
Detecting Steganography
Marie-Jeanne Lagarde (236512)

Machine Learning and Optimization Laboratory, Ecole Polytechnique Fédérale de Lausanne, June 2018

Abstract—The aim of this project is to assess the non-
detectability of slightly modified version of the linguistic
steganography approach described in the paper Generating
Steganographic Text with LSTMs [1] by classifying whether
a tweet was generated by a regular user or by this stegano-
graphic method. For that purpose, both a fastText supervised
classification and a user study are conducted.

I. INTRODUCTION

The main advantage of steganography over cryptography
alone is that it conceals the fact that a secret message is
being sent and does not draw attention to itself, thus avoiding
decryption attacks. As a consequence, using a steganographic
method appears to be meaningful only if the hidden message
remains undetectable against all possible adversaries. Using
a slightly modified version of the linguistic steganography
approach described in the paper Generating Steganographic
Text with LSTMs [1] which hides secret messages in tweets,
this project assesses the non-detectability of such a method.
Non-detectability of a linguistic steganography method might
seem relatively easy to evaluate for human operators: a
message either looks human written or not. However, tweets
are more complex to analyze as those short messages often
contain spelling mistakes and more than 40% are classified
as small talk [2]. Further, newly available efficient ma-
chine learning classification algorithms raise the question of
whether a machine can tell if a sentence has been written
by a human or not, thus compromising our steganographic
model and automatizing the detection of embedded secret
messages. This report is organized as follows: Section II sums
up the slightly modified steganographic approach; Section
III deals with the use of a machine learning classification
algorithm to detect our steganographic method; Section IV
summarizes the user study conducted; Section V explores
possible improvements. Hereafter we define a Fake tweet to
be one in which a secret message has been embedded by our
linguistic steganography system and a Real tweet to be one
which has been written by a real user on twitter.

II. CHOSEN STEGANOGRAPHIC APPROACH

We choose for this project to assess the non-detectability
of a slightly modified version of the linguistic steganography
approach described in the paper Generating Steganographic
Text with LSTMs [1] which we explain below.

A. Description of the Implementation

The general idea of this steganographic technique is for
the sender to generate a chain of tweets which hide a
secret message that only the receiver can decode thanks to
a shared secret seed. Each character of the secret message
that the sender wants to transmit is mapped to its ASCII
representation which forms a bit string. We implement a
Pytorch [3] recurrent neural network trained on a set of

75,291,137 tweets which vocabulary is equally split among
n bins. Each log2 n bits of the secret message bit string is
then mapped to the corresponding bin in which the recurrent
neural network selects the most probable word (the neural
network being forced to pick a word from a particular bin
will be designated hereafter as under constraint). The bins
are generated randomly depending on the shared seed. These
consecutive picks form several tweets that hide the secret
message. At the receptor, each word is mapped back to its
original bin and the original bit string is retrieved thanks to
the shared seed. Finally, the bit string is mapped back to the
original ASCII characters and the message is decoded and
displayed at the receptor. Usernames are anonymized and
being replaced by <user> and urls are being replaced by
<url>.

Fig. 1: Bins Scheme with replication factor 1

B. Improvement to the Original Design

In order to improve the quality of the produced tweets, we
focus on three elements: the punctuation, the end of string
signal <eos> and the capitalization. We also look into how to
speed up the tweet generation. After several trials, it appears
that the quality (based on human judgment) of the tweets
improves when a word aggregated with a punctuation mark is
considered as a single entry in the dictionary. For instance, for
the tweet ”<user> : New post: ”Pontoon reflection” <url>
<eos>”, our dictionary contains the word ”post:” rather
than two separated words ”post” and ”:”. Second, the usual
behavior of our steganographic method described before is to
stop when the secret message is totally embedded in the chain
of tweets, even when an end of string symbol (<eos>) has
not yet been reached. However, a non-finished tweet is easily
recognizable by both a human operator and a classifier. As
a consequence, we modify the original approach by creating
an additional bin in which the neural network picks words
only when it has finished embedding the secret message and
this until it picks an end of string word. At the receiver,

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211983724?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


words from this special bins are not decoded and this change
does not affect the decoding of the secret message while
it enhances the quality of the produced tweets. Third, the
original method only produced lowercase tweets making it
easily detectable and not realistic. We train the new model on
capitalized tweets, where words with different capitalization
are considered being different (for instance, ”cat”, ”Cat” and
”CAT” are different entries in our dictionary). This allows our
neural network to produce tweets combining both lowercase
and uppercase letters. Finally, the module Pickle is used to
save and reload the corpus and the bin distribution depending
on the chosen seed, allowing a large speed when generating
tweets.

