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Abstract

A non-intrusive reduced-basis (RB) method is proposed for parametrized unsteady flows. A set
of reduced basis functions are extracted from a collection of high-fidelity solutions via a proper
orthogonal decomposition (POD), and the coefficients of the reduced basis functions are recovered
by a feedforward neural network (NN). As a regression model of the RB method for unsteady flows,
the neural network approximates the map between the time/parameter value and the projection
coefficients of the high-fidelity solution onto the reduced space. The generation of the reduced basis
and the training of the NN are accomplished in the offline stage, thus the RB solution of a new
time/parameter value can be recovered via direct outputs of the NN in the online stage. Due to
its non-intrusive nature, the proposed RB method, referred as the POD-NN, fully decouples the
online stage and the high-fidelity scheme, and is thus able to provide fast and reliable solutions
of complex unsteady flows. To test this assertion, the POD-NN method is applied to the reduced
order modeling (ROM) of the quasi-one dimensional Continuously Variable Resonance Combustor
(CVRC) flow. Numerical results demonstrate the efficiency and robustness of the POD-NN method.

Keywords: non-intrusive reduced basis method, unsteady flow, proper orthogonal decomposition,
feedforward neural network, combustion

1. Introduction

Computational fluid dynamics (CFD) is one of the few available tools to investigate complex
flow problems of scientific interest or of industrial value. However, obtaining high-fidelity solutions
of complex flow problems is often expensive in terms of both CPU time and memory demands,
since the accurate solution of the discretized Euler/Navier-Stokes equations requires a large amount
of degree of freedoms (DOFs). Therefore, reduced order modeling (ROM) which aims at building
low-dimensional and efficient models that are fast to solve while being able to accurately approximate
the underlying high-fidelity solutions, fills a critical need in problems of design, control, optimization
and uncertainty quantification, all of which require repeated model evaluations over a potentially
large range of parameter values [1]. These parameters characterize fluid properties, source terms,
geometry, initial and boundary conditions of the flow.

Reduced basis (RB) methods [1–3] are a class of well-known and widely-used ROM techniques,
which are generally implemented in an offline-online paradigm [4]. In the offline stage, a set of RB
functions are extracted from a collection of high-fidelity solutions, which are also called snapshots.
The reduced space, spanned by the RB functions, represents the main dynamics of the full-order
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model. The two most popular methods to construct the reduced basis are the proper orthogonal
decomposition (POD) [5–7] and the greedy algorithm [8–10]. The POD extracts the reduced basis
by a singular value decomposition (SVD) of the snapshot matrix, i.e., the collection of high-fidelity
solutions, obtained by a deterministic or random sampling in parameter space. On the contrary,
a greedy algorithm carefully selects a set of snapshots as the reduced basis, according to some
optimal criterion. For unsteady problems, the POD-greedy sampling algorithm [3, 11], combining
POD in time with a greedy approach in parameter space, is widely used to construct the reduced
basis. However, it should be noted that the greedy/POD-greedy method is not feasible for problems
without a natural criterion for the selection of snapshots [12].

During the online stage, the expansion coefficients, also called the reduced coefficients, of the RB
functions are determined. Based on the methodology of computing the reduced coefficients, RB
methods are classified into two categories: intrusive and non-intrusive RB methods. The intrusive
RB methods determine the reduced coefficients by solving a reduced order model, i.e., a projection
of the full-order model onto the reduced space. The Galerkin procedure is the most popular choice
for the projection [13, 14]. For problems with an affine dependence on the parameters, or with a
non-affine dependence on the parameters but for which one may recover an affine expansion of the
differential operator through the empirical interpolation method (EIM) [15] or discrete empirical
interpolation method (DEIM) [16–18], the evaluation of the projection-based reduced order model is
independent on the number of DOFs of the high-fidelity solution, and thus much faster than the full-
order model [19, 20]. However, EIM and DEIM are non-trivial for general nonlinear problems with a
non-affine dependence on the parameters, leading to limited computational gain by projection-based
RB model with respect to the full-order model. Furthermore, the projection-based RB methods can
suffer from instabilities [12, 21, 22].

Non-intrusive RB methods approximate the reduced coefficients over the parameter domain by
using a database of reduced order information [23]. The high-fidelity solver is used to generate
snapshots, leading to a full decoupling of the online stage and the high-fidelity scheme. Although
being a natural choice, the use of standard interpolation techniques may fail if only a small number
of samples [24, 25] are available. Regression-based non-intrusive RB methods [26, 27] have recently
been developed for steady-state problems. In these methods, the reduced coefficients are determined
online by rapid evaluations of regression models. The regression models are approximate maps
between the parameter value and the projection coefficients of the underlying high-fidelity solution
onto the reduced space, and are trained by high-fidelity data in a supervised learning paradigm [28]
in the offline stage. In [26], artificial neural networks (ANNs) are utilized as the regression models
for the non-intrusive ROM of the nonlinear Poisson and steady-state incompressible Navier-Stokes
equations. In [27], Gaussian processes are utilized as the regression models for nonlinear structural
analysis.

In this paper, the non-intrusive RB method using artificial neural networks, proposed in [26] and
referred as POD-NN, is extended to time-dependent nonlinear problems, in particular the unsteady
flows. Two important issues need to be addressed with regards to the extension of the non-intrusive
RB method from steady-state to unsteady problems. Firstly, for problems with many time steps,
the snapshot matrix of the direct POD method becomes very large, which leads to an expensive
SVD. To overcome this difficulty, we use a two-step POD algorithm, in which i) the time-trajectory
of each parameter value is compressed using POD, and ii) the reduced basis is extracted from the
collection of the compressed time-trajectories using POD. By performing the POD in time and
parameter space separately, the dimensions of the matrices requiring SVD are significantly reduced.

The second issue arises from the unsteadiness, which requires the regression model to be able to
predict the RB solution at arbitrary time and physical/geometrical parameters within the given
time and parameter domains. This issue is addressed by treating the time coordinate as another
parameter. In other words, the input of the ANN consists of the temporal/physical/geometrical
parameters, while the output is the set of the reduced coefficients.
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The POD-NN method is applied to the quasi-1D Continuously Variable Resonance Combustor
(CVRC) flow, to test its efficiency and robustness. CVRC is a model rocket combustor designed
and operated at Purdue University (Indiana, U.S.) for investigating combustion instabilities [29].
This setup is called Continuously Variable Resonance Combustor (CVRC) because the length
of the oxidizer injector can be varied continuously, allowing for a detailed investigation of the
coupling between acoustics and combustion in the chamber [30]. The CVRC has been extensively
investigated, including experiments [31–33] and 2D/3D detailed simulations [30, 34–36]. As the
2D/3D high-fidelity simulations are expensive, the quasi-1D model based on simplified assumptions
for the flow modeling while still capable of remaining the dominating features, has been proposed
by Smith et al. [37], and further developed by Frezzotti et al. [38–40]. The ROM of the CVRC,
in particular the POD-Galerkin method for the quasi-1D model [41, 42], has also been studied.
However, POD-Galerkin method for the quasi-1D CVRC model can suffer from instabilities [41]. In
this paper, we apply the POD-NN method to build a fast, accurate and robust reduced order model
of the quasi-1D CVRC flow.

