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LOGARITHMIC GRADIENT TRANSFORMATION AND CHAOS
EXPANSION OF ITO PROCESSES *

M. HOSSEIN GORJIt

Abstract. Since the seminal work of Wiener [22], the chaos expansion has evolved to a powerful
methodology for studying a broad range of stochastic differential equations. Yet its complexity for
systems subject to the white noise remains significant. The issue appears due to the fact that the
random increments generated by the Brownian motion, result in a growing set of random variables
with respect to which the process could be measured. In order to cope with this high dimensionality,
we present a novel transformation of stochastic processes driven by the white noise. In particular,
we show that under suitable assumptions, the diffusion arising from white noise can be cast into
a logarithmic gradient induced by the measure of the process. Through this transformation, the
resulting equation describes a stochastic process whose randomness depends only upon the initial
condition. Therefore the stochasticity of the transformed system lives in the initial condition and
thereby it can be treated conveniently with the chaos expansion tools.
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1. Introduction. Often stochastic descriptions of natural or social phenomena
lead to more realistic mathematical models. The introduced stochastic notion may
either arise from the uncertainty in the model inputs, or from the underlying govern-
ing law. In particular, the white noise manifests itself in both circumstances e.g. as
a random force acting on a deterministic system in the Landau-Lifschitz fluctuating
hydrodynamics [13] or as a Markovian process describing rarefied gases [7] or poly-
mers [18].

The Monte—Carlo methods are typically a natural choice for computational studies of
the systems driven by the white noise. Yet the slow convergence rate of the brute-forth
Monte—Carlo, motivates a quest for improved approaches. There exists an immense
list of advanced Monte—Carlo techniques, each of which may yield to a substantial
improvement over the conventional Monte—Carlo, provided certain regularities. One
of the promising examples belongs to the Multi-Level Monte-Carlo approach [6] (and
its variants [8]). In short, MLMC makes use of abundant samples on a coarse scale
discretization in order to improve the convergence rate of the fine scale one. This
can be achieved by enforcing correlations between successive approximations; usually
through employing common random numbers among them.

Instead of producing numerical samples of a random variable however, one can expand
the solution with respect to a set of (orthogonal) random functions which possess a
known distribution [25]. The polynomial chaos and stochastic collocation schemes
are among the main approaches built around this idea [24, 23]. In particular, the
polynomial chaos schemes transform the random differential equations to a set of de-
terministic equations, through which the evolution of the coefficients introduced in the
polynomial expansion of the random solution is governed. Therefore by knowing the
distribution of the resulting orthogonal functions, different statistics of the solution
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2 M. HOSSEIN GORJI

can be computed deterministically. While this approach may lead to efficient compu-
tations for equations pertaining a finite set of random variables, its application to the
Brownian motion remains with a significant computational challenge. The problem
arises due to the fact that the dimension of the expansion should grow in time in order
to keep the solution measurable with respect to the Brownian motion [9]. Hence, the
cost of the chaos expansion schemes grows here significantly, in comparison to the
counterpart scenario where the solution remains measurable with respect to a fixed
set of random variables.

This paper addresses the problem of deterministic solution algorithms for systems
subject to the white noise, in an idealized Itd process setting. Here we introduce a
novel transformation, where the randomness of the Brownian motion is described as
a propagation of an (artificial) uncertainty of the initial condition. We show that the
measure induced by the transformed system is consistent with the one resulting from
the Itd process, in the moment sense. The key ingredient is the fact that both the
transformed and the original process result in an identical Fokker—Planck equation
for their probability densities. Afterwards, since the transformed system describes an
Ordinary Differential Equation (ODE) with an uncertain initial condition, a chaos
expansion can be applied in a straight-forward manner.

The paper is structured as the following. First in the next section we present our set-
ting for the It6 process and besides a shoer review of its corresponding Wiener-chaos
expansion. In section 3, the gradient transformation of the white noise is motivated
and introduced. In the follow up section 4, some theoretical aspects of the trans-
formation are justified. In particular, the solution existence and uniqueness of the
transformed process is discussed. Therefore in section 5, the Hermite chaos expansion
of the transformed process is devised. The paper concludes with final remarks and
future outlooks.