Fig. 2: Encoding Decoding Example

C. Hyperparameters Tuning

To produce the less detectable steganographic model pos-
sible, we search for the best hyperparameters to train the
recurrent neural network (number of hidden layers, number
of layers, number of epochs) and to generate tweets (number
of bins, replication factor, number of common tokens and
temperature). For each model, a set of tweets hiding a secret
message (here after called Fake tweets) is generated and
given to train the classifier along with the same number
of existing tweets preprocessed in the same way (here after
called Real tweets). The model selected is the one with the
lowest result of well classified Fake tweets, in other words,
the model for which fewer generated tweets are detected as
embedding a secret message. Among twenty-two combina-
tions of hyperparameters, the combination of following ones
gives the most satisfying results (as described in section III
subsection C) while keeping the ability to decode the original
secret message: 600 hidden layers, 3 layers, 6 epochs, 2 bins,
a replication factor of 1, 600 common tokens, a common bin
factor of 2 and a temperature of 1.

III. DETECTING STEGANOGRAPHY USING A BINARY
CLASSIFIER

Machine learning classification algorithms for detection
and analysis of steganographic embedded content in images
are known to provide reasonable discrimination schemes
[4], but researches about classification on steganographic
embedded content in texts still shows limited results as most
researches on text steganography are based on statistical
approaches. The following part explores the uses of a super-
vised binary classifier to detect embedded content in tweets,
in order to answer the question: can a machine tell if a tweet
has been written by a human or not and thus compromise
our steganographic method?

A. Choice of the Classifier

This project requires an efficient supervised binary classi-
fier which should also be fast to train and to evaluate. Look-
ing into machine learning classifying algorithms, fastText [5]
appears to be a good candidate as it is designed for efficient
learning of word representations and sentence classification.
Further, it has shown significant results in text classification
and is often on par with deep learning classifiers in terms of
accuracy, and is many orders of magnitude faster for training
and evaluation which makes it the best choice for our project.

B. Classifier Model Training

As described in section II subsection C, for each stegano-
graphic model, we build a set of 60000 tweets which contains
50% of our generated tweets (Fake) and 50% of existing
tweets (Real) preprocessed in the same way. This set is
then split: 85% goes into the training set and 15% goes
into the validating set used for the supervised learning. The
most accurate classification was obtained when tuning the
hyperparameters of the fastText classifier with 35 epochs.
Note that we do not look into bi-gram or tri-gram during
this project, even though it could improve the classification
results.

C. Results

Regarding the results, we are interested in selecting the
steganographic model for which the classification of Fake
tweets is the less accurate. It means that we select the model
for which our classifier misclassifies the most Fake tweets
as being Real ones. Indeed, we would like our classifier
not to be able to decide whether a tweet comes from our
steganographic model (Fake) or from a real user (Real). As
a baseline, we evaluate the classification of tweets generated
by our LSTM model with no steganographic approach (no
constraints on bins for embedding a secret message), which
is displayed in the first line of Table I. We believe that adding
our steganographic approach to the LSTM, which constrains
the choice of the next words to a specific bin, will make
our generated tweets more detectable and thus our classifier
would achieve a higher score. Table I confirms this hypothesis
and presents the less accurate classification rates obtained.
The lowest detection rate achieved for our generated tweets
by the classifier when we want the message to be decodable at
the receiver (number of bins being different from replication
factor) is 0.80 as shown in Table I.



