
POUR L'OBTENTION DU GRADE DE DOCTEUR ÈS SCIENCES

acceptée sur proposition du jury:

Prof. G. Ferrari Trecate, président du jury
Prof. C. N. Jones, directeur de thèse

Prof. P. Patrinos, rapporteur
Prof. J. Lygeros, rapporteur
Prof. M. Jaggi, rapporteur

Distributed Optimization and Control using Operator
Splitting Methods

THÈSE NO 8623 (2018)

ÉCOLE POLYTECHNIQUE FÉDÉRALE DE LAUSANNE

PRÉSENTÉE LE 22 JUIN 2018

À LA FACULTÉ DES SCIENCES ET TECHNIQUES DE L'INGÉNIEUR
LABORATOIRE D'AUTOMATIQUE 3

PROGRAMME DOCTORAL EN GÉNIE ÉLECTRIQUE

Suisse
2018

PAR

Georgios STATHOPOULOS

Acknowledgements

My greatest thanks goes to my advisor, Colin Jones, for mainly three reasons. First, for the
freedom he has given to me in terms of choosing my research directions. Second, for being available
for long discussions in front of a whiteboard and for actually engaging in the problem-solving
process. Colin has the ability to not only propose an answer to a given question, but also to put
together a start-to-end approach involving the questions that will be raised in the process and their
potential answers. I was usually left with filling in the missing pieces, which were in most cases, and
surprisingly, ‘fillable’. Third, for all the provisions that I enjoyed during my PhD, be it traveling
to any conference I would feel like attending, or pursuing side-projects that would interest me. His
research style has, unarguably, been a decisive influence on mine, and I have, hopefully, adopted a
tiny bit of his practical ‘let’s do something useful with it’ attitude.

I would like to thank my committee members, Prof. Panos Patrinos, Prof. John Lygeros, Prof.
Martin Jaggi and Prof. Giancarlo Ferrari Trecate for undertaking the laborious task of reading
the dissertation, and for providing me with useful feedback as well as insightful suggestions for
continuation of my work. I would also like to thank them for making the exam a pleasant and
interesting experience.

I am indebted to Dr. Claus Danielson and Dr. Daniel Burns for hosting me at MERL during
the summer of 2016. I really enjoyed the experience of working in such a lax and, at the same time,
intriguing environment, which contributed to making my stay in Boston memorable and fun.

Luck plays a significant role in every life experience, and I consider myself really lucky to be
in such a great working environment, the LA. The lab is a colorful mosaic of characters, all very
different and exceptionally interesting. Everybody contributed in creating a warm and friendly
atmosphere, fostering both fruitful collaborations and a great deal of extracurricular activities.
More specifically, many thanks go to the first generation that warmly welcomed me to LA, Milan,
Jean-Hubert, Andrea, and Ye, as well as the rest of the gang that joined roughly at the same time
as I did, namely Tomasz, Faran, Altug; it was great having you all around. In addition, a big thanks
goes to the whole LA; thanks Sanket, Francisco, Martand, Tafarel, Predrag, René, Luca, Kristoph,
Harsh, Ehsan, Yanni, Truong, Ivan, Diogo, Michele, Peter, Zlatko, Sean, Niketh, Basile, Mahdieh,
Melanie, Timm and the newcomers Pulkit and Mustafa. I am happy that I had the chance to
share with each and every one of you views on both academic and non-academic topics. I am also
thankful to the professors and the non-perishable members of LA for creating and maintaining such
a family-like atmosphere through several initiatives; Dominique, Roland, Ali, Christophe, Philippe,
and Sandra. A special thanks to the people who made my life easier on several occasions; Francis,
Norbert, Christophe, Francine, Ruth, Eva, Margot, and Nicole.

Life outside the lab wouldn’t be fun without friends to share it with; thank you Taso, Sofia,

iv

Emre, Iris, Lorenzo, Vasili (a.k.a. Skylos) and the whole greek gang that’s still lingering in Switzer-
land. Thanks to the EPFL migrants with whom we coincided in Boston and had the chance to
revive the Swiss wine-tasting atmosphere in several occasions: Elda, Guillaume, and Xiaowen. A
huge thanks goes to my lifelong friends Dimitris, Kostas, Yannis, and Giorgos for patiently listening
to my uninteresting academic-life stories, for sharing a room during the summer vacations, and for
regulating me whenever it was getting too much or too little.

It would be no exaggeration to say that my decision to come to Lausanne and pursue a PhD
here was thanks to Dorina and Vicky, the closest thing to a ‘family’ that I have in Switzerland.
Thank you for hosting me during the first period and for constantly being there providing both
material and immaterial help. Special thanks to Vaggelis, whose arrival extended the family by
two more members, and who reminded me of my adolescence on numerous occasions. My deepest
thanks go to Dorina, for always caring to understand me, to find out what it is that I really want
and make it a common goal, and for being supportive beyond what is expected, many times at a
personal cost. She has also developed the ability to listen to my ongoing monologues on topics that
she could not care less about, sometimes giving me the impression that what I say is interesting.

Last but not least, I owe my most profound gratitude to my parents and brother for their
unconditional love and support. They have always made it possible for me to pursue my academic
goals, at, literally, any cost. More importantly, the values and principles they have taught me have
shaped who I am; and I am thankful for that.

Abstract

The significant progress that has been made in recent years both in hardware im-
plementations and in numerical computing has rendered real-time optimization-based
control a viable option when it comes to advanced industrial applications. At the same
time, the field of big data has emerged, seeking solutions to problems that classical
optimization algorithms are incapable of providing. Though for different reasons, both
application areas triggered interest in revisiting the family of optimization algorithms
commonly known as decomposition schemes or operator splitting methods. This lately
revived interest in these methods can be mainly attributed to two characteristics: Com-
putationally low per-iteration cost along with small memory footprint when it comes
to embedded applications, and their capacity to deal with problems of vast scales via
decomposition when it comes to machine learning-related applications.

In this thesis, we design decomposition methods that tackle both small-scale cen-
tralized control problems and larger-scale multi-agent distributed control problems. In
addition to the classical objective of devising faster methods, we also delve into less
usual aspects of operator splitting schemes, which are nonetheless critical for control.
In the centralized case, we propose an algorithm that uses decomposition in order to
exactly solve a classical optimal control problem that could otherwise be solved only
approximately. In the multi-agent framework, we propose two algorithms, one that
achieves faster convergence and a second that reduces communication requirements.

In the first part, we look into the infinite-horizon constrained linear quadratic reg-
ulator (CLQR) problem. The solution to the classical unconstrained version of the
problem (LQR) is known to exist in closed form, and to come with stability guarantees
for the closed-loop system. The addition of constraints to the LQR formulation ren-
ders the problem unsolvable in closed form and challenging due to the infinite number
of optimization variables. We propose to use decomposition in order to take advan-
tage of the closed-form solution of the LQR, consequently splitting the CLQR into two
subproblems, an infinite-dimensional least squares problem, and a simple projection
operation of an infinite sequence to the non-positive orthant, both of which are solved
in closed form by means of the accelerated projected gradient method (ProjGM). The
solution enjoys all the theoretical benefits of using an infinite-horizon cost. Numerical
simulations demonstrate the good practical performance of the scheme when compared
to regular MPC.

The remaining two parts of the thesis deal with distributed optimization algorithms
applied in settings where heterogeneous agents collaborate under the presence of a global
coordinator to achieve some objective. Our motivation for studying this setting stems
from smart grid applications, where energy resources cooperate in order to deliver some
ancillary service to the network operator based on some contract. Distributed optimiza-
tion research has been primarily motivated by machine learning applications involving

vi

large datasets and parallel multicore architectures. The nature of our problems of in-
terest, however, dictates the adoption of a different angle in the analysis of distributed
optimization algorithms. More specifically, the problems’ scale we are interested in
is generally medium to large, but not huge, and there is a focus on real-time rather
than offline execution. Instead of processors who perform read/write operations on a
shared memory we have (physical) agents governed by dynamics who often solve local
optimization problems, the details of which should remain private, and who might be
running on limited resources. Several of these characteristics pose new challenges and
ask for novel solutions.

We initially focus on speeding-up the solution process in such multi-agent settings.
This is achieved by enabling more agents to update in a unit of time. We assume that
the agents’ local optimization problems differ from one another in terms of their solve
time. This characteristic motivates asynchronous optimization since it is more beneficial
that the agents update in arbitrary sequences and with arbitrary frequencies instead of
synchronizing their updates based on the slowest of them. We propose an asynchronous
version of the forward-backward iteration that does not assume any probability distri-
bution for the activation of the agents. We prove linear convergence of an accelerated
version of the method under some structural assumptions on the involved functions.
Thanks to the general nature of the forward-backward iteration, the scheme results in
several novel asynchronous and accelerated versions of commonly used algorithms. We
demonstrate the superiority of the scheme in comparison to other asynchronous algo-
rithms in a simulated setting, where we employ our proposed version of the proximal
gradient method (PGM) to solve a distributed load-sharing problem, where a population
of smartly-actuated buildings is asked to track a power signal generated by the network
operator. The asynchronous forward-backward iteration results in faster convergence
at the expense of increased communication.

In the third part of the thesis, we reverse the trade-off and favor computation over
communication. We consider the same distributed multi-agent framework with one
global coordinator. In the majority of these schemes, the local subproblems that need
to be solved are cast as proximal minimization problems. By studying the properties
of the proximal operator, we develop a protocol where the coordinator can ‘guess’ the
solution to an agent’s local optimization problem and spare some communication rounds.
The proposed scheme enables the coordinator to construct a convex set within which
the agents’ optimizers reside, and to iteratively refine the set every time that an agent is
queried. The approach is tested on a load-sharing problem similar to the one described in
the previous paragraph while employing the alternating direction method of multipliers
(ADMM) to solve the problem.

In summary, we study in this thesis the potential of operator splitting methods
when applied to constrained optimal control problems. Based on these methods, we
design algorithms that successfully compete with existing solution approaches in terms
of speed, and others that examine different strengths of these methods in distributed
optimization settings. We hope that the research efforts in this thesis will benefit
modern optimization-based control applications such as distributed control of smart
energy networks, but will also inspire both alternative uses of decomposition methods

vii

and further algorithmic developments.

Keywords: convex optimization, splitting methods, decomposition, distributed op-
timization, multi-agent systems, proximal operator, Moreau envelope, model predictive
control, linear quadratic regulator, asynchronous optimization, smart grid, load sharing,
energy networks

viii

Résumé

Les progrès significatifs réalisés ces dernières années, tant au niveau de l’implemen-
tation matérielle et du calcul numérique, ont fait du contrôle basé sur l’optimisation
en temps réel une option viable pour des applications industrielles avancées. Dans le
même temps, le domaine du big data a émergé, cherchant des solutions à des problèmes
que les algorithmes d’optimisation classiques sont incapables de fournir. Bien que pour
des raisons différentes, ces deux domaines d’application ont poussé la communauté à
revisiter la famille des algorithmes d’optimisation communément appelés schémas de
décomposition ou méthodes de séparation des opérateurs. Cet intérêt récemment ravivé
pour ces méthodes peut être attribué principalement à deux caractéristiques : un coût
par itération très bas et une faible empreinte mémoire pour les applications embarquées,
et leur capacité à traiter des problèmes de grande échelle via la décomposition lorsqu’il
s’agit d’applications liées à l’apprentissage artificiel.

Dans cette thèse, nous concevons des méthodes de décomposition qui s’attaquent à
la fois aux problèmes de contrôle centralisé à petite échelle et aux problèmes de contrôle
distribué multi-agents à plus grande échelle. En plus de l’objectif classique de conce-
voir des méthodes plus rapides, nous nous penchons également sur des aspects moins
habituels des schémas de decompoisition des opérateurs, qui sont néanmoins critiques
pour le contrôle. Dans le cas centralisé, nous proposons un algorithme qui utilise la dé-
composition pour résoudre exactement un problème de contrôle optimal classique qui,
autrement, ne pourrait être résolu qu’approximativement. Dans le cadre des problemes
multi-agent, nous proposons deux algorithmes, l’un qui permet une convergence plus
rapide et l’autre qui réduit les besoins de communication.

Dans la première partie, nous nous penchons sur le problème du régulateur quadra-
tique linéaire à horizon infini (CLQR). La solution à la version classique sans contrainte
du problème (LQR) est connue pour exister sous forme fermée, et offrir des garanties de
stabilité pour le système en boucle fermée. L’ajout de contraintes à la formulation LQR
rend le problème insoluble analytiquement et difficile à résoudre en raison du nombre
infini de variables d’optimisation. Nous proposons d’utiliser la décomposition pour pro-
fiter de la solution analytique du LQR, en divisant par conséquent le CLQR en deux
sous-problèmes, un problème de moindres carrés de dimensions infinie, et une simple
opération de projection d’une séquence infinie sur l’orthant non-positif, les deux étant
résolus analytiquement au moyen de la méthode du gradient projeté accéléré. La solu-
tion bénéficie de tous les avantages théoriques de l’utilisation d’un coût à horizon infini.
Les simulations numériques démontrent la bonne performance pratique du système par
rapport au MPC classique.

Les deux autres parties de la thèse traitent des algorithmes d’optimisation distri-
bués appliqués dans des contextes où des agents hétérogènes collaborent sous la présence
d’un coordinateur global pour atteindre un objectif. Notre motivation pour étudier ce
paramètre provient des applications de réseau intelligent, où les ressources énergétiques
coopèrent afin de fournir un service auxiliaire à l’opérateur de réseau sur la base d’un

ix

contrat. La recherche en optimisation distribuée a été principalement motivée par des
applications d’apprentissage automatique impliquant de grands ensembles de données
et des architectures multi-cœurs parallèles. La nature de nos problèmes d’intérêt, cepen-
dant, dicte l’adoption d’un angle différent dans l’analyse des algorithmes d’optimisation
distribués. Plus précisément, l’échelle des problèmes qui nous intéresse est généralement
moyenne à grande, mais pas énorme, et l’accent est mis sur l’exécution en temps réel
plutôt que sur l’exécution hors ligne. Au lieu de processeurs qui effectuent des opérations
de lecture/écriture sur une mémoire partagée, nous avons des agents (physiques) régis
par des dynamiques qui résolvent souvent des problèmes d’optimisation locale, dont les
détails sont censés rester privés, et qui peuvent fonctionner avec des ressources limitées.
Plusieurs de ces caractéristiques posent de nouveaux défis et demandent des solutions
novatrices.

Dans un premier temps, nous étudions comment accélérer le processus de solution
dans de tels environnements multi-agents. Ceci est réalisé en permettant à un plus
grand nombre d’agents de se mettre à jour par unité de temps. Nous supposons que
les problèmes d’optimisation locale des agents diffèrent les uns des autres en termes de
temps de résolution. Cette caractéristique motive l’optimisation asynchrone puisqu’il
est plus avantageux que les agents se mettent à jour dans des séquences arbitraires et
avec des fréquences arbitraires au lieu de synchroniser leurs mises à jour en fonction
de la plus lente d’entre elles. Nous proposons une version asynchrone de l’itération for-
ward/backward qui ne requiert aucune distribution de probabilité pour l’activation des
agents. Nous prouvons la convergence linéaire d’une version accélérée de la méthode
sous certaines hypothèses structurelles sur les fonctions impliquées. Grâce à la nature
générale de l’itération forward/backward, le schéma aboutit à plusieurs nouvelles ver-
sions asynchrones et accélérées d’algorithmes couramment utilisés. Nous démontrons la
supériorité du schéma par rapport à d’autres algorithmes asynchrones dans un environ-
nement simulé, où nous employons notre version proposée de la méthode du gradient
proximal pour résoudre un problème de répartition de charge, où une population de
bâtiments intelligemment actionnés doit suivre un signal de puissance généré par l’opé-
rateur du réseau. L’itération asynchrone forward/backward entraîne une convergence
plus rapide au détriment d’une communication accrue.

Dans la troisième partie de la thèse, nous inversons le compromis et favorisons le
calcul par rapport à la communication. Nous considérons le même cadre multi-agents
distribué avec un seul coordinateur global. Dans la majorité de ces schémas, les sous-
problèmes locaux qui doivent être résolus sont présentés comme des problèmes de mi-
nimisation proximale. En étudiant les propriétés de l’opérateur proximal, nous déve-
loppons un protocole où le coordinateur peut ‘deviner’ la solution au problème d’op-
timisation locale d’un agent et éviter certaines étapes de communication. Le schéma
proposé permet au coordinateur de construire un ensemble convexe dans lequel résident
les optimiseurs des agents et d’affiner de façon itérative l’ensemble à chaque fois qu’un
agent est interrogé. L’approche est testée sur un problème de répartition de charge si-
milaire à celui décrit dans le paragraphe précédent tout en utilisant la méthode des
multiplicateurs à direction alternée pour résoudre le problème.

En résumé, nous étudions dans cette thèse le potentiel des méthodes de division des

x

opérateurs lorsqu’elles sont appliquées à des problèmes de contrôle optimal contraint.
Sur la base de ces méthodes, nous concevons des algorithmes qui concurrencent avec suc-
cès les solutions existantes en termes de vitesse, et d’autres qui examinent les différentes
forces de ces méthodes dans des situations d’optimisation distribués. Nous espérons que
les efforts de recherche de cette thèse profiteront aux applications modernes de contrôle
basées sur l’optimisation, comme le contrôle distribué des réseaux d’énergie intelligents,
mais inspireront aussi bien des utilisations alternatives des méthodes de décomposition
que de nouveaux développements algorithmiques.

Mots Clés : optimisation convexe, méthodes de fractionnement, décomposition, op-
timisation distribuée, systèmes multi-agents, opérateur proximal, enveloppe de Moreau,
contrôle prédictif de modèle, régulateur quadratique linéaire, optimisation asynchrone,
réseau intelligent, partage de charge, réseaux d’énergie.

Contents

1 Introduction 1
1.1 Outline and Contribution . 3
1.2 Publications . 3

2 Preliminaries 7
2.1 Convex Optimization . 8

2.1.1 Function properties . 8
2.1.2 Fenchel Duality . 8
2.1.3 ε-subgradient . 9

2.2 Proximal Splitting Methods . 10
2.2.1 Proximal Point Algorithm (PPA) . 10
2.2.2 Moreau Envelope . 11
2.2.3 Proximal Gradient Method (PGM) . 11
2.2.4 Dual Proximal Gradient Method and Alternating Minimization Algorithm . 12
2.2.5 Douglas-Rachford Splitting and Alternating Direction Method of Multipliers 13
2.2.6 Convergence Rates and Inertial Acceleration 14

2.3 Monotone Operators . 17
2.3.1 Basics on Monotone Operators . 17
2.3.2 The Krasnosel’skĭi-Mann Iteration . 19

2.4 Model Predictive Control . 19
2.4.1 Invariance and Lyapunov Stability . 20
2.4.2 Linear Quadratic Regulator . 20
2.4.3 Linear Model Predictive Control . 21

2.5 Distributed Ancillary Service Provision with Controllable Buildings 22

3 Infinite-Horizon Constrained Linear Quadratic Regulator 27
3.1 Introduction . 27
3.2 Related work . 28
3.3 Problem statement . 29
3.4 Dualization . 30
3.5 Solution using Accelerated Dual Proximal Gradient Method 31
3.6 Convergence results . 35
3.7 Computational aspects and warm-starting . 39

xii CONTENTS

3.7.1 Stepsize selection . 39
3.7.2 Complexity . 40
3.7.3 Warm-starting . 41

3.8 Examples . 41
3.8.1 Toy system . 41
3.8.2 Quadcopter system . 45
3.8.3 Timings . 45

3.9 Conclusion . 49
3.10 Appendices . 50

3.10.1 Required Operator Theory . 50
3.10.2 Boundedness of several operators . 51
3.10.3 Backtracking stepsize rule . 53

4 Inertial Parallel and Asynchronous Forward-Backward Iteration for Distributed
Convex Optimization 56
4.1 Introduction . 56
4.2 Related work . 57
4.3 Problem description . 58

4.3.1 Asynchronous updates . 58
4.3.2 An asynchronous inertial forward-backward iteration 58
4.3.3 Main contribution . 62

4.4 Convergence proof . 62
4.4.1 Express delayed variables as additive error 63
4.4.2 Isolate the error . 64
4.4.3 Bound the error recursively . 64
4.4.4 Bound the error with respect to the maximum distance from the set of fixed

points . 65
4.4.5 Condition for convergence . 65

4.5 Connection to other methods . 66
4.5.1 Gradient descent . 66
4.5.2 Proximal gradient . 66
4.5.3 Other methods . 66

4.6 Application: Distribution network real-time dispatch 67
4.6.1 Modeling the agents . 67
4.6.2 Modeling the dispatch problem . 68
4.6.3 Simulation setup . 69

4.7 Conclusion . 71
4.8 Appendices . 72

4.8.1 Proof of Lemma 13 . 72
4.8.2 Proof of Lemma 14 . 72
4.8.3 Proof of Lemma 15 . 74
4.8.4 Proof of Lemma 16 . 75
4.8.5 Proof of Thoerem 7 . 77
4.8.6 Cocoercivity and quasi-strong monotonicity of S 78

CONTENTS xiii

5 Estimating the Proximal Operator 80
5.1 Introduction . 80
5.2 Related work . 81
5.3 Problem description . 82
5.4 Estimating the solution to a proximal minimization problem 83
5.5 Communication . 88

5.5.1 Non worst-case candidates . 91
5.5.2 The algorithmic schemes . 91

5.6 Convergence . 93
5.6.1 Convergence of ADMM . 94
5.6.2 Convergence of randomized coordinate descent PGM 95

5.7 Applications . 96
5.7.1 Distributed Load Sharing . 96
5.7.2 Optimal Price Adjustment . 99
5.7.3 Randomized Coordinate Load Sharing . 102

5.8 Conclusion . 105
5.9 Appendices . 105

5.9.1 Proof of Proposition 2 . 105
5.9.2 Proof of Proposition 5 . 106
5.9.3 Proof of Theorem 8 . 106
5.9.4 Proof of Proposition 6 . 107
5.9.5 Proof of Proposition 7 . 108
5.9.6 Proof of Theorem 10 . 109

6 Extensions and Conclusions 114
6.1 Infinite horizon control . 114
6.2 Asynchronous optimization . 115
6.3 Learning a proximal problem . 117

A Appendix 120
A.1 Derivation of the Alternating Direction Method of Multipliers from Douglas-

Rachford Splitting . 120

List of Figures

2.1 The Moreau envelope of a linear function constrained in [-3,1]. The proximal evalu-
ations at several randomly generated points gradually form the envelope. Note that
the minimum values coincide. 11

2.2 Sketch of a network of buildings with a battery energy storage system (agents) and
a global system operator (coordinator). The agents communicate their individual
consumption vectors (pcbi , pbess) and the coordinator uses them in order to form an
incentive signal (e) that will be in turn communicated to them. 23

3.1 Histogram of T∞ = maxk{T k} for 750 initial conditions of the 2 state system sampled from
a normal distribution around (−3, 0.3) with covariance matrix diag(4, 0.4). 42

3.2 Reachable sets for several horizon lengths and the LQ terminal set. The computation was
done using the MPT3 toolbox [HKJM13]. It is apparent that a short horizon length reduces
significantly the feasible region of the problem. 44