2. Review of the Ito Process. To start, a set of assumptions on the coefficients
of the Ito process, necessary for our analysis is provided in subsection 2.1. Next, the
conventional chaos expansion of the It6 process is reviewed in subsection 2.2.

2.1. General Setting. We focus on a simple prototype of stochastic processes
driven by the white noise. Let (Q,]:tU °,P) be a complete probability space, where
FtU" = F; ® FU denotes the o-algebra on the subsets of Q = Q; U Q. Here {F;};>0
is an increasing family of o-algebras induced by the n-dimensional standard Brown-
ian path W(.,.) : RT x Q; — R” | and FU0 the o-algebra generated by the initial
condition Up(.) : 3 — R™.

We consider an It6 diffusion process

governing the evolution of the F/°-measurable random variable U(.,.) : Rt xQ — R",
with the initial value Uy and the law P.

Throughout this manuscript, we need certain regularity assumptions on the drift
b(.) : R™ — R™, the diffusion coefficient 8 € R and the initial condition Uj.

We require 8 # 0 and that the drift b(z) = —VU¥(z) with ¥(.) € Cg°(R™), where
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3

Cp° denotes the space of bounded functions with bounded derivative of all orders.
Finally, we assume that the initial condition is deterministic hence its probability
density fy,(u) = d(u — Up), where 6(.) is the n-dimensional Dirac delta and Uy € R™.

For the above-described setting, many interesting properties can be shown for the
1t6 process, including the following.

Remark 2.1. Tt is a classic result in the theory of Stochastic Differential Equations
(SDEs) that since ¥(.) € Cp°(R™) and 3 is assumed to be a constant, Eq. (2.1) has
a solution with a bounded variance for all ¢ > 0, which is unique in the mean square
sense. Furthermore, the process is Feller continuous resulting in smooth variation of
an expectation of the solution with respect to the initial condition [17].

Remark 2.2. Based on different results in the Malliavin calculus, since the coeffi-
cients b and § fulfill the Horménder criterion and furthermore b has bounded deriva-
tives, the Borel measure generated by the process uy = P(U~1!) is infinite times
differentiable. Therefore the probability density fu (u;t)du = duy (u;t) is well-defined
and py (5t), fu(.;t) € C°(R™), provided ¢ > 0; see e.g. Theorem 2.7 in [21].

Remark 2.3. Due to Corollary 4.2.2. of [2], since uy is three times differentiable,
the Fisher information

1
(2.2) 10=/ 3

associated with the density fi; is bounded at ¢ > 0.

Remark 2.4. The density fy evolves according to the Fokker-Planck equation
(forward-Kolmogorov equation)

ofv(ust) 0 , p* o ,
(23) o = g () (s ) + 5 5 ()
and the measure uy is governed by the transport equation

opuy (wst) 0 . B> 9 ,
(24) T = bl(u) an ,uU(u, t) + ?mMU(lh t)

Since ¥(.) € Cp°(R™) and B # 0, both above-mentioned equations have unique solu-
tions (for uniqueness results see [15, 5, 3]). Notice that the Einstein index convention
is employed here and henceforth, to economize the notation.

In comparison to the natural setting of It6 processes, we have introduced strong as-
sumptions on ¥ and 8. Though not straight-forward, the generalization of our analysis
may become possible as long as the corresponding Itd process has a unique solution
with bounded variance and its corresponding Fisher information is bounded (e.g. by
using Lyapunov functionals [11]). But to keep the study focused on the main idea,
we postpone the generalization to the follow up studies.

In typical applications in scientific computations, one is interested in some moments of
the solution U, which are in the form of an expectation E[g(U (¢,w))] of some smooth
function g(.) € C*°(R™).

