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Summary
Characterization of sound fields in rooms has always been a challenging task. A faithful reconstruction
of sound fields in rooms generally would require an impractically high number of microphones. At
low frequencies, where sound field can be modeled as a finite superposition of modes, a combination
of Matching Pursuit (MP) and Least-squares optimization can help interpolate the Room Impulse
Responses using a relatively small number of measurements. Our research focuses on using this
paradigm to obtain the low-frequency information of a room in a broader sense, where the spatial
distribution of sound pressure in a non-rectangular reverberating room can be reconstructed and
visually analyzed. Several evaluations are performed along the progression of the framework to confirm
its validity. The modal parameters estimated by MP are also compared with those obtained by the
Rational Fraction Polynomial method (global curve fitting). Finally, the reconstruction of sound field,
which leads to the visualization of the spatial distribution of sound pressure at any chosen frequency
in the range of study, is validated visually and numerically using a finite element method software for
a non-rectangular room model. This demonstration provides an extensive look at the high robustness
and reliability of the framework as a whole, which is crucial in terms of its practical implementations
for room acoustics practitioners.

PACS no. 43.50.+y, 43.58.+z, 43.60.+d

1. Introduction

Room Frequency Response (RFR) and its time do-
main equivalent, Room Impulse Response (RIR) ex-
press the acoustic transmission characteristics be-
tween a source and a receiver in a room. Characteriza-
tion of sound fields in a room, depending on different
purposes, requires a thorough knowledge of either the
RIRs or RFRs of the room with varying receivers’
and/or speakers’ position. Sound field reconstruction
of a room is a process that gathers a limited number
of measurements in the room and through different
methods, reconstructs the entire enclosed sound field.
The challenge here is to achieve accurate sound field
reconstruction with the least possible measurements.

A precise reconstruction of sound fields in rooms us-
ing a regular space and time sampling would typically
result in a dense microphones placement. With this
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knowledge in mind, the research in [1] has been able
to reduce the number of measurement points by look-
ing into the sparse spectrum of the Plenacoustic Func-
tion, which for a 3D spatial problem, is enclosed inside
a 4D hypercone. More recently, it has been shown in
[2] that the RIRs can be interpolated using a reduced
number of measurement points through Compressive
Sensing (CS) by considering certain sparsities that ex-
ist in room acoustics at low frequency. Several exper-
iments and simulations have been performed to an-
alyze the accuracy and efficiency of the compressive
sensing framework in interpolating the RIRs [2],[3].
Many of these tests are with regards to the interpola-
tion RIRs close to the center of the arrays.

In this paper, we focus on using this suggested CS
paradigm to obtain the low frequencies information
of a room under an extensive point of view, where
the spatialization of sound pressure in a general non-
rectangular room can be reconstructed and visually
analyzed using numerical simulation. Along the pro-
gression of the algorithm, the estimated modal param-
eters are also compared with the reference. Through
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these analysis, the performance of the CS framework
can be assessed to verify its validity and robustness
under different circumstances.

The outline of the paper is as follows. First, we
briefly tackle the sparse properties that are present in
room acoustics at low frequencies in Section 2. The CS
reconstruction framework composed of the Simultane-
ous Orthogonal Matching Pursuit (SOMP) and Least-
square estimation method can then be explained in
Section 3. Section 4 is dedicated towards the valida-
tion of the framework in reconstructing the sound field
in the room. In particular, the first part of the anal-
ysis compares the modal parameters estimation used
in the CS framework with the numerical results from
Finite Element Method (FEM) simulations. The es-
timations are then further compared with the results
produced by another modal estimation method which
makes use of the Rational Fraction Polynomial (RFP)
in global curve-fitting. The second part focuses on the
reconstruction of the sound field of the room using the
responses interpolated by the CS framework. This can
be done by assessing the RFR, which is the frequency
domain counterpart of the RIR. With the RFRs, it
is possible to reconstruct the sound pressure distribu-
tion in the room at any particular frequency of inter-
est. A comparison between the reconstructed sound
fields and the numerical results are then performed
to confirm the validity and robustness of the frame-
work. Finally, some concluding remarks are presented
in Section 5.