In this paper, three artificial neural networks are constructed and trained, one for each of the
following objectives:

• the approximation of the RB coefficients for the global ROM of the quasi-1D CVRC flow ;

• the approximation of the RB coefficients for the ROM localized at the combustion chamber;

• the regression of the power spectral density (PSD) for the stability map validation.

The remainder of this paper is organized as follows. Section 2 presents the framework of the
non-intrusive POD-NN RB method for unsteady flow problems, including the generation of the
reduced basis and the regression of the reduced coefficients. Section 3 presents the construction and
training of the feedforward neural networks. Section 4 introduces the quasi-1D CVRC model and
the high-fidelity solver. Section 5 presents the numerical results, and Section 6 gathers the relevant
conclusions.

2. A non-intrusive reduced basis method using neural networks

The parametrized Euler/Navier-Stokes equations, governing unsteady flows, can be expressed in
the following conservative form:

∂u (x, t;µ)

∂t
+∇ · f [u (x, t;µ) ;µ] = s [x, t,u (x, t;µ) ;µ] , ∀(x, t,µ) ∈ Ω× T × P, (1)

where u, f , s and µ are the vectors of conserved variables, flux, source term and parameters,
respectively. Ω ⊂ R3, T ⊂ R+ and P ⊂ Rd are the space, time and parameter domains, respectively,
where d is the number of parameters.

2.1. Generation of reduced basis
Given a parameter sampling Ph =

{
µ(1), · · · ,µ(N)

}
⊂ P, a collection of high-fidelity solutions

of (1) can be obtained by running a solver with different parameter values in Ph. The high-fidelity
solution of parameter µ(k) at time step j ∈ [1, · · · , Nt] is denoted as uh(tj ;µk) ∈ RNh , where Nh

is the number of DOFs. The time-trajectory matrix that collects the high-fidelity solutions of
parameter µ(k) at all the time steps is

Sk = [uh

(
t1;µ(k)

)
| · · · |uh

(
tNt ;µ

(k)
)

] ∈ RNh×Nt ,

and the snapshot matrix that collects all the high-fidelity solutions is

S = [S1| · · · |SN ] ∈ RNh×NtN .
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Given the high-fidelity solutions, we seek to find a parameter-independent reduced basis {ψ1, · · · ,ψL} ⊂
RNh (L� Nh), to construct a linear space that provides a low-rank approximation of the high-fidelity
solutions. The reduced space, spanned by the reduced basis functions, is

Vrb = span {ψ1, · · · ,ψL} .

A reduced basis solution uL (t;µ) is an approximation of the high-fidelity solution uh(t;µ) in Vrb
and can be expressed as

uL (t;µ) =

L∑
l=1

u
(l)
rb (t;µ)ψl ∈ Vrb, (2)

where urb (t;µ) = [u
(1)
rb (t;µ) , · · · , u(L)

rb (t;µ)]> ∈ RL are the reduced coefficients for the expansion
of the RB solution in the reduced basis functions. If we introduce the matrix

V = [ψ1| · · · |ψL] ∈ RNh×L,

the reduced basis solution in (2) can be expressed as

uL (t;µ) = Vurb (t;µ) .

The reduced basis can be extracted directly via POD, based on the SVD of the snapshot matrix, i.e.,

S = W
[
D 0
0 0

]
Z>, (3)

where W = [w1| · · · |wNh ] ∈ RNh×Nh and Z = [z1| · · · |zNtN ] ∈ RNtN×NtN are orthogonal matrices,
D = diag(σ1, · · · , σr) ∈ Rr×r is a diagonal matrix, with singular values σ1 ≥ σ2 ≥ · · · ≥ σr > 0.
Here, r is the number of non-zero singular values and r ≤ min {Nh, NtN}. The columns of W are
called left singular vectors of S, and the columns of Z are called right singular vectors of S.

At the algebraic level, our goal is to find L � r orthonormal vectors {w̃1, · · · , w̃L} that
approximate each column sn, n = 1, · · · , NtN of S by the projection

L∑
l=1

(sn, w̃l)w̃l.

According to Schmidt-Eckart-Young theorem [43, 44], the POD basis of rank L consisting of the
first L left singular vectors of S, minimizes the projection error defined by

ε (w̃1, · · · , w̃L) =

NtN∑
n=1

‖ sn −
L∑

l=1

(sn, w̃n) w̃l ‖2RNh ,

among all the orthonormal bases {w̃1, · · · , w̃L} of RL. Therefore, {w1, · · · ,wL} is taken as the
reduced basis, i.e., ψl = wl for all l = 1, · · · , L.

The dimension L of the basis is determined by the criterion:∑r
l=L+1 σ

2
l∑r

l=1 σ
2
l

≤ ε, (4)

where ε is the relative error tolerance used to control the accuracy of the POD.
The POD algorithm described by (3)-(4) can not be directly applied to unsteady problems with

a large number of time steps, because the second dimension NtN of the snapshot matrix is large,
making the SVD of the snapshot matrix very expensive.

To overcome this, we use a two-step POD algorithm, in which the POD in time and parameter
space are performed separately, resulting in a significant reduction of the dimension of the snapshot
matrix. The two-step POD algorithm is as follows:

4



(1) The time-trajectory of each parameter value is compressed via POD. With a relative error
tolerance εt, for parameter µ(k) (k = 1, · · · , N), Lk basis functions are obtained via the POD of
the time-trajectory, i.e., Tk = [ζµ

(k)

1 | · · · |ζµ
(k)

Lk
] = POD ([uh

(
t1;µ(k)

)
, · · · ,uh

(
tNt ;µ

(k)
)
], εt).

(2) A reduced basis is extracted by POD of the compressed time-trajectories. With a relative error
tolerance εµ, L reduced basis functions {ψ1, · · · ,ψL} are obtained via POD of the collection of
the compressed time-trajectories, i.e., V = [ψ1| · · · |ψL] = POD([T1| · · · |TN ], εµ).

The POD and the two-step POD algorithms are described in Algorithm 1.

Algorithm 1 Reduced basis generation of unsteady flow problems.