3.3 Comparison of MPC with finite horizon length, for several horizons, with CLQR. The hor-
izontal axis corresponds to the optimal horizon length T ∗ per initial condition. As T ∗ in-
creases, the corresponding states are sampled further from the origin. MPC with terminal
set is depicted with the solid lines, while without terminal set with dashed lines. CLQR is
performed both with the weight sequence, denoted as T∞

w CLQR, and without the weights,
denoted as T∞ CLQR. 44

3.4 Evolution of the ratios Tmin

T∗ , T∞
w

T∗ and T∞
T∗ for the sampled initial conditions. 45

3.5 Histogram of T∞ = maxk{T k} for 272 initial conditions sampled with a Hit-And-Run
algorithm. 46

3.6 Box plots for the average number of iterations of the warm-starting policy, given
0.5% and 1% uniform perturbations of the initial state are depicted. The horizontal
line inside the box corresponds to the median, the edges of the box are the 25th and
75th percentiles while the horizontal lines outside the boxes correspond to the most
extreme data points not considered outliers. Finally, the colored dots correspond to
mean values. Warm-starting improves the performance of the suggested method in
both cases, in all the depicted statistical measures. 46

LIST OF FIGURES xv

3.7 Solve times of the CLQR solver versus CPLEX, MOSEK and QPgen for the toy
system, sampled from 750 initial conditions. In (a), the CLQR generally requires
less time than solving a series of finite horizon optimal control problems, leading to
the same optimal solution. Only the solver QPgen clearly outperforms our proposed
approach, which makes use of the same, in principle, splitting method, enhanced by
several add-on’s that enable speedup. In (b) the three solvers are faster. The large
variance of the CLQR approach in comparison to the others is a typical charac-
teristic of first-order methods, and can be significantly reduced with appropriately
conditioning of the problem. 48

3.8 Iteration and factorization counts for the toy system. It can be seen in (a) that
more than 80% of the problems needed less than 400 iterations in order to converge,
while the maximum number observed is around 5000 iterations. The mean value
of factorizations in (b) is seven while no problem instance needed more than 25
factorizations. 49

4.1 Buffer W is filled by the Write thread and emptied by the Compute thread. Similarly,
R is filled by the Compute thread and emptied by the Read thread. The scheme
executes continuously and asynchronously, both at the coordinator level (concurrent
threads) and at the interface between the agents and the coordinator. 61

4.2 An update is about to occur at k + 1. From Assumption 5, the observed agent
will update again no later than τ time epochs after zi was communicated to the
coordinator. Consequently, ywrite cannot be further than 2τ from the next update,
while yprevwrite cannot be further than 3τ . 63

4.3 Distance from optimizer VS wall-clock time. 70
4.4 The reference signal to be tracked is depicted in red. The contribution of the BESS

is colored in dark blue, that of the medium scale buildings in lighter blue and that of
the two large buildings in green. The contribution of the small buildings is colored in
pink, but is hardly visible due to their small capacity and despite their large population. 71

5.1 The epigraph of the envelope function fγ(z) and that of the quadratic upper bound-
ing function f

γ
(z; z1) are illustrated. For any point centered at v that lies ε below the

epigraph of fγ
(z; z1), the ε-subdifferential set is depicted as the normal cone of the

set constructed by the tangent hyperplanes of epi (fγ
(z; z1)), depicted with the grey

lines, at (v, fγ
(v; z1)− ε). The actual gradient ∇fγ(v) is contained in all ∂εf

γ
(v; z1)

for ε ≥ ε∗(v; z1). As ε is getting smaller, the subdifferential sets shrink, and converge
to ∂ε∗(v;z1)f

γ
(v; z1), depicted by the normal cone to the set illustrated by the blue

lines in the right figure. 84
5.2 Assuming two query points z1 and z2, ∇fγ(v) can be located in the intersection of

the two normal cones, which is sketched in purple color. In addition, the function
f
γ
(z | J) = conv{fγ

(z; z1), f
γ
(z; z2)} is drawn in deep red color. It is evident that

the normal cone corresponding to the intersection of the two sets (left) is identical
to the set ∂ε∗(v|J)f

γ
(v | J) on the right. 87

5.3 Performance in terms of communication savings. 100
5.4 Tracking of a reference by a mix of small (pink) and medium scale (blue) buildings. 101

xvi LIST OF FIGURES

5.5 Performance in terms of communication savings for the price adjustment (dispatch)
problem. 103

5.6 Performance in terms of communication savings for the randomized coordinate de-
scent implementation of the load sharing problem. 104

List of Tables

3.1 Closed loop comparison between CLQR and MPC 49

4.1 Micro-grid case study overview . 68
4.2 Accuracy reached within Ts = 40sec. 70
4.3 Average number of updates per agent within simulation time. 70

5.1 Micro-grid case study overview . 98

Chapter 1

Introduction

The impressive developments that have occurred in recent years both in hardware implementations
and in numerical computing have resulted in rapidly falling prices in sensor and actuator tech-
nologies. As a consequence, there is a massive deployment of sensing and communication hardware
along with embedded computer platforms in a range of devices, a phenomenon that brought about
a twofold change. First, once prohibitively expensive technologies are now available as consumer
goods, as for example powerful smartphone devices and drones. Second, well-established industrial
paradigms are questioned. For example, in modern electricity grids, the deployment of sensors and
actuators along with increased computational capacity transforms traditionally passive loads into
active producer-consumer (prosumer) entities, which are capable of engaging into decision making
and of negotiating the provision of services to the network operator.

It is fair to say that mathematical optimization has been playing an active role for decades in
enhancing the decision-making capacity of systems like the ones mentioned above. For example, the
mathematical optimization framework has given rise to model predictive control (MPC), a control
paradigm where one chooses the best possible control action from a set of candidate choices based
on some performance criterion while guaranteeing safety of operations. MPC has been successfully
applied to the process industry and has nowadays become a control standard. However, and in
contrast to process industry applications, the current challenges push the limits of optimization-
based solutions in terms of two specifications: increased computational speed and ability to deal with
problems in a distributed way. The exploration of novel optimization algorithms that are capable of
satisfying these specifications triggered interest in revisiting the family of optimization algorithms
commonly known as decomposition schemes or operator splitting methods. These algorithms have
proven to be promising candidates thanks to two characteristics: Computationally low per-iteration
cost along with small memory footprint for time-critical (control) applications that run on limited
resources, and their capacity to deal with problems that need to be solved in a distributed way due
to size, physical limitations or privacy requirements.

The speed requirement has triggered considerable interest in the control community, and as
a result many efficient high-speed solvers have been developed for both linear and nonlinear con-
trol, based on either first-order methods (FiOrdOs [Ull11], QPgen [GB],[GB15], DuQuad [NP15]),
interior point (IP) methods (FORCES [DZZMJ12], CVXGEN [MB12]) and active set methods
(QPOASES [FBD08]). The application of decomposition methods in control problems started mak-

2 Chapter 1. Introduction

ing its appearance more recently [OSB13], [GTSJ15], [GB], [GB15], [PB14b], and has demonstrated
promising performance outcomes. Moreover, the ability of the latter methods to break the problem
into simpler subproblems implies that there might be more to benefit from than only computational
savings. Knowing that linear MPC is only an approximation to an infinite-dimensional constrained
optimal control problem, one question that naturally arises is whether decomposition can be useful
in helping to tackle the original problem while staying on par with MPC solvers in terms of speed
and efficiency. The practical advantages of solving the original problem instead of the approxima-
tion are not negligible either since the optimal control law comes with stability guarantees and for
a larger set of initial states. The resulting scheme could thus be a competitor to linear MPC.

The low per-iteration cost that motivates the use of operator splitting methods in embedded
MPC platforms is yet another reason that these algorithms are preferred for large-scale applica-
tions. On the downside, however, these methods suffer from sublinear convergence rates, achieving
initially quick progress towards some optimal point that subsequently levels off. Several ways to
remedy this behavior have been proposed, including alternative metric selections [CV14; RL15;
GB; GB15], relaxation strategies and inertial acceleration [AA01]. When it comes to large-scale
machine learning-related applications, however, the inherent parallelization potential of operator
splitting schemes can result in significant computational speedups, compensating for the often poor
convergence rates. With that in mind, a considerable amount of research has been produced in
asynchronous implementations, i.e., in problems when, e.g., the decision vector is stored in the
shared memory space of a multicore computer and can be accessed and altered by the cores in an
intermittent manner [LW15; PXYY16]. For example, a fitting problem might be so large that the
features are assigned to different cores. Each core trains a block of features using a local model, and
the blocks are updated by the cores in a continuous and asynchronous way. A reasonable thought
is, therefore, to combine acceleration strategies which improve the theoretical convergence rate with
asynchronous implementations and study the performance of the resulting schemes. The develop-
ment of such schemes need not necessarily be beneficial only for multicore architectures, but rather
for any setting that constitutes an inhomogeneous mixture of agents, the computations of which
do not occur at a common rate.

Sometimes the need for solving a problem in a distributed manner does not stem from speedup
requirements or size restrictions, but rather from physical limitations or privacy requirements. Take,
for example, a population of physical agents that operate under a global coordinator in order to
collaboratively solve a problem. In a convex setting, the local subproblems that need to be solved
are often cast as proximal minimization problems, a term used to describe optimization problems
that are regularized by the addition of a properly scaled quadratic term in their objective [PB14a].
The agents’ data must remain private and not be shared with the coordinator, thus communication
between the two parties looks unavoidable. However, the special structure of proximal minimization
problems allows the coordinator to gradually construct a model of the agent, which is iteratively
refined every time that a communication round takes place. This observation has several implica-
tions and can be used in different ways. One possible use is communication reduction in multi-agent
setups when communication is costly. At the same time, such a communication protocol can raise
privacy issues since the coordinator is able to gradually learn the value functions of the network
agents. Studying such scenaria can, therefore, be valuable.

1.1 Outline and Contribution 3

1.1 Outline and Contribution

This dissertation is organized into five main chapters. Chapter 2 introduces some preliminary ma-
terial that is necessary for the main chapters of the thesis. We start by giving some basic definitions
from convex optimization and proceed with a presentation of the proximal operator, its relation to
several operator splitting algorithms and its interpretation as an envelope function. We also briefly
discuss the convergence properties of first-order methods and existing techniques for accelerating
them. We subsequently give an introduction to monotone operators and represent the mentioned
algorithms in this framework, i.e., as fixed-point iterations. The next section gives a short intro-
duction to the basics of linear MPC, while the chapter concludes with a mention to electrical
distribution grids and the services that can be provided by aggregations of smart buildings, which
is the demonstration platform for the methods developed in this thesis.

In Chapter 3 we propose a method that solves the infinite-horizon constrained LQR problem
using an accelerated version of the proximal gradient method. We prove that the method converges
to the optimal infinite-horizon sequence and we derive convergence rates for the function values
and the iterates. To the best of our knowledge, the proposed scheme is the least computationally
intensive and the most scalable of the existing ones. Moreover, an exhaustive numerical analysis
demonstrates the good convergence properties of the algorithm when warm-started in order to
solve a sequence of optimal control problems, and that it is comparable to (and often faster than)
corresponding MPC implementations.

The remaining parts of the thesis depart from centralized embedded control and focus on dis-
tributed optimization in multi-agent environments in the presence of a global coordinator. The
agents are represented as controllable loads, namely linear models of controlled commercial build-
ings and battery energy storage systems. Two cases are considered. In Chapter 4 we propose an
asynchronous and accelerated optimization splitting scheme that solves a cooperative tracking prob-
lem using the mix of agents. Contrary to the majority of asynchronous optimization algorithms,
the proposed scheme does not assume any probability distribution for the activation of the agents.
We prove linear convergence of the algorithm under some structural assumptions on the involved
functions.

In Chapter 5 we reverse the trade-off and favor computation over communication. Making use of
fundamental properties from convex analysis we show that an optimizer of an instance of a proximal
minimization problem can be located inside a convex set that can be explicitly generated as the
intersection of ellipsoids. The agents solve local proximal minimization problems. As a result of the
analysis, we propose a communication protocol where the coordinator constructs and maintains one
set per agent, so as to locate its solution without communicating. We match the protocol to several
distributed optimization algorithms and demonstrate its capability in terms of communication
reduction in several examples.

Finally, we conclude the dissertation in Chapter 6 by discussing some possible extensions.

1.2 Publications

The material for Chapters 2, 3, 4 and 5 was taken from a series of papers. More specifically, we
have the following:

4 Chapter 1. Introduction

Parts of Chapter 2 are taken from the following publication:

• G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones, “Operator splitting methods
in control”, Foundations and Trends R© in Systems and Control, vol. 3, no. 3, pp. 249–362,
2016. [SSSPJ16]

Manuscript available at https://infoscience.epfl.ch/record/225464

Chapter 3 is based on the following two publications:

• G. Stathopoulos, M. Korda, and C. N. Jones, “Solving the infinite-horizon constrained LQR
problem using splitting techniques”, in 19th IFAC World Congress, 2014. [SKJ14]

Manuscript available at https://infoscience.epfl.ch/record/252916?&ln=en

• G. Stathopoulos, M. Korda, and C. N. Jones, “Solving the Infinite-Horizon Constrained LQR
Problem using Accelerated Dual Proximal Methods”, IEEE Transactions on Automatic Con-
trol, vol. 62, no. 4, pp. 1752–1767, 2017. [SKJ17]

Manuscript available at https://infoscience.epfl.ch/record/225463?ln=en

C++ code is publicly available on https://github.com/stathopog/InfHorCLQR

Chapter 4 is taken from the following submission:

• G. Stathopoulos and C. N. Jones, “An Inertial Parallel and Asynchronous Forward-Backward
Iteration for Distributed Convex Optimization”, Submitted to Journal of Optimization Theory
and Applications, 2018. [SJ18a]

Manuscript available at https://arxiv.org/abs/1706.00088

A Julia notebook is available on https://github.com/stathopog/AsyncInertialFBS

Chapter 5 is based on the following two manuscripts:

• G. Stathopoulos and C. N. Jones, “A coordinator-driven communication reduction scheme
for distributed optimization using the projected gradient method”, in Proceedings of the 17th
IEEE European Control Conference, ECC 2018, Limassol, Cyprus, 2018. [SJ18c]

Manuscript available at https://infoscience.epfl.ch/record/253216?ln=en

• G. Stathopoulos and C. N. Jones, “Communication reduction in distributed optimization via
estimation of the proximal operator”, Submitted to IEEE Transactions on Control of Network
Systems, 2018. [SJ18b]

Manuscript available at https://arxiv.org/abs/1803.07143

Published work related to the topics of this thesis but not discussed or only cited is:

• G. Stathopoulos, A. Szucs, Y. Pu, and C. N. Jones, “Splitting methods in control”, in Pro-
ceedings of the 13th IEEE European Control Conference, ECC 2014, Strasbourg, France, 2014,
pp. 2478 –2483. [SSPJ14]

1.2 Publications 5

Manuscript available at https://infoscience.epfl.ch/record/201988?ln=en

• T. T. Gorecki, A. Bitlislioglu, G. Stathopoulos, and C. N. Jones, “Guaranteeing input tracking
for constrained systems: theory and application to demand response”, in American Control
Conference (ACC)., 2015, pp. 232–237. [GBSJ15]

Manuscript available at https://infoscience.epfl.ch/record/201865?ln=en

• Y. Liu, J. H. Hours, G. Stathopoulos, and C. N. Jones, “Real-time distributed algorithms for
nonconvex optimal power flow”, in 2017 American Control Conference (ACC), 2017, pp. 3380–
3385. [LHSJ17]

Manuscript available at https://infoscience.epfl.ch/record/225467?ln=en

• L. Ferranti, G. Stathopoulos, T. Keviczky, and C. N. Jones, “Constrained LQR Using On-
line Decomposition Techniques ”, in Decision and Control (CDC), 2016 IEEE 55th Annual
Conference on, 2016. [FSKJ16]

Manuscript available at https://arxiv.org/pdf/1609.05799.pdf

• H. Ferreau, S. Almèr, R. Verschueren, M. Diehl, D. Frick, A. Domahidi, G. S. J.L. Jerez,
and C. Jones, “Embedded Optimization Methods for Industrial Automatic Control ”, IFAC-
PapersOnLine, vol. 50, pp. 13 194–13 209, 1 2017. [FAVDFDJJJ17]

Manuscript available at https://www.sciencedirect.com/science/article/pii/

S2405896317325764

Chapter 2

Preliminaries

Notation

We follow the notation of classical optimization textbooks like [BV04] and [Ber15].
We use R to denote the set of real numbers and N to denote the set of natural numbers. The set

of nonnegative real numbers is denoted by R+ and the set of positive real numbers by R++. The
set of column vectors with length n is denoted by R

n, while the set of real-valued m× n matrices
by R

m×n. We use parentheses to construct column vectors from scalar or vector elements, e.g., if
a ∈ R

n, b ∈ R
m, then

(a, b) = [a� b�]� ∈ R
n+m .

The inner product between two vectors (or infinite dimensional sequences) is denoted by 〈·, ·〉.
We use the inequality symbols � and � to denote positive semidefiniteness and positive defi-

niteness, respectively, of a symmetric real matrix. For example, for Q ∈ R
n×n it holds that Q � 0

if and only if x�Qx ≥ 0 for any nonzero x ∈ R
n. We denote by I the identity matrix of proper

dimensions that will be clear from the context. We use the regular inequality symbols ≤,≥, <,>
between vectors to denote componentwise inequality.

For a function f : Rn
→ R ∪ {+∞}, we denote the effective domain of f by dom(f), where

dom(f) = {x ∈ R
n | f(x) < +∞} ,

and its epigraph by epi(f). The epigraph is the subset of Rn+1 given by

epi(f) = {(x, s) | x ∈ R
n, s ∈ R, f(x) ≤ s} .

The subdifferential of f at a point x is denoted by ∂f(x), while ∇f(x) ∈ R
n denotes the gradient

of f at x, provided that f is differentiable at x. The family of functions f : Rn
→ R ∪ {+∞} that
are closed proper and convex (see Section 2.1 for the definitions) are denoted by f ∈ Γ0(R

n).
A polyhedron is an intersection of a finite number of closed halfspaces in R

n, and a polytope
is a bounded polyhedron. The expected value of a random variable X is denoted by E[X], the
conditional expectation of X given Y by E[X | Y], while the probability that X = x by P[X = x].

Finally, we typically use the asterisk symbol ∗ to denote optimality (optimal value of a function,
optimizer vector or set of optimizers), while we use the star symbol � to denote the Fenchel conjugate

8 Chapter 2. Preliminaries

of a convex function (see Section 2.1). In addition, superscripts k are used to denote algorithmic
iterations in all chapters except for Chapter 4, where the iterations are denoted by a subscript.

2.1 Convex Optimization

In this section we summarize some results from convex analysis that are essential for the compre-
hension of this thesis.

2.1.1 Function properties

Definition 1 (Convexity). Let C be a convex subset of Rn. The function f : C
→ R is convex if

f(θz + (1− θ)x) ≤ θf(z) + (1− θ)f(x), ∀z, x ∈ C, ∀θ ∈ [0, 1] .

Definition 2 (Strong Convexity). We say that a differentiable function f is strongly convex if
there exists σ > 0 such that

f(z) ≥ f(x) + 〈∇f(x), z − x〉+ σ

2
‖z − x‖2, ∀z, x ∈ C .

The constant σ is referred to as the stong convexity constant (or modulus).

Remark 1. Although differentiability is not necessary for strong convexity to hold, whenever we
consider a strongly convex function it will also be differentiable in the context of this work. Therefore
the above definition is functional for our purposes.

Definition 3 (Properness). The function f : Z
→ [−∞,+∞], for Z ⊂ R
n, is proper if f(z) <

+∞ for at least one z ∈ Z and f(z) > −∞ for all z ∈ Z.

Definition 4 (Closedness). The function f : Z
→ [−∞,+∞] is closed if dom(f) is closed and
epi(f) is closed.

Definition 5 (Lipschitz continuous gradient). We say that a differentiable function f : Rn
→
R has Lipschitz continuous gradient with constant L if

‖∇f(z)−∇f(x)‖ ≤ L‖z − x‖, ∀z, x ∈ R
n .

We denote hereafter the family of functions f : Rn
→ R∪{+∞} that are closed proper and convex
by f ∈ Γ0(R

n).

2.1.2 Fenchel Duality

Consider the problem
minimize f(z) + g(Az) ,

2.1 Convex Optimization 9

with variable z ∈ R
n, where A ∈ R

m×n and f ∈ Γ0(R
n), g ∈ Γ0(R

m). The problem can be written
in the equivalent constrained form

minimize f(z) + g(x)
subject to Az = x ,

(2.1)

with variables z ∈ R
n and x ∈ R

m. By introducing the dual variables λ ∈ R
m, we can formulate

the Lagrangian function
L(z, x;λ) := f(z) + g(x) + 〈λ,Az − x〉 , (2.2)

and, subsequently, the dual function

q(λ) := inf
z∈Rn,x∈Rm

{f(z) + g(x) + 〈λ,Az − x〉}

= inf
z∈Rn

{f(z) + 〈λ,Az〉}+ inf
x∈Rm

{g(x)− 〈λ, x〉} .

We define the (Fenchel) conjugate of g as

g�(λ) := sup
x∈Rm

{〈λ, x〉 − g(x)} = − inf
x∈Rm

{g(x)− 〈λ, x〉} , (2.3)

where g : Rm
→ R ∪ {−∞,+∞}. Consequently, the minimization (2.1) can be written as

minimize f�(−A�λ) + g�(λ) , (2.4)

with variable λ ∈ R
m.

Existence of primal and dual optimal solutions in the Fenchel duality framework as well as
strong duality results are provided in several sources (see, e.g., , [Roc70]). They are summarized
in [Ber15, Proposition 1.2.1] and, for our cases of interest, we will assume that they all hold.

We subsequently state below a fundamental theorem that stems from the Fenchel duality frame-
work.

Theorem 1 (Conjugate Subgradient Theorem). Let f ∈ Γ0(R
n). The following relation

holds:
u ∈ ∂f(z), for some z ∈ R

n, ⇔ z ∈ ∂f�(u) .

2.1.3 ε-subgradient

Definition 6 (ε-subgradient). Given f ∈ Γ0(R
n) and a scalar ε > 0, we say that a vector g is

an ε-subgradient of f at x ∈ dom(f) if

f(z) ≥ f(x) + 〈g, z − x〉 − ε, ∀z ∈ R
n .

The ε-subdifferential is the set of all ε-subgradients of f at x, i.e.,

∂εf(x) := {g | f(z) ≥ f(x) + 〈g, z − x〉 − ε, ∀z ∈ R
n} .

10 Chapter 2. Preliminaries

It holds that
∂ε1f(x) ⊂ ∂ε2f(x) 0 < ε1 < ε2 ,

and that
lim
ε→0

∩∂εf(x) = ∂f(x) .

2.2 Proximal Splitting Methods

For f ∈ Γ0(R
n), its proximal operator prox f : Rn
→ R

n is defined as

prox γf (x) := argmin
z∈Rn

{
f(z) +

1

2γ
‖z − x‖2

}
, (2.5)

for some γ > 0. The proximal operator firstly appeared in the seminal work of Moreau [Mor62;
Mor65]. The operator is evaluated at a given point x and looks for a minimizer that makes a
compromise between the minimizer of the function f and the point x.