2. Sparsities in room acoustics

A. Modal decomposition
In low frequencies, the acoustic wave equation can be
decomposed as a discrete sum of damped harmonic
eigenmodes:

p(t, ~X) =
∑
n∈Z∗

AnΦn( ~X)gn(t) (1)

where Φn is the mode shape (or eigenfunction), gn(t)
is the time dependent harmonic decaying function and
An is the corresponding complex expansion coefficient
of mode n. Each eigenmode is uniquely represented by
a complex wavenumber kn = (ωn + jδn)/c0 where ωn
is the angular frequency and δn > 0 is the damping
coefficient of the mode. The harmonic decaying func-
tion gn(t) can then be expressed as:

gn(t) = ejknc0t = ej(ωn+jδn)t = ejωnte−δnt (2)

Note that while we do observe the existence of ~X in
(1) which is the position of the receiver, we have not
seen the presence of the source and its properties. This
information is in fact included in the complex coef-
ficients An’s and will remain so for the rest of our
derivation. In here, we only consider the set-up with

one fixed source in the room and the objective is to
reconstruct the whole sound pressure field in this lim-
iting case.

The mode shape function, on the other hand, is a
space dependent function. In the case of ideally rigid
walls, each mode shape function Φn is the exact solu-
tion of the Helmholtz equation [4]:

∆Φn + k2nΦn = 0 (3)

In the case of non-rigid walls, it can be assumed that
the above equation holds for positions not too close
to the wall and in the case of rooms with low wall
damping. The expansion of the mode shape functions
will be performed in the next section.

B. Mode shape approximation
The derivation in the previous section poses a form
of structured sparsity which is based on the discrete
modal decomposition of the sound pressure in low fre-
quencies. It can be seen that the mode shape functions
Φn’s need to be linked directly to the position of the
receiver ( ~X). In [5] it has been shown that the mode
shape functions can be approximated based on the
premise of spherical harmonics and spherical Bessel
functions. According to this, the mode shape function
can be approximated by a finite sum of plane waves
sharing the same wavenumber pointing in various di-
rections. The individual mode shape, hence, can be
formulated using the R-th order approximation:

Φn( ~X) ≈
R∑
r=1

Bn,re
j~kn,r· ~X (4)

where ~kn,r’s are the 3D wavevectors sharing the same
wavenumber ||~kn,r||2 = |kn|. Note that this, in con-
trast of the exact sparsity in the previous section,
is an approximated sparsity. This plane waves sum-
mation not only gives a good approximation of the
mode shape, but more importantly, makes it possi-
ble to have a closed-form interpretation of the mode
shape function regardless of the type of the modes
in the room. Assuming now that for a chosen fre-
quency limit, a value of R number of wavevectors
would be enough to closely approximate every mode
shape function within this limit, using (2) and (4), the
equation in (1) could be expanded as:

p(t, ~X) =
∑
n,r

Cn,re
jωnte−δntej

~kn,r· ~X (5)

where Cn,r = AnBn,r. As can be seen, through a se-
ries of derivations, the space time equation in (1) can
now be interpreted as the sum of space-time damped
harmonics with the expansion coefficients Cn,r’s. This
expansion form of the equation could be in fact inter-
preted in multiple ways under the matrix form, which
is ideal for the CS framework in the next section.
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Figure 1. Typical room modes for a non-rectangular room

3. Compressive sensing framework

3.1. The inputs

The algorithm in this research directs towards a gen-
eral case, where the room though still has 6 walls (in-
cluding ceiling and floor), is however non-rectangular
and hence the modal behavior of the room would be
more difficult to predict (Fig. 1). Inside this room, a
number of M microphones will be randomly placed
in different positions in order to acquire the RIR
measurements. These unprocessed RIRs can then go
through a low pass filter and be down-sampled based
on the frequency range of interest in order to reduce
the computational cost later on in the algorithm. Call-
ing Nt the length of the time vector for these pro-
cessed RIRs, we will end up with an (Nt×M) matrix
S of signals which will be taken as the input of our
algorithm.