1: function V=POD(S, ε)
2: Perform SVD: [W,D,Z] = svd(S)
3: Determine the truncation order L using (4)
4: Set the basis functions: ψl = wl, l = 1, · · · , L
5: Assemble V = [ψ1| · · · |ψL]
6: end function

7: function V=POD_TWO-STEP(S, εt, εµ)
8: Compress time-trajectory of each parameter value: Tk = [ζµ

(k)

1 | · · · |ζµ
(k)

Lk
] = POD

([uh

(
t1;µ(k)

)
| · · · |uh

(
tNt ;µ

(k)
)
], εt), for k = 1, · · · , N .

9: Extract reduced basis functions: V = [ψ1| · · · |ψL] = POD([T1| · · · |TN ], εµ).
10: end function

2.2. Regression of reduced coefficients
In a non-intrusive RB method, the RB solution of a new parameter value is sought online by eval-

uating a regression model. For unsteady flows, the inputs of the regression model are the time and pa-
rameters (t,µ), and the outputs are the reduced coefficients urb (t;µ) = [u

(1)
rb (t;µ) , · · · , u(L)

rb (t;µ)]>.
The "best" reduced basis solution for a certain time/parameter value (t,µ), understood as the

best approximation of the high-fidelity solution uh (t;µ) in the reduced space Vrb, is the projection
of uh (t;µ) onto Vrb, i.e.,

uV
h (t;µ) = VV>uh (t;µ) .

The corresponding reduced coefficients are the projection coefficients V>uh (t;µ). An ideal regression
π maps the input vector (t,µ) to the projection coefficients V>uh (t;µ) , i.e.,

π : T × P ⊂ Rd+1 → RL

(t,µ)→ V>uh (t;µ) .

In this paper, we construct and train an artificial neural network (ANN) as the regression model,
acting as an approximation π̂NN of the map π. Given a new time/parameter instance (t,µ), the
associated RB solution is recovered by the evaluation of π̂NN at (t,µ), i.e.,

uNN
rb (t,µ) = π̂NN (t,µ) ,

and, consequently,
uNN
L (t;µ) = Vπ̂NN (t,µ) .

The construction and training of the ANN, will be presented in the Section 3.
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2.3. A non-intrusive reduced basis method for unsteady flows using neural networks: POD-NN
The POD-NN method is implemented pursuing an offline-online paradigm [4]. The offline stage

includes the generation of the reduced basis and the construction and training of the ANN. The
online stage includes the evaluation of the ANN and a linear combination of the reduced basis
functions. The implementation of the offline and online stages of the POD-NN method is described
in Algorithm 2.

Algorithm 2 POD-NN RB method for unsteady flow problems.

1: function [V, π̂]=POD-NN_OFFLINE(P,Ω, N)
2: Generate the parameter set Ph =

{
µ(1), · · · ,µ(N)

}
⊂ P

3: Compute the high-fidelity solutions uh(tj ;µk), j = 1, · · · , Nt, k = 1, · · · , N
4: Generate the reduced basis {ψ1, · · · ,ψL} using POD
5: Assemble V = [ψ1| · · · |ψL]
6: Construct and train an ANN as a regression model π̂NN

7: end function

8: function [uNN
L (t,µ)]=POD-NN_ONLINE((t,µ),V, π̂NN )

9: Evaluate the output uNN
rb (t,µ) = π̂NN (t,µ) of the ANN for the input vector (t,µ)

10: Compute the RB solution uNN
L (t,µ) = VuNN

rb (t,µ)
11: end function

In Algorithm 2, we observe that the offline and the online stages of the POD-NN method are
decoupled. The online computation of the RB solution is independent of the high-fidelity scheme,
enabling the POD-NN method of computing fast and reliable solutions of general nonlinear problems.

3. Artificial neural networks

Inspired by biological nervous system, an artificial neural network (ANN) is a computational
model able to learn from observational data. An ANN consists of a collection of artificial neurons,
and a set of weighted synaptic connections between the neurons. Data travels from the input neurons,
following the direction imposed by the synapses, towards the output neurons. A training process of
a ANN is to adjust the weights of the synapses and the thresholds of the neurons to configure the
ANN for a specific application.

In this section, we will introduce the structure and training of the ANN as a regression model of
the POD-NN method.

3.1. Artificial neuron
The basic processing unit of the ANN is the artificial neuron that serves to receive/send signals

from/to other neurons in the network. The working mechanism of an artificial neuron is illustrated
in Fig. 1. The neuron shown in Fig. 1 is the neuron j of an ANN. Neuron j receives signals from
m sending neurons sk, k = 1, · · · ,m, and sends signals to n target neurons rl, l = 1, · · · , n. The
input signals are converted into the output signal using three functions: the propagation function
fprop, the activation function fact, and the output function fout. The propagation function is used
to convert the vectorial input p = [ys1 , · · · , ysm ]> into a scalar uj that is called net input, i.e.,

uj = fprop(ws1,j , · · · , wsm,j , ys1 , · · · , ysm).

A common choice for the propagation function is the weighted summation

fprop(ws1,j , · · · , wsm,j , ys1 , · · · , ysm) =

m∑
l=1

wsl,jysl .
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ys1

ys2

ysm

wj, r1
yjws1, j

ws2, j

wsm, j

j

yb = 1

-bj

wj, r1

wj, r2

wj, r2
yj

wj, rn wj, rn
yj

Figure 1: A single artificial neuron receiving signals from m neurons and sending signals to n neurons.

The activation function is used to decide whether the neuron j is active, given the net input uj and
a threshold bj ∈ R. The activation state aj is computed by

aj = fact(uj − bj) = fact(

m∑
l=1

wsl,jysl − bj)

The threshold bj is a parameter of the network and can be adjusted during the training process,
similar to the synaptic weights. To ease run-time access of bj , a common practice is to introduce a
bias neuron into the network. A bias neuron is a neuron that has a constant output yb = 1, and
directly connects to neuron j with a bias weight wb,j = −bj , as shown in Fig. 1.

There are various choices for the activation function [45]. In this paper, the activation function
is the hyperbolic tangent function

fact (v) = tanh (v) =
ev − e−v

ev + e−v
.

Finally, the output function fout is used to calculate the scalar output yj ∈ R of the neuron j
based on the activation state aj , i.e.,

yj = fout(aj).

It is common to set the output function as the identity function, i.e., yj = fout(aj) = aj . The output
yj is then sent to the target neurons rl, l = 1, · · · , n.

Note that, the artificial neuron introduced above is the computing neuron. In the feedforward
network presented in the following subsection, the neurons in the input layer are source neurons,
which only provide the network with the input vector without performing any computation. The
neurons in the output layer are computing neurons, of which the outputs are the components of
the overall output vector of the network. The activation function for neurons in the output layer is
often set to be the identity function, and the output function is usually set according to the range of
the teaching input, also called the desired output. For example, the desired outputs of the ANNs
in Subsection 5.2 and 5.3 are the reduced coefficients uNN

rb ∈ RL, the output function is set as the
identity function; while, the desired output of the ANN in Subsection 5.5 is the power spectral
density (PSD) that is positive, thus the output function is set as fout(v) = ev.

