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ABSTRACT This paper presents the design, fabrication, and electrical characterization of a reconfigurable
RF capacitive shunt switch that exploits the electro-thermally triggered vanadium dioxide (VO2) insulator
to metal phase transition. The RF switch is further exploited to build wide-band RF true-time delay tunable
phase shifters. By triggering the VO2 switch insulator to metal transition (IMT), the total capacitance
can be reconfigured from the series of two metal–insulator–metal (MIM) capacitors to a single MIM
capacitor. The effect of bias voltage on losses and phase shift is investigated, explained, and compared to
the state of the art in the field. We report thermal actuation of the devices by heating the devices above
VO2 IMT temperature. By cascading multiple stages a maximum of 40◦ per dB loss close to 7 GHz were
obtained.

INDEX TERMS Vanadium dioxide, phase transition, RF switch, true-time delay, phase shifter, tunable
capacitor.

I. INTRODUCTION
Phase shifters are key components for beam-steering imple-
mentations, smart adaptive antennas and scanning appli-
cations for wideband communications and remote sensing
systems. Phase shifter based on ferroelectric technology have
been shown to offer interesting RF performances in terms of
tunability, losses and power consumption [1], [2]. In paral-
lel RF distributed MEMS transmission lines (DMTL) have
been proven to be a very interesting solution to achieve
a high phase shift over a wider frequency band if compared
to traditional solid-state implementations (PIN diodes, GaAs
FET), with a DC power consumption limited to tenths of
milliwatts [3].
Strongly correlated functional oxides exhibiting metal to

insulator transition have recently emerged in research as
promising materials for a large number of applications,
including steep-slope transistors [4], RF switches [5], [6],
reconfigurable filters [7], [8] and antennas [9]. Vanadium

dioxide (VO2) has proven to be one of the most interesting
among such materials thanks to its large contrast in conduc-
tivity between its two states and the possibility of inducing
the phase transition by electrical excitation [10].
Compared to MEMS switches, VO2 switches offer clear

advantages such as an easier integration in microelectronic
technological processes, smaller footprint and a three order
of magnitude faster switching time [11]. A switched line
phase shifter with thermally actuated VO2 switches has been
previously demonstrated in microstrip technology [12].
In our previous work [13] we presented for the first time

a shunt capacitive switch reconfigurable by means of electri-
cally triggered VO2 phase transition to build true-time delay
phase shifters by periodically loading a coplanar waveg-
uide (CPW) with capacitive switches (Fig. 1). We validated
the concept by fabricating, designing and characterizing an
819 µm long unit. In this work, we show improved results
for thermally actuated cells by demonstrating up to 40◦ phase
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FIGURE 1. Optical image of the CPW phase shifter showing the cascaded
VO2-based capacitive shunt switches designed to achieve 3-bits phase
states.

shift per dB loss at 7 GHz in a 6-cell phase shifter. We fur-
thermore present two possible scheme to bias cascaded cells
to obtain a multi-state tunable phase shift.

II. RECONFIGURABLE CAPACITIVE SHUNT SWITCH
The reconfigurable capacitive shunt switch consists of two
fixed MIM capacitors in series, CS and CG, where the
first can be short-circuited by actuating a VO2 two-terminal
switch (Fig. 2). Below the phase-transition temperature and
when no bias is applied, the VO2 is in its insulating state
so that the switch exhibits a high resistance level and can
be considered as an open circuit. The two capacitors are
then electrically in series, offering an equivalent capacitance
CTOT = CG · CS/(CG + CS). Whenever a bias larger than
the switch actuation voltage is applied, the VO2 film phase
changes to its conductive state and the switch exhibits a low
resistance value. In this configuration, the CS capacitor is
short-circuited by the switch and the equivalent capacitance
between the signal and the ground line will be simply CG.
In this way the VO2 switch allows reconfiguring the loading
capacitance between CG and CTOT.
The VO2 switch can be electrically actuated by means of

a bias line decoupled from the RF signal using a resistor
fabricated with a 25 nm-thick Chromium (Cr) film. The
switch resistance is in the high state until a critical DC
power is achieved, which triggers a steep insulator to metal
transition (Fig. 3). In order not to affect the RF performance,
the switch dimensions are chosen to obtain a high value of
resistance in the off-state (> 1 k�) and low value in the
on-state (∼1 �), while keeping a reasonably low actuation
voltage. Thus, given a 200 nm VO2 thickness, the switch
was designed with a width of 30 µm and a length of 1 µm.

