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Abstract

Sparse recovery is a powerful tool that plays a central role in many applications, including
source estimation in radio astronomy, direction of arrival estimation in acoustics or radar, super-
resolution microscopy, and X-ray crystallography. Conventional approaches usually resort to
discretization, where the sparse signals are estimated on a pre-defined grid. However, the sparse
signals do not line up conveniently on any grid in reality. While the discrete setup usually leads
to a simple optimization problem that can be solved with standard tools, e.g., �1-based sparse
recovery, there are two noticeable drawbacks as a consequence of discretization: (i) Because of the
model mismatch, the effective noise level in the measurements is increased; (ii) The minimum
resolution a discrete algorithm can reach is limited by the artificially imposed grid step-size,
which may not be sufficient in an imaging system, e.g., microscopy. Because of the limitations of
the conventional grid-based methods, it is essential to develop a technique that estimates sparse
signals in the continuous-domain—in essence looking beyond pixels.

The aims of this thesis are (i) to further develop a continuous-domain sparse recovery frame-
work based on finite rate of innovation (FRI) sampling on both theoretical and algorithmic as-
pects; (ii) adapt the proposed generic sparse recovery technique to several applications, namely
radio astronomy point source estimation, direction of arrival estimation in acoustics, and single
image up-sampling; (iii) show that the continuous-domain sparse recovery approach can surpass
the instrument resolution limit and achieve super-resolution.

We propose a continuous-domain sparse recovery technique by generalizing the FRI sam-
pling framework to cases with non-uniform measurements. We achieve this by identifying a set
of unknown uniform sinusoidal samples (which are related to the sparse signal parameters to
be estimated) and the linear transformation that links the uniform samples of sinusoids to the
measurements. It is shown that the continuous-domain sparsity constraint can be equivalently
enforced with a discrete convolution equation of these sinusoidal samples. Then, the sparse sig-
nal is reconstructed by minimizing the fitting error between the given and the re-synthesized
measurements (based on the estimated sparse signal parameters) subject to the sparsity con-
straint. Further, we develop a multi-dimensional sampling framework for Diracs in two or higher
dimensions with linear sample complexity. This is a significant improvement over previous meth-
ods, which have a complexity that increases exponentially with space dimension. An efficient
algorithm has been proposed to find a valid solution to the continuous-domain sparse recovery
problem such that the reconstruction (i) satisfies the sparsity constraint; and (ii) fits the given
measurements (up to the noise level).

We validate the flexibility and robustness of the FRI-based continuous-domain sparse recovery
in both simulations and experiments with real data. Specifically, we show that the proposed
method surpasses the diffraction limit of radio telescopes, which is inversely proportional to the
maximum baseline, with both realistic simulation and real data from the LOFAR radio telescope.
In addition, FRI-based sparse reconstruction requires fewer measurements and smaller baselines
to reach a similar reconstruction quality compared with conventional methods. Next, we apply
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vi Abstract

the proposed approach to direction of arrival estimation in acoustics. We show that accurate off-
grid source locations can be reliably estimated from microphone measurements with arbitrary
array geometries in both 2D and 3D setups. Finally, we demonstrate the effectiveness of the
continuous-domain sparsity constraint in regularizing an otherwise ill-posed inverse problem,
namely single-image super-resolution. By incorporating image edge models, which are estimated
from the given low-resolution image, the up-sampled image retains sharp edges and is free from
ringing artifacts.

Keywords: Finite rate of innovation (FRI), approximation, sparse reconstruction, irregular
sampling, continuous-domain sparsity, multi-dimension, radio interferometry, point source recon-
struction, direction of arrival, edge modeling, curve annihilation, image upsampling, alternating
direction method of multipliers (ADMM).



Résumé

La reconstruction parcimonieuse (anglais: sparse recovery) est un outil puissant jouant un rôle
central dans plusieurs applications comme l’estimation de sources ponctuelles en radio-astronomie,
l’estimation de la direction d’arrivée en acoustique ou en radar, la microscopie à super-résolution,
ainsi que la cristallographie par rayons X. Les techniques conventionelles consistent généralement
par une discrétisation du problème pour reconstruire la solution parcimonieuse sur une grille
prédefinie. Ce dernier prend généralement la forme d’un problème d’optimisation simple qui
peut être résolu par des méthodes standards telle la minimisation en norme �1. Néanmoins, la
formulation discrète n’est pas sans conséquences: D’une part, la discrétisation du problème induit
artificiellement une élévation du niveau du bruit. D’autre part, la reconstruction parcimonieuse
est limitée à la résolution de la grille, alors qu’en pratique de tels signaux ne tombent jamais
exactement sur ces-derniers. Pour des applications en microscopie par example, cette résolution
artificielle est insuffisante. En vue de ces limitations, il est essentiel d’étudier des procédures qui
retrouvent la solution parcimonieuse à l’échelle continue—pour voir au-delà des pixels.

Les objectifs de cette thèse sont (i) de poursuivre le développement de la reconstruction
parcimonieuse à l’échelle continue, basée sur l’échantillonage par taux d’innovation fini (anglais:
FRI) du point de vue théorique et algorithmique ; (ii) d’adapter ce modèle générique de recons-
truction parcimonieuse à divers applications, notamment l’estimation de sources ponctuelles en
radio-astronomie, l’estimation de la direction d’arrivée en acoustique, et du suréchantillonage par
image unique ; (iii) démontrer que la reconstruction parcimonieuse à l’échelle continue permet de
surpasser les limites de l’instrument par super-résolution.

Nous proposons une technique de reconstruction parcimonieuse à l’échelle continue en géné-
ralisant le cadre d’échantillonage par taux d’innovation fini au cas où les mesures sont non-
uniformes. Nous réalisons cela en identifiant un ensemble de mesures de forme sinusöıdale qui
sont liées aux mesures initiales, ainsi que la transformation linéaire qui les lient à ces derniers.
Nous montrons que la contrainte de parcimonie à l’échelle continue peut être représentée par une
convolution discrète des mesures de forme sinusöıdale. Ensuite, le signal parcimonieux est estimé
en minimisant l’erreur entre les mesures réelles et celles induites par les paramètres du signal
parcimonieux, en respectant la contrainte de parcimonie. De plus, nous étendons cette procédure
à l’échantillonage multi-dimensionelle de Diracs ayant une compléxité qui croit linéairement avec
le nombre d’échantillons. Cela donne une amélioration significative par rapport aux méthodes
ultérieures dont la complexité augmente de manière exponentielle avec le nombre de dimensions.
Un algorithme efficace est proposé pour trouver une solution au problème de reconstruction
parcimonieuse de signaux à l’échelle continue de sorte que (i) la solution respecte la condition de
parcimonie et (ii) coincide avec les mesures (à hauteur du niveau du bruit).

Nous vérifions la flexibilité et robustesse de notre méthode de reconstruction parcimonieuse
à l’échelle continue en simulation et sur de vraies données. En particulier nous montrons, en
simulation et sur de vraies données issues du télescope LOFAR, que notre méthode permet de
dépasser la limite de diffraction des radio-télescopes, ce dernier étant inversement proportionnelle
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viii Résumé

à la distance maximale séparant les antennes. De plus, notre méthode de reconstruction parcimo-
nieuse peut se contenter de moins de mesures et d’un instrument de plus petit taille pour obtenir
des estimées equivalentes aux méthodes conventionelles. Ensuite, nous appliquons notre méthode
au problème d’estimation de la direction d’arrivée en acoustique. Nous résultats montrent que la
direction de sources non-alignées avec une grille discrète peuvent être déterminées précisément,
sans poser de contraintes sur la géométrie des microphones en 2D ou 3D. Finalement, la contrainte
de parcimonie à l’échelle continue peut être utilisée comme methode de régularisation pour le
problème de super-résolution par image unique. En formant un model des bordures d’une image
à partir d’une version à faible résolution de cette derniere, cette information peut etre utilisée
dans l’image à haute résolution pour éliminer les effets de bords.

Mots-Clés: Taux d’innovation fini, approximation, reconstruction parcimonieuse, échan-
tillonage non-uniforme, parcimonie à l’échelle continue, signaux multi-dimensionnels, interféro-
métrie par ondes radio, estimation de sources ponctuelles, modélisation de bords, suréchantillon-
age d’images.
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Chapter 1

Introduction

路漫漫其修远兮，吾将上下而求索。

For on and on the road stretches far, where I’ll

search high and low.

离骚 Li Sao

屈原 QU, Yuan

1.1 Motivation

Sampling plays a pivotal role in establishing the connection between continuous-domain signals

and the available discrete measurements. An essential question when dealing with discrete sam-

ples is: Are these samples a faithful representation of the original continuous-domain signal that

we start with? For bandlimited signals, the answer is given by the classic Shannon sampling

theorem [114, 134]. But not all signals are bandlimited. In [3, 15, 128], a generalization of

Shannon sampling is proposed for signals, which live in shift-invariant spaces but may not be

bandlimited. Finite rate of innovation sampling (FRI) [14, 133] extends the classic sampling

framework to signals that are neither bandlimited nor belong to a shift-invariant space as is

the case in many practical problems. The focus of this thesis is the further development of

FRI sampling on theoretical, algorithmic and applicative aspects. We would like to investigate

whether a continuous-domain sparse recovery framework, like FRI, may provide an alternative

which surpasses the limitations due to the discretization in conventional approaches. Before

diving into the theory and algorithms, let us first give a brief description of a few applications

as a motivation.

1



2 Introduction

· · ·
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lay
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Fourier transform Î(ω)

baseline

(a) schematic of a radio
interferometer

(b) uv coverage of the
LOFAR radio telescope

(c) CLEAN estimate of the sky
image on a grid

Figure 1.1: Source estimation with a radio interferometer. Cross-correlations of the received
signals at different antennas corresponds to irregular sampling in the Fourier domain (a.k.a. the
uv-domain in radio astronomy). The challenge is to accurately estimate closely located sources
that are otherwise indistinguishable with a conventional technique, e.g., CLEAN.

1.1.1 Source estimation in radio astronomy

Source estimation in radio astronomy aims at reconstructing celestial sources from the electro-

magnetic waves collected with antenna arrays. For example, the Low Frequency Array (LOFAR)

consists of around 20 000 dipole antennas, which are located primarily in Netherlands in addi-

tion to a few remote sites across Europe. One commonly used source model in radioastronomy

is the point source model [66], which represents the sky image as a weighted sum of Diracs. In

a far-field context, all sources are assumed to be located on a hypothetical celestial sphere (as

the depth information is lost in the far-field setting). Consequently, the electromagnetic waves

arrive as parallel wavefronts at the antenna array. The cross-correlations of the received signals

at two antennas are determined by the separation of the antenna pair (i.e., the baseline) as well

as the point source locations. In narrow field-of-view cases, the source estimation on the sphere

can be approximated by projecting the sky image in the neighborhood of the telescope focus to

the tangential plane. With such an approximation, it is shown that the cross-correlations sam-

ple the Fourier transform of the two-dimensional sky image projection at irregular frequencies

(see [126], Chapter 3), which are specified by the radio telescope antenna layout. To summarize,

the far-field point source reconstruction within a narrow field-of-view amounts to estimating 2D

Dirac locations from irregularly sampled Fourier transform of the sky image.

Conventional methods, like CLEAN (and its many variants), reconstruct the sky on a discrete

grid (see e.g., Figure 1.1(c)). An additional blob detection algorithm needs to be applied in

order to determine point source locations (and intensities). The blob size in the CLEAN image

determines the resolution power and is typically related to the maximum baselines of the radio

telescope. For instance, with the configuration in Figure 1.1, the telescope angular resolution is

3′23.1′′. The challenge is to estimate point sources, which may be closely located within a small

portion of the sky that is beyond the instrument resolution.

Alternatively, one may estimate the point sources directly in the continuous-domain from

the cross-correlations of the antenna signals without first reconstructing an intermediate sky

image on a grid. Thanks to the continuous-domain formulation, we may surpass the instrument

resolution limit and estimate point sources without the grid imposition.
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(a) experimental setup in an anechoic chamber (b) MUSIC reconstruction

Figure 1.2: Direction of arrival estimation of acoustic sources from actual recordings in an ane-
choic chamber (estimated SNR: 27.26 dB. The noise level is estimated from the silence recording).
(a) The Pyramic array used to collect sound waves emitted by loudspeakers located at different
locations. (b) The least square estimate of the sound field overlaid with the MUSIC reconstruc-
tion. Even with a dense grid (20 000 approximately equidistant grid points on the sphere [71]
with median inter-point distance of 1.53◦), MUSIC fails to resolve one of the two closely located
sources (great circle distance: 12.76◦).

1.1.2 Direction of arrival estimation with microphone arrays

The same principle, which was used in radio astronomy point source reconstruction, applies

to the direction of arrival (DOA) estimation in acoustics. The goal is to locate the direction

of arrival of sound sources in 3D with microphone arrays. In the far-field context, this boils

down to identifying the azimuths and latitudes of the acoustic sources. However, unlike the

radio astronomy problem above, which typically considers a small portion of the sky around the

telescope focus, the spherical reconstruction can no longer be approximated within a tangential

plane for the DOA problem—sources can be located in a much wider range on the sphere.

The cross-correlations of the received signals at different microphones are related to the Fourier

domain samples at non-uniform frequencies, where the Fourier expansion basis are specified by

the spherical harmonics (see e.g., [42, 45, 96]).

Figure 1.2(a) shows a typical setup of the acoustic DOA problem: A tetrahedron-shaped

microphone array (the “Pyramic array”) is used to record speech signals from loudspeakers that

are located at three different locations in an anechoic chamber. Each side of the tetrahedron

consists of 8 MEMS microphones [7]. Conventional methods, e.g., MUSIC [111], then rely on grid-

search to localize sources. Similarly to the radio astronomy cases, discretized methods may not

always be sufficient to resolve closely located sources even with very dense grid. In Figure 1.2(b),

we show such an example of DOA estimation, where two of the three loudspeakers are closely

located (great-circle distance: 12.76◦). In the least square estimate of the sound field, both

sources are contained within one bright spot. MUSIC fails to resolve one of the two closely located

sources even with a dense grid, which consists of 20 000 approximately equidistant grid points

on the sphere [71] with median inter-point distance of 1.53◦. This motivated us to investigate

whether a continuous-domain sparse recovery framework, like FRI, is able to accurately resolve

closely located sources.
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(a) low-resolution image (b) thin-plate spline
interpolation

(c) consistent up-sampling
with edge models

Figure 1.3: Super-resolution from a single image (i.e., image up-sampling). The challenge is
to estimate an image with a higher solution that is consistent with the given measurements and
retains sharp edges.

1.1.3 Image up-sampling

In addition to the exact enforcement of the sparsity constraint as in the previous two examples,

promoting signal sparsity may be used as a regularizer in otherwise severely ill-conditioned inverse

problems. One such example is single image “super-resolution” (i.e., image up-sampling). A

single discrete image is given and the goal is to estimate a higher resolution one that is consistent

with the given measurements. There are infinitely many possible high resolution images that

agree with the given low-resolution measurements. One way to better condition the ill-posed

problem is to resort to regularization. For instance, one may minimize the �2 norm of the

up-sampled image subject to the consistency constraint (which requires that the samples of

the high-resolution image match that of the low-resolution one). The solution to the constrained

optimization is given by thin-plate spline interpolation. While the method is simple, the resulting

high-resolution image suffers from blurred edges and ringing artifacts (see e.g., Figure 1.3(b)).

Note that image edges (i.e., the sparse signal to be reconstructed) are relatively localized: if

one can estimate an edge model first and regularize the restoration with the model, then the

up-sampled image may retain sharper edges (Figure 1.3(c)).

1.2 Methods

In this section, we review the FRI-based sparse recovery framework, which is at the core of this

thesis. First, we highlight the methodology that FRI adopts: a sparse signal is recovered by find-

ing a complementary mask function that “kills” or annihilates the sparse signal (Section 1.2.1).

Then, we summarize a generic algorithm developed in Chapter 2 and Chapter 3 that recovers

FRI signals robustly (Section 1.2.2).

1.2.1 Sensing sparsity through annihilation

Finite rate of innovation (FRI) sampling is a framework to reconstruct continuous-domain sparse

signals, which have finite degrees of freedom per unit of time or space [133]. A typical FRI signal
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Figure 1.4: Sensing sparsity through annihilation: instead of recovering the sparse signal x(t)
directly, the FRI-based approach estimates a smooth function μ(t), which vanishes at the non-
zero locations of the sparse signal. The continuous domain constraint μ(t)x(t) = 0, can be
equivalently enforced with a discrete convolution equation in Fourier domain: cm ∗ x̂m = 0,
where cm is known as the “annihilating filter” (see text in Section 1.2.1 for details).

is a τ -periodic stream of Diracs:

x(t) =
∑
k′∈Z

K∑
k=1

αkδ(t − tk − k′τ). (1.1)

The goal is to estimate the Dirac locations tk and amplitudes αk from the measurements of the

sparse signal x(t), e.g., its ideally low-pass filtered samples. Instead of directly estimating where

the sparse signal is different from zero, the FRI-based approach aims at reconstructing a smooth

function μ(t) (typically a polynomial), which vanishes at the non-zero locations of the sparse

signal (see Figure 1.4). From this perspective, μ(t) serves as a mask that annihilates the sparse

signal x(t):

μ(t)x(t) = 0. (1.2)

The zero-crossings of the function μ(t) then give the Dirac locations. Once the Dirac locations

have been reconstructed, estimating the amplitudes of the Diracs is a linear problem, namely a

least square minimization.

In general, it is challenging to enforce the continuous domain annihilation constraint (1.2)

directly. However, many FRI signals are or can be transformed into a weighted sum of sinusoids,

whose frequencies are related to the sparse signal parameters. Thanks to a result known for

more than two centuries [103], the continuous domain annihilation constraint can equivalently

be enforced with a discrete convolution equation: there exists a finite length discrete filter such

that its convolution with the uniform sinusoidal samples are zero (hence the filter is also known

as “annihilating filter”). In fact, the polynomial, whose coefficients are specified by the discrete

filter (e.g., μ(t) in (1.4)), is the mask function that annihilates the sparse signal.

More concretely, take the periodic stream of Diracs (1.1) as an example. Its Fourier series
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coefficients are

x̂m =
1

τ

K∑
k=1

αke
−j 2πm

τ tk ,

which are annihilated (i.e., cm ∗ x̂m = 0) by a (K + 1)-tap filter [c0, · · · , cK+1] with z-transform

C(z) =

K+1∑
k=0

ckz
−k = c0

K∏
k=1

(
1 − e−j 2π

τ tkz−1
)
. (1.3)

Note that C(z) is a polynomial of degree K+1 and the mask function μ(t) = C
(
e−j 2π

τ t
)
vanishes

precisely at the Dirac location μ(tk) = 0 for k = 1, · · · ,K:

μ(t)x(t)
F←→ cm ∗ x̂m. (1.4)

The ideally low-pass filtered samples of the sparse signal x(t) have a one-to-one correspondence

with the Fourier series coefficients x̂m. Consequently, the annihilating filter coefficients (or

equivalently the mask function) are reconstructed by enforcing a discrete convolution equation.

The Dirac locations are then obtained by taking the roots of the polynomial (1.3). It has been

shown that a stream of K Dirac deltas can be perfectly recovered from at least 2K + 1 ideal

(noise-free) samples [133]. We illustrate the annihilating filter based sparse recovery in Figure 1.4.

1.2.2 A generic FRI reconstruction algorithm

In Chapter 2, a generic FRI reconstruction problem is formulated as a constrained optimization.

The fitting error between the re-synthesized measurements (based on the estimated sparse signal

model) and the given measurements is minimized subject to the annihilation constraint:

min
c∈C,b

‖a − Gb‖22
subject to c ∗ b = 0.

(1.5)

Therefore, the goal is to approximate the measurements optimally (in the least square sense)

given that the signal follows the sparsity model. Here

• a is the vector of the sparse signal measurements to be reconstructed, e.g., the low-pass

filtered samples, or the cross-correlations of the received signals with sensor arrays.

• b is the vector of unknown uniform sinusoidal samples, e.g., the Fourier series coefficients

of (1.1); or the Fourier transform of the sky image on a uniform grid as in radio astronomy

source estimation. The choice of b is problem-dependent. By imposing the discrete con-

volution equation in (1.5), the estimated signal is guaranteed to follow the sparse signal

model.

• G is the exact or approximate linear mapping from the uniform sinusoidal samples b to

the measurements a, and typically has full column rank. In fact, an inexact mapping is not

detrimental to the final reconstruction quality [96, 97] although, in general, we should not

expect to achieve perfect reconstruction with noiseless measurements, when an approximate

linear mapping is used. However, see Chapter 4 (Section 4.4.4) for a strategy to obtain the

exact solution by refining the linear mapping based on the previous reconstructions.



1.3 Thesis outline and main contributions 7

• c is the vector of annihilating filter coefficients. The feasible set C specifies a proper

normalization in order to avoid a trivial solution c ≡ 0. One choice of the feasible set

C, which leads to robust performance (see Chapter 2), is C =
{
c
∣∣cH0 c = 1

}
, where c0 is a

random initialization of the annihilating filter.

Because of the annihilation constraint, (1.5) is non-convex with respect to the (b, c)-pair. An

iterative strategy finds a valid solution, which (i) satisfies the annihilation constraint; and (ii)

has a fitting error ‖a − Gb‖22 within the noise level. This strategy exploits the “bi-linearity” of

the annihilation constraint: for a fixed c (respectively b), the annihilation constraint is linear

in terms of b (respectively c). Hence, with a fixed c, we have a closed-form solution b as a

function of c. Then, the original bi-variate optimization (1.5) reduces to a minimization with

respect to c alone. The simplified formulation inspired the iterative algorithms in Chapter 2

and Chapter 3, which can be efficiently implemented: At each iteration, the updates of b and c

amount to solving two linear systems of equations. Please refer to Chapter 2 and Chapter 3 for

detailed discussions.

Any sparse reconstruction problem can be solved with the FRI-based continuous sparse re-

covery method as soon as two key elements are identified: (i) the (unknown) uniform sinusoidal

samples; and (ii) the linear mapping from these sinusoidal samples to the given measurements

of the sparse signal. Take the point source reconstruction in radio astronomy (Section 1.1.1) as

an example. One possible choice of the uniform samples of sinusoids could be the Fourier trans-

form of the (continuous) sky image on a uniform grid. These uniform samples are related to the

cross-correlations of the received antenna signals (i.e., the irregularly sampled Fourier transform

of the sky image) via interpolation (see details in Chapter 4).

1.3 Thesis outline and main contributions

Motivated by several important applications, our focus in this thesis is to generalize the contin-

uous-domain sparse recovery framework based on finite rate of innovation (FRI) sampling. We

extend FRI sampling to cases with non-uniform samples, thus making the technique applicable

to many practical problems (see Chapter 4 and Chapter 5 for concrete examples). Additionally,

we propose an efficient multi-dimensional FRI sampling scheme, which has a linear sample

complexity in two or higher dimensions. This is a significant improvement over previous methods,

which required a minimum number of samples that scales exponentially in the space dimension.

The thesis consists of two integral parts: in the first part (Chapter 2 and Chapter 3) we

develop the theory and algorithms for continuous-domain sparse recovery; in the second part

(Chapter 4 to Chapter 6), we adapt the generic tool developed in the first part to three practical

problems, namely point source reconstruction in radio astronomy, direction of arrival estimation

problem in acoustics, and image up-sampling. We summarize each chapter and its respective

contributions as follows.

Chapter 2 — Continuous Sparse Recovery with Finite Rate of Innovation Sampling
In this chapter, we study the generic continuous-domain sparse recovery problem. This chapter

serves as the algorithmic foundation for both the further development of an efficient multidi-

mensional sparse recovery approach in the next chapter as well as the subsequent application

chapters.

The earliest occurrence of the classic continuous-domain sparse recovery is probably the

estimation of sinusoids in time series using Prony’s method [103]. This is at the root of high
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resolution spectral estimation (see [118] Chapter 4). The estimation of continuous-time sparse

signals from discrete-time samples is the goal of the sampling theory for finite rate of innovation

(FRI) signals [133]. Both spectral estimation and FRI sampling usually assume uniform sampling.

However, not all measurements are obtained uniformly, as exemplified by a concrete radioas-

tronomy problem we set out to solve (see Chapter 4). Thus, we develop the theory and algorithms

to reconstruct sparse signals, typically sum of sinusoids, from non-uniform samples. We achieve

this by identifying a linear transformation that relates the unknown uniform samples of sinu-

soids to the given measurements. These uniform samples are known to satisfy the annihilation

equations. A valid solution is then obtained by solving a constrained minimization such that

the reconstructed signal is consistent with the given measurements and satisfies the annihilation

constraint.

Thanks to the new approach, we unify a variety of FRI-based methods. We demonstrate

the versatility and robustness of the proposed approach with four FRI reconstruction prob-

lems, namely Dirac reconstructions with irregular time or Fourier domain samples, FRI curve

reconstructions and Dirac reconstructions on the sphere. The proposed algorithm improves sub-

stantially over state of the art methods.

Summary of contributions in Chapter 2

• We unify various FRI-based sparse recovery methods in a simple yet flexible algorithmic

framework, which extends the FRI sampling to cases with non-uniform samples.

• We propose an efficient and robust reconstruction algorithm that finds a valid solution to

the continuous-domain sparse recovery problem such that the reconstruction (i) satisfies

the continuous-domain sparsity constraint; and (ii) fits the given measurements (up to

the noise level).

• We demonstrate the flexibility and robustness of the algorithmic framework in solving

various FRI-based sparse recovery problems.

Chapter 3 — Multi-dimensional FRI Sampling with Linear Sample Complexity
Thanks to the flexible sparse recovery framework developed in Chapter 2, we can revisit the

important multi-dimensional Dirac estimation problem. Continuous-domain sparse recovery in

two or higher dimensions is fundamental in imaging, be it for source reconstruction in radio

astronomy, direction of arrival estimation in acoustics, or super-resolution in microscopic imaging.

Previous approaches extended one dimensional methods, like the ones based on finite rate

of innovation (FRI) sampling, in a separable manner, e.g., along the horizontal and vertical

dimensions separately in 2D. The separate estimation leads to a sample complexity of O
(
KD

)
for K Diracs in D dimensions, despite that the total degrees of freedom only increase linearly

with respect to D.

We propose a new method that enforces the continuous-domain sparsity constraints simulta-

neously along all dimensions, leading to a reconstruction algorithm with linear sample complexity

O(K), or a gain of O
(
KD−1

)
over previous methods. The multi-dimensional Dirac locations are

subsequently determined by the intersections of hypersurfaces (e.g., curves in 2D), which can be

computed algebraically from the common roots of polynomials.

We show results on simulated data of multi-dimensional Diracs with noiseless and noisy

measurements. The performance of the new multi-dimensional algorithm will be investigated
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in detail for two reconstruction problems with real data in radio astronomy and acoustics in

Chapter 4 and Chapter 5, respectively.

Summary of contributions in Chapter 3

• We extend the generic FRI sampling and reconstruction framework in Chapter 2 to

higher dimensions (two dimensions or more)— the resulting sampling scheme has a

linear sample complexity in signal sparsity. It is a significant improvement over the

previous methods, which require a minimum sample size that scales exponentially with

respect to the dimension.

• We propose an iterative algorithm to solve the multi-dimensional FRI reconstruction.

The algorithm makes it possible to apply the multi-dimensional FRI-based sparse recov-

ery to practical problems, where the measurements are not necessarily taken uniformly,

e.g., point source estimation in radio astronomy that we consider in the next chapter.

Chapter 4 — Looking beyond Pixels with Continuous-space Estimation of Point Sources
Equipped with the robust reconstruction algorithms developed in the previous two chapters, we

apply the generic algorithms to real applications in the rest of the thesis. The focus of this chapter

is on source estimation in radio astronomy, which aims at estimating point source locations and

intensities from measurements with antenna arrays.

Conventional imaging algorithms, e.g., the CLEAN algorithm (and its multiple variants), and

compressed-sensing inspired methods, are both discrete in nature: sources are estimated on a

regular grid. The resolution power of the traditional CLEAN-based imaging pipeline, is limited

by the width of the synthesized beam, which is inversely proportional to the largest baseline.

The continuous formulation allows the FRI recovery to find sources below the perceived tool

resolution without an artificial grid imposition. We adapt the multi-dimensional FRI reconstruc-

tion algorithm developed in the previous chapter to radio interferometry. The angular resolution

performance of the algorithm is assessed under simulation, and with real measurements from the

LOFAR telescope.

We show that it is possible to determine accurate off-grid point-source locations and their

corresponding intensities. In addition, FRI-based sparse reconstruction requires fewer measure-

ments and smaller baselines to reach a similar reconstruction quality compared to a conventional

method. The achieved angular resolution is higher than the perceived instrument resolution, and

very close sources can be reliably separated. It is demonstrated that the method is robust to the

presence of extended-sources, and that false-positives can be addressed by choosing an adequate

model order to match the noise level.

Summary of contributions in Chapter 4

• We adapt the FRI sparse recovery technique to source estimation in radio interferom-

etry. The proposed algorithm LEAP (Looking beyond Pixels with continuous-space

EstimAtion of Point sources) can estimate sources reliably from single-band or multi-

band measurements.

• We propose a reconstruction algorithm with cubic complexity in the total number of
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estimated uniform Fourier data of the sky image (typically around a few thousand).

• We extensively test the resolving powers of the algorithm in simulations. We show

that the algorithm is capable to surpass the instrument angular resolution and reliably

distinguish closely located sources.

• The robustness of the approach is validated with real observation from the LOFAR radio

telescope from the Boötes field and the Toothbrush cluster.

Chapter 5 — Direction of Arrival Estimation with Microphone Arrays
Similarly to the radio astronomy point source estimation problem in the previous chapter, it is

possible to apply the FRI-based continuous-domain sparse recovery to acoustic DOA estimations.

In this chapter, we present FRIDA: an FRI-based Direction of Arrival estimation algorithm for

multiple wide-band sound sources. FRIDA combines multi-band measurements coherently and

achieves state-of-the-art resolution. FRIDA is applicable to arrays with arbitrary layouts. Unlike

various steered-response power and subspace based methods, the proposed algorithm does not

require grid search.

We validate the approach in both simulations and experiments with actual recordings of

speech signals. The robustness of FRIDA is demonstrated with measurements under different

noise conditions. Further, we show the significant improvements of FRIDA in reliably resolving

closely located sources.

Summary of contributions in Chapter 5

• We adapt the FRI sparse recovery to estimate directions of arrival of acoustic sources

in both 2D and 3D cases.

• The robustness of the proposed reconstruction algorithm is validated with both simula-

tions and actual recordings of speech signals.

Chapter 6 — Image up-sampling via Edge Etching
In the previous two application chapters, we enforce the exact signal sparsity constraint in

reconstruction, with a Fourier domain convolution equation (i.e., the annihilation equation).

Alternatively, we can promote signal sparsity in the time or spatial domain directly by requiring

that the product between a mask function and the sparse signal be small. In this chapter, we

adopt the latter approach for image up-sampling, where image edges are modeled as a sparse

signal, which satisfies the approximate annihilation constraint in the spatial-domain.

The goal of image up-samplings is to reconstruct a high resolution image from a single low

resolution one. It is essential to exploit prior knowledge on the reconstructed image in order to

better condition this severely ill-conditioned inverse problem. We present a novel edge modeling

framework based on a spatial domain interpretation of the annihilation constraint (see Figure 1.4

and [95]). More specifically, we define a continuous-domain mask function that vanishes around

large gradients, typically around edges. The mask function is reconstructed by minimizing its

product with the gradient image. We show that accurate edge models are reconstructed by

assuming a simple linear edge model locally. Based on the same idea, we further combine these
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local edge models and build a global one, which serves as an edge-preserving constraint in image

up-sampling.

We propose an efficient optimization algorithm based on the alternating direction method of

multipliers (ADMM) to implement the constrained image up-sampling problem. Experiments

with natural images demonstrate the effectiveness of the global edge model in improving the

quality of the up-sampled images thus achieving state of the art performance.

Summary of contributions in Chapter 6

• We propose an edge modeling framework, which gives a continuous domain representa-

tion of image edges, both in a local area and for the whole image. We give an example

of one possible application of the reconstructed local edge model with light-field images.

• The estimated edge models are incorporated in the up-sampling process as an edge-

friendly constraint. We adapt the alternating direction method of multipliers (ADMM)

algorithm to solve the constrained optimization efficiently.





Chapter 2

Continuous Sparse Recovery with
Finite Rate of Innovation Sampling*

临渊羡鱼，不如退而结网。

Better to go home and weave a net, than to

stand by the pond and covet fish.

淮南子·说林训 Huainanzi · Discourse on

Forests

刘安 LIU, An

2.1 Introduction

Consider a classic array signal processing problem in radio interferometry. The electromagnetic

(EM) waves emitted by celestial sources in the sky are collected by an array of antennas. The

received signals at two antennas differ by a phase shift, which depends on the relative distance

of the antennas and the point source locations in the sky (Figure 1.1). It can be shown that the

cross-correlation of the received EM waves is related to the Fourier transform of the underlying

sky image (see Table 2.1) sampled at non-uniform frequencies [126]. The goal is to reconstruct

these point sources, which are modeled as a weighted sum of Dirac delta distributions, from the

irregularly sampled Fourier measurements in continuous space.