3.2. Feedforward neural network
One of the most important issues for the design of an ANN is the structure, or the topology

of the network. Several network architectures have been proposed, among which the feedforward
neural network [45, 46], also called perceptron, has been preferred in function regression tasks.
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i1

i2

p1

p2

h1,1

h1,2

h1,3

h2,1

h2,2

h2,3

o1

o2

q1

q2

Figure 2: A feedforward neural network with two hidden layers, two input and two output neurons. Each
hidden layer consists of three neurons.

In a feedforward neural network, neurons are arranged into layers. The first layer is called
the input layer, with MI source neurons, while the last layer is called the output layer, with MO

computing neurons. All the remaining K layers are called hidden layers, each one consisting of Hk

computing neurons (k = 1, · · · ,K). There are K + 2 layers in total in the network. The neurons
in a given layer receive signals from the preceding layer, and send signals to the succeeding layer.
Furthermore, the neurons within the same layer do not communicate with each other. Inside the
network, information travels from the input layer, across the hidden layer, towards the output layer.
An activation pattern p ∈ RMI is provided at the input layer, an output q ∈ RMO is obtained at
the output layer. A feedforward neural network establishes a map between the input space RMI

and the output space RMO . Therefore, the feedforward neural network architecture is particularly
suitable for function approximation.

A sample feedforward neural network with two hidden layers is shown in Fig. 2. The network
has MI = 2 input neurons (denoted with the letter i) and MO = 2 output neurons (denoted with the
letter o). Each hidden layer has H1 = H2 = 3 neurons (denoted with the letter h). This feedforward
neural network can be used to a function approximation task that maps an input p ∈ R2 to an
output q ∈ R2.

3.3. Training of the feedforward neural network
The principle characteristic of a neural network is its capability of learning by encoding the

acquired knowledge via its internal parameters, i.e., the synaptic and bias weights. The learning of
the network is accomplished through a training process on data Dtr, by adjusting the synaptic and
bias weights according to some performance measure. Therefore, a training procedure is typically
iterative. After the training, the network is able to provide reasonable prediction of unknown
problems of the same class of the training data set, which is called generalization. The data used to
test the generalization capability of a network during the training is called the validation data set,
and is denoted by Dva.

There are three learning paradigms : supervised learning, unsupervised learning and reinforcement
learning [45]. The choice of the learning paradigm is task-dependent. For function regression,
supervised learning is the natural choice.

In supervised learning, a training data set Dtr = {pi, ti}1≤i≤Ntr and a validation data set
Dva = {pi, ti}1≤i≤Nva is prepared. Here p ∈ RMI is the input pattern, t ∈ RMO is the teaching
input. A component of the input pattern is called a feature. A feature scaling technique in which all
the features are scaled to the same range, can be applied to the data sets to accelerate the training
[47]. In this paper, a feature χ is scaled by the mean normalization

χ̃ =
χ− χ̄

χmax − χmin
,
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where χ̄, χmax and χmin are the mean, maximum and minimum of χ, respectively.
The training aims at minimizing the error between the prediction and the truth, which can be

accomplished by minimizing a cost function

C := C(q, t),

that measures the difference between the network prediction q ∈ RMO and the truth t ∈ RMO .
The synaptic and bias weights of the optimal network are obtained using a stochastic optimization
algorithm, which uses mini-batches of size Nb < Ntr from the training set Dtr, to take a single
optimization step by minimizing the cost function

C =
1

Nb

Nb∑
i=1

‖ qi − ti ‖2RMO . (5)

More precisely, the full training data set with Ntr data-points is shuffled, and Ntr/Nb mini-batches
are extracted to take Ntr/Nb optimization steps. In the s-th optimization step, the weight wi,j for
the connection between the neuron pair (i, j) is updated as

ws+1
i,j = ws

i,j + ∆wi,j , ∆wi,j = −ηG(
∂C
∂wi,j

),

where η is the learning rate, G is a function that depends on the specific optimizer. Once the entire
training data set is exhausted, the training is said to have completed one training epoch. Then
the training set is reshuffled and the networks is optimized by another Ntr/Nb steps, to repeat the
process for another epoch. The training is performed for a sufficient number of epochs to get a
converged network. The shuffling introduces stochasticity to the training data set, leading to a
faster convergence [48].

The training of the ANN is performed using the open-source machine learning library TensorFlow
[49]. The Adam stochastic optimizer [50] is used to minimize the cost function. To accelerate the
training, we use a learning rate decay as

η =
η0

(1 + θ ∗ epoch)
,

where η0 and θ are hyperparameters to control the decay.
To avoid overfiting [45], a regularization term is introduced to the cost function in (5) to penalize

the synaptic weights of the networks. The regularized cost function is

C̃ =
1

Nb

Nb∑
i=1

‖ q(i)−t(i) ‖2RMO +λ

 MI∑
m=1

H1∑
n=1

w2
in,h1,m

+

K−1∑
l=1

Hl∑
m=1

Hl+1∑
n=1

w2
hl,m,hl+1,n

+

HK∑
m=1

MO∑
n=1

w2
hK,m,on

 ,
where λ is the parameter used to control the effect of regularization.

At the beginning of training, the synaptic and bias weights are randomly initialized using normal
distributions [51]. Therefore, the training needs to be performed several times, following a multiple
restarts approach [52], to prevent the training results from depending on the initialization of the
weights. Ten restarts are performed for the training of each ANN in this paper, and the trained
model with the best validation accuracy is selected as the final model. The accuracy of a network
on a data set of size S can be measured by

Acc = − 1

S

S∑
i=1

‖ qi − ti ‖2RMO .
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The training process of the ANN in this paper is described in Algorithm 3.

Algorithm 3 Training process of the network.

1: function [wrb, tr_accrb, va_accrb]=POD-NN_training(w, Nres, Nepo, Nb, η0, θ)
2: for r ← 1, Nres do . Multiple restarts
3: w← init(w) . initialize the synaptic and bias weights w
4: for epoch← 1, Nepo do . training epoch loop
5: η ← η0/(1 + θ ∗ epoch) . learning rate decay
6: Dtr ← shuffle(Dtr) . shuffle the training data set
7: for s← 1, Ntr/Nb do . mini-batch loop
8: Dtr,s ← Dtr[(s− 1) ∗Nb + 1 : s ∗Nb] . the s-th mini-batch
9: ∆w← −ηGAdam( ∂C̃

∂w ) . Adam optimizer
10: w← w + ∆w . update the weights
11: end for
12: end for
13: tr_acc← Acc(Dtr) . evaluate training accuracy
14: va_acc← Acc(Dva) . evaluate validation accuracy
15: if r = 1 or va_acc > va_accrb then . if the validation accuracy is improved
16: wrb ← w . save the weights
17: tr_accrb ← tr_acc . save the training accuracy
18: va_accrb ← va_acc . save the validation accuracy
19: end if
20: end for
21: end function

3.4. Feedforward neural network as the regression model of the non-intrusive RB method
The inputs of the ANN are the time and parameters (t,µ), the outputs are the reduced coefficients

urb (t;µ) = [u
(1)
rb (t;µ) , · · · , u(L)

rb (t;µ)]>.
The training data Dtr and the validation data Dva are prepared before the training by projecting

two collections of high-fidelity solutions onto the reduced space Vrb.
The structure of the ANN used is the feedforward neural network with several hidden layers. As

the number of outputs is usually much larger than the number of inputs, the numbers of neurons of
the layers increase from the input to the output layer, to increase the complexity of the ANN. The
ANN of the POD-NN method is trained using Algorithm 3.

