, if (I−K)−1 exists,
|fk(x)− f̃k(x̃)| ≤ Kkλ+ ((I −K)−1(I −Kk))σ

We obtain Kk with power-by-squaring and compute the inverse with the Gauss-Jordan
method with rational coefficients to obtain sound results (though a closed-form is not strictly
necessary for our purpose because we do know the number of iterations k).
Computing K and σ When the ranges of the variables of the loop are inductive, that is,
both the real-valued and the finite-precision values remain within the initial ranges, then

ACM Transactions on Programming Languages and Systems, Vol. 39, No. 2, Article 8, Publication date: March 2017.



Towards a Compiler for Reals 8:21

these are clearly the ranges for the computation of K and roundoffs σ. For loops, we are
faced with a chicken-and-egg problem: for the computation of error bounds, we require
the finite-precision ranges, but in order to compute the finite-precision ranges from the
real-valued ones we need to know the error bounds. (For straight-line computations, where
we only do a forward computation, we always know the error bounds.) We solve this issue
by requiring the programmer to specify the finite-precision ranges with the following syntax:
a <= ~x && ~x <= b, as in Figure 3. We believe that it is reasonable to assume that a user
writing these applications has the domain knowledge to be able to provide these specifications.

6.3. Handling Additional Sources of Errors
What if roundoff errors are not the only errors present? If the real-valued computation
given by the specification is also the ideal computation, we can simply add the errors in
the same way as roundoff errors. If the real-valued computation is, however, already an
approximation of some other unknown ideal function, say f∗, it is not directly clear how our
error computation applies.

This may be the case, for example, for truncation errors due to a numerical algorithm. To
model such errors, let us suppose that we can compute (or at least overestimate) these by a
function τ : Rn → Rn, i.e. τf∗(x) = |f∗(x)− f(x)|.
In the following we consider the one-dimensional case n = 1 for simplicity of exposition,

but it generalizes as before to the n-dimensional case. We can apply a similar separation of
errors as before:

|f∗(x)− f̃(x̃)| ≤ |f∗(x)− f(x)|+ |f(x)− f(x̃)|+ |f(x̃)− f̃(x̃)|
= τ(x) + g(|x− x̃|) + σ(x̃)

which lets us decompose the overall error into the truncation, the propagated initial and the
roundoff error. If we now iterate, we find by a similar argument as before:

|fm∗ (x)− f̃(x̃)|

≤ gm(|x− x̃|) +
m−1∑
j=0

gj
(
τ(fm−j−1∗ (x))

)
+ gj

(
σ(f̃m−j−1(x̃))

)

= gm(|x− x̃|) +
m−1∑
j=0

gj
(
τ(fm−j−1∗ (x)) + σ(f̃m−j−1(x̃))

)
The result essentially means that our previously defined method can also be applied to the
case when truncation (or similar) errors are present. We do not pursue this direction further
however, and leave a proper automated treatment of truncation errors to future work.

6.4. Experimental Results
We evaluate our technique on three benchmarks in Table II: pendulum, mean and nbody.
We already presented the pendulum benchmark in Figure 3. The mean benchmark computes
a running average of values in a range of [-1200, 1200]. The nbody benchmark is a 2-body
simulation of Jupiter orbiting around the Sun. For each benchmark we consider different
number of iterations of the loop and report the error for one of the loop’s variables. Fluctuat
computes a trivial fixpoint for these benchmarks, as the errors grow with each iteration, so
we manually set the number of times the loop is unrolled. For the pendulum 50 benchmark
Rosa is able to compute a tighter error bound with a faster runtime. For larger numbers of
iterations, Fluctuat reports an absolute error of ∞. This is also the result for the nbody
benchmark. For the mean benchmark, where the computation is less complex, Fluctuat
can compute tighter error bounds, at the expense of much longer analysis times. This
illustrates that our technique outperforms unrolling in Fluctuat for benchmarks that are
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Table II. Absolute errors and running times (in seconds) for differ-
ent benchmarks and different number of loop iterations