3.2. The outputs

In short, the output of the algorithm should be all the
unknowns in (5) except pre-chosen parameters such
as the number of modes N and the wavevectors ~kn,r
for each mode shape approximation (as can be seen
later, is the result of uniform sampling a sphere with-
out prioritizing any direction). Therefore, the outputs
include the angular eigenfrequency ωn and damping
δn of each mode as well as the N × R expansion co-
efficients Cn,r. With all these values found, we can
interpolate the RIRs at any position ~Xint by simply
plugging it into equation (5).

3.3. Algorithm

The algorithm can be divided into two main parts.
The first part is making use of the Matching Pur-
suit regimes to find the wavenumbers kn’s for the N
room modes. With these results, the second part fo-
cuses on using the least-squares method to approxi-
mate the expansion coefficients Cn,r for a set of pre-
defined wavevectors ~kn,r.

A. Wavenumber identification
This initial step is largely based on the Simultaneous
Orthogonal Matching Pursuit method [6] (SOMP) for

damped sinusoids [7]. This particular method can es-
timate damped sinusoidal components that are highly
matched with the input signals from a redundant set
of sinusoids. At the beginning, two sets of ωmin < ω <
ωmax and δmin < δ < δmax can be formed. The range
of these sets are based on pre-acquired knowledge of
the room such as its reverberation time and the ge-
ometrical properties. The limit values at two ends of
each set do not have to be precise but should rather
be an estimation. Forming all possible combination
between the entries from these two sets will now pro-
duce an overly redundant set of complex components
(jωq − δq) in which q ∈ [1, Q] with Q as the total
number of possible combinations between ω and δ.
Here, the word ‘overly redundant’ is to suggest that
only a small number of entries from this set are the
correct eigenfrequency and damping of the modes in
the room. Each entry of this set can then be used to
form a time vector of length Nt of damped sinusoid
θq = ejωqte−δqt. Now, using the normalized vectors
θq = θq/||θq||2 as columns, we have an (Nt ×Q) ma-
trix Θ.

The algorithm, in short, will repetitively perform
a pole searching procedure in loops. Each loop be-
gins with an (Nt×M) residue matrix Ri. At the first
loop, R1 is set to be equal to the predefined signal
matrix S. Through the pole searching procedure, a
damped sinusoid with the highest correlation to the
residue matrix (represents a pair of ωn and δn) is cho-
sen. The residue matrix Ri+1 of the next loop can
then be formed by extracting the contribution of this
chosen sinusoid from Ri. The stages of a loop can be
seen below:

• Define a (Q×M) correlation matrix Ξi = |ΘH
Ri|.

Each row indexed q of Ξi represents a set of
M correlation values between the qth normalized
damped sinusoid with each of the M measure-
ments. Adding up the energy of this set of val-
ues gives us a representative correlation value σq
between the qth damped sinusoid with the entire
set of RIR measurements: σq =

∑M
m=1(Ξi[q,m])

2.
Out of the Q values of σq, we choose the maxi-
mum one, which corresponds to the pole with the
highest correlation to our measurements. Conse-
quently, its index (namely, qi) points to the result-
ing chosen modal wavenumber of this loop which is
ki = (ωqi + jδqi)/c0.

• After finding a pole, following the orthogonaliza-
tion and projection of SOMP in [6], the residue
matrix for the next loop can be interpreted as
Ri+1 = Ri − PiRi in which Pi is the projection
matrix onto the chosen damped sinusoidal from the
previous step.