During the online phase, as described in Algorithm 2, the RB solution of a new time/parameter
value can be computed by evaluating the ANN. The evaluation of the ANN primarily involves
matrix-vector multiplications and is thus computationally efficient if suitably vectorized, making the
ANN an efficient regression tool for the non-intrusive RB methods.

4. Quasi-1D Continuously Variable Resonance Combustor (CVRC) model

CVRC is a model rocket combustor designed and operated at Purdue University (Indiana, U.S.)
to investigate combustion instabilities [29]. This setup is called the Continuously Variable Resonance
Combustor (CVRC) because the length of the oxidizer injector can be varied continuously, allowing
for a detailed investigation of the coupling between acoustics and combustion in the chamber [30].
The 2D/3D high-fidelity simulations of CVRC are expensive. Thus to get a fast analysis tool, a
quasi-1D model has been proposed by Smith et al. [37] and further developed by Frezzotti et al.
[38–40].
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Figure 3: Geometry of quasi-1D CVRC model.

4.1. Quasi-1D CVRC setup
The CVRC consists of three parts: oxidizer post, combustion chamber and exit nozzle, as shown

in Fig. 3. The oxidizer is injected from the left end of the oxidizer post and meets the fuel that is
injected through an annular ring around the oxidizer injector, at the back-step. The combustion
happens in a region around the back-step. The combustion products flow through the chamber and
exit the system from the nozzle. Both the injector and the nozzle are operated at choked condition
during the experiment. The length of the oxidizer post Lop of the CVRC can be varied continuously,
leading to different behavior of the combustion stability. In this paper, we will focus on the case
with Lop = 14.0 cm, in which the combustion is unstable.

The geometry parameters of the quasi-1D CVRC with a oxidizer post length Lop = 14.0 cm are
shown in Table 1. The back-step and the converging part of the nozzle are sinusoidally contoured to
avoid discontinuity of the radius that will invalidate the quasi-1D governing equations presented in
the next subsection.

Table 1: Geometry parameters of the quasi-1D CVRC with an oxidizer post length Lop = 14 cm.

Section Oxidizer post Chamber Nozzle

injector back-step converging part diverging part

Length (cm) 12.99 1.01 38.1 1.27 3.4
Radius (cm) 1.02 1.02 ∼ 2.25 2.25 2.25 ∼ 1.04 1.04 ∼ 1.95

The fuel is pure gaseous methane. The oxidizer is a mixture of 42% oxygen and 58% water (per
unit mass). The oxidizer is injected in the oxidizer post at a temperature Tox = 1030 K so that
both water and oxygen are in the gaseous phase. The operating conditions are listed in Table 2.

Table 2: CVRC operating conditions.

Parameter Unit Value

Fuel mass flow rate, ṁf kg/s 0.027
Fuel temperature, Tf K 300
Oxidizer mass flow rate, ṁox kg/s 0.32
Oxidizer temperature, Tox K 1030
O2 mass fraction in oxidizer, YO2 – 42.4%
H2O mass fraction in oxidizer, YH2O – 57.6%
Mean chamber pressure MPa 1.34
Equivalence ratio, Er – 0.8
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For the combustion, we consider the one-step reaction model

CH4 + 2O2 → CO2 + 2H2O

We assume that the fuel reacts instantaneously to form products, allowing us to neglect intermediate
species and finite reaction rates. As the equivalence ratio is less than one, there is oxidizer left
after the combustion. Therefore, only two species need to be considered: oxidizer and combustion
products.

4.2. Full-order model
The governing equations that describe the conservation of mass, momentum, and energy of the

quasi-1D CVRC flow, are the quasi-1D unsteady Euler equations for multiple species, expressed in
conservative form as

∂u

∂t
+
∂f

∂x
= sA + sf + sq.

The conserved variable vector u and the convective flux vector f are

u =


ρA

ρuA

ρEA

ρYoxA

 , f =


ρuA(

ρu2 + p
)
A

(ρE + p)uA

ρuYoxA

 ,

where ρ is the density, u is the velocity, p is the pressure, E is the total energy, Yox is the mass
fraction of oxidizer, and A = A(x) is the cross section area of the duct. The pressure p can be
computed using the conserved variables as

E =
p

ρ(γ − 1)
+
u2

2
− CpTref ,

where Tref is the reference temperature and is set as 298.15 K in this paper. The temperature T is
recovered from the equation of state p = ρRT . The gas properties Cp, R and γ are computed as
Cp =

∑
CpiYi, R =

∑
RiYi and γ = Cp/(Cp −R), respectively.

The source terms are

sA =


0

p
dA

dx
0

0

 , sf =


ω̇f

ω̇fu

ω̇f

(
hf0 + ∆hrel0

)
ω̇ox

 , sq =


0

0

q′

0

 ,

where ω̇f is the depletion rate of the fuel, ω̇ox is the depletion rate of the oxidizer, hf0 is the total
enthalpy of the fuel, ∆hrel0 is the heat of reaction per unit mass of fuel and q′ is the unsteady heat
release term. sA accounts for area variations, sf and sq are related to the combustion. sf represents
the addition of the fuel and its combustion with the oxidizer, which in turn results in the creation of
the combustion products. The depletion rate of the fuel is

ω̇f =
kfṁfYox (1 + sinξ)

lf − ls
, (6)

where
ξ = −π

2
+ 2π

x− ls
lf − ls

, ∀ ls < x < lf .
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The setting of the fuel injection restricts the combustion to the region ls < x < lf . The reaction
constant kf is selected to insure that the fuel is consumed within the specified combustion zone.
The depletion rate of the oxidizer is computed by

ω̇ox = Co/f ω̇f ,

where Co/f is the oxidizer-to-fuel ratio.
The unsteady heat release term q′, also called the combustion response function, models the

coupling between acoustics and combustion. In this paper, we use the combustion response function
designed by Frezzotti et al. [39, 40], which is a function of the velocity, sampled at specific abscissa
x̂ that is almost coincident with the antinode of the first longitudinal modal shape, with a certain
time lag τ , i.e.,

q′ (x, t) = αg (x)A (x) [u (x̂, t− τ)− ū (x̂)] . (7)

Here ū is the time averaged velocity, estimated with the steady-state quasi-1D model assuming
q′ = 0, and g(x) is a Gaussian distribution

g (x) =
e−

(x−µ)2

2σ2

√
2πσ2

,

where µ is the mean and σ is the standard deviation. The amount of heat release due to velocity
oscillations is controlled by the parameter α.