The classic approach in radioastronomy is to assume that the point sources are located on a

discrete grid (i.e., griding). The associated discretized sky image is then reconstructed by taking

the inverse discrete Fourier transform (see e.g. Figure 2.1(a)) followed by an iterative decon-

volution process [66]. Recently, it has been shown that the conventional discretized approach

*The material in this chapter is the result of joint work with Thierry Blu and Martin Vetterli [96].
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is related to compressed sensing, where the �1 norm of the discretized sky image is minimized

subject to the data-fidelity constraint [25, 138, 140]. Note that the reconstruction accuracy of

the sky image is inherently limited by the resolution of the grid: In order to obtain a more

accurate reconstruction, a denser grid has to be used. Additionally, the measurement matrix,

which relates the sky image to the Fourier measurements, is determined by the layout of the an-

tenna arrays. It does not necessarily satisfy the restricted isometry property required in standard

compressed sensing theory.

Alternatively, we can address the point source reconstruction problem directly in continuous

space by using algorithms developed for signals with finite rate of innovation [133] (FRI). A

common feature of these signals is that they can either be represented as or transformed to a

weighted sum of sinusoids, which is also the case for point source reconstruction (see (2.16) in

Section 2.5). The key to the reconstruction of FRI-type signals [8, 11, 29, 42, 45, 84, 88, 95,

115, 133] is the annihilating filter method, which is related to Prony’s method [103] in spectrum

estimation: we can build a finite length discrete filter (i.e., the annihilating filter) such that its

convolution with uniformly sampled sinusoids is zero. The point source locations are then given

by the roots of a polynomial, whose coefficients are specified by the annihilating filter. However,

despite the ability to reconstruct the point sources directly in continuous-domain, the classic FRI

approach cannot deal with irregularly sampled data.

In this chapter, we propose a robust reconstruction algorithm that removes the uniform-

sampling limitation from the FRI framework. Therefore, it allows to reconstruct the point

sources in the continuous space with irregularly sampled Fourier measurements. We achieve

this by establishing a linear relation between a set of unknown uniform Fourier samples, which

can be annihilated by a discrete filter, and the given measurements (Figure 2.2). We recast the

point source reconstruction as an approximation problem, where we would like to find a sum of

Diracs that is consistent with the measurements: the discrepancy between the measured and re-

synthesized samples (based on the reconstruction) should stay within the (known or estimated)

noise level. A valid solution of the signal approximation problem is obtained with a constrained

optimization, where the approximation error is minimized subject to the annihilation constraint

(see Section 2.3 for details). Thanks to the new approach, point sources are recovered accurately

in continuous space even in severe noise conditions (see Figure 2.1 and Figure 2.10). The proposed

approach shows a substantial improvement in both accuracy and resolvability of closely located

sources over a state of the art method based on discrete �1 minimization (see Figure 2.10).

It turns out that our contribution is much more general than the specific algorithm to solve

the point source reconstruction in radioastronomy: in fact, all FRI reconstruction problems can

be formulated concisely within the same algorithmic framework. In the proposed approach,

we work directly with the given samples, which themselves may not be annihilated right away.

With previous approaches [14, 47, 133], a linear transformation had to be applied to the samples

first [48, 129]. We not only simplify the problem formulation but also can address cases that

were overlooked and considered very challenging to solve with FRI (e.g., the Dirac reconstruction

with non-uniform samples). We demonstrate the versatility and robustness with several exam-

ples, including the important Dirac reconstructions with irregular time /Fourier domain samples

(Section 2.4.1 and 2.4.2), FRI curve reconstructions (Section 2.4.3) and the recovery of Diracs

on the sphere (Section 2.4.4).

Our goal is to provide a unified algorithmic framework, which is simple yet flexible so as to

cope with various FRI sampling problems. To facilitate future research and the applications of
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Figure 2.1: Accurate reconstruction of point source locations from partial Fourier domain
measurements (number of irregular Fourier samples: 8000, SNR = 5dB). (a) Spatial domain
representation (a.k.a. “dirty image” in radioastronomy) associated with the given partial Fourier
measurements. (b) Probability density of the reconstructed point source locations with the FRI
approach (number of independent noise realizations: 1000; average estimation error of Dirac
locations: 8.07 × 10−3). For comparison with other methods see Figure 2.10.

the proposed algorithm, a Python implementation of all the examples is made available online1.

Before proceeding, we briefly point to literature related to sparse signal recovery. We shall

not review various algorithms for the classic spectrum estimation in detail but rather refer to

standard textbooks (e.g., [118]) for comprehensive reviews. One notable algorithm in spectrum

estimation is iterative quadratic maximum likelihood (IQML) [18] and was an inspiration for

our approach. In a classical sparse recovery setting, the signal is recovered by minimizing the

�1 norm of the target sparse signal [46]. Recently, it has been extended to continuous domain

by minimizing the total variation [22] (or in general an atomic norm [123]) of the continuous

sparse signal. It has been shown that the sparse signal can be reconstructed exactly provided

that a minimum separation condition is met [6, 22, 79, 122, 123]. Alternatively, the optimal

reconstruction can be formulated as a structured low-rank approximation, where the rank of

1The codes are available at https://github.com/hanjiepan/FRI_pkg
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Figure 2.2: Any continuous domain signal, which can be represented as a sum of sinusoids by
applying a certain transformation T , is an FRI signal. The classic FRI framework reconstructs
the continuous domain signal from a set of uniform samples. Our focus in this chapter is on
cases where measurements are taken irregularly. We will identify a linear mapping G that relates
uniform samples to these measurements with a good approximation.

a data matrix (typically of Toeplitz /Hankel structure) is minimized subject to a data fidelity

constraint. This non-convex optimization is then solved either heuristically [5, 33, 86] or via

convex relaxation [30, 93, 145].

The rest of this chapter is organized as follows. We briefly review the classic sampling and

reconstruction framework for signals with finite rate of innovation in Section 2.2. It serves as

the basis for Section 2.3, where we propose a novel algorithmic framework. Both the problem

formulation and the implementation are developed. Next we demonstrate the versatility and

the robustness of the proposed approach by solving four different FRI problems in Section 2.4.

Further, we illustrate in detail the application to radio interferometry in Section 2.5 before we

conclude in Section 2.6.

2.2 The classic FRI reconstruction framework

From an algorithmic point of view, if a continuous domain signal is or can be transformed into

a finite sum of sinusoids, then it is a finite rate of innovation (FRI) signal [14, 133]. The FRI

sampling problem then boils down to estimating frequencies of the sinusoids from the given mea-

surements. From this perspective, it coincides with the classic harmonic retrieval problem [62],

which is encountered in many applications [13, 89, 126].

One such example is point source reconstruction in radioastronomy as discussed briefly earlier.

Similar principles are used for target localization in radar systems as well as in acoustic source

localization with microphone arrays.

Another example is X-ray crystallography, where the goal is to determine the atom locations
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from measured diffraction patterns. The diffraction patterns are the Fourier transform of an

autocorrelation function, which is a sum of sinusoids [89]. The distances between atoms are

directly related with the frequencies of these sinusoids.

The classic FRI approach (Figure 2.2) for solving the frequency retrieval problem consists in

sampling the continuous domain signal uniformly. On the one hand, these uniform samples have

a one-to-one correspondence with uniformly sampled sinusoids: by applying an inverse mapping

(typically an inverse DFT transformation) to the uniform samples, we get an estimate of the

sampled sinusoids. On the other hand, it is easy to show that these sampled sinusoids satisfy a

set of annihilation equations [14, 133]: there exists a discrete filter (a.k.a. “annihilating” filter),

which depends on the unknown frequencies of the sinusoids, such that its convolution with the

sampled sinusoids is zero. The annihilating filter coefficients are reconstructed uniquely (up to

a scaling factor) by solving a linear system of equations. The frequencies of the sinusoids are

obtained from the roots of a polynomial whose coefficients are specified by the annihilating filter.

Once we have recovered the frequencies of the sinusoids, the reconstruction of the sinusoids’

amplitudes amounts to a simple least square minimization, which reverts to solving a linear

system of equations.

Various reconstruction algorithms have been proposed to improve the robustness, notably

total least square minimization [133], matrix pencil approach [85, 129] and the Cadzow denois-

ing [14, 21]. In the total least square minimization, one obtains the filter that minimizes the �2
norm of the annihilation error; the matrix pencil approach takes advantage of the shift-invariant

subspace property in the structured data matrix; the Cadzow denoising method exploits the fact

that the convolution matrix associated with the annihilating filter has a Toeplitz structure and is

rank deficient. The Cadzow method denoises the data by iterating between a thresholding step

(to ensure that the matrix is singular) and a projection step (to make the matrix Toeplitz). Re-

cent works [5, 33] generalize such a strategy by formulating the reconstruction problem explicitly

as a structured low-rank approximation.

For the rest of the chapter, we focus on more general cases where the continuous domain

signal may not be sampled uniformly. In this case, we can no longer estimate the sampled

sinusoids from the given measurements directly. We will develop a generic approach to solve the

FRI reconstruction problem in this non-uniformly sampled case.

2.3 A generic FRI reconstruction algorithm

In this section, we propose a robust reconstruction algorithm for signals with finite rate of innova-

tion from arbitrary samples. The reconstruction problem is recast as a constrained optimization

(Section 2.3.1). We discuss the essential ingredients (Section 2.3.2), the optimization strategy

(Section 2.3.3) as well as the implementation details (Section 2.3.3) of the proposed algorithm.

2.3.1 FRI reconstruction as a constrained optimization

We reformulate the generic FRI reconstruction question as an approximation problem, where we

would like to fit an FRI model to the given measurements, or

Given a set of measurements, reconstruct an FRI signal that is consistent with the

measurements.

The consistency constraint requires that if we re-synthesize the measurements based on the

reconstructed FRI signal parameters, the difference with the given measurements should stay
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Figure 2.3: Overview of the generic FRI reconstruction problem. The continuous domain FRI
signal is reconstructed from the given measurements a by enforcing the annihilation constraint
on the unknown sampled sinusoids b, which are related with a via a linear mapping G.

The Generic FRI Reconstruction Problem

Goal: Reconstruct an FRI signal b that is consistent (up to the noise level ε2) with the given
measurements a:

find b, c ∈ C
subject to b ∗ c = 0, // b is FRI

‖a − Gb‖22 ≤ ε2 // consistency

Key:
(i) The linear mapping G between a and b;

(ii) Constrained minimization (P1);

(iii) Stopping criterion: compare ‖a − Gb‖22 with the noise level ε2 (Section 2.3.2);

(iv) Random initialization (Section 2.3.2).

within the noise level (or in general within the allowed approximation error). But how can we

ensure that the reconstructed signal satisfies our FRI signal model? One key feature of many

FRI signals is that they can be transformed into a sum of sinusoids. The uniform samples of

sinusoids are known to be annihilated by a filter with a specific structure that is related to the

FRI signal parametrization [14, 133]. Therefore, a signal being FRI is algorithmically equivalent

to satisfying the annihilation constraint, after some linear transformation (see Figure 2.2).
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Problem 2.1 (Constrained Minimization)

min
b,c∈C

‖a − Gb‖22

subject to b ∗ c = 0,
(P1)

where (Figure 2.3)

• a is the given set of measurements (sampled non-uniformly in general);

• b is the vector of uniform samples of the sinusoids to be annihilated. The convolution

constraint guarantees that b is effectively a sum of sinusoids;

• c is the annihilating filter coefficients, which belongs to a certain feasible set C (see a

precise discussion in the next subsection);

• G models the linear mapping2 between the measurements a and the uniform sinusoid

samples b. In general, in the presence of noise, we need to increase the number of

measurements.

Superficially, the data term ‖a−Gb‖22 looks similar to the one used in compressed sensing (CS)

based approaches. Yet, it arises from a completely different approach to resolution (see Fig-

ure 2.4):

• On the one hand, in CS-based sparse recovery the final recoverable resolution is directly

related to the step-size of the uniform grid that supports the samples b (see e.g., [123]

Remark 1.2): perfect reconstruction is obtained for Diracs that are separated by a minimum

distance that is proportional to the grid step-size. The matrix G then encodes the “non-

uniform” down-sampling that provides the known measurements a; for that reason, G is

necessarily a fat matrix.

• On the other hand, in FRI the final resolution is only related to the noise (or model

mismatch) level. This error is typically given by the Cramér-Rao lower bound, which is

reached by FRI-based reconstruction algorithms experimentally [14, 33]. The samples b

have to be taken on a uniform grid in order for the annihilation equation to be satisfied,

but the step-size of the grid is flexible and is unrelated to the resolution of the method.

In that context, the matrix G models a different type of linear relation3 between arbitrary

uniform samples b and arbitrary non-uniform known measurements a than in compressed

sensing; for that reason, G can—and will, in this thesis—be a tall matrix.

Note that (P1) is non-convex with respect to (b, c) jointly. Despite various attempts to

solve similar constrained optimizations [18, 41], a reliable algorithm for finding the optimal

solution of (P1) has yet to be discovered. But do we actually need to obtain the optimal solution

of (P1)? In many cases, we know (or can estimate accurately) the noise level present in the

given measurements. Hence, we may use this additional information in validating whether a

solution is feasible or not: we claim that any solution b is valid as long as it satisfies both the

annihilation and consistency constraint for the given measurements (up to the noise level ε2),

which we formalize as Problem (P2).

2For simplicity, we will assume that the linear transformation G has full column rank throughout the thesis.
3One would expected that a G matrix that maps too few uniform samples to the non-uniformly sampled mea-

surements, would lead to worse reconstruction. However, this imbalance seems not to be critical experimentally
(see examples in Section 2.4.2 and Section 2.5.3).
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Figure 2.4: Problem setup differences between compressed sensing and finite rate of innovation
(FRI). (a) In compressed sensing based approaches, the recoverable resolution (commonly known
as the minimum separation requirement in compressed sensing) is related to the step-size of the
underlying grid. (b) In FRI, the reconstruction accuracy is independent of the spacing between
the uniform samples (see texts after (P1) in Section 2.3.1).

Problem 2.2 (Constrained Approximation with Noise Level)

find b, c ∈ C
subject to b ∗ c = 0,

‖a − Gb‖22 ≤ ε2.

(P2)

One way to find a valid solution of (P2) is to resort to the constrained minimization (P1).

However, we should keep in mind that it is not the optimal solution of (P1) that we seek

but rather a valid solution that satisfies the constraints in (P2). Indeed, for any non-zero ε,

(P2) has infinitely many solutions, among which one is the optimal solution of (P1). From

an approximation point of view, all these solutions are valid because, for each of them, the

reconstructed parametric signal explains the given measurements up to the noise level4. This

subtle difference is important, since it allows to develop a reliable algorithm in the rest of this

section.

2.3.2 Essential ingredients

Before we present the algorithm that solves (P2), we want to highlight five key elements of the

proposed constrained formulation.

“Bilinearity” of the annihilation constraint

The annihilation equation is nonlinear with respect to the (b, c)-pair. However, if we fix one

variable (e.g., c), then the annihilation constraint reduces to a linear constraint with respect to

the other variable (e.g., b here). Motivated by the bilinearity of the annihilation constraint, we

define a right dual operator.

4Notice that ε controls the approximation error with the ground truth: from the triangle inequality, the
difference (2-norm) between the re-synthesized measurements with the ground truth signal and any one of the

valid solution of (P2) is at most 2ε. This corresponds to a maximum 2ε/
√

λmin(GHG) difference between the
reconstructed and the ground truth b, where λmin(·) is the smallest eigenvalue of a matrix.
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Definition 2.1

Denote the annihilation constraint in (P2) as T(b)c = 0, then the right dual of T(·) is an
operator R(·) such that R(c)b = T(b)c for all b, c.

In many FRI reconstruction problems, the annihilation equations are convolutions, which

implies that T(b) and R(c) are Toeplitz-structured convolution matrices. We can justify the

right dual definition from the commutativity of the convolution: b ∗ c = c ∗ b.

Thanks to the bilinearity of the annihilation constraint, it can be shown that the bivariate

optimization (P1) is equivalent to a constrained optimization with respect to c alone. This

equivalent formulation provides an iterative strategy for finding a valid solution of (P2) (see

Section 2.3.3).

Forward mapping

Unlike most annihilating filter based reconstruction algorithms [14, 47, 133], we deal with the

measurements directly without pre-processing the given measurements first (e.g., a truncated

DFT transformation). The linear mapping G, which links the measurements to a sequence that

can be annihilated, is integrated in the reconstruction algorithm. Thanks to the new approach,

we are not only able to extend the FRI framework to cases with irregularly measured samples

but also streamline otherwise rather complicated FRI reconstructions (see Section 2.3.3).

Stopping criteria

Because of the non-convexity of (P1), we should not expect the algorithm to always find the

global optimal solution in general. In fact, it is not the optimal solution of (P1) that we should

seek but rather a solution that (i) satisfies the annihilation constraint and (ii) has a fitting error

‖a − Gb‖22 below the noise level [58]. After all, our goal is to use the constrained minimization

as a tool to find a valid solution of (P2)—any solution that meets the two criteria is a valid one

for the FRI reconstruction.

The criteria are constructive: if we can guarantee that the reconstructed signal always sat-

isfies the annihilation constraint, which is the case with the proposed algorithm (see details in

Section 2.3.3), then we only need to check the fitting error in order to decide whether to terminate

the algorithm or not.

Random initialization

Because of the non-convexity of (P1), a commonly used strategy is to initialize the algorithm

with a “good” candidate solution, which is hopefully close to the ground truth, e.g., the total

least square reconstruction. In our proposed algorithm, we choose to initialize the annihilating

filter coefficients c with a random vector instead.

The randomness of the initialization actually gives the algorithm the flexibility to have fresh

restarts to increase the likelihood of meeting the stopping criteria— if the algorithm fails to

find a solution that meets the aforementioned stopping criteria (Section 2.3.2), we can always

reinitialize the algorithm with a different annihilating filter. The random initialization strategy

has been shown to result in a valid solution within a finite number of initializations (typically

less than 15) in extensive tests [59].
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Feasible set C of the annihilation filter coefficients

Observe that (P1) is scale invariant with respect to the annihilating filter coefficients c. Without

any normalization, we have a trivial solution c ≡ 0. Experimentally, we have observed that the

most robust performance is achieved by restricting5 cH0 c = 1, where c0 is the random initialization

for the algorithm (see [47] as well).

2.3.3 An iterative algorithm to solve (P2)

Inspiration from (P1)

For a given c, (P1) is a constrained quadratic minimization with respect to b. By substituting

the solution b (in a function of c) to (P1), we end up with an optimization over the annihilating

filter coefficients c alone. Denote the annihilation constraint in (P1) as a matrix vector product:

T(b)c = 0. It can be shown that (P1) is equivalent to (see Appendix 2.A):

min
c

cHTH(β)
(
R(c)(GHG)−1RH(c)

)−1
T(β)c

subject to cH0 c = 1,
(2.1)

where β = (GHG)−1GHa, and R(·) is the right dual of T(·) defined in Definition 2.1.

Then, the reconstructed FRI signal can be expressed as a function of c as:

b = β −
(
GHG

)−1
RH(c)

(
R(c)

(
GHG

)−1
RH(c)

)−1
R(c)β. (2.2)

In general, it is very difficult to solve (2.1). But we can draw inspiration from this equivalent

formulation and devise an iterative algorithm for finding a valid solution of (P2).

More specifically, our strategy amounts to minimizing the objective function in (2.1) itera-

tively: at each iteration, we build the matrix
(
R(c)

(
GHG

)−1
RH(c)

)−1
with c = cn−1, the filter

coefficients from the previous iteration. The updated c is then obtained by solving a quadratic

minimization:

min
c

cHTH(β)
(
R(cn−1)

(
GHG

)−1
RH(cn−1)

)−1
T(β)c

subject to cH0 c = 1,
(2.3)

which has a simple closed form solution. For considerations of numerical stability, we are not

going to implement the solution of (2.3) directly but revert to solving an equivalent linear system

of equations instead (see Section 2.3.3). The uniform sinusoidal samples bn is updated based

on (2.2) with the reconstructed cn at the current iteration.

Note that since (2.2) is obtained by solving (P1) for a given c, by construction, bn obtained

this way will always satisfy the annihilation constraint: R(cn)bn = 0. Hence, we only need to

compute the approximation error ‖a − Gbn‖22 and check whether it is below the noise level in

order to terminate the iteration (see comments in Section 2.3.2).

The proposed approach may be judged similar to the iterative quadratic maximum likeli-

hood [18] method in the spectrum estimation community, with the important difference: we only

use the constrained optimization as a way to find a valid FRI reconstruction (P2). Hence, it

5Other (natural, but less successful) normalization strategies [14, 133] include a quadratic constraint ‖c‖22 = 1;
or a linear constraint on one component of c, e.g., eH0 c = 1, where e0 = [1, 0, · · · , 0]T.
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is not the convergent solution of (P1) that matters (as in [18]) but rather any solution that

meets the stopping criteria in Section 2.3.2. The randomness in the initialization and the linear

constraint give the algorithm more flexibility and has been shown [59] to achieve more robust

reconstruction results for FRI problems.

Efficient implementation

A direct implementation of (2.3) for the update of the annihilating filter coefficients involves

several nested matrix inverses and would not only be inefficient (compared with solving linear

system of equations) but also numerically unstable even with double-precision accuracy.

We can obtain the solution of (2.3) by solving a larger (compared with the dimension of c)

linear system of equations with a simple trick: we introduce an auxiliary variable as a substitute

of a matrix inverse applied to the input vector. Extra equations, which only involve multiplication

of the matrix (instead of its inverse), are subsequently added to ensure that the resultant problem

is equivalent to the original one.

Proposition 2.1

The solution of (2.3) is given by solving a linear system of equations⎡⎢⎢⎣
0 TH(β) 0 c0

T(β) 0 −R(cn−1) 0

0 −RH(cn−1) GHG 0

cH0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
cn
�

v

λ

⎤⎥⎥⎦ =

⎡⎢⎢⎣
0

0

0

1

⎤⎥⎥⎦ , (2.4)

where �, v, and λ are newly introduced auxiliary variables. Similarly, the reconstructed FRI

signal bn is updated as the solution of[
GHG RH(cn)

R(cn) 0

] [
bn
�

]
=

[
GHa

0

]
, (2.5)

where � is the auxiliary variable.

Proof.

See Appendix 2.B.

Instead of calculating several matrix inverses, we only need to solve a larger linear system of

equations and extract the corresponding components of the solution in order to update c and

b from iteration to iteration. For a vector b of size L, the computational complexity at each

iteration is O(L3) (see [61] Chapter 3).

In the actual implementation, we randomly initialize the algorithm with a maximum number

of iterations, e.g., 50. At each iteration, we compute the approximation error ‖a − Gbn‖22 with

the current reconstruction bn and compare it with the noise level. If the error is below the noise

level, then the iteration is terminated. In the case where the algorithm fails to find such a solution

after the maximum number of iterations is reached, we reinitialize the algorithm with a different

random vector. We summarize the proposed algorithm in Algorithm 1. In [59], this strategy (50

inner iterations and 15 random initializations) is shown to succeed in 99.9% cases. Alternatively,

we can always run the algorithm with a (fixed) maximum number of random initializations and

return the reconstructed (b, c)-pair that has the smallest fitting error. This strategy is useful for
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Algorithm 1: Robust FRI Signal Reconstruction

Input : Measurements a of the FRI signal, transformation matrix G, noise level ε2

Output: Uniform sinusoid samples b, annihilating filter coefficients c
for loop ← 1 to max. initializations do

1 Initialize c with a random vector c0;
for n ← 1 to max. iterations do

2 Build the augmented matrix with cn−1 and update cn by solving (2.4);
3 Build the augmented matrix with cn and update bn by solving (2.5);

if ‖a − Gbn‖22 ≤ ε2 then
4 Terminate both loops;

end

end

end
5 b ← bn, c ← cn.

cases where we do not know (or do not have a good estimate of) the noise level a priori, albeit

less efficient than the approach used in Algorithm 1: with a given (or estimated) noise level,

Algorithm 1 usually terminates much earlier before reaching the maximum number of random

initializations.

2.4 Four algorithmic examples for various types of FRI signals

In the previous section, we presented a generic reconstruction algorithm for signals with finite

rate of innovation. To demonstrate the versatility of the proposed algorithm, we showcase several

FRI reconstruction problems, including the Dirac reconstruction with non-uniform time /Fourier

domain samples (Section 2.4.1 and 2.4.2), FRI curve reconstruction (Section 2.4.3) and the

reconstruction of Diracs on the sphere (Section 2.4.4).

A common misconception on annihilating-filter based FRI reconstruction algorithms is that

they can only deal with uniformly taken samples, which have one to one correspondence with

uniform samples of a sum of sinusoids, e.g., the DFT coefficients in the reconstruction of the

Dirac stream (2.6). Such an artificial limitation is waived as soon as we are able to identify

the forward mapping (or an approximation of it) that links the sequence to be annihilated and

the given measurements, i.e., G in (P2). We show that we can either find the exact mapping

(Section 2.4.1) or approximate it by interpolation (Section 2.4.2). The new formulation is flexible

in the choice of the objective function or a proper constraint: instead of being restricted by the

reconstruction algorithm, e.g., the Cadzow denoising method, we can use a different formulation,

which is simpler and gives more robust reconstruction results (Section 2.4.3 and Section 2.4.4).

2.4.1 Stream of Diracs with irregular time domain samples

Consider a τ -periodic stream of Diracs:

x(t) =
∑
k′∈Z

K∑
k=1

αkδ(t − tk − k′τ), (2.6)
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Figure 2.5: Reconstruction of a stream of Diracs (2.6) from ideally low-pass filtered samples
taken at irregular time instances (2.7). (a) Exact reconstruction in the noiseless case (filter
bandwidth B = 11, number of samples L = 11). (b) Robust reconstruction in the noisy case
(SNR = 5dB, filter bandwidth B = 81, number of samples L = 81, average reconstruction error
for tk: 1.30 × 10−3).

where αk and tk are unknown signal parameters. The goal is to reconstruct these parameters

from a set of ideally low-pass filtered samples that are taken at irregular (but known) time

instances t′1, · · · , t′L:

y� =
K∑
k=1

αkϕ(t
′
� − tk) for � = 1, · · · , L. (2.7)

Here ϕ is the Dirichlet kernel ϕ(t)
def
= sin(πBt)

Bτ sin(πt/τ) and B is the bandwidth of the ideal lowpass

filter.

Uniform samples of sinusoids Observe that x(t) is a linear combination of the same function

with different shifts— if we transform the signal to the Fourier domain, the spectrum is a sum

of sinusoids:

x̂m =
1

τ

K∑
k=1

αke
−j 2πm

τ tk ,

where x̂m is the Fourier series coefficients of the periodic signal x(t). Since x̂m is a uniformly

sampled sum of sinusoids, we know that it can be annihilated by a discrete filter.

Relation with the given measurements It is easy to show that the given measurements are

linearly related with x̂m via a truncated inverse DFT transformation:

y� =
1

B

∑
|m|≤	 τB2 


x̂me
j 2πm

τ t′� . (2.8)

In terms of the reconstruction algorithm, we can rearrange the samples y� and x̂m as column

vectors a and b, respectively; the linear mapping (2.8) between b and a is denoted by the matrix

G. Then the “denoised” FRI signal as well as the associated annihilating filter c = [c0, · · · , cK ]T
are given by Algorithm 1. The Dirac locations are reconstructed by taking the roots of the

polynomial whose coefficients are specified by c; while the amplitudes are reconstructed with

least square minimization [14, 133].
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(a) With Noiseless Samples (b) With Noisy Samples

Figure 2.6: Reconstruction of weighted Diracs (2.9) from non-uniform Fourier samples (2.10).
The FRI framework makes use of the piecewise linear interpolation (2.11) with 21 uniform knots.
(a) Reconstruction with noiseless Fourier domain samples (number of samples L = 42, average
reconstruction error for tk: 1.95× 10−3). (b) Robust reconstruction with noisy Fourier measure-
ments (number of samples L = 105, SNR = 5dB, average reconstruction error for tk: 2.34×10−3).

We summarize the reconstruction results in Figure 2.5 for both the noiseless and noisy cases,

where Gaussian white noise is added to the lowpass filtered samples. Note that the irregular

sampling scheme does not change the minimum number of samples required in order to recover

the original signal (Figure 2.5(a)): with at least 2K+1 samples, the exact reconstruction (up to

numerical accuracy) is obtained. In the presence of noise, we need to over-sample the signal. The

proposed algorithm is robust enough to give a reliable reconstruction in the presence of severe

noise (SNR = 5dB).

2.4.2 Weighted sum of Diracs with irregular Fourier domain samples

In this example, we consider a slightly different Dirac reconstruction problem than that in the

previous section. In particular, consider a sparse signal that consists of K weighted Diracs:

x(t) =
K∑
k=1

αkδ(t − tk), (2.9)

with limited time support between −τ/2 to τ/2, i.e., |tk| ≤ τ/2. Instead of taking the time

domain samples (as in the previous example), the Fourier transform

X(ω) =
K∑
k=1

αke
−jωtk , (2.10)

is measured at some frequencies ω� for � = 1, · · · , L.
The question at hand is: can we recover the original signal (2.9) from non-uniform Fourier

samples X(ω�)? In many applications, e.g., magnetic resonance imaging [75], holography [56],
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Figure 2.7: Exact reconstruction of weighted Diracs (2.9) with Dirichlet interpolation kernel
from irregular Fourier domain measurements (period of the spectrum: 2π×21; number of samples
L = 21).

crystallography [89] and radio interferometry [101], direct Fourier domain measurements are

available thus making the sparse reconstruction problem of particular interest.

Uniform samples of sinusoids Since the Fourier transform (2.10) is a weighted sum of sinusoids,

the uniformly sampled Fourier transform on a grid, X(2πm/τ) for m ∈ Z, can be annihilated.

Relation with the given measurements In general, the given Fourier measurements are taken

non-uniformly. Hence, we cannot apply the annihilating filter method directly. However, not

everything is lost: we may interpolate the Fourier transform over a finite interval, e.g., ω ∈
[−Mπ,Mπ]:

X(ω) ≈
∑

|m|≤	Mτ
2 


X

(
2πm

τ

)
ψ

(
ω

2π/τ
− m

)
, (2.11)

where ψ(·) is a certain interpolation kernel, e.g., a spline function.

By evaluating (2.11) at ω�, we establish a linear mapping (i.e., G in the reconstruction algo-

rithm) between the given Fourier measurements a : X(ω�) and the unknown sampled sinusoids

b : X(2πm/τ). Provided that we have sufficiently many measurements, i.e., L ≥ Mτ , then we

can reconstruct (2.9) with Algorithm 1 (see [5] for a similar strategy in spectral estimation).

We may justify such an approach by considering a specific case, where the Fourier transform

X(ω) is periodic with period 2πM for some M such that Mτ is an odd number. It is proved that

we can represent X(ω) exactly by interpolating with the Dirichlet kernel ψ(ω) = sin(πω)

Mτ sin( πωMτ )
in

this case (see Appendix 2.C and Figure 2.7).

Note that rather than enforcing the interpolation equation (2.11) as a hard constraint on

the reconstructed signal, we only use it to derive a data-fidelity metric in (P2) that measures

the approximation quality. The tradeoff is that we can no longer reconstruct the signal exactly

in general—We do not have the actual mapping G0 (which depends on the unknown signal

parameters αk and tk) but only its approximation from the interpolation (2.11): G = G0 +Gε.
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Consequently, we will have a model mismatch even in the noiseless cases6 (Figure 2.6(a)). As

we have mentioned in Section 2.3.3, one possible way to circumvent the difficulty in choosing ε

in (P2) is to run the algorithm with fixed random initializations. The solution that gives the

minimum fitting error is taken as the reconstruction.

We demonstrate the effectiveness of the interpolation strategy (2.11) in Figure 2.6, where the

interpolation kernel is the first order B-spline:

ψ(ω) =

⎧⎪⎨⎪⎩
1 − ω if ω ∈ [0, 1),

1 + ω if ω ∈ [−1, 0),

0 otherwise.

We have chosen 21 interpolation knots located uniformly on the interval [−21π, 21π], where the

Fourier transform X(ω) is approximated. Complex-valued Gaussian white noise is added to the

Fourier samples in the noisy case (SNR = 5dB). Even with such a coarse approximation, we

still obtain robust and accurate reconstruction of Diracs in the presence of noise (Figure 2.6).

2.4.3 FRI curves

As we mentioned in the introduction, the Cadzow denoising algorithm [14] tries to find a struc-

tured matrix (typically Toeplitz / block-Toeplitz) that satisfies the rank constraint while being as

close as possible to the noisy data matrix. With the Cadzow denoising method, we are restricted

to work directly with a sequence that can be annihilated (so that we can enforce the rank con-

straint on the matrix). In comparison, we have more freedom with the proposed algorithm in

defining what is the unknown data b other than the obvious choice as the sampled sinusoids.

We demonstrate this flexibility with an example of curves with finite rate of innovation [95].

Consider an interior indicator image associated with a curve:

IC(x, y) =

{
1 if (x, y) ∈ C̊

0 otherwise,

where C̊ denotes the interior of the curve C. Our goal is to reconstruct the curve locations in the

continuous domain from a set of ideally lowpass filtered samples of the binary image IC(x, y).