• Repeat with i = i+ 1 until i = N

At the end of the process, we have a group of complex
wavenumbers that corresponds to the eigenmodes of
the room.
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Besides SOMP, there are other methods that can be
used to acquire the modal parameters of a room. One
particular example is the global curve-fitting method
in the frequency domain using the Rational fraction
polynomial (RFP) form. This has been used in [8]
to estimates the modal parameters by curve fitting
the RFR measurements. Regular curve fitting meth-
ods are usually done locally, meaning to perform on
a single function at a time. The RFP method in [9],
on the other hand, performs curve-fitting procedures
on multiple-point frequency response functions at the
same time to estimate the model of the system. It
assumes that the frequency response functions are
linear and can be modeled as a ratio of two poly-
nomials, where the denominator is the same for all
the frequency responses. The poles in the denomina-
tors (which contain information on the eigenfrequen-
cies and modal damping) are then found by curve-
fitting simultaneously the given frequency response
functions. Finally, through local curve-fitting of the
numerator with the individual responses and using
the numerical fraction expansion, the residue (mode
shape component) for each mode of each frequency
response can be estimated.

B. Projection onto wavevectors
After the previous framework, we have been able to
find the ωn’s and δn’s given in equation (5). The re-
maining parameters to be found are the expansion
coefficients Cn,r’s.

• The first stage is the separation of the current
known and unknown parameters in terms of ma-
trices. The temporal terms in (1) are now known
and can be separated. Writing in matrix form with
regards to the measurement matrix S, we have:
ST = ΨG with G is the (N × Nt) matrix with
each of its row a modal damped sinusoidal gn(t) =
ejωnte−δnt = ejknt and Ψ is the (M × N) space-
dependent matrix of modes with the inclusion of
the expansion coefficients An’s that appear in (1):

Ψ[m,n] = AnΦn( ~Xm) (6)
with ~Xm’s the M position vectors for the input
measurements of S. One way of looking at (6) is
that if Nt > N (which usually is the case), it poses
an overdetermined matrix problem with (M × N)
unknown and (M × Nt) equations. Hence, we can
estimate the (M × N) matrix of Ψ by computing
the least-squares estimation:

Ψ ≈ STGH(GGH)−1 (7)
• Next, based on the derivation in (5) we can expand

Ψ further in terms of plane waves expansion:
∗ First, we have to specify the component wavevec-

tors. For each wavenumber, we create a set of R
wavevectors ~kn,r whose lengths and directions
correspond to a uniform sampling of a sphere
with radius |ωn/c0| (according to [2],[10], a value
of R ≈ 3M/4 is sufficient to avoid both over and
under-fitting of the data).

Figure 2. Geometry of the FEM model. The black dots
represent the measurement points.

∗ Each column ψn of the matrix Ψ can now be
analyzed individually as they belong to different
modes. If ρn is specified as the (M × R) ma-
trix of the plane wave harmonics for mode n in
which ρn[m,r] = ej

~kn,r· ~Xm , then we can express
individually each column vector ψn as:

ψn = ρnCn (8)
where Cn is the (R×1) vector containing all the
R expansion coefficients Cn,r of mode n. With
M > R as previously chosen, taking ρn as the
basis, we can perform a least-squares projection
of ψn onto this basis to find the coefficient vector
Cn:

Cn ≈ (ρHn ρn)−1ρHn ψn (9)
Repeating this procedure across every existing
mode n ≤ N will return all the expansion coef-
ficients needed for reconstruction.

4. Numerical Validation

In this section, an FEM model of a non-rectangular
room is first introduced for numerical analysis. The
simulation results are then used as the inputs for the
reconstruction framework suggested in the previous
section. At the same time, they can also be used as
a reference to validate the reconstruction result. The
validation of the framework starts by evaluating the
modal parameters estimation by SOMP. The result-
ing eigenmodes are compared to both the reference
as well as the estimation results using the aforemen-
tioned RFP method. The entire framework is then
validated through the comparison of RIR/RFR and
most importantly, the comparison of the sound field
reconstruction where the spatial distribution of sound
pressure can be assessed.