2.2. Wiener Chaos Expansion. Due to slow convergence rates of Monte-Carlo
methods, deterministic solution algorithms for stochastic processes can be attractive.
Besides stochastic collocation methods [26], a Wiener chaos expansion of Eq. (2.1) is
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4 M. HOSSEIN GORJI

possible due to the Cameron-Martin theorem [4], as carried out e.g. by Rozovskii,
Hou and others [9, 16, 25]. It is useful for our sequel analysis to provide an overview
of this expansion. To simplify the notation we explain the chaos expansion of U in
a one dimensional setting n = 1. For a multi-dimensional case, the following can be
applied for each component of the solution.

The random events with respect to which the solution U is measurable are due to the
initial condition Uy and the corresponding Brownian integral 3 fot dW (s, ws), therefore
for a deterministic Uy, U can be expressed as

(2.5) U(t,w)=M (Uo, /Ot dW(s,w),t> .

The integral of the Brownian path Z(w) := ft

<0 AW (s,w), can be expanded as

(2.6) I(w):;gj(w) /O b;(s)ds,

where {¢;(s)} is a sequence of orthogonal functions in L?([0,¢]) and &; are indepen-
dent normally distributed random variables.

Suppose PO = 1! = (jt/ml jeql, ...,ml})} is a partition for the time interval

(0, t]. Intuitively the Brownian motion generates an independent normally distributed
random variable at each t;l) e PW. Along this picture let

my t
2.7 70 — ) (s)d
@.7) gf / 6;(3)ds

be an approximation of the integral (2.6) corresponding to the partition P(!). It can
be shown that

(2.8) E [(z _ j(D)z] <ot

my
where C' < oo is some constant [14].

Analogously, let U be an approximation of M, computed on the partition P®).
Therefore due to Eq. (2.7), the solution at time ¢ can be approximated as a function
UWD(t, &, ..., Em,) with a mean square error of O(t/m;) (due to the truncation intro-
duced in Eq. (2.7)). At this point the Wiener chaos expansion can be applied to U®;
as explained in the following.

In order to expand UO with respect to the Hermite basis, suppose £ = (&1, ...,&m,)
is an m-dimensional normally distributed random variable and let & = (a1, ..., ) €
JP, denote an index from the set of multi-indices

my
(2.9) Jh, = {a = (a4, 1 <3 <my)|a; € {0,1,2,...,p}, |la] = Zai} .
i=1
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Let the |a|-order multi-variate Hermite polynomial
my

(210) Hoz(f) = H Haq', (fz)
i=1

be a tensor product of the normalized a;-order Hermite polynomlals o, (&). Accord-
ing to the Cameron-Martin theorem, 350 (t,€) admits the following Hermite expansion

(2.11) 0O(t,€) = lim > 4 () Ha(9),

a€Jm,
where u(l)( t) =E[UD(t, &) Ha()].

In fact the expansion (2.11) provides a means to project the randomness of the so-
lution U(t,w) into the Hermite basis. As a result, the Itd process is transformed
to a set of deterministic ODEs for the coefficients @ 3 )( t) and thus the expectations
Elg(U(t,w)] =~ E[g(UD(t,€))] can be computed deterministically. However in order
to keep the order of the approximation introduced in the expansion (2.7) constant,
my should grow linearly with respect to t. So does the dimension of the expansion
(2.11), as m; shows up in the order of the Hermite polynomials. Thus unless short
time behavior of the solution is of interest, complexity of the Wiener chaos expansion
of the Itd process may become prohibitive; even though the number of Hermite poly-
nomials can be reduced significantly through sparse tensor compressions [20].

A more general insight about the problem can be sought by considering the fact that
a smooth function of an n-dimensional random process Brownian path f(W(t,w)) at
time ¢t = T is measurable with respect to the Borel o-algebra on Q = (R")[O’T] [17].
Therefore in order to devise a chaos expansion of f, the orthogonal functions should
span a rather high dimensional space L?((2).

3. Main Result. The main idea of this work is to find an alternative SDE with
a similar probability density as the one generated by the It6 process, which yet re-
mains measurable with respect to the o-algebra induced by its initial condition.