Absolute errors Running time
benchmark Rosa Fluctuat Rosa Fluctuat

pendulum 50 2.21e-14 2.43e-13 8.00 47
pendulum 100 8.82e-14 ∞ 8.00 -
pendulum 250 2.67e-12 ∞ 8.00 -
pendulum 500 6.54e-10 ∞ 8.00 -
pendulum 1000 3.89e-5 ∞ 8.00 -
mean 100 3.21e-7 9.92e-9 4.40 1
mean 500 1.62e-6 1.01e-8 6.01 5
mean 1000 3.30e-6 1.01e-8 6.877 27
mean 2000 4.51e-6 1.03e-8 3.82 158
mean 3000 4.96e-6 1.05e-8 3.79 392
mean 4000 5.12e-6 1.06e-8 4.18 734
nbody 50 1.30e-11 ∞ 793.26 -
nbody 100 1.35e-8 ∞ 775.87 -

highly nonlinear, whereas Fluctuat’s strategy may be used for cases where the nonlinearity
is limited as is the number of iterations. Note that Rosa’s runtime is largely independent of
the loop’s number of iterations, as the bulk of the computation is performed once for the
loop body only.

7. DISCONTINUITIES
Recall the piece-wise jet engine approximation from Figure 4. Due to the initial errors on x

and y, the real-valued computation may take a different branch than the finite-precision one,
and thus produce a different result. We call this difference the discontinuity error.
In the following, we will assume that individual branch conditions are of the form e1◦e2,

where ◦ ∈ {<,≤, >,≥} and e1, e2 are arithmetic expressions. More complex conditions can
be expressed by nesting conditionals. We do not assume the function represented by the
conditional to be neither smooth nor continuous. We perform our analysis pairwise for each
pair of paths in the program. While this gives, in the worst-case, an exponential number
of cases to consider, we found that many of these paths are infeasible due to inconsistent
branch conditions; such infeasible paths are eliminated early using straight-forward calls to
the SMT solver.

7.1. Applying Separation of Errors
Using our previous notation, let us consider a function with a single branch statement:

if (c) f1
else f2

and let f1 and f2 be the real-valued functions corresponding to the if and the else branch
respectively. Then, the discontinuity error is given by |f1(x) − f̃2(x̃)|, i.e. the real-valued
computation takes branch f1, and the finite-precision one f2. The opposite case is analogous.
We again apply the idea of separation of errors:

|f1(x)− f̃2(x̃)| ≤ |f1(x)− f1(x̃)|+ |f1(x̃)− f2(x̃)|+ |f2(x̃)− f̃2(x̃)| (10)

The individual components are

(1) |f1(x)− f1(x̃)|: the difference in f1 due to initial errors. We can compute this
difference with our propagation coefficients: |f1(x)− f1(x̃)| ≤ K|x− x̃|.
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(2) |f1(x̃) − f2(x̃)|: the real-valued difference between f1 and f2. We can bound
this value by the Z3-aided range computation from Section 4.

(3) |f2(x̃)− f̃2(x̃)|: the roundoff error when evaluating f2 in finite-precision arith-
metic. We use the procedure from subsection 5.1 as before.

x and x̃ in |f1(x)− f̃2(x̃)| are correlated by the initial error |x− x̃| ≤ λ. Constructing only
one constraint capturing the discontinuity error becomes very difficult for the underlying
SMT solver and has caused our previous method for computing discontinuity errors to
scale only to unary functions [Darulova and Kuncak 2014]. With the separation above, the
individual parts are easier to handle for the solver since we reduce the number of variables
and correlations in each of the three parts. On the other hand, it clearly introduces an
additional over-approximation, but we observed in our experiments that this is in general
small. In contrast, Fluctuat’s approach relies on constraints on the affine forms to capture
the different branch conditions [Goubault and Putot 2013].

