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Abstract. Since the seminal work of Wiener [22], the chaos expansion has evolved to a powerful4
methodology for studying a broad range of stochastic differential equations. Yet its complexity for5
systems subject to the white noise remains significant. The issue appears due to the fact that the6
random increments generated by the Brownian motion, result in a growing set of random variables7
with respect to which the process could be measured. In order to cope with this high dimensionality,8
we present a novel transformation of stochastic processes driven by the white noise. In particular,9
we show that under suitable assumptions, the diffusion arising from white noise can be cast into10
a logarithmic gradient induced by the measure of the process. Through this transformation, the11
resulting equation describes a stochastic process whose randomness depends only upon the initial12
condition. Therefore the stochasticity of the transformed system lives in the initial condition and13
thereby it can be treated conveniently with the chaos expansion tools.14
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1. Introduction. Often stochastic descriptions of natural or social phenomena17

lead to more realistic mathematical models. The introduced stochastic notion may18

either arise from the uncertainty in the model inputs, or from the underlying govern-19

ing law. In particular, the white noise manifests itself in both circumstances e.g. as20

a random force acting on a deterministic system in the Landau-Lifschitz fluctuating21

hydrodynamics [13] or as a Markovian process describing rarefied gases [7] or poly-22

mers [18].23

24

The Monte–Carlo methods are typically a natural choice for computational studies of25

the systems driven by the white noise. Yet the slow convergence rate of the brute-forth26

Monte–Carlo, motivates a quest for improved approaches. There exists an immense27

list of advanced Monte–Carlo techniques, each of which may yield to a substantial28

improvement over the conventional Monte–Carlo, provided certain regularities. One29

of the promising examples belongs to the Multi-Level Monte-Carlo approach [6] (and30

its variants [8]). In short, MLMC makes use of abundant samples on a coarse scale31

discretization in order to improve the convergence rate of the fine scale one. This32

can be achieved by enforcing correlations between successive approximations; usually33

through employing common random numbers among them.34

35

Instead of producing numerical samples of a random variable however, one can expand36

the solution with respect to a set of (orthogonal) random functions which possess a37

known distribution [25]. The polynomial chaos and stochastic collocation schemes38

are among the main approaches built around this idea [24, 23]. In particular, the39

polynomial chaos schemes transform the random differential equations to a set of de-40

terministic equations, through which the evolution of the coefficients introduced in the41

polynomial expansion of the random solution is governed. Therefore by knowing the42

distribution of the resulting orthogonal functions, different statistics of the solution43
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2 M. HOSSEIN GORJI

can be computed deterministically. While this approach may lead to efficient compu-44

tations for equations pertaining a finite set of random variables, its application to the45

Brownian motion remains with a significant computational challenge. The problem46

arises due to the fact that the dimension of the expansion should grow in time in order47

to keep the solution measurable with respect to the Brownian motion [9]. Hence, the48

cost of the chaos expansion schemes grows here significantly, in comparison to the49

counterpart scenario where the solution remains measurable with respect to a fixed50

set of random variables.51

52

This paper addresses the problem of deterministic solution algorithms for systems53

subject to the white noise, in an idealized Itô process setting. Here we introduce a54

novel transformation, where the randomness of the Brownian motion is described as55

a propagation of an (artificial) uncertainty of the initial condition. We show that the56

measure induced by the transformed system is consistent with the one resulting from57

the Itô process, in the moment sense. The key ingredient is the fact that both the58

transformed and the original process result in an identical Fokker–Planck equation59

for their probability densities. Afterwards, since the transformed system describes an60