More precisely, consider again the partition P! = {0 = ¢} < th) < .. <t =1}
for the time interval [0,¢] with |P!| — 0 as [ — co. Obviously the solution of the Ito
process U (t,w) is measurable with respect to the family of o-algebras

{fUO .7:U°. 7]—"tl{"} as | — oo.
my

tl?

However if we are only interested in some expectation E[g(U(t,w))] at time t, the
knowledge of the Borel measure ug(B;t) = P{U~'(t, B)} where B € B", is suffi-
cient. Note that B™ is the Borel o-algebra on R™. Let fy(u;t) be the corresponding
probability density i.e. fu(u;t)du = duy (u;t), therefore

Elg(Utw)] = | folustg(wdn,

Suppose the random variable X (t,w) : RT x ) — R™ belongs to a complete probability
space (£2,G, Q), and generates a Borel measure ux = Q(X!). Let the probability
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6 M. HOSSEIN GORJI

density be fx (z;t)dz = dux. We propose that under suitable assumptions on fx (x;0)
(as explained in the following section), the solution of the transformed Itd process

d 1
(3.1) S Xi(tw) = bi(X) — 552V, log Fx (55 )l x
with the initial condition Xo(w) : € — R™, uniquely exists for all ¢t. Furthermore
the solution is consistent with the Itd process in a sense that for an arbitrary smooth

g € C*(R"™) we have

(3-2) Elg(X(w, )] = Elg(U(w,1))],

where U is the solution of the Itd process with the initial condition Uy = Xj.

Let us first review the motivation behind this transformation. Due to It6’s lemma, the
probability density generated by the It6 process follows the Fokker-Planck equation
(see Remark 2.4)

Ofv(wt) 0 1 02

5 D (bi(u) fu(u;t)) = (B fu(ust)) .

(33) B 5 8ui8uj‘

By rearranging the diffusion term one can see that

2t 9 (w1 - 557 tostotust) ) ) | =0,

resulting in a stochastic process similar to Eq. (3.1). Intuitively we observe that
the effect of the diffusion on the probability density is equivalent to an advection
induced by the gradient V, log fy. We refer to this transformation as logarithmic
gradient transformation. Obviously this transformation needs to be justified. However
before proceeding to the technical discussion in section 4, let us provide some physical
motivations behind the logarithmic gradient transformation.

Suppose exp (—2¥(z)/3%) € L*(R™) and hence the stationary density

20 (x)
32
is well-defined. Therefore the introduced process generates the paths (¢, X (t,w)) ac-
cording to

(3.4) fst(z) = Zexp (

d B [x(z;t)
ﬁXi(w,t) = —?Vx log <fst($)>

which is a gradient flow induced by the potential ¢ = log(fx/fst). This potential is
connected to the Kullback-Leibler distance (entropy distance)

x(x;t
denlt) = [ fxtastyion (L5 do — Blo0)
Rn fst (.’E)
between the two densities fx and fs [12, 10]. Therefore from the physical point of
view, the logarithmic gradient transformation generates a gradient flow in order to
minimize the entropy distance dy between the current state fx and fs;.

=X (w,t)

This manuscript is for review purposes only.
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4. Theoretical Justifications. The following arguments establish a connection
between solutions of the main It6 process i.e. Eq. (2.1) and the transformed one
Eq. (3.1).

4.1. Regularity of the Ito Process. To start, note that in order to make
sense of Eq. (3.1), fu should admit certain regularities. Let us introduce a class of
admissible probability densities for a measurable f(z) as

(4.1) Ky := {f(x) :R™ — (0, 00)

Viog f € C°(R™), M(f) < 00, I(f) < oo},
where
M) = [ fetde

R
and C7° is the space of infinite times differentiable functions, with at most linear
growth. The next lemma provides a link between fi; and K.

LEMMA 4.1. Consider U¢(t,w) to be the solution of the Ité process (2.1) in the
probability space (Q,]:tUS,PC) with o drift b= -V, U(.) € Cp°(R™) and a diffusion
B # 0. Suppose the initial condition reads Uy = Uy + €Z, where Uy € R™ is deter-
ministic, Z(w) € R™ is a normally distributed random variable and € € R is a small,
arbitrary chosen non-zero constant.