Uniform samples of sinusoids We may treat the derivative of the indicator image as an infinite

sum (in fact a line integration) of Diracs along the curve. In the Fourier domain, the Wirtinger

derivative (i.e., ∂
def
= ∂

∂x + j ∂∂y ) is therefore a sum of sinusoids. Consequently, we know that the

Fourier transform of the derivative image on a uniform grid,

∂̂Ik,l =

(
2πk

τ1
+ j

2πl

τ2

)
ÎC

(
2πk

τ1
,
2πl

τ2

)
, (2.12)

satisfies the annihilation equations: ck,l ∗ ∂̂Ik,l = 0. The curve locations are specified by the

roots of a 2D polynomial with coefficients ck,l. See [95] for detailed discussions on FRI curves.

6Equivalently, we can view the noiseless measurements a = G0b as being “noisy” with respect to G, which is
used in the data-fidelity constraint in (P2): a = Gb+ noise, with noise = −Gεb.
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Figure 2.8: FRI curve coefficient error against different noise levels (curve coefficients ck,l size:
3 × 3, sample size: 45 × 45, bandwidth B1 = B2 = 25, periods τ1 = τ2 = 1). The results are
averaged over 500 independent noise realizations.

Relation with the given measurements Similar to the 1D case in Section 2.4.1, the Fourier

transform of the indicator image on a uniform grid is related with the ideally lowpass filtered

samples7 via a truncated inverse DFT. Combined with (2.12), we have a linear mapping from

the unknown sampled sinusoids ∂̂Ik,l to the measured spatial domain samples.

In our original approach [95], we first obtain ÎC

(
2πk
τ1

, 2πlτ2

)
by applying a truncated DFT

transformation to the given samples. Then we apply Cadzow’s method to denoise ∂̂Ik,l, since it

is ∂̂Ik,l that satisfies the annihilation. Unfortunately, doing so inevitably amplifies the high fre-

quency noise components, which explains the relatively limited performance of Cadzow’s method

for FRI curve reconstructions (Figure 2.8).

In our new approach, we do not have such a restriction anymore: in (P2), we can choose a

directly as the pixel values Im,n, the unknown b as the Fourier transform ÎC

(
2πk
τ1

, 2πlτ2

)
, and the

linear mapping G as the truncated inverse DFT transformation. The right dual matrix R(·) in
this case is no longer the convolution matrix associated with the filter ck,l alone—we should

right multiply the convolution matrix by a diagonal matrix whose entries are specified by the

corresponding frequencies
(
2πk
τ1

, 2πlτ2

)
in (2.12).

We summarize the reconstruction results obtained with total least square minimization [14,

133], Cadzow’s method [14], structured low-rank approximation [33] and the proposed method

in Figure 2.8, where different levels of Gaussian white noise is added to the ideally lowpass

filtered samples. Since the annihilating filter coefficients are invariant with respect to any non-

zero scaling, we measure the reconstruction error with a scale-invariant standard deviation of

the error between the ground truth c and the reconstructed coefficients c′: std(γc′ − c). Here

the scalar γ is chosen in such a way that ‖γc′ − c‖22 is minimized. An example at noise level

SNR = 5dB is also included for visual comparison (Figure 2.9). The proposed algorithm is

robust even under such severe noise condition.

7Note that with the same argument as in Section 2.4.1, we can deal with ideally lowpass filtered samples that
are taken non-uniformly.
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(a) Noisy Samples (SNR = 5dB) (b) Cadzow’s Method [14]

(c) Structured Low-rank Approximation [33] (d) Proposed Approach

Figure 2.9: Visual comparisons of the reconstructed curves with Cadzow’s method, structured
low-rank approximation [33] and the proposed approach (noise level: 5 dB, curve coefficients ck,l
size: 3 × 3, sample size: 45 × 45, periods τ1 = τ2 = 1). The solid black line is the reconstructed
curve; while the dotted red line is the ground truth.

2.4.4 Diracs on the sphere

In most cases, the given measurements of an FRI signal cannot be annihilated directly. With

previous approaches, we had to apply an inverse transformation in order to obtain a sequence

that can be annihilated. However, such an inverse transformation is not always easy to identify.

Additionally, it makes the reconstruction problem unnecessarily complicated.

We demonstrate how the proposed algorithmic framework helps simplify the formulation of

FRI problems. Consider an example of Diracs defined on the 2-sphere S
2 def
=

{
r ∈ R

3|rTr = 1
}
:

I(θ, ϕ) =
K∑
k=1

αkδ(cos θ − cos θk)δ(ϕ − ϕk),

for 0 ≤ θ, θk < π and 0 ≤ ϕ,ϕk < 2π. Here θk and ϕk are the unknown angles of the colatitude

and azimuth of the k-th Dirac and αk is its amplitude.

Similar to the planar case, if we apply a Fourier-like transformation to Diracs, we will get

a sum of sinusoids. More specifically, the Fourier-like transformation on S
2 involves spherical

harmonics. It can be shown (see Appendix 2.D) that the coefficients of the spherical harmonic
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decomposition is

Îl,m = Nl,m

l−|m|∑
n=0

pn,|m|
K∑
k=1

αk(cos θk)
n(sin θk)

|m|e−jmϕk , (2.13)

with |m| ≤ l and 0 ≤ l ≤ L0, for some fixed coefficients pn,|m| that can be precomputed (see

Appendix 2.E). Here Nl,m is a normalization factor associated with the spherical harmonics of

degree l and order m.

The FRI reconstruction problem that we want to solve is as follows: reconstruct (αk, θk, ϕk)

for k = 1, · · · ,K from a given set of spherical harmonic coefficients (2.13). In an actual setup,

the measurements are spatial domain samples (on S
2), which have a linear relationship [42, 45]

with the spherical harmonic coefficients (2.13). With the proposed algorithm, we can reconstruct

the signal from the spatial domain samples directly. But the complexity is beyond the scope of

this section and hence is omitted.

Uniform samples of sinusoids Complicated as it may appear, (2.13) is a linear combination of

uniformly sampled sinusoids: bn,m
def
=

∑K
k=1 αk(cos θk)

n(sin θk)
|m|e−jmϕk , then

bn,m =
K∑
k=1

α̃
(1)
n,ku

m
k =

K∑
k=1

α̃
(2)
m,kv

n
k , (2.14)

where α̃
(1)
n,k = αk(cos θk)

n, uk = sin θk e
−jϕk for m ≥ 0 and uk = 1

sin θk
e−jϕk for m < 0;

α̃
(2)
m,k = αk(sin θk)

|m| and vk = cos θk. Consequently, we know that there exist two discrete filters

such that

bn,m ∗
m
c(1)m = 0 ∀n and bn,m ∗

n
c(2)n = 0 ∀m.

Relation with the given measurements The expression (2.13) is nothing but a linear mapping

from the sampled sinusoids bn,m to the given measurements (i.e., the spherical harmonics Îl,m).

Thanks to this analysis, we are now ready to formulate the Dirac reconstruction problem on

the sphere as two (for uk and vk each) constrained approximations of the form (P2). Take the

reconstruction of vk as an example:

• a is the given spherical harmonics Îl,m;

• b is bn,m as defined in (2.14);

• c is the annihilating filter coefficients c
(2)
k ;

• G is the linear relation between the given measurements Îl,m and bn,m in (2.13).

By reconstructing uk and vk from the given spherical harmonics, the angles ϕk and θk are uniquely

specified. The Dirac amplitudes αk can be easily obtained using least square minimization once

we have reconstructed the values of ϕk and θk.

One major challenge in the earlier work [45] was to find the correct inverse transformation

that should be applied to Îl,m. In comparison, such an inverse mapping is no longer required

with the proposed framework, which leads to a significantly more simplified formulation.
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Table 2.1: Summary of Radio Astronomy Terms

Term Meaning
sky image Brightness distribution of the sky.

point sources Celestial sources that can be modeled as Dirac delta distributions.

visibility Cross-correlations of the received signals at different antennas. It
is related to the Fourier transform of the sky image.

uv-coverage Fourier domain coverage. A radio interferometer can only cover
part of the Fourier domain at some irregular frequencies.

dirty image Inverse Fourier transform of the irregularly sampled Fourier trans-
form of the sky image.

2.5 Application to radio interferometry

In this section, we apply the proposed reconstruction algorithm to a simplified radio interferom-

etry problem. Cases with realistic settings will be considered in Chapter 4, where the FRI-based

sparse recovery method is applied to real observation from the LOFAR radio telescope.

2.5.1 Data acquisition and signal model

A radio interferometer consists of an array of antennas that collect the electromagnetic (EM)

waves emitted by celestial sources in the sky. In a far field context, we can assume that these

sources are located on a hypothetical celestial sphere and that the signals arriving at each antenna

follow parallel lines (Figure 1.1). Consequently, the received signals at two different antennas

differ by a time delay, which is determined by the relative locations of the antennas with respect

to the celestial sources. It can be shown that under the assumption of a narrow field-of-view,

the cross-correlation between the received EM waves at two different antennas (a.k.a. visibility

in radioastronomy) is related to the Fourier transform of the underlying sky image I(x, y) at

a certain frequency (see [126] Chapter 3, equation (3.10)). Since there is a finite number of

antennas with fixed locations, the radio interferometer will only have a partial Fourier domain

coverage.

The conventional approach reconstructs the point sources in the discrete space by deconvolv-

ing the dirty image iteratively, which is the inverse discrete Fourier transform of the irregularly

sampled Fourier measurements. Alternatively, as we demonstrate in the next section, we can

directly address the reconstruction problem in the continuous-domain. In particular, our focus

in this section is on the reconstruction of a sky image, which consists of point sources within the

field of view:

I(x, y) =
K∑
k=1

αkδ(x − xk, y − yk). (2.15)

Here δ(·, ·) is the Dirac delta distribution or generalized function, (xk, yk) is the location of the

k-th point source, and αk ≥ 0 is its intensity.

To summarize, the point source reconstruction problem in radio interferometry is as follows:

how can we reconstruct the K Diracs on a 2D plane (2.15) from a given set of Fourier domain
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measurements at irregular frequencies:

Î
(
ω
(�)
1 , ω

(�)
2

)
=

K∑
k=1

αke
−jω(�)

1 xk−jω(�)
2 yk , (2.16)

for � = 1, · · · , L? Note that in a realistic setting, these frequencies
(
ω
(�)
1 , ω

(�)
2

)
should be based

on the layout of the radio telescope. We have considered a simplified experimental setup here

so as to be as close as possible to the algorithmic examples in the previous section. We leave

the extra complications encountered in practice for detailed analysis of real data acquired with

a radio telescope in Chapter 4.

2.5.2 Reconstruction of point sources

Note that we have considered a similar 1D Dirac reconstruction problem in Section 2.4.2. Hence,

we adopt the same strategy and approximate the Fourier transform over a finite area, e.g.,

ω1 × ω2 ∈ [−Mπ,Mπ] × [−Nπ,Nπ]. For practical considerations, we have chosen the Dirichlet

interpolation kernel:

ψ(ω1, ω2) =
sin(πω1) sin(πω2)

MNτ1τ2 sin
(
πω1

Mτ1

)
sin

(
πω2

Nτ2

) ,
for some M and N such that Mτ1 and Nτ2 are odd numbers. The interpolation equation

provides the link between the given Fourier measurements Î
(
ω
(�)
1 , ω

(�)
2

)
and the sampled sinusoids

Î(2πm/τ1, 2πn/τ2) for |m| ≤
⌊
Mτ1
2

⌋
and |n| ≤

⌊
Nτ2
2

⌋
, which can be annihilated by a discrete 2D

filter.

In general, the solution that satisfies the 2D annihilation equations is a curve instead of a few

isolated Diracs [95]. In fact, any Dirac that is located on the curve will satisfy the same set of 2D

annihilation equations. One way to overcome such a difficulty is to reconstruct the Dirac’s x and

y locations separately by enforcing the annihilation constraint along each direction8. Specifically,

we would like to find two annihilating filters, whose z-transforms are

C(1)(z1) =

K∑
k=0

c
(1)
k z−k

1 = c
(1)
0

K∏
k=1

(
1 − ukz

−1
1

)
and C(2)(z2) =

K∑
k=0

c
(2)
k z−k

2 = c
(2)
0

K∏
k=1

(
1 − vkz

−1
2

)
with uk = e−j 2π

τ1
xk and vk = e−j 2π

τ2
yk . The rows and columns of the Fourier transforms

Î(2πm/τ1, 2πn/τ2) are annihilated by the filter
[
c
(1)
0 , · · · , c(1)K

]
and

[
c
(2)
0 , · · · , c(2)K

]
, respectively:

c(1)m ∗
m
Î

(
2πm

τ1
,
2πn

τ2

)
= 0 and c(2)n ∗

n
Î

(
2πm

τ1
,
2πn

τ2

)
= 0.

The Dirac locations are then reconstructed by solving two constrained approximation prob-

lems (P2). For the sake of brevity, we detail the exact formulation for the reconstruction of the

Dirac vertical locations yk only. The formulation for the reconstruction of xk can be derived

similarly.

Denote the annihilating filter coefficients ck and the given Fourier measurements Î
(
ω
(�)
1 , ω

(�)
2

)
8A more efficient multi-dimensional FRI reconstruction, which enforces the annihilation constrains along all

dimensions simultaneously, is the focus of the next chapter.
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Figure 2.10: Reconstruction of point sources from irregular Fourier measurements (SNR =
5dB, number of Fourier measurements: L = 8500). (a) The given noisy Fourier samples and their
spatial domain representation via inverse FFT (a.k.a., the the dirty image in radioastronomy).
(b) The compressed sensing result by minimizing the �1 norm of the sky image (estimation
error for point sources’ locations: 7.34 × 10−2). (c) The reconstructed point sources with FRI
(estimation error for point sources’ locations: 8.44 × 10−3). (d) Probability density of the
estimated point sources’ locations with FRI approach (number of independent noise realizations:
1000; the average estimation error: 1.09 × 10−2).

as column vectors c =
[
c
(2)
0 , · · · , c(2)K

]T
and a, respectively. We rearrange the unknown Fourier

transform values Î(2πm/τ1, 2πn/τ2) column by column as a vector b . Then the constrained

minimization that we would like to solve is:

min
b,c

∥∥a − Gb
∥∥2
2

subject to R(c)b = 0,

cH0 c = 1,

where G =
[
G̃(−�Mτ1/2�) · · · G̃(�Mτ1/2�)

]
with

[
G̃(m)

]
�,n

= ψ
(
ω

(�)
1

2π/τ1
− m,

ω
(�)
2

2π/τ2
− n

)
; and9
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R(c) =

2�Mτ1/2� blocks︷ ︸︸ ︷⎡⎢⎢⎢⎢⎣
R̃(c) 0 · · · 0

0 R̃(c)
. . .

...
...

. . .
. . . 0

0 · · · 0 R̃(c)

⎤⎥⎥⎥⎥⎦,

with R̃(c) the convolution matrix associated with the filter c.

Once we have reconstructed the Dirac vertical and horizontal locations with the proposed

algorithm in Section 2.3, we still need to identify the correct associations— in principle, the

2D Diracs can be located on any one of the K! possible combinations. The naive way would

be the exhaustive search, where we try all the possible combinations and reconstruct the Dirac

amplitudes αk with the least square minimization. If the re-synthesized Fourier samples (2.16)

based on the reconstructed parameters (αk, xk, yk) are within the noise level, then we have

correctly identified the Dirac locations.

However, such a straightforward approach is only computationally feasible for cases with few

Diracs. Experimentally, we observed that we can find the correct associations of vertical and

horizontal locations with a simple trick: we first reconstruct the amplitudes of the Diracs with

the least square minimization by pretending there were K2 Diracs (i.e., all the intersections of the

reconstructed {xk}Kk=1 and {yk}Kk=1). Among these K2 possible locations, we select K of them

with the largest amplitudes. We should reconstruct αk by solving the least square minimization

once more with the correctly identified K Dirac locations on the 2D plane.

2.5.3 Simulation results

We apply the algorithm to reconstruct 2D Diracs, which are located randomly in [−0.5, 0.5] ×
[−0.5, 0.5]. The Dirac amplitudes follow a log-normal distribution: αk ∼ logN (log 2, 0.5). The

Fourier transform is sampled at L = 8500 irregular frequencies, which are randomly generated

with higher concentrations around low frequencies. This is because low frequency Fourier mea-

surements correspond to the cross-correlations between antennas that are close to each other, a

case that is more convenient in practice. We have chosen 15 × 15 interpolation knots located

uniformly on the area [−12π, 12π] × [−12π, 12π], where the Fourier transform is approximated.

Complex-valued Gaussian white noise is added to the Fourier transforms so that the signal-to-

noise ratio is 5 dB. The algorithm is able to reconstruct the Diracs correctly even in the presence

of severe noise (Figure 2.10). With our current Python implementation (which can be further

optimized), it takes 42 seconds for the reconstruction on average with a MacBook Pro laptop.

Following [57], we also include the classical sparse recovery result obtained when the �1-norm of

the discretized sky image is minimized. As evidenced in Figure 2.10, this approach is not only

less accurate than the FRI method, but it also fails to resolve Diracs that are closely located.

2.6 Conclusion

Motivated by the point source reconstruction problem in radio interferometry, we have developed

a robust algorithmic framework for FRI reconstruction with arbitrary measurements, including

9It is possible to write R(c) compactly as the Kronecker product between R̃(c) and an identity matrix of size

2 �Mτ1/2�: R̃(c)⊗ I2�Mτ1/2�.
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non-uniform sampling cases. We have unified all FRI-based methods concisely with a constrained

formulation by establishing a linear relation between the given measurements and a set of un-

known uniform samples of sinusoids. We have demonstrated the versatility of the proposed

approach with various FRI signal recoveries in addition to an application to radio interferom-

etry. The algorithm outperforms state of the art methods and is able to recover point sources

accurately even in severe noise conditions. For future work, it would be interesting to consider an

alternative (convex) formulation for FRI reconstructions, where a properly chosen atomic norm

(see e.g., [123]) is minimized subject to a data-fitting constraint.

2.A Derivation of the equivalent formulation of (P1)

The constrained optimization for the reconstruction of FRI signals is

min
b,c

‖a − Gb‖22

subject to R(c)b = 0

cH0 c = 1,

(2.17)

where c0 is a random initialization for the annihilating filter coefficients.

For a fixed c, (2.17) is a constrained quadratic minimization with respect to b. The associated

Lagrangian is:

L(b, �) = 1

2
‖a − Gb‖22 + �HR(c)b,

where � is the Lagrange multiplier. From the optimality conditions, we have:{
GH(Gb − a) +RH(c)� = 0,

R(c)b = 0.
(2.18)

Since G has full column rank (see footnote 2), from (2.18) we have

b = β −
(
GHG

)−1
RH(c)

(
R(c)

(
GHG

)−1
RH(c)

)−1

R(c)β, (2.19)

where β =
(
GHG

)−1
GHa.

We can substitute (2.19) into the objective function:

‖a − Gb‖22 =βHRH(c)
(
R(c)

(
GHG

)−1
RH(c)

)−1

R(c)β

+ ‖a − Gβ‖22
(a)
=cHTH(β)

(
R(c)

(
GHG

)−1
RH(c)

)−1

T(β)c

+ terms independent of c,

where (a) results from the definition of the right dual matrix in Definition 2.1.
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2.B Equivalent form for the solution of (2.3)

The Lagrangian associated with the constrained optimization (2.3) is

L(c, λ) =1

2
cHTH(β)

(
R(cn−1)(G

HG)−1RH(cn−1)
)−1

T(β)c

+ λ(cH0 c − 1).

From the optimality conditions, we have{
TH(β)

(
R(cn−1)(G

HG)−1RH(cn−1)
)−1

T(β)c+ λc0 = 0,

cH0 c = 1.
(2.20)

Denote an auxiliary variable

� =
(
R(cn−1)(G

HG)−1RH(cn−1)
)−1

T(β)c,

then (2.20) is equivalent to⎧⎪⎨⎪⎩
TH(β)�+ λc0 = 0,

R(cn−1)(G
HG)−1RH(cn−1)� = T(β)c,

cH0 c = 1.

(2.21)

We can apply the same manipulation again by introducing another auxiliary variable v =

(GHG)−1RH(cn−1)�, then (2.21) is equivalent to:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
TH(β)�+ λc0 = 0,

R(cn−1)v = T(β)c,

GHGv = RH(cn−1)�,

cH0 c = 1.

(2.22)

If we rearrange (2.22) in a matrix / vector form, we have (2.4).

Once we have the updated annihilating filter coefficients cn, (2.5) is obtained directly by

rewriting the optimality conditions (2.18) with c = cn as a linear system.

2.C Exact interpolation with Dirichlet kernel

Since x(t) has finite time support between − τ2 and τ
2 , we can rewrite x(t) with its periodized

version multiplied by a rectangular window: x(t) = rect(t/τ)
∑
n∈Z x(t−nτ). Hence, the Fourier



38 Continuous Sparse Recovery with Finite Rate of Innovation Sampling

transform of x(t) is

X(ω) =

∫ ∞

−∞
rect(t/τ)

∑
n∈Z

x(t − nτ)e−jωtdt
(a)
=

∫ ∞

−∞
rect(t/τ)e−jωt · 1

τ

∑
m∈Z

X

(
2πm

τ

)
ej

2πm
τ tdt

=
∑
m∈Z

X

(
2πm

τ

)∫ ∞

−∞

1

τ
rect

(
t

τ

)
e−j(ω− 2πm

τ )tdt =
∑
m∈Z

X

(
2πm

τ

)
sinc

(
τ

2

(
ω − 2πm

τ

))
,

(2.23)

where (a) is from the Poisson sum formula.

Further, from the periodicity of X(ω), we can rewrite the infinite summation in (2.23) as

X(ω) =
∑
n∈Z

∑
|m|≤	Mτ

2 

X

(
2πm

τ

)
sinc

(
τ

2

(
ω − 2π(m+ nMτ)

τ

))

=
∑

|m|≤	Mτ
2 


X

(
2πm

τ

)∑
n∈Z

sinc

(
τ

2

(
ω − 2π(m+ nMτ)

τ

))

=
∑

|m|≤	Mτ
2 


X

(
2πm

τ

)
sin

(
τω−2πm

2

)
Mτ sin

(
τω−2πm
2Mτ

) .

2.D Spherical harmonics of Diracs on the sphere

Conventionally, spherical harmonics of degree l and order m is defined as Y ml (θ, ϕ) = Nl,m

P
|m|
l (cos θ)ejmϕ. Here the normalization factor Nl,m = (−1)(m+|m|)/2

√
2l+1
4π

(l−|m|)!
(l+|m|)! ; and P

|m|
l is

the Legendre polynomial of degree l and order m (|m| ≤ l):

P
|m|
l (t) = (−1)|m|(1 − t2)|m|/2 d|m|

dt|m|Pl(t),

where Pl(t)
def
= 1

2ll!
dl

dtl
(t2 − 1)l. The spherical harmonic coefficient is given by the inner product

between the signal and the spherical harmonics basis on S
2:

Îl,m = 〈I(θ, ϕ), Y ml (θ, ϕ)〉

=

∫ 2π

0

∫ π

0

I(θ, ϕ)Nl,mP
|m|
l (cos θ)e−jmϕ sin θdθdϕ

=Nl,m

K∑
k=1

αkP
|m|
l (cos θk)e

−jmϕk .

Note that the |m|-th order derivative of the Legendre polynomial Pl(t) is a polynomial of degree

l − |m|. Hence, we may rewrite P
|m|
l in terms of canonical polynomial bases as:

P
|m|
l (t) = (−1)|m|(1 − t2)|m|/2

l−|m|∑
n=0

pl,n,|m|tn,
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for some coefficients pn,|m|, which are independent of where the polynomial is evaluated, and can

be precomputed. Consequently the spherical harmonic coefficient of the Diracs is:

Îl,m = Nl,m

l−|m|∑
n=0

pl,n,|m|
K∑
k=1

αk(cos θk)
n(sin θk)

|m|e−jmϕk .

2.E Coefficients of the canonical basis in (2.13)

First we derive the Legendre polynomial coefficients with the canonical basis. From the definition

Pl(t)
def
=

1

2ll!

dl

dtl
(t2 − 1)l =

l∑
n=0

p̃l,nt
n,

we know that the term tn can only come from the term with order l + n in the expansion of

(t2 − 1)l. Also, the expansion will be in terms of t2. Hence, we only have non-zero coefficients

for terms such that l + n is even.

• if � is even, then take n = 2n′ for 0 ≤ n′ ≤ l
2 :

Pl(t) =

l/2∑
n′=0

p̃l,2n′t2n
′
.

The coefficient for tl+2n′
in the expansion of (t2 − 1)l is:

(−1)
l
2 −n′

(
l

l
2 + n′

)
= (−1)

l
2 −n′

(
l

l
2 − n′

)
,

because we can choose t2 (l + 2n′)/2 = l/2 + n′ times among the l multiplying terms.

Equivalently, we are choosing the constant term (i.e., −1) l − (l/2 + n′) times.

Then the l-th derivative will introduce another factor:

(l + 2n′)(l + 2n′ − 1) · · · (2n′ + 1) =
(l + 2n′)!
(2n′)!

.

Therefore, the coefficients for the term t2n
′
is:

p̃l,2n′ =
(−1)

l
2 −n′

2ll!

(
l

l
2 − n′

)
(l + 2n′)!
(2n′)!

=
(−1)

l
2 −n′

2l

(
l

l
2 − n′

)
(l + 2n′)!
(2n′)!l!

=
(−1)

l
2 −n′

2l

(
l

l
2 − n′

)(
l + 2n′

l

)
for n′ = 0, · · · , l

2
.

• if l is odd, then take n = 2n′ + 1 for 0 ≤ n′ ≤ l−1
2 :

Pl(t) =

l/2−1∑
n′=0

p̃l,2n′+1t
2n′+1.
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The coefficients for tl+2n′+1 in the expansion of (t2 − 1)l is:

(−1)
l−1
2 −n′

(
l

l+1
2 + n′

)
= (−1)

l−1
2 −n′

(
l

l−1
2 − n′

)
.

From the l-th order derivative, we have an extra factor:

(l + 2n′ + 1)(l + 2n′) · · · (2n′ + 2) =
(l + 2n′ + 1)!

(2n′ + 1)!
.

The coefficients for the term t2n
′+1 is:

p̃l,2n′+1 =
(−1)

l−1
2 −n′

2ll!

(
l

l−1
2 − n′

)
(l + 2n′ + 1)!

(2n′ + 1)!
=

(−1)
l−1
2 −n′

2l

(
l

l−1
2 − n′

)
(l + 2n′ + 1)!

(2n′ + 1)!l!

=
(−1)

l−1
2 −n′

2l

(
l

l−1
2 − n′

)(
l + 2n′ + 1

l

)
for n′ = 0, · · · , l − 1

2
.

Observe that

d|m|

dt|m|Pl(t) =
�∑
n=0

p̃l,n
d|m|

dt|m| t
n =

l∑
n=|m|

p̃l,n n(n − 1) · · · (n − |m| + 1)︸ ︷︷ ︸
= n!

(n−|m|)!

tn−|m|.

With change of variable: n → n − |m|, we have

d|m|

dt|m|Pl(t) =
l−|m|∑
n=0

p̃l,n+|m|
(n+ |m|)!

n!︸ ︷︷ ︸
pl,n,|m|

tn.



Chapter 3

Multi-dimensional FRI Sampling
with Linear Sample Complexity*

Plurality should not be posited without

necessity.

William of Ockham

3.1 Introduction

Continuous-domain sparse recovery is a classic problem at the heart of various applications,

like point source estimation in radio astronomy [101], microscopic image super-resolution [108],

and direction of arrival estimation (DOA) with sensor arrays [118]. Typically, a low-pass fil-

tered version of the sparse signal (or equivalently its low frequency spectrum) is observed in the

measurement process. It is often the case that only a limited number of measurements is avail-

able—either due to the bandwidth of the instruments (as in microscopic imaging) or because of

the finite number of sensors (as in array signal processing).

Therefore, it is essential to devise an efficient algorithm that estimates the sparse signal

robustly from a set of discrete samples. The sampling framework for signals with finite rate of

innovation (FRI) [133] is a natural candidate for this task. For instance, it has been shown that a

periodic stream of Diracs in 1D, which consists of K Diracs within each period, is reconstructed

exactly from 2K+1 ideal samples of the Dirac stream. The key to the FRI-based reconstruction is

the annihilating filter method [103, 133], which allows the enforcement of the continuous domain

sparsity constraint with a discrete convolution equation (see Section 1.2.1). In the previous

*The material in this chapter is the result of joint work with Thierry Blu and Martin Vetterli [99].

41
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Table 3.1: Sample complexities of separate and joint estimation approaches to reconstruct K
D-dimensional Diracs.

Approach
Separate
estimation

(Section 3.2.1)

Joint estimation with
hypercubic sample shape
(Corollary 3.1 and 3.4)

Joint estimation with
flexible sample shape
(Corollary 3.2 and 3.5)

minimum number
of samples

(K + 1)D 2DK (D + 1)K

sample complexity O
(
KD

)
O(K) O(K)

degrees of freedom (D + 1)K

chapter, the FRI framework has been generalized to cope with non-uniform measurements [96],

making the framework applicable to many practical problems, such as radio astronomy [98] and

DOA estimation for arbitrary array layouts [97]. Previous attempts to extend the FRI-based

sparse recovery to two dimensions led to various sampling schemes for polygons [29, 115], and

curves [52, 90, 95].

The focus in this chapter is on sampling and reconstruction of high dimensional Diracs, which

is directly related to point source estimation in various fields. Previous FRI-based approaches

for two-dimensional Diracs [84] recasts the problem as two sub-problems, which estimate the

Dirac locations along horizontal and vertical directions separately. The separate reconstruc-

tion approach requires an additional pairing step to combine the estimated Dirac coordinates.

Additionally, the sample complexity is quadratic in 2D [84, 96].

Alternatively, as we propose in this chapter, we reconstruct multi-dimensional Diracs by

enforcing the annihilation constraints in all dimensions simultaneously. The Dirac locations are

then given by the intersections of hypersurfaces, which are the zero-crossings of multivariate

polynomials with coefficients specified by the reconstructed annihilating filter coefficients. For

instance, in 2D, the estimation of Dirac locations amounts to finding the intersections of two

curves, which can be computed algebraically by finding the common roots of two polynomials

(see Figure 3.1 and Section 3.2.1). Our main contributions in this chapter are:

(i) The extension of the generic FRI sampling and reconstruction framework [96] to higher

dimensions (two dimensions and above)— the resulting sampling scheme has linear sample

complexity in signal sparsity (see e.g., Corollary 3.1). The reduced sample complexity is

a significant improvement over our previous approach, where the multi-dimensional sparse

recovery was reduced to several one-dimensional sub-problems and where, for a fixed number

of Diracs, the minimum required sample size increases exponentially with respect to the

dimension. We summarize sample complexities of the previous separate estimation and the

new joint estimation approaches in Table 3.1.

(ii) An iterative algorithm (similar to the one in [96]) to solve the multi-dimensional FRI recon-

struction1 (Section 3.2.2). The algorithm makes it possible to apply the multi-dimensional

FRI-based sparse recovery to practical problems, where the measurements are not neces-

sarily taken uniformly (see Chapter 4 for a concrete example in radio astronomy).

Before proceeding, we point to literature on sparse recovery in high-dimensions. Prony’s

method [103], which is at the root of the FRI-based sparse recovery, also plays an essential

1The Python code will be available at http://lcav.epfl.ch/people/hanjie.pan
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role in high-resolution spectrum estimation. Various attempts have been made to generalize the

approach to high dimensions such as matrix enhancement and matrix pencil (MEMP) [67] and

ESPRIT-like subspace methods [70, 105, 106, 109]. One drawback with MEMP is the necessity to

have an additional pairing step in order to obtain the final multi-dimensional reconstruction. The

sample complexity is quadratic in terms of signal sparsity in 2D [67]. In comparison, ESPRIT-

like approaches exploit the shift-invariance property of several sub-matrices, which are jointly

diagonalized, and achieve linear sample complexity [70, 109] (albeit the requirement of having at

least 4 samples along each dimension). Recent efforts have been made to extend Prony’s method

to multi-dimensional settings [74, 102]. However, the sample complexity with the proposed

approach therein scales exponentially in terms of the signal dimension [74]. Finally, recent work

on spectral compressed sensing (e.g., [30]) is not directly related with the multi-dimensional

Dirac reconstruction. Instead, the focus is on recovering the Fourier spectrum of the sparse

signal, which is partially sub-sampled on a grid: the sparse signal parameters are retrieved with

standard spectrum estimation algorithm, such as MEMP [67], once the full spectrum has been

recovered.

The rest of the chapter is organized as follows. First, we adapt the generic FRI reconstruction

framework developed in the previous chapter to address the two-dimensional sparse recovery in

Section 3.2.1. Sample complexity as well as the reconstruction algorithm details are discussed in

Section 3.2.2. Then, the FRI-based 2D sparse recovery is further generalized to higher dimensions

in Section 3.2.3. Next, we validate the proposed approach with simulations in Section 3.3. The

significance of the new approach will be further investigated in two applications on point source

reconstruction in radio astronomy and direction of arrival estimation with microphone arrays in

the following two chapters.