Ordinary Differential Equation (ODE) with an uncertain initial condition, a chaos61

expansion can be applied in a straight-forward manner.62

63

The paper is structured as the following. First in the next section we present our set-64

ting for the Itô process and besides a shoer review of its corresponding Wiener-chaos65

expansion. In section 3, the gradient transformation of the white noise is motivated66

and introduced. In the follow up section 4, some theoretical aspects of the trans-67

formation are justified. In particular, the solution existence and uniqueness of the68

transformed process is discussed. Therefore in section 5, the Hermite chaos expansion69

of the transformed process is devised. The paper concludes with final remarks and70

future outlooks.71

2. Review of the Ito Process. To start, a set of assumptions on the coefficients72

of the Itô process, necessary for our analysis is provided in subsection 2.1. Next, the73

conventional chaos expansion of the Itô process is reviewed in subsection 2.2.74

2.1. General Setting. We focus on a simple prototype of stochastic processes75

driven by the white noise. Let (Ω,FU0
t ,P) be a complete probability space, where76

FU0
t = Ft ⊗FU0 denotes the σ-algebra on the subsets of Ω = Ω1 ∪Ω2. Here {Ft}t≥077

is an increasing family of σ-algebras induced by the n-dimensional standard Brown-78

ian path W (., .) : R+ × Ω1 → Rn , and FU0 the σ-algebra generated by the initial79

condition U0(.) : Ω2 → Rn.80

81

We consider an Itô diffusion process82

(2.1) dUi(t, ω) = bi(U)dt+ βdWi(t, ω),83

governing the evolution of the FU0
t -measurable random variable U(., .) : R+×Ω→ Rn,84

with the initial value U0 and the law P.85

86

Throughout this manuscript, we need certain regularity assumptions on the drift87

b(.) : Rn → Rn, the diffusion coefficient β ∈ R and the initial condition U0.88

89

We require β 6= 0 and that the drift b(x) = −∇Ψ(x) with Ψ(.) ∈ C∞b (Rn), where90
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C∞b denotes the space of bounded functions with bounded derivative of all orders.91

Finally, we assume that the initial condition is deterministic hence its probability92

density fU0
(u) = δ(u−U0), where δ(.) is the n-dimensional Dirac delta and U0 ∈ Rn.93

94

For the above-described setting, many interesting properties can be shown for the95

Itô process, including the following.96

Remark 2.1. It is a classic result in the theory of Stochastic Differential Equations97

(SDEs) that since Ψ(.) ∈ C∞b (Rn) and β is assumed to be a constant, Eq. (2.1) has98

a solution with a bounded variance for all t ≥ 0, which is unique in the mean square99

sense. Furthermore, the process is Feller continuous resulting in smooth variation of100

an expectation of the solution with respect to the initial condition [17].101

Remark 2.2. Based on different results in the Malliavin calculus, since the coeffi-102

cients b and β fulfill the Hormänder criterion and furthermore b has bounded deriva-103

tives, the Borel measure generated by the process µU = P(U−1) is infinite times104

differentiable. Therefore the probability density fU (u; t)du = dµU (u; t) is well-defined105

and µU (.; t), fU (.; t) ∈ C∞(Rn), provided t > 0; see e.g. Theorem 2.7 in [21].106

Remark 2.3. Due to Corollary 4.2.2. of [2], since µU is three times differentiable,107

the Fisher information108

I(f) :=

∫
Rn

1

f
∇xf · ∇xfdx(2.2)109

associated with the density fU is bounded at t > 0.110

Remark 2.4. The density fU evolves according to the Fokker-Planck equation111

(forward-Kolmogorov equation)112

∂fU (u; t)

∂t
= − ∂

∂ui
(bi(u)fU (u; t)) +

β2

2

∂2

∂ui∂ui
fU (u; t)(2.3)113

and the measure µU is governed by the transport equation114

∂µU (u; t)

∂t
= −bi(u)

∂

∂ui
µU (u; t) +

β2

2

∂

∂ui∂ui
µU (u; t).(2.4)115

Since Ψ(.) ∈ C∞b (Rn) and β 6= 0, both above-mentioned equations have unique solu-116

tions (for uniqueness results see [15, 5, 3]). Notice that the Einstein index convention117

is employed here and henceforth, to economize the notation.118

In comparison to the natural setting of Itô processes, we have introduced strong as-119

sumptions on Ψ and β. Though not straight-forward, the generalization of our analysis120

may become possible as long as the corresponding Itô process has a unique solution121

with bounded variance and its corresponding Fisher information is bounded (e.g. by122

using Lyapunov functionals [11]). But to keep the study focused on the main idea,123

we postpone the generalization to the follow up studies.124

125

In typical applications in scientific computations, one is interested in some moments of126

the solution U , which are in the form of an expectation E[g(U(t, ω))] of some smooth127

function g(.) ∈ C∞(Rn).128

2.2. Wiener Chaos Expansion. Due to slow convergence rates of Monte-Carlo129

methods, deterministic solution algorithms for stochastic processes can be attractive.130