The boundary conditions for the quasi-1D CVRC flow include the fixed mass flow rate and the
stagnation temperature at the head-end of the oxidizer injector, and the supersonic outflow at the
exit of the nozzle.

Prior to unsteady simulation, the quasi-1D CVRC needs to be excited, which can be achieved by
adding a perturbation to the steady-state solution. The perturbation is added by forcing the mass
flow rate with a multi-sine signal

ṁox (t) = ṁox,0

[
1 + δ

K∑
k=1

sin (2πk∆ft)

]
, (8)

where ṁox,0 is the oxidizer mass flow rate in Table 2, ∆f is the frequency resolution and K is the
number of frequencies. In this paper, ∆f = 50 Hz and K = 140, resulting in a minimal frequency of
50 Hz and a maximal frequency of 7000 Hz. δ is required to be small to control the amplitude of
the perturbation and is set as 0.1%.

The procedure of the unsteady simulation of the quasi-1D CVRC flow includes three steps:

(1) Compute the steady-state solution by setting ṁox = ṁox,0 and q′ = 0.

(2) Excite the system by adding a perturbation to the oxidizer mass flow rate according to (8) and
setting q′ = 0.

(3) Perform the unsteady simulation by turning on the combustion response function q′ in (7) and
turning off the oxidizer mass flow rate perturbation by setting ṁox = ṁox,0.

4.3. High-fidelity solver
A high-fidelity quasi-1D CVRC flow solver is built by employing the MUSCL reconstruction [53],

the Lax-Friedrichs flux [54] and the strong stability preserving, three-stage Runge-Kutta (SSP RK3)
time stepping [55].

A difficulty in implementing the solver is that, the reaction constant kf in (6), selected to consume
all the fuel within the specified combustion zone, can not be computed without the steady-state
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distribution of Yox. Therefore, it is determined by trial and error in previous research [37, 39]. In
this paper, an iteration algorithm for kf in the steady-state simulation is designed to overcome this
difficulty. In the j-th time step of the steady-state simulation, kf is computed by

k
(j)
f =

lf − ls∫ lf
ls
Y

(j)
ox (1 + sinξ) dx

,

obtained by the condition that all fuel is consumed within the combustion zone ls < x < lf . This
significantly improves the efficiency of the generation of high-fidelity solutions, since the trial and
error work is avoided when evaluating the solver with large number of parameter values.

5. Numerical results

Numerical results including high-fidelity solver validation, reduced order modeling (ROM), and
stability map validation of the quasi-1D CVRC flow, are presented in this section.

The following metrics are used to evaluate the accuracy of the results:

(1) the relative projection error,

εV(t,µ) =
‖ uh(t,µ)− VV>uh(t,µ) ‖RNh

‖ uh(t,µ) ‖RNh

(2) the POD-NN relative error,

εPODNN (t,µ) =
‖ uh(t,µ)− uNN

L (t,µ) ‖RNh
‖ uh(t,µ) ‖RNh

=
‖ uh(t,µ)− VuNN

rb (t,µ) ‖RNh
‖ uh(t,µ) ‖RNh

In the numerical experiments, the accuracy of the reduced order models built by the POD-NN
method, will be evaluated on test data. The average of the relative errors are used to measure the
accuracy of the models. On test data Dte of size Nte, the average relative errors are defined as

ε̄V(t,µ) =

∑
(t,µ)∈Tte×Pte εV(t,µ)

Nte
, ε̄PODNN (t,µ) =

∑
(t,µ)∈Tte×Pte εPODNN (t,µ)

Nte
,

where Tte × Pte is the time/parameter sampling of Dte.

5.1. High-fidelity solver validation
In this subsection, both steady-state and unsteady solutions of the full-order quasi-1D model are

presented and compared with the existing experimental and computational results to validate the
high-fidelity solver presented in Subsection 4.3.

The simulations are performed on a uniform mesh with 1200 cells. In the steady-state simulation,
the CFL number is set as 1. The time step for the converged steady-state simulation is 1.604× 10−7

s. The computed steady-state pressure and temperature distributions are presented in Fig. 4. The
computed mean chamber pressure is compared with the results of the experiment [30] and a reference
solver [56] using the same number of cells in Table 3. The comparison show that the mean chamber
pressure computed by the present solver is comparable to that of the reference solver.

The unsteady simulation is performed until t = 1.2 s using a time step ∆t = 10−7 s. The
perturbation of the mass flow rate is added at 0 < t < 0.02 s. The parameters of the combustion
response function in (7) are set as α = 2.97 MPa, τ = 0.475 ms, x̂ = 21.5 cm, µ = 4 cm, and
σ = 2.24 cm. These values are extracted by Frezzotti et al. [39, 40] from the 2D detailed hybrid
RANS/LES simulation results [34]. The computed pressure signal at x = 36.8 cm is shown in Fig. 5
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Figure 4: Steady-state solution.

Table 3: Comparison of computational and experimental mean chamber pressure.

Method Present solver Reference solver [56] Experiment [30]

Mean chamber pressure (MPa) 1.515 1.531 1.34

to illustrate the unsteadiness of the quasi-1D CVRC flow. The choice of the location of the pressure
signals is due to the availability of a pressure probe at this location in the experiment. A fast Fourier
transformation (FFT) of the pressure signal is performed to compute the resonance frequencies and
the corresponding amplitudes. Single-sided peak-to-peak amplitude spectrum of the pressure signal
is shown in Fig. 6. The computed resonance frequencies and peak-to-peak amplitudes are listed and
compared with the results of the experiment of [36] and the solver of [40] in Table 4. The comparison
shows that the results of the present solver agree with the experiment and are comparable to that of
the reference solver.

Table 4: Comparison of computational and experimental resonance frequencies and peak-to-peak amplitudes.