3.2 Methods

3.2.1 FRI reconstruction in 2D

In our previous approach [96], the multi-dimensional problem was reduced to several sub-prob-

lems by enforcing the annihilation constraints along each dimension separately (Section 3.2.1).

We discuss the limitations associated with the separate estimation approach and propose an

alternative formulation, where the annihilation constraints are enforced along all dimensions

simultaneously (Section 3.2.1).

Separate estimation formulation

In [96], the multi-dimensional FRI reconstruction problem was recast as separate annihilation

problems along each dimension. Take the reconstruction of K two-dimensional Diracs as an

example. The Fourier transform on a uniform grid can be annihilated by two discrete filters of

size K + 1 along rows and columns, respectively:

min
c1∈C1,b

‖a − Gb‖22
subject to c1 ∗ b = 0

and
min

c2∈C2,b
‖a − Gb‖22

subject to c2 ∗ b = 0
. (3.1)

Here

• a is the vector of the given measurements of the 2D Diracs, e.g., the ideally low-pass filtered
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samples.

• b is the vector of the (unknown) uniformly sampled Fourier transform, e.g., the vectorized

Fourier series coefficients of the 2D Diracs in a column-by-column order.

• G is the linear transformation that links the sinusoidal samples b to the ideally low-pass

filtered samples a, e.g., the inverse DFT transformation.

• c1 and c2 are the annihilating filters along the horizontal and vertical directions, respec-

tively. They each belong to a certain space, e.g., C1 =
{
c1 ∈ C

K+1|
(
c
(0)
1

)H
c1 = 1

}
where

c
(0)
1 is a random initialization of c1 in the iterative algorithm (see [96] for details). C2 is

similarly defined.

The x-coordinates (respectively y-coordinates) are then given by the roots of a univariate poly-

nomial whose coefficients are specified by c1 (respectively c2).

All Diracs that are located on the K2 intersections of the reconstructed x and y coordinates

(see Figure 3.1(a)), satisfy the annihilation constraints in both problems in (3.1). Therefore, it

is necessary to find the correct correspondence among the possible x and y locations in order

to reconstruct the 2D Diracs. The exhaustive approach amounts to considering
(
K2

K

)
possible

combinations, which becomes computationally infeasible with a large number of Diracs. In [96],

we showed experimentally that we can identify the (x, y)-pairs by reconstructing amplitudes of

Diracs, which are located at K2 possible x and y intersections, all at once with least square

minimization. Then, the coordinates of the K Diracs (among the K2 possibilities) that have the

largest amplitudes give the Dirac locations in 2D. Finally, we reconstruct the Dirac amplitudes

with the K correctly identified 2D Dirac locations.

Despite the empirical success of such a simple strategy, there are two noticeable drawbacks:

(i) The restrictive shape of the 1D filters used in the separate estimation approach, requires

that the uniform sinusoidal samples b should be at least (K+1)× (K+1), which increases

quadratically with respect to the number of Diracs. However, an optimal algorithm should

only use O(K) number of measurements. More generally, in D dimensions, the sample

complexity of the separate estimation approach is O(KD), i.e., a penalty of O(KD−1) over

the optimal linear sample complexity.

(ii) The two 1D FRI reconstructions in (3.1) are solved independently, without enforcing the

estimated uniform sinusoidal samples b to be the same. But we know that there is always

a feasible solution (i.e., the noiseless b) that satisfies both annihilation constraints in the

two 1D problems and fits the given measurements up to the noise level. Additionally, since

b should be the same in both problems, any linear combination of the two filters c1 and c2
is also a valid solution. Therefore, instead of estimating two annihilating filters separately,

what we should reconstruct is a set of (two) linear independent vectors that spans the null

space of the convolution matrix associated with b.

Because of the limitations above, we now propose a new joint estimation approach.
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Joint estimation formulation

Instead of solving two 1D Dirac estimations separately, a more natural choice for the 2D FRI

reconstruction is:
min

c1,c2∈C,
b

‖a − Gb‖22

subject to c1 ∗ b = 0

c2 ∗ b = 0.

(3.2)

The goal is to estimate a set of uniform sinusoidal samples b, which fits the noisy measurements

(up to the noise level) and two annihilating filters c1, c2 that form bases of the null space of the

convolution matrix specified by b. Note that here c1 and c2 are, in general, 2D non-separable

filters. Here, C specifies a few2 linear constraints such that the solution to (3.2) corresponds to

one (out of many possible) set of annihilating filters that spans the null space of the convolution

matrix specified by b. One possible choice is C =
{
C|CT

0C+CTC0 = 2I
}
, where C and C0

are 2-column matrices, with columns specified by the two annihilating filters c1, c2 and their

corresponding initializations c
(0)
1 , c

(0)
2 , respectively.

A necessary condition in order to satisfy the annihilation equations is that the DTFT of each

of the two annihilating filters c1 and c2

μ(x, y) =
∑
k,l

ck,l
(
e−j2πx/τ1)k(e−j2πy/τ2)l, (3.3)

should vanish at the Dirac locations (xk, yk) for k = 1, · · · ,K:

μ(xk, yk) = 0.

Here ck,l = [ci]k,l for i = 1 or 2 and τ1, τ2 are the periods of the 2D Dirac stream along x and y

directions, respectively.

The corresponding FRI signal (i.e., the zero-crossings of a bivariate polynomial (3.3) with

respect to e−j2πx/τ1 and e−j2πy/τ2) is a curve [95]. Any Dirac located on this curve satisfies the

annihilation constraints in (3.2). The 2D Dirac locations are then obtained from the intersections

of the two curves (Figure 3.1).

A straight-forward way to determine the intersections of curves, is to evaluate both bivariate

polynomials (with coefficients specified by c1 and c2) on a grid: with a finer grid, more accurate

Dirac locations can be determined. Alternatively, we will discuss in details an algebraic approach

in Section 3.2.2, which treats the curve intersections as the common roots of two polynomials.

This approach allows us to determine the curve intersections reliably without resorting to grid

search.

3.2.2 Algorithm and implementation

We give algorithmic details related to the joint estimation introduced in the previous section.

We first derive the sample complexity with respect to the number of Diracs in Section 3.2.2.

Next, an algebraic approach is outlined in Section 3.2.2, which finds curve intersections based on

the Bézout resultant of a polynomial system. Finally, an iterative algorithm to solve the joint

annihilation problem (3.2) is presented in Section 3.2.2.

2In general, (D + 1)D/2 constraints are needed to uniquely specify a set of orthogonal vectors that spans a
vector space of dimension D.
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(a) Separate estimation (b) Joint estimation

Figure 3.1: Joint estimation of 2D Diracs based on curve intersections. The Dirac locations
are given by the intersections of two curves C1 and C2 (see text in Section 3.2.1). (a) The zero-
crossings of two univariate polynomials specified by two 1D annihilating filters in the separate
estimation. (b) The zero-crossings of two (bivariate) polynomials specified by general shaped 2D
annihilating filters in the joint estimation.

Sample complexity of 2D Dirac estimation

Conventionally, a (K+1)-tap annihilating filter is used in order to recover K Diracs in 1D [133].

In higher dimensions, e.g., 2D, it is not always possible to have a general 2D filter with a size

matched to the number of Diracs K (except in the degenerated cases where the 2D filter reduces

to a 1D filter). We then need to specify the support size (i.e., the number of non-zero entries)

for a given choice of a 2D filter shape.

Proposition 3.1 (Filter support size)

Suppose the two annihilating filters in (3.2) have the same support, then the minimum support

size is K + 2 for the estimation of K Diracs.

Proof.

See Appendix 3.A.

Because the annihilating filter is scale-invariant with respect to any non-zero scalar, each filter

has one degree of freedom less than the total number of non-zero elements. Consequently, at

least 2(K + 1) annihilation equations are needed to reconstruct K Diracs.

In a typical setup, an equal number of samples is available along each direction. Under this

assumption, a filter shape, which is as square as possible, e.g.,
⌈√

K + 2
⌉

×
⌈√

K + 2
⌉
, allows

the maximum number of annihilation equations to be built3. Since the ideally low-pass filtered

samples have a direct correspondence with the uniform sinusoidal samples, we can derive the

sample complexity by comparing the total number of equations (from the annihilation constraint

3For cases where the sample sizes differ along each direction, we may choose the filter shapes accordingly such
that the ratio of the filter sizes along each direction is the same with that of the sample sizes.
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and the normalization of the filter coefficients C1 and C2) with the unknowns (i.e., the filter

coefficients).

Corollary 3.1 (Sample complexity)

Assuming that the ideally low-pass filtered sample size isM×M , whereM is an odd number4.

In order to reconstruct K 2D Diracs, the sample size should satisfy

M ≥
√
K + 2 +

√
K − 1. (3.4)

Proof.

See Appendix 3.B.

From (3.4), the minimum number of samples M2 has a linear complexity O(K) with re-

spect to the number of Diracs. In comparison, the sample complexity is O(K2) in the previous

approach, where the annihilation constraints were enforced separately along each direction (see

Section 3.2.1). For K 2D Diracs, the degrees of freedom are 3K: 2K for the Dirac locations and

K for the amplitudes. The total degrees of freedom give the lowest possible sample complexity

of any reconstruction algorithm. It is possible to reach this lower bound with the proposed

joint estimation if the sample sizes are not required to be the same along each dimension. We

summarize the result with a simplified setup, where uniformly sampled Fourier transform of the

Diracs are directly available.

Corollary 3.2

For simplicity, let the number of Diracs K be an even number, then K 2D Diracs can be

reconstructed from 2 × (K/2 +K) uniform Fourier transform samples of the Diracs.

Proof.

The proof follows similarly to that of Corollary 3.1 by choosing annihilating filters of shape

2 × (K/2 + 1).

We show the achievable sample complexity with the separate and the proposed joint estima-

tion approaches against the total degrees of freedom in Figure 3.2.

The merits of an algorithm with lower sample complexity are two-fold: Not only can more

Diracs be reconstructed for a given sample size, but also a more robust reconstruction may be

expected—Because of more efficient data utilization, more annihilation equations are available

to further constrain the reconstruction. We demonstrate both improvements with simulations in

Section 3.3.1 and Section 3.3.2.

Finally, we point out that the proposed joint annihilation approach can also cope with the

singular cases where some Diracs have the same x or y coordinates. In these cases, the minimum

size of the annihilating filter is further constrained by the number of Diracs that have common

x or y locations. Please refer to Appendix 3.C for detailed discussions and Section 3.3.3 for an

example.

Polynomial common-root finding

Instead of resorting to grid search for finding the curve intersections, an alternative approach

is to re-cast the geometric problem as finding the common roots of two polynomials. Since the
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Figure 3.2: Sample complexities (ideal low-pass filtering with equal sizes along each dimension)
of the proposed joint and the previous separate estimation approaches. The joint estimation
approach is able to estimateK Diracs from 3K measurements if the sample sizes are not restricted
to be the same along each dimension (see Corollary 3.1 and Corollary 3.2).

mask function (3.3) is a bivariate polynomial with respect to u = e−j2πx/τ1 and v = e−j2πy/τ2 ,
the curve intersections are the solutions of:{

0 = μ1(u, v) =
∑
k,l[c1]k,lu

kvl,

0 = μ2(u, v) =
∑
k,l[c2]k,lu

kvl.
(3.5)

One way to determine the polynomial common roots is to compute the Bézout resultant [26,

120] of the polynomial system of equations. It is based on the following two observations:

(i) The bivariate polynomials in (3.5) can be rearranged with respect to one variable, e.g., u,

where the polynomial coefficients are functions of the other variable, e.g., v:

μ1(u, v) =

K1−1∑
k=0

pk(v)u
k and μ2(u, v) =

K2−1∑
k=0

qk(v)u
k.

Here pk(·) and qk(·) are some polynomials of v, and the filters c1 and c2 in (3.5) are of size

L1 × K1 and L2 × K2, respectively.

(ii) For any n ≥ 0, we have

unμ1(u, v) = unμ2(u, v) = 0.
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From (i) and (ii), we can build a linear system of equations in terms of a vector
[
u0, · · · , uK1+K2−3

]T
:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

p0 · · · pK1−1 0 · · ·

0 p0 · · · pK1−1
. . .

...
. . .

. . .
. . .

q0 · · · qK2−1 0 · · ·

0 q0 · · · qK2−1
. . .

...
. . .

. . .
. . .

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
︸ ︷︷ ︸

A(v)

⎡⎢⎣ u0

...

uK1+K2−3

⎤⎥⎦ = 0. (3.6)

A necessary and sufficient condition for the polynomial systems (3.5) to have common roots is

that the Bézout resultant should vanish (see [36] Theorem 7):

det(A(v)) = 0. (3.7)

Since (3.7) is a polynomial equation of v with constant coefficients, the common roots vk
def
=

e−j 2π
τ2
yk are then given by the roots of this univariate polynomial. Once we have computed vk,

uk
def
= e−j 2π

τ1
xk is obtained from (3.5) with v = vk. Unlike the separate estimation cases, an extra

pairing step (see text in Section 3.2.1) is no longer needed: indeed, from the common root finding

procedure, the Dirac locations in 2D are directly reconstructed with the correct association.

From (3.6), the degree of the polynomial in (3.7) is:

(K2 − 1)max
k

(deg(pk(v))) + (K1 − 1)max
k

(deg(qk(v))). (3.8)

Consequently, there are at least5 a number of common roots given by (3.8). In general, this

may be larger than the number of Diracs K. The reason is that in the root-finding procedure,

we proceed as if the common roots were arbitrary complex numbers. However, since our goal

is to reconstruct multi-dimensional Diracs (which have real-valued coordinates, i.e., xk, yk ∈ R),

the roots are necessarily located on the unit circle6. One way to eliminate invalid solutions for

the Dirac reconstruction (i.e., the uk, vk that leads to complex-valued xk, yk) is based on the

moduli of the common roots. However, it is not always obvious how to choose an adequate

threshold level on the moduli of the roots in noisy scenarios. Alternatively, an approach that

works empirically is as follows: all roots are first projected onto the unit circle uk/|uk|, vk/|vk|,
from which the Dirac locations are reconstructed. Then, amplitudes for all Diracs are estimated

by minimizing the discrepancies between the re-synthesized and given measurements in the least

square sense. The valid Dirac locations then correspond to the ones that have the K largest

amplitudes. We then solve the least square minimization once more with the extracted K Dirac

locations (see [96] for a similar treatment in the separate annihilation of 2D Dirac cases).

5There could be multiple roots for u with a given v = vk.
6With the strategy used here, any damping factors are eliminated, which could be important in another

related (but different) spectrum estimation problem [118]. Further investigation is required to apply the proposed
approach to general spectrum estimation in future work.
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Iterative algorithm for the joint annihilation

Following the notation in the previous chapter, let T(·) be the operator that builds the Toeplitz

matrix from the input data and the associated right dual R(·) such that R(c)b = T(b)c, ∀c,b.
Then the joint annihilation constraints in (3.2) amount to vertically stacking two right dual

matrices: [
R(c1)

R(c2)

]
b = 0. (3.9)

For a set of uniform sinusoidal samples b with a sufficiently large size (compared with that of

the filters), it may appear that we could have more equations than unknowns. For instance, if

the shape of both filters c1 and c2 is 2× 2 and that of the sinusoidal samples b is 5× 5, then the

total number of annihilation equations is 32 (i.e., 4 · 4 + 4 · 4), which is larger than the size of b

(i.e., 25 in this example). If we solve (3.2) with the annihilation constraint (3.9) for any fixed c1
and c2 different from zero, then it appear that b would be forced to be identically zero. But as

we will show next, the vertically stacked convolution matrices in (3.9) do not have full rank.

Corollary 3.3 (Null space dimension)

Define the joint annihilation matrix as

Rjoint
def
=

[
R(c1)

R(c2)

]
,

then the null space dimension of Rjoint is at least 2(K0 − 1)(L0 − 1) for filters c1 and c2 of

size L0 × K0.

Proof.

See Appendix 3.D.

In terms of implementation, this requires the extraction of the independent rows of Rjoint

when (3.2) is minimized with respect to b (for a certain choice of c1 and c2) at each iteration.

One possibility is to resort to the QR-decomposition7 of the joint annihilation matrix. Let

Rjoint = QU, where Q is an orthogonal matrix and U is an upper triangle matrix, and Qsub

extracts all but the last (K2 − 1)(L1 − 1) + (K1 − 1)(L2 − 1) columns of Q. Then, the joint

annihilation matrix Rjoint is replaced with QH
subRjoint, which is an orthogonal projection onto

the row space of Rjoint. Similarly, we can express the two linearly independent annihilating

filters with their effective degrees of freedom, which are less than their total sizes. Specifically,

the iterative algorithm (see details in Appendix 3.E) involves the convolution between β
def
=

(GHG)−1GHa and the two annihilating filters. Let the QR-decomposition of T(β)H be Q̃Ũ,

then the convolutions can be equivalently written as:{
T(β)c1 = 0

T(β)c2 = 0
⇔

{
T(β)Q̃1γ1 = 0

T(β)Q̃2γ2 = 0
,

for two linearly independent vectors8 c1 = Q̃1γ1 and c2 = Q̃2γ2. Here Q̃1 = Q̃ and Q̃2 is a

7Alternatively, we can use the singular value decomposition, which is computationally more demanding.
8In D dimensions, D linearly independent annihilating filters are represented as ci = Q̃iγi for i = 1, · · · , D,

where Q̃i is a sub-matrix built from all but i − 1 columns of Q̃.
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sub-matrix of Q̃ that consists of all but one column of Q̃. In the algorithm, only γ1 and γ2 are

reconstructed.

An equivalent formulation of (3.2) (expressed in terms of γ1 and γ2) is derived in Ap-

pendix 3.E, based on which an iterative algorithm (similar to that in [96]) is proposed. For

numerical stability, we may introduce auxiliary variables such that no nested matrix inverses are

involved at each iteration. It can be shown9 that at each iteration, the updated γ1 and γ2 are

solutions of an extended linear system of equations:⎡⎢⎢⎣
0 Tjoint(β)

HQsub 0 Γ∗
0

QH
subTjoint(β) 0 −QH

subRjoint 0

0 −RH
jointQsub GHG 0

ΓT
0 0 0 0

⎤⎥⎥⎦
⎡⎢⎢⎣
γ

�

v

λ

⎤⎥⎥⎦=

⎡⎢⎢⎣
0

0

0

ρ

⎤⎥⎥⎦ , (3.10)

where �, v, λ are auxiliary variables, γ =
[
γT
1 ,γ

T
2

]T
and the constant vector ρ = [1, 1, 0]

T
. Here

Γ0 is a 3-column matrix specified by initializations of the two annihilating filters:

Γ0 =

[
Q̃T

1 c
(0)
1 0 Q̃T

1 c
(0)
2

0 Q̃T
2 c

(0)
2 Q̃T

2 c
(0)
1

]
,

and

Tjoint(β) =

[
T(β)Q̃1 0

0 T(β)Q̃2

]
.

The uniform sinusoidal samples b are updated as the solution of[
GHG RH

jointQsub

QH
subRjoint 0

] [
b

�

]
=

[
GHa

0

]
, (3.11)

where � is an auxiliary variable. We summarize the joint estimation algorithm in Algorithm 2.

3.2.3 Generalization to higher dimensions

In the previous two sections, we detailed the problem formulation and reconstruction algorithm

for the joint annihilation problem in 2D. The approach can be generalized to higher dimensions

following the same line of reasoning. Specifically, for Dirac reconstruction in D-dimensions, the

joint estimation amounts to solving

min
c1,··· ,cD∈C,

b

‖a − Gb‖22

subject to ci ∗ b = 0, for i = 1, · · · , D,
(3.12)

where C is similarly defined as in the 2D cases. The D-dimensional Dirac locations are the

common roots of D polynomials whose coefficients are specified by the annihilating filters ci for

i = 1, · · · , D. Geometrically, the Dirac locations are the intersections of D hypersurfaces, which

are the zero-crossings of these D-variate polynomials.

One way to compute the common roots of multiple polynomials is to collect all polynomials

with respect to one variable and compute the Bézout resultants of polynomial pairs, which

9We omit the derivation for brevity, which are very similar to the ones in Appendix 2.A and Appendix 2.B in
the previous chapter.
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Algorithm 2: Joint estimation of 2D Diracs

Input : Measurements of the 2D Diracs a, the linear transformation matrix G,
(optional) noise level ε.

Output: annihilating filters c1, c2, uniform sinusoidal samples b.

if ε not given then
ε = 0

end

for loop ← 1 to max. initializations do

1 Initialize c1 with c
(0)
1 , c2 with c

(0)
2 ;

for n ← 1 to max. iterations do

2 Build Rjoint from c
(n−1)
1 and c

(n−1)
2 and computes its QR-decomposition;

3 Build the linear system (3.10) and update c
(n)
1 and c

(n)
2 as Q̃1γ1 and Q̃2γ2;

4 Build the linear system (3.11) and update b(n) from its solution;

if
∥∥a − Gb(n)

∥∥2
2

≤ ε2 then
5 Terminate both loops;

end

end

end

6 b ← b(n) and c ← c(n).

themselves are polynomials of the other variables. The elimination process is then repeated by

computing the resultant of resultants (which depends on one less variable) until the resultant

reduces to an univariate polynomial, whose roots can be computed directly.

Concretely, take the 3D case as an example. Let μ1(x, y, z), μ2(x, y, z), μ3(x, y, z) be the poly-

nomials specified by the annihilating filters and ress(·, ·) be the resultant of two polynomials with

respect to s. Then resz(μ1, μ2) and resz(μ2, μ3) are bivariate polynomials of x and y. The com-

mon roots in x is given by the roots of the univariate polynomial resy
(
resz(μ1, μ2), resz(μ2, μ3)

)
.

Such a recursive approach may not be numerically stable, especially for polynomials of higher

degree (i.e., more Diracs K). Further work is needed to find alternatives in determining the

common roots of multiple polynomials. One possible idea could be based on [91], where the

canonical polynomial basis is replaced with Chebyshev polynomials.

For simplicity, if we assume that the sample size is the same along each dimension, then by

choosing annihilating filters of size10
⌈
(K +D)1/D

⌉
along each dimension, the maximum number

of annihilation equations can be built from the given samples. The sample complexity compared

with the number of Diracs is summarized as follows.

10This is because the filter support size is K +D in D-dimension Dirac reconstruction. See Appendix 3.A for
details.
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Figure 3.3: Illustration of sample and annihilating filter shapes in the critical sampling cases
in 3D (see Corollary 3.5).

Corollary 3.4 (D-dimensional sample complexity)

Assuming that the ideally low-pass filtered sample size is M × · · · × M︸ ︷︷ ︸
D terms

, then the sample size

M , which is an odd number, should satisfy

M ≥ (K +D)1/D +K1/D − 1, (3.13)

in order to reconstruct K D-dimensional Diracs.

The minimum total number of samples required MD is linear in terms of the number of

Diracs K. For K � D, the sample complexity can be approximated as MD ≥ 2DK. Even

though the sample complexity is still proportional to the number of Diracs, the proportion factor

grows exponentially with respect to the dimension. In comparison, the total degrees of freedom

of K D-dimensional Diracs are (D + 1)K. The gap is bridged as soon as sample sizes are not

required to be the same along all dimensions. We summarize the result as follows.

Corollary 3.5

For simplicity, let the number of Diracs K be an integer multiple of the dimension D, then

K D-dimensional Diracs can be reconstructed from (D + 1)K uniformly sampled Fourier

transform of the Diracs, which are supported at indices k = (k1, · · · , kD) such that

• k1 = 0, · · · ,K/D +K − 1;

• kj = 0, 1 for j �= 1 and
∑D
j=2 kj ≤ 1 (i.e., at most one j such that kj can be non-zero).

Proof.

The proof is straightforward by choosing a filter that has the same support with the Fourier

samples kj for j = 2, · · · , D and k1 = 0, · · · ,K/D.

Pictorially, the samples and filters consist of D parallel “lines” along dimension k1. We

illustrate this with an exampled in 3D (Figure 3.3). Further investigation is required to design

a sampling scheme such that these uniform Fourier transforms are accessible from a given set of

spatial domain samples of the same size.

The joint estimation approach in higher dimensions is exemplified with a 3D Dirac recon-

struction example with noiseless and noisy measurements in Section 3.3.4.
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Figure 3.4: Exact reconstruction of 7 Diracs on a 2D plane from 5 × 5 ideally low-pass filtered
samples. (a) The noiseless ideally low-pass filtered samples. (b) The exact reconstruction with
the proposed joint estimation. The joint annihilation approach utilizes the given measurements
efficiently. In comparison, the separate annihilation approach fails to reconstruct any Dirac,
because it requires a minimum sample size 8 × 8 in this case.

3.3 Results

In this section, we validate the proposed joint annihilation algorithm with synthetic experi-

ments for the reconstruction of multi-dimensional Diracs. Diracs are ideally low-pass filtered

and uniformly sampled with equal sample sizes along each dimension. We first demonstrate

the improvements of the joint estimation approach in 2D (Section 3.3.1 to Section 3.3.3). The

generality of the proposed method is further exemplified with a 3D simulation in Section 3.3.4.

In all simulations, 50 random initializations and 20 maximum iterations per initialization are

used in the joint estimation algorithm (Algorithm 2).

3.3.1 Efficient data utilization

In our previous approach, where the annihilation constraints were enforced separately, the sample

size along each dimension should at least be the size of the 1D annihilating filter. The restrictive

filter shape limits the applicability of the separate estimation approach. Such an artificial con-

straint is lifted with the new approach: as long as the sample size satisfies (3.4) in 2D or more

generally (3.13) in D dimensions, Diracs can be successfully estimated.

We demonstrate the efficiency of the joint estimation approach with a periodic stream of

Diracs in 2D. Within each period [0, 1)× [0, 1), 7 Diracs of random amplitudes and locations are

ideally low-pass filtered and uniformly sampled. Even with sample size as small as 5 × 5, the

joint annihilation approach manages to reconstruct Diracs exactly (Figure 3.4). Both annihilating

filters used here are of size 3 × 3. In comparison, the separate estimation (3.1) has to use two

1D filters of length 8 and hence requires a minimum sample size 8× 8. Because of the restriction

on the filter shapes, the previous separate approach fails to reconstruct any Dirac from such a

limited number of samples.
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Figure 3.5: Average reconstruction error of 2D Diracs against different noise levels with the
joint and separate estimation approach, respectively. The reconstruction error at each noise level
is averaged over 3000 different noise realizations (number of Diracs: 7, ideally low-pass filtered
sample size: 9 × 9).

3.3.2 Robust reconstruction

Another improvement, as a consequence of the flexible annihilating filter shapes, is that more

annihilation equations can be built from the given measurements. These extra equations further

constrain the reconstruction, leading to a more robust estimation in the presence of noise.

To quantify these improvements experimentally, we consider a periodic stream of Diracs,

which consists of 7 Diracs with random locations and amplitudes within each period. The ideally

low-pass filtered and uniformly sampled measurements (sample size: 9×9) are contaminated with

Gaussian white noise such that the signal to noise ratio (SNR) varies from −10 dB to 40 dB. We

measure the reconstruction quality with the average distance11 between the estimated and ground

truth Dirac locations. The performances of both the joint and separate estimation approaches

are averaged over 3000 different noise realizations at each noise level. The joint estimation

approach reaches the Cramér-Rao lower bound down to around 12 dB. In comparison, the

separate estimation does not reach the lower bound even in very high SNR cases (Figure 3.5).

3.3.3 Dirac with common x / y coordinates

In specific cases where some Diracs share common x or y coordinates, the annihilating filter

shapes are further constrained as a consequence of the fundamental theorem of algebra (see

details in Appendix 3.C). Similar to examples in the previous two sections, we consider 2D

periodic stream of Diracs with unit period. Within each period, 5 Diracs of unitary amplitudes

are simulated such that they are arranged in a dagger-shape (the right column in Figure 3.6).

From our analysis in Section 3.2.2, the minimum annihilating filter shape is
⌈√

7
⌉

×
⌈√

7
⌉
(i.e.,

3 × 3) in the generic cases where no Diracs share common coordinates along any direction.

However, in this specific case, there could be up to 3 Diracs that share the same x (or y)

11The pairing between the reconstruction and the ground truth is identified by permuting the Dirac locations
such that the distance between the permuted reconstruction and the ground truth Dirac locations is minimized.
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Figure 3.6: Reconstruction of 2D Diracs, some of which have common x or y coordinates,
with the joint estimation (3.2). (a) The exact reconstruction from the noiseless ideally low-pass
filtered samples (sample size: 7 × 7). (b) Robust estimation of 2D Diracs from noisy samples
(sample size: 11 × 11, SNR = 5dB, reconstruction error on the Dirac locations: 1.2 × 10−2).

coordinates. From our analysis in Appendix 3.C, the annihilating filter shape, therefore, should

be at least 4 × 4. The joint estimation of the 2D Diracs from 7 × 7 noiseless ideally low-pass

filtered samples, are shown in Figure 3.6(a). Additionally, we also considered the case with noisy

samples (size: 11 × 11). Gaussian white noise is added to the noiseless samples such that the

signal to noise ratio is 5 dB. The reconstruction error on the Dirac locations is 1.2 × 10−2.

3.3.4 Dirac reconstruction in 3D

To demonstrate the generality of the joint estimation approach to higher dimensions (see Sec-

tion 3.2.3), we show an example of a periodic stream of Diracs in 3D. Within each period (1

along each dimension), 5 Diracs with random locations and amplitudes are simulated.

In the first case, the Diracs are ideally low-pass filtered and sampled. The joint estimation

reconstructs 5 Diracs exactly from the minimum number of noiseless samples based on Corol-

lary 3.4, i.e., 3 × 3 × 3 (Figure 3.7(a)).

Next, we consider the same 3D Diracs but the samples are contaminated by Gaussian white

noise such that the signal to noise ratio is 5 dB. In this noisy scenario, the Diracs are over-
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Figure 3.7: Reconstruction of 3D periodic stream of Diracs from ideally low-pass filtered sam-
ples. (a) Exact reconstruction from the noiseless samples (sample size: 3 × 3 × 3). (b) Robust
reconstruction from noisy samples (sample size: 7 × 7 × 7, SNR = 5dB, average reconstruction
error on the Dirac locations: 1.35 × 10−2). Maximum intensity projection is used to project the
3D samples onto relevant planes for display.

sampled (compared with the minimum sample sizes). The average reconstruction error on the

Dirac locations from 7 × 7 × 7 noisy samples is 1.35 × 10−2 (Figure 3.7(b)).

3.4 Conclusion

We have proposed an efficient FRI-based sampling scheme for multi-dimensional Dirac estima-

tion. The minimum sample size required, in order to have the exact reconstruction, scales linearly

with the number of Diracs. The linear sample complexity is a substantial improvement over pre-

vious separate estimation method, which has an exponential scaling in the space dimension. We

have adapted the algorithmic framework for the reconstruction of FRI signals [96] to estimate

multi-dimensional Diracs reliably. The Dirac locations are determined by the intersections of

hypersurfaces, which are the zero-crossings of the reconstructed mask functions. The efficiency

and robustness of the proposed approach has been validated in simulations.

Because of more efficient data utilization as well as a more robust performance, the joint

estimation approach of FRI signals may have significant implications for many real applications.

In the following two chapters, we adapt the continuous-domain sparse recovery techniques to

the challenging point source estimation problem in radio astronomy (Chapter 4) and direction

of arrival estimation problem in acoustics (Chapter 5).
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3.A Support size of a 2D annihilating filter

For brevity of derivations, we use multi-index notation, where z =(z1, z2)=
(
e−j2πx/τ1 , e−j2πy/τ2),

k = (k, l), and zk = (zk1 , z
l
2). Let the support size of a 2D annihilating filter c be S and the

non-zero indices in the filter be ks = (ks, ls) for s = 1, · · · , S.
From the annihilation constraint, we have that the mask function should vanish at each one

of the K Dirac locations:

μ
(
z(i)

)
=

S∑
s=1

(
z(i)

)ks
cks = 0,

for i = 1, · · · ,K, i.e., ⎡⎢⎢⎣
(
z(1)

)k1 · · ·
(
z(1)

)kS
... · · ·

...(
z(K)

)k1 · · ·
(
z(K)

)kS
⎤⎥⎥⎦

︸ ︷︷ ︸
a K×S matrix Z

⎡⎢⎣ck1

...

ckS

⎤⎥⎦ = 0.

In general when S ≥ K, the matrix Z is of rank K (i.e., the values z(1), · · · , z(K) for which this

does not happen is of zero measure). Therefore, a necessary (and sufficient) condition to have

two linearly independent solutions c1 and c2 with the same support in (3.2) is S ≥ K + 2.

The derivation generalizes to higher dimensions following the same reasoning in a straight-

forward manner. Specifically, the support size of a D-dimensional annihilating filter in a joint

estimation formation (3.12) is at least K +D.

3.B Sample complexity of Dirac reconstruction in 2D

On the one hand, 2
(
M −

√
K + 2 + 1

)2
annihilation equations can be built from M ×M ideally

low-pass filtered samples in addition to 3 (because of symmetry) linear constraints from the

normalization C =
{
C|CT

0C+CTC0 = 2I
}
. On the other hand, the number of unknowns is

2(K +2)− 1, where12 −1 is a consequence of linear independence of c1 and c2 (see Section 3.2.2

for implementation details). The minimum number of samples is then obtained from

2
(
M −

√
K + 2 + 1

)2
+ 3 ≥ 2(K + 2) − 1.