7.2. Determining Ranges for x and x̃
As in the previous sections, it is crucial to determine the ranges of x, x̃ ∈ R over which
to evaluate the individual parts of Equation 10. A sound approach would be to simply
use the input ranges, but this would lead to unnecessary over-approximations. In general,
not all inputs can exhibit a divergence between the real-valued and the finite-precision
computation; those that can, can be determined by the branch conditions and the errors
on evaluating these. Consider the branch condition if (e1 < e2) and, as before, the case
where the real-valued path takes the if-branch, i.e. variable x satisfies e1 < e2 and x̃ satisfies
ẽ1 ≥ ẽ2. The constraint for the finite-precision variables x̃ is then

e1 + δ1 < e2 + δ2 ∧ e1 ≥ e2 ∧ |x− x̃| ≤ λ

where δ1, δ2 are error intervals on evaluating e1 and e2 in finite-precision respectively. This
constraint expresses that we want to bound Equation 10 over those values which satisfy
the condition e1 ≥ e2, but are “close enough” such that their corresponding ideal real value
could take the other path. We create such a constraint both for the variables representing
finite-precision values (x̃), as well as the real-valued ones x and use them as additional
constraints when computing the individual parts of Equation 10. The procedure for other
branch conditions is analogous.

7.3. Experimental Results
We evaluate our technique on a number of benchmarks with discontinuities, which we
have either constructed by piece-wise approximating a more complex function or chosen
from Goubault and Putot [2013]. All the benchmarks’ source code is available online. We
compare our results in terms of accuracy and performance against Fluctuat. Fluctuat does
not check for discontinuity errors by default; we enable this analysis with the ’Unstable
test analysis’ option (this is the only way). Subdivisions, however, do not appear to work
with this setting. Table III summarizes our results. While Fluctuat is faster than Rosa,
Rosa is able to compute significantly tighter error bounds and, we believe, achieves a good
compromise between accuracy and performance.

8. RELATED WORK
To the best of our knowledge, Fluctuat [Goubault and Putot 2011; Goubault and Putot
2013], FPTaylor [Solovyev et al. 2015] and Gappa [Boldo and Marché 2011; Linderman et al.
2010] are most related to our work (see our comparison in subsection 5.7). We are not aware
of other tools or techniques that can soundly and automatically quantify numerical errors in
the presence of nonlinearity, branches and loops.
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Table III. Absolute discontinuity errors computed and running times (in
seconds) of Rosa and Fluctuat

Absolute errors Running time
benchmark Rosa Fluctuat Rosa Fluctuat

cubicSpline 1.25e-15 12.00 8.41 1
jetApprox 0.0232 18.40 45.53 1
jetApprox (err) 0.0242 19.06 43.06 1
jetApproxBadFit 0.8825 9.305 15.18 1
jetApproxBadFit (err) 0.8852 10.09 10.17 1
jetApproxGoodFit 0.0428 5.191 4.89 1
jetApproxGoodFit (err) 0.0450 5.193 4.23 1
linearFit 0.6374 1.721 2.53 1
quadraticFit 0.2548 10.60 20.56 1
quadraticFit (err) 0.2551 10.96 19.48 1
quadraticFit2 3.14e-9 0.6321 4.04 1
quadraticFit2 (err) 0.0009 0.7188 3.77 1
simpleInterpolator 3.40e-5 1.0e-5 0.61 1
sortOfStyblinski 1.0878 27.07 4.78 1
sortOfStyblinski (err) 1.0982 28.82 4.22 1
squareRoot 0.0238 0.0394 2.20 1
squareRoot3 2.76e-9 0.4289 5.62 1
squareRoot3Invalid 3.93e-9 0.4288 5.47 1
styblinski 4.81e-8 121.16 29.16 1
styblinski (err) 0.0132 124.10 24.56 1

In the context of abstract interpretation, domains exist that are sound with respect to
floating-points and that can be used to prove the absence of undesirable runtime issues
such as division by zero [Blanchet et al. 2003; Miné 2004; Feret 2004; Chen et al. 2008;
Ghorbal et al. 2009]. Feret [2005] presents an abstract domain which associates the ranges
with the iteration count, similar to our proposed technique for loops. Martel [2002] considers
the stability of loops, by proving whether loops can asymptotically diverge. The problem
that we are solving is different, however, as we want to quantify the difference between the
real-valued and the finite-precision computation.