4.1. Numerical simulation

The numerical simulation is performed using a Finite
Element Method (FEM) analysis. The model is a non-
rectangular room with maximum height of 4.5m, max-
imum width of 9.6m and maximum length of 6.8m
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Figure 3. Modal decay times of the non-rectangular reverberant room estimated from the SOMP and RFP methods in
comparison with FEM analysis.

which replicates the actual reverberation chamber of
our laboratory. The damping of the walls are kept to
be low, approaching that of a reverberation chamber.
The source is chosen to be a monopole point source
and is put in proximity to one corner of the room. The
70 measurement points are spread randomly around
the room (refer to Fig. 2). As the test of validity of the
algorithm is of importance in this research, the num-
ber of microphones is chosen to be moderately high to
acquire fairly accurate results without hindering the
computation in terms of processing time and memory.

In our numerical analysis, the frequency range is
chosen to be below 100 Hz where around 40 eigen-
modes exist within this range. The processed RIRs
will go through the series of algorithm detailed in
the compressive sensing framework and will return 45
complex wavenumbers along with the gains for the
53 (≈ 3M/4) wavevectors for each of these wavenum-
bers. The reason we use 45 as the number of mode is
to be consistent with the practical case where an ex-
act number of modes under a chosen frequency limit
could not usually be precisely predicted, especially in
case of a non-rectangular room.

4.2. Modal parameters estimation

In this section, we evaluate the first half of the re-
construction framework regarding modal parameters
estimation. The comparison is performed regarding
the two properties commonly used in modal analy-
sis: eigenfrequency (fn) and the modal decay time
(MT60n) which is defined as:

MT60n =
3 ln(10)

δn
(10)

The modal decay times estimated from SOMP and
RFP methods for the first 18 modes of the room are
compared with those computed from the FEM anal-
ysis (see Fig. 3). Because of the minimal difference
between the three results in terms of modal frequency
values, we focus on comparing the modal decay time
which is directly related to the damping of each mode.
As can be seen from the figure, both the RFP and

SOMP method perform well in terms of eigenmodes
identification except the fact that SOMP underesti-
mates the damping at 40.5 Hz which will be discussed
later.

Generally, we can observe that the RFP method
performs mildly better than SOMP. However, it is
worth mentioning that for RFP method, if the number
of modes within a frequency range is not absolutely
precise, it takes a lot of trial and error in order to come
up with a coherent curve-fitting results in the end. Al-
though, both RFP and SOMP require the users’ input
on how many modes they want to find, this vulnera-
bility does not occur to SOMP. This is due to the fact
that the room modes are found in RFP simultane-
ously whereas in SOMP they are found in series: the
room modes that have the highest contributions to
the signals will be found first and then come the ones
with less. This gives SOMP an advantage in terms of
robustness as the results do not deviate much from re-
ality even if the users underestimate or overestimate
the number of modes within the frequency range of
interest. The number the users enter can only change
how many loops the algorithm repeats itself but does
not change the result of each individual loop.

The underestimated damping at 40.5 Hz from
SOMP also comes from the fact that our algorithm
runs in loops. As after every loop, the energy of the
residue will be reduced more and more, the modes
that are found at the far end of the algorithm are
prone to higher errors than the ones found around
the very first loops. In our algorithm, the mode at
40.5 Hz is found at the 37th loop and hence could be
less accurate than some others that are found earlier.
The same situation also occurs when users overesti-
mate the number of modes. Then, around the final
loops, the algorithm will certainly find some frequen-
cies that do not correspond to any mode. However,
as the algorithm proceeds in a residual manner, this,
same as the 40.5 Hz error, has minimal effects to the
reconstruction happening in the next stage because
the contributions of the few mismatched modes are
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Figure 4. Interpolation of the RIR and RFR for a point inside the room.

Figure 5. Sound field reconstruction (bottom) at different frequencies for a rectangular area inside the room in comparison
with the referencing sound fields from numerical simulation (top).

usually small comparing to the correct ones. This can
further be seen later on in the reconstruction results.