The proximal operator is the source of numerous iterative approximation methods that find a
minimizer of the convex function f . The main idea is that the generated sequence {zk} is obtained
by solving at each k an approximate problem,

zk+1 ∈ argmin
z∈Rn

F k(z) ,

where F k is a function that approximates f [Ber15, Chapter 5]. More details about the properties
of the operator can be found in the recent survey [PB14a]. The results discussed in this section
have appeared in [SSSPJ16] and [Ber15].

2.2.1 Proximal Point Algorithm (PPA)

PPA is the most straightforward application of the proximal operator to the minimization of the
function f described above. It is given by the iteration

zk+1 := prox γkf (z
k) , (2.6)

i.e., it minimizes f while not moving too far away from the previous minimizer. The distance to
zk is controlled by the sequence {γk}. The algorithm converges for γk > 0 and

∑∞
k=1 γ

k = ∞
while satisfying a cost function decrease property at each iterate, even if the set of optimizers Z∗ is
empty or f∗ = −∞ [Ber15, Chapter 5]. In addition, the rate of convergence varies from sublinear to
superlinear1, depending on the curvature of the function f close to Z∗ and the choice of γk [Ber15,
Proposition 5.1.4]. The aforementioned properties render PPA a robust algorithm that works under
mild assumptions.

The method was introduced in [Mar70; Mar72], while a more general form than the one presented
here appeared in [Roc76]. Convergence properties have been further analyzed in [G9̈1]. On the
downside, the PPA is only useful when the proximal operator of f is easy to compute.

1The different types of convergence are discussed in Section 2.2.6.

2.2 Proximal Splitting Methods 11

2.2.2 Moreau Envelope

An interesting interpretation of the proximal minimization problem (2.5) can be obtained by con-
sidering the value function

fγ(x) = min
z

{
f(z) +

1

2γ
‖z − x‖2

}
. (2.7)

Function (2.7) is also known as the Moreau envelope of f . In general, fγ(x) approximates f from
below and, the smaller the parameter γ, the tighter the approximation of f by the envelope.

When f is a closed proper convex function, the Moreau envelope is convex and differentiable,
with Lipschitz continuous gradient with constant 1/γ. Moreover, the set of minima of f and of fγ co-
incide. A discussion about the envelope and its properties can be found in [Ber15, Section 5.1], while
the Moreau envelope of a scalar linear function is depicted in Figure 2.2. It is also shown in [Ber15,
Proposition 5.1.7] that the unique solution to the proximal minimization zγ(x) = proxγf (x) can be
written as

zγ(x) = x− γ∇fγ(x) , (2.8)

i.e., it is the point at which the gradient iteration of fγ, evaluated at x, lands.

f (x)

f γ(x)

Figure 2.1: The Moreau envelope of a linear function constrained in [-3,1]. The proximal evaluations at
several randomly generated points gradually form the envelope. Note that the minimum values coincide.

2.2.3 Proximal Gradient Method (PGM)

Consider the case that we want to minimize f(z) + g(z), where f ∈ Γ0(R
n) is differentiable with

Lipschitz continuous gradient L > 0 and g ∈ Γ0(R
n). The proximal gradient method is the iteration

zk+1 := prox γkg

(
zk − γk∇f(zk)

)
, (2.9)

where γk > 0 is a stepsize, either constant or determined by line search methods.

12 Chapter 2. Preliminaries

It is interesting to rewrite the method as

zk+1 = argmin
z∈Rn

{
g(z) +

1

2γk
‖z − (zk − γk∇f(zk))‖2

}

= argmin
z∈Rn

{
g(z) + f(zk) + 〈∇f(zk), z − zk〉+ 1

2γk
‖z − zk‖2

}
.

Consequently, the method minimizes the sum of the (possibly) nonsmooth function g and a quadratic
approximation of the continuously differentiable function f centered at the previously computed
optimizer zk. If the stepsize is chosen to be fixed in the range (0, 1/L], then the quadratic model
upper bounds f around zk and the method can be shown to converge at a rate O(1/k) while
satisfying a cost function decrease property similar to that of PPA [Ber15, Proposition 6.6.3]. In
practice the method converges for any γ ∈ (0, 2/L), but the quadratic model does not necessarily
act as an upper bound for stepsizes that are larger than 1/L.

2.2.4 Dual Proximal Gradient Method and Alternating Minimization Algo-
rithm

PGM can be applied to solve the dual problem (2.4) when the composite minimization problem
involves more complicated arguments, as described in (2.1). Similar to (2.9), the dual proximal
gradient iteration now takes the form

λk+1 := prox γkg�

(
λk − γkA∇f�(A�λk)

)
. (2.10)

To be able to use iteration (2.10) to solve (2.1), it is necessary to assume that the function f�(A�λ)
is differentiable. The gradient ∇f�(A�λk) can be computed by making use of Theorem 1 and is
given by

∇f�(A�λk) = argmax
z∈Rn

{
〈z,−A�λk〉 − f(z)

}
= argmin

z∈Rn

{
f(z) + 〈A�λk, z〉

}
.

Differentiability of f�(A�λ) can be ensured if the minimum of the above problem is uniquely
attained for all λ ∈ R

m. For this to happen we need f(z) to be strongly convex with constant
σf > 0.

We have, therefore, the Dual Proximal Gradient Method (DPGM) algorithm for a fixed stepsize
γk = γ:

2.2 Proximal Splitting Methods 13

Algorithm 1 Dual Proximal Gradient Method

Require: Initialize γ <
2σf

‖Lf‖2 .
loop

1: zk+1 = argmin
z∈Rn

{
f(z) + 〈A�λk, z〉

}
2: λk+1 = proxγg�

(
λk + γAzk+1

)
end loop

We will subsequently see the connection of DPGM with the Alternating Minimization Algorithm
(AMA) of Tseng [Tse91]. In order to proceed we state below the Moreau identity, a useful lemma
that associates a convex function with its conjugate and allows the computation of the proximal
operator of a conjugate function when one knows the proximal operator of the original one.

Lemma 1. Let f ∈ Γ0(R
n). Then for any z ∈ R

n

prox γf�(z) + γ prox f/γ(z/γ) = z, ∀ 0 < γ < +∞ .

We denote μk = λk + γAzk+1 and Lemma 1 suggests that

λk+1 = proxγg�

(
μk

)
= μk − γ prox g/γ(μ

k/γ) .

By introducing the variable yk+1 = prox g/γ(μ
k/γ) = prox g/γ(Azk+1 + λk/γ), we conclude

with the AMA:

Algorithm 2 Alternating Minimization Algorithm (AMA)

Require: Initialize λ0 ∈ R
m, and 0 < γ <

2σf

‖Lf‖2
loop

1: zk+1 = argmin
z∈Rn

{
f(z) + 〈A�λk, z〉

}
2: yk+1 = prox 1

γ
g

(
Azk+1 + λk/γ

)
3: λk+1 = λk + γ(Azk+1 − yk+1)

end loop

2.2.5 Douglas-Rachford Splitting and Alternating Direction Method of Multi-
pliers

Let us consider again the dual problem (2.4) and denote h(λ) := f�(A�λ). This time we make no
extra assumptions on f , i.e., f ∈ Γ0(R

n), g ∈ Γ0(R
m).

14 Chapter 2. Preliminaries

The Douglas-Rachford Splitting (DRS) scheme is constituted of the three iterations:

vk+1 = prox γh

(
λk − wk

)
(2.11)

λk+1 = prox γg�

(
vk+1 + wk

)
(2.12)

wk+1 = wk + vk+1 − λk+1 . (2.13)

Note that the function h need not be differentiable in this case. It is shown in, e.g., the lecture
notes [Van10], that ADMM can be derived from DRS. Since the derivation is not straightforward,
we give it in Appendix A for the sake of completeness. We state below the ADMM iterations.

Algorithm 3 Alternating Direction Method of Multipliers (ADMM)
Require: Initialize y0 ∈ R

m, λ0 ∈ R
m, and γ > 0

loop
1: zk+1 = argmin

z∈Rn

{
f(z) + 〈λk, Az〉+ (γ/2)‖Az − yk‖2

}
2: yk+1 = prox 1

γ
g

(
Azk+1 + λk/γ

)
3: λk+1 = λk + γ(Azk+1 − yk+1)

end loop

Note that the method has no restrictions on the parameter γ. It is often chosen in practical
applications as the most reliable among the algorithms described.

2.2.6 Convergence Rates and Inertial Acceleration

The decomposition methods that are discussed above make use of first-order information about
the functions involved in the optimization problems, namely they compute the iterates based on
gradients and subgradients. Slow convergence is usually the case with first-order methods, and the
algorithms presented above are no exception to this rule. In this aspect, the algorithms presented
here cannot achieve a rate better than the existing worst case lower complexity bounds for first-
order methods [NY83], [Nes04b]2

In the chapters that follow we frequently refer to convergence in function values and in sequence
values. By saying that ‘we have O(1/kq), q ∈ (0, 2] global rate of convergence in function values
for some function f ’, we mean that

lim
k→+∞

kq(f(zk)− p∗) ≤ M ,

where p∗ is the optimal value of f and M > 0. Accordingly, ‘global O(1/kq) convergence rate of a
sequence {zk}’ means that

lim
k→+∞

kq(‖zk − z∗‖) ≤ M ,

2Nesterov’s results point to the existence of a problem for which the algorithms cannot converge at a rate faster
than the one presented in the aforementioned works. It is often (and hopefully) the case that for specific problem
instances the algorithms behave much better than the lower complexity bounds.

2.2 Proximal Splitting Methods 15

where z∗ is an optimizer and M > 0.
Accordingly, we refer to convergence rate of o(1/kq) for a sequence {zk} (or in the function

values of f) when

lim
k→+∞

kq(‖zk − z∗‖) = 0, lim
k→+∞

kq(f(zk)− p∗) = 0 ,

respectively.
Intuitively, big-O says that ‘the sequence in the parenthesis (function values or iterates values)

can decay no slower than the sequence {1/kq}’, while the little-o convergence rate means that ‘the
sequence in the parenthesis will decay strictly faster than {1/kq}’, hence is a stronger statement.

First order methods typically come with sublinear convergence rates, both in function values
and in terms of the iterates. These rates are given from q ∈ (0, 2] as presented in the previous
section, depending on the structure of the problem at hand. Very roughly speaking, the following
hold:

1. When no structural assumptions on the functions are made, sublinear convergence rates typ-
ically amount to a O(1/k) global rate in function values.

2. Under the assumption of differentiability, several acceleration techniques can be applied, re-
sulting in a O(1/k2) global rate in function values.

3. The convergence rate of the sequences of variables can usually be recovered as O(1/
√
kq) from

the function value’s convergence rate.

4. Under the assumption of differentiability and strong convexity, linear convergence rates of the
form O(ωk), ω ∈ (0, 1) can be recovered.

Until very recently, almost all the convergence rate results regarding splitting methods, when no
extra structural properties hold, were of big-O complexity. This landscape changed significantly
with the works [DY16; Dav15b], where a faster rate of little-o complexity is proven to hold for the
majority of the known splitting schemes.

More specifically, ADMM converges at a global rate of o(1/k) if function values [Dav15b] and at
O(1/

√
k) in the sequences of primal and dual variables, for an arbitrarily large parameter γ [ST14].

Since AMA (Algorithm 2) is equivalent to PGM applied to the dual problem, an O(1/k) convergence
rate in the dual function values is proven in [BT09, Theorem 3.1], enhanced to o(1/k) in [Dav15b].

By making further assumptions on the function’s structure, faster convergence rates can be
recovered. In his work [Pol64], Polyak proposed a way to speed up the gradient method, namely to
use the modified update

ẑk = zk + βk(zk − zk−1)

zk+1 = ẑk − γk∇f(zk) ,

on the differentiable convex function f , with βk ∈ [0, 1). This method is commonly known as
the heavy ball method and has guaranteed convergence under a Lipschitz continuity assumption
on ∇f . In this way the next iterate depends on the last gradient update and the previous step
zk − zk−1, which is called a momentum sequence. Polyak’s motivation came from the observation

16 Chapter 2. Preliminaries

that the gradient descent iteration can be seen as a discretization of the ODE z̈ = −∇f(z), the
iterates of which tend to ‘zig-zag’ in directions that do not point straight towards the minimizer.
Adding ‘inertia’ or ‘damping’ to the iteration should help to keep the method on track towards the
solution, thus he proposed to take the ODE γz̈ + ż = −∇f(z), γ > 0, leading to his heavy ball
method [Lor15]. After discretization, the new iterate is udpated as a linear combination of the two
previous iterates. This seemingly small change greatly improves the performance of the original
gradient scheme.3

The method has been significantly improved in order to tackle more general problems, leading
to the appearance of projected, proximal [OBP15] as well as incremental [GOP17] variants. In
addition, its convergence rate has been studied and analyzed. More specifically, the method can
be shown to converge linearly [Pol87] when the function f is both differentiable with Lipschitz
continuous gradient and strongly convex.

In his seminal paper [Nes83], Nesterov modified the heavy ball method by simply evaluating the
gradient at the extrapolated point ẑk instead of zk. In addition, he proposed a special formula for
computing the relaxation sequence {βk}, resulting in an optimal convergence rate for the scheme.
The simple update formula is:

βk =

(
1 +

√
4(βk−1)2 + 1

)
/2

ẑk = zk +
βk−1 − 1

βk
(zk − zk−1) (2.14)

zk+1 = ẑk − γk∇f(ẑk) ,

with β0 = 1. Nesterov’s scheme admits a similar ODE interpretation to that of Polyak’s [SBC14].
Subsequently, Güler extended Nesterov’s results for the PPA iteration (2.6) [Gül92], while Beck
and Teboulle extended it for the PGM [BT09]. Tseng [Tse08] unified the analysis of fast PGM
and proposed a condition for the acceleration sequence under which convergence is ensured. More
specifically, the sequence {βk} needs to satisfy

1− βk+1

(βk+1)2
≤ 1

(βk)2
.

Application of such schemes results in an O(1/k2) global rate of convergence in function values;
a rate that is optimal for first-order methods involving a differentiable and a nonsmooth function.
Convergence in terms of the sequence was not proven until recently [CD15], and the derivation of
a rate is still open (unless further assumptions on the structure of the function are made). Apart
from the theoretical results, the scheme has been observed to practically accelerate convergence
in numerous problem instances. In addition, the extra computational cost is insignificant. Finally,
a better convergence rate of order o(1/k2) for variants of Nesterov’s method has been proven
in [AP15].

3The blog [Goh17] provides a nice graphical and intuitive explanation of the mechanism behind the momentum
sequence.

2.3 Monotone Operators 17

2.3 Monotone Operators

We discussed in Section 2.2 how the proximal operator can help us generate a variety of iterative
approximation schemes that find a minimizer of a (sum of) convex function(s). Except for the use
of the proximal operator, these schemes are seemingly disparate. We will see in this section that
the schemes presented above (and many more) can be put under a common framework if viewed
through the lens of monotone operators. Casting the iterative schemes we have seen above in this
framework simplifies signficantly the convergence analysis when it comes to devising new schemes,
as will see in Chapter 4 of this work. The rough idea behind this modeling approach is that the
problem of finding a minimizer of a convex program can be cast as an equivalent problem, namely
that of finding a zero of a monotone operator. This problem is in turn transformed into finding a
fixed point of a function related to the monotone operator. Finally, the fixed point is found by the
fixed-point iteration, yielding an algorithm for the original problem.

Our discussion follows the style of [RB16], which gives a comprehensive, yet simple analysis on
the topic of monotone operators. A more in-depth treatment can be found in the book [BC11]. We
choose to perform the analysis on a Hilbert space setting since (i) it is more general and encompasses
the Euclidean case and (ii) will be useful for the upcoming analysis in Chapter 4.

2.3.1 Basics on Monotone Operators

A relation or operator T in H is a subset of H × H, where H is a Hilbert space. We write u =
T (z) = Tz to denote the set {u | (z, u) ∈ T}. The relation T has Lipschitz constant L if for all
u ∈ T (z) and v ∈ T (x) it holds that ‖u − v‖ ≤ L‖z − x‖. If L < 1 we call T a contraction, while
if L ≤ 1, then T is called nonexpansive. A point z is a fixed point for T if z = Tz, denoted as
z ∈ fixT . This is equivalent to z ∈ zerS, i.e., 0 ∈ zerSz, where S = I − T and I is the identity
operator such that I = {(z, z) | z ∈ H}. The set of fixed points of a nonexpansive operator with full
domain (domT = H) is closed and convex. The operator is called averaged if T = (1 − θ)I + θG
with θ ∈ (0, 1), where G is a nonexpansive operator. It follows that T is nonexpansive and has
the same fixed points as G. Compositions of nonexpansive operators are nonexpansive, as well as
compositions of averaged operators result in averaged operators.

Monotonicity is another important property of a relation. T is monotone if 〈z−x, Tz−Tx〉 ≥ 0
for all z, x ∈ H. The relation is maximal monotone if there is no monotone operator that properly
contains it.

Two operators that play a crucial role in finding a zero of a relation are the resolvent of T , defined
as JT = (I +T)−1, and the reflection of T defined as RT = 2JT − I. The following properties hold:

• If T is monotone, then JT and RT are nonexpansive functions.

• If T is maximal monotone, then JT and RT have full domain H.

• T shares the same fixed points with JT and RT .

In convex optimization problems, we are interested in specific operators, the most important
of which is the subdifferential ∂f of a convex closed and proper function f : H
→ R ∪ {+∞}. If
f ∈ Γ0(H), then ∂f is maximal monotone.

18 Chapter 2. Preliminaries

The subdifferential is important because the solution to a convex optimization problem can
be cast as finding a zero of the subdifferential, i.e., 0 ∈ ∂f(z). This can be equivalently written
as z ∈ (I + ∂f)(z) ⇔ z ∈ (I + ∂f)−1(z) ⇔ z = J∂f (z). Hence the set of optimizers coincides
with the fixed points of the resolvent and the reflection of the subdifferential. These operators take
special forms in the framework of convex optimization. More specifically, the proximal operator
introduced in (2.5) is the resolvent of the subdifferential of f evaluated at x, i.e., prox γf (x) =
(I+γ∂f)−1(x) = argmin

z

{
f(z) + (1/(2γ))‖z − x‖2

}
, γ > 0. Accordingly, the reflection operator is

denoted as refl γf : H → H and is defined as refl γf = 2prox γf − I.
The algorithms discussed in Section 2.2 can be derived as fixed-point iterations of functions

associated to relevant monotone operators. The full derivations can be found in [RB16].

PPA Consider the function f ∈ Γ0(H) and the subdifferential operator A = ∂f . The proximal
operator is a function of A defined above as T = JγA = prox γf . The latter gives us access to the
fixed-point iteration zk+1 = Tzk, which is the PPA for γk = γ > 0, and converges to a fixed point
z∗.

PGM Consider the problem of solving the inclusion 0 ∈ (A+B)(z) and assume that B is single-
valued. By manipulating slightly the inclusion, one can derive the fixed-point iteration zk+1 = Tzk,
where T = TATB and TA = JγA, TB = I − γB for γ lying inside a specified range of values. This
scheme is known as the forward-backward splitting (FBS) iteration [Pas77].

Let us now consider the minimization of f(z) + g(z), f ∈ Γ0(R
n) differentiable with Lipschitz

continuous gradient Lf and g ∈ Γ0(R
n). The problem can be cast as the inclusion 0 ∈ (A+B)(z),

where A = ∂g and B = ∇f . Applying the FBS, the resulting iteration is the PGM as given in (2.9)
for γk = γ ∈ (0, 2/Lf), and converges to a fixed point z∗.

DRS Consider the same problem of minimizing f(z) + g(z), with f ∈ Γ0(R
n) and g ∈ Γ0(R

n).
Casting the problem as the inclusion 0 ∈ (A+B)(z), where A = ∂g and B = ∇f , we can introduce
the operator T = 1

2(TATB + I) by introducing the functions TA = RγA = refl γf and TB = RγB =
refl γg. The resulting iteration is the DRS algorithm as given in equations (2.11),(2.12),(2.13) for
γk = γ > 0, and converges to a fixed point z∗.

As previously mentioned, viewing the iterative schemes via the lens of monotone operators
allows for some generalizations. Along these lines, we introduce the following definitions:

Definition 7 (Cocoercivity.). The operator A is δ-cocoercive with δ > 0 if

〈x− y,Ax−Ay〉 ≥ δ‖Ax−Ay‖2, ∀x, y ∈ H.

Definition 8 ((Quasi-)Strong monotonicity.). The operator A is μ-strongly monotone with
μ > 0 if

〈x− y,Ax−Ay〉 ≥ μ‖x− y‖2, ∀x, y ∈ H.

If the inequality holds only for y ∈ zerA, i.e.,

〈x− y,Ax〉 ≥ μ‖x− y‖2, ∀x ∈ H,

2.4 Model Predictive Control 19

then the operator is quasi-μ-strongly monotone.

For a differentiable convex function f , cocoercivity of A = ∇f implies Lipschitz continuity of
∇f with constant δ. Similarly, strong monotonicity for A = ∂f implies strong convexity of f with
constant μ.

2.3.2 The Krasnosel’skĭi-Mann Iteration

Instead of computing the next iterate zk+1 by applying the operator T to zk, the fixed-point
iterations discussed above can be relaxed by considering a point on the line segment that connects
zk and Tzk. The Krasnosel’skĭi-Mann (KM) iteration is probably the most popular interpolated
fixed-point iteration and takes the form

zk+1 = zk + ηk(Tzk − zk) , (2.15)

where T : H
→ H is a nonexpansive operator and ηk ∈ [0, 1],
∑

k∈N ηk(1 − ηk) = +∞ is a
relaxation constant. The KM iteration converges to a solution if one exists [Kra55; Man53], [BC11,
Theorem 5.14].

Since the associated operators T of the three methods discussed in the previous section are
nonexpansive by construction (modulo a pertinent choice of the parameter γ for FBS), a KM
iteration results in convergent iterative schemes. More specifically we have that:

• PPA is a KM iteration with T = JγA that converges for ηk ∈ (0, 2) (the iteration can be
over-relaxed and convergence is maintained) [Ber15, Proposition 5.1.10].

• FBS is a KM iteration with T = JγA(I − γB) that converges for ηk ∈ [0, δ], where δ =
min{1, L/γ}+ 1/2, provided that B is L-cocoercive and γ ∈ (0, 2/L) [BC11, Theorem 25.8].

• DRS is a KM iteration with T = RγARγB and ηk = 1/2 that converges for any γ > 0.

2.4 Model Predictive Control

Throughout this work we consider linear discrete-time systems of the form

xi+1 = Aixi +Biui , (2.16)

where xi ∈ R
n is the state at the current time step, ui ∈ R

m is the current input, while the matrices
Ai ∈ R

n×n, Bi ∈ R
n×m are typically derived from either physical modeling or/and by employing

system identification algorithms. For the linear time-invariant (LTI) case we may simplify the
notation to

x+ = Ax+Bu ,

where the successor state is now denoted by x+. Note that here x ∈ R
n.

The results that appear in this section can be found in classical (model predictive) control texts
(see, e.g., [RM09]). We borrow here a few definitions and theorems essential for the comprehension
of this thesis from [Jon12] and [Dom13].