3.C 2D Diracs with shared x or y coordinates

In the particular cases, where some of the Diracs share the same x or y coordinates, the minimum

size of the annihilating filter shape is further restricted by the number of Diracs with common

coordinates along each direction. This can be understood from the fundamental theorem of

algebra.

Suppose there are Ksame Diracs that have the same x coordinate x0 and the shape of the

filter is P × Q. From the annihilation constraint, the DTFT of the annihilating filter should

12More generally in D dimensions, the degrees of freedom of D vectors are reduced by D(D − 1)/2 because of
linear independence.
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vanish at the Dirac locations:

μ(x0, y) =
P−1∑
l=0

(
Q−1∑
k=0

ck,l
(
e−j2πx0/τ1)k)(e−j2πy/τ2)l = 0. (3.14)

Observe that (3.14) is a polynomial in e−j2πy/τ2 of degree P − 1. In order to have Ksame such

y-s within the period [0, τ2) that satisfy the annihilation constraint, P − 1 ≥ Ksame. Similarly, if

there are Lsame Diracs that have the same y coordinate, then Q − 1 ≥ Lsame.

In general, this leads to annihilating filters with different shapes than
⌈√

K + 2
⌉

×
⌈√

K + 2
⌉

in the generic cases discussed in Section 3.2.2. Consequently, the minimum number of samples

required in order to reconstruct K Diracs, where some of them have shared coordinates along

one direction, is also larger than that in the generic cases in Corollary 3.1.

3.D Null space dimension of the joint annihilation matrix

In order to show the null space dimension of the joint annihilation matrix, we construct explicitly

a non-zero vector b such that Rjointb = 0. The number of linearly independent b-s gives a lower

bound of the null space dimension.

Construct bk,l = u−kv−k, where u, v ∈ C and are different from zero (b is the vectorization

of the 2D data block in e.g., a column-by-column order), then

[ck,l ∗ bk,l]m,n =
∑
k,l

ck,lbm−k,n−l = u−mv−n∑
k,l

ck,lu
kvl.

Therefore, bk,l that satisfies the joint annihilation constraints{
[c1]k,l ∗ bk,l = 0

[c2]k,l ∗ bk,l = 0
,

can be treated as the common roots of the two polynomial linear systems of equations (3.5).

From (3.8), we know that there are at least 2(K0 − 1)(L0 − 1) such b-s, for filters c1, c2 of

size L0 × K0. Consequently, we have proved the minimum null space dimension of the joint

annihilation matrix in Corollary 3.3.

3.E Equivalent formulation of the joint annihilation (3.2)

From our analysis in Section 3.2.2, for fixed c1, c2 at each iteration, (3.2) is equivalent to

min
b

‖a − Gb‖22

subject to QH
subRjointb = 0.

The associated Lagrangian is

L(b, �) = 1

2
‖a − Gb‖22 + �HQH

subRjointb.
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From the optimality conditions, we have{
GH(Gb − a) +RH

jointQsub� = 0,

QH
subRjointb = 0.

Hence,

b =β −
(
GHG

)−1
RH

jointQsub ·
(
QH

subRjoint

(
GHG

)−1
RH

jointQsub

)−1

QH
subRjointβ,

where β =
(
GHG

)−1
GHa. Consequently, the objective function reduces to

‖a − Gb‖22 = βHRH
jointQsub

(
QH

subRjoint

(
GHG

)−1
RH

jointQsub

)−1

QH
subRjointβ

+ terms independent of c1 and c2.

Additionally, from the “bi-linearity” of the annihilation constraint, we have:[
R(c1)

R(c2)

]
β =

[
T(β) 0

0 T(β)

] [
c1
c2

]
=

[
T(β)Q̃1 0

0 T(β)Q̃2

]
︸ ︷︷ ︸

def
=Tjoint(β)

[
γ1
γ2

]
.

Therefore, an equivalent form of the joint annihilation (3.2) is

min
γ1,γ2

[
γ1
γ2

]H
Λ(γ1,γ2)

[
γ1
γ2

]
,

subject to c1 = Q̃1γ1 ∈ C,
c2 = Q̃2γ2 ∈ C,

where

Λ(γ1,γ2) = TH
joint(β)Qsub

(
QH

subRjoint

(
GHG

)−1
RH

jointQsub

)−1

QH
subTjoint(β).

The iterative strategy proposed in [96] then amounts to building Λ(γ1,γ2) from the previous

reconstruction and updating γ1,γ2 from the quadratic minimization.

Since Λ(γ1,γ2) contains nested matrix inverses, the direct implementation may not be nu-

merically stable. By introducing auxiliary variables as in [96], it can be shown that the update

of γ1 and γ2 amounts to solving an extended linear system of equation (3.10) at each iteration.



Chapter 4

Looking beyond Pixels with
Continuous-space Estimation of
Point Sources*

Astronomy compels the soul to look upwards

and leads us from this world to another.

The Republic

Plato

4.1 Introduction

Existing radio interferometric imaging algorithms are discrete in nature, e.g., CLEAN [66] and

its numerous variants [12, 37] or the compressed sensing inspired methods proposed in [25, 39,

117, 141]. As such, they estimate the locations and intensities of celestial sources on a uniform

grid that is artificially imposed over the field of view [112].

Sources do not line up so conveniently in reality. Instead, they are located instead in-between

pixels of the pre-defined grid. This leads to inaccurate source position and intensity estimation,

with contributions from closely located sources being merged together into a single pixel (see Fig-

ure 4.1 for an illustration). Depending on the ultimate goal (e.g. calibration), it may be desired

to have more accurate location estimates (and thus distances between objects) than achievable

on a grid.

*The material in this chapter is the result of joint work with Matthieu Simeoni, Paul Hurley, Thierry Blu and
Martin Vetterli [98].
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Actual sources (off-grid) Pixel on the grid Offset

Figure 4.1: Existing imaging algorithms estimate the locations and intensities of celestial
sources on a uniform gird. In practice, sources do not line up so conveniently, and can fall off-
grid. Gridding hence results in a less accurate estimation of the location estimations as well as
a potential overestimation of intensities due to multiple sources being merged to the same pixel.

The starting point for this chapter was hence to see if we could accurately determine the

intensities and locations of sources directly from visibility data without a grid imposition in an

intermediate image domain. The framework commonly referred to as finite rate of innovation

(FRI) sampling is a natural candidate for this task. Introduced first in the signal processing

community, FRI sampling generalizes the Shannon sampling theorem to sparse non-bandlimited

signals. For example, [133] proposed a sampling scheme permitting the exact recovery of a stream

of Dirac from a number of Fourier series coefficients proportional to the number of Diracs. The

framework has since been applied successfully in other fields, and extended to 2D signals as well

as to noisy measurements [85, 94, 95, 115]. Having been originally designed to work only with

equally spaced Fourier samples as input, [96] extended the FRI framework to cases with non-

uniform samples (as is the case in radio interferometry). It thus becomes possible to envisage

an FRI-based approach in radio astronomy, albeit with the substantial remaining challenge of

recovering a large number of sources given very weak signals and massive data sets.

A continuously defined framework such as FRI, allows the significance of the notion of

achievable angular resolution to be revisited. Indeed, for the traditional CLEAN-based imaging

pipeline, the resolution power of the tool, or the ability to distinguish neighboring sources, is lim-

ited by the width of the synthesized beam, whose width is inversely proportional to the longest

baseline of the interferometer. Sources closer than this critical beam width are indistinguishable

from one another.

In comparison, the FRI-based sparse recovery allows sources separated by a distance smaller
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than this apparent bound to be distinguished. The continuous-domain formulation makes the

performance only dependent on the number of measurements and sources in the sky in additional

to the noise level in the measurements, but not on the number of pixels from an arbitrarily

imposed, and potentially very large, grid. We name the proposed FRI-based approach as Looking

beyond pixels with continuous-space EstimAtion of Point sources (LEAP).

Compressed sensing [e.g., 117], while it surpasses the instrument resolution limit as well, does

rely on a grid. LEAP differs in that the estimation of source locations is decoupled from the

estimation of their intensities. Hence, it is possible to exploit the consistency in source locations

among different frequency sub-bands and have a coherent reconstruction in a multi-band setting

(see Section 4.4.3).

The present chapter quantifies how LEAP can be successfully applied to recover point sources

in realistic radio astronomy conditions. Our experiments, carried out through simulation and

actual interferometric measurements from LOFAR [131], show that the reconstruction is more

accurate and requires fewer measurements, reaching a comparable source estimate to CLEAN

from much less integration time and smaller baselines. The achievable position accuracy goes

beyond the perceived angular resolution, which allows closely located sources to be reliably

distinguished. To confirm that these super-resolved sources were indeed actual sources, we

showed that CLEAN could also recover them given longer baselines (and hence sharpening its

PSF). Finally, we showed that LEAP could leverage together the information from multiple

frequency bands in a coherent fashion to improve point source estimation.

The rest of this chapter is organized as follows. After a briefly review of the radio interferom-

eter measurement equation in Section 4.2, we propose to adapt the sparse recovery framework

based on FRI sampling (Section 4.3) to source estimations in radioastronomy in Section 4.4. The

algorithmic details for the reconstruction of the source locations and intensities are discussed in

Section 4.4.1 and Section 4.4.2. Further, we present the multi-band formulation in Section 4.4.3.

The method is validated with both synthetic experiments (Section 4.5.2 to Section 4.5.4), ac-

tual LOFAR observations from the Boötes field (Section 4.5.5), and the “Toothbrush” cluster

(Section 4.5.6), respectively. We discuss the advantages and limitations in Section 4.6 before

concluding the work with a few possible future directions in Section 4.7.

4.2 Interferometric imaging measurement equation

A typical radio interferometer consists of an array of antennas that collect the electromagnetic

waves emitted by celestial sources. In the far field context, these sources are assumed to be

located on a hypothetical celestial sphere and the emitted electromagnetic waves arrive at each

antenna in parallel. Consequently, the signals received at two antennas differ only by a geometric

time delay, which is determined by the baseline of the antenna pair and the observation frequency.

When the field-of-view is sufficiently narrow, the celestial sphere can be approximated locally

by a tangential plane. It can be shown that the visibility measurements Vij , given by the cross-

correlations of antenna pairs (i, j), then correspond to a 2D Fourier domain (conventionally

referred to as (u, v)-domain) sampling of the sky brightness1 distribution I [116, 125, 126]:

Vij =
�
R2

I(r)e−j2π〈r,Δpij〉d2r, ∀i, j = 1, . . . , L. (4.1)

1In this chapter, we use the term brightness and intensity interchangeablly.
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Here, L is the total number of antennas forming the interferometer; r = (l,m) are the spatial

coordinates of the sky image; and Δp = (pi − pj)/λ := (uij/2π, vij/2π) is the projection

onto the tangent plane of the baseline between antenna i and j, normalized by the wavelength

λ of the received electromagnetic waves. For simplicity, we assumed antennas have uniform

gains and omni-directional primary beams in (4.1). The w-term [see 37] is considered as a

constant for all baselines in a sufficiently small field-of-view. However, the proposed algorithm

can straightforwardly be extended to more complex data models such as the ones considered

in [116].

The measurement equation (4.1) is known as the van Cittert-Zernike theorem [126, Chapter

3]. It establishes an approximate Fourier relationship between interferometric measurements and

the sky brightness distribution: the visibilities Vij are samples of the Fourier transform of the sky

image at discrete frequencies (uij , vij). For a given antenna layout, a radio interferometer has

finite number of possible baselines. Hence, it can only have a partial Fourier domain coverage.

By exploiting the earth rotation, a wider uv coverage can be achieved, which sharpens the point-

spread-function, and hence improves the resolution, of the various reconstruction algorithms.

In a modern radio telescope, the number of antennas can be enormous (e.g., around 20, 000

dipole antennas in LOFAR). In that case, it becomes unrealistic to send all raw data collected

by the antenna arrays to a centralized correlator and obtain visibility measurements for each

antenna pair. One commonly used strategy for data compression involves grouping antennas

as stations and applying beamforming to antenna signals within each station. The visibility

measurements are then obtained by taking the cross-correlations at the station level. Specifically,

the beamformed visibility measurement from two stations (i, j) are:

Vij =

Q∑
p=1

Q∑
q=1

w(i)
p w̄(j)

q

�
R2

I(r)e−j2π〈r,Δp(i,j)
pq 〉d2r, ∀i, j = 1, . . . , L. (4.2)

Here, L is the total number of stations, Q is the number of antennas per station; Δp
(i,j)
pq =(

p
(i)
p − p

(j)
q

)
/λ is the normalized baseline for the pair formed by the p-th antenna in station i

and the q-th antenna in station j; and w
(i)
q are beamforming weights. A typical beamforming

strategy is matched beamforming, which amounts to choosing w
(i)
p = 1√

Q
ej2π〈r0,p

(i)
p 〉, with r0

the focus direction of the matched beamforming (e.g., the zenith).

When digital beamforming is performed, either the beamshapes at each station must be

accounted for— rendering the conventional imaging pipeline computationally more intensive—

or neglected with potentially strong consequences for image accuracy [124]. The latter is the

strategy most commonly employed in off-the-shelf CLEAN implementations [92]. In contrast,

as we will show in Section 4.4, the proposed approach readily accounts for the beamformed

visibilities with minimal effort.

In summary, LEAP can transparently work with either measurement equation (4.1) (with-

out beamforming), or (4.2) (factoring in beamforming). To this end, we estimate the Fourier

transform of the sky image on a (resolution-independent) uniform grid (e.g., 55× 55 in a typical

setup for radioastronomy) from the visibility measurements (4.2). The point source locations

and amplitudes are subsequently obtained from these uniform Fourier transform reconstructions

with the FRI sampling technique, which we review now in the next section.
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4.3 Continuous domain sparse recovery with FRI sampling

In this section, we briefly revisit the continuous-domain sparse recovery approach based on the

finite rate of innovation sampling. This technique will be adapted to solve point source estimation

in radio astronomy in the next section (Section 4.4).

We generalized the classic FRI framework to cases with non-uniform samples in the previous

two chapters, making it applicable to point source reconstruction in radio astronomy. There,

generic FRI reconstruction is recast as an approximation problem, where one would like to recover

an FRI signal consistent with the given measurements. The re-synthesized measurements (based

on the reconstructed FRI signal) should match the given (noisy) measurements up to the noise

level. A valid solution to the approximation problem is obtained with the help of a constrained

optimization, where the fitting error (e.g., the �2 norm of the discrepancies) is minimized subject

to the annihilation constraint.

An efficient algorithm [96] was proposed to solve the constrained optimization iteratively,

where an �×� linear system of equations was solved at each iteration for a set of uniform sinusoidal

samples b of size �. The simplicity of the algorithm is beneficial for point source reconstructions

in radio interferometric imaging. The recovery estimates point sources in the continuous domain

directly from visibilities, and the complexity depends only on the dimension of b (typically around

a few thousand). In terms of computational complexity, solving a dimension � linear system of

equations is at most O(�3) [see 61, Chapter 3]. In contrast, CLEAN or compressed sensing based

approaches have to estimate an intermediate sky image defined on a grid first before applying

local peak detections in order to identify point sources. Consequently, the complexity of these

algorithms is related to the size of the discrete image (around one million pixels or more), which

is significantly larger than the dimension of the uniform sinusoidal samples b in a typical setup

(see Section 4.5.5 for a concrete example).

Although the focus in this chapter is on point source reconstructions, the FRI-based approach

can also deal with extended source recovery. Given a suitable set of bases in which the extended

sources have a sparse representation, the same algorithm can be applied in the transform domain.

However, substantially more work would be required to design a continuous domain “sparsifying”

transformation for celestial sources [see 117, for examples in a discrete setup], and hence this is

left for future work.

4.4 Algorithm

In the previous section, we reviewed the generic form of an FRI-based sparse reconstruction.

In this section, we adapt this continuous-domain sparse recovery framework to point source

reconstructions in radio astronomy. The FRI-based approach estimates source locations first

(Section 4.4.1) before solving a least square minimization for the source intensities (Section 4.4.2).

A multi-band formulation, which may potentially reduce the amount of data needed significantly,

are proposed in Section 4.4.3. Finally, an iterative strategy to refine the source estimation based

on the current reconstruction is discussed in Section 4.4.4.
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4.4.1 Estimation of point source locations

For point source reconstruction, the sky image consists of a sum of Dirac deltas:

I(r) =
K∑
k=1

αkδ(r − rk). (4.3)

The goal is to reconstruct the source locations rk and intensities αk > 0 from the beamformed

visibility measurements2:

Vij =

Q∑
p=1

Q∑
q=1

w(i)
p w̄(j)

q

K∑
k=1

αke
−j2π〈rk,Δp(i,j)

pq 〉, ∀i, j = 1, . . . , L. (4.4)

The intensites of sources falling outside the telescope primary beam are significantly attenu-

ated, hence it is reasonable to assume the sky image has finite spatial support, e.g.3 rk ∈
[−τ1/2, τ1/2] × [−τ2/2, τ2/2]. The Fourier transform of the sky image, then can be represented

by sinc interpolation4:

Î(u, v)=
∑
ξ1∈Z

∑
ξ2∈Z

Î

(
2πξ1
τ1

,
2πξ2
τ2

)
sinc

(
τ1
2

(
u − 2πξ1

τ1

)
,
τ1
2

(
v − 2πξ2

τ2

))
.

From the FRI reconstruction perspective, as long as we can estimate both the uniformly sampled

sinusoids Î(2πξ1/τ1, 2πξ2/τ2) and the annihilating filter, then the source locations are given by

finding roots of polynomials, whose coefficients are specified by the annihilating filters. In general,

the zero-crossing of a 2D polynomial is a curve—any Dirac deltas that are located on the curve

satisfy the annihilation constraints [95]. In order to uniquely determine the Dirac locations,

it is necessary to find two annihilating filters: the Dirac locations are then obtained from the

intersections of the two associated curves [99]. Once the source locations are reconstructed, it is

a linear problem to estimate source intensities, which amounts to solving a simple least square

minimization (see details in Section 4.4.2).

However, this would require the estimation of infinitely many sinusoidal samples from a finite

number of visibility measurements. One way to address this challenge is to assume additionally

that the Fourier transform Î(u, v) is periodic with period 2πM × 2πN for some M and N such

that Mτ1 and Nτ2 are odd numbers5. From the Poisson sum formula, the Fourier transform of

the sky image can be approximated as [see 96, for a similar treatment in 1D]:

Î(u, v) ≈
∑

|ξ1|≤	Mτ1
2 


∑
|ξ2|≤	Nτ22 


Î

(
2πξ1
τ1

,
2πξ2
τ2

)
ϕ

(
u − 2πξ1

τ1
, v − 2πξ2

τ2

)
, (4.5)

where

ϕ(u, v) =
sin(u) sin(v)

MNτ1τ2 sin(u/(Mτ1)) sin(v/(Nτ2))
.

2 The proposed approach can also cope with non-beamformed measurements (see comments after (4.2) in
Section 4.2).

3Without loss of generality, we can always shift the coordinates such that the telescope primary beam is
centered at the origin.

4In cases where strong sources fall outside the assumed spatial support and still have significant contributions
to the visibility measurements, the interpolation representation here will be less accurate.

5This is for the consideration of the convergence of Poisson sum equation [see 14, for details].
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The beamformed visibility measurements (4.4) are linear combinations of irregularly sampled

Fourier transform of the sky image at frequencies specified by the baselines of the antenna pairs

Δp
(i,j)
pq . From (4.5), we establish a linear connection between a finite set of uniform sinusoidal

samples Î(2πξ1/τ1, 2πξ2/τ2) and the non-uniformly sampled Fourier transform. In terms of FRI

sparse recovery, this amounts to solving a constrained minimization:

min
c1,c2∈C,

b

‖a − Gb‖22

subject to b ∗ c1 = 0 and b ∗ c2 = 0,

(4.6)

where

• a is the visibility measurements (4.4);

• b is the Fourier transform of the sky image on a uniform grid Î(2πξ1/τ1, 2πξ2/τ2);

• G is the linear mapping from the uniformly sampled Fourier transform b to the visibilities

based on (4.4) and (4.5);

• c1 and c2 are two linearly independent annihilating filters, belonging to a certain feasible

set C (see Chapter 3 Section 3.2.1 for a typical choice).

Similar to the 1D case, each annihilating filter defines a mask function in the spatial domain,

whose value vanishes on a certain curve. The source locations are then given by the intersections

of the two curves. In spatial domain, the annihilation constraints can be considered as requiring

the multiplication between the two mask functions with the sky image (that contains a few

point sources) to be zero. Note that, instead of enforcing the reconstructed signal to follow the

interpolation equation (4.5) exactly, we use it only as a metric to gauge the reconstruction quality

in (4.6). This explains why a reasonably robust reconstruction is observed experimentally even

when the periodicity assumption is violated [96]. However, see Section 4.4.4 for a strategy to

refine the linear mapping based on the reconstructed source model.

4.4.2 Estimation of point source intensities

The source intensity αk are estimated by solving a least-square fitting problem based on the

measurement equation (4.4) once we have reconstructed the source locations rk:

αopt = arg min
α∈RK

L∑
i,j=1

[
Vij −

Q∑
p,q=1

w(i)
p w̄(j)

q

K∑
k=1

αke
−j2π〈rk,Δp(i,j)

pq 〉
]2

. (4.7)

Equation (4.7) can be re-written more compactly in matrix form. For this we need to introduce

a few quantities:

• the visibility matrix Σ ∈ C
L×L whose terms are given by (Σ)ij = Vij , for all i, j = 1, . . . , L.
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• the antenna steering matrix A ∈ C
LQ×K defined by

A =

⎡⎢⎢⎢⎣
ρ(1)(r1) · · · ρ(1)(rK)

ρ(2)(r1) · · · ρ(2)(rK)
...

...
...

ρ(L)(r1) · · · ρ(L)(rK)

⎤⎥⎥⎥⎦ ,

where ρ(i)(rk) =
[
e−j2π〈rk,p(i)

1 〉, · · · , e−j2π〈rk,p(i)
Q 〉

]
∈ C

Q is the antenna steering vector for

station i and rk are the reconstructed source locations.

• the beamforming matrix W ∈ C
LQ×L is a block-diagonal matrix defined by

W =

⎡⎢⎣w̄
(1) · · · 0
...

. . .
...

0 · · · w̄(L)

⎤⎥⎦ , (4.8)

where w(i) =
[
w
(i)
1 , · · · , w(i)

Q

]
∈ C

Q is the beamforming vector for station i.

With the notation introduced above, (4.7) reduces to:

αopt = arg min
α∈RK

∥∥∥Σ − WHA diag(α)AHW
∥∥∥2
2

= arg min
α∈RK

∥∥∥σ −
[(
WTĀ

)
◦
(
WHA

)]
α
∥∥∥2
2
, (4.9)

where σ = vec (Σ) is the vectorization of the visibility matrix, and ◦ denotes the Khatri-Rao

product [see 130, for more details]. The closed-form solution of (4.9) is

αopt =
[(
WTĀ

)
◦
(
WHA

)]†
σ,

where † denotes the Moore-Penrose pseudo-inverse. The optimization problem (4.9) could be

further constrained by α > 0 (since source intensities are positive) leading to a non-negative

least-squares problem, which can be solved within a finite number of iterations [76]. Finally,

when the number of sources is uncertain, a sparsity promoting penalty term ν‖α‖1 could also

be envisaged, with the parameter ν acting as model selection parameter. Unfortunately, such

a penalty term would bias the estimation of the source intensities. Instead, we propose an

alternative model order selection procedure, based on the fitting error (see Section 4.5.4).

4.4.3 Coherent multiband reconstruction

Modern radio telescopes operate over a wide frequency range, e.g., 30MHz to 240MHz for LOFAR

[131]. The emitted electromagnetic waves of celestial sources within the operation range are mea-

sured simultaneously, which are subsequently filtered into different sub-bands. If the consistency

of the measurements across different sub-bands is exploited, it may potentially reduce signifi-

cantly the integration times needed in order to have a reliable reconstruction.

Classic approaches, e.g., multi-frequency synthesis [35], and multi-frequency CLEAN [110],

try to map multi-frequency visibility measurements into a single sub-band centered at a reference



4.4 Algorithm 69

frequency based on a frequency-dependent sky brightness distribution model.

With FRI-based sparse recovery, the mutual information shared across different sub-bands

can be exploited in a coherent manner. It is usually reasonable to assume that the source loca-

tions remain the same across all subsequent sub-bands. Since the annihilating filter is uniquely

specified by the point source locations alone, this implies that we should find one annihilat-

ing filter for all sub-bands such that the annihilation equations are satisfied6. In general, the

source intensities αk differ from sub-band to sub-band. Hence, the uniformly sampled sinusoids,

which are chosen as the interpolation knots Î(2πξ1/τ1, 2πξ2/τ2) in (4.5), are sub-band-dependent.

Then, the multiband point source reconstruction amounts to solving

min
c1,c2∈C,
b1,··· ,bJ

J∑
i=1

∥∥∥a(i) − G(i)b(i)
∥∥∥2
2

subject to b(i) ∗ c1 = 0 and b(i) ∗ c2 = 0 for i = 1, · · · , J,

(4.10)

where a(i) and b(i) are the visibility measurements and the uniform sinusoidal samples in the

i-th sub-band, respectively; and G(i) is the linear mapping based on (4.4) and (4.5) for each one

of the J sub-bands. Note that (4.10) is in fact the same formulation7 as (4.6) with a change of

variables:

a =

⎡⎢⎣a
(1)

...

a(J)

⎤⎥⎦ ,b =

⎡⎢⎣b
(1)

...

b(J)

⎤⎥⎦ , and G =

⎡⎢⎣G
(1) · · · 0
...

. . .
...

0 · · · G(J)

⎤⎥⎦ .

Once we have estimated the common annihilating filter c for all sub-bands, the source locations

and intensities are determined in the same manner as in the single band case.

4.4.4 Update strategy for the linear mapping G in (4.6)

Ideally, G should be constructed based on the measurement equation (4.4) in the constrained

optimization (4.6), and the discrepancies between the re-synthesized visibilitiesGb with the given

measurements minimized. If the actual mapping, which links the Fourier transform of the sky

image on a uniform grid to the visibility measurement, were available, then the FRI-based sparse

recovery would give the exact reconstruction from the noiseless measurements. However, this is

not feasible, as the exact mapping based on (4.4) contains the source locations and intensities,

which are unknown a priori. One possible strategy is to use the initial reconstruction, where

G was approximated with the periodic-sinc interpolation (4.5), to update the objective function

in (4.6).

To describe this update strategy, we need to introduce some notation (see Figure 4.2 for a

summary):

• Denote by G0 the linear operator that maps source intensities α to the Fourier transform

6The same approach can be applied to measurements of different polarizations within the same sub-band,
where the source locations are common but intensities differ for each polarization.

7To be precise, the convolution in the annihilation constraints in the multiband case should be understood as
a convolution for each sub-band, which amounts to vertically stacking the convolution matrices associated with
all sub-bands.
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I(r) =

K∑
k=1

αkδ(r − rk)

G0

G†
0

G1

Φ W

G

Î
(2πξ1

τ1
,
2πξ2

τ2

)
Î
(
u(i,j)
pq , v(i,j)pq

)
Vij = Î(uij, vij)

Fourier
Samples

Point
Sources

Figure 4.2: Diagram of the various linear operators involved in the update strategy for the
forward operator G (see details in Section 4.4.1 and Section 4.4.4).

of the sky image on a uniform grid (u, v) = (2πξ1/τ1, 2πξ2/τ2) as in (4.5):

G0 : α �→ Î

(
2πξ1
τ1

,
2πξ2
τ2

)
=

K∑
k=1

αke
−j2π(lkξ1/τ1+mkξ2/τ2),

with some given source locations rk = (lk,mk).

• Denote by G1 the matrix mapping the source intensities α to the non-gridded Fourier

samples
(
u
(i,j)
pq , v

(i,j)
pq

)
:

G1 : α �→ Î
(
u(i,j)pq , v(i,j)pq

)
, i, j = 1, . . . , L; p, q = 1, . . . , Q.

The matrix G1 can also be expressed of the antenna steering matrix A as G1 = Ā ⊗ A.

• Denote by W ∈ C
L2×L2Q2

the cross-beamforming matrix that beamforms the off-grid

Fourier samples:

W : Î
(
u(i,j)pq , v(i,j)pq

)
�→ Vij =

Q∑
p,q=1

w(i)
p w̄(j)

q Î
(
u(i,j)pq , v(i,j)pq

)
.

Here W is related to the beamforming matrix W in (4.8) as: W = WT ⊗ WH.

• Finally, denote by Φ the periodic-sinc interpolation (4.5) evaluated at non-gridded Fourier
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Algorithm 3: Point source estimation with FRI

Input : Visibility measurements V, radio-telescope antenna layout p, number of
sources K to reconstruct

Output: Source locations roptk , source intensities αopt = [α1, · · · , αK ]
1 Initialize G = WΦ, MinError = ∞;
for loop ← 1 to MaxIterations do

2 Reconstruct annihilating filter coefficients c1 and c2 from (4.6);
3 rk ← common roots of two polynomials with coefficients c1 and c2, respectively;
4 Update G1 with the reconstructed rk;

5 (α,FittingError) ← minα ‖V − WG1α‖22 ;

if FittingError < MinError then

6 roptk ← rk, α
opt ← α, MinError ← FittingError ;

7 Update G0 and G1 with roptk and G = W
(
G1G

†
0 +ΦPN

(
G†

0

));
end

end

samples
(
u
(i,j)
pq , v

(i,j)
pq

)
:

Φ : Î

(
2πξ1
τ1

,
2πξ2
τ2

)
�→ Î

(
u(i,j)pq , v(i,j)pq

)
.

Then the linear mapping is chosen as G = WΦ in the initial estimate. In comparison, if we knew

the ground truth source locations and intensities, the optimal mapping would be G = WG1G
†
0,

where G†
0 is the Moore-Penrose pseudo-inverse

(
GH

0 G0

)−1
GH

0 .

Note thatG1G
†
0, which transforms the uniformly sampled Fourier data to the irregularly sam-

pled ones8, has rank at most K. At any intermediate step, we may choose the linear mapping G

as: W
(
G1G

†
0+ΦPN

(
G†

0

)), whereG0 andG1 are built with the reconstructed point source loca-

tions and PN
(
G†

0

) is the orthogonal projection onto the null space of G†
0: I−G0

(
GH

0 G0

)−1
GH

0 .

Experimentally, such an iterative strategy manages to refine the linear mapping and results in a

reliable reconstruction (see an example in Section 4.5.2).

We emphasize that the reconstruction quality should always be measured based on (4.4), with

rk and αk the reconstructed source locations and intensities, respectively, regardless of the update

strategy for the linear mapping G. We summarize the FRI-based point source reconstruction in

Algorithm 3.

8Superficially, this looks similar to the ”gridding” in a conventional approach, e.g., CLEAN. However, unlike
CLEAN, the final resolution that can be achieved by the FRI-based algorithm is not related to the grid step size
but only the noise level in the given measurements [see 96].
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4.5 Results

4.5.1 Data and experiment setup

The proposed FRI-based sparse recovery approach for point source estimation (LEAP) was

validated with both simulated visibilities and real observations from LOFAR. In simulation,

visibilities were generated from ground truth point source parameters (locations and intensities)

with the LOFAR core station antenna layout. In experiments with real LOFAR observations, we

sub-sampled the visibility measurements over different integration times such that only 2% or

0.25% of the total integration times in the measurement set were available to the reconstruction

algorithms in single band and multi-band scenarios, respectively.

We should point out that it is not only the number of integration times that matters: with the

same number of integration times taken consecutively, a much worse reconstruction is obtained by

both CLEAN and LEAP. Experimentally, we observe that it is better to take measurements that

are well-spread over the whole acquisition time. One explaination might be that with a larger

time separation between adjacent measurements, the earth has more significant displacement in

space. Thus, it allows the radio interferometer to sample the (u, v)-plane sparsely but over a

large area (instead of densely sampling a local area as in the case with consecutive integration

times). Spatial diversity in the (u, v) domain sampling makes the reconstruction algorithms more

resilient to noise.

We summarize the experimental setups in terms of antenna layouts, integration time and

sub-band selections in Table 4.1. The reconstruction quality of the FRI-based approach was

measured by the average distance9 between the recovered and the ground truth source locations

(in simulation) or the catalog data (in real-data experiments).

The LEAP results were compared to those obtained from WSClean10, which implements the

state-of-the-art w-stacking CLEAN algorithm [92]. The maximum number of iterations for the

WSClean algorithm was set to 4×104. The threshold level was determined automatically by the

WSClean algorithm based on the estimated background noise level. Unlike LEAP, which recon-

structs point source locations and intensities directly, the CLEAN algorithm typically produces

discrete sky images, which will be compared to the FRI reconstruction by visual inspection.