Present solver Reference solver [40] Experiment [36]

Mode f (Hz) p′ptp (kPa) fi/f1 f (Hz) fi/f1 f (Hz) p′ptp (kPa) fi/f1

1 1514 340.07 1.00 1546 1.00 1324 387.15 1.00
2 3029 30.97 2.00 3098 2.00 2655 89.29 2.01
3 4543 17.23 3.00 4646 3.01 3979 46.37 3.01

Based on the steady-state and unsteady results, we conclude that the solver, presented in
Subsection 4.3, can compute high-fidelity solutions of the quasi-1D CVRC flow. The solver is used
as the basis of the ROM of the quasi-1D CVRC flow in the rest of this section.
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Figure 5: Pressure signal at x = 36.8 cm.
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Figure 6: Single-sided peak-to-peak amplitude spectrum of the pressure signal of Fig. 5.
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5.2. ROM of the CVRC
This subsection presents the results of the ROM of the quasi-1D CVRC pressure field using the

POD-NN method.
The parameter space is set to involve d = 4 independent physical parameters (Tf , Tox, YO2 , Er) of

the operating conditions listed in Table 2. The range and the number of points of the time/parameter
sampling is listed in Table 5. The number of the parameter points is N = 34 = 81. The number of
the time points is Nt = 1000, which means that snapshots are obtained every 100 time steps within
the time range 0.10 ≤ t ≤ 0.11. The total number of snapshots is NtN = 81000.

Table 5: Time and parameter settings for snapshots of the ROM of the quasi-1D CVRC pressure field.

Parameters

t Tf Tox YO2
Er

Range 0.10 ∼ 0.11 290 ∼ 310 1020 ∼ 1040 0.414 ∼ 0.434 0.79 ∼ 0.81
Points 1000, uniform 3, uniform 3, uniform 3, uniform 3, uniform

The reduced basis functions are extracted from the snapshots using the two-step POD algorithm
presented in Subsection 2.1. The error bounds for the two-step POD are εt = 5.0 × 10−6 and
εµ = 5.0×10−4, which results in L = 206 reduced basis functions and a projection error ε̄V = 0.083%,
as shown in Table 8.

An ANN is constructed for the regression of the reduced coefficients. The inputs of the ANN are
(t;µ) = (t, Tf , Tox, YO2

, Er), the outputs are urb (t;µ) = [u
(1)
rb (t;µ) , · · · , u(L)

rb (t;µ)]>. Therefore,
the dimension of inputs is d+1 = 5, the dimension of outputs is L = 206. We construct a feedforward
neural network with an input layer, an output layer, and five hidden layers. The number of neurons of
each layer is listed in Table 6. For the hidden layers, the activation function is the hyperbolic tangent
function, the output function is the identity function; for the output layer, both the activation and
the output functions are the identity function. The training data Dtr and validation data Dva are
prepared for the training of the ANN. The settings for the training and validation data are listed
in Table 7. The training data is obtained from the 81 high-fidelity simulations that are used for
the snapshots. The validation data is obtained from 24 high-fidelity simulations with randomly
chosen parameters inside the parameter domain in Table 5. For the training, the mini-batch size is
Nb = 810, the regularization parameter is λ = 10−10, the number of training epochs is Nepo = 6000,
and the learning rate decay is η = 0.1/(1 + 0.5 ∗ epoch). The ANN is trained with Nres = 10 restarts.

Table 6: Architecture of the ANN used for the ROM of the quasi-1D CVRC pressure field.

Layer i h1 h2 h3 h4 h5 o

Number of neurons 5 50 55 60 65 70 206

The reduced order model built by the POD-NN method is tested on a data set Dte, obtained
from 12 high-fidelity simulations with randomly chosen parameters, as listed in Table 7. The average
projection error and the average POD-NN error are listed in Table 8. The comparison between the
predicted and the high-fidelity solutions for 4 different time/parameter values is shown in Fig. 7.
The results in Fig. 7 show that the predicted solutions agree with the high-fidelity solutions quite
accurately.
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Figure 7: Comparison between the predicted quasi-1D CVRC pressure fields by POD-NN method and the
high-fidelity solutions.
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Table 7: Settings for the training, validation, and test data sets.

Data set Training Validation Test

Parameter points 81, uniform 24, random 12, random
Time points 500, uniform 20, random 20, random

Size 40500 480 240

Table 8: Test results of the POD-NN method for the ROM of the quasi-1D CVRC pressure field.

Average projection error, ε̄V Average POD-NN error, ε̄PODNN

0.083 % 1.28 %

5.3. ROM of the CVRC chamber
A big advantage of the non-intrusive RB method over the intrusive RB method is that the former

method can be used to build a reduced order model of a local space/time domain of interest, while
the latter method can only be used to build a reduced order model of the entire space/time domain.
The ROM of the local domain is more efficient than that of the entire domain, due to the reduction
of the number of DOFs. In this subsection, ROM of the CVRC chamber pressure field is presented.
The domain of the CVRC chamber is 0 ≤ x ≤ 38.1 cm, and discretized into 806 cells.

The snapshots, training, validation and test data are set in the same way as that in the ROM of
the entire combustor in Subsection 5.2. The reduced basis functions are extracted from the snapshots
using the two-step POD algorithm. The error bounds for the two-step POD are εt = 5.0× 10−6 and
εµ = 1.0× 10−4, which results in L = 83 reduced basis functions and a projection error ε̄V = 0.095%,
as shown in Table 10.

The ANN architecture is presented in Table 9. For the training, the mini-batch size is 810, the
regularization parameter is λ = 10−7, the number of training epochs is 6000, and the learning rate
decay is η = 0.1/(1 + 0.5 ∗ epoch). The ANN is trained with 10 restarts.

Table 9: Architecture of the ANN used for the local ROM of the quasi-1D CVRC chamber pressure field.

Layer i h1 h2 h3 h4 h5 o

Number of neurons 5 10 20 30 40 50 83

The average projection error and the average POD-NN error are listed in Table 10. The average
POD-NN error is about 7 times larger than the average projection error, while for the global ROM in
Subsection 5.2, the average POD-NN error is about 15 times larger than the average projection error.
This highlights the benefit of the local ROM over the global ROM with respect to the prediction
accuracy. The comparison between the predicted and the high-fidelity solutions for 4 different
time/parameter values is shown in Fig. 8. The results in Fig. 8 show that the predicted solutions
agree with the high-fidelity solutions very well, but achieved with a smaller basis as compared to
the global ROM.

Compared with the ROM of the entire combustor, the ROM of the chamber requires a smaller
reduced basis, while achieving the same level of accuracy as the global ROM. This indicates that a
non-intrusive RB method can further improve the efficiency of the ROM by building a ROM of the
local space/time domain of interest.
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Figure 8: Comparison between the predicted quasi-1D CVRC chamber pressure fields by a local POD-NN
method and the high-fidelity solutions.
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Table 10: Test results of the POD-NN method for the local ROM of the quasi-1D CVRC chamber pressure
field.

Average projection error, ε̄V Average POD-NN error, ε̄PODNN

0.095 % 0.67 %

0.100 0.102 0.104 0.106 0.108 0.110
t (s)

1.3

1.4

1.5

1.6

1.7

1.8

P
re

ss
u
re

 (
M

P
a
)

High-fidelity

POD-NN

Figure 9: Comparison between the predicted pressure signal by the POD-NN method and the high-fidelity
solution at 0.10 ≤ t ≤ 0.11 with parameters µ = (303.2893, 1032.1611, 0.4309, 0.7908).