20 Chapter 2. Preliminaries

2.4.1 Invariance and Lyapunov Stability

If system (2.16) is controlled by the control law ui = κ(xi), the closed-loop system is given by

xi+1 = Axi +Bκ(xi) = f(xi) . (2.17)

Definition 9 (Positively invariant set). A set C ⊆ R
n is said to be a positively invariant set

for the autonomous system (2.17) if

xi ∈ C ⇒ xi+1 ∈ C, i ∈ N .

Definition 10 (Maximal positively invariant set). Consider a constraint set X for the states
of system (2.17). The set C∞ ⊂ X is a maximal invariant set with respect to X if 0 ∈ C∞, C∞ is
invariant and C∞ contains all invariant sets that contain the origin.

Definition 11 (K-class function). A real-valued function α : R+
→ R+ belongs to class K if it
is continuous, strictly increasing and α(0) = 0.

Definition 12 (Lyapunov function). Let C be a positively invariant set for system (2.17) con-
taining a neighborhood of the origin N in its interior and let α, α and β be K-class functions. A
nonnegative function V : Rn
→ R+ with V (0) = 0 is called a (asymptotic) Lyapunov function in C
if:

• V (xi) ≥ α(‖xi‖) ∀xi ∈ C

• V (xi) ≤ α(‖xi‖) ∀xi ∈ N

• V (f(xi))− V (xi) ≤ −β(‖xi‖) ∀xi ∈ C .

Theorem 2 (Global Lyapunov Stability). If a system admits a (asymptotic) Lyapunov func-
tion, then the equilibrium point at the origin is asymptotically stable.

2.4.2 Linear Quadratic Regulator

Consider the optimal control problem

minimize 1
2

∞∑
i=0

x�i Qxi + u�i Rui

subject to xi+1 = Axi +Bui, i ∈ N

x0 = xinit ,

(2.18)

with variables u = (u0, . . .), while Q = QT and Q ∈ R
n
+, R = RT and R ∈ R

n
++. Problem (2.18)

is referred to as the (Infinite Horizon) Linear Quadratic Regulator (LQR) problem, and it has a
closed form solution given by Kalman in [Kal60]. More specifically, the optimal control policy that
solves (2.18) has the form of a linear state feedback given by u = Kx, where

K = −(R+B�PB)−1B�PA (2.19)

2.4 Model Predictive Control 21

and P is the solution to the Discrete Algebraic Riccati Equation (DARE)

P = Q+A�PA−A�PB(R+B�PB)−1B�PA . (2.20)

The infinite horizon controller is stable, as the following theorem suggests.

Theorem 3 (Stability of the LQR controller). Assume that Q � 0, R � 0, (A,B) is sta-
bilizable and (Q,A) is detectable. There exists a unique positive semidefinite solution P to the
DARE (2.20) and the closed-loop system matrix A−B(R+B�PB)−1B�PA is stable.

2.4.3 Linear Model Predictive Control

A linear MPC problem is an optimal control problem of the form

V ∗(xinit) = min
u

1
2

T−1∑
i=0

l(xi, ui)

s.t. xi+1 = Axi +Bui, i = 1, . . . , T − 1
x0 = xinit
(xi, ui) ∈ X × U , i = 1, . . . , T − 1 .

(2.21)

The optimization is performed over the input variables u = (u0, . . . , uT−1) ∈ R
mT , while the sets X

and U are closed and convex. The stage cost function is strictly nonnegative, i.e., l : Rn×R
m
→ R++

and l(0, 0) = 0. The resulting controller is applied in a receding-horizon fashion, i.e., only the first
input u∗0(xinit) is applied to the system, and the resulting state x+ = Axinit+Bu∗0(xinit) is used as the
initial state x0 = x+ when problem (2.21) is resolved. We define the feasible set for problem (2.21),
as follows:

Definition 13 (Feasible set). The feasible set XT is defined as the set of initial states xinit ∈ R
n

for which the MPC problem (2.21) with horizon T is feasible, i.e.,

XT := {xinit | ∃(u0, . . . , uT−1) s.t. (xi, ui) ∈ X × U , i = 1, . . . , T} .

We desire two properties when it comes to deriving an optimization-based controller from (2.21):
Stability and recursive feasibility. The definition of the latter is given below.

Definition 14 (Recursive feasibility). The MPC problem (2.21) is called recursively feasible
if for all states residing in the feasible set described in Definition 13, constraint satisfaction is
guaranteed at every state along the closed-loop trajectory.

Ideally, we would like to solve (2.21) for an infinite horizon, since stability and recursive feasi-
bility are then guaranteed. This problem is rather challenging due to the infinite number of decision
variables involved. A way to approximate it is to choose a horizon T that is long enough so that no
constraints are active from the state xT onwards, and find a local controller that, starting from xT
will regulate the state sequence to the origin and whose infinite-horizon cost can be expressed in
closed form. However, choosing the right T a priori is not trivial. We employ, instead, a terminal
(positively invariant) constraint set Xf ⊆ X , such that xT ∈ Xf , to enforce recursive constraint

22 Chapter 2. Preliminaries

satisfaction and a terminal cost Vf to ‘fake’ the tail of the infinite-horizon problem. The full MPC
scheme with stability and recursive feasibility guarantees becomes:

V ∗(xinit) = min
u

1
2

T−1∑
i=0

l(xi, ui) + Vf (xT)

s.t. xi+1 = Axi +Bui, i = 1, . . . , T − 1
x0 = xinit
(xi, ui) ∈ X × U , i = 1, . . . , T − 1
xT ∈ Xf .

(2.22)

The terminal cost function is positive definite, i.e., Vf : Rn
→ R++. The terminal set Xf ⊆ X
is convex compact and contains the origin in its interior. The following result holds:

Theorem 4 (Stability and Recursive Feasibility for Linear MPC). The following assump-
tions hold true:

1. The stage cost l is a positive definite function.

2. The terminal set is invariant under the local control law κf (xi):

xi+1 = Axi +Bκf (xi) ∈ Xf ∀xi ∈ Xf .

All state and input constraints are satisfied in Xf :

Xf ⊆ X , κf (xi) ∈ U ∀xi ∈ Xf .

3. The terminal cost is a continuous Lyapunov function in the terminal set Xf :

Vf (xi+1)− Vf (xi) ≤ −l(xi, κf (xi)) ∀xi ∈ Xf .

Then the closed-loop system under the MPC control law u∗0(xinit) is stable and the system x+ =
Axinit +Bu∗0(xinit) is invariant in the feasible set XT .

Theorem 4 roughly states that the infinite horizon problem (2.21) (where T = ∞) can be approxi-
mated by forcing the final state to be in an invariant set for which there exists an invariance-inducing
controller. In addition, the infinite-horizon cost of the system operating under this controller should
be expressed in closed form. In other words, an approximate solution to problem (2.21) with T = ∞
can be acquired by properly choosing Vf ,Xf and κf and solving (2.22).

2.5 Distributed Ancillary Service Provision with Controllable
Buildings

We developed the distributed optimization algorithms of Chapters 4 and 5 of this thesis with a
specific setup in mind, a topology with a global node, usually called the coordinator and several
local nodes, the agents. The motivation behind this setting is drawn from modern electricity market
setups, where the provision of services flows bidirectionally, namely the loads can also participate in

2.5 Distributed Ancillary Service Provision with Controllable Buildings 23

relieving the grid in several situations. Loads that participate in such electricity markets are called
prosumer loads.

The growing interest in turning once passive loads into active prosumers, along with the intro-
duction of dispatchable energy storage elements in the grid, is motivated by a rapid and significant
increase of renewable production into the generation mix. Renewable energy sources are inherently
uncertain and volatile and they pose new challenges to the classic control paradigm of the power
grid, but they also raise new opportunities for alternative use of existing resources, development
of new technologies and novel market designs [EC10; Nurb; Nura]. At the same time, the intro-
duction of demand side management via large loads as, e.g., commercial buildings, is inherently
designed in a distributed fashion. The services are usually provided through aggregators of flexible
loads [Abr17] and several research works propose peer-to-peer implementations. In both cases, the
design calls for distributed (or decentralized) implementations.

(Commercial) buildings can be excellent controllable loads by manipulating their thermal flex-
ibility. Overcoming the obstacle of modeling can be challenging and often costly for real-world
implementations, however several modeling tools have been developed over the last years. A mag-
nitude of studies has shown both financial and non-financial benefits in offering ancillary services
with commercial buildings [SGMS16; FGQBLJ17; GFQJ17; VKMAC17a; VKMAC17b].

In the chapters of this thesis we are going to consider two problems with rather similar nature,
i.e., in both cases we have a population of buildings (and potentially an electric battery) trying to
track some signal transmitted by the network operator, while they simultaneously seek to minimize
some private cost while operating inside their feasible regions (in terms of comfort and actuation
constraints). We briefly present the two problems below.

System Operator (coordinator)

pcbi pcbi

pbess

e e

Figure 2.2: Sketch of a network of buildings with a battery energy storage system (agents) and a global
system operator (coordinator). The agents communicate their individual consumption vectors (pcbi , pbess)
and the coordinator uses them in order to form an incentive signal (e) that will be in turn communicated
to them.

24 Chapter 2. Preliminaries

Load sharing This is the problem of cooperative tracking of a reference signal from a population
of N controllable resources (agents). These problems typically arise in the context of microgrids,
where a mixture of energy generation, energy storage elements and loads are coupled together in
order to satisfy a predicted power demand profile, as is the case in day ahead electricity markets.
The sharing problem [BPCPE11, Section 7.2] takes the general form

minimize
T−1∑
t=0

(

N∑
i=1

zi(t)− r(t))2 +

N∑
i=1

fi(zi, ·) . (2.23)

The variable zi(t) refers to the total consumption of the ith agent at time instant t, where i =
1, . . . , N , and zi = (zi(0), . . . , zi(T −1)) ∈ R

T , z = (z1, . . . , zN) ∈ R
NT . The reference power profile

is denoted by r(t), while time spans from t = 0, . . . , T − 1, i.e., we have a T -timesteps ahead
prediction of the power profile. The first term, h(z) =

∑T−1
t=0 (

∑N
i=1 zi(t) − r(t))2, penalizes the

deviation of the total power contribution to the reference power profile. The individual components
fi(zi, ·) are local performance criteria coupled with implicit descriptions of convex sets, constructed
by the intersection of linear equations (agent dynamics) and constraints, details that are hidden
from the global node. Additional variables that are private to the agents might appear in the fi’s
(hence the dependence on other variables except for zi).

Dispatchable distribution feeder Another problem, first introduced in [SNCP16], is that of the
so-called dispatchability of distribution feeders where the main target is to achieve virtually perfect
dispatchability of a set of devices consisting of uncontrollable loads and distributed generation.
The idea comprises two stages, namely a day-ahead prediction of a dispatch plan and real-time
operation, broken further into a high-level and a faster low-level controller, both model-based. Our
interest is to solve the high-level MPC problem that takes the abstract form

minimize
N∑
i=1

fi(zi, ·)

subject to
N∑
i=1

zi = r .

(2.24)

The variable zi(t) refers to the total consumption as before, but in this case a hard dispatchability
constraint is enforced. In [FGNSPJ17], the adequacy of the involved agents to offer the reference r
is ensured by the addition of a sized grid-connected battery energy storage system in the mix.

In all simulations of the dissertation, the setups comprise small, medium and large office build-
ings, generated by the OpenBuild software [GQJ15]. The buildings are described as linear dynamical
systems, the input to which is the thermal heat (kW) that is entering or leaving each zone, while the
output is the temperature at each zone (◦C). The energy conversion systems (electrical to thermal)
are modeled as a static map, which is represented by a constant coefficient of performance (COP).
The buildings can participate in the ancillary service market by increasing or decreasing their con-
sumption with respect to some baseline power profile. An individual building seeks to contribute to
the tracking objective while respecting temperature as well as operational constraints. The exact

2.5 Distributed Ancillary Service Provision with Controllable Buildings 25

form of the functions that appear in (2.23) and (2.24) are to be specified in the corresponding
chapters.

An instance of a local optimization problem for building i is

f cb
i (pcbi , ui, xi, yi) :=

{
Costi | (pcbi , ui, xi, yi) ∈ Ccb

i

}
, (2.25)

Ccb
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi(t+ 1) = Aixi(t) +Bu,iui(t) +Bw,iŵi(t)
xi(0) = xiniti

yi(t) = Cixi(t)
ymin,i(t) ≤ yi(t) ≤ ymax,i(t)
umin,i ≤ ui(t) ≤ umax,i

pcbi (t) =
∑Ni

j=1 uij(t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

with xi ∈ R
niT , ui = {uij}mi

j=1 ∈ R
miT , where pcbi (t) is the total amount (electrical equivalent) of the

thermal consumption at time t, and mi is the number of zones of the building. Zone temperatures
are described with the variables yi ∈ R

liT . In addition, the temperature constraints are relaxed
outside working hours, hence the time varying constraint limits ymin,i(t), ymax,i(t). Local objectives
that the building might accommodate are described by Costi.

Whenever a battery is present, it is represented as single-state linear model, with the state
being the state-of-charge (SOC) and the input being the active power denoted by pbess(t) ∈ R. The
battery operates within capacity and power limits, while the purpose is to keep the SOC close to
a reference value SOCref(t) ∈ R.

fbess(pbess) :=
{1

2

T∑
t=1

‖SOC(t)− SOCref(t)‖22 | pbess ∈ Cbess
}

, (2.26)

Cbess =

⎧⎪⎪⎨
⎪⎪⎩

SOC(t+ 1) = aSOC(t) + bpbess(t)
SOC(0) = SOC init

SOCmin ≤ SOC(t) ≤ SOCmax

pbessmin ≤ pbess(t) ≤ pbessmax

⎫⎪⎪⎬
⎪⎪⎭ .

More details are given in the corresponding chapters.

Chapter 3

Infinite-Horizon Constrained Linear
Quadratic Regulator

3.1 Introduction

An important extension of the famous result of [Kal60] on the closed form solution of the infinite-
horizon linear quadratic regulation (LQR) problem, as presented in Section 2.4, is the case where
input and state variables are constrained. This problem is computationally significantly more dif-
ficult and has been by and large addressed only approximately. Model predictive control only
approximates the infinite-time constrained problem by a finite-time one, whereas stability is then
typically enforced by adding a suitable terminal constraint and a terminal penalty as discussed in
Section 2.4. The inclusion of a terminal constraint limits the feasible region of the MPC controller,
and, consequently, the region of attraction of the closed-loop system. In practical applications, this
problem is typically overcome by simply choosing a ‘sufficiently’ long horizon based on process in-
sight (e.g., dominant time constant). Closed-loop behavior is then analyzed a posteriori, for instance
by exhaustive simulation.

In this chapter, we apply the (accelerated) version of the dual proximal gradient method
((A)DPGM) to the infinite-horizon CLQR problem in order to solve it. The idea is to condense
the problem and describe it in terms of its input variables, then formulate the dual of the corre-
sponding (infinite-dimensional) quadratic program (QP), and apply the (A)DPGM method to solve
it. More specifically, the method decomposes the QP into two subproblems, the first one being
an infinite-dimensional least squares problem and the second one a simple clipping of an infinite
sequence to the non-positive orthant. The subproblems are solved repeatedly (with the solution
of one influencing the cost function of the other) until convergence to the solution of the original
problem. This is in contrast to the approach of [SR98], which requires the solution of a sequence
of constrained QPs. We show that both subproblems of the proposed algorithm can be solved
tractably (which is not a priori obvious since we are working with infinite sequences), the first one
by solving a finite-dimensional system of linear equations (with the possibility to pre-factorize the
matrices) and the second one by simple clipping of finitely many real numbers on the non-positive
real line. Convergence of the scheme (with rate O(1/k2) for function values and O(1/k) for primal
iterates) to the optimal infinite-horizon sequence is guaranteed under mild assumptions. Therefore

28 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

the proposed algorithmic scheme provides a means to compute the solution of the infinite-horizon
constrained LQR problem with guaranteed convergence. Apart from the theoretical contribution, we
provide a fully implementable method, competitive for real-time control. We (i) eliminate the need
for knowledge of uncomputable quantities, (ii) propose computationally efficient ways to solve the
optimization subproblems and (iii) propose a warm-starting scheme that performs well in practice.

The chapter is organized as follows: In Section 3.3 we introduce the problem of interest. In
Section 3.4 the problem is expressed in terms of its dual variables by means of the proximal splitting
framework. In Section 3.5 we present the accelerated dual proximal gradient algorithm to solve the
problem and show that each iteration of the algorithm can be carried out tractably. The convergence
proofs for this scheme are given in Section 3.6, while Section 3.7 discusses the computational aspects
that make the algorithm practical to use. Section 3.8 presents two numerical examples: A toy
example of an unstable system with two states and one control input illustrates the main features
of the algorithm. Subsequently, we demonstrate the practical applicability of the algorithm on a
linearized model of a quadcopter with 12 states, four inputs, and polytopic constraints. Finally,
Appendices 3.10.1 and 3.10.2 provide the proofs for the results presented in Section 3.6.

3.2 Related work

There have been few results addressing directly the infinite-horizon CLQR problem. Among the
most well-known efforts are the works [CM96], [SR98] and [GBTM04]. The authors of [CM96]
suggest a scheme for offline computation of a sufficient horizon length. The solution of the corre-
sponding QP is then equivalent to the original infinite dimensional problem. The reported results
are somewhat conservative, while the offline part of the proposed algorithm can be computationally
prohibitive since it involves the solution of a possibly nonconvex problem, the computation of a
positively invariant set as well as a vertex enumeration problem. The authors of [SR98] extend
the work of [SD87] by solving a sequence of QPs of finite horizon length, which is monotonically
non-decreasing. After each QP has been solved, the inclusion of the final state in a positively in-
variant set associated to the optimal unconstrained LQ controller is checked; if the final state is
not included in the set, the horizon was insufficient and has to be increased. Finally, the authors
in [GBTM04] employ parametric quadratic programming and a reachability analysis approach to
compute the least conservative horizon length that ensures optimal infinite horizon performance.
Although this work provides the exact necessary horizon length for the feasible set of initial states,
it suffers from tractability issues since it is based on state-space partitioning and thus can only be
applied to small systems.

3.3 Problem statement 29

3.3 Problem statement

The constrained regulation problem for an LTI system can be written in the general form

minimize 1
2

∞∑
i=0

x�i Qxi + u�i Rui

subject to xi+1 = Axi +Bui, i ∈ N

x0 = xinit
Cxxi ≤ cx
Cuui ≤ cu ,

(3.1)

with variables xi ∈ R
n and ui ∈ R

m, and data cx ∈ R
px and cu ∈ R

pu .
We make the following standing assumptions:

Assumption 1. The pair (A,B) is stabilizable, the optimal value of problem (3.1) is finite, the
set

X := {x ∈ R
n | Cxx ≤ cx}

contains the origin in its interior, the matrix Cu has full column rank, the matrix Q is positive
semidefinite and R is positive definite.

Remark 2 (Stability). Clearly, under Assumption 1, if the problem (3.1) is feasible and the pair
(A,

√
Q) detectable, then the control sequence optimal in (3.1) is stabilizing. Therefore, there is no

need to enforce stability in an ad hoc way as is commonly done when the infinite-time problem (3.1)
is approximated by a finite-time one solved in a receding-horizon fashion.

From now on we write infinite sequences and infinite-dimensional operators in bold font.
The problem can be rewritten in the dense form, i.e., by writing the states as functions of the

inputs. This is done by defining the operators

A =

⎡
⎢⎣ A

A2

...

⎤
⎥⎦ , B =

⎡
⎢⎢⎢⎣

B 0 0 · · ·
AB B 0 · · ·
A2B AB B · · ·

...
...

...
. . .

⎤
⎥⎥⎥⎦ ,

Q = diag(Q,Q, . . .) , R = diag(R,R, . . .) ,

Cx = diag(Cx, Cx, . . .) , cx = (cx, cx, . . .) ,

Ci =

[
ei ⊗ Cu

[CxB]i

]
, ci =

[
cu

cx − CxA
ixinit

]
,

H = B�QB +R, G = A�QB, F̄ = A�QA+Q ,

C =
[
C�

1 C�
2 . . .

]�
, c = [c�1, c

�
2, . . .]

� , (3.2)

where we denote by diag(·, ·, . . .) the operator that forms a block diagonal matrix of the provided
arguments, ei the (infinite dimensional) row vector with only one nonzero element equal to one at
position i, by [·]i the ith block row of size px×∞ of the corresponding operator and by � the adjoint

30 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

of an operator (i.e., the infinite-dimensional analogue of transpose; see Appendix 3.10.1 for a brief
introduction to operators). Using the above, (3.1) can be written in the form

minimize (1/2)〈u,Hu〉+ 〈h,u〉+ r
subject to Cu ≤ c ,

(3.3)

where h = G�xinit, r = (1/2)x�initF̄ xinit, u is the infinite sequence u := [u�0, u
�
1, . . .]

� and H : Hu →
Hu, C : Hλ → Hu, c ∈ Hλ, where H’s are suitable Hilbert spaces specified next: Any sequence

z := (z0, z1, . . .)

is viewed as an element of an l2-weighted (or l2w) real Hilbert space Hz (see Appendix 3.10.1,
Definition 15) induced by the inner product

〈z,y〉 =
∞∑
i=0

wiz�i yi , ∀y ∈ Hz, z ∈ Hz , (3.4)

where w is an appropriately chosen weight (see Appendix 3.10.1, Definition 15). The norm of any
z ∈ Hz is thus given by

‖z‖Hz :=
√

〈z, z〉 =

√√√√ ∞∑
i=0

wi‖zi‖22 .

Unless stated otherwise, for the rest of the chapter by a Hilbert space we mean the l2w real Hilbert
space as just introduced.

3.4 Dualization

Our purpose is to use (an accelerated variant of) the proximal gradient method on the dual of
problem (3.3). This can be derived by making use of Fenchel duality (see Section 2.1). By defining

f(u) = (1/2)〈u,Hu〉+ 〈h,u〉+ r, g(Cu− c) = δ−(Cu− c) (3.5)

and δ−(·) being the indicator function for the nonpositive orthant, we can rewrite (3.3) as

min
u

{f(u) + g(Cu− c)} .

Using the results in Section 2.1, the problem we are interested in solving can be cast in the form:

minimize F (λ) := h�(λ) + δ−(λ), (3.6)

with variables λ, h�(λ) = f�(C�λ)−〈λ, c〉 a differentiable function in Γ0(Hλ), and δ−(λ) ∈ Γ0(Hλ).
Now the PGM iteration (2.9) can be applied to solve (3.6).

Before proceeding, we elaborate on the reasons why the original problem (3.1) had to be refor-
mulated in order to solve it. There are two reformulations, namely, posing the problem as a function
of the input sequences only, resulting in (3.3), and dualization of (3.3), resulting in (3.6). The reason

3.5 Solution using Accelerated Dual Proximal Gradient Method 31

for considering the condensed formulation is the need for strong convexity of the primal objective,
which implies the Lipschitz continuity of ∇h� [BC11, Corollary 18.16]. By using the condensed
form we avoid the restrictive assumption of Q � 0 required in [SKJ14].

The reason for considering the dual problem is simplicity in the evaluation of the proximal
operator of the function δ−(·), which is a simple projection on the non-positive orthant (i.e., com-
ponentwise clipping) as opposed to the primal case where one would have to project on a generic
polytope of the form Cu ≤ c.