III. FABRICATION
The phase shifter was fabricated using standard microelec-
tronics processes starting with a high-resistivity 525 µm
thick silicon substrate passivated with 500 nm LPCVD-
deposited SiO2 (Fig. 4). The VO2 film was prepared
by reactive magnetron sputtering deposition starting from
a Vanadium target, as described in [4]. After the deposition,

a resistivity ratio between insulating and conducting phase
higher than 3 decades was measured with Van der Pauw
measurements performed at different temperatures (Fig. 5).
The film was then patterned by using photolithography and
wet etching. The bias resistors were realized by lift-off of
a 25 nm thick Cr film. A 200 nm thick Al film was subse-
quently deposited and patterned with lift-off to act as bottom
metal. A 200 nm thick SiO2 film was sputtered as insulat-
ing layer and as a dielectric for MIM capacitors. Vias were
opened by photolithography and dry etching. A final 800 nm
thick Al top metal layer was deposited to create the CPW
and the contacts on the bottom metal bias lines.

IV. UNIT CELL PERFORMANCE
The CPW was designed with a signal line width (w) of
100 µm and a ground plane spacing (g) of 150 µm to obtain
an unloaded characteristic impedance of 65 �. The design
of the unit cell for the phase shifter was done following the
method described in [14] in order to maximize the phase
shift for the minimum insertion loss (IL). Starting from the
chosen values of characteristic impedances in the ON and
OFF state, respectively ZON = 42 � and ZOFF = 58 �,
and having chosen the Bragg frequency to be three times
the frequency of design for the phase shifter, for a design
frequency of 10 GHz the required unit cell length (CL) was
calculated to be 819 µm. The computed capacitances were
CON = 143 fF and COFF = 26 fF resulting in a capacitance
ratio of 5.5. Thus the MIM capacitances for the reconfig-
urable capacitive shunt switch are calculated as CS = 31.7 fF
and CG = 143 fF. A schematic of the mask of the single
cell is shown in Fig. 6.
The device was characterized by using an Anritsu

VectorStar MS4647B Vector Network Analyser to mea-
sure S-parameters, a HP 4155B Semiconductor Parameter
Analyser to provide the bias to operate the VO2 switches
and a Cascade Summit prober with a thermo-chuck to control
the substrate temperature.
Fig. 7 shows a comparison between Ansys HFSS sim-

ulations of S-parameters and measurements with no bias
applied at 20◦C (OFF state) and 100◦C (ON state), well
above the phase transition temperature where the VO2 film
becomes fully conductive (see Fig. 5). When the switches are
turned off (20 ◦C and no bias) the insertion loss is 0.43 dB
at 10 GHz, while in the ON state the insertion losses are
increased both in simulation and measurements. The dis-
crepancy between measured and simulated values can be
attributed to resistive losses along the line and in the VO2
switch for the ON state, besides extra reflection due to par-
asitic capacitances caused by biasing lines not included in
the simulations.
The devices were measured for different bias values above

the actuation voltage of the VO2 switches (Fig. 8). While
the insertion loss seems to increase by increasing the bias,
the loss at the design frequency is improved when the switch
is at its lowest possible resistance value, obtained measur-
ing at 100 ◦C. This behavior can be explained looking at
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FIGURE 2. a) Schematic of the reconfigurable capacitive shunt switch. A via connects the signal top metal line with a metal line underneath in contact
with a VO2 switch. Four MIM capacitors (CS/4), two per side, lay between the signal line and the underneath metal, whilst other two MIM capacitors
(CG/2), one per side, lay between the ground planes and the underneath metal. b) Cross-section beween signal and ground plane highlighting the
via between the two metals, the VO2 switch and the capacitance CG/2. c) Equivalent circuit of the capacitive divider, with the VO2 switch modeled as
a variable resistor RVO2. d) Preferential path seen by the signal when the VO2 is in insulating phase, with an equivalent capacitance given by the series of
CS and CG. e) Equivalent circuit for the insulating phase, where the switch can be modeled as an open switch (RVO2 > 1 k�). f) When the VO2 film is in its
conducting phase the capacitors CS/4 are short-circuited by the switch (RVO2 ∼ 1�) and g) the equivalent capacitance seen between signal and ground
equals CG.