In the following part, we first conduct simulations to verify the effectiveness of the updating

strategy of the linear mapping in Section 4.5.2. Next, we investigate the resolvability of the

proposed algorithm by simulating visibilities from two point sources that are separated by various

distances in Section 4.5.3. Further, a strategy to avoid false detections by selecting an adequate

model order is validated through simulations in Section 4.5.4. Finally, we apply LEAP to actual

LOFAR observations from the Boötes field (Section 4.5.5), which consists of mostly point sources;

and the “Toothbrush” cluster (Section 4.5.6), which has an extended structure in addition to

many point sources within the field of view.

4.5.2 Iterative refinement of linear mapping

One challenge in applying the FRI-based sparse recovery technique to radio astronomy is iden-

tifying a suitable surrogate function to gauge reconstruction quality— the ideal MSE criteria

9The correspondence between the reconstructed and ground truth source locations were obtained by permuting
the source locations such that the distance between the permuted reconstruction and the ground truth source
locations was minimized.

10Available at https://sourceforge.net/projects/wsclean/
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Table 4.1: Summary of various datasets used in the experiments. The LOFAR antenna layout
is used in simulation (Dataset I). We have sub-sampled the real observations over different
integration times such that only 2% (for the single band cases: Dataset II and IV) or 0.25%
(for the multi-band case: Dataset III) of the total integration times is available to the FRI
reconstruction algorithm.
∗Note: 4 of the 24 LOFAR core stations (HBA) were not working during the observation. We
have used 4 additional remote stations that are closest to the telescope center.

Dataset I II III IV

Sources Point sources Boötes field
“Toothbrush” cluster
RX J0603.3+4214

Data type Simulated Actual observation Actual observation

Antenna layout LOFAR core stations (HBA)
LOFAR core and remote

stations (HBA)
LOFAR core and remote

stations (HBA)
Number of stations 24 28∗ 36
Telescope focus
(RA, DEC)

(14h32m00.0s,+34◦30′00.1′′) (14h32m00.0s,+34◦30′00.1′′) (06h03m20.0s,+42◦14′00.0′′)

Longest baseline
(× wavelength)

713.3 1015.4 1019.9 1150.3

Instrument angular
resolution

4′49.2′′ 3′23.1′′ 3′22.2′′ 2′59.3′′

Polarization I
Observation start

time (UTC)
2014-08-10-13:00:04.01 2014-08-10-13:00:04.01 2013-02-24-15:32:01.42

Observation end
time (UTC)

2014-08-10-19:53:58.48 2014-08-10-20:07:19.59 2013-02-25-00:09:24.51

Time resolution (s) 400.56 400.56 3204.45 500.70
Number of

integration times
63 72 9 63

Number of
sub-bands

1 1 8 1

Sub-band
frequency (MHz)

145.8 145.8
145.8 ∼
146.5

132.1

Section 4.5.2, 4.5.3 and 4.5.4 4.5.5 4.5.5 4.5.6

based on the measurement equation (4.4) requires the knowledge of the (unknown) ground truth

source locations and intensities. We proposed one possible strategy that allows us to refine the

objective function based on the current reconstruction in Section 4.4.4. In order to verify the

effectiveness of such a strategy, we generated an empty measurement set (MS) with the LOFAR

antenna layout as specified in Table 4.1 Dataset I. The MS file is then filled with noiseless visibili-

ties that are simulated based on (4.4) from two point sources with randomly generated intensities

and locations within the field-of-view (5◦ × 5◦).
The evolution of the fitting error between the re-synthesized visibilities (4.4) (based on the

reconstructed point source parameters) and the given visibility measurements is shown in Fig-

ure 4.3. The reconstructed sources are included for visual comparison, where the dirty image

is overlaid with the reconstructed and ground truth point sources. With this simple updating

strategy, we indeed obtain the exact reconstruction after a few iterations.

4.5.3 Source resolution

In this section, we investigate the resolving power of the proposed FRI-based sparse recovery, by

comparing the performance to that of CLEAN. The antenna layout of the 24 LOFAR core stations
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Figure 4.3: Iterative refinement of the linear mapping G in (4.6) for exact point source re-
construction (see details in Section 4.4.4). (a) The evolution of the fitting error between the
re-synthesized and given noiseless visibility measurements. (b) Exact reconstruction of the point
sources with LEAP (background image: dirty image from the same visibility measurements).

was used to simulate a 7 hour single sub-band observation with center frequency 145.8MHz

(HBA band). The visibility measurements were taken every 400.56 seconds, leading to a total

63 sets of visibilities at different time instances. The maximum baseline was 713.3 wavelengths,

which corresponds to an instrument angular resolution of 4′49.2′′. For simplicity, we did not

account for polarization effects in this chapter. We note, however, that the technique described

in Section 4.4.3 to reconstruct point sources from multi-bands may be adapted to treat together

different polarizations in a coherent manner (see remarks in footnote 6).

We simulated visibilities of two point sources with unitary intensities. The two sources

were separated by distances varying from 10′′ to 10′ on a log scale. The particular antenna

layout means there is not always the same sensitivity along all directions. To alleviate this

potential direction-dependent bias, we averaged the results over 100 signal realizations with

different relative orientations between the two sources for each separation distance. Circularly

symmetric complex Gaussian white noise is added to the noiseless visibilities such that the signal

to noise ratio (SNR) in the visibility measurements ranges from −10 dB to 20 dB with a step size

of 5 dB.

A point source was considered to be successfully reconstructed if the estimated source location

is within half the separation distance between the two sources, from the ground truth source

location. Hence, the average reconstruction success rate for K point sources is:

success rate =
# of k such that dist(r′

k, rk) < Δr/2

K
, for k = 1, 2. (4.11)

Here dist(·, ·) computes the distance between the reconstructed r′
k and ground truth source

locations rk; and Δr is the separation between the two sources. We extracted the reconstructed

source locations from the CLEAN model image with a pixel size 3.5′′. The average reconstruction
success rate is shown in Figure 4.4 for both CLEAN and LEAP.

Note that while the instrument angular resolution was close to 5′ here, the FRI-based sparse

recovery still manages to resolve two sources beyond the instrument limitation in many cases.
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Figure 4.4: Average reconstruction success rate (4.11) of two point sources that are separated
by various distances from noisy visibility measurements with (a) LEAP and (b) CLEAN. The
reconstructed point sources with CLEAN are extracted from the corresponding CLEAN model
image. A point source is considered to be successfully reconstructed if the estimated source
location is within half the separation distance with the ground truth source location. Results for
each noise level and source separation are averaged over 100 different signal and noise realizations.
Instrument angular resolution is 4′49.2′′.

This is in stark contrast to image-based approaches such as CLEAN or compressed sensing (CS),

where the reconstructions are typically spatial domain images— In order to determine point

source locations (and intensities), an additional blob detection algorithm needs to be employed.

In contrast, the FRI-based approach starts from a point source assumption, and reconstructs the

source parameters directly without going through an intermediate spatial domain image.

To better illustrate the difference between the proposed method and other image-based recon-

struction methods, we include two examples where it would otherwise not be possible to recover

all point sources based on the estimated sky images (Figure 4.5 and Figure 4.6):

• Figure 4.5 shows how two closely located sources, 1′30′′ apart, are accurately estimated

from mildly noisy visibility measurements (SNR = 20 dB) with LEAP, while the CLEAN

image contains one big blob encompassing both sources. In fact, neither one of the two

source locations corresponds to the peak of the blob.

Further, we considered another case for CLEAN, where additional measurements from 32

LOFAR remote stations were added. With this configuration, the telescope has a much

smaller angular resolution 6.10′′ (compared with 4′49.2′′ with 24 LOFAR core stations

only). The time resolution of the visibility measurements from all stations is also increased:

adjacent integration times are separated by 8.01 seconds. In total, visibilities from all 56

stations at 3150 integration times are given to the CLEAN algorithm. The blob size is

significantly reduced and both sources are resolved by CLEAN (Figure 4.5 (c)).

• Figure 4.6 shows two well-separated sources, 1◦30′ apart, are reliably reconstructed from

highly noisy visibility measurements (SNR = −10 dB) with LEAP, while the weaker source,

whose intensity is 1/5 of that of the strong source, is completely buried in the noisy back-

ground, and cannot be detected from the estimated sky image using CLEAN. With addi-

tional visibilities from a higher time resolution (8.01 seconds between adjacent integration
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(a) LEAP reconstruction
(24 stations, 63 integration

times)

(b) CLEAN image
(24 stations, 63 integration

times)

(c) CLEAN image with
additional measurements

(56 stations, 3150 integration
times)

Figure 4.5: Resolve closely located sources accurately with LEAP (SNR = 20dB, source
separation: 1′30′′, antenna layout: 24 LOFAR core stations, background: CLEAN image). (a)
LEAP reconstruction. (b) CLEAN image from the same set of visibility measurements. (c)
CLEAN image from additional visibilities with higher time resolution (8.01 seconds between
adjacent integration times) and longer baselines (56 LOFAR core and remote stations). The
setup in (c) with longer baselines reduces the telescope angular resolution to 6.10′′.

times), both the strong source in the middle of the field of view and the weak source are

correctly reconstructed by CLEAN (Figure 4.6 (c)).

4.5.4 Model order selection

The point source model requires a choice of a certain model order K. In simulation, this param-

eter is assumed to be given a priori, while with actual observations, we have to specify / estimate

it. A strategy is then needed to determine if a particular choice of K over-estimates11 the

model order and leads to false detections. One method is based on the fitting error between the

reconstructed source model and the given measurements [59]. From our experience, the FRI re-

construction algorithm can reliably estimate a sparse signal that fits the given measurements up

to the noise level [96]. The strategy is constructive since we can usually estimate the noise level

from a source finding algorithm, e.g., Duchamp [139], SoFiA [113], and PyBDSF12, or manually

specify the approximation error allowed in the reconstruction.

In particular, if the fitting error achieved by FRI-based reconstruction is still within the noise

level with a lower model order, then we can further reduce the number of sources by one. The

final model order is obtained by repeating the process until any further reduction in K leads to

a fitting error above the noise level.

We validated this approach by simulating visibility measurements for K = 3 point sources

from 24 LOFAR core stations (Dataset I in Table 4.1). The noiseless visibilities are contami-

nated by circularly symmetric complex Gaussian white noise such that the SNR in the visibility

measurements is 0 dB. We applied LEAP with different model orders, and compared the noise

level with the fitting errors between the given and the re-synthesized visibility measurements

11In the case of under-estimation, the most dominating point sources will be reconstructed by the algorithm
with a fitting error above the noise level (see an example in Figure 4.7 (c)).

12Available at https://github.com/lofar-astron/PyBDSF.
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(a) LEAP reconstruction
(24 stations, 63 integra-

tion times)

(b) CLEAN image (24 sta-
tions, 63 integration times)

(c) CLEAN image with
additional measurements

(24 stations,
3150 integration times)

Figure 4.6: Reliable estimation of sources from highly noisy measurements with LEAP
(SNR = −10 dB, source separation: 1◦30′, antenna layout: 24 LOFAR core stations, background:
CLEAN image). (a) LEAP reconstruction. (b) CLEAN image from the same set of visibility
measurements. (c) CLEAN image from additional visibilities with higher time resolution (8.01
seconds between adjacent integration times) from 24 core stations.

based on (4.4) (Figure 4.7 (a)). As soon as the model order is reduced below the actual number

of sources, the fitting error jumps above the noise level, while this error remains stable for over-

estimation cases. The reconstructed point source model that corresponds to under-estimation

and over-estimation cases are also included in Figure 4.7.

4.5.5 Actual LOFAR observation: Boötes Field

In the previous section, we validated the robustness of the proposed FRI-based sparse recovery

method with simulated point sources. In this section, we apply LEAP to an actual LOFAR

observation from the Boötes field. Source estimation from real observations of a radio telescope

presents a significant challenge over and above ideal simulation conditions. Visibility measure-

ments in a typical setting suffer from severe noise contamination, which may arise from thermal

noise at antennas, the planar approximation (4.1), as well as directional dependent artifacts

due to ionosphere variations [142]. We used13 the visibility measurements from the 24 LOFAR

core stations and 4 remote stations closest to the telescope center, and considered two different

scenarios for the point source reconstruction in the Boötes field:

1. Single-band visibility measurements at 145.8MHz were extracted from the measurement

set (MS). We sub-sampled the MS file uniformly every 50 integration times (∼ 7 minutes),

leading to a total 72 sets of visibilities from 2% of the all integration times. See Section 4.4.1

and Section 4.4.2 for the algorithmic details.

2. Visibility measurements within 8 sub-bands centered at frequencies from 145.8MHz to

146.5MHz were extracted from the MS file. In total, 9 sets of visibilities at different

integration times were given to the reconstruction algorithms by sub-sampling the MS file

every 400 integration times (∼ 53 minutes). Sources were reconstructed with the multi-

band formulation presented in Section 4.4.3.

13During the observation, 4 out of the 24 core stations were not working.
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Figure 4.7: Model order selection based on the fitting error of the reconstructed point source
model and the given visibility measurements (Dataset I). The model order is the minimum num-
ber of sources such that the fitting error reaches the noise level of the measurements (Background
images of (b) – (d): CLEAN images; signal to noise ratio (SNR) in the visibilities: 0 dB; Actual
model order: 3). (a) Evolution of the fitting errors against different point source model orders K
in (4.3). (b) Reconstructed source models with the correct model order K = 3. (c) Reconstruc-
tion with under-estimated model order K = 1. (d) Reconstruction with over-estimated model
order K = 5.

In both cases, LEAP reconstructed Fourier transform of the sky image within each frequency

sub-band, on a uniform grid of size 57 × 63 that spanned the telescope uv-coverage. The source

locations were subsequently estimated from these uniform Fourier data. We fixed a priori the

number of sources to be K = 100 in (4.3) for the LEAP reconstruction. Of course, in prac-

tice a non-arbitrary choice of an adequate model order K is needed, and this is discussed in

Section 4.5.4.

The reconstructed point sources for the single-band and multi-band cases are plotted in Fig-

ure 4.8, where the background image is the corresponding CLEAN image reconstructed from
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(a) Source detection from single-band LOFAR measurements (Dataset II)

(b) Source detection from multi-band LOFAR measurements (Dataset III)

Figure 4.8: Source detection from actual LOFAR observations from the Boötes field (Dataset II
and III) with LEAP (the left column) and CLEAN (the right column). (a) LEAP and CLEAN
reconstruction from single band visibility measurements at frequency 145.8MHz with 72 inte-
gration times. (b) LEAP and CLEAN reconstruction from visibility measurements within 8
sub-bands at frequencies from 145.8MHz to 146.5MHz with 9 integration times.

the same sets of visibility measurements in each case. We compare the estimated source param-

eters with a catalog of the Boötes field at 130 ∼ 169MHz [142]. The errors of the estimated

source locations are 1′17.79′′ and 1′38.01′′ in the single-band and multi-band cases, respectively.

Similar to the observations in simulated cases, we find that LEAP can reliably resolve closely

located sources from the actual LOFAR measurements. The advantage of the FRI-based sparse

recovery, which gives a direct estimate of the point source parameters, is evident by comparing

the CLEAN image in both single-band and multi-band cases: several sources would otherwise be

too weak to be reliably detected with a blob detection algorithm applied to the CLEAN image

without introducing many false detections.
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(a) LEAP reconstruction (b) CLEAN image
(c) Compressed sensing (CS)

deconvolution

(d) LEAP reconstruction
compared with TGSS catalog

(e) LEAP reconstruction
compared with NVSS catalog

(f) Zoom-in of the compressed
sensing reconstruction

Figure 4.9: Point source reconstruction from actual LOFAR observations from the Toothbrush
cluster RX J0603.3+4214 (Dataset IV). Point sources are reliably estimated even in the presence
of extended sources (the Toothbrush cluster). Existence of sources are validated by referencing
both the TGSS and the NVSS catalog. (a) The reconstructed point sources with LEAP. (b) The
CLEAN image from the same set of visibility measurements. (c) The deconvoluted image with a
compressed sensing (CS) based approach [39]. Zoom-in comparisons of the LEAP reconstruction
against (d) the TGSS catalog and (e) the NVSS catalog around the Toothbrush cluster. (f)
Zoom-in plot of the CS reconstruction around the toothbrush cluster.

4.5.6 Actual LOFAR observation: Toothbrush Cluster

A natural question to ask is how well the algorithm recovers point sources in the presence of

extended sources within the field of view. In order to test their influence, we applied LEAP to a

LOFAR observation from the Toothbrush cluster RX J0603.3+4214, which contains one of the

brightest radio relics. The toothbrush shape is suggested to be a consequence of a triple merger

event based on simulation [20]. We used the LOFAR observation with both the 24 core stations

and 12 remote stations within a single-band at frequency 132.1MHz (Dataset IV in Table 4.1).

The LEAP reconstruction results are compared to the CLEAN image. We also included the

deconvolved image obtained with a compressed sensing (CS) based approach [39] for reference.

We overlaid the CLEAN image with the reconstructed point sources from LEAP in Figure 4.9,

and validated the existence of sources by comparing the reconstructions with the 150MHz TIFR

GMRT sky survey (TGSS) [69]. Even in the presence of the Toothbrush cluster at the center

of the field of view, LEAP is robust enough to estimate the point sources reliably. The average

reconstruction error of the source locations compared with the TGSS catalog is 2′43.60′′. A

zoom-in plot, Figure 4.9 (d), of the area around the toothbrush cluster, reveals that LEAP

reconstructed a few sources not in the TGSS catalog (and hence are mismatched to other sources
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in the catalog). In order to determine whether theses sources were false detections, we cross-

referenced with the NRAO VLA sky survey (NVSS) [34], which observes the sky at a much

higher frequency (1.4GHz). The extra sources reconstructed by LEAP were indeed confirmed to

be actual radio sources (Figure 4.9 (e)). The average LEAP reconstruction with respect to the

NVSS catalog was 2′1.36′′.

4.6 Discussion

4.6.1 Resolution

In CLEAN-based source estimation algorithms, the reconstructed sky model (which consists of

a few non-zero pixels around sources) are convolved with a point spread function (a.k.a. the

“CLEAN beam”). The motivation for such an additional smoothing step is to reflect the angular

resolution of a given instrument—the size of the CLEAN beam is determined by the diffraction

limit imposed by the instrument with a given maximum baseline. Consequently, it is not possible

to resolve sources beyond the instrument angular resolution. In practice, the minimum angular

resolution that can be achieved by CLEAN is much larger than the instrument diffraction limit

as noticed in [57]. This is also observed in the two-source simulations in Section 4.5.3: within

the simulation setup (which has a maximum source separation of 10′ and an instrument angular

resolution 4′49.2′′), CLEAN cannot always resolve both sources consistently even for cases with

relative large source separation and low noise levels.

In comparison, LEAP directly reconstructs the source locations in continuous space. The

final resolution achievable is only related to the noise level in the visibility measurements. This

is a direct consequence of enforcing continuous domain sparsity (i.e., the point source model)

in the reconstruction process. LEAP tries to fit the given visibility measurements optimally (in

the least square sense) with a point source model. From the experimental results in Figure 4.4

and Figure 4.5 (a), LEAP indeed manages to resolve sources separated by a distance well below

the instrument angular resolution. Further, experiments with actual LOFAR observations from

the Boötes field and the Toothbrush cluster (Section 4.5.5 and Section 4.5.6, respectively) also

confirm the ability of LEAP to identify closely located sources reliably.

4.6.2 Efficient use of visibility measurements

In the experiments with actual LOFAR observations, we sub-sampled14 the measurement set

along different integration times: 2% and 0.25% of the total integration times is used in the

single-band and the multi-band reconstruction respectively. Even with such little data, the

point sources were estimated accurately by LEAP. This is potentially useful for a modern radio-

interferometer like LOFAR or the next generation Square Kilometer Array (SKA), which consists

of an array of numerous omnidirectional antennas. With an efficient algorithm, like LEAP, using

only a fraction of the total observations can still yield reconstruction accuracy comparable to

a conventional method (e.g., CLEAN) requiring significantly more integration times and longer

baselines (e.g., Figure 4.6). Another potential application of LEAP could be for the Very Long

Baseline Interferometry (VLBI), which has sparse coverage in the uv domain.

14This is different than taking the measurements with same number of consecutive integration times. See our
comments at the beginning of Section 4.5.1.
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4.7 Conclusion

We investigated the FRI-based continuous-domain sparse recovery framework in the challenging

radio astronomy setting with both simulations and actual LOFAR observations, and demon-

strated that the proposed approach (LEAP) can accurately resolve closely located sources under

various noise conditions. In particular, we showed that it is possible to go beyond the instrument

angular resolution. A reconstruction accuracy comparable to CLEAN can be achieved with sig-

nificantly fewer measurements. Further, we developed a multi-band reconstruction scheme that

estimates the point sources consistently among different sub-bands, and demonstrated the effec-

tiveness of the multi-band reconstruction strategy given actual LOFAR observations. In order

to facilitate the application of this new approach for source estimation in radio astronomy, we

have made the Python implementation available online15.

For future work, we will consider the potential application in calibration, where an accurate

source estimation is essential for subsequent imaging. Another interesting application could be for

pulsar detection (from the antenna signals), given that LEAP can have reliable reconstructions

even from very limited data. We will also extend the current framework to the sphere, to improve

performance for instruments with a wide field-of-view, such as the Murchison Wide-field Array

(MWA) [80].

15The Python package is available at https://github.com/hanjiepan/LEAP.



Chapter 5

Direction of Arrival Estimation with
Microphone Arrays*

风声雨声读书声，声声入耳。家事国事天下

事，事事关心。

The sounds of the wind, the rain and words

read aloud—all these sounds enter my ears.

So too the affairs of the family, the country

and the world— let them all be of concern to

my heart.

顾宪成 GU, Xiancheng

5.1 Introduction

In audio processing, an important problem is to estimate sound source locations from measure-

ments with microphone arrays in audio processing. Even when the locations themselves are not

of direct interest, the source location estimation often serves as a fundamental pre-processing

step to more sophisticated processing, e.g., speech source separation. In this chapter, we consider

a compact microphone array with sources in far-field, that is the distances between sources and

microphones are much larger than the inter-microphones distance. In this regime, the wavefronts

at microphone locations are very close to parallel and the source signals can be approximated

as plane waves. Consequently only the directions of arrival (DOA) of these plane waves can be

recovered from the measurements.

*The material in this chapter is the result of joint work with Robin Scheibler, Eric Bezzam, Ivan Dokmanić
and Martin Vetterli [97].

83
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An ideal DOA estimation algorithm should be able to resolve multiple sources even when some

of them are closely located and with possibly very noisy measurements. Many audio signals,

like human voices, have a relatively wide spread across different frequencies. Therefore, it is

imperative that a DOA estimation algorithm can exploit wide-band measurements coherently. In

the classic direction of arrival estimation problem, most of the work is restricted to cases where

measurements are obtained from arrays with regular geometries, e.g., uniform linear arrays,

circular or spherical arrays. However, not all arrays have regular microphone layout patterns

as is the case with the “Pyramic Array” [7], which is used in our experiments. It is therefore

important for practical purposes that the algorithm is applicable to cases with arbitrary array

layouts.

Various algorithms have been proposed to reconstruct the direction of arrival estimation

problem. But it is uncommon for a DOA algorithm to meet all the desirable requirements.

For example, the steered response power (SRP) methods [24], do not require a specific array

geometry and are immune to coherence in signals. However, since these methods are based on

beamforming, they cannot resolve closely located sources [44]. While subspace-based methods,

such as MUSIC [111] and root-MUSIC [55], are able to provide high-resolution DOA estimation,

these methods are fundamentally narrowband. This is because subspace methods exploit the

property that source steering vectors span a subspace with bases given by the eigenvectors of

the covariance matrix, which have the largest eigenvalues [111]. But the signal subspaces are

sub-band frequency dependent. It is possible to extend subspace-based methods to wide-band

scenarios by combining individual narrowband estimates, or transforming the array manifold

at each frequency to a reference frequency with so-called “focusing matrices” (CSSM [135],

WAVES [43] and TOPS [146]). In general, these methods require a search over space except

when the array is a uniform linear array (ULA) [9]. It is a non-trivial task to define proper

focusing matrices, which essentially are the initial guesses of the source locations. Grid-search

free methods usually rely on polynomial rooting and are applicable to uniform linear arrays [9, 63]

or circular arrays [65]. These methods can be further extended to arbitrary array layouts by

using array interpolation [10, 19, 55, 107]. Finally, in recent years, techniques based on sparsity

inducing norm optimization have gained attention [68, 83]. A notable example is [82], which

allows the localization of more sources than the number of microphones available based on the

Khatri-Rao subspace techniques.

In this chapter, we adapt the generic FRI reconstruction framework for DOA finding—

FRIDA, which works for arbitrary array geometries. Moreover, FRIDA is capable to cope with

wide-band signals coherently. The proposed method does not require grid search and is not

sensitive to preprocessing akin to focusing matrices as in previous wide-band methods. We

show that FRIDA can reconstruct more sources than the number of microphones as it is the

cross-correlations that are used in the reconstruction algorithm. The tradeoff is that the cross-

correlation-based approach cannot handle correlated signals, e.g., in an indoor environment with

strong reflections from surrounding walls. Further, FRIDA can be adapted to deal with correlated

sources by working with the raw microphones signals directly.

Because of the similarities with the radio astronomy point source reconstruction problem

in the previous chapter, our focus will primarily be on the formulation of the DOA problem

in terms of the generic FRI reconstruction. The rest of the chapter is organized as follows.

In Section 5.2, we define the sources model and measurements used in the direction of arrival

estimation. Then, we adapt the generic FRI-based sparse recovery algorithm by identifying a

set of unknown sinusoidal samples and the linear mapping between from the sinusoids to the

measurements (Section 5.3). Results with both synthetic and recorded signals are presented in
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Section 5.4 before we conclude in Section 5.5.

5.2 Signal and measurement models

In this section, we introduce notations and setups used throughout the chapter. We describe

the acoustic point source model and derive the analytical form of the cross-correlations of the

received microphone signals.

For notational brevity, we use S for both the unit circle S1 (in 2D) and the unit sphere S2 (in

3D) wherever there is no confusion. Unit propagation vectors are denoted by p.

• In 2D, only the azimuth direction ϕ ∈ [0, 2π) is required so that p ∈ S
1 is p = (cosϕ, sinϕ).

• In 3D, we use azimuth ϕ ∈ [0, 2π) and colatitude θ ∈ [0, π), thus a unit vector on the unit

sphere p ∈ S
2 is p = (cosϕ sin θ, sinϕ sin θ, cos θ).

Denote with {rq ∈ R
2}Qq=1 the Q microphones locations, and {pk}Kk=1 the propagation vector of

K monochromatic sources in the far-field. Within a narrow band centered at frequency ω, the

baseband representation of the signal coming from direction p ∈ S is x(p, ω, t) = x̃(p, ω)ejωt,

where x̃(p, ω) is the emitted sound signal from a source located at p and frequency ω. The

intensity of the sound field is

I(p, ω)
def
= E

[
|x(p, ω, t)|2

]
=

K∑
k=1

σ2k(ω)δ(p − pk), (5.1)

where σ(ω)2k is the power of the k-th source and δ(·) is a Dirac. We assume frame-based pro-

cessing, and the expectation is over the randomness of x̃ from frame to frame. As x̃ carries the

phase, the assumption E [x̃] = 0 holds.

The received signal at the q-th microphone located at rq is the integration of plane waves

from all directions. Under the point source assumption, the integral reduces to a sum of K plane

waves:

yq(ω, t) =

∫
S

x(p, ω, t)e−jω〈p, rqc 〉dp =
K∑
k=1

x(pk, ω, t)e
−jω〈pk, rqc 〉, for q = 1, . . . , Q, (5.2)

where c is the speed of sound.

The cross-correlation between the received signals for a microphone pair (q, q′) is:

Vq,q′(ω)
def
= E

[
yq(ω, t)y

∗
q′(ω, t)

]
=

∫
S

∫
S

E [x(p, t)x∗(p′, t)] e
−jω

〈
p,

rq−r
q′

c

〉
dpdp′ (5.3)

for q, q′ ∈ [1, Q] and q �= q′. In practice, Vq,q′ is estimated by averaging over a finite number

of frames (sometimes called snapshots); for simplicity we use the same symbol for the empirical

estimate of the cross-correlation. When sources are uncorrelated, the cross-correlations take a

form similar to that of (5.2):

Vq,q′(ω) =

∫
S

I(p, ω)e−jω〈p,Δrq,q′〉dp =
K∑
k=1

σ2k(ω)e
−jω〈pk,Δrq,q′〉, (5.4)
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Table 5.1: Summary of the linear mappings for various DOA estimation cases. See Section 5.3
for details.

Measurements a Mapping G (2D: gq,m, 3D: g(q,q′),(m,n)) Sinusoids b

cross-correlations

K∑
k=1

σ2k(ω)e
−jω〈p,Δrq,q′〉

2D (−j)mJm (‖ωΔrq,q′‖2)Ym
(

Δrq,q′
‖Δrq,q′‖2

) K∑
k=1

σ2k(ω)e
−jmϕk

3D (2π)3/2
L∑
�=0

(−j)�
J�+1/2(‖ωΔrq,q′‖2)

(‖ωΔrq,q′‖2)1/2
Y�,m

(
ωΔrq,q′

‖ωΔrq,q′‖2

)
N�,mp�,n,|m|

K∑
k=1

σ2k(ω)(cos θk)
n(sin θk)

|m|e−jmϕk

microphone signals

K∑
k=1

αk(ω)e
−jω〈p, rqc 〉

2D (−j)mJm (‖ωrq/c‖2)Ym
(

rq
‖rq‖2

) K∑
k=1

αk(ω)e
−jmϕk

3D (2π)3/2
L∑
�=0

(−j)�
J�+1/2(‖ωrq/c‖2)

(‖ωrq/c‖2)1/2
Y�,m

(
ωrq

‖ωrq‖2

)
N�,mp�,n,|m|

K∑
k=1

αk(ω)(cos θk)
n(sin θk)

|m|e−jmϕk

where Δrq,q′
def
=

rq−rq′
c is the normalized baseline.

In the next section, we first consider the DOA estimation problem where the cross-correlations

of the microphone signals are taken as the measurements in the FRI-based reconstruction al-

gorithm. Then, in Section 5.3.3 we describe the adaptations needed in order to work with

microphone signals directly.

5.3 The acoustic direction of arrival problem

From our analysis in Chapter 2 and Chapter 3, it is essential to identify two key elements in a

particular sparse recovery problem:

• a set of (unknown) uniform sinusoidal samples, which contains the sparse signal parameters

to be recovered;

• a linear mapping between the given (possibly non-uniformly sampled) measurements and

these uniform sinusoidal samples.

The DOA estimation problem is then formulated as a constrained optimization and solved within

the FRI-based sparse recovery framework, which we developed in Chapter 2 and Chapter 3.

We will define the set of unknown sinusoidal samples and its relation to the given measure-

ments. The mapping is described for four cases, where the measurements are either the raw

microphone signal (Section 5.3.3) or the cross-correlations, in both 2D (Section 5.3.1) and 3D

(Section 5.3.2), which are summarized in Table 5.1.

5.3.1 DOA estimation from cross-correlations in 2D

Uniform samples of sinusoids In 2D, the propagation vector p = (cosϕ, sinϕ) is on the unit

circle. Therefore, the sound field intensity (5.1) is 2π-periodic. The Fourier series representation

of I(p, ω) is:

I(p, ω) =
∑
m∈Z

Îm(ω)Ym(p),
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where Ym(·) is the Fourier series basis: Ym(p) = Ym(ϕ) = ejmϕ, and Îm(ω) is the Fourier series

coefficient within a sub-band centered at frequency ω:

Îm(ω) =
1

2π

K∑
k=1

σ2k(ω)e
−jmϕk .

Note that Îm(ω) for m ∈ Z are uniform samples of sinusoids.

Relation with the given measurements The cross-correlation (5.4) of the microphone signals

are related with the Fourier series coefficients Îm(ω) as:

Vq,q′(ω) =

∫
S1

∑
m∈Z

Îm(ω)Ym(p)e
−jω〈p,Δrq,q′〉dp

(a)
= 2π

∑
m∈Z

(−j)mJm (‖ωΔrq,q′‖2)Ym
(

Δrq,q′

‖Δrq,q′‖2

)
Îm. (5.5)

Here (a) results from the Jacobi-Anger expansion [31] of complex exponentials and Jm(·) is the
order m Bessel function of the first kind.

Therefore, we establish a linear mapping from the uniformly sampled sinusoids Îm to the given

measurements Vq,q′ . Concretely, denote the vectorized cross-correlation (5.3) by a(ω) ∈ C
Q, and

let the vector b(ω) be 2πÎm(ω) for m = −M, · · · ,M . Then the linear mapping G(ω) is:

[G](q,q′),m (ω) = (−j)mJm(‖ωΔrq,q′‖2)Ym
(

Δrq,q′

‖Δrq,q′‖2

)
,

where rows of G are indexed by the cross-correlation between microphone q and q′, and columns

of G are indexed by Fourier bins m. We can then concisely write (5.5) as a(ω) = G(ω)b(ω).