Let fye(u;t) = dP€ (Uefl) be the probability density of the process, therefore

(4.2) foe(t) € Ky,
fort € [0,00).

Proof. Note that the initial condition U§ has a Gaussian probability density of
the form

(4.3) fug(u) = M (Ju —Uol),
where

1 h?
(4.4) M(h) = Wexp (—2€2> .

It is straight-forward to see that M, (Ju — Up|) € K1 and thus we only need to prove
the claim (4.2) for ¢ > 0. Notice that here and afterwards, | . | denotes the Euclidean
norm.

First let us show that log fye(.;t > 0) € C*°(R). According to Remark 2.1-Remark 2.3
at each t > 0 we have fye(.;t) € C*(R), I(fug) < oo and M(fys) < oo. Hence it
is sufficient to prove fye(.;t) > 0, for ¢ > 0. For that, we make use of the Girsanov
transformation. But before proceed, to prevent unnecessary notational complications
we set S =1 for the followings.

Let W¢(t,w) be a standard n-dimensional Brownian process with the initial condition
U§ and the law W¢. Then since b(.) € Cg°(R"™), we have

(4.5) E

T
exp <;/0 bi(WE(t,w))bi(We(t,w)dt>] < 00,

This manuscript is for review purposes only.



281
282
283
284
285

286

287

288

289

290
291

292

293

296

297

298
299

8 M. HOSSEIN GORJI

for any finite T'. Therefore the process

Z(t,w) := exp (— /Ot b (We(s,w))dW5(s,w) — ;/Ot bQ(We(s,w))ds>
(4.6)
is a martingale for ¢ € [0,T) [17]. It follows from the Girsanov theorem that
(4.7) dP(t,w) = Z(t,w)dW*(t,w).
Since dW¢ is a Gaussian measure, it is strictly positive for ¢ > 0, and hence dP > 0.

It is then straight-forward to check that fye(u;t) > 0, for any u € R", provided ¢ > 0.

Now the final piece is to prove
(4.8) [V log fue (u; t)] < C (¢, Uo) (Ju] +1)

for every u € R™, t > 0 and some constant C(t,Uy) < oo which depends on ¢ and the
initial condition Uy. Consider the partition

(4.9) PO = {tﬁ” = (jt/mz j € {17~-7mz}>}

for the interval (0, ] and At(®) = t/m;. Suppose Z®) is the projection of the martingale
Z(t,w) on the partition P(). Using Itd’s lemma, we get

ZW(t,w) = exp (q/(Wf(o,w)) - q/(Wf(W)))

1 &

exp [ 5> (Ve w) - e, @) Ad0 |
j=1

(4.10)

where b’ = div{b}. In terms of the density fye, the Girsanov transformation yields

fue (uml;t) = ¢ Yl(umy) / / (e‘D(uo)+1/2At(Z) Z;W;L(,_l(b/(uj)—bz(uj))
n n

m; times
mlfl

(4.11) M6(|uo - U0|) H MAt(z)(|ui+1 - uz|)) duodul...duml_l,
=0

as m; — 0o, where M is the Gaussian density defined in Eq. (4.4). Since ¥ € C§°,

exp(¥(ug) + 1/2At0 Z?Llo_l (V' (uz) — b*(uy)) is bounded above and below by some

S(t) < oo and I(t) > 0, respectively. Therefore we have

V., 10g fue (uml;t)‘ < |b(tm,)]

G Jin - Jgn Me2(Jt = Uo) TT25 ™ Vi, Mg (i1 — t])dttg ..t 1
IO | fon oo Jon Mea(luo — Uo)) TR Magor (s — wil)dug.edivm, —1 |
(4.12)
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as m; — oco. However, the integral terms can be computed explicitly. In fact in the
limit of m; — oo, we get

mlfl

/ M62(|UO — U0|) H MAt(L)(|U2‘+1 - ui|)duo...duml,1 = M€2+t(|uml - U0|)
" R i=0
(4.13)