5.4. Prediction of pressure signal
To evaluate the unsteady flow, we use the RB model, built in Subsection 5.3, to predict the

pressure signal by evaluating the RB solutions in the training time range 0.10 ≤ t ≤ 0.11 at x = 36.8
cm. The predicted pressure signal of a certain parameter value is shown and compared with that
of the high-fidelity solution in Fig. 9. The comparison shows that the predicted pressure signal is
accurate.

As we only train the ANN using the data within a certain time range, the direct prediction of
long-time behavior of the unsteady-state flows is a difficult problem. However, for periodic problems,
we can use the FFT to extend the solution beyond the time range on which the network is trained.
The extended predicted pressure signal of Fig. 9 to time range 0.10 ≤ t ≤ 0.15 is shown and
compared with that of the high-fidelity solution in Fig. 10. The results in Fig. 10 show that the
pressure signal obtained by this approach agrees well with the high-fidelity solution. The average
relative errors of the predicted pressure signals of the 12 parameter values of the test data used in
Subsection 5.2 and 5.3 are listed in Table 11. The results in Table 11 show that the average relative
error of the predicted pressure signals of the extended time range is only slightly larger than that of
the training time range, which indicates that the POD-NN method can provide accurate prediction
of the quasi-1D CVRC flow for a long time range.
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Figure 10: Comparison between the predicted pressure signal by the POD-NN method and the high-fidelity
solution at 0.10 ≤ t ≤ 0.15 with parameters µ = (303.2893, 1032.1611, 0.4309, 0.7908).

Table 11: Test results of pressure signal prediction.

Time range 0.1 ≤ t ≤ 0.11 0.1 ≤ t ≤ 0.15

Average relative error 0.63 % 0.86 %

5.5. Stability map validation
A task of the quasi-1D modeling of CVRC is to predict the effect of the oxidizer post length

on the combustion stability. As there are free parameters in the combustion response function, it
is necessary to perform a sensitivity analysis to investigate the stability behaviors of the system
with different parameters. In this section, we study the combustion stability of the CVRC with 13
oxidizer post lengths Lop ∈ [9, 10, · · · , 21] cm.

The three parameters, α, τ and σ of the combustion response function in (7), have an influence
on the combustion stability. According to the sensitivity analysis in [40], α and τ exert a major
influence on the solution, controlling its tendency to be unstable. Therefore, the sensitivity study is
performed on the parameter space of α ∈ [2.5, 4.5] MPa and τ ∈ [0.4, 0.5] ms.

An ANN is built to provide an approximate map from the parameters µ = (α, τ) to the power
spectral density (PSD) of the most excited frequency of the pressure signal at the location x = 36.8
cm. The inputs of the ANN are the parameters (α, τ), the outputs are the PSD values of the most
excited frequencies of the pressure signals with 13 different oxidizer post lengths. The architecture of
the ANN is presented in Table 12. The training data are collected from 45 high-fidelity simulations,
corresponding to a tensor product sampling of 9 points in the α direction and 5 points in the
τ direction of the parameter space. The validation and test data are collected from 15 and 8
high-fidelity simulations with randomly chosen parameters. For the training, the batch size is 45,
the regularization parameter is λ = 10−4, the number of training epochs is 9000, and the learning
rate decay is η = 0.1/(1 + 0.1 ∗ epoch). The ANN is trained with 10 restarts. The average relative
error on the test data set is 4.1%.
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Table 12: Architecture of the ANN used for the regression of the PSD.

Layer i h1 h2 h3 h4 o

Number of neurons 2 20 30 40 50 13
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Figure 11: Sensitivity analysis on α and τ .

A sensitivity analysis of the PSD of the oxidizer post length Lop = 14 cm on α and τ is shown in
Fig. 11. The experimental PSD of this case is about 1400 kPa2/Hz. The sensitivity results show
that the PSD increases with either of the two parameters, with a greater sensitivity with respect
to α. The PSD is too large compared to the experimental value when α > 3.5 MPa, therefore we
change the range of α from [2.5, 4.5] MPa to [2.5, 3.5] MPa.

A sensitivity of the stability map, obtained by using the Monte Carlo method with 106 sampling
points, is shown and compared with the experimental results [36] in Fig. 12. The results agree well
with the experiment for the oxidizer post length range Lop ≤ 9 cm and Lop ≥ 11 cm, while there is
a difference of the stability behavior at Lop = 10 cm. This difference is likely due to the effects not
accounted for in the quasi-1D model.

5.6. Computational cost
In this paper, all computations are performed on a desktop with 40 Intel R© Xeon R© Gold 6148

@ 2.40 GHz CPUs, and 2 NVIDIA R© 10DE:15F0 GPUs. It should be noted that the programs of
high-fidelity simulation and POD basis generation are implemented serially. Although we can run
several programs at the same time, to avoid confusion, we give the summation of CPU time of each
individual simulation as the time cost. The training of the ANNs are performed on 2 GPUs using
the TensorFlow library.

The offline cost of the ROM and the sensitivity investigation is presented in Table 13. The
data in Table 13 indicates that most of the offline cost is due to the generation of the high-fidelity
solutions. The online cost of the ROM and UQ is presented in Table 14. The results in Table
14 highlight that the online evaluation of the ROM of a new parameter value is extremely fast,
demonstrating the efficiency of the non-intrusive POD-NN RB method.
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Figure 12: Stability map of the quasi-1D CVRC model.

Table 13: Offline time cost. The unit of the time cost is second (s).

ROM of CVRC ROM of CVRC chamber Sensitivity of stability map

Snapshots 3.57× 105 3.57× 105 2.63× 106

POD 5.82× 102 5.60× 102 –
Training 1.03× 104 9.5× 103 4.27× 102

6. Conclusions

This paper proposes a non-intrusive POD-NN RB method for unsteady flows. The reduced basis
is extracted from a collection of high-fidelity solutions via proper orthogonal decomposition (POD),
and the reduced coefficients are approximated by an artificial neural network (ANN). The offline
stage consists of the generation of the reduced basis and the training of the ANN, while the online
stage only performs evaluation of the ANN and linear combination of the RB functions, leading to
an efficient POD-NN method. Numerical results of the ROM of the quasi-1D Continuous Variable
Resonance Combustor (CVRC) flow, demonstrate the efficiency and robustness of the POD-NN
method for a complex unsteady problem.

Table 14: Online time cost. The unit of the time cost is second (s).

High-fidelity ROM of CVRC ROM of CVRC chamber Sensitivity of stability map

4.42× 103 9.42× 10−4 3.41× 10−4 4.10× 10−8
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