Besides stochastic collocation methods [26], a Wiener chaos expansion of Eq. (2.1) is131
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4 M. HOSSEIN GORJI

possible due to the Cameron-Martin theorem [4], as carried out e.g. by Rozovskii,132

Hou and others [9, 16, 25]. It is useful for our sequel analysis to provide an overview133

of this expansion. To simplify the notation we explain the chaos expansion of U in134

a one dimensional setting n = 1. For a multi-dimensional case, the following can be135

applied for each component of the solution.136

137

The random events with respect to which the solution U is measurable are due to the138

initial condition U0 and the corresponding Brownian integral β
∫ t

0
dW (s, ω2), therefore139

for a deterministic U0, U can be expressed as140

U(t, ω) = M

(
U0,

∫ t

0

dW (s, ω), t

)
.(2.5)141

The integral of the Brownian path I(ω) :=
∫ t
s=0

dW (s, ω), can be expanded as142

I(ω) =

∞∑
j=1

ξj(ω)

∫ t

0

φj(s)ds,(2.6)143

where {φj(s)} is a sequence of orthogonal functions in L2([0, t]) and ξj are indepen-144

dent normally distributed random variables.145

146

Suppose P (l) =

{
t
(l)
j =

(
jt/ml j ∈ {1, ...,ml}

)}
is a partition for the time interval147

(0, t]. Intuitively the Brownian motion generates an independent normally distributed148

random variable at each t
(l)
j ∈ P (l). Along this picture let149

Î(l) =

ml∑
j=1

ξj

∫ t

0

φj(s)ds(2.7)150

be an approximation of the integral (2.6) corresponding to the partition P (l). It can151

be shown that152

E
[(
I − Î(l)

)2
]
< C

t

ml
,(2.8)153

where C <∞ is some constant [14].154

155

Analogously, let Û (l) be an approximation of M , computed on the partition P (l).156

Therefore due to Eq. (2.7), the solution at time t can be approximated as a function157

Û (l)(t, ξ1, ..., ξml) with a mean square error of O(t/ml) (due to the truncation intro-158

duced in Eq. (2.7)). At this point the Wiener chaos expansion can be applied to Û (l);159

as explained in the following.160

161

In order to expand Û (l) with respect to the Hermite basis, suppose ξ = (ξ1, ..., ξml)162

is an ml-dimensional normally distributed random variable and let α = (α1, ..., αp) ∈163

J pml denote an index from the set of multi-indices164

J pml =

{
α = (αi, 1 ≤ i ≤ ml)

∣∣∣∣αi ∈ {0, 1, 2, ..., p}, |α| = ml∑
i=1

αi

}
.(2.9)165
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Let the |α|-order multi-variate Hermite polynomial166

Hα(ξ) =

ml∏
i=1

Ĥαi(ξi)(2.10)167

be a tensor product of the normalized αi-order Hermite polynomials Ĥαi(ξi). Accord-168

ing to the Cameron-Martin theorem, Û (l)(t, ξ) admits the following Hermite expansion169

Û (l)(t, ξ) = lim
p→∞

∑
α∈J pml

û(l)
α (t)Hα(ξ),(2.11)170

where û
(l)
α (t) = E[Û (l)(t, ξ)Hα(ξ)].171

172

In fact the expansion (2.11) provides a means to project the randomness of the so-173

lution U(t, ω) into the Hermite basis. As a result, the Itô process is transformed174

to a set of deterministic ODEs for the coefficients û
(l)
α (t) and thus the expectations175