5.3.2 DOA estimation from cross-correlations in 3D

Uniform samples of sinusoids In 3D, the propagation vector p = (cosϕ sin θ, sinϕ sin θ, cos θ)

is on the unit sphere. Similar to the 2D cases in the previous section, the sound field intensity

also has a Fourier domain expansion, which involves the spherical harmonics:

I(p, ω) =
∞∑
�=0

�∑
m=−�

Î�,mY�,m(p). (5.6)

Here Y�,m(·) is the spherical harmonic basis of order � and degree m: Y�,m(p) = Y�,m(θ, ϕ) =

N�,me
jmϕPm� (cos θ), where Pm� is an associated Legendre polynomial, and N�,m = (−1)(m+|m|)/2√

2�+1
4π

(�−|m|)!
(�+|m|)! is a normalization factor (see e.g., [104] for details).

From our analysis in Chapter 2 (Section 2.4.4 and Appendix 2.D), we know that the spherical

harmonic coefficients Î�,m are linear combinations of uniform sinusoidal samples:

bn,m =
K∑
k=1

σ2k(ω)(cos θk)
n(sin θk)

|m|e−jmϕk (5.7)
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and

Î�,m = N�,m

�−|m|∑
n=0

p�,n,|m|bn,m, (5.8)

where p�,n,|m| are some fixed coefficients that can be pre-computed (see derivations in Ap-

pendix 2.E).

Relation with the given measurements We can decompose the connection from the uniform

sinusoidal samples to the cross-correlation measurements into two stages:

(i) the linear mapping from bn,m to the spherical harmonic coefficients Î�,m (5.8);

(ii) the linear mapping from the spherical harmonic coefficients to the cross-correlations (5.6):

Vq,q′(ω) =
∞∑
�=0

�∑
m=−�

Î�,m
�
S2

e−jω〈p,Δrq,q′〉Y�,m(p)dp

(a)
= (2π)3/2

∞∑
�=0

�∑
m=−�

(−j)�
J�+1/2(‖ωΔrq,q′‖2)
(‖ωΔrq,q′‖2)1/2

Y�,m

(
ωΔrq,q′

‖ωΔrq,q′‖2

)
Î�,m,

where J�(·) is Bessel function of the first kind and (a) is from the expansion of complex

exponentials with spherical harmonic basis (see eq. (2.37) in [104]).

In the actual implementation, the infinite summation in the spherical harmonic expansion

is truncated up to a certain maximum order L and degree M ≤ L. Denote the vectorized

cross-correlations (5.3) by a(ω) ∈ C
Q, and the uniform sinusoidal samples (5.7) as a vector b(ω)

for m = −M, · · · ,M , then the linear mapping in the constrained FRI reconstruction algorithm

G(ω) is:

[G](q,q′),(m,n) (ω) = (2π)3/2
L∑
�=0

(−j)�
J�+1/2(‖ωΔrq,q′‖2)
(‖ωΔrq,q′‖2)1/2

Y�,m

(
ωΔrq,q′

‖ωΔrq,q′‖2

)
N�,mp�,n,|m|.

5.3.3 DOA estimation from raw microphone signals

In the previous two cases, we take the cross-correlations of the received microphone signals as

the measurement in the FRI-base reconstruction. In the case of correlated sources, e.g, in an

indoor environment, the cross-correlation based approach is no longer applicable. However, it

turns out that very little modifications are needed in order to estimate the source direction

of arrival directly from the received microphone signals—hence overcoming the limitations of

working only with uncorrelated sources in the previous cases. More specifically, the microphone

measurements, the normalized microphone locations (by the speed of sound), and the source

signals replace the cross-correlation measurements, the difference of microphone locations, and

the source signals variances, respectively:

Vq,q′(ω) → yq(ω), Δrq,q′ → rq/c, σ2k(ω) → αk(ω)
def
= x̃(pk, ω).

We summarize the linear mappings of both 2D and 3D cases in Table 5.1.
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Figure 5.1: (a) Pyramic array, a compact microphone array with 48 MEMS microphones
distributed on the edges of a tetrahedron. For the 2D DOA experiments, only the top triangle
is used; while in 3D DOA experiments, measurements from all 48 microphones are used. (b)
Locations of the loudspeakers and microphone array in experiments. (c) Anechoic chamber used
for the 3D DOA estimation experiments.

5.4 Results

In this section, we demonstrate the effectiveness of the proposed algorithm in simulations and

experiments with actual recordings. We compare FRIDA with other wide-band algorithms:

MUSIC [111], SRP-PHAT [44], CSSM [135], WAVES [43], and TOPS [146].

In experiments, sampling frequency of the recordings is fixed at 16 kHz. Narrow-band sub-

carriers are extracted from a 256-tap short-time Fourier transform (STFT) with a Hanning

window and no overlap. We use a tetrahedron-shaped array of 24 microphones (the “Pyramic

array” [7]). Each side is 30 cm long and contains 8 microphones. The spacing between microphone

pairs ranges from 8mm to 25 cm. We use the Pyramic arrays to collect recordings in experiments

(see Figure 1.2 for both 2D and 3D setups). We have taken 20 sub-bands uniformly spaced

between 2.5 kHz and 4.5 kHz for all algorithms except TOPS, which requires low frequency sub-

bands in order to have a reasonable reconstruction. For TOPS, we have chosen 60 sub-bands

from 100Hz to 5 kHz. For algorithms based on grid search, we have chosen a grid with 720

uniform grid points within [0◦, 360◦) in 2D and 20 000 approximately equidistant grid points on

the sphere [71] with median inter-point distance of 1.53◦.
The reconstruction errors are measured with the great-circle distance1. The correspondence

between the reconstructed source locations and the ground truth ones are obtained by finding

the permutation that minimizes the distance between the permuted source locations.

5.4.1 Influence of noise

We study the performance of various algorithms with measurements at different noise levels in

simulations. Sound propagation is simulated by applying fractional delay filters to the source

signal. The microphone signals are generated based on the array geometry of the Pyramic arrays,

which are used in experiments with actual speech recordings (Section 5.4.3). Gaussian white noise

was added to the received microphone signals based on the desired SNR levels. We estimated

1In a planar setup (i.e., DOA in 2D), this corresponds to choosing 0◦ latitudes for all sources.
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(a) DOA in 2D (b) DOA in 3D

Figure 5.2: Average DOA reconstruction error in (a) 2D and (b) 3D, from simulated microphone
signals with different noise levels. The DOA estimation errors are averaged over 500 different
noise realizations at each noise level. With denser grid, grid-search based algorithms achieves
lower DOA estimation errors but at the cost of higher computational burden.

the covariance matrix by averaging over 256 snapshots of 256 samples each. The reconstruction

errors are averaged over 500 different noise realizations at each noise level.

From the average DOA estimation errors in Figure 5.2, FRIDA along with SRP-PHAT and

MUSIC are the most robust methods. For cases with little noise, the DOA estimation of grid

search based methods all stagnate to an error that is related to the grid search step-size; while

FRIDA, which is based on the continuous-domain sparse recovery, does not have such a limitation

and continues decreasing the DOA estimation errors with increased SNRs.

With a denser grid, the minimum DOA estimation error of grid search based algorithms might

decrease but at the expense of increased computational cost, which is proportional to the total

number of grid points. We repeat the DOA estimation with a grid that consists of 10 times more

grid points. The DOA estimation errors is show as dotted line in Figure 5.2. The saturation level

indeed decreases. Even though a denser grid improves the estimation accuracy of one source, it

is not clear whether the dense grid will benefit the resolution of close sources, which is what we

will investigate in the next section.

5.4.2 Resolving close sources

Next, we study the minimum separation that an algorithm can resolve distinct sources in a 2D

setup. Two sources are separated by an angle that varies linearly on a log scale from 1◦ to

45◦. Each source emits Gaussian white noise with equal power. The average error is computed

over 120 uniformly space source locations2 from 0◦ to 120◦. The source directions of arrival

were estimated from microphone signals with 0 dB SNR. A source is considered as successfully

recovered if the reconstructed DOA is less than half the separation between the two sources from

2Due to the symmetry of the Pyramic array, we do not need to use the full 360◦.
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Figure 5.3: Average number of resolved sources against different separation distances between
two sound sources (noise level in microphone measurements SNR = 0dB).

DOA FRIDA MUSIC SRP-PHAT

0◦ −0.5◦ 1.6◦ 1.4◦

5.5◦ 4.6◦ −93.9◦ −38.1◦

Table 5.2: Resolving two closely located sources (DOAs: 0◦ and 5.5◦) from actual speech
recordings in an audio room (see experimental setup in Figure 5.1(b)).

the ground truth source location. Unfortunately, we ran into numerical difficulties with CSSM,

WAVES and TOPS when two sources are too close to each other. Additionally, these methods

do not appear to be competitive based on the simulations in the previous section. Hence, we

have omitted them from this comparison.

FRIDA significantly outperforms MUSIC and SRP-PHAT (Figure 5.3): Sources that are

separated by 3.56◦ or more are always resolved; while the closest contenders, MUSIC can only

distinguish two sources that are at least 10.80◦ apart and SRP-PHAT needs to have a separation

of 20.36◦. The distance between the adjacent grid points is 0.5◦, which is much smaller than the

minimum separation that either MUSIC or SRP-PHAT can resolve two distinctive sources.

5.4.3 Results with actual speech recordings

Finally, we perform experiments with recorded data to validate the algorithm in real-world

conditions for 2D DOA and 3D DOA estimations.

For the 2D DOA experiment, the Pyramic array was placed at the center of eight loudspeakers

(Figure 5.1(b), Set 1). All loudspeakers were between 1.45m and 2.45m away from the array.

Recordings were made with all possible combinations of one, two, and three speakers playing

simultaneously distinct speech segments. Two of the speakers were separated by 5.5◦ from each

other. We will use these two loudspeakers to test the resolving power of different algorithms.

For the 3D DOA experiment, the Pyramic array was fixed on top of a turn table inside an
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(a) DOA estimation from recordings (2D) (b) DOA estimation from recordings (3D)

Figure 5.4: Average DOA estimation errors with different algorithms applied to the recorded
speech signals in (a) 2D and (b) 3D setups, respectively.

anechoic chamber. Three loudspeakers located at different heights are between 3.94m and 4.08m

away from the array. Instead of moving loudspeakers around to different locations, the array was

rotated to different angles (using the turn table). Each time, only one loudspeaker played speech

segments. In order to test the DOA estimations with multiple sources, recordings of individual

sources (at certain orientation angles) were added up. This inevitably increased noise levels

in the re-synthesized recordings compared with the direct recording of multiple simultaneously

playing loudspeakers. However, this does not seem to be an issue based on our experience: For

instance, a synthesized recording of three sources has an estimated SNR level around 25 dB. We

select recordings that correspond to 61 uniformly spaced azimuth values from 0◦ to 120◦ when

DOA estimations are performed for 1 source; and 16 uniformly spaced azimuth values from 0◦

to 30◦ when DOA estimations are performed for multiple sources. Combinations of up to three

sources at different locations are tested in the experiments.

The statistics of the reconstruction errors for the different algorithms are shown in Figure 5.4

in both 2D and 3D setups. In 2D experiments, the coherent methods WAVES and CSSM perform

well for one and two sources, but break down for three sources. TOPS has difficulty in estimating

multiple sources. FRIDA, MUSIC and SRP-PHAT perform the best with a median error within

one degree from the ground truth. In 3D experiments, WAVES and CSSM fails to perform

well when there is more than one source. Similar to the 2D experiments, FRIDA and MUSIC

give most reliable DOA estimations. However, FRIDA is the only algorithm that gives reliable

reconstructions when 3 sources are present. The median DOA estimation error is less than 3◦.
FRIDA distinguishes itself from the conventional methods in resolving closely spaced sources.

This is highlighted in Table 5.2 for the 2D setup, where the reconstructed DOA for the sources

located at 0◦ and 5.5◦ is shown. While all three methods correctly identify one source, only

FRIDA is able to resolve the second one. We have observed similar performance with FRIDA in

resolving close sources in 3D cases. In Figure 5.5, we show one example in the 3D setup. Two

of the three sources are closely located with a great-circle distance of 12.76◦. In the least square
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Figure 5.5: Accurate direction of arrival estimation with FRIDA of closely located sources
from recordings of speech signals in a anechoic chamber (The estimates SNR in the recording:
27.26 dB. The noise level is estimated from the silence recording). FRIDA accurately reconstructs
all source locations (average estimation error: 1.64◦); while a grid-search based algorithm, e.g.,
MUSIC, fails to resolve two closely located sources even with a dense grid (see Figure 1.2(b) in
the Introduction Chapter).

estimate, both sources are contained within one bright blob. With FRIDA, all three DOAs are

accurately estimated. The average reconstruction error is 1.64◦.
Finally, we tested the ability of FRIDA to accurately resolve a number of sources larger than

the number of microphones used. We placed ten loudspeakers (Figure 5.1(b), Set 2) around the

Pyramic array and recorded them simultaneously playing white noise. Then, we discarded the

signals of all but 9 microphones (out of 24) and applied FRIDA to the recordings. The algorithm

successfully reconstructed all DOAs within 2◦ of the ground truth, as shown in Figure 5.6. Note

that none of the subspace methods can achieve this result. While SRP-PHAT is not limited in

this way, its resolution is lower (its error is ∼ 4◦ on this recording).

Figure 5.6: Reconstruction of 10 sources from only 9 microphones. The average DOA estimation
error is within 2◦.
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5.5 Conclusion

In this chapter, we introduced FRIDA, a new algorithm for DOA estimation of sound sources.

FRIDA, which is based on the finite rate of innovation sampling technique that we developed in

Chapter 2 and Chapter 3, estimates DOAs in continuous domain without grid search. The ap-

proach is applicable to arrays with arbitrary geometries as is demonstrated with both simulations

and real experiments with the Pyramic arrays. Wide-band measurements can be efficiently ex-

ploited to obtain more robust reconstruction. We demonstrated that FRIDA compares favorably

to the state-of-the-art, and outperforms all other algorithms in resolving close sources. Finally,

FRIDA is notable for resolving more sources than microphones, as demonstrated experimentally

with recorded signals.



Chapter 6

Image up-sampling via Edge Etching

不闻不若闻之，闻之不若见之。见之不若知

之，知之不若行之。学至于行而止矣。

Tell me and I will forget. Show me and I will

remember. Involve me and I will understand.

Step back and I will act.

荀子·儒孝 Xunzi · Ruxiao

6.1 Introduction

The goal of image up-sampling is to reconstruct a high resolution image from a single low resolu-

tion one, which is obtained from the high resolution image via lowpass filtering followed by down

sampling. A closely related classic problem is super-resolution, where the objective is to fuse a

sequence of low resolution images into a higher resolution image [51, 127]. Image up-sampling

offers a promising way to overcome resolution limitations of imaging sensors due to cost or physi-

cal constraints. Various approaches have been proposed to address the inherently ill-conditioned

restoration problem and they may be broadly categorized into three classes: interpolation-based

methods, reconstruction-based methods and example-based learning approaches.

Interpolation-based methods address the missing pixel values in the up-sampled image with a

predefined interpolating kernel, e.g., bicubic spline [72], from the given pixel values in the neigh-

borhood. Generic interpolation approaches are simple and intuitive but the up-sampled image

tends to have annoying ringing artifacts and blurred edges. Improved interpolation methods

with adaptive interpolating kernels (based on local geometric regularities [78, 121]) have been

proposed so as to have more faithful up-sampling results around edges.

Reconstruction-based methods address the up-sampling problem by exploiting prior knowl-

edge of the up-sampled image, e.g., piecewise smoothness [4, 87], or priors on edge smooth-

95
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(a) Ground truth (b) Bicubic

(c) Kim & Kwon [73] (d) Proposed approach

Figure 6.1: The proposed image up-sampling algorithm preserves sharp edges and reduces
ringing artifacts. (a) Ground truth high resolution image; Up-sampled images (factor: 3) with
(b) bicubic interpolation (PSNR = 29.36 dB), (c) Kim & Kwon [73] (PSNR = 32.98 dB), and (d)
the proposed approach (PSNR = 33.70 dB), respectively.

ness [40, 53, 119]. The up-sampled image is then reconstructed by minimizing a regularization

term subject to a data fidelity constraint, which requires that the lowpass filtered and down-

sampled version of the up-sampled image should match the given low resolution image.

A different line of work based on machine learning tries to estimate the mapping functions

between the high and low resolution image pairs (typically in the image patch space) from either

internal or external examples [28, 54, 60, 64, 73, 81, 100, 136, 144, 147]. We may view the learning

process as an implicit way to find the priors that one should impose on the up-sampled image.

The reconstruction quality of the learning-based approaches is dependent on the training dataset:

when the training and testing images are of different nature, the up-sampling performance usually

deteriorates.

In this chapter, we propose a reconstruction-based image up-sampling approach where we

incorporate a global edge model estimated from the given low resolution image in the up-sampling

process. Motivated by our previous work on sampling curves with finite rate of innovation [95],

we recast the edge modeling problem as finding a mask function such that its product with

the image gradients is minimized. In a sense, the mask function, which vanishes around edges,

serves as a complement to the gradients. Subsequently, we enforce the reconstructed model as

an edge preserving constraint for image up-sampling. Different from [119], our goal is not to
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match a gradient profile for the up-sampled image directly but rather using the mask function

to “kill” (i.e., annihilate) large gradients. We show through numerical experiments that the

estimated edge model is indeed beneficial in preserving sharp edges and achieving state of the

art up-sampling performances (see an example in Figure 6.1). Our contributions are twofold:

1) We propose an edge modeling framework, which gives a continuous domain representation

of image edges, both in a local area and for the whole image. We give an example of one

possible application of the reconstructed local edge model for light-field images.

2) We formulate an edge-friendly image up-sampling problem by incorporating the reconstructed

global edge model in the up-sampling process. An efficient algorithm is proposed to solve

the constrained optimization problem based on alternating direction method of multipliers

(ADMM).

The rest of the chapter is organized as follows. We briefly review our work on sampling curves

with finite rate of innovation (FRI) and highlight an important spatial domain interpretation

of the theoretical results in Section 6.2. Based on this new interpretation, we propose an edge

modeling framework in Section 6.3, which serves as an edge-preserving regularization in image up-

sampling. We devise a fast algorithm to solve the resultant optimization problem in Section 6.4.

Experimental results on both edge modeling and image up-samplings are presented in Section 6.5

before we make the concluding remarks in Section 6.6.

6.2 Annihilating curves with a mask function

In this section, we will introduce a continuous domain mask function that allows us to estimate

image edges very accurately. Our approach is based on recent work [95] that extends the classic

FRI sampling and reconstruction framework [11, 14, 84, 115, 133] to two dimensional curves.

To introduce this approach, consider a continuous domain edge image IC(x, y), which is

analytic almost everywhere except on some curve C, where the image becomes discontinuous

(Figure 6.2(a)). Because of analyticity, the (complex) derivative of the edge image ∂IC(x, y) =(
∂
∂x + j ∂∂y

)
IC(x, y) is different from zero only on the curve (Figure 6.2(b)). We would like to

retrieve the edge positions in the continuous domain from a sampled version of IC (i.e., find the

curve C).

Instead of directly looking for non-zero regions of the derivative image, we introduce a mask

function μ(x, y) which annihilates the curve; i.e., its product with the derivative image is zero

(Figure 6.2):

μ(x, y) · ∂IC(x, y) = 0. (6.1)

The curve is then given by the zero-crossings of the reconstructed mask function μ(x, y) = 0.

In [95], we showed that if the mask function has a particular form, i.e., a linear combination

of sinusoids (with some unknown weights ck,l)

μ(x, y) =

K0∑
k=−K0

L0∑
l=−L0

ck,le
j 2πk
τx
x+j 2πl

τy
y
, (6.2)

we can exactly reconstruct the curve from a few samples of the edge image. This is because the
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C : μ(x, y) = 0

× = 0

(b) ∂IC(x, y) (c) μ(x, y)(a) IC(x, y)

∂IC(x, y) �= 0

Figure 6.2: Reconstruction of the positions of discontinuities in an edge image by finding a
mask function that annihilates the derivative image (6.1). (a) Edge image, which is discontinuous
across the curve C; (b) The derivative image; (c) The mask function, which vanishes on the curve.

coefficients ck,l satisfy the following annihilation equations1:

∑
k,l

ck,l∂̂IC

(
ωx − 2πk

τx
, ωy − 2πl

τy

)
= 0 ∀ωx, ωy, (6.3)

where ∂̂IC = (ωx + jωy)ÎC(ωx, ωy). On the other hand, the Fourier transforms ÎC at particular

frequencies have a one to one correspondence with the ideally low pass filtered samples of the

edge image. Hence, with sufficiently many samples, we can solve for the coefficients ck,l and

uniquely define the mask function and the curve (see [95] for more details).

In practice, the edge model defined in (6.2) is not always suitable for natural images. Since

the Fourier basis in (6.2) is globally varying, we have limited control over the local topology of

the curve. In the following sections we will introduce more local, hence more practical, mask

functions. However, it will not be possible to exactly satisfy (6.1). Instead, we will look to

minimize

‖μ · ∂I‖ (6.4)

with respect to a certain norm ‖ · ‖ to be specified (e.g., �2 norm) and hence find the mask

function that best annihilates the derivative image.

6.3 Annihilation-driven edge modeling

Although the mask function given in (6.2) allowed us to exactly retrieve the curve from a few

measurements, it was not practical for natural images. In this section, we will propose alternative

continuous-domain mask functions and efficient algorithms to extract their parameters. We

will utilize a simple local linear model (Section 6.3.1). Subsequently, these local edge models

are combined to build a global one, which is adapted to the local geometries of image edges

(Section 6.3.2).

1Note that (6.3) is nothing more than the Fourier transform of (6.1).
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Figure 6.3: Approximate image edges as a straight line in a localized block.

6.3.1 Block-wise linear edge model

Observe that if we magnify an image by a large enough factor, then we can well approximate

image edges locally as a straight line (Figure 6.3): ax+by+c = 0, where a, b and c are parameters

to be determined and x, y are horizontal and vertical coordinates, respectively. In the framework

of FRI curve annihilation, this amounts to considering a mask function:

μ(x, y) = ax+ by + c,

whose roots define the curve. Based on the spatial domain interpretation in the previous section,

the optimal parameters are therefore the ones that minimize (6.4). Such a simple linear edge

model only makes sense when we consider the problem in a local area. Specifically, the edge

parameters (a, b, c) in a block centered around (x0, y0) are

min
a,b,c

�
|μ(x − x0, y − y0) · ∂I(x, y)|2w(x − x0, y − y0)dxdy

subject to a2 + b2 = 1,
(6.5)

where w(·, ·) is a localized window, e.g., a Gaussian with a certain standard deviation σ,
1

2πσ2 exp
(

−x
2+y2

2σ2

)
and ∂I(x, y)are the image gradients. The constraint is imposed to avoid

the trivial solution where all three coefficients are zero. In practice, we may choose the block

centers as the Canny edge positions [23] and repeat the same process for all blocks in the entire

image (see Appendix 6.A for a non-iterative efficient implementation).

Reconstruction of line parameters

Note that (6.5) is a simple quadratic minimization subject to one quadratic constraint. The

associated Lagrangian of the constrained optimization is L(d, λ) = dTAd+λ(1−dTBd), where

d =

[
a
b
c

]
and B =

[
1 0 0
0 1 0
0 0 0

]
.

Here A is a 3 × 3 Hermitian symmetric matrix, whose entries can be obtained directly from the

derivative image ∂I(x, y). By setting the derivatives of the Lagrangian to zero, (6.5) reduces to
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an eigen-decomposition problem, which has a closed form solution:

d =

⎡⎣ A1,3(A2,2 − λ) − A1,2A2,3

(A1,1 − λ)A2,3 − A1,3A1,2

A2
1,2 − (A1,1 − λ)(A2,2 − λ)

⎤⎦ . (6.6)

Here Ai,j for i, j = 1, 2, 3 is the i-th row and j-th column entry of A. The Lagrange multiplier

λ is a solution of a quadratic equation2

α1λ
2 + α2λ+ α3 = 0, (6.7)

where αi for i = 1, 2, 3 are constants that can be computed directly from A’s entries as

α1 = A3,3, α2 = A2
1,3 +A2

2,3 − A2,2A3,3 − A1,1A3,3,

α3 = A1,1A2,2A3,3 − A1,1A
2
2,3 − A2

1,2A3,3 − A2
1,3A2,2 + 2A1,3A1,2A2,3.

Once we have reconstructed the line parameters, we can further define the edge point (xe, ye)

for each block, which should be located on the reconstructed line while having the shortest

distance to the block centre:

(xe, ye) = argmin
x,y

(x − x0)
2 + (y − y0)

2

subject to μ(x − x0, y − y0) = 0,
(6.8)

i.e., xe = x0 − ac
a2+b2 , and ye = y0 − bc

a2+b2 . In comparison with conventional edge detection

algorithms, e.g., the Canny edge detector [23], the reconstructed edge points are no longer

restricted to be located on pixel centers.

Notice that the edge model (and hence the edge positions) within each block is directly

related to the entries of A, which is different from block to block. A naive implementation is

to evaluate the matrix for each block, which is computationally inefficient. It turns out that we

can reinterpret the block-wise process as convolutions [77], which is very fast. Consequently, the

edge models for the entire image are reconstructed by applying a few linear filtering. Please refer

to Appendix 6.A for a detailed discussion of the implementation.

Further refinements with anisotropic windows

Based on the reconstructed linear edge model, we can adapt the window w(x, y) to further refine

the estimated line parameters. For instance, we may scale the size (the standard deviations) of

the Gaussian window and align it along the (estimated) edge direction (Figure 6.4). Another

possible refinement is that we can now place the window around the reconstructed edge point

(xe, ye) rather than the Canny edge point as was the case in the first round estimation.

Specifically, if the estimated linear edge model is ax+ by+ c = 0, then the Gaussian window

is adapted as

σ →
{

σx
σy

, and

[
x

y

]
→

[
cos θ − sin θ

sin θ cos θ

] [
x

y

]
,

2The two solutions λmin and λmax correspond to cases where the annihilation errors are minimized and
maximized, respectively.



6.3 Annihilation-driven edge modeling 101

ax+ by + c = 0 Isotropic window

⇒

Anisotropic window

Figure 6.4: Adapt window shape based on the reconstructed edge model.

i.e.,

w(x, y) =
1

2πσxσy
exp

(
− (x cos θ − y sin θ)2

2σ2x
− (x sin θ + y cos θ)2

2σ2y

)
. (6.9)

Here σx and σy are rescaled based on the ratio of the maximum and minimum eigenvalues

from (6.7), e.g., σx = σ
(
λmax

λmin

)κ
, σy = σ

(
λmin

λmax

)κ
for some κ. The rotation angle θ is determined

by the slope of the linear edge model: sin θ = a√
a2+b2

and cos θ = b√
a2+b2

. Experimentally,

with the adapted window, more reliable estimations of the edge parameters are obtained (see

Section 6.5.1).

6.3.2 A locally adaptive global mask function

The block-wise linear edge model gives reliable estimations of edge orientation and sub-pixel

edge position within each localized area. It may already be useful in its own right (see examples

in Section 6.5.1). But is it possible to build a global edge model for the whole image by combing

these local models? We may then use the global mask function to assign position-dependent

weights (to differentiate between the edge and the smooth areas) in the subsequent processing

and better preserve sharp edges [95].

One intuitive way to build a global model is to take a weighted sum of the local linear edge

models over all blocks:

μ(x, y) =
N∑
n=1

(an(x − xn) + bn(y − yn) + cn)wn(x − xn, y − yn), (6.10)

where (xn, yn) are the edge positions from (6.8); (an, bn, cn) are the reconstructed line parameters

for the n-th block; and wn(·, ·) is a localization window (e.g., an isotropic Gaussian or the adapted

one (6.9)). However, the straightforward approach has two noticeable drawbacks:

• Because of the localization windows, the global mask function (6.10) vanishes in areas that

are not in the proximity of any block centers (xn, yn). Typically, these areas correspond

to the smooth part in an image. More concretely, consider an image up-sampling problem,

where we use the annihilation error ‖μ · ∂I‖ to better preserve edges. Large gradients

(correspondingly sharp edges) are encouraged wherever μ is small, which includes both the

actual edges and the smooth area had we used a mask function (6.10).
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• The parameters (an, bn, cn), which minimize the annihilation error within each block, fail

to take inter-block interferences into account and hence are suboptimal in minimizing the

annihilation error for the entire image.

We address these two issues by considering a modified edge model, whose parameters are

reconstructed by minimizing the annihilation error globally.

Mask parametrization

Since we do not expect to find any edges in smooth areas, we may choose the line parameters

explicitly as a = b = 0 and c = 1 for blocks that are located in the smooth areas:

μ(x, y) =
N∑
n=1

(an(x − xn) + bn(y − yn) + cn)wn(x − xn, y − yn) +
M∑
m=1

w̃m(x − x̃m, y − ỹm)︸ ︷︷ ︸
μsmooth(x,y)

,

(6.11)

where wn and w̃m are Gaussian windows with certain standard deviations centered around edges

or in the smooth area, respectively. In the implementation, we may choose the block cen-

ters (xn, yn) as the sub-pixel accurate edge positions from the block-wise estimation (6.8) and

(x̃m, ỹm) as the vertices of a sufficiently dense uniform grid in the smooth region. Notice that

here μsmooth is independent of the unknown parameters {an, bn, cn}Nn=1 and the total degrees of

freedom of the global mask function is still determined by the number of edge blocks N .

Global optimization

Similarly to the block-wise edge modeling, the global edge model is reconstructed by minimizing

the �2 norm of the annihilation errors: ‖μ ·∂I‖2. If we follow a similar formulation as in (6.5), we

would like to minimize the quadratic function subject to several quadratic constraints a2n+b2n = 1

for n = 1, · · · , N . For a natural image, N is typically very large, e.g., in the order of 103, which

precludes having a closed form solution for the quadratic constrained quadratic program (QCQP)

in general.

Alternatively, we may solve the quadratic minimization subject to a set of linear constraints,

e.g., cn = const. for n = 1, · · · , N . But what would be a good choice for this constant? Remem-

ber that (xn, yn) in (6.11) are the reconstructed edge positions from the block-wise estimation.

Therefore, it is reasonable to assume that it should also locate approximately on the global edge:

μ(x, y)
∣∣
x=xn,y=yn

≈ 0. Experimentally, we have observed that the reconstructed mask function

vanishes around the edge points (xn, yn) with a simple choice as cn = −1. The global edge model

is reconstructed as:
min

a1,··· ,aN
b1,··· ,bN
c1,··· ,cN

�
|μ(x, y) · ∂I(x, y)|2 dxdy

subject to cn = −1 for n = 1, · · · , N,

which has a closed form solution and can be implemented efficiently.
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s
Anti-aliasing

Filter
Ihigh res

I0 Up-sampling

Algorithm
Irecon

data acquisition Φ

Figure 6.5: Image up-sampling aims at reconstructing a high resolution image from a single
low resolution image I0, which is obtained from the high resolution image Ihigh res via lowpass
filtering followed by down sampling.

6.4 Application on edge-preserving image up-sampling

It is challenging to obtain a high resolution image from a single low resolution one. This prob-

lem is different from the conventional super-resolution problem that aims at fusing multiple low

resolution images to form a high resolution one [51, 127, 132]. In the up-sampling setup (Fig-

ure 6.5), the image reconstruction is formulated as a severely underdetermined inverse problem.

A typical strategy to better-condition the restoration process is to incorporate prior knowledge

on the reconstructed high resolution image, e.g., image smoothness.

As an example, the standard (thin plate spline) interpolation amounts to minimizing the

Laplacian of the up-sampled image subject to the data-fidelity constraint, which requires that

the up-sampled image should reproduce the low resolution image after going through the same

data-acquisition process:
min
I

‖ΔI‖22
subject to ΦI = I0.

(6.12)

Here I0 and I are the given low resolution image and the up-sampled image, respectively (rear-

ranged as column vectors); Φmodels the sampling process (lowpass filtering and down-sampling);

Δ is the Laplacian operator, which is commonly approximated as a discrete filter (see an alter-

native Fourier domain implementation in Section 6.4.1):

1

4

⎡⎣ 0 −1 0

−1 4 −1

0 −1 0

⎤⎦ .

Despite of the simplicity, the up-sampled images from interpolation based approaches tend to

be overly smooth and suffer from annoying ringing artifacts (Figure 6.6). However, as we have

shown in the previous section, we can construct a continuous domain edge model from a discrete

image. We may then enforce the edge model in the up-sampling process and better preserve

sharp edges.

6.4.1 Problem formulation

Following [95], the annihilation-driven image up-sampling considers a modified objective function

than in (6.12) by utilizing the �1-norm of the annihilation error with the up-sampled image as
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(a) Low resolution image
(b) Thin-plate spline
interpolated image

Figure 6.6: Interpolation based image up-sampling (6.12) blurs sharp edges and suffers from
ringing artifacts (up-sampling factor: 3).

an edge preserving constraint:

min
I

‖ΔI‖22 + �

edge model︷ ︸︸ ︷
‖MDI‖1

subject to ΦI = I0,

(6.13)

where M is a diagonal matrix with entries specified by the reconstructed mask function (6.11);

and D is a derivative operator such that DI corresponds to the derivative image ∂I
def
=

(
∂
∂x +

j ∂∂y
)
I(x, y). We may either use a discrete filter, e.g., a Sobel filter, to approximate the complex

differentiation in spatial domain or we may directly implement the differentiations in Fourier

domain. In particular, let Î(ωx, ωy) be the Fourier transform of the up-sampled image I, then3

DI = F−1
{
j(ωx + jωy)Î(ωx, ωy)

}
.