Temperature Bins Common bin factor Number tokens Replication Factor Overall Classification Classification of Fake Tweets Only
1 - - - - 0.666 0.662
1 2 2 600 1 0.697 0.80
1 4 2 600 1 0.678 0.82

TABLE I: Less accurate classification rates

D. Possible Causes of Detection

As fastText classifier is not explicit about why it decides
to label a given tweet as a Fake or Real, we make here a
few hypothesis about possible detection causes. First of all,
the length of the tweets appears to be a potential cause of
detection. For that purpose, we try to design our stegano-
graphic model in a way that both median and average length
of produced tweets equal those of real tweets from our LSTM
training set. The temperature of the recurrent neural network
also seems to have a large impact on the length of the tweets.
By limiting the length of tweets to 120 symbols for both
Fake and Real tweets, we reduce by 2% the overall accuracy
of the classification but increase of 1% the accuracy of the
classification of only the Fake tweets. As a consequence we
do not apply this length limitation to our final model. Second,
the frequency of retweets ”RT” and url ”<url>” varies a
lot depending on our hyperparameters. This might have an
influence on the classification and we thus need to ensure
that both word appearance frequencies are close to the one
of the real tweets from our LSTM training set.

IV. USER STUDY

To assess the non-detectability of our steganographic
method against human operators, we conduct a user study.
This study should answer the following question: is a human
operator able to differentiate Real tweets from Fake tweets
generated by our steganographic method ?

A. Condition of the User Study

To conduct the study, we build 3 different sets of 40 tweets
which contains 20 randomly selected Fake tweets generated
by our most efficient steganographic model (temperature 1, 2
bins, a common bin factor of 2, 600 tokens and a replication
factor of 1) and 20 randomly selected Real tweets (from the
validation set of our LSTM model). The study was conducted
on 28 men and 21 women aged from 19 to 63 years old. Each
of them is asked to decide on a Google form whether a given
tweet is Fake (generated by our steganographic method) or
Real (written by a real user on twitter). From the answers,
we compute the overall accuracy of the classification and the
accuracy of the classification of only the Fake tweets.

B. Results

The goal of the user study is to assess the non-detectability
of our steganographic method against a human operator. As
we want our system to be non-detectable, which means that a
human operator should not be able to decide whether a tweet
hides a secret message (Fake) or was written by a regular
twitter user (Real), the ideal results are the following: an
accuracy of 50% on each set and on each Fake tweet set (sets
that contain only the tweets generated by our steganographic
method). Table II describes the results of the study. The
average accuracy of the classification task (mean of the
results of the 3 different sets submitted to participants) is
60% and the average accuracy of the classification when

only looking at Fake tweet sets is 49%. These results appear
to be close to the ideal ones defined above. The accuracy
of the classification of each Fake tweets ranges from 87%
accuracy for ”<user> : 4 people followed me and 4 % by //
by <url> ” to 0% accuracy for ”<user> : I’m giving up...”.
That highlights the quality of some tweets generated by our
linguistic steganography system with hope for improvement
as for some generated tweets the detection rate remains high.

Study Number Overall Classification Classification of Fake Tweets Only
1 0.5623161765 0.4141544118
2 0.6476041667 0.5420833333
3 0.5890625 0.5125

Average 0.59966094 0.48957925

TABLE II: Classification rates of the user study

C. Limitation of the user study

There are a few limitations in the user study we conduct
that must be noticed. First of all, the number of participants
remains small. Second, not all the participants are active users
of twitter, which can introduce bias in the study as they are
not used to the writing style. Finally, some tweets (both Real
and Fake ones) are written in Spanish which is a language
that not all participants master.

V. SUGGESTED IMPROVEMENTS OF THE
STEGANOGRAPHIC METHOD

In this section, we explore a few solutions which could
improve our linguistic steganography approach in order to
reduce its detectability.