E[g(U(t, ω)] ≈ E[g(Û (l)(t, ξ))] can be computed deterministically. However in order176

to keep the order of the approximation introduced in the expansion (2.7) constant,177

ml should grow linearly with respect to t. So does the dimension of the expansion178

(2.11), as ml shows up in the order of the Hermite polynomials. Thus unless short179

time behavior of the solution is of interest, complexity of the Wiener chaos expansion180

of the Itô process may become prohibitive; even though the number of Hermite poly-181

nomials can be reduced significantly through sparse tensor compressions [20].182

183

A more general insight about the problem can be sought by considering the fact that184

a smooth function of an n-dimensional random process Brownian path f(W (t, ω)) at185

time t = T is measurable with respect to the Borel σ-algebra on Ω = (Rn)
[0,T ]

[17].186

Therefore in order to devise a chaos expansion of f , the orthogonal functions should187

span a rather high dimensional space L2(Ω).188

3. Main Result. The main idea of this work is to find an alternative SDE with189

a similar probability density as the one generated by the Itô process, which yet re-190

mains measurable with respect to the σ-algebra induced by its initial condition.191

192

More precisely, consider again the partition P l = {0 = tl1 < tl2 < ... < tlml = t}193

for the time interval [0, t] with |P l| → 0 as l →∞. Obviously the solution of the Itô194

process U(t, ω) is measurable with respect to the family of σ-algebras195

{FU0

tl1
,FU0

tl2
...,FU0

tlml
} as l→∞.196

However if we are only interested in some expectation E[g(U(t, ω))] at time t, the197

knowledge of the Borel measure µU (B; t) = P{U−1(t, B)} where B ∈ Bn, is suffi-198

cient. Note that Bn is the Borel σ-algebra on Rn. Let fU (u; t) be the corresponding199

probability density i.e. fU (u; t)du = dµU (u; t), therefore200

E[g(U(t, ω))] =

∫
Rn
fU (u; t)g(u)du.201

Suppose the random variable X(t, ω) : R+×Ω→ Rn belongs to a complete probability202

space (Ω,G,Q), and generates a Borel measure µX = Q(X−1). Let the probability203
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density be fX(x; t)dx = dµX . We propose that under suitable assumptions on fX(x; 0)204

(as explained in the following section), the solution of the transformed Itô process205

d

dt
Xi(t, ω) = bi(X)− 1

2
β2 [∇xi log fX(x; t)]x=X(t,ω)(3.1)206

with the initial condition X0(ω) : Ω → Rn, uniquely exists for all t. Furthermore207

the solution is consistent with the Itô process in a sense that for an arbitrary smooth208

g ∈ C∞(Rn) we have209

E[g(X(ω, t))] = E[g(U(ω, t))],(3.2)210

where U is the solution of the Itô process with the initial condition U0 = X0.211

212

Let us first review the motivation behind this transformation. Due to Itô’s lemma, the213

probability density generated by the Itô process follows the Fokker-Planck equation214

(see Remark 2.4)215

∂fU (u; t)

∂t
+

∂

∂ui
(bi(u)fU (u; t)) =

1

2

∂2

∂ui∂uj

(
β2fU (u; t)

)
.(3.3)216

By rearranging the diffusion term one can see that217

∂fU (u; t)

∂t
+

∂

∂ui

{(
bi(u)− 1

2
β2 ∂

∂uj
log(fU (u; t))

)
fU (u; t)

}
= 0,218

resulting in a stochastic process similar to Eq. (3.1). Intuitively we observe that219

the effect of the diffusion on the probability density is equivalent to an advection220

induced by the gradient ∇u log fU . We refer to this transformation as logarithmic221

gradient transformation. Obviously this transformation needs to be justified. However222

before proceeding to the technical discussion in section 4, let us provide some physical223

motivations behind the logarithmic gradient transformation.224

Suppose exp
(
−2Ψ(x)/β2

)
∈ L1(Rn) and hence the stationary density225

fst(x) = Z exp

(
−2Ψ(x)