Therefore the upper bound reads

S(t) Vum Me2+t(|umz - U0|)
Vo 108 fre(Um,;t)| < [b(um, )| + ;
[V 108 fre ()] < o)+ 5 | =5 e

(4.14) < C(t, uo) (Jum, [ + 1),

for ¢t > 0. 0

COROLLARY 4.2. The measure of the process uye is the solution of the following
transport equation

Opwr (ust) p* 9 Opw (ust)
4.15 ——— == — 1 e(ut) | ————.
( ) 8t ’L(u) + 2 aui ngU (’lL, ) aul
Proof. The proof is straight-forward, by using Remark 2.4 and the result of
Lemma 4.1, that fye(.,t) € Kj. O
4.2. Solution Existence-Uniqueness and Consistency.
THEOREM 4.3. Let U(t,w), U¢(t,w) € R™ be solutions of the Ité process (2.1) for

initial conditions Uy and U§, respectively, where the drift b = =V fulfills ¥ € C;°
and 8 # 0. Here Uy € R™ is deterministic, whereas U§ = Up+e€Z, Z(w) € R™ is a nor-
mally distributed random variable and € € R is a non-zero arbitrary chosen parameter.

Suppose X€(t,w) € R™ is a random variable in a space (Q,G¢, Q°), and evolves ac-
cording to

d 1
(4.16) X (tw) = bi(X) = 587 (Ve log fxe (@) o xe(rn »
subject to the initial condition U§. Here fx<(z;t) = dQ° (X ") is the probability
density of the process (4.16). Therefore
1. The process (4.16), has a unique solution with E[X*(t,w)] < oo for t €
[0, 00).
2. For an arbitrary g(.) € C*(R™), we have

(4.17) Elg(X(t,w))] = E[g(U(t,w))]
(4.18) and  1lmE[g(X(¢t,w))

e—0

I
&=
Y
S
\’PF
£

Proof. First let us show that the process

d . . 1
(4.19) SV w) = bi(Y) = 252 [V, 1og fur (D)oo

with the initial condition U§ has a unique solution with bounded variance for all £ > 0.
Let F(t,Y€) denote the right hand side of Eq. (4.19). For the existence-uniqueness
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proof of a bounded variance solution, since fy«(.;t) € K; according to Lemma 4.1 and
b(.) € Cp°(R™), we get F(t,.) € C°(R™). Therefore the existence-uniqueness follows
directly from the Picard iterations and Groenwall’s inequality (see [1] for details).
Furthermore, the boundedness of the variance comes from the Chebyshev lemma (see
Theorem 1.8 in [11]).

Now let us turn to the measure induced by Y€ i.e. puye. Let us define the map
o(U§(w)) = Y<(t,w) and hence py«(0¢(u);t) = pue(u). Therefore py- fullfills the
following transport equation

(4.20) guye (y;t) = —Fi(t,y) i

—uy<(y;t).

Note that since Eq. (4.19) has a unique solution, do does Eq. (4.20). However due to
Corollary 4.2, the measure induced by U€ also fulfills Eq. (4.20). Therefore py-(y;t) =
pue(y;t), resulting in equivalence of Eqs (4.19) and (4.16). Furthermore

(4.21) Elg(X“(w, 1))] = Elg(U(w,1))].

But since the It process is Feller continuous [17], we have

(4.22) lim E[g(U(w,1))] = E[g(U(w,1))],
and hence
(4.23) tim Elg(X(w. )] = Elg(U(w,1))].

|

To summarize, let U and U be solutions of the Itd process subject to the initial
conditions U§ and Uy, respectively. As a consequence of the regularization and the
introduced transformation, we can approximate the statistics of the true solution U by
statistic of U€ through E[g(U¢(w, t))] = E[g(X(w,1))]. However due to well-posedness
of Eq. (2.1), we obtain a mean square error

(4.24) E[(U(w,t) — U (w,t)?] < C(t)e?

bounded by €? and some constant C(t) independent of e. Therefore the regularization
costs us an error of O(e?) in the mean square sense.