3.5 Solution using Accelerated Dual Proximal Gradient Method

Problem (3.6) is a composite minimization problem (i.e., a minimization of a sum of a smooth and
a non-smooth function) and will be solved using an inertial proximal gradient method discussed in
Section 2.2, the acceleration coming from a Nesterov-like momentum sequence from [CD15].

The several ‘optimal’ relaxation sequences that we discussed in Section 2.2 have been put under
a common framework in the work [CD15]. The authors showed that any sequence {tk} of the form
tk = k+a−1

a , with a ≥ 2 satisfies the inequality (tk)2 − tk ≤ (tk−1)2, k ≥ 2. Then the sequence
defined as αk = tk−1

tk+1 allows for the optimal O(1/k2) convergence rate in terms of the function
values, starting from t1 = 1, and using a constant stepsize γ ∈ (0, 1/Lf], where Lf is the Lipschitz
constant of ∇f . In addition, weak convergence of the iterates is achievable for any choice a > 2.
Any such scheme is optimal in the sense that, for every iterate k, there exists a problem which
has a lower complexity bound of the same order. We denote the algorithm emanating from this
scheme the Accelerated Dual Proximal Gradient Method (ADPG) algorithm, and write it down for
problem (3.6) as follows:

Algorithm 4 ADPG for Problem (3.6)

0: Initialize λ0 = 0, a > 2, α0 = 0,
Lh� ← a Lipschitz constant of ∇h�.

repeat
1: αk = k−1

k+a , k ≥ 1

2: λ̂k = λk + αk(λk − λk−1)

3: λk+1 = min
{
λ̂k − (1/Lh�)∇h�(λ̂k), 0

}
until termination condition is satisfied.

The iterative scheme above is very simple and ultimately boils down to a variant of the fast
projected gradient method as proposed by Nesterov [Nes04a]. In order to apply Algorithm 4, we
need to be able to

• evaluate the gradient of h�

• represent λk and λ̂k using a finite amount of memory.

The remaining steps of the algorithm are simple scalar or vector updates or componentwise clipping
on the non-positive orthant (Step 3), both of which can be carried out inexpensively provided that
λk can be represented using finite amount of memory.

32 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

In the rest of the text PLQ and KLQ will denote the positive-semidefinite solution to the discrete-
time algebraic Riccati equation and the corresponding LQ optimal state feedback matrix associated
with the matrices (A,B,Q,R).

We start by finding the gradient of h�. To this end, define the Lagrangian of the (infinite
dimensional) problem (3.3), written in its equivalent sparse form and truncated at any T ≥ 0, as

L(u,x, λ̂|T) = x�T PLQxT +

T−1∑
i=0

x�i Qxi + u�i Rui − wi

[
Cxxi − cx
Cuui − cu

]�
λ̂i . (3.7)

Lemma 2. If λ̂ is such that λ̂i = 0 for all i ≥ T , then

[∇h�(λ̂)]i = wi

[
Cxx̂i − cx
Cuûi − cu

]
, (3.8)

where
(x̂, û) = argmin

u,x
{L(u,x, λ̂|T) | xi+1 = Axi +Bui, x0 = xinit} (3.9)

for i ∈ {0, . . . , T}, and
x̂i = (A+BKLQ)

i−T x̂T , ûi = KLQx̂i

for i > T .

Proof: This is a standard result from duality (see Algorithm 1 in Chapter 2), noticing that the min-
imization in (3.9) is equivalent to the minimization of the Lagrangian of (3.3) under the assumption
that λ̂i = 0 for all i ≥ T . �

Lemma 2 gives us a way to compute the gradient of h�. Clearly, this gradient is an infinite sequence
and therefore cannot be stored directly, but it is available to us explicitly for i ∈ {0, . . . , T} and
implicitly, through the dynamics of the system x̂+ = (A+BKLQ)x̂, for i > T .

Now we show that λk and λ̂k can be represented using a finite amount of memory.

Lemma 3. If λk and λ̂k are generated by Algorithm 4, then for each k there exists a T k < ∞
such that λk

i = 0 and λ̂k
i = 0 for all i ≥ T k.

Proof: We have λ0
i = 0 and λ̂0

i = 0 for all i ≥ 0 and hence T 0 = 0. Assume now k > 0 and λk
i = 0

and λ̂k
i = 0 for all i ≥ T k. Then, evaluating ∇h�(λk) using Lemma 2 with T = T k, we see that the

sequence (x̂i, ûi) is generated by the unconstrained LQ controller for i > T k and hence converges
to the origin. Since the set X has the origin in the interior we conclude that there exists a time
T̂ k+1 < ∞ such that Cxx̂i ≤ cx and Cuûi ≤ cu for all i ≥ T̂ k+1. We define T k+1 = max{T k, T̂ k+1}.
In view of (3.8), we conclude that λ̂k − 1

Lh�
∇h�(λ̂k) ≥ 0 for all i ≥ T k+1. Therefore, in view of

Step 3 of Algorithm 4, we have λk+1
i = 0 for all i ≥ T k+1. Finally, λ̂k+1 is a linear combination of

λk and λk+1 and hence λ̂k+1
i = 0 for all i ≥ T k+1. �

To determine T k+1 computationally (given T k and x̂k+1 and ûk+1) we simply find the first time
TS that x̂k+1

i enters a given subset S, with 0 ∈ int(S), of the maximal positively invariant set of

3.5 Solution using Accelerated Dual Proximal Gradient Method 33

the system x̂+ = (A+BKLQ)x̂ subject to the constraint
[
CuKLQ

Cx

]
x̂ ≤

[
cu
cx

]
. The time T k+1 is

then equal to the first time no less than T k such that Cxx̂
k+1
i+1 ≤ cx and Cuû

k+1
i ≤ cu simultaneously

hold for all i ∈ {T k+1, . . . , TS}. More formally, we have the equality

T k+1 = min
{
T ≥ T k | ∃TS s.t. Cxx̂

k+1
i+1 ≤ cx, Cuû

k+1
i ≤ cu ∀ i ∈ {T, . . . , TS}, x̂k+1

TS ∈ S
}
. (3.10)

Remark 3 (Computation of T k). In practice, to determine T k+1 after solving (3.9), we iterate
forward the system dynamics x̂+ = (A + BKLQ)x̂ starting from the initial condition x̂k+1

Tk+1
until

x̂k+1
i ∈ S.

Remark 4 (Set S). The set S is determined offline and is not required to be invariant.
A good candidate is the set {x | x�PLQx ≤ 1} scaled such that it is included in{
x |

[
CuKLQ

Cx

]
x ≤

[
cu
cx

]}
, or any subset of this set containing the origin in the interior.

Now we are ready to formulate an implementable version of the abstract Algorithm 4:

34 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

Algorithm 5 ADPG method for the CLQR problem
Require: xinit, Q � 0, R � 0, Cu of full column rank

a: Determine PLQ, KLQ solving the unconstrained LQR
problem associated with the matrices (A,B,Q,R).

b: Determine a set S, with 0 ∈ int(S), included in
any positively invariant set for the system
x+ = (A+BKLQ)x subject to the constraint[
CuKLQ

Cx

]
x ≤

[
cu
cx

]
. See Remark 4.

c: Initialize λ0 = 0, T 0 = 0, w = min
{
1, 1

λ2
max(A)

}
, a > 2, α0 = 0, L0 > 0

or Lh� a Lipschitz constant of ∇h� (optional).
for k = 0, . . . do

1: αk = k−1
k+a , k ≥ 1

2: λ̂k
i = λk

i + αk(λk
i − λk−1

i), i = 1, . . . , T k

3: Set

(x̂k+1, ûk+1) = argmin
u,x

{L(u,x, λ̂k|T k) | xi+1 = Axi +Bui, x0 = xinit}, i = 0, . . . , T k,

x̂k+1
i+1 = (A+BKLQ)x̂

k+1
i , i > T k

4: Determine T k+1 (see Remark 3)
6: Choose stepsize γ (see Remark 5)

7: Set λk+1
i = min

(
λ̂k
i − γk+1wi

[
Cxx̂

k+1
i − cx

Cuû
k+1
i − cu

]
, 0

)
.

8: If termination condition is satisfied, solve KKT system (see Remark 7)
end for

Remark 5 (Stepsize). In Step 6 of the algorithm, a stepsize is selected. One option is to fix
a constant stepsize γ = 1/Lh� , which needs a global Lipschitz constant of ∇h�. This can be
computed offline (see Section 3.7.1). Alternatively, one can use a backtracking stepsize rule, inspired
from [BT09], which can be used in combination with the global estimate. The procedure is analyzed
in Section 3.10.3.

Remark 6 (Role of the weight w). It is worth mentioning that working in the weighted Hilbert
space l2w is more than a mathematical formalism and has serious practical implications. In the case
of unstable systems, a nontrivial sequence of weights has to be chosen such that the growth of the
largest unstable eigenvalue of the state matrix A is bounded by a faster decaying sequence so that
the operator C remains bounded, an assumption necessary for applying the proposed method. At
the same time the sequence of weights will act as a left preconditioner of C, hence a left and right
preconditioner on the Hessian operator of the quadratic form in (3.6). This scaling can seriously
affect the numerical performance of the proposed algorithm, as we will see in subsequent sections.
Note that for stable systems the sequence can be trivially set to one, hence no scaling occurs. These
claims are explained in more detail in Appendix 3.10.2.

3.6 Convergence results 35

Remark 7 (Termination). Algorithm 5 terminates when a prespecified accuracy is reached in
terms of the progress of the dual sequence. The extracted primal sequence is given by

(xk,uk) = argmin
u,x

{L(u,x,λk|T k) | xi+1 = Axi +Bui, x0 = xinit} (3.11)

for i ∈ 0, . . . , T k and xki = (A + BKLQ)
i−Tk

xTk for i > T k. In Theorem 5 below it is proven
that (xk,uk) tends to the optimal constrained LQ solution. At any finite iterate, however, the
sequence (xk,uk) may violate the constraints. In order to remedy this we solve upon termination an
equality-constrained QP where we minimize the objective function subject to the active constraints
at optimality. The active constraints can be (approximately) detected by looking at the nonzero
values of the dual vector λk at termination. This step comes at a very small cost since it involves
one solution of a KKT system of linear equations.

3.6 Convergence results

In the previous section we gave an implementable algorithmic scheme that computes the solution
to the CLQR problem. Here we provide all the necessary proofs which allow us to assert that the
solution generated by Algorithm 5 via (3.11) indeed converges to the true optimizer of the CLQR
problem. In what follows λ∞ denotes any optimal solution to the dual problem (3.6) (which exists
under Assumption 1 but may not be unique) and (u∞,x∞) the optimal solution to the primal
problem (3.1). Our main result is:

Theorem 5 (Main Theorem). Suppose Assumption 1 holds and let λk be a sequence of iterates
generated by Algorithm 4 and (xk,uk) the associated primal sequence given by (3.11) and let L be
a Lipschitz constant of ∇h�. The following statements hold:

1. The composite function F (λ) = h�(λ) + δ−(λ) as defined in (3.6) converges as

F (λk)− F (λ∞) ≤ a2L

2(k + a− 1)2
‖λ0 − λ∞‖2Hλ

.

2. The sequence of the dual iterates {λk} converges weakly (see Definition 17 in Appendix 3.10.1)
to an optimizer, that is,

λk ⇀ λ∞

for some λ∞ ∈ argmin F .

3. The input sequence {uk} converges strongly to the unique minimizer as

‖uk − u∞‖Hu ≤ a

√
L

μ

‖λ0 − λ∞‖Hλ

(k + a− 1)
,

where μ > 0 is the strong convexity constant of f(u).

36 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

4. The state sequence {xk} converges strongly to the unique minimizer as

‖xk − x∞‖Hx ≤ a

√
‖B‖2L

μ

‖λ0 − λ∞‖Hλ

(k + a− 1)
.

5. The sequence {T k} is bounded.

Proof: 1. Convergence of F (λk) with a constant stepsize is proven in [CD15, Theorem 1].
Convergence at the same rate with an adaptive stepsize generated from the backtracking
Algorithm 6 is proven in Lemma 11, Appendix 3.10.3.

2. The proof is stated in [CD15, Theorem 3].

3. The idea is to upper bound the input sequence’s convergence rate making use of the first
point’s result. In order to do so we make use of strong duality. The proof is inspired from
[BT14, Theorem 4.1] and is as follows:
Let λk ≤ 0 generated from Step 7 of Algorithm 5. Denote

uk = argmin
u∈Hu

{
f ′(u) := f(u) + 〈λk, c−Cu〉

}
, (3.12)

where f(u) = (1/2)u�Hu + h�u + r as defined in Section 3.1. We then have that the
Lagrangian of (3.3) evaluated at λk is L(u,λk) = f ′(u). The function f(u) is strongly convex
with constant μ ≥ λmin(R) > 0, where λmin(R) denotes the smallest eigenvalue of R. Strong
convexity of f ′(u) with modulus μ follows directly. Using (3.12), it holds that

f ′(u)− f ′(uk) ≥ μ

2
‖u− uk‖2Hu

, ∀u ∈ Hu ,

or, equivalently,

L(u,λk)− L(uk,λk) ≥ μ

2
‖u− uk‖2Hu

, ∀u ∈ Hu . (3.13)

Substituting u = u∞ in (3.13) and by observing that max
λ≤0

L(u∞,λ) ≥ L(u∞,λk), we have

that
L(u∞,λ∞)− L(uk,λk) ≥ μ

2
‖u∞ − uk‖2Hu

, ∀u ∈ Hu . (3.14)

We have managed to derive an upper bound for the distance of the generated sequence of
primal minimizers {uk} from the optimal one. The last step is to show that the Lagrangian

3.6 Convergence results 37

L(u,λ) is associated to the composite objective F (λ). This can be easily shown as follows:

L(uk,λk) = min
u∈Hu

{
f(u) + 〈λk, c−Cu〉

}
= −max

u∈Hu

{
−f(u) + 〈λk,Cu〉

}
+ 〈λk, c〉

= −f�(C�λk) + 〈λk, c〉
= −F (λk), by (3.6) .

From strong duality and the fact that −F (λk) converges to the optimal dual value
(first point), we have that the optimal value of the dual function −F (λ) coin-
cides with that of the Lagrangian evaluated at the saddle point (u∞,λ∞), i.e.,
L(u∞,λ∞) = max

λ∈Hλ

{−F (λ)} = −F (λ∞) (see [BV04, Section 5.5.5]). Making use of the first

point, inequality (3.14) becomes

μ

2
‖uk − u∞‖2Hu

≤ F (λk)− F (λ∞) ≤
a2L‖λ0 − λ∞‖2Hλ

2(k + a− 1)2
, (3.15)

which concludes the proof.

4. The state sequence is generated by

xk = Axinit +Buk . (3.16)

Strong convergence of the input sequence {uk}, along with the facts that B : Hx → Hu is
bounded (follows directly from Lemma 7 in Appendix 3.10.2) and the uniqueness of u∞ prove
strong convergence of the state sequence with rate 1/k, i.e.,

‖xk − x∞‖Hx = ‖B(uk − u∞)‖Hx

≤ ‖B‖‖uk − u∞‖Hx

≤ a‖B‖
√

L

μ

‖λ0 − λ∞‖Hλ

(k + a− 1)
,

with the last inequality following directly from the third point.

5. The proof for the unaccelerated case was presented in [SKJ14]. We give below the complete
version of the proof taking into account the appearance of the over-relaxed sequences {x̂k},
{ûk}, which renders the derivation of the result slightly more challenging.

The key piece for the proof is the weak convergence of x̂k to x∞. This claim is subsequently
proven as a sequence of intermediate results. We show that:

(a) The relaxed dual sequence {λ̂k} converges weakly to a dual minimizer λ∞.

(b) Provided that the operator C is bounded, the sequence {Hûk} converges weakly to
{Huk}, and {ûk} converges weakly to {uk}. From strong duality, {uk} converges to the

38 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

primal optimizer u∞.
(c) Weak convergence of the accelerated state sequence {x̂k} to x∞ follows directly.

Weak convergence of the relaxed sequence {λ̂k} follows from Corollary 2 of [CD15], which
states that the error sequence {‖λk −λk−1‖2} converges to zero with rate 1/k2. We state the
result below.

Lemma 4. The relaxed sequence {λ̂k} converges weakly to λ∞.

Proof: Since ‖λk −λk−1‖2 → 0 and αk is bounded we also have νk =
√
αk(λk −λk−1) → 0.

Since strong convergence implies weak convergence we have that 〈νk,y〉 k→∞−−−→ 0, ∀y ∈ Hλ.
The relaxed sequence of duals λ̂ can be written as λ̂k = λk +

√
αkνk. Consequently, since

λk ⇀ λ∞, we have that

〈λ̂k,y〉 = 〈λk +
√
αkνk,y〉

= 〈λk,y〉+
√
αk〈νk,y〉 → λ∞

for all y ∈ Hλ and hence λ̂k ⇀ λ∞. �

Lemma 5. The sequence {ûk} converges weakly to u∞.

Proof: Writing down the relation between û and λ̂ from Lemma 2 in terms of the operators,
we get ûk = H−1(C�Wλ̂k − h). Similarly we have uk = H−1(C�Wλk − h). Now, from
Theorem 5 we have uk → u∞ and from Lemma 4 we have λ̂k −λk ⇀ 0. Therefore, since C�,
W and H−1 are bounded operators (see Lemmas 7 and 8 in Appendix 3.10.2) and since weak
convergence is preserved under bounded linear mappings, we conclude that ûk ⇀ u∞. �

Lemma 6. The sequence {x̂k} converges weakly to x∞.

Proof: Exactly as we did at the fourth point of Theorem 5, the accelerated state sequence
can be written as

x̂k = Axinit +Bûk .

Weak convergence ûk ⇀ u∞ and boundedness of B prove weak convergence of the accelerated
state sequence to x∞. �

We have, hence, proven the weak convergence of the accelerated state sequence to the optimal
one. For {T k} to be bounded, it is sufficient to show that

lim sup
k→∞

T k < ∞. (3.17)

To prove (3.17), define the sequence of the first hitting times of the interior of S as

τk := inf{i ≥ T k | xki ∈ int(S)}, k ∈ N ∪ {+∞},

3.7 Computational aspects and warm-starting 39

where τ∞ < ∞ is the hitting time of the optimal state sequence x∞. Clearly, τk ≥ T k and τk <
∞ since the origin is in the interior of S and for each k ∈ N the sequence {x̂ki }∞i=0 generated by
Algorithm 5 converges to the origin as i → ∞. We shall prove that lim supk→∞ τk ≤ τ∞ < ∞,
which implies (3.17). For the purpose of contradiction assume that there exists a subsequence
τkj , j ∈ N, with limj→∞ τkj ≥ τ∞+1. Since the sequence of hitting times τk is integer valued,
this implies that there exists a j∗ ∈ N such that τkj ≥ τ∞ + 1 for all j ≥ j∗. We now use
this to contradict the weak convergence of x̂k to x∞. To this end, observe that x∞τ∞ ∈ int(S)
whereas x̂

kj
τ∞ /∈ int(S) for all j ≥ j∗. By the definition of the interior there exists an ε > 0

such that z ∈ int(S) for all z with ‖z−x∞τ∞‖2 < ε. Therefore ‖x̂kjτ∞ −x∞τ∞‖2 ≥ ε for all j ≥ j∗,
and consequently

〈x̂kj − x∞, z〉 =
∞∑
i=0

wi(x̂
kj
i − x∞i)�zi

≥ wτ∞(x̂
kj
τ∞ − x∞τ∞)�zτ∞

≥ wτ∞ε2 > 0 ,

for a sequence z with zτ∞ = x̂
kj
τ∞ − x∞τ∞ and (x̂

kj
i − x∞i)�zi ≥ 0 ∀i �= τ∞, and for all j ≥ j∗,

contradicting the weak convergence of x̂k to x∞ asserted by Lemma 6.
�

3.7 Computational aspects and warm-starting

Having presented the algorithm and its convergence results, we now focus on the computational
aspects that render the algorithm a practical option to alternatives such as MPC. We start with
explaining how no prior knowledge of a fixed stepsize is needed, give some references concerning
the solution of the linear system, which is the most expensive operation of the method, and we
conclude the section by suggesting a warm-starting scheme.

3.7.1 Stepsize selection

The stepsize used in Algorithm 5 is computed as the reciprocal of the Lipschitz constant of h�. For
the problem discussed here this can be explicitly computed. We have that

‖∇h�(λ1)−∇h�(λ2)‖ = ‖CH−1C�W (λ1 − λ2)‖
≤ ‖CH−1C�W ‖‖λ1 − λ2‖
= ‖H−1‖‖C‖2‖‖λ1 − λ2‖ ,

where W is the diagonal operator constituted of the decaying weighting sequence, i.e., W =
diag(I, wI, w2I, . . .). The last equality follows from the fact that W contains a non-increasing
sequence with the largest element being one. Hence Lh� = ‖H−1‖‖C‖2, which requires computation
of the operator norms ‖H−1‖ and ‖C‖. The proofs for boundedness of the two operators, as well
as the computations of their bounds are derived in Appendix 3.10.2, Lemmas 7 and 8.

40 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

Although valid, this offline computation of the stepsize tends to be conservative in many cases,
due to the conservativeness of the computed upper bounds. An elegant and practical method to
achieve faster convergence is to employ an algorithm that locally estimates the Lipschitz constant
online, at every iteration of Algorithm 5. In order to do so, we use the backtracking stepsize rule
suggested in [BT09]. The idea is simple: after each iteration of the algorithm, we make a quadratic
approximation model of the function around the successor point, making use of the knowledge
of the exact point and its gradient value. A quadratic term with varying curvature is added on
top of the linear (first-order Taylor) approximation, and the curvature is adapted recursively until
our quadratic approximant upper bounds the original function, centered around the given point.
Thus, the quadratic model’s curvature is an estimate of the Lipschitz constant of the gradient of
the original function. It is proven in [BT09] that the locally evaluated Lipschitz constant Lk is
related to the global one by βLh� ≤ Lk ≤ γLh� , where β = L0

Lh�
and γ > 1, L0 > 0 being an

initial estimate. Consequently the rule allows for smaller L’s and hence larger stepsizes, i.e., faster
practical convergence.

Remark 8 (Backtracking). Although points (1), (3) and (4) of Theorem 5 can be easily shown
to hold for a stepsize generated from the backtracking procedure described above, the same does
not hold for point (2), and, consequently, for point (5). More specifically, weak convergence of the
dual sequence is based on the assumption that no stepsize larger than 2/Lh� is allowed at any
iteration [CD15, Theorem 3].

3.7.2 Complexity

The most expensive operation of Algorithm 5 is the linear system solve in Step 3. There is a variety
of ways to perform this step, i.e., solve the KKT system or perform the Riccati recursion when
both states and inputs are considered, invert the dense Hessian when only the inputs are considered.
In the first case, a sparse (permuted) LDL� factorization can be performed with cost T (n +m)3

flops, followed by a forward-backward solve at T (n +m)2 flops. This approach has been followed
in [OSB13]. A discussion on the KKT system solve and the Riccati recursion approach is contained
in [FJ13b], where the corresponding complexities are analyzed and compared in detail.