FIGURE 3. Current versus voltage electrical characteristic and extracted
resistance of the VO2 switch with an integrated serpentine resistor of
1.2 k� in series. The arrows indicates the insulator-metal transition and
metal insulator transition.

the losses not due to reflection. While in the OFF state the
insertion losses and no-reflection losses are almost coinci-
dent, indicating a good match, in the ON state the behavior
depends on the bias. At 20 V the IL and total losses are
similar, while at 30 V and 40 V a considerable part of the
IL is due to the mismatch. At 100 ◦C the IL are lower than
at the considered bias points and the no-reflection losses
are minimized, showing better accordance with the FEM
simulations.
The measured phase shift with respect to the OFF state

increases with the applied bias but tends to saturate around
5 GHz for 40 V bias, while at 100 ◦C it is linear over
the considered frequency band (Fig. 9). The phase shift per
dB loss shows as well that the best trade-off is obtained for

 a. VO2 patterning d. SiO2 sputtering

e. VIAS opening

VO2 200nm

HR Silicon Substrate

Al 200nm

Cr 25nm

Al 800nm

SiO2 300nm

SiO2 500nm

FIGURE 4. Fabrication process of the capacitive shunt switch with VO2
switches and integrated bias resistors.

Insulator Metal

V
O

FIGURE 5. Dependence of resistivity on temperature for the deposited
VO2 film.

higher bias and indicates that best performances are obtained
at 100 ◦C, where a maximum of 16◦ per dB loss is obtained
slightly below the design frequency.
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FIGURE 6. Schematic of the unit cell with indicated dimensions
w = 100 µm, g = 150 µm and CL = 819 µm.
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FIGURE 7. (a) Insertion Loss and (b) Return Loss of the measured unit cell
at 20 ◦C and 100 ◦C. Circles correspond to ANSYS HFSS simulations. The
simulations have been performed using the VO2 resistivity measured at
20 ◦C for the OFF state and 100 ◦C for the ON state.

1 2 3 4 5 6 7 8 9 10
Frequency (GHz)

 2

 1.5

 1

 0.5

0

In
se

rt
io

n 
Lo

ss
 (d

B)
 

S21 

10 log(|S21|2+|S22|2)

20 V
0 V

30 V
40 V
100 °C

FIGURE 8. Insertion loss (continuous lines) and no-reflection losses
(dotted lines) versus frequency, measured at 20 ◦C substrate temperature
for 0 V, 20 V, 30 V and 40 V bias voltage and at 100 ◦C with no applied bias.

The limited performance of the device when electrically
actuated suggests that for the applied bias voltages, the
conduction channel in the VO2 switch does not extend to
the entire film width [15] and the resulting resistance is still
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FIGURE 9. (a) Phase shift and (b) phase shift per dB loss extracted from
S-parameter measurements at 20 ◦C for 0 V, 20 V, 30 V and 40 V bias
voltage at and at 100 ◦C with no applied bias.
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FIGURE 10. Equivalent characteristic impedance of the unit cell, extracted
from measurements at room temperature and at 100 ◦C (solid lines), and
from ANSYS HFSS simulations (circles ).

not low enough to grant a full capacitance reconfiguration
and to prevent significant RF losses. We can assume that
by applying a larger bias voltage, thus by injecting a larger
current, the performance will converge to the one measured
at 100 ◦C.
The equivalent characteristic impedance of the loaded line

was calculated using the method proposed in [16] and it is
shown in Fig. 10. In the OFF state the extracted character-
istic impedance is about 55 � at 10 GHz, not far from the
simulated value of 56 �. In the ON state at 100 ◦C the
extracted characteristic impedance is lower than the simu-
lated one, in accordance with the larger measured phase shift
and larger insertion loss due to reflection.

V. PHASE SHIFTER
In order to improve the performance, new devices were fab-
ricated starting from a 300 nm thick VO2 film deposited
by Pulsed Laser Deposition (Solmates SMP 800) in oxy-
gen atmosphere of a V2O5 target. The bottom metal was
realized with Ti/Al respectively 20 nm and 800 nm thick,
while the top-metal was made of a 2 µm thick Al film.
The thicker VO2 and metal layers provide lower resistive
loss compared to the previously used process. The design of
the cell was slightly varied and a tapered ground plane was
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FIGURE 11. Schematic of the improved phase-shifter unit cell with
tapered ground plane in proximity of the biasing line.
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FIGURE 12. Measured (a) insertion loss and (b) return loss for 1,2 and
6-stage phase shifter with all stages in off-state (measured at 20 ◦C,
dashed line) and all stages in on-state (measured at 100 ◦C, solid line).