β2

)
(3.4)226

is well-defined. Therefore the introduced process generates the paths (t,X(t, ω)) ac-227

cording to228

d

dt
Xi(ω, t) = −β

2

2
∇x log

(
fX(x; t)

fst(x)

) ∣∣∣∣
x=X(ω,t)

229

which is a gradient flow induced by the potential φ = log(fX/fst). This potential is230

connected to the Kullback-Leibler distance (entropy distance)231

dKL(t) =

∫
Rn
fX(x; t) log

(
fX(x; t)

fst(x)

)
dx = E[φ(X)]232

between the two densities fX and fst [12, 10]. Therefore from the physical point of233

view, the logarithmic gradient transformation generates a gradient flow in order to234

minimize the entropy distance dKL between the current state fX and fst.235

236

237
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4. Theoretical Justifications. The following arguments establish a connection238

between solutions of the main Itô process i.e. Eq. (2.1) and the transformed one239

Eq. (3.1).240

4.1. Regularity of the Ito Process. To start, note that in order to make241

sense of Eq. (3.1), fU should admit certain regularities. Let us introduce a class of242

admissible probability densities for a measurable f(x) as243

K1 :=

{
f(x) : Rn → (0,∞)

∣∣∣∣ ∇ log f ∈ C∞l (Rn), M(f) <∞, I(f) <∞
}
,(4.1)244

where245

M(f) =

∫
Rn
fx2dx246

and C∞l is the space of infinite times differentiable functions, with at most linear247

growth. The next lemma provides a link between fU and K1.248

Lemma 4.1. Consider U ε(t, ω) to be the solution of the Itô process (2.1) in the249

probability space (Ω,FU
ε
0

t ,Pε) with a drift b = −∇Ψ, Ψ(.) ∈ C∞b (Rn) and a diffusion250

β 6= 0. Suppose the initial condition reads U ε0 = U0 + εZ, where U0 ∈ Rn is deter-251

ministic, Z(ω) ∈ Rn is a normally distributed random variable and ε ∈ R is a small,252

arbitrary chosen non-zero constant.253

254

Let fUε(u; t) = dPε
(
U ε−1

)
be the probability density of the process, therefore255

256

fUε(.; t) ∈ K1,(4.2)257

for t ∈ [0,∞).258

Proof. Note that the initial condition U ε0 has a Gaussian probability density of259

the form260

fUε0 (u) =Mε (|u− U0|) ,(4.3)261

where262

Mε(h) :=
1

(
√

2π|ε|)n
exp

(
− h

2

2ε2

)
.(4.4)263

It is straight-forward to see that Mε (|u− U0|) ∈ K1 and thus we only need to prove264

the claim (4.2) for t > 0. Notice that here and afterwards, | . | denotes the Euclidean265

norm.266

267

First let us show that log fUε0 (.; t > 0) ∈ C∞(R). According to Remark 2.1-Remark 2.3268

at each t > 0 we have fUε0 (.; t) ∈ C∞(R), I(fUε0 ) < ∞ and M(fUε0 ) < ∞. Hence it269

is sufficient to prove fUε0 (.; t) > 0, for t > 0. For that, we make use of the Girsanov270

transformation. But before proceed, to prevent unnecessary notational complications271

we set β = 1 for the followings.272

273

Let W ε(t, ω) be a standard n-dimensional Brownian process with the initial condition274

U ε0 and the law Wε. Then since b(.) ∈ C∞b (Rn), we have275

E

[
exp

(
1

2

∫ T

0

bi(W
ε(t, ω))bi(W

ε(t, ω)dt

)]
<∞,(4.5)276
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for any finite T . Therefore the process277

Z(t, ω) := exp

(
−
∫ t

0

bi(W
ε(s, ω))dW ε

i (s, ω)− 1

2

∫ t

0

b2(W ε(s, ω))ds

)
278

(4.6)279

is a martingale for t ∈ [0, T ) [17]. It follows from the Girsanov theorem that280

dPε(t, ω) = Z(t, ω)dWε(t, ω).(4.7)281

Since dWε is a Gaussian measure, it is strictly positive for t > 0, and hence dP > 0.282