In the case of the condensed formulation, the linear system solve can be efficiently performed by
first applying a Cholesky factorization on H (being a finite truncation of the H operator in (3.3)),
followed by a forward-backward substitution, (see [BV04, Appendix C]). Although the condensed
form of the optimal control problem that is used in the derivations is, generally, not advised for
long horizons, recent advancements can render this approach very efficient [AM12], [FJ13a]. More
specifically, the two proposed algorithms that perform factorization and solve of the condensed
system in [FJ13a] come with a reduced complexity of O(Tn3) and O(T 2n2), respectively.

Whether considering the sparse or the dense formulation, note that the factorization steps would
have to be performed several times until the ‘correct’ horizon T∞ has been identified, since the size
of the corresponding matrices (KKT or Hessian H) increase as the algorithm progresses. This
typically happens within the first few tens of iterations. A valid alternative to this is the Riccati
recursion, which completely eliminates the need for factorization, at the expense of forward (or
backward) simulating the trajectories for the gain, the inputs and the states.

The backtracking scheme contributes to the complexity of Algorithm 5 by requiring a number of

3.8 Examples 41

function evaluations per iteration, both for the quadratic model and for the original smooth function
h� (see [BT09] for more details). The rest of the steps are simple vector updates of negligible cost.

3.7.3 Warm-starting

In the nominal case, i.e., when no noise and no model uncertainty are present, the open loop infinite-
horizon control sequence generated from Algorithm 5 coincides with the control sequence generated
by the optimal closed-loop feedback controller. Consequently, there is no need to re-optimize in a
receding-horizon fashion. Solving the CLQR problem just once is sufficient.

In the more realistic scenario where the predicted initial state differs from the measured one, the
algorithm has to be re-applied. Provided that the prediction is not very different from the actual
state, a good strategy is to initialize the decision variables (states and inputs) of the new problem
with the values predicted from the previous one. This is commonly known as warm-starting. In our
case, warm-starting has to be performed in the dual variables.

Note that once Algorithm 5 has run once, a hitting time T∞ has been generated, along with
an optimal dual sequence λ∞ of corresponding length. It is expected that when computing the
control law the hitting time should decrease by one at each solve, provided warm-starting from
the optimal dual sequence that was generated once in the beginning. Hence, we suggest a heuristic
scheme where the ‘constrained’ (nonzero) part of the preceding shifted dual sequence is used to
initialize each subsequent CLQR problem. The computation time thus reduces significantly, with
the horizon practically shrinking to zero once the initial state is identified to be inside the maximal
positively invariant set of the LQ controller.

Application of the scheme is presented in Section 3.8. It is observed that it behaves particularly
well for small perturbations of the initial state.

3.8 Examples

For illustrative purposes, we run the algorithm on two systems, a small unstable system with two
states and one input and a linearized model of a quadcopter with 12 states and 4 inputs. We use
the small example as a benchmark for graphical illustrations, while the larger one exhibits the
computational efficiency of the proposed scheme. The comparison is performed against the same
implementation of the ADPG algorithm for finite horizon lengths. It is of course understood that
there exist several methods capable of solving a finite horizon MPC problems (see interior point,
active set, etc.), among which, optimal first-order methods have gained considerable attention over
the last few years, rendering them a competitive alternative [RJM09], [SSSPJ16]. Consequently,
comparing against an optimal first-order method provides a valid basis for evaluating the potential
of our scheme. In the two examples the termination criterion is simply set as ‖λk − λ̂k+1‖ ≤ 10−4.

3.8.1 Toy system

Consider the following system defined as

A =

[
1.1 2
0 0.95

]
, B =

[
0

0.0787

]
,

42 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

0 5 10 15 20 25 30 35
0

50

100

150

200

250
Hitting times distribution

Hitting times T

of

 p
ro

bl
em

s

Figure 3.1: Histogram of T∞ = maxk{T k} for 750 initial conditions of the 2 state system sampled from a
normal distribution around (−3, 0.3) with covariance matrix diag(4, 0.4).

xi+1 = Axi +Bui,

with constraints
‖x‖∞ ≤ 10, ‖u‖∞ ≤ 1

and Q =

[
2 −2

−2 2

]
, R = 2I. Note that the system is unstable, hence a nonzero sequence of weights

has to be chosen in order to ensure boundedness of the C operator. We choose w = 1/1.12 and the
value of a in Step 1 of Algorithm 5 is set to a = 4.

The system is simulated for 750 different initial conditions x0. In Figure 3.1 the distribution of
T∞ = maxk{T k} is depicted. We see that T∞ goes up to 30, while the mean value is nine.

We compare our method to the MPC approach both from the control and the algorithmic
performance perspective. Regarding the former, we perform a comparison of the feasible sets for
finite horizon implementations versus the maximal control invariant set in the case of CLQR, as well
as the optimal value of the cost function. Regarding the latter, we perform comparisons in terms of
the average number of iterations needed for convergence for several horizon length values in MPC
versus the CLQR case. We also evaluate the conservativeness of our approach by computing the
actual ‘optimal’ horizon length for each initial condition we simulate. For both CLQR and MPC
we make use of the same AFBS algorithm with backtracking employed and termination tolerance
set to 10−4 as stated before.

We perform the following simulations: we sample 243 initial conditions x0i , i = 1, . . . , 243
from the maximal control invariant set (31-step) of the aforementioned constrained system (see
Figure 3.2). For each point we compute:

1. The minimum horizon length Tmin, such that x∗Tmin
(x0i) resides in the maximal positively

invariant set of the autonomous system x+ = (A+BKLQ)x, used as a terminal set.

2. The hitting time T = T∞ generated by our proposed scheme.

3.8 Examples 43

The following scenarios are generated: Firstly, an MPC problem with terminal set and horizon
length Tmin is solved, as described above. Subsequently we remove the terminal constraint and
solve the MPC problem again for the same horizon length Tmin. We repeat the procedure described
above (MPC with and without terminal set) for horizons T = 2Tmin and T = T ∗, where T ∗ is
specified by identifying the first horizon length for which the feasible solution of the MPC problem
had the terminal constraint inactive. Finally, a comparison with the proposed CLQR approach is
performed, with horizon T = T∞. In this way, six MPC problems with finite horizon as well as the
CLQR problem are solved, for each of the 243 initial conditions. The total number of iterations is
averaged by the number of corresponding initial conditions with the same minimum horizon length
Tmin. The results are presented in Figure 3.3.

The first observation from the plot is that inclusion of the terminal constraint generally in-
creases the number of required iterations since more constraints become active at optimality. This
is especially the case when the horizon is relatively short and the terminal constraint satisfaction is
imposed as we see in the blue curves. As the horizon increases (red and magenta color), the terminal
constraint might be inactive and there is no significant difference in the number of iterations in the
two cases.

A trend of increase in the number of iterations in all methods as T ∗ increases can be observed.
This is expected since increase of T ∗ amounts to sampling of the initial state from regions of
the feasible set that are further away from the origin. A consequence of the latter is that more
constraints become active at optimality.

Short horizons in combination with a terminal set increase significantly the iteration count, as
well as unnecessarily long horizons (e.g., 2Tmin). In that sense, one can observe that MPC with
T = T ∗ behaves better than the other lengths. The curve corresponding to CLQR is denoted with
black lines with asterisks. The method is comparable to the MPC approaches where T = Tmin

and T = T ∗ with terminal set, performing relatively better in small to medium horizon lengths
and worse for larger horizon lengths. The reason for the latter is that the weighting operator W
becomes quickly ill-conditioned as T grows, since its diagonal elements decay exponentially. This
leads to ill-conditioning of the finite-dimensional truncation of the dual problem (3.6) since W
preconditions (through the weighted l2 inner product (3.4)) the objective of (3.6). As is commonly
known first-order methods struggle with ill-conditioning. Efficient preconditioning of the operators
should improve this and is a topic of further investigation. As a matter of fact, when the weights are
set to one, the CLQR approach (black line with circles) clearly outperforms all MPC approaches
with terminal set, as well as most of those instances without terminal set. Further simulations
suggest that the proposed method performs very well, were we to drop the weights or when dealing
with stable systems, when no scaling has to be performed.

Another interesting point is that the average hitting times T∞ generated from Algorithm 5 are
almost identical to the averaged optimal ones T ∗, with a very slight increase. This fact is depicted
in Figure 3.4, where the ratio is always very close to one. On the contrary, the minimum required
horizon length Tmin is observed to be up to 45% smaller than the optimal length T ∗ in some
cases, leading to a significant increase in the objective’s cost when compared to the infinite horizon
approach.

44 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

Figure 3.2: Reachable sets for several horizon lengths and the LQ terminal set. The computation was done
using the MPT3 toolbox [HKJM13]. It is apparent that a short horizon length reduces significantly the
feasible region of the problem.

5 10 15 20 25 30 35 40
10

1

10
2

10
3

10
4

10
5

Iteration count comparison

Optimal horizon T

A
ve

ra
ge

 N
o.

 o
f i

te
rs

T
min

 w/ T.C.

T w/ T.C.
2T

min
 w/ T.C.

T
w
 CLQR

T CLQR

Figure 3.3: Comparison of MPC with finite horizon length, for several horizons, with CLQR. The horizontal
axis corresponds to the optimal horizon length T ∗ per initial condition. As T ∗ increases, the corresponding
states are sampled further from the origin. MPC with terminal set is depicted with the solid lines, while
without terminal set with dashed lines. CLQR is performed both with the weight sequence, denoted as T∞

w

CLQR, and without the weights, denoted as T∞ CLQR.

3.8 Examples 45

5 10 15 20 25 30 35 40
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2
Horizons length comparison

Optimal horizon T

R
at

io
 T

 /
T

T / T

T
w
 / T

T
min

 / T

Figure 3.4: Evolution of the ratios Tmin

T∗ , T∞
w

T∗ and T∞
T∗ for the sampled initial conditions.

3.8.2 Quadcopter system

The next system we consider is a quadcopter linearized in a hovering equilibrium. The system has
12 states which correspond to position, angle and the corresponding velocities. There are four inputs
corresponding to the four propellers. There are box constraints on all states and inputs, mainly
ensuring the validity of the linearized model. The system is marginally stable; thus the weight w is
set to one.

We simulate the algorithm starting from initial conditions randomly selected as follows: starting
from a random feasible initial condition, we generate random directions on a unit ball centered
around it and sample points along each of them. The points are generated from a normal distribution
with standard deviation 0.15. Finally, we keep the initial conditions that result in feasible closed
loop problems. The result of this step is 272 feasible initial conditions for the CLQR Algorithm 5.
A histogram of T∞ = maxk{T k} is presented in Figure 3.5.

We conclude the quadcopter example by applying the warm-starting heuristic scheme suggested
in Section 3.7. We consider two scenarios; in the first one we uniformly perturb the initial state
by 0.5% of its nominal value and run Algorithm 5 in closed loop for 78 different initial conditions.
In the second scenario we perturb the state by 1%, for 68 different initial conditions. We solve
15 consecutive problems per initial condition and subsequently compare the average number of
iterations as well as the generated hitting times per problem solve with and without warm-starting
the dual variables. The results are summarized in Figure 3.6. It is evident that warm-starting
consistently reduces the number of iterations in both cases.

3.8.3 Timings

We conclude this section with a numerical evaluation. For this purpose, we compare an imple-
mentation of the proposed algorithm with several modern convex optimization solvers, employed
to solve the corresponding finite horizon MPC problems. In addition, we compare our proposed

46 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

10 20 30 40 50 60 70 80
0

20

40

60

80

100

120

140

160

180
Hitting times distribution

Hitting times T

of

 p
ro

bl
em

s

Figure 3.5: Histogram of T∞ = maxk{T k} for 272 initial conditions sampled with a Hit-And-Run algo-
rithm.

cold warm
0

50

100

150

200
Box Plots: Cold VS Warm starting

N
um

be
r

of
 it

er
at

io
ns

0.5 %
1 %

Figure 3.6: Box plots for the average number of iterations of the warm-starting policy, given 0.5% and 1%
uniform perturbations of the initial state are depicted. The horizontal line inside the box corresponds to the
median, the edges of the box are the 25th and 75th percentiles while the horizontal lines outside the boxes
correspond to the most extreme data points not considered outliers. Finally, the colored dots correspond
to mean values. Warm-starting improves the performance of the suggested method in both cases, in all the
depicted statistical measures.

3.8 Examples 47

algorithm with its finite horizon implementation, solving the same optimal control problems in a
receding-horizon mode. Given that MPC is an approximation to the solution of the infinite horizon
problem, a fair comparison between the two approaches cannot be easily performed. Hence, we
consider a ‘criterion of fairness’ the time required by Algorithm 5 versus a rolling-horizon approach
so that the infinite-horizon optimal solution to a given regulation problem is achieved.

The difficulty with the aforementioned approach is to construct a rolling horizon scheme that can
recover the infinite-horizon optimal solution. This can be achieved only if a sufficiently long horizon
is used, so that the state sequence converges leisurely to the origin. Such a horizon is the output of
our scheme. Thus, we perform the following simulation with the toy example presented above: We
solve a series of optimal control problems for each of the 750 sampled initial conditions, the hitting
times of which were depicted in Figure 3.1, using the resulting T∞ from the CLQR approach,
without imposing any terminal set. The problems are solved in a receding-horizon fashion until the
initial state resides inside the maximal positively invariant set of the LQ controller, depicted in
Figure 3.2 in dark blue. Subsequently, we measure the time required to compute the closed-loop
solution with the MPC algorithms and we compare against the time required by Algorithm 5.

The algorithm is implemented in C++. The algorithmic values a and L0 are initialized to a = 5
and L0 = 0.01. The linear algebra library ‘Armadillo’ [San10] is used for the operations, which is a
wrapper for BLAS and LAPACK. The implementation is tested against the (commercial) solvers
CPLEX (IBM) and MOSEK, as well as the open solver QPgen [GB14a; GB15].

The results regarding the first experiment are depicted in Figure 3.7a. Since no noise is injected
in the state, the CLQR controller is computed only once, in contrast to the MPC controller where
multiple problems have to be solved in order to acquire the closed-loop solution. As a consequence,
the total time needed to solve the problem with CLQR is smaller than what most of the solvers
in use can achieve. The relative accuracy of the generated solutions is of the order 10−5, while
the times are given in ms. In addition, Figure 3.8 elaborates on the iteration count, as well as the
number of factorizations that had to be performed while running CLQR, as another computational
complexity measure for the algorithm.

Subsequently, the closed-loop MPC times are averaged over the number of optimal control
problems solved, and are compared to the timings of Algorithm 5 in Figure 3.7b. It is clear that in
this case the proposed approach is not as competitive as MPC. However, it should be mentioned
that the cases depicted in Figure 3.7 are two extremes. Figure 3.7a assumes that no noise is present,
while Figure 3.7b implicitly assumes that Algorithm 5 is cold-started at every subsequent problem,
making no use of the prior information gained from the convergence to the optimal multiplier
sequence λ∞.

In view of the facts that (i) the above packages run optimized C code and (ii) the employed
algorithms differ quite significantly from our proximal method, we devise a simulation where we
use the exact same C++ code1 that we have developed for Algorithm 5, but rather in order to solve
a series of finite horizon MPC problems. Ultimately, we apply the dual proximal gradient method
to do MPC. In this way we control for most of the irrelevant factors and focus on the comparison
between CLQR and MPC. Once again, we consider the toy example and sample randomly 200 initial
conditions from the set of the 750 ones utilized above. We inject disturbances with magnitude up
to 3% of the predicted initial state and solve in closed loop until the initial state enters the terminal

1The code is publicly available on https://github.com/stathopog/InfHorCLQR.

48 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

CLQR CPLEX MOSEK QPGEN

T
im

e
in

 m
s

0

0.1

0.2

0.3

0.4

0.5
Box Plots: Timings for the different solvers

(a) One solve (nominal case).

CLQR CPLEX MOSEK QPGEN

T
im

e
in

 m
s

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08
Box Plots: Timings for the different solvers

(b) Average solve times for MPC and CLQR.

Figure 3.7: Solve times of the CLQR solver versus CPLEX, MOSEK and QPgen for the toy system,
sampled from 750 initial conditions. In (a), the CLQR generally requires less time than solving a series
of finite horizon optimal control problems, leading to the same optimal solution. Only the solver QPgen
clearly outperforms our proposed approach, which makes use of the same, in principle, splitting method,
enhanced by several add-on’s that enable speedup. In (b) the three solvers are faster. The large variance of
the CLQR approach in comparison to the others is a typical characteristic of first-order methods, and can
be significantly reduced with appropriately conditioning of the problem.

invariant set. We compare CLQR to MPC with horizon length T = �23T∞� and terminal set
constraint, as well as with T = 2T∞, without terminal set constraint, exactly as we did before.
Regarding the algorithmic parameters, a is set to 5 and the stopping criterion is set to a very low
tolerance (‖λk − λ̂k+1‖/‖λk‖ ≤ 10−12) so as to eliminate any numerical discrepancies resulting
from early termination. We solve the Lagrangian minimization (Step 3 in Algorithm 5) by means
of a Riccati recursion. Note that the complexity is similar to solving a linear system since only the
affine parts of the Lagrangian function vary per iteration, allowing us to precompute the Riccati
matrix and the feedback gain. For the same reasons, the same complexity holds when solving
the MPC problem (see, e.g., [FJ13b] for the time-varying Riccati recursion). We are interested
in four metrics: The number of infeasible problems when doing MPC (indicator of the volume
of the region of attraction), the number of iterations, the execution times and the quality of the
controller (evaluated via the objective function value that the two schemes achieve). The results are
summarized in Table 3.1. Out of the 200 sampled initial conditions, 19 resulted in infeasible closed-
loop problems due to the additive state disturbance. The short-viewed MPC policy (3d column)
resulted in 69 infeasible problems. The times achieved are significantly higher than the CLQR
times. The deterioration of the objective function value is negligible. When the horizon increases
(4th column), the average and median times go down, being comparable, but still not as good as the
ones achieved with CLQR. The reduced iteration count is a result of the warm-starting policy which
is more efficient when applying CLQR instead of MPC, in the sense that, firstly, the multipliers
are initialized at their optimal values, and secondly, that the horizon (hitting time T∞) shrinks as
time progresses, essentially resulting in smaller QPs.

3.9 Conclusion 49

of iterations
0 1000 2000 3000 4000 5000 6000

of

 p
ro

bl
em

s

0

100

200

300

400

500

600

700
Iteration count for CLQR

(a) Histogram for the number of iterations re-
quired over 750 problems.

of factorizations
0 5 10 15 20 25

of

 p
ro

bl
em

s

0

50

100

150

200

250
Factorization count for CLQR

(b) Number of factorizations required over 750
problems.

Figure 3.8: Iteration and factorization counts for the toy system. It can be seen in (a) that more than 80%
of the problems needed less than 400 iterations in order to converge, while the maximum number observed
is around 5000 iterations. The mean value of factorizations in (b) is seven while no problem instance needed
more than 25 factorizations.

Table 3.1: Closed loop comparison between CLQR and MPC

CLQR MPC �2
3
T∞� w/ T.S. MPC 2T∞ w/o T.S.

Infeasible Problems 19 69 19

Times (ms)
Average 124.8 169.9 92.1
Median 30.6 64.6 50.3

Iterations
Average 1118.0 1537.8 1461.9
Median 290.0 591.0 317.0

Average Objective Increase - 0.04% -

3.9 Conclusion

In this chapter, we presented an algorithmic scheme capable of solving the constrained linear
quadratic regulator problem in real time. The algorithm is an accelerated version of the proxi-
mal gradient algorithm and belongs to the wider family of forward-backward splitting schemes.
The approach is to write the problem in its condensed form and dualize, which leads to the mini-
mization of an infinite-dimensional quadratic functional subject to non-positivity constraints. The
resulting infinite dimensional problem can be tackled in finite dimensions by observing that the
dual sequence has always only finitely many non-zero elements. The proposed algorithm makes no
use of terminal invariant sets and provably converges to the optimal solution of the infinite-horizon

50 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

problem. Regarding the implementation aspects, the algorithm can be highly competitive since it
enjoys the convergence properties of optimal first-order methods whose computational per itera-
tion overhead is small. In addition, it requires minimal a priori information since the most crucial
quantities are computed online, and there are no unreasonable or conservative assumptions on the
problem’s structure.

There are mainly two ways to extend the constrained infinite-horizon regulation result: Compu-
tational and theoretical enhancements. From a computational viewpoint, the number of iterations
needed for convergence can be quite large for very unstable (large) systems, or for ill-conditioned
problem data. To this end, preconditioning of the problem is necessary in order for the method
to be practical. The several recent advancements regarding proximal gradient methods [GB14b;
GB15; STP17] could be applicable to our approach, with the possible difficulty of adapting these
results to infinite dimensional spaces.

Theoretical extensions could, again, be developed in two directions. With regard to the ‘type’
of the optimal control problem, an obvious extension is the setpoint-tracking case, possibly a soft-
constrained optimal control formulation, as well as the interesting possibility of application to
stochastic infinite horizon problems. Regarding the type of constraint sets that our approach can
tackle, going beyond the polytopic case would be useful in several settings. These extensions are
discussed in more detail in Chapter 6.

3.10 Appendices

3.10.1 Required Operator Theory

The subsequent results hold for general real Hilbert spaces, including the special case of l2w we
consider. We write variables in normal font, and we use the bold font to describe the infinite-
dimensional variables we are manipulating in our problem description.

Definition 15. The l2-weighted (or l2w) real Hilbert space H is defined by

H =

{
z = {zi} :

∞∑
i=0

‖zi‖22wi < ∞
}
, w > 0 .

Definition 16. A linear operator (mapping) F : H1 → H2 between two Hilbert spaces is said to
be bounded if the operator norm ‖F‖ of F , defined as

‖F‖ := sup
‖x‖H1

=1
‖Fx‖H2 ,

satisfies ‖F‖ < ∞. The set of bounded operators between two Hilbert spaces H1 and H2 is denoted
as B(H1,H2).

Theorem 6. Let H1,H2 be real Hilbert spaces and F ∈ B(H1,H2). The adjoint of F is the unique
operator F � ∈ B(H2,H1) that satisfies

〈Fx, y〉 = 〈x, F �y〉 ∀x ∈ H1, ∀y ∈ H2 .

3.10 Appendices 51

Moreover, ‖F‖ = ‖F �‖.

Subsequently, we introduce the notions of weak and strong convergence.

Definition 17. Let H be a Hilbert space. We say that {xk} converges weakly to x if ∀y ∈ H
〈y, xk〉 k→∞−−−→ 〈y, x〉. We denote weak convergence as xk ⇀ x.

Definition 18. Let (xk)k∈N be a sequence in H. Then {xk} converges strongly to x if ‖xk−x‖ k→∞−−−→
0. We denote strong convergence as xk → x.

Definition 19. An operator F : H → H is positive-definite if it is bounded, F = F � and 〈Fx, x〉 ≥
α‖x‖H for some α > 0, for all x ∈ H .

We recall that a positive definite operator F is invertible and the inverse operator F−1 is bounded.

3.10.2 Boundedness of several operators

Lemma 7. The operators C and W are bounded.

Proof: Boundedness of W is trivial since it is a diagonal operator with non-increasing elements
on the diagonal.

The operator C can be expressed as the following sum:

C =

⎡
⎢⎢⎢⎢⎢⎣

Cu 0 · · ·
0 0 · · ·
0 Cu · · ·
0 0 · · ·
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦+

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · ·
CxB 0 · · ·
0 0 · · ·

CxAB CxB · · ·
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Cx

,

and by using the triangle inequality, we have

‖C‖ ≤ σmax(Cu) + ‖Cx‖. (3.18)

We thus have to show that y = Cxu is bounded, i.e.,

sup
‖u‖Hu=1

‖y‖Hλ
< ∞.