5. Chaos Expansion. The computational advantage of the gradient formula-
tion Eq. (3.1) over the original It6 process Eq. (2.1), can be exploited through its
chaos expansion. Actually while the dimension of the space in which the Brown-
ian path is measurable increases in time, its gradient transformation only propagates
randomness originated from the initial condition. Therefore the resulting logarithmic
gradient transformation behaves like an ODE with an uncertain initial condition.

Let us consider an initial condition Xp(w) : @ — R™ with a probability density
fxo () = Mc(|x — Uy|), where |¢] > 0 and Uy € R™. In the following, we present the
corresponding Hermite chaos expansion of the process (3.1) for X (w, ) : @ xRt — R”
subject to Xy. For more details on the Hermite chaos, and in general polynomial chaos
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expansions see [24]. The expansion is performed on the map M ({(w),t) = X (w,t),
where £ € R™ is a normally distributed random variable, hence

(5.1) VoM |fx(M;t) = f=(q),

where f=(q) = M1(q) and ¢ € R™. In practice, Eq. (5.1) is only employed to find the
initial condition of M (which in our case of Xj initially being Gaussian distributed,
the map becomes trivial), afterwards simply the coefficients of the expanded M are
propagated.

The map evolves according to X and thus

Fi(t,M)

1
52) GMLE@), 1) = bi(M) — L3 [V, log (i)
Since E[M?] < oo, we conclude M € L?(duz), where L?(duz) is the space of square
integrable functions with the weight du=(q) = f=(q)dq. Furthermore note that since
b(.) and the Fisher information are bounded, we have F(t,.) € L?(duz). Therefore

M admits a Hermite expansion [19]
(5.3) Mi(&,t) = Tim 3 | mia(t)Ha(€)
aeJh

for each component i € {1,...,n}, where H, and J are defined in (2.10) and (2.9),
respectively. The coefficients follow

)

(54) mi,a(t) = <Mi7HOé>H

with the inner product defined based on the Gaussian weight

(55 (9 = [ b@sl0)f=(a)da.

Therefore

d 1,0 1

% = <bi7Ho¢>ME o 5/62 Hoc(g) (Viz 1Og fX(x;t))$:M dME

R"L
1 aMl -1 8H
56 = binoc =t = 2< () ) a> ’
(5.6) (bis Haus + 567 | g, % /.
and
OM; (oM \ "

5.7 1 j) = 0
(5.7) O€x (8& ’

with 0 being the Kronecker delta. Note that in deriving the last step of Eq. (5.6),
the fact that fz vanishes at the boundaries together with Eq. (5.1) have been used.
Moreover since fx, f= € K1, the inverse of V¢ M exists which can be seen again from
Eq. (5.1). It is important to emphasize that the evolution of the coefficients m; o do
not directly depend on fx. By taking advantage of the measure transform (5.1), no
explicit knowledge of the density fx is required.
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In practice, basides the error associated with the regularization of the initial con-
dition, three types of numerical errors should be controlled in order to compute the
evolution of the coefficients m; .. First type comes through truncation of the Hermite
expansion (5.3). Second is due to the inner products (., .) ., where the Hermite-Gauss
quadrature can be employed. And third, the error arising from the time integration
which can be performed e.g. by the Runge-Kutta method, should be curbed.

6. Conclusion. This study proposed a transformation of the diffusion arising
from the white noise into a transport induced by logarithmic gradient of the proba-
bility density. The well-posedeness of such a transformation for an It6 process with
strong regularity assumptions was shown. As a result, the transformed Itd process
behaves similar to an ODE with uncertain initial condition. Therefore the process
remains measurable with respect to its initial condition resulting in interesting com-
putational advantages. The relevance of the transformation was discussed by em-
ploying the chaos expansion technique. In follow up studies, besides analyzing the
computational performance of the resulting chaos expansion, the author will inves-
tigate possible generalization of the transformation for a broader class of stochastic
processes driven by the white noise.

Acknowledgement. The author is grateful to Jan Hesthaven for his valuable
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