It is then straight-forward to check that fUε0 (u; t) > 0, for any u ∈ Rn, provided t > 0.283

284

Now the final piece is to prove285

|∇u log fUε(u; t)| ≤ C(t, U0) (|u|+ 1)(4.8)286

for every u ∈ Rn, t > 0 and some constant C(t, U0) <∞ which depends on t and the287

initial condition U0. Consider the partition288

P (l) =

{
t
(l)
j =

(
jt/ml j ∈ {1, ...,ml}

)}
(4.9)289

for the interval (0, t] and ∆t(l) = t/ml. Suppose Z(l) is the projection of the martingale290

Z(t, ω) on the partition P (l). Using Itô’s lemma, we get291

Z(l)(t, ω) = exp

(
Ψ(W ε(0, ω))−Ψ(W ε(t, ω))

)
292

exp

1

2

ml∑
j=1

(
b′(W ε(t

(l)
j , ω)− b2(W ε(t

(l)
j , ω))

)
∆t(l)

 ,293

(4.10)294

where b′ = div{b}. In terms of the density fUε , the Girsanov transformation yields295

fUε(uml ; t) = e−Ψ(uml )

∫
Rn
...

∫
Rn︸ ︷︷ ︸

ml times

(
eΨ(u0)+1/2∆t(l)

∑ml−1

j=0 (b′(uj)−b2(uj))296

Mε(|u0 − U0|)
ml−1∏
i=0

M∆t(l)(|ui+1 − ui|)
)
du0du1...duml−1,(4.11)297

as ml → ∞, where M is the Gaussian density defined in Eq. (4.4). Since Ψ ∈ C∞b ,298

exp(Ψ(u0) + 1/2∆t(l)
∑ml−1
j=0

(
b′(uj)− b2(uj)

)
is bounded above and below by some299

S(t) <∞ and I(t) > 0, respectively. Therefore we have300 ∣∣∣∣∇uml log fUε(uml ; t)

∣∣∣∣ ≤ |b(uml)|301

+
S(t)

I(t)

∣∣∣∣∣
∫
Rn ...

∫
RnMε2(|u0 − U0|)

∏ml−1
i=0 ∇umlM∆t(l)(|ui+1 − ui|)du0...duml−1∫

Rn ...
∫
RnMε2(|u0 − U0|)

∏ml−1
i=0 M∆t(l)(|ui+1 − ui|)du0...duml−1

∣∣∣∣∣ ,302

(4.12)303
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as ml → ∞. However, the integral terms can be computed explicitly. In fact in the304

limit of ml →∞, we get305 ∫
Rn
...

∫
Rn
Mε2(|u0 − U0|)

ml−1∏
i=0

M∆t(l)(|ui+1 − ui|)du0...duml−1 =Mε2+t(|uml − U0|).306

(4.13)307

Therefore the upper bound reads308 ∣∣∣∇uml log fUε(uml ; t)
∣∣∣ ≤ |b(uml)|+ S(t)

I(t)

∣∣∣∣∇umlMε2+t(|uml − U0|)
Mε2+t(|uml − U0|)

∣∣∣∣309

≤ C(t, u0) (|uml |+ 1) ,(4.14)310

for t > 0.311

Corollary 4.2. The measure of the process µUε is the solution of the following312

transport equation313

∂µU (u; t)

∂t
=

(
−bi(u) +

β2

2

∂

∂ui
log fUε(u; t)

)
∂µU (u; t)

∂ui
.(4.15)314

Proof. The proof is straight-forward, by using Remark 2.4 and the result of315

Lemma 4.1, that fUε(., t) ∈ K1.316

4.2. Solution Existence-Uniqueness and Consistency.317

Theorem 4.3. Let U(t, ω), U ε(t, ω) ∈ Rn be solutions of the Itô process (2.1) for318

initial conditions U0 and U ε0 , respectively, where the drift b = −∇Ψ fulfills Ψ ∈ C∞b319

and β 6= 0. Here U0 ∈ Rn is deterministic, whereas U ε0 = U0+εZ, Z(ω) ∈ Rn is a nor-320

mally distributed random variable and ε ∈ R is a non-zero arbitrary chosen parameter.321