designed to minimize the parasitic capacitance between the
biasing line and the ground plane itself. The cell length and
capacitors dimension were kept the same. The VO2 switch
width was increased to 70 µm, while the length was kept
1 µm. A schematic of the mask of the new single cell is
shown in Fig. 11.
In Fig. 12 we report the S-parameter in OFF and ON states

(measured with no applied bias at temperatures of 20◦C
and 100◦C, respectively) of three different phase shifters
composed by one, two and six cells. Fig. 13 shows that by
cascading multiple stages a larger phase shift can be obtained
and an improved phase shift per dB loss of 40◦ is achieved
since reflection losses do not sum up from stage to stage.

VI. MULTISTAGE ACTUATION
To obtain the desired phase shift we can cascade multi-
ple unit cell in a CPW. We propose two different biasing
schemes to control each cell (Fig. 14). In the first scheme,
the actuation voltage of the VO2 switch of each stage is set
to a specific value by engineering the corresponding biasing
resistor value. The actuation is then performed using the RF
signal line as bias line and a common DC ground line for all
the stages. When a certain DC bias is applied to the signal
line the obtained phase shift will be deriving from the stages
with actuation threshold below the applied bias. Increasing
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FIGURE 13. (a) Phase shift and (b) phase shift per dB loss for 1,2 and
6-stage shifter between the two extreme states: all stages in off-state at
20 ◦C and all in on-state at 100 ◦C.
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FIGURE 14. a) Biasing schemes with single bias line but different resistor
values for each stage to modify the threshold voltages of the VO2 switches
and (b) scheme with separate biasing “bit” line for each stage.

the bias, other stages will be actuated and the phase shift
will increase. In the second scheme, separate bias “bit” lines
are created for each stage or set of stages and the RF signal
line is used as a DC ground: when a bit line is set to a volt-
age higher than the switch threshold voltage, bit to “1”, the
corresponding stage will turn ON and provide a phase shift.
Using this latter “multi-bit” scheme we can make predic-

tions on a phase shifter desing by matematically cascading
the S-parameter of the unit cell shown in Fig. 12. Considering
a phase shifter made out of three of this cell, each one con-
trollable with a separate bit line, we show in Fig. 15 the
calculated losses for the phase shifter in four configura-
tion, all stages OFF (000), first stage ON (100), first two
stages ON (110), all stages ON (111). Fig. 16 report the
obtained phase shift with respect to the all OFF (000) state.
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FIGURE 15. Predicted (a) insertion loss and (b) return loss for a 3-stage
phase shifter biased with three bit lines in four different configuration,
where bit “0” stands for OFF state of the cell and bit “1” stands for ON
state.
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FIGURE 16. Predicted (a) Phase shift and (b) phase shift per dB loss of
a 3-stage phase shifter biased with three bit lines for the indicated bits
states compared to the all OFF state (000).

As expected, when turning ON more stages the phase shift
increases and the phase shift per dB loss is maximized.

VII. CONCLUSION
We reported a VO2-based capacitive shunt switch as funda-
mental building block that can be cascaded to obtain TTD
phase shifters. The working principles as well as the fabrica-
tion method have been presented and validated by simulating,
designing, fabricating and characterizing a unit cell. The
extracted considerable insertion losses are largely due to
the impedance mismatch and could be easily reduced by
improving the MIM capacitors design. The measurements at
different bias voltage and at high temperature have revealed
the need of a better optimization of the VO2 switch in order
to have lower resistance values in the electrically actuated
ON state so to match the good performance obtained at high
temperatures.
A 6-stage phase shifter was fabricated and measured.

A 40◦ phase shift per dB loss was achieved around
7 GHz, showing that the VO2-based reconfigurable capaci-
tive switches can offer a unique opportunity to build ultrafast

and reliable phase shifters. Moreover, we presented two pos-
sible biasing strategies for multistage actuations to achieve
a tunable phase shift by controlling it with either several bits
line or with a single analog one. VO2 based phase shifters
are realized with an easier and cheaper fabrication process
with respect the RF MEMS counterpart and have 100 to
1000 time faster switching time, which makes them inter-
esting for fast airborne applications. Actuation voltages can
be potentially lower than RF MEMS ones while the insertion
loss is expected to decrease by further improving the VO2
material properties and design implementation.
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