4.3. Sound field reconstruction

A. Local interpolation

Using the outcomes of the algorithm, it is now possible
to interpolate the RIR at any point inside the geom-
etry. The RIRs in our case indicate the transmission
between the source volume flow rate (in m3/s) and
the sound pressure (in Pa) acquired at the measure-
ment points. An example can be seen in Fig. 4 for
a point far from the walls but also not too close to
the center of the room. It can be observed that for
70 measurement points, the reconstruction is highly
accurate for both the RIR and RFR in this example.
It should be noted, however, that this high accuracy
is not guaranteed for every interpolated point in the
room and the error could be higher depending on the

position of the point and in relation with the precision
of the eigenmodes searching results. This, once again,
highlights the need for a spatial representation of the
sound field to confirm the validity of the framework
in general.

B. Spatial sound pressure distribution
The interpolation process can now be done for mul-
tiple points to acquire a series of RIRs for the room.
The RFRs of the room can then be produced through
the Fourier transform of these RIRs. These resulting
RFRs will allow us to observe the spatial response of
the room at any single frequency of interest.

It has been studied in [4] that for a room with non-
rigid walls, the Helmholtz equation for eigenmode is
less valid for positions close to the walls. Hence, our
first visualization is for a rectangular volume inside
the room but away from its walls. This reconstruc-
tion can be compared with a frequency domain study
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Figure 6. Comparison of the reconstruction framework on
a surface close to the wall at an eigenfrequency f = 59.18
Hz (bottom) with the numerical simulation result (top).

using the same settings in FEM analysis (refer to Fig.
5). It can be observed that the reconstruction of the
sound field using CS yields highly accurate results.
Through this visualization of sound pressure, we can
confirm that the algorithm not only performs well on
a few interpolated positions but it is also capable of
reconstructing the sound field accurately over wide
areas. The presence of the mode shapes can also be
clearly observed in all three examples. Furthermore,
the high level of accuracy is maintained in every direc-
tion of the 3D depiction since the input measurement
points are spread randomly in the room. A few ini-
tial tryouts with a regular grid of microphones have
not achieved such global precision in the reconstruc-
tion. This, once again emphasizes the advantage of
the much-recommended randomness in common CS
frameworks. From Fig. 5, it should also be noticed
that although there might be small differences when
comparing point by point, the general shapes as well
as the separation between high and low sound pres-
sure areas are nevertheless precisely depicted. It could
also be observed in the comparison that the depiction
of sound pressure field is accurate not just for the
eigenfrequencies (at 45.25 Hz and 66.09 Hz) but also
for frequencies in between two consecutive modes (38
Hz is an example).

Next, we reconstruct the spatial pressure distribu-
tion on a surface close to one of the walls to analyze
the near-wall performance. We can confirm that the
reconstructed sound field, in general, maintains the
same level of accuracy for a wide range of frequencies.

There are a few cases, like the one in Fig. 6 where
the reconstruction tends to have slightly higher errors
but the general patterns of the sound pressure distri-
bution are nevertheless identical with the reference.
This shows that for lightly damped room, the near-
wall performance of the reconstruction can yet still be
valid but is slightly less accurate comparing to regions
further away from the walls. Future studies will focus
on cases with highly damped walls to test the limit of
the reconstruction.

5. Conclusion

In this paper, we have been able to show the validity
of the compressive sensing approach in reconstructing
sound fields of a non-rectangular room. The frame-
work has been able to reconstruct the spatial sound
pressure field inside the room at certain frequencies
and analyze its precision in comparison to that from
numerical simulations. The comparisons show promis-
ing results both for the areas away from and close to
the walls. This could prove to be useful for further
application of the algorithm by a wider audience of
users. One of many potential applications is to use
this method to evaluate the change in the sound fields
due to different room mode treatment methods. Fu-
ture studies will focus on this particular application as
well as study further on other robust aspects of the al-
gorithm such as its accuracy in highly damped rooms
and how to compensate for it. Along the progression
of the framework, with regards to room modes iden-
tification, the research has also compared two pole-
searching-based methods of RFP and SOMP in terms
of accuracy and robustness. One advantage of the
RFP method is its fast computation time but it is with
the cost of low robustness and the liable low accuracy
caused by wrong estimation of number of modes. The
possibility of combining these two methods to take ad-
vantage of their strengths and to compensate for the
existing weaknesses can also be an interesting subject
for future research.
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