322

Suppose Xε(t, ω) ∈ Rn is a random variable in a space (Ω,Gε,Qε), and evolves ac-323

cording to324

d

dt
Xε
i (t, ω) = bi(X

ε)− 1

2
β2 [∇xi log fXε(x; t)]x=Xε(t,ω) ,(4.16)325

subject to the initial condition U ε0 . Here fXε(x; t) = dQε
(
Xε−1

)
is the probability326

density of the process (4.16). Therefore327

1. The process (4.16), has a unique solution with E[Xε2(t, ω)] < ∞ for t ∈328

[0,∞).329

2. For an arbitrary g(.) ∈ C2(Rm), we have330

E [g(Xε(t, ω))] = E [g(U ε(t, ω))](4.17)331

and lim
ε→0

E [g(Xε(t, ω))] = E [g(U(t, ω))] .(4.18)332

Proof. First let us show that the process333

d

dt
Y εi (t, ω) = bi(Y

ε)− 1

2
β2 [∇yi log fUε(y; t)]y=Y ε(t,ω)(4.19)334

with the initial condition U ε0 has a unique solution with bounded variance for all t > 0.335

Let F (t, Y ε) denote the right hand side of Eq. (4.19). For the existence-uniqueness336
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proof of a bounded variance solution, since fUε(.; t) ∈ K1 according to Lemma 4.1 and337

b(.) ∈ C∞b (Rn), we get F (t, .) ∈ C∞l (Rn). Therefore the existence-uniqueness follows338

directly from the Picard iterations and Groenwall’s inequality (see [1] for details).339

Furthermore, the boundedness of the variance comes from the Chebyshev lemma (see340

Theorem 1.8 in [11]).341

342

Now let us turn to the measure induced by Y ε i.e. µY ε . Let us define the map343

σt(U
ε
0(ω)) = Y ε(t, ω) and hence µY ε(σt(u); t) = µUε0 (u). Therefore µY ε fullfills the344

following transport equation345

∂

∂t
µY ε(y; t) = −Fi(t, y)

∂

∂yi
µY ε(y; t).(4.20)346

Note that since Eq. (4.19) has a unique solution, do does Eq. (4.20). However due to347

Corollary 4.2, the measure induced by U ε also fulfills Eq. (4.20). Therefore µY ε(y; t) =348

µUε(y; t), resulting in equivalence of Eqs (4.19) and (4.16). Furthermore349

E[g(Xε(ω, t))] = E[g(U ε(ω, t))].(4.21)350

But since the Itô process is Feller continuous [17], we have351

lim
ε→0

E[g(U ε(ω, t))] = E[g(U(ω, t))],(4.22)352

and hence353

lim
ε→0

E[g(Xε(ω, t))] = E[g(U(ω, t))].(4.23)354

To summarize, let U ε and U be solutions of the Itô process subject to the initial355

conditions U ε0 and U0, respectively. As a consequence of the regularization and the356

introduced transformation, we can approximate the statistics of the true solution U by357

statistic of U ε through E[g(U ε(ω, t))] = E[g(Xε(ω, t))]. However due to well-posedness358

of Eq. (2.1), we obtain a mean square error359

E
[
(U(ω, t)− U ε(ω, t))2

]
< C(t)ε2(4.24)360

bounded by ε2 and some constant C(t) independent of ε. Therefore the regularization361

costs us an error of O(ε2) in the mean square sense.362

363

364

5. Chaos Expansion. The computational advantage of the gradient formula-365

tion Eq. (3.1) over the original Itô process Eq. (2.1), can be exploited through its366

chaos expansion. Actually while the dimension of the space in which the Brown-367

ian path is measurable increases in time, its gradient transformation only propagates368

randomness originated from the initial condition. Therefore the resulting logarithmic369

gradient transformation behaves like an ODE with an uncertain initial condition.370