A. Model Improvement

The LSTM model used without any constraint (no con-
straint on bins for picking the next word) lowerbounds the
achievable classification rate. By using a model which gener-
ates tweets that are less detectable when classified with real
tweets, we would decrease the chance for our steganographic
embedding to be detected. This would be possibly achievable
with a longer training or a bigger dataset, with the goal
to reach a 50% probability of our generated tweets to be
classified as Real or Fake by both the classifier and human
operators. Further, an improvement of the model would also
allow the frequency of ”RT” and ”<url>” along with the
mean and median average length to be closer to the one of
the LSTM training set. However, due to computational power
and time limitations, we do not consider this option in the
scope of this project.

B. Automatization of Username

Considering an end-to-end application for secret communi-
cation purpose, an automatization script replacing ”<user>”
by a real twitter username and ”@user” by a randomly
chosen username among the accounts that the given username
follows would make this application more realistic.

C. URL replacement

To handle the ”<url>” replacement, a simple algorithm
which randomly picks a website among a list of most popular
websites worldwide could be set up. However, this simplistic
approach would lead to the presence of irrelevant urls in the
generated tweets. Two approaches are possible: either leave



the urls when training and consider them as words (entry
in the dictionary), or replace the ”<url>” word thanks to a
script that exploits the generated tweets contexts to select a
relevant url. Both options provide an url replacement process
that would fit with the context of the generated tweet.

D. Generating Thematic Models

Considering again an end-to-end application for secret
communication purpose, this system could be optimized by
creating thematic models. The user would select a theme
when embedding his secret message and generate a chain
of consecutive tweets about this subject of his interest with
his pseudonym, allowing the human adversary to be more
easily fooled.

VI. CONCLUSION

In this project, we explore the detection of a slightly
modified approach of the steganographic method described in
the paper Generating Steganographic Text with LSTMs [1].
We conduct both a fastText classification and a user study to
classify tweets as either Fake or Real, where a Fake tweet
is one in which a secret message has been embedded by
our linguistic steganography system and a Real tweet is one
which has been written by a real user on twitter. We obtain
an overall classification accuracy of 60% for the user study
and of 70% for fastText algorithm. We further look into the
classification of only the Fake tweets as we are interested in
knowing if an adversary that captures a tweet which embeds
a secret message can detect whether that it is a Fake one
and thus compromise the steganographic process. We obtain
a classification accuracy of 49% for the user study and of
80% for the fastText classification on the Fake tweet set.
When comparing the two detection methods, it appears that
our steganographic approach is hardly detectable by a human
operator but still highly detectable by a machine learning
classification algorithm. As a consequence, we offer some
guidelines for critical thinking and improvements that will
most likely decrease the detection rate of our steganographic
embedding by a supervised classifier.

REFERENCES

[1] Katerina Agyraki Tina Fang, Martin Jaggi. Generating
steganographic text with lstms, 2017.

[2] Ryan Kelly. Twitter study august 2009, 2009.
[3] Adam Paszke, Sam Gross, Soumith Chintala, Gregory

Chanan, Edward Yang, Zachary DeVito, Zeming Lin,
Alban Desmaison, Luca Antiga, and Adam Lerer. Auto-
matic differentiation in pytorch. In NIPS-W, 2017.

[4] GUJAR SUJIT PRAKASH. Measures for classification
and detection in steganalysis. http://clweb.csa.iisc.ernet.
in/sujit/docs/ME thesis.pdf, 2006.

[5] Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. Bag of tricks for efficient text classi-
fication. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computational
Linguistics: Volume 2, Short Papers, pages 427–431.
Association for Computational Linguistics, April 2017.

http://clweb.csa.iisc.ernet.in/sujit/docs/ME_thesis.pdf
http://clweb.csa.iisc.ernet.in/sujit/docs/ME_thesis.pdf

	Introduction
	Chosen Steganographic Approach
	Description of the Implementation
	Improvement to the Original Design
	Hyperparameters Tuning

	Detecting Steganography Using a Binary Classifier
	Choice of the Classifier
	Classifier Model Training
	Results
	Possible Causes of Detection

	User Study
	Condition of the User Study
	Results
	Limitation of the user study

	Suggested Improvements of the Steganographic Method
	Model Improvement
	Automatization of Username
	URL replacement
	Generating Thematic Models

	Conclusion