In order not to carry the zero rows of Cx, we define ȳ ∈ H̄λ by dropping the zero elements of y.
This infinite-dimensional vector consists of the elements ȳi = [Cx]iu =

∑i−1
j=0CxA

i−j−1Buj ∈ R
px .

Note that
sup

‖u‖Hu=1
‖ȳ‖H̄λ

= sup
‖u‖Hu=1

‖y‖Hλ
.

52 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

Focusing on the operator of interest, we have that

‖ȳ‖H̄λ
=

√√√√ ∞∑
i=1

‖ȳi‖22wi =

√√√√ ∞∑
i=1

wi‖
i−1∑
j=0

CxAi−j−1Buj‖22 . (3.19)

Then

‖ȳ‖2H̄λ
=

∞∑
i=1

wi‖
i−1∑
j=0

CxA
i−j−1Buj‖22

=

∞∑
i=1

‖
i−1∑
j=0

Cx(Aŵ)i−j−1Bujŵ
j+1‖22

= ŵ2
∞∑
i=1

‖
i−1∑
j=0

CxÂ
i−j−1Bûj‖22 ,

where we introduced ŵ = w1/2, ûj = ujŵ
j with û ∈ l2 and Â = Aŵ. Observing the above

expression, one can identify that
∑i−1

j=0CxÂ
i−j−1Bûj is the convolution sum of the impulse response

of the system

Σ :=

(
Â B

Cx 0

)
with an input û. More specifically, borrowing the notation from [Ant98] we denote the impulse
response of Σ as hΣ,i = CxÂ

i−1Bsi, where si = 1, i ≥ 0 is the unit step function. Then the
convolution operator is defined as the linear map SΣ : û → ȳ with ȳi = (hΣ ∗ û)i =

∑i−1
j=0 hΣ,i−j ûj =

(SΣû)i. Thus we have that

‖ȳ‖2H̄λ
= ŵ2

∞∑
i=1

‖ (SΣû)i ‖22 = ŵ2‖SΣû‖22 ⇒

‖ȳ‖H̄λ
= ŵ‖SΣû‖2 ≤ ŵ sup

‖û‖2≤1
‖SΣû‖2 .

From the definition of the induced 2-norm of Σ, denoted here as ‖Σ‖2, we have that sup ‖SΣû‖2 =
‖Σ‖2‖û‖2 and by assuming (without loss of generality) that ‖û‖2 = ‖u‖Hu = 1, we end up having
that ‖ȳ‖H̄λ

≤ ŵ‖Σ‖2. Finally, the operator Cx is bounded by the H∞ norm of the transfer matrix
HΣ(z), or ‖ȳ‖H̄λ

≤ ŵH∞(Σ). Subsequently, we have from (3.18) that the operator C is bounded
by σmax(Cu) + ŵH∞(Σ). �

Remark 9. Following the discussion from Section 3.1, the weight ŵ can be chosen to render any
unstable system stable by shrinking the eigenvalues of the matrix A (Â = ŵA).

Lemma 8. The operator H−1 is bounded and ‖H‖ ≤ 1/λmin(R).

Proof: The operator H is given by H = B�QB+R; see (3.2). Since B�QB is positive semidefinite
(i.e., 〈B�QBu,u〉 ≥ 0 for all u ∈ Hu) and R is positive definite according to Definition 19, we

3.10 Appendices 53

conclude that H is positive definite and hence has a bounded inverse.
In order to compute the bound for H−1 we observe that ‖(B�QB + R)−1‖ ≤ ‖R−1‖ ≤

1/λmin(R), which concludes the proof. �

3.10.3 Backtracking stepsize rule

In this appendix we briefly revise the backtracking stepsize rule that allows for local estimates of
the curvature of h� and show that points (i), (iii) and (iv) of Theorem 1 also hold in this case. The
arguments are in line with [BT09].

We denote as f the smooth and g the nonsmooth convex functions of interest. Note that in our
case f = h� and g = δ−. For any L > 0 consider the quadratic approximation of F (λ) = f(λ)+g(λ)
at a point y:

QL(λ,y) := f(y) + 〈λ− y,∇f(y)〉+ L

2
‖λ− y‖2 + g(λ) . (3.20)

We also define the unique minimizer parametrized by the point y as

pL(y) := argmin
λ

{QL(λ,y)} (3.21)

= argmin
λ

{
g(λ) +

L

2
‖λ−

(
y − 1

L
∇f(y)

)
‖2

}
(3.22)

= prox g

(
y − 1

L
∇f(y)

)
, (3.23)

which is the basic step of Algorithm 4, i.e., Step 3. The following holds:

Lemma 9 (Lemma 2.3 [BT09]). Let y ∈ Hλ and L > 0 be such that

F (pL(y)) ≤ QL(pL(y),y) .

Then for any λ ∈ Hλ,

F (λ)− F (pL(y)) ≥
L

2
‖pL(y)− y‖2 + L〈y − λ, pL(y)− y〉 .

The backtracking procedure as described in [BT09] is as follows:

Algorithm 6 Backtracking for stepsize computation

0: Take L0 > 0, some η > 1, and λ0 ∈ Hλ.
repeat

1: Find the smallest nonnegative integer ik such that with L̄ = ηi
k
Lk−1

until F (pL̄(y
k)) ≤ QL̄(pL̄(y),y)

Note that for any Lk = L̄ generated by Algorithm 6 Lemma 9 holds.
We also have the following instrumental Lemma from [CD15]:

54 Chapter 3. Infinite-Horizon Constrained Linear Quadratic Regulator

Lemma 10 (Lemma 1 [CD15]). Let L ≥ L(f), λ,y ∈ Hλ and pL(y) := prox g(y − 1
L∇f(y)).

Then for all λ
F (pL(y)) +

L

2
‖pL(y)− λ‖2 ≤ F (y) +

L

2
‖λ− y‖2 .

Supposing that Lemma 10 holds, convergence of the function values with rate 1/k2 can be proven
under no further assumptions using Theorem 2 and Corollary 1 in [CD15]. We are going to show
that all stepsizes γk = 1/Lk generated from Algorithm 6 satisfy Lemma 10.

Lemma 11. Consider F = f+g, with f = h� and g = δ− as defined in Section 3.4. The iterates λk

generated from Algorithm 4 with a backtracking stepsize rule generated from Algorithm 6 satisfy:

F (λk)− F (λ∞) ≤ a2L̄

2(k + a− 1)2
‖λ0 − λ∞‖2 .

Proof: All local Lipschitz estimates L̄ generated from Algorithm 6 satisfy F (pL̄(y
k)) ≤

QL̄(pL̄(y),y) and, consequently, from Lemma 9,

F (λ)− F (pL̄(y)) ≥
L̄

2
‖pL̄(y)− y‖2 + L̄〈y − λ, pL̄(y)− y〉 ,

or
2

L̄
(F (λ)− F (pL̄(y))) ≥ ‖pL̄(y)− y‖2 + 2〈y − λ, pL̄(y)− y〉 .

It follows from the Pythagorean theorem that

‖b− a‖2 + 2〈b− a, a− c〉 = ‖b− c‖2 − ‖a− c‖2 ,

and hence
2

L̄
(F (λ)− F (pL̄(y))) ≥ ‖pL̄(y)− λ‖2 − ‖y − λ‖2 ,

from which Lemma 10 follows. Theorem 2 and Corollary 1 of [CD15] then lead to the desired
result. �

Chapter 4

Inertial Parallel and Asynchronous
Forward-Backward Iteration for
Distributed Convex Optimization

4.1 Introduction

The inherent parallelization potential of operator splitting schemes has spurred a significant amount
of research in asynchronous implementations. Asynchronous parallel methods have been mostly
motivated from memory allocation applications, when, e.g., a vector is stored in the shared memory
space of a multicore computer and can be accessed and altered by the cores in an intermittent
manner [LW15; PXYY16].

In this chapter, we focus on another application area that motivates asynchronicity, namely
the existence of an inhomogeneous mixture of agents, where their local updates need not occur at
a common rate. This type of problems appears in a setting different from the machine learning
ones, i.e., in multi-agent distributed optimization problems, usually in the presence of a global co-
ordinator. As an example, in a smart grid setting with distributed resources (agents) and a central
operator (coordinator), the local update of a particular agent is the solution to an optimization
problem of different complexity than other local subproblems of different agents. In addition, the
agents’ updates need not occur uniformly, or as a matter of fact, need not draw from any stationary
distribution since intermittent failures and delays occur. This would require that the computations
of different subproblems are initiated at different time instances and that the agents communi-
cate their solutions to the coordinator in arbitrary sequences. Asynchronous schemes like the one
described above pose several challenges in terms of proving convergence in comparison to their
synchronous counterparts (see [BT89; Wri15] for interesting overviews).

Our work brings together acceleration techniques with asynchronous implementations of a rather
wide family of operator splitting schemes, this of forward-backward splitting methods (FBS) [BC11,
Chapter 25]. More specifically, we devise an asynchronous iteration in which the coordinates update
with varying, arbitrary frequencies and, under some common assumptions, we show that the dis-
tance to the set of fixed points of an inertial version of this asynchronous FBS iteration will converge
linearly to zero provided that all the coordinates are visited at least once in a given (bounded) time

4.2 Related work 57

interval.
The outline of the chapter is as follows: In Section 4.2 we make a short reference to the main

theoretical tools that are going to be used in this chapter, along with existing works regarding
relaxed and/or inertial fixed-point iterations. The problem of interest is first formulated and ex-
plained in Section 4.3, where the contributions of this work are also outlined. Section 4.4 illustrates
a sketch of the convergence proof of the proposed scheme, while the detailed steps are presented
in the Appendices 4.8. In Section 4.5 we draw the connections bwtween our scheme and existing
algorithms and how it gives rise to new versions of the latter. Finally, Section 4.6 illustrates the
performance of the method in comparison to its regular counterpart for a load sharing problem in
the context of a smart distribution grid.

4.2 Related work

The preliminary material for this chapter is covered in Section 2.2 of Chapter 2. We repeat below
some of the basic concepts presented there for ease of access and completeness.

Our purpose is to combine the heavy ball iteration of Polyak with a relaxed fixed-point iteration
in an asynchronous context and achieve faster practical convergence. Polyak’s heavy ball method
(inertial acceleration), as described in Section 2.2 is a modification of the gradient descent iteration
that generates a sequence of iterates {xk} that minimize a differentiable, convex function f

xk+1 = xk − γ∇f(xk) + β(xk − xk−1) , (4.1)

with γ being an (admissible) stepsize and β ∈ (0, 1). The method has been generalized in the
context of finding a zero of a maximal monotone operator S.

find x∗ ∈ H such that 0 ∈ Sx∗ .

In [AA01], the authors proposed an Inertial-Prox algorithm that generalizes (4.1) to

xk+1 = JγkS(xk + βk(xk − xk−1)) , (4.2)

where JγkS is the resolvent of S. Iteration (4.2) generalizes the proximal point algorithm and finds
a zero of a maximal monotone operator S by making use of the momentum term. In [MO03], the
authors extended the inertial scheme (4.2) to find a zero of the sum of two maximal monotone
operators.

The combination of inertia and relaxation has been proposed in [Alv04], where the zero of a
maximal monotone operator S is recovered by means of the iteration

xk+1 = yk + ηk(JγkSyk − yk) ,

where yk = xk+βk(xk−xk−1). The iteration converges weakly to a fixed point of JγkS in a Hilbert
space setting.

The works [AA01; MO03; Alv04] are put under a common framework in [Mai08], where the

58
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

author develops convergence theorems for a generic inertial KM-type iteration of the form

xk+1 = yk + ηk(Tkyk − yk) ,

with yk = xk + βk(xk − xk−1). Convergence is proven under different choices for the parameter
sequences {ηk}, {βk} as well as the operator sequence {Tk}. Finally, in the recent work [IH16] the
authors employ relaxed and inertial schemes to accelerate the KM iteration by means of algorithms
that auto-tune the involved parameters.

4.3 Problem description

4.3.1 Asynchronous updates

The proposed setting involves N agents, each one assigned to update one (block of) coordinate(s)
of x, i.e., x = (x[1], . . . , x[N]) ∈ H, and x[i] ∈ Hi. The agents seek convergence to a fixed point of
a nonexpansive operator T . One way to achieve this is to perform block-coordinate updates of the
KM iteration

zk+1 = xk + ηk(Txk − xk) , (4.3)

where T : H
→ H is a nonexpansive operator and ηk ∈ [0, 1],
∑

ηk(1 − ηk) = +∞ is a relaxation
constant.

Such a scheme has been proposed and analyzed in [PXYY16]. The iteration reads

xk+1[i] = xk[i]− ηk(Sx
i
read)[i] , (4.4)

where S = I − T , hence the set of fixed points of T is the set of zeros of S, i.e., fixT = zerS.
Iteration (4.4) assumes the existence of a global coordinator, associated with a global clock. All

agents update continuously and in parallel, while the global clock updates the subscript k every
time that an agent updates. The variable xiread represents the state of the vector x as it existed at
the coordinator when the agent that is about to update (i) requested it (a ‘read’ operation). Each
update involves the most recent state of x, denoted by xk, and the result of the operator S acting
on an outdated version xiread. The distinction between xk and xiread is important, since, on the
coordinator’s level, several components of xk have possibly been altered since the time instant
that xiread was read. Every global clock count k is uniquely associated to an updated ith group of
coordinates. In this way, only the ith block of rows of the operator S contributes to the next update
of x, and only the x[i] ∈ Hi block is updated.

Our goal is to propose an accelerated version of (4.4) in order to achieve better practical
performance without increasing the computational complexity of the iteration.

4.3.2 An asynchronous inertial forward-backward iteration

We propose an asynchronous inertial KM iteration scheme for finding a zero of S. We confine our
interest to not just any KM iteration, but we rather assume that the operator T can be written
as the composition of two operators TA : H
→ H and TB : H
→ H, the properties of which will

4.3 Problem description 59

be analyzed in the course of this section. In addition, we assume that the operator TA is separable
into N components, i.e., TA = (TA1 , . . . , TAN

), TAi : Hi
→ Hi.
The scheme comprises N + 1 main blocks, one associated to the coordinator and N associated

to the agents. The operators TAi are private to the agents, while TB is owned by the coordinator.
Before proceeding to the algorithm, we introduce the quantities associated to the coordinator and
the agents. Let us start by denoting all variables stored at the coordinator by ‘x’ and all variables
stored at the agents by ‘y’.

• Coordinator

– x - the current value of the (global) optimization variable

– xiwrite - the value of x at the time of receipt of value from agent i

– xiread - the value of x at the time of transmission to agent i

– zi - the last value received from agent i (zi = TAi

(
yB + β(ywrite − yprevwrite)

)
)

• The following variables are local to agent i

– ywrite = xiwrite[i] - the value of x[i] after updating x with the latest zi

– yprevwrite - the value of x[i] before ywrite

– yB = (TBx
i
read)[i] - quantity computed by the coordinator and transmitted at the same

time as ywrite

Agent i essentially waits to receive the quantities yB and ywrite from the coordinator. Once received,
the privately owned operator TAi is applied to the expression yB + β(ywrite − yprevwrite) and the result,
i.e., zi, is transmitted back to the coordinator, which, in turn, uses it in order to update the ith

component of the global variable x.
The algorithmic scheme can be described by two interacting and distinct blocks, one refering

to an agent and one to the coordinator.

Algorithm 7 Agent
wait until

Receive ywrite, yB from coordinator
Compute:

zi = TAi

(
yB + β(ywrite − yprevwrite)

)
(4.5)

Transmit zi to coordinator
yprevwrite ← ywrite

end

60
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

Algorithm 8 Coordinator

Write Thread
Initialize W = ∅, R = ∅, k = 0
repeat

Receive zi from agent i
W ← W ∪ {i}

until stopping condition holds

Compute Thread
repeat

Choose i ∈ W or block until
W �= ∅

W ← W \ {i}
z[i] ← zi

Compute:

xk+1 = (1− η)xk + ηz (4.6)

xi
write ← xk

R ← R∪ {i}
k ← k + 1

until stopping condition holds

Read Thread
repeat

Choose i ∈ R or block until R �=
∅

R ← R \ {i}
xi
read ← xk

Transmit xi
write[i],

(TBxi
read)[i]

until stopping condition holds

We make the following observations:

• Algorithms 7 and 8 are executed continuously and in parallel. There is one algorithmic block
described by Algorithm 7 per agent i, i = 1, . . . , N , and these N blocks execute in parallel.
Each block is activated upon receival of the required info from the coordinator.

• There are three threads of control in Algorithm 8, namely a Write thread, a Compute thread
and a Read thread. The threads are concurrent and their execution is determined by two
buffers, the read buffer denoted by R and the write buffer denoted by W .

• Whenever the coordinator receives an update from an agent, W is updated. Receivals con-
tribute, therefore, in filling-up the write buffer. The coordinator eventually decides to pull
an agent from the buffer and use its corresponding value to update xk+1[i] with z[i] (equa-
tion (4.6)), while the rest of the coordinates are updated based on the previous values of
z[j], j �= i. Once the update has occured, the index of the corresponding agent is removed
from W and added to R, signaling that the agent is ready to ‘listen’ from the coordinator.
Similarly, whenever the coordinator decides to transmit to an agent (Read thread), its index
is removed from R. In this way, the buffers control the execution of Algorithm 8, which follows
a producer-consumer pattern.

• Note that whenever W is emptied, the Compute thread is blocked until at least one index is
added to its stack. The same holds for R and the Read thread.

• As indicated by Assumption 5 below, each agent has to contribute in updating (4.6) at least
once every τ time epochs. Consequently, the buffers cannot remain empty for longer than τ .

• The relaxation parameter η and the inertia constant β that appear in (4.6) and (4.5), respec-
tively, will be restricted within intervals in the subsequent sections so as to ensure convergence
of the algorithm.

• The workhorse behind the conceptual scheme derived above is essentialy the asynchronous
fixed-point iteration (4.6) that is based on the agents’ updates (4.5).

4.3 Problem description 61

• The coordinator’s variables x, xiwrite, x
i
read and z are containers that get updated from the

agents and lie in H. The local variables ywrite, y
prev
write, yB and zi lie in Hi.

Figure 4.1 demonstrates graphically the information flow.

RW

Figure 4.1: Buffer W is filled by the Write thread and emptied by the Compute thread. Similarly, R
is filled by the Compute thread and emptied by the Read thread. The scheme executes continuously and
asynchronously, both at the coordinator level (concurrent threads) and at the interface between the agents
and the coordinator.

We make the following standing assumptions:

Assumption 2. The operator TA is nonexpansive.

Assumption 3. The operator TB = I − γB, γ > 0, and the operator B is 1/L-cocoercive.

Corollary 1. The operator S = I − T is 1/2-cocoercive.

The proof can be found in Appendix 4.8.6.

Assumption 4. The operator S = I − T is quasi-ν-strongly monotone for some ν > 0.

Iteration (4.6) generalizes the inertial proximal iteration in [OBP15], with TA replacing the proximal
operator and TB the operator I − γ∇f . Assumption 4 can be met for a relatively wide class of
operators TA and TB. One such instance is derived in Appendix 4.8.6, where μ-strong monotonicity
of the operator B is assumed in order for the property to hold. In the case of the proximal gradient
method with TA = proxγg and TB = I−γ∇f , this assumption would translate to strong convexity
of f .

Finally, the following assumption regards the frequency of the updates:

Assumption 5. Each agent ‘writes’ to the coordinator state at least once every τ time epochs.

Assumption 5 categorizes our scheme with the partially asynchronous parallel methods as introduced
in [BT89, Chapter 7].

62
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

4.3.3 Main contribution

We prove linear convergence of the sequence {distk} generated from Algorithms 7 and 8, where
distk := ‖xk − x∗‖. The result is based on Lemma 12 below, which originally appeared in [FAJ14]
and has been extensively used in recent works for proving linear convergence of sequences with
errors.

Lemma 12. Let {Vk} be a sequence of nonnegative real numbers satisfying

Vk+1 ≤ rVk + q max
k−τ≤l≤k

Vl, l ≥ 0,

for some nonnegative constants r and q. If r + q < 1, then

Vk ≤ skV0, k ≥ 1,

where s = (r + q)
1

1+τ .

Our convergence proof follows the styles of [GOP17] and [PXYY16]. In the former, the authors
prove linear convergence of the incremental aggregated unconstrained gradient method, while in
the latter an asynchronous KM iteration is developed. Our contributions are summarized below.

1. We prove convergence of an asynchronous and parallel forward-backward iteration of a se-
quence involving an inertial term. To the best of our knowledge, this is the first result on
accelerated asynchronous fixed-point iterations.

2. Contrary to the majority of existing popular schemes, the proposed asynchronous iteration
is deterministic, i.e., an arbitrary (block of) coordinate(s) can be selected to update at each
iteration. The coordinates can be chosen with varying frequencies, the only assumption being
that each coordinate is updated at least once within a fixed time interval. The only work
known to us that treats asynchronous updates in a deterministic way, though in a different
setting, is [CE16].

3. The proposed iteration is quite general and encompasses many known algorithms as special
cases, i.e., several forms of the forward-backward splitting method (see Section 4.5). Indica-
tively, we propose new inertial and asynchronous instances of two existing and commonly
used algorithms and we list some more that can be derived.

4.4 Convergence proof

We want to use Lemma 12, with Vk = ‖xk−x∗‖2, x∗ ∈ zerS. In order to do so, we first express the
outdated versions of the global vector x that appear in (4.5) (and consequently in iteration (4.6))
with respect to the original ones, perturbed by some additive errors. Subsequently, these errors are
going to be upper-bounded by max

k−K≤m≤k
‖xm − x∗‖, for some bounded delay K. We are going to go

through the proof in steps.

4.4 Convergence proof 63

4.4.1 Express delayed variables as additive error

The variables yB, ywrite, y
prev
write that appear in the update (4.5) depend on outdated components of

x, namely on the state of the vector x when a ‘read’ or ‘write’ operation was performed by agent
i. It can be easily seen that any past vector xk−l, l ∈ {1, . . . , k − 1} can be expressed as

xk−l = xk −
k−1∑

m=k−l

(xm+1 − xm) .

Consequently, the vectors that appear in (4.5) can be written as functions of the current vector xk
and some error.

xiread = xk−li = xk − aik, for some li ∈ {1, . . . , 2τ}
ywrite = xiwrite[i] = xk−li [i] = xk[i]− bik[i], for some li ∈ {1, . . . , 2τ}
yprevwrite = xk−li [i] = xk[i]− cik[i], for some li ∈ {1, . . . , 3τ} , (4.7)

and the sequences {aik}Ni=1, {bik}Ni=1 and {cik}Ni=1 are all of the form
∑k−1

m=k−li
(xm+1 − xm) for some

proper choice of li. In other words, equations (4.7) ‘undo’ all the changes that occured over the last
updates, until the corresponding past state is recovered. Note that the li’s in the three equations
above are not the same.