371

Let us consider an initial condition X0(ω) : Ω → Rn with a probability density372

fX0
(x) =Mε(|x− U0|), where |ε| > 0 and U0 ∈ Rn. In the following, we present the373

corresponding Hermite chaos expansion of the process (3.1) for X(ω, t) : Ω×R+ → Rn374

subject to X0. For more details on the Hermite chaos, and in general polynomial chaos375
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expansions see [24]. The expansion is performed on the map M(ξ(ω), t) = X(ω, t),376

where ξ ∈ Rn is a normally distributed random variable, hence377

|∇qM |fX(M ; t) = fΞ(q),(5.1)378

where fΞ(q) =M1(q) and q ∈ Rn. In practice, Eq. (5.1) is only employed to find the379

initial condition of M (which in our case of X0 initially being Gaussian distributed,380

the map becomes trivial), afterwards simply the coefficients of the expanded M are381

propagated.382

383

The map evolves according to X and thus384

d

dt
Mi(ξ(ω), t) =

Fi(t,M)︷ ︸︸ ︷
bi(M)− 1

2
β2 [∇xi log fX(x; t)]M .(5.2)385

Since E[M2] < ∞, we conclude M ∈ L2(dµΞ), where L2(dµΞ) is the space of square386

integrable functions with the weight dµΞ(q) = fΞ(q)dq. Furthermore note that since387

b(.) and the Fisher information are bounded, we have F (t, .) ∈ L2(dµΞ). Therefore388

M admits a Hermite expansion [19]389

Mi(ξ, t) = lim
p→∞

∑
α∈J pn

mi,α(t)Hα(ξ)(5.3)390

for each component i ∈ {1, ..., n}, where Hα and J are defined in (2.10) and (2.9),391

respectively. The coefficients follow392

mi,α(t) = 〈Mi, Hα〉µΞ
,(5.4)393

with the inner product defined based on the Gaussian weight394

〈h, g〉µΞ
=

∫
Rn
h(q)g(q)fΞ(q)dq.(5.5)395

Therefore396

dmi,α

dt
= 〈bi, Hα〉µΞ −

1

2
β2

∫
Rn
Hα(ξ) (∇xi log fX(x; t))x=M dµΞ397

= 〈bi, Hα〉µΞ
+

1

2
β2

〈(
∂Ml

∂ξk

)−1

,
∂Hα

∂ξl

〉
µΞ

,(5.6)398

and399

∂Mi

∂ξk

(
∂Mj

∂ξk

)−1

= δij ,(5.7)400

with δ being the Kronecker delta. Note that in deriving the last step of Eq. (5.6),401

the fact that fΞ vanishes at the boundaries together with Eq. (5.1) have been used.402

Moreover since fX , fΞ ∈ K1, the inverse of ∇ξM exists which can be seen again from403

Eq. (5.1). It is important to emphasize that the evolution of the coefficients mi,α do404

not directly depend on fX . By taking advantage of the measure transform (5.1), no405

explicit knowledge of the density fX is required.406

407

This manuscript is for review purposes only.



12 M. HOSSEIN GORJI

In practice, basides the error associated with the regularization of the initial con-408

dition, three types of numerical errors should be controlled in order to compute the409

evolution of the coefficients mi,α. First type comes through truncation of the Hermite410

expansion (5.3). Second is due to the inner products 〈., .〉µΞ , where the Hermite-Gauss411

quadrature can be employed. And third, the error arising from the time integration412

which can be performed e.g. by the Runge-Kutta method, should be curbed.413

6. Conclusion. This study proposed a transformation of the diffusion arising414

from the white noise into a transport induced by logarithmic gradient of the proba-415

bility density. The well-posedeness of such a transformation for an Itô process with416

strong regularity assumptions was shown. As a result, the transformed Itô process417

behaves similar to an ODE with uncertain initial condition. Therefore the process418

remains measurable with respect to its initial condition resulting in interesting com-419

putational advantages. The relevance of the transformation was discussed by em-420

ploying the chaos expansion technique. In follow up studies, besides analyzing the421

computational performance of the resulting chaos expansion, the author will inves-422

tigate possible generalization of the transformation for a broader class of stochastic423

processes driven by the white noise.424
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