Floating-point arithmetic has been formalized in the SMT-LIB format [Brain et al. 2015],
and approaches exist which deal with the prohibiting complexity of bit-precise techniques
via approximations [Brillout et al. 2009; Haller et al. 2012]. For encoding roundoff errors, a
combination of the theory of real and floating-point arithmetic is needed; we are not aware
of such an approach that is able to quantify the deviation of finite-precision computations
with respect to reals. Floating-point precision assertions can also be proven using an
interactive theorem prover [Boldo and Marché 2011; Linderman et al. 2010; Ayad and
Marché 2010; Harrison 2006]. These tools can reason about ranges and errors of finite-
precision implementations, but target specialized and precise properties, which, in general,
require an expert user and interactively guiding the proof. Very tight error bounds have
been shown by manual proof for certain special computations, such as powers [Graillat et al.
2014]. Our work chooses a different trade-off between accuracy, automation and generality.

Floating-point accuracy has naturally also been a concern in numerical analysis. The work
in this area has focused mostly on designing accurate algorithms and example collections
can be found in [Higham 2002]. Demmel et al. [2008] provide a survey of results on the
existence of algorithms for evaluating polynomials which have a relative error less than 1.
Implementations of polynomials have also been explored in the context of hardware synthesis
for different error targets [?]. These goals are very different from Rosa’s which determines
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an error bound for an arbitrary arithmetic expression, but does not try to derive a new
algorithm for meeting an error target. In contrast to our technique which is fully automated
and whose error computation is applicable to any arithmetic expression, these analyses are
specific to each algorithm and performed manually.
Synthesis of fixed-point arithmetic programs has also been an area of active research,

with different utilized techniques: simulation or testing [Mallik et al. 2007; Jha and Seshia
2013], interval or affine arithmetic [Lee et al. 2006] or automatic differentiation [Gaffar et al.
2004]. Some approaches try to optimize the bit-width whereas in our case we keep it fixed,
but provide a sound and accurate analysis, which could be used in combination with an
optimization technique, like e.g. Jha and Seshia [2013]. A similar approach to our range
estimation has been developed independently by Kinsman and Nicolici [2009] in the context
of fixed-point arithmetic. We also identify the potential of additional constraints and develop
optimizations to make the use of an SMT solver efficient enough. Further, our techniques
aim to be generally applicable to various finite-precision arithmetics.
Several approaches also exist to test the stability of numerical programs, e.g. by pertur-

bation of low-order bits and rewriting [Tang et al. 2010], or by perturbing the rounding
modes [Scott et al. 2007]. Another common theme is to run a higher-precision program along-
side the original one. Benz et al. [2012] does so by instrumentation, Paganelli and Ahrendt
[2013] generates constraints which are then discharged with a floating-point arithmetic solver
and Chiang et al. [2014] developed a guided search to find inputs which maximize errors. Lam
et al. [2013a] uses instrumentation to detect cancellation and thus loss of precision. Ivancic
et al. [2010] combines abstract interpretation with model checking to check the stability of
programs, tracking one input at a time. Majumdar et al. [2010] uses concolic execution to
find two sets of inputs which maximize the difference in the outputs. These approach are
based on testing, however, and cannot prove sound bounds. Testing has also been used as
a verification method for optimizing mixed-precision computations [Rubio-González et al.
2013; Lam et al. 2013b].

It is natural to use the Jacobian for sensitivity analysis. Related to our work is a proof
framework using this idea for showing programs robust in the sense of k-Lipschitz continu-
ity [Chaudhuri et al. 2011]. Note, however, that our approach does not require programs to be
continuous. Gazeau et al. [2012] relaxes the strict definition of robustness to programs with
specified uncertainties and presents a framework for proving while-loops with a particular
structure robust. Our work follows the philosophy of these approaches in leveraging Jacobians
of program paths, yet we explicitly incorporate the handling of roundoff errors in a fully
automated system.

9. CONCLUSION
We believe that numerical errors, such as roundoff errors, should not be an afterthought
and that programming language support is needed and can be provided to help scientists
write numerical code that does what it is expected to do. To this end, we presented, on one
hand, a real-valued specification language with explicit error annotations from which our
tool Rosa synthesizes finite-precision code that fulfills the given specification. On the other
hand, we presented a set of techniques based on unified principles which provides automated,
efficient, static error analysis which is crucial towards making such a compiler practical. We
have extensively evaluated these techniques against state-of-the-art tools and we believe
they represent an interesting compromise between accuracy and efficiency.
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