More specifically, in a finite dimensional setting, Î is made of the DFT coefficients of the

up-sampled image and ωx, ωy are the corresponding discrete frequencies between −π and π.

The diagonal entries of Ml,l are the l-th pixel value of a discrete image obtained by evaluating

the continuous domain mask function μ(x, y) on a finite grid that is determined by the target

resolution. We restrict ourselves to a finite dimensional setting in the following sections for ease

of explanation.

6.4.2 Solve (6.13) with ADMM algorithm

Observe that the objective function in (6.13) is a composition of two functions of different natures:

a smooth �2 norm of the Laplacian and a non-smooth �1 norm of the annihilation error. It fits

naturally in the framework of alternating direction method of multipliers (ADMM), which has

been shown to be an efficient optimization tool in solving various image restoration problems [1,

2, 27, 137]. Under very mild conditions, the ADMM iteration is guaranteed to converge to

the optimal solution [49]. Please refer to [17, 32, 50] and references therein for comprehensive

reviews of the ADMM algorithm and its connections with other similar optimization techniques,

including Douglas-Rachford splitting, split-Bregman methods, and proximal splitting method,

3Similarly, we have the Fourier domain implementation of the Laplacian ΔI as F−1
{
(ω2
x + ω2

y)Î(ωx, ωy)
}
.
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etc.

For a given constrained optimization, there are many equivalent ADMM formulations by using

different strategies of variable splittings [38]. The rule of thumb is that the resultant optimization

problem becomes separable with respect to both the original optimization variables and the newly

introduced auxiliary variables and hence is easy to solve. An augmented Lagrangian method is

then used to solve the equivalent constrained problem. In particular, we have considered an

ADMM formulation for the annihilation-driven up-sampling problem (6.13) as:

min
I∈RL,u∈CL,w∈RL

‖ΔI‖22 + �‖Mu‖1

subject to Φw = I0

u = DI

w = I.

The associated augmented Lagrangian is

Lλ,ρ,γ(I,u,w, z̃, ṽ, r̃) =
1

2
‖ΔI‖22 +

�

2
‖Mu‖1 + z̃H(Φw − I0) +

λ

2
‖Φw − I0‖22 + ṽH(u − DI)

+
ρ

2
‖u − DI‖22 + r̃H(w − I) +

γ

2
‖w − I‖22,

(6.14)

where λ, ρ, γ are scalar Lagrange multipliers and z̃, ṽ, r̃ are vector Lagrange multipliers. We

can rewrite (6.14) concisely as (in addition to constant terms that are independent of z̃, ṽ and

r̃):

Lλ,ρ,γ(I,u, z,v,w) =
1

2
‖ΔI‖22+

�

2
‖Mu‖1+

λ

2
‖Φw−I0+z‖22+

ρ

2
‖u−DI+v‖22+

γ

2
‖w−I+r‖22

(6.15)

via the change of variable: z = 1
λ z̃, v = 1

ρ ṽ and r = 1
γ r̃.

The ADMM approach then minimizes (6.15) iteratively by solving three sub-problems and

update the Lagrange multipliers z, v and r based on the errors made on each constraint with

the current iterate:

I(n+1)=argmin
I∈RL

Lλ,ρ,γ
(
I,u(n),w(n), z(n),v(n), r(n)

)
,

u(n+1)=argmin
u∈CL

Lλ,ρ,γ
(
I(n+1),u,w(n), z(n),v(n),w(n)

)
,

w(n+1)=argmin
w∈RL

Lλ,ρ,γ
(
I(n+1),u(n+1),w, z(n),v(n),w(n)

)
,

z(n+1)=z(n) +Φw(n+1) − I0,

v(n+1)=v(n) + u(n+1) − DI(n+1),

r(n+1)=r(n) +w(n+1) − I(n+1).

Here the superscript (·)(n) denotes the n-th iteration. In general, each sub-problem involved in

the ADMM iteration is easier to solve, which is why we would like to introduce the auxiliary

variables in the first place.
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I update

With u(n),w(n), z(n),v(n), r(n) fixed, the I-update subproblem is a simple quadratic minimiza-

tion. By setting the derivative of the Lagrangian with respect to I to zero, we have

I =
(
ΔHΔ+ ρDHD+ γI

)−1(
ρDH(u+ v) + γ(w + r)

)
, (6.16)

where I is the identity matrix. Notice that since the Laplacian Δ and the derivative D are

easily diagonalized with DFT, we can implement the matrix inverse in (6.16) as element-wise

division in the Fourier domain. Had we opted not to split the variable I with the extra constraint

w = I, the solution of the corresponding I update subproblem requires solving a linear system

of equations that involves
(
ΔHΔ+ ρDHD+ γΦHΦ

)−1
, which cannot be diagonalised in Fourier

domain any more (see also Section 6.4.2).

u update

By dropping terms that are independent of u, we have the u-subproblem as

min
u∈CL

1

2
‖u − d‖22 +

�

2ρ
‖Mu‖1,

where d = DI−v for notational brevity. Since M is a diagonal matrix, the u-update subproblem

becomes separable with respect to each component of the complex-valued variable u. From the

optimality condition, we have

ul − dl +
�

2ρ
|μl| · ul

‖ul‖2
= 0, (6.17)

with μl = Ml,l and ul, dl being the l-th components of u and d, respectively. Here ‖ · ‖2 is the

2-norm of a complex variable. The solution of (6.17) is given by the shrinkage formula [137]:

ul = max

{
‖dl‖2 − �

2ρ
|μl|, 0

}
dl

‖dl‖2
for l = 1, · · · , L.

Here we have assumed that 0 · 0
0 = 0. In the actual implementation, we may simply modify the

denominator as max{‖dl‖2, ε} with a small ε, e.g., 10−12 for numerical stability.

w update

Similar to the I-subproblem, we need to solve a simple quadratic minimization:

min
w

λ

2
‖Φw − I0 + z‖22 +

γ

2
‖w − I + r‖22,

whose closed-form solution is

w =
(
λΦHΦ+ γI

)−1(
λΦH(I0 − z) + γ(I − r)

)
. (6.18)

The challenge here is how to implement (6.18) efficiently: in the case of image up-sampling, Φ

models both the anti-aliasing blurring kernel and down-sampling. Consequently, ΦHΦ can no
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(a) (b) (c)

Figure 6.7: Comparisons of edge detection results on a test image in (a) with (b) Canny edge
detector and (c) the annihilation-driven approaches with isotropic windows (white diamond) and
anisotropic ones (yellow dots).
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Figure 6.8: Stack of light-field images and a slice on the x-α plane in the epipolar domain.

longer be diagonalized in the Fourier domain. Thanks to the matrix inversion lemma, we have:

(
λΦHΦ+ γI

)−1
=

1

γ
I − λ

γ
ΦH

(
γI+ λΦΦH

)−1
Φ. (6.19)

On the other hand, it can be shown that ΦΦH is simply another convolution matrix associated

with a certain filter, which again allows us to have an efficient implementation of (6.18) in the

Fourier domain (see details in Appendix 6.B).

6.5 Experimental results

In this section we exemplify the proposed edge modeling algorithm (Section 6.5.1) and evaluate

the performance of the edge-friendly single image up-sampling by comparing with state of the

art (Section 6.5.2). We have run all experiments with Matlab 8.5 in OS X 10.10.3 on a MacBook

Pro laptop with 2.5GHz Intel Core i7 CPU and 16GB RAM. Computational time is averaged

over ten runs.
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(a) With uniform-sized window

(b) With adapted window

Figure 6.9: Reconstructed line models (yellow lines) for a light-field image in the epipolar
domain with (a) uniform-sized Gaussian windows; and (b) windows that are adapted to the local
geometries (image size: 17 × 307).

6.5.1 Edge modelling

We apply the sub-pixel accurate edge detection algorithms of Section 6.3.1 to a natural image

using isotropic and anisotropic Gaussian windows, respectively. The block size is 21 × 21 pixels

and standard deviation σ = 2 (with respect to a pixel size) for cases with isotropic Gaussian win-

dows. We may further refine the estimated edge models by using anisotropic windows, where the

window shapes are adapted based on the estimated edge models (6.9). In particular, the standard

deviations along the horizontal and vertical directions are rescaled as σx = σ(λmax/λmin)
1/4

and

σy = σ(λminλmax)
1/4

, where λmin and λmax are eigenvalues computed from (6.7). The recon-

structed edge positions (6.8) are compared with the classic Canny edge detector in Figure 6.7

for a test image pepper (size: 512 × 512). Thanks to the efficient implementation detailed in

Appendix 6.A, it takes a mere 0.11 sec to reconstruct the edge models for the whole image when

isotropic Gaussian windows are used.

Another potential application of the annihilation-driven edge detection algorithm is on light-

field images with the epipolar-image (EPI) representation [16]. In the EPI domain, the horizontal

axis corresponds to the pixel coordinates on the camera plane; while the vertical coordinates are

associated with different camera view angles (Figure 6.8). One major advantage of the EPI

representation is that the depth information of a 3D scene is naturally encoded as slopes of the

line structures. Combined with matching algorithms, we can obtain more accurate estimations

of camera translations, which are no longer limited by pixel-level accuracies. Considering the

specific line structures, we have used a narrow Gaussian window with width of 9 pixels and

spanning all rows of the epipolar image. The standard deviations along horizontal and vertical

directions are σx = 2 and σy = 5, respectively. The line models are then obtained by sliding

Gaussian windows horizontally around edge points specified by the Canny edge detector. Note

that in the algorithm we have assumed that there is only one line within each window. It may not

be satisfied in all cases when a uniform-sized Gaussian window is applied to the whole image. By

adapting window shapes (rescaling and rotating as in (6.9)) based on the estimated edge models,

more reliable reconstructions are obtained (Figure 6.9).

6.5.2 Single image up-sampling

In this part, we evaluate the performance of the proposed image up-sampling algorithm applied

to several test images in Figure 6.10. The ground truth high resolution image is low pass filtered

with a bicubic kernel and down-sampled by a factor of 3. If the original image size is not a
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Figure 6.10: Ground truth high resolution images considered in the single image up-sampling
experiments. From left to right: butterfly (256 × 256), chip (200 × 244), flowers (362 × 500),
house (256 × 256), mandrill (512 × 512), mit (256 × 256), peppers (512 × 512), ppt (656 × 529),
temple (370 × 370), and zebra (391 × 586).

multiple of 3, we crop the image by removing the last few rows and/or columns so that the

total number of rows and columns are integer multiples of the down-sampling ratio. The image

up-sampling results are evaluated with both peak signal to noise ratio (PSNR) and structural

similarity index (SSIM) between the up-sampled and ground truth image. For color images, we

first transform the RGB channels to YCbCr color space. The up-sampling algorithm is applied

to the illumination channel alone, on which the performance metrics are subsequently evaluated.

Reconstruction of the global edge model

In experiments, we first reconstruct a global edge model (6.11) from the given low resolution

image. We have centred edge blocks {wn}Nn=1, which are tailored to the local edge geometry (6.9),

at sub-pixel accurate positions (xn, yn) given by the block-wise estimation. In the smooth area,

isotropic Gaussian windows with σ = 2 are placed on a uniform grid with intersections that are

σ-apart on both vertical and horizontal directions. Empirically, we have observed that a more

accurate edge model is obtained when we apply the algorithm to an image that is interpolated

from the low resolution one, e.g., the solution of (6.12). One explanation might be that more edge

control points, i.e., N in (6.11), are allowed when we estimate the global edge model from the

interpolated image. Take the test image butterfly as an example: the total number of edge blocks

is 316 and 1547 for a global edge model estimated from the low resolution image directly or from

the interpolated image, respectively. With increased degrees of freedom, the reconstructed model

is better localized around edges, which facilitates an improved up-sampling result (Figure 6.11).

The reconstructed edge model is incorporated to regularize the up-sampling process (6.13) with

a certain regularization weight. Experimentally, we found that � = 15 is a good compromise

between maintaining the overall smoothness and preserving sharp edges.

Stopping criterion

The up-sampled images are reconstructed by running the ADMM algorithm in Section 6.4.2 with

a fixed number of 2000 iterations for all cases. The reason that we have used this criterion is

that the solution obtained at the 2000-th iteration is sufficiently close to the optimal solution

of (6.13) in practice. In Figure 6.12, we plot the evolution of the distance (which is a normalized

MSE) between the intermediate solution at the n-th iteration I(n) and the optimal solution4 I�

dist
(
I(n), I�

) def
= 10 log10

(
2552

MSE
(
I(n), I�

)) (6.20)

4We ran the ADMM algorithm with 106 iterations and verified that the optimality conditions are satisfied
within computational accuracy.
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C
a
se

I

(a) Low resolution image (b) Edge model from (a) (c) Up-sampled image with (b)

C
a
se

II

(d) 3× Interpolated image from (a) (e) Edge model from (d) (f) Up-sampled image with (e)

Figure 6.11: It is better to work on an interpolated image (Case II ) than the given raw low
resolution image directly (Case I ): PSNRs are 26.47 dB and 28.09 dB for the up-sampled images
in (c) and (f), respectively. Number of edge points (yellow dots): 316 in (a) and 1547 in (d);
Continuously defined edge model plot size: 1000 × 1000.

for the test image temple. There is little difference between the up-sampled images obtained at

400-th iteration and 2000-th iteration visually (at a fifth of the computational cost), albeit a

slight improvement in PSNR (less than 0.2 dB). For applications where the accuracy is less of

a concern, we could potentially reduce the iteration numbers and hence the computation time

significantly. Nevertheless, in our current Matlab implementation with the specified experimental

setups (sampling kernel, maximum 2000 iterations, etc.), it takes 24.17 seconds to up-sample an

85 × 85 image to 255 × 255. In terms of computational complexity, the iterative algorithm is

O(L logL) because of the Fourier domain implementation, where L is the total number of pixels

in the up-sampled image.

Comparisons with state of the art

Recent developments in computer vision gave rise to several promising single image up-sampling

algorithms by exploiting sparse representations for both low and high resolution images in the

patch space [64, 73, 81, 100, 136, 144, 147]. We compare our proposed approach5 with several

state of the art algorithms and summarize the reconstruction performance (PSNR and SSIM) in

5The Matlab implementation will be made available online: http://lcav.epfl.ch/people/hanjie.pan
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Figure 6.12: Evolution of the distance (6.20) between the reconstructed image at the n-th
ADMM iteration I(n) and the one at convergence I� (test image: temple); The up-sampled
images at (a) 20-th iteration and (b) 400-th iteration.

Table 6.1: Comparisons of Single Image Up-Sampling (bicubic kernel, up-sampling factor: 3)

Image butterfly chip flowers house mandrill mit peppers ppt temple zebra

Bicubic
Interpolation

24.04
0 .8220

28.69
0 .9164

27.23
0 .8017

29.80
0 .8363

22.43
0 .7960

21.40
0 .7653

32.41
0 .9688

23.70
0 .9416

25.26
0 .8130

26.64
0 .9117

Thin-plate Spline
Interpola-
tion (6.12)

25.08
0 .8258

29.86
0 .9199

28.18
0 .8312

30.81
0 .8448

22.77
0 .8440

22.49
0 .7864

33.26
0 .9744

24.69
0 .9527

26.29
0 .8263

28.06
0 .9423

Yang et al. [144] 26.30
0 .8853

30.55
0 .9403

28.52
0 .8424

31.33
0 .8595

22.80
0 .8461

22.61
0 .8187

33.86
0 .9782

25.02
0 .9648

26.62
0 .8508

28.45
0 .9433

Zeyde et al. [147] 25.98
0 .8775

30.60
0 .9435

28.43
0 .8384

31.56
0 .8619

22.77
0 .8387

22.87
0 .8196

34.09
0 .9782

25.18
0 .9647

26.72
0 .8523

28.51
0 .9408

Peleg &
Elad [100]

26.75
0 .8999

30.54
0 .9427

28.82
0 .8474

31.67
0 .8643

22.87
0 .8480

23.19
0 .8337

34.38
0 .9791

25.72
0 .9708

27.21
0 .8603

28.67
0 .9432

Kim & Kwon [73] 27.34
0 .9081

31.14
0 .9529

28.82
0 .8472

31.87
0 .8619

22.83
0 .8482

23.14
0 .8361

34.38
0 .9781

25.58
0 .9682

27.13
0 .8586

28.87
0 .9431

Proposed 28.09
0 .9201

31.86
0 .9585

29.06
0 .8533

32.11
0 .8688

22.67
0 .8422

23.54
0 .8478

34.47
0 .9793

26.49
0 .9770

27.85
0 .8766

29.19
0 .9447

Performance metrics in each cell: PSNR [dB] (upper) and SSIM (lower).

Table 6.1. We have kept the default parameter settings in the distributed softwares and used

the provided dictionaries for [100, 147]. Since the provided dictionary in [144] is for up-sampling

by a factor of 2, we re-trained the dictionary based on the provided training data set included in

the software. In most cases, the annihilation-driven image up-sampling algorithm outperforms

Yang et al. [144], Zeyde et al. [147], Peleg & Elad [100] and Kim & Kwon [73] and in many

cases the improvements are quite substantial. An example with the test image zebra is included

for visual comparisons in Figure 6.13. The annihilation-driven approach not only gives sharper

edges but also reduces ringing artifacts significantly in the smooth area.

Notice that the proposed algorithm does not work well on mandrill, which consists of a

large portion of high frequency texture area. Such behavior, however, is not unexpected. A

reminder that what differs between (6.13) and the standard interpolation result (6.12) is essen-

tially the edge-friendly regularization. The algorithm has difficulty in distinguishing between

edges and textures, both of which contribute to high frequency components in an image. Con-

sequently, sharp “edges” are encouraged both around actual edges and in the texture areas

leading to undesirable artifacts (Figure 6.14). To confirm our conjecture, we evaluate the local
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(a) Low resolution image (b) Interpolation (6.12) (c) Yang et al. [144]

(d) Zeyde et al. [147] (e) Peleg & Elad [100] (f) Kim & Kwon [73]

(g) Proposed approach (6.13) (h) Ground truth

Figure 6.13: Visual comparisons of various up-sampling algorithms (sampling kernel: bicubic;
up-sampling ratio: 3). (a) The given low resolution image (size: 130× 195); (b)–(g) Up-sampled
image with thin-plate spline interpolation (6.12), Yang et al. [144], Zeyde et al. [147], Peleg &
Elad [100], Kim & Kwon [73], and the proposed approach (6.13), respectively; (h) The ground
truth high resolution image. See the last column of Table 6.1 for PSNRs.

PSNRs within two rectangles placed around edges (solid line) and in the texture area (dashed

line): PSNRedge = 25.51 dB and PSNRtexture = 19.22 dB with the proposed method; while

PSNRedge = 24.17 dB and PSNRtexture = 19.37 dB with thin plate spline interpolation (6.12).

We may potentially improve the up-sampling results further with a better edge model by exclud-

ing edge windows (i.e., wn in (6.11)) located in the texture areas via segmentations, e.g., based

on the level of consistency of edge orientations in a local area.

Example with actual image up-samplings

In addition to the simulated experiments in the previous section, we also considered more prac-

tical cases where we do not have access to the ground truth of the high resolution image. With

the proposed approach, we need to estimate the data acquisition model that generates the low

resolution image. For simplicity, here we may assume that the low resolution image is obtained

by low pass filtering a high resolution image with certain anti-aliasing filter, e.g., a bicubic kernel,
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(a) Edge model (b) Proposed approach (6.13) (c) Linear interpolation (6.12)

Figure 6.14: Annihilation-driven image up-sampling algorithm encourages sharp edges around
actual edges as well as textures, which produces artificial edges in texture areas. (a) Esti-
mated global edge model (plot size: 1000 × 1000); (b) Up-sampled image with the proposed
method (6.13). Local PSNRs within an edge block (solid line) and a texture block (dashed line):
PSNRedge = 25.51 dB and PSNRtexture = 19.22 dB; (c) Up-sampled image with thin plate spline
interpolation (6.12). Local PSNRs: PSNRedge = 24.17 dB and PSNRtexture = 19.37 dB.

and down sampling to the target resolution. Then, we can apply a similar approach to up-sample

the given image:
min
I

‖ΔI‖22 + �‖MDI‖1

subject to ‖ΦI − I0‖22 ≤ ε2.
(6.21)

Here we no longer enforce the exact data-fidelity constraint due to errors in the estimated data

acquisition process Φ and/or noise in the image. Instead, we allow certain level of discrepancies

(controlled by ε > 0) in the up-sampling process. (6.21) can be solved efficiently with a slight

modification to the ADMM algorithm presented in Section 6.4.2 (see details in Appendix 6.C).

Whether this assumption is a good approximation or not requires further investigation6. Since we

no longer have access to the ground truth, we summarize the up-sampled images in Figure 6.15

for visual comparisons. Here we have chosen ε such that it corresponds to a 35 dB SNR in I0.

Compared with [100] and [73], the up-sampled image using our approach retains sharp edges and

is visually appealing.

6.6 Conclusion

We have presented a novel image edge modeling framework based on a local edge model following

the principle of curve annihilation: instead of directly addressing the edge modeling problem by

matching a function with image gradients, we reconstruct a mask (which is our reconstructed

edge model) such that its product with the gradients is small. We show that accurate edge

models are estimated by assuming a simple local line model. The same idea is generalized to

reconstruct a global edge model for the whole image. We demonstrate the effectiveness of this

model in preserving sharp edges for image up-sampling, and the proposed algorithm achieves

state of the art performance. Future work shall focus on more practical cases where we have no

6One possibility is to utilize the blur-SURE criterion [143], which is an unbiased estimate of the blur MSE,
for the anti-aliasing kernel estimation.
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(a) Low resolution image (b) Peleg & Elad [100]

(c) Kim & Kwon [73] (d) Proposed approach (6.21)

Figure 6.15: Visual comparisons for an actual image up-sampling. (a) The low resolution image
(size: 200 × 200); Up sampled images (size: 600 × 600) with (b) Peleg & Elad [100], (c) Kim &
Kwon [73] and (d) the proposed approach (6.21), respectively.

direct access to the data-acquisition process that generates the low resolution image. It would

also be interesting to investigate how a multi-stage up-sampling scheme (similar to [60]) may

affect the performance.
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sϕls ϕ∗
−l

ΦH Φ

X1(z) X2(z)

Figure 6.16: Block diagram of the operator ΦΦH.

6.A Efficient implementation of block-wise edge modeling

If we expand the quadratic objective function in (6.5), we have the entries of the Hermitian

symmetric matrix A as:

A1,1 =
�

(x − x0)
2|∂I(x, y)|2w(x − x0, y − y0)dxdy,

A2,2 =
�

(y − y0)
2|∂I(x, y)|2w(x − x0, y − y0)dxdy,

A3,3 =
�

|∂I(x, y)|2w(x − x0, y − y0)dxdy,

A1,2 = A2,1 =
�

(x − x0)(y − y0)|∂I(x, y)|2w(x − x0, y − y0)dxdy,

A1,3 = A3,1 =
�

(x − x0)|∂I(x, y)|2w(x − x0, y − y0)dxdy,

A2,3 = A3,2 =
�

(y − y0)|∂I(x, y)|2w(x − x0, y − y0)dxdy.

We can treat these integrations as convolutions between the square of the derivative image

|∂I(x, y)|2 and certain filters evaluated at (x0, y0):

A1,1 = (x2w′) ∗ |∂I|2
∣∣∣x=x0
y=y0

, A2,2 = (y2w′) ∗ |∂I|2
∣∣∣x=x0
y=y0

,

A3,3 = w′ ∗ |∂I|2
∣∣∣x=x0
y=y0

, A1,2 = A2,1 = (xyw′) ∗ |∂I|2
∣∣∣x=x0
y=y0

,

A1,3 = A3,1 = −(xw′) ∗ |∂I|2
∣∣∣x=x0
y=y0

, A2,3 = A3,2 = −(yw′) ∗ |∂I|2
∣∣∣x=x0
y=y0

,

where w′(x, y) = w(−x,−y). Hence, instead of computing matrix A for each block, we can

simply apply 6 filtering to the whole image. These filtered images then serve as “look-up tables”,

based on which the edge models (6.6) are reconstructed simultaneously for all the blocks.

6.B Implementation of (6.18) in the DFT domain

The key to have an efficient implementation of the w update lies on finding the matrix inverse

(γI + λΦΦH)−1. Let ϕl be the antialiasing filter used in the sampling process Φ and s the

down-sampling ratio (Figure 6.16). Denote ψl = ϕ∗
−l ∗ ϕl, then the output X2(z) is related with

the input X1(z) as

X2(z) =
(
X1(z

s)ψ̂(z)
)

↓s = 1

s

s−1∑
i=0

X1

((
W i
sz

1/s
)s)

ψ̂
(
W i
sz

1/s
)
= X1(z)

1

s

s−1∑
i=0

ψ̂
(
W i
sz

1/s
)
,
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where ψ̂ is the z-transform of ψ and Ws = e−j 2π
s . Therefore, we may treat the operator ΦΦH

as applying a filter, which is the down-sampled version of ψl = ϕ∗
−l ∗ϕl by a factor s. Combined

with the matrix inversion lemma, we can implement the w updates (6.18) efficiently in the DFT

domain.

6.C Solve the noisy up-sampling (6.21) with ADMM

We address the inequality constraint in (6.21) by introducing a set indicator function [2, 17] g(p):

g(p) =

{
0 if ‖p‖22 ≤ ε2,

+∞ otherwise.

An equivalent ADMM formulation for (6.21) is:

min
I,u,w,p

‖ΔI‖22 + �‖Mu‖1 + g(p)

subject to Φw − I0 = p

u = DI

w = I.

The associated augmented Lagrangian function of the ADMM constrained formulation is:

Lλ,ρ,γ(I,u,w,p, z,v, r) =
1

2
‖ΔI‖22 +

�

2
‖Mu‖1 + g(p) +

λ

2
‖Φw − I0 − p+ z‖22

+
ρ

2
‖u − DI + v‖22 +

γ

2
‖w − I + r‖22.

We need to solve four subproblems and update the vector Lagrange multipliers z, v, and r based

on the reconstruction at the current iterate:

I(n+1) = argmin
I

L
(
I,u(n),w(n),p(n), z(n),v(n), r(n)

)
,

u(n+1) = argmin
u

L
(
I(n+1),u,w(n),p(n), z(n),v(n), r(n)

)
,

w(n+1) = argmin
w

L
(
I(n+1),u(n+1),w,p(n), z(n),v(n), r(n)

)
,

p(n+1) = argmin
p

L
(
I(n+1),u(n+1),w(n+1),p, z(n),v(n), r(n)

)
,

z(n+1) = z(n) +Φw(n+1) − I0 − p(n+1),

v(n+1) = v(n) + u(n+1) − DI(n+1),

r(n+1) = r(n) +w(n+1) − I(n+1).

In fact, we have exactly the same I- and u-subproblems as in Section 6.4.2. While w is updated

by solving a similar quadratic minimization, whose closed form solution is

w(n+1) =
(
λΦHΦ+ γI

)−1(
λΦH(I0 + p − z) + γ(I − r)

)
.
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It can be implemented efficiently with the aid of matrix inversion lemma (6.19) and the trick in

Appendix 6.B.

Now we focus on the p-subproblem:

min
p

λ

2

∥∥∥p −
(
Φw(n+1) + z(n) − I0

)∥∥∥2
2
+ g(p),

whose solution is a projection of Φw(n+1) + z(n) − I0 onto the convex set C =
{
p
∣∣‖p‖22 ≤ ε2

}
,

i.e.,

p(n+1) =

{
Φw(n+1) + z(n) − I0 if ‖Φw(n+1) + z(n) − I0‖22 ≤ ε2,

ε Φw(n+1)+z(n)−I0
‖Φw(n+1)+z(n)−I0‖2

otherwise.





Chapter 7

Conclusion

众里寻他千百度，蓦然回首，那人却在，灯火

阑珊处。

In the crowd once and again, I look for her in

vain. When all at once I turn my head, I find

her there where lantern light is dimly shed.

青玉案·元夕 Qing Yu’an · Lantern Festival

辛弃疾 XIN, Qiji

The thesis investigated the finite rate of innovation sampling framework on both the the-

oretical and algorithmic fronts. We generalized the FRI technique to cases with non-uniform

sampling. The generalization makes FRI applicable to many practical sparse recovery problems.

Further, we proposed an efficient sampling framework with a linear sample complexity for multi-

dimensional Diracs. The new multi-dimensional sampling framework is a significant improvement

over previous methods, which have a sample complexity that increases exponentially with di-

mension. We validated the applicability of the FRI-based continuous sparse recovery technique

in three practical problems, namely (i) radio astronomy point source estimation, (ii) direction of

arrival estimation in acoustics, and (iii) single image up-sampling.

Reflecting back on the four-year journey, the path we took is much clearer now: For a given

sparse reconstruction problem, as soon as (i) we identify a set of uniform samples of sinusoids

(which are related to the unknown sparse signal parameters); and (ii) establish the connection

from these sinusoidal samples to the measurements, then the FRI-based sparse recovery tech-

nique developed in this thesis can be applied to solve the problem. In a sense, we have invented

a hammer and all at once the world appears to be full of nails. Here, we outline a few interest-

ing problems, where the FRI technique may provide an alternative and potentially significant

improvement over existing methods.
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Inverse gravimetric problem The goal of inverse gravimetric problem is to infer the mass

distributions within the Earth from measurements of the gravitational potentials outside the

Earth. For instance, the Gravity Recovery and Climate Experiment (GRACE) is an on-going

NASA project that measures the gravitational field with a pair of satellites orbiting the Earth.

One frequently used model for the mass distribution is the point mass model. Then the original

problem boils down to the estimation of the point source locations and the associated masses.

This turns out to be very similar to the 3D DOA estimation problem that we have considered

in Chapter 5 with the distinction that sources are in a “near-field” setting: we would also like

to infer the depths the the point masses. With a slight modification, we can apply the same

FRI-based sparse recovery technique to the inverse gravimetric problem.

Single molecule localization microscopy The resolution power of a microscope is limited by

the light wavelength, typically around a few hundred nanometers. Single-molecule localization

microscopy (SMLM) [108] is an imaging technique that achieves a resolution down to around

20 nm. In SMLM, the samples to be imaged are covered by fluorescent molecules. At each

time instance, a subset of the fluorescences are excited. By estimating the few (often isolated)

fluorescent molecules over different frames, SMLM achieves super-resolution. The FRI-based

sparse recovery technique is directly applicable here: What the FRI technique can bring is the

possibility to have more fluorescent molecules excited within each frame (and hence fewer frames

to image the whole sample). The challenge facing existing methods in these scenarios is that

they often have difficulty in estimating the molecule locations reliably when images of adjacent

fluorescences overlap, a problem that FRI is likely to solve.

Single-photon emission computed tomography Single-photon emission computed tomography

(SPECT) is an imaging technique of biological activities, e.g., metabolism, by detecting gamma

radiation of radioactive tracer. SPECT is similar to a better known technique, Positron Emission

Tomography (PET). The challenge with SPECT is that typically the scans give lower resolution

compared with PET and usually take a long time for each acquisition. A robust technique, like

FRI, is therefore potentially very useful in SPECT to provide better localization of biological

activities and reduce the number of measurements needed.

Crystallography Crystallography, or more specifically X-ray crystallography [89], aims at de-

termining the structure of molecules (i.e., the locations of atoms) from measured diffraction

patterns. The molecule is first crystalized, which in essence forms a periodic stream of Diracs

in 3D (where the electron density of each atom is modeled as a Dirac). The crystal is then lit

by X-ray, which has a comparable wavelength to a typical atom size. It is not surprising that

the scattering patterns of the crystal are related to the Fourier series (FS) coefficients of the

Dirac stream. The challenge here is that the phases of the complex-valued FS coefficients are

lost—only the amplitudes are measured from the scattering pattern. In terms of FRI-based re-

covery, this amounts to solving a “blind” estimation problem, where the transformation from the

(complex-valued) FS coefficients to the measured scattering pattern (i.e., the moduli of them) is

only partially known.
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[20] M. Brüggen, R. van Weeren, and H. Röttgering, “Simulating the toothbrush: evidence for

a triple merger of galaxy clusters,” Monthly Notices of the Royal Astronomical Society:

Letters, vol. 425, no. 1, pp. L76–L80, 2012.

[21] J. A. Cadzow, “Signal enhancement—A composite property mapping algorithm,” IEEE

Transactions on Acoustics, Speech and Signal Processing, vol. 36, no. 1, pp. 49–62, 1988.

[22] E. J. Candès and C. Fernandez-Granda, “Towards a mathematical theory of super-

resolution,” Communications on Pure and Applied Mathematics, vol. 67, no. 6, pp. 906–956,

2014.

[23] J. Canny, “A computational approach to edge detection,” IEEE Transactions on Pattern

Analysis and Machine Intelligence, vol. 8, no. 6, pp. 679–698, 1986.

[24] J. Capon, “High-resolution frequency-wavenumber spectrum analysis,” Proceedings of the

IEEE, vol. 57, no. 8, pp. 1408–1418, 1969.

[25] R. E. Carrillo, J. D. McEwen, and Y. Wiaux, “PURIFY: a new approach to radio-

interferometric imaging,” Monthly Notices of the Royal Astronomical Society, vol. 439,

no. 4, pp. 3591–3604, 2014.



Bibliography 123
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