The intervals within which the subscripts li, i = 1, . . . , N reside are derived based on Assump-
tion 5. The derivation is explained graphically in Figure 4.2.

k

≤ τ

yprevwrite ywrite yB z i

≤ τ≤ τ

Figure 4.2: An update is about to occur at k+1. From Assumption 5, the observed agent will update again
no later than τ time epochs after zi was communicated to the coordinator. Consequently, ywrite cannot be
further than 2τ from the next update, while yprevwrite cannot be further than 3τ .

Lemma 13. Equation (4.6) can be expressed as

xk+1 = xk + η(Txk − xk + ek) = xk − η(Sxk − ek) , (4.8)

where ek is an error term whose ith term is defined as

ek := TA (TBxk + dk + β(ck − bk))− TA(TBxk) , (4.9)

64
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

with bk = {bik}Ni=1 and ck = {cik}Ni=1 defined in (4.7), and

dk[i] := γ(Bxk)[i]− γ(B(xk − aik))[i]− aik[i], dk = (dk[1], . . . , dk[N]) . (4.10)

The proof of Lemma 13 is given in Appendix 4.8.1.

4.4.2 Isolate the error

The form of the iteration derived in Lemma 13 will help us separate the error sequence {ek} from
the sequence of interest {distk}. To this end, the following result holds, the derivation of which is
given in Appendix 4.8.2.

Lemma 14. The distance is upper-bounded as:

dist2k+1 ≤ (1− η(ν − ε))dist2k +η

(
1

ε
+

η(1 + δ)

δ

)
‖ek‖2 , (4.11)

for η ∈ (0, 1/(2(δ+1))) and any δ > 0, ε ∈ (0, ν), while ν is the quasi-strong monotonicity constant
of S as introduced in Assumption 4.

If we manage to bound the last two terms of the equation with respect to the maximum distance
from the set of fixed points, inequality (4.11) will be in the form described by Lemma 12. In the
next step, we start by bounding the error term ‖ek‖.

4.4.3 Bound the error recursively

We want to bound the error term ‖ek‖ by means of max
k−K≤l≤k

‖xl − x∗‖ for some K ∈ N. We will do

so in two phases, first bounding ‖ek‖ (given in (4.9)) recursively with respect to itself:

‖ek‖ = ‖TA (TBxk + dk + β(ck − bk))− TA(TBxk)‖
≤ ‖dk + β(ck − bk)‖
≤ ‖dk‖+ β‖ck − bk‖ , (4.12)

where the first inequality follows from the nonexpansivity of TA.
It thus suffices to bound ‖dk‖ and ‖ck − bk‖ in a recursive way. The result is presented in

Lemma 15 below and proven in Appendix 4.8.3.

Lemma 15. The quantities ‖ck − bk‖ and ‖dk‖ can be bounded recursively as:

‖ck − bk‖ ≤ 2ηNΣ3τ (k) (4.13a)
‖dk‖ ≤ η(1 + γL)NΣ2τ (k) , (4.13b)

where

ΣK(k) :=
k−1∑

m=k−K

(‖dm‖+ β‖cm − bm‖+ ‖Sxm‖) (Σ)

and L is the inverse cocoercivity constant of the operator B from Assumption 3.

4.4 Convergence proof 65

4.4.4 Bound the error with respect to the maximum distance from the set of
fixed points

Looking at (4.13a) and (4.13b), what needs to be bounded is the quantity (Σ), and consequently
the three sums, i.e.,

∑k−1
m=k−K ‖dm‖, ∑k−1

m=k−K ‖cm − bm‖ and
∑k−1

m=k−K ‖Sxm‖ for K = {2τ, 3τ}
with respect to the maximum distance from the set of fixed points of T . Lemma 16 below states
the result.

Lemma 16. The sequence (Σ) can be upper bounded by the maximum distance from the set of
fixed points of T as

‖ΣK(k)‖ ≤ 2K(Y N + 1) max
k−K−3τ≤j≤k−1

distj ,

where Y := 1 + γL+ 2β. Using the above, the error ‖ek‖ can be bounded as

‖ek‖ ≤ ηX max
k−6τ≤j≤k−1

distj , (4.14)

where
X := N(Y N + 1)(4τ(1 + γL) + 6βτ) .

The Lemma is proven in Appendix 4.8.4.

4.4.5 Condition for convergence

Let us now recover the condition for the algorithm to converge. By using (4.14) in (4.11), we have
the desired result expressed as:

dist2k+1 ≤ r(η)dist2k +q(η) max
k−6τ≤j≤k−1

dist2j ,

where
r(η) := 1− η(ν − ε), q(η) := η3X2

(
1

ε
+

η(1 + δ)

δ

)
. (4.15)

Lemma 12 suggests that the asynchronous inertial FBS iteration (4.8) will converge to a zero
of S at a linear rate (r(η) + q(η))

1
1+6τ if the condition

1− η(ν − ε) + η3X2

(
1

ε
+

η(1 + δ)

δ

)
< 1 (4.16)

holds.

Theorem 7. Iteration (4.8) will converge at a linear rate as described in Lemma 12 with r(η) and
q(η) given in (4.15) for

η < min

{
1

2(1 + δ)
,
1

X

√
2δε(ν − ε)

2δ + ε

}
,

where γ ∈ (0, γmax), δ > 0, ε ∈ (0, ν) and β > 0. The upper bound γmax ensures that the stepsize
γ is admissible (a possible option is, e.g., γmax = 2/L as proven in Appendix 4.8.6).

66
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

Theorem 7 is proven in Appendix 4.8.5.

4.5 Connection to other methods

The operators TA and TB that constitute the proposed iteration (4.8) give rise to several asyn-
chronous accelerated versions of known algorithms. The form of TB, namely the forward step
TB = I − γB, played an important role in allowing us to express the errors that arise due to
the delays and the inertial term in an additive manner. At the same time, this limits the applicabil-
ity of our iteration to methods that can be cast as forward-backward iterations. Below, we introduce
the extensions of some popular algorithms that can be seen as special cases of iteration (4.8).

4.5.1 Gradient descent

Classical gradient descent can be recovered by choosing TA = I and TB = I − γ∇f , for a dif-
ferentiable strongly convex function f : Rn
→ R with Lipschitz continuous gradient. The inertial
asynchronous iteration becomes:

xk+1[i] = (1− η)xk[i] + η
(
xiread[i]− γ∇if(x

i
read) + β(ywrite − yprevwrite)

)︸ ︷︷ ︸
zi

,

where ∇if(x) := ∇x[i]f(x) : R
n
→ R

ni ,
∑N

i=1 ni = n, and corresponds to an asynchronous iteration
of the heavy ball gradient method.

4.5.2 Proximal gradient

Let us consider the optimization problem

minimize f(x) +

N∑
i=1

gi(x[i]) , (4.17)

where f is stronlgy convex differentiable with Lipschitz continuous gradient, while gi ∈ Γ0(R
ni)

and x ∈ R
n = R

n1 × · · · × R
nN . The iteration reads:

xk+1[i] = (1− η)xk[i] + η proxγgi

(
xiread[i]− γ∇if(x

i
read) + β

(
ywrite − yprevwrite

))︸ ︷︷ ︸
zi

,

and corresponds to a relaxed and asynchronous version of the proximal Heavy Ball method
in [OBP15].

4.5.3 Other methods

Besides the two instances analyzed above, a variety of convex optimization algorithms can be
expressed as a forward-backward iteration, and consequently give rise to novel asynchronous im-
plementations. The generalized forward backward splitting [RFP13; RL15], the forward-Douglas-

4.6 Application: Distribution network real-time dispatch 67

Rachford splitting [BA12; Dav15a] and several primal-dual optimization methods [CCPV14] can be
viewed as candidates, just to name a few.

4.6 Application: Distribution network real-time dispatch

Our goal is to track a 15-minute resolution trajectory, called the dispatch plan, that is computed
one day before the beginning of operation. This is achieved by modulating the power consumption
of a grid-connected battery energy storage system (BESS) and of the thermal consumption of a fleet
of commercial controllable buildings (CB). The problem has been detailed in Section 2.5, and has
been originally proposed and solved in [SNCP16] using as benchmark an experimental setup with
one controllable office and a large battery. In this example we scale up the problem by considering
several CB’s and we compare synchronous versus asynchronous implementations, including our
proposed scheme.

4.6.1 Modeling the agents

The grid comprises the following entities:

Controllable Loads Small, medium and large office buildings, generated by [GQJ15], as de-
scribed by (2.25) in Section 2.5. The buildings can contribute to the dispatchability of the network
by increasing or decreasing their consumption with respect to some baseline power profile. The
optimization objective for CB i becomes

gcbi (pcbi , ui, xi, yi) :=
{1

2
‖yi(t)− T ref

i (t)‖22 | (pcbi , ui, xi, yi) ∈ Ccb
i

}
, (4.18)

Ccb
i =

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

xi(t+ 1) = Aixi(t) +Bu,iui(t) +Bw,iŵi(t)
xi(0) = xiniti

yi(t) = Cixi(t)
ymin,i(t) ≤ yi(t) ≤ ymax,i(t)
umin,i ≤ ui(t) ≤ umax,i

pcbi (t) =
∑Ni

j=1 uij(t)

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

,

with all the variables described in Section 2.5. The desired zone temperature is denoted with T ref
i .

Storage The setup is completed with a grid-connected Lithium Titanate grid-connected 500kWh
BESS described by (2.26) in Section 2.5.

gbess(pbess) :=
{1

2

T∑
t=1

‖SOC(t)− SOCref(t)‖22 | pbess ∈ Cbess
}

, (4.19)

Cbess =

⎧⎪⎪⎨
⎪⎪⎩

SOC(t+ 1) = aSOC(t) + bpbess(t)
SOC(0) = SOC init

SOCmin ≤ SOC(t) ≤ SOCmax

pbessmin ≤ pbess(t) ≤ pbessmax

⎫⎪⎪⎬
⎪⎪⎭ .

68
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

Simulation characteristics

Data 1st January 2000
Location Lausanne
Time 00:00 - 24:00
Sampling time 15 min
Horizon 96 −

Buildings

Minimum temperature (day/night) 20/18 ◦C
Maximum temperature (day/night) 24/28 ◦C
Heat pump COP 3.0 −

Small Medium Large
Number of systems (Case A, B, C, D) 3/6/14/32 2/4/5/16 0/0/1/2 #
Area 511 4982 46320 m2

Tariff (day/night) 21.6/12.7 13.15/8.3 13.15/8.3 ct./kWh
Number of states 15 54 57 −
Number of inputs 5 18 19 −
Average thermal consumption 4 40 75 W/m2

Average computation time (prox per agent) 0.070± 0.010 0.243± 0.005 0.267± 0.001 sec

Battery
Energy storage capacity 500 kWh
C-rate 0.2 −
Material Lithium-ion
Average computation time (prox) 0.023± 0.003 sec

Table 4.1: Micro-grid case study overview

4.6.2 Modeling the dispatch problem

We cast the dispatch problem in a slightly different way than the one presented by (2.24), namely
we penalize the dispatch constraint instead of enforcing it so that we are able to apply the proposed
algorithm. The problem reads

minimize
1

2

T∑
t=1

(
‖SOC(t)− SOCref(t)‖22 + α1‖pbess(t)‖22

)
(4.20a)

+
1

2

N∑
i=1

T∑
t=1

(
‖yi(t)− T ref

i (t)‖22 + α1‖pcbi (t)− p̂cbi (t)‖22
)

(4.20b)

+
α2

2

T∑
t=1

‖pbess(t) +
N∑
i=1

(pcbi (t)− p̂cbi (t))− r(t)‖22 (4.20c)

subject to (pcbi , ui, xi, yi) ∈ Ccb
i , i = 1, . . . , N (4.20d)

pbess ∈ Cbess , (4.20e)

with variables pcbi , i = 1, . . . , N and pbess, and the variables ui, xi, yi local to CB i.
Equations (4.20a) and (4.20b) express the deviation of the BESS SOC from its reference value,

set to SOCref(t) = 0.8SOCmax, as well as the deviation of the indoor temperature from its reference

4.6 Application: Distribution network real-time dispatch 69

value (see Table 5.1). The additional quadratic terms penalized with α1 = 10−2 are introduced
for regularization purposes. Equation (4.20c) expresses the deviation of the aggregate buildings’
flexibility

∑N
i=1(p

cb
i (t)− p̂cbi (t)) along with the BESS flexibility pbess from the given reference r. In

a perfectly dispatchable network, this term should be put to zero, hence it is penalized much more
heavily than the other terms with α2 = 104.

4.6.3 Simulation setup

Our purpose is to solve (4.20) by means of the synchronous, the asynchronous and the inertial
asynchronous versions of the FBS algorithm. To this end, let us make the problem more compact
by grouping the terms. The terms depicted in blue color are private to the BESS system, the
terms in green are private to the CB agents, while red terms comprise the global objective, denoted
hereafter as f(pbess, pcb). Note that the local subproblems in blue and green correspond to the
quadratic programs (QP) (5.39) and (4.18), respectively. Since each variable pcbi is private to agent
i and f couples all the variables through the (strongly convex) quadratic objective, the problem
takes the form (4.17) and is consequently solved using the proximal gradient method.

We consider four case studies (A, B, C and D), namely a mix of the BESS and N = 5, 10, 20
and 50 CB’s. The tracking signal r that we assume is the realized Area Control Signal (ACS), as
it was broadcast by the Swiss grid operator [Swi03], for the 1st of January of the year 2000, scaled
down by the appropriate factor in each of the four cases so that it becomes (almost) trackable by
our mix. The prediction horizon has a length of 24 hours, or T = 96 in 15 minutes intervals.

The source of asynchronicity in this framework is the diverse computational load of the differ-
ent agents (CB’s and the BESS). Although problems (4.18) and (5.39) are QP’s, their size varies
greatly with the number of states and inputs, as indicated in Table 5.1. The delay τ is, therefore,
computed based on the number of the updates per agent in a unit of time. In order to compute
this number, we solve 100 proximal minimization steps per agent and fit a normal distribution to
the solve times. The average computation time is then used to decide upon the frequency of the
updates. The communication delays are assumed to be zero in the simulation. The proximal min-
imization problems are solved using the YALMIP optimizer [L0̈4] with the Gurobi solver. Finally,
the relaxation parameter is set to η = 0.9, which, in spite of the (much) smaller value suggested by
Theorem 7, worked well in our setting.

Problem (4.20) is solved using the proximal gradient method. A comparison between (i) the
synchronous version of the method (all CB’s and BESS update before a new gradient ∇f is com-
municated), (ii) the asynchronous version with coordinate updates (only i = ik updates at each
global clock count, with i = 1, . . . , N + 1 and N + 1 corresponds to the BESS agent), (iii) the
asynchronous aggregated version ((4.17) with β = 0) and (iv) the asynchronous inertial aggregated
version ((4.17) with β = 0.99). Table 4.2 depicts the accuracy reached within Ts = 40sec of simu-
lated wall-clock time using the four algorithms presented above in the four case studies. Table 4.3
presents the average number of updates per type of agent within these 40sec.

Several conclusions can be derived. First, the asynchronous version with coordinate updates
and the asynchronous aggregated version of the proximal gradient method are almost identical in
performace, thus there is neither deterioration (at least in the simulated cases) nor improvement
when using the old updates. Second, the asynchronous versions perform considerably better than
their synchronous counterpart in all cases. This is an expected outcome since the larger the load

70
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

N
Algo.

Sync Async
Coordinate

Async
Aggregated

Async
Agg. Inert.

5 0.116 0.030 0.030 0.003
10 0.252 0.061 0.061 0.012
20 0.315 0.078 0.078 0.015
50 0.824 0.649 0.649 0.448

Table 4.2: Accuracy reached within Ts = 40sec.

Algo.
N 5 10 20 50

Sync 172 156 148 137

Async Agg. Inert. 1639
565.6/171/−

1798
588.5/157/−

1674
515.6/163.2/147

1101
426.37/148.50/142.50

Table 4.3: Average number of updates per agent within simulation time.

imbalance among the agents, the more the algorithm benefits from the asynchronicity, as suggested
by the number of updates per agent in Table 4.3. Finally, the proposed inertial acceleration scheme
results in considerably better performance in terms of speed of convergence in all cases. A graphical
depiction of the convergence performance of the four methods for N = 5 is given in Figure 4.3. For
Case D (N = 50), the area plot in Figure 4.4 elaborates on the contribution of each of the agents
in tracking the reference signal.

Figure 4.3: Distance from optimizer VS wall-clock time.

4.7 Conclusion 71

Figure 4.4: The reference signal to be tracked is depicted in red. The contribution of the BESS is colored
in dark blue, that of the medium scale buildings in lighter blue and that of the two large buildings in green.
The contribution of the small buildings is colored in pink, but is hardly visible due to their small capacity
and despite their large population.

Remark 10. A publicly available version of the code presented in this section, in the from of a
Jupyter notebook, can be found on https://github.com/stathopog/AsyncInertialFBS . The
code is implemented in Julia, while the optimization problems are modeled in JuMP [DHL17] and
are solved using Gurobi.

4.7 Conclusion

We proposed an inertial and asynchronous forward-backward iteration for solving monotone inclu-
sion problems. The iteration is tailored for distributed convex optimization problems and differs
from existing approaches since (i) the component updates are selected in a deterministic way, (ii)
older updates contribute to the upcoming one in a fashion resembling aggregated gradient methods
and (iii) the iteration hosts a momentum term that speeds up practical convergence. We derived
new versions of two commonly used methods stemming from our approach, and we illustrated the
effectiveness of the method when used to solve an optimal dispatch problem in a distribution grid
with a pool of heterogeneous energy resources.

There is plenty of space for improving the proposed approach and the like. The first things that
naturally come to mind regard dropping the strong monotonicity (strong convexity) assumption
and using an optimal Nesterov-like momentum sequence instead of a fixed scalar value. In addition,
although the momentum sequence practically boosts the performance of the scheme, the current
convergence analysis does not exhibit its benefits. On the contrary, our analysis treats the addi-

72
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

tional degree of freedom that momentum offers as an extra perturbation. Since it is known that
inertial acceleration improves the rate at which the sequence of iterates converges to a solution in
the strongly convex case, we suspect that a similar result is applicable to the asynchronous frame-
work. The connection between asynchronicity and the introduction of momentum to the stochastic
gradient method to have been recently studied in [MZHR16], and might result in useful directions
regarding the upcoming analysis.

4.8 Appendices

4.8.1 Proof of Lemma 13

Using Assumption 3 and equations (4.7), we can start by rewriting yB = (TBx
i
read)[i].

(TBx
i
read)[i] = xiread[i]− γ(Bxiread)[i]

= xk[i]− aik[i]− γ(Bxk)[i] + γ(Bxk)[i]− γ(Bxiread)[i]

= (TBxk)[i] + γ
(
(Bxk)[i]− (Bxiread)[i]

)
− aik[i]

= (TBxk)[i] + dik[i] ,

where dk[i] = γ
(
(Bxk)[i]− (Bxiread)[i]

)
− aik[i].

Similarly, we have from equations (4.7) that

β(ywrite − yprevwrite) = β(xk[i]− bik[i]− xk[i] + cik[i])

= β(cik[i]− bik[i]) .

Using the above relations, a coordinate update of iteration (4.6) can be expressed as

xk+1[i] = xk[i] + η
(
TAi

(
(TBxk)[i] + dk[i] + β(cik[i]− bik[i])

)
− xk[i]

)
,

or, equivalently, as
xk+1[i] = xk[i] + η (TAi((TBxk)[i])− xk[i] + ek[i]) ,

with ek[i] = TAi

(
(TBxk)[i] + dk[i] + β(cik[i]− bik[i])

)
− TAi((TBxk)[i]), which concludes the proof.

4.8.2 Proof of Lemma 14

Squaring (4.8) we get:

‖xk+1 − x∗‖2 = ‖xk − x∗‖2 − 2η〈xk − x∗, Sxk − ek〉+ η2‖Sxk − ek‖2 . (4.21)

Let us now analyze the second and third term in (4.21).

• Bound −2η〈xk − x∗, Sxk − ek〉: We will upper-bound the resulting inner product terms. In
order to do so, we use both the cocoercivity and the quasi-strong monotonicity of S, the
former proven in Appendix 4.8.6, and the latter holding from Assumption 3. Since S is 1/2-

4.8 Appendices 73

cocoercive, we have that

〈xk − x∗, Sxk〉 ≥
1

2
‖Sxk‖2.

From the quasi-ν-strong monotonicity of S we have:

〈xk − x∗, Sxk〉 ≥ ν‖xk − x∗‖2.

Putting these two together, we get that

− 2η〈xk − x∗, Sxk〉 ≤ −ην dist2k −
η

2
‖Sxk‖2 . (4.22)

For the second inner product term involving the error we can easily derive the bound

2η〈xk − x∗, ek〉 ≤ 2η distk ‖ek‖ . (4.23)

Equations (4.22) and (4.23) result in the bound

− 2η〈xk − x∗, Sxk − ek〉 ≤ −ην dist2k −
η

2
‖Sxk‖2 + 2η distk ‖ek‖ . (4.24)

• Bound η2‖Sxk − ek‖2: By developing the square, we have that

η2‖Sxk − ek‖2 = η2
(
‖Sxk‖2 − 2〈Sxk, ek〉+ ‖ek‖2

)
. (4.25)

The inner product term in (4.25) can be bounded by employing Young’s inequality1 as follows:

− 2〈Sxk, ek〉 ≤ 2‖Sxk‖‖ek‖

≤ 2(
δ

2
‖Sxk‖2 +

1

2δ
‖ek‖2)

= δ‖Sxk‖2 +
1

δ
‖ek‖2 , (4.26)

for any δ > 0. Putting together (4.25) and (4.26), we get the bound:

η2‖Sxk − ek‖2 ≤ η2(1 + δ)‖Sxk‖2 + η2
(δ + 1)

δ
‖ek‖2 . (4.27)

Using (4.24) and (4.27), inequality (4.21) can be written as

dist2k+1 ≤ (1− ην)dist2k +η

(
−1

2
+ η(1 + δ)

)
‖Sxk‖2 + 2η distk ‖ek‖+ η2

(δ + 1)

δ
‖ek‖2 . (4.28)

The second term in the sum can be eliminated by asumming that

− 1

2
+ η(1 + δ) < 0 ⇒ η <

1

2(1 + δ)
, (4.29)

1For two nonnegative real numbers x and y, it holds that xy ≤ δx2

2
+ y2

2δ
for every δ > 0.

74
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

which gives rise to the inequality

dist2k+1 ≤ (1− ην)dist2k +2η distk ‖ek‖+ η2
(δ + 1)

δ
‖ek‖2 . (4.30)

The complicating term on the right hand side can be eliminated by using once more Young’s
inequality, i.e.,

2η distk ‖ek‖ ≤ 2η

(
ε

2
dist2k +

1

2ε
‖ek‖2

)
= ηεdist2k +

η

ε
‖ek‖2 .

4.8.3 Proof of Lemma 15

We will bound the error term ‖ek‖ componentwise. For some arbitrary i ∈ {1, . . . , N}} and k ∈ N,
we have from (4.12) that

‖ek[i]‖ ≤ ‖dk[i]‖+ β(‖cik[i]‖+ ‖bik[i]‖) .

Consequently,
‖ek‖ ≤ (1 + γL)N max

1≤i≤N
‖aik‖+ βN max

1≤i≤N
(‖cik‖+ ‖bik‖) . (4.31)

The first term can be recovered by using the 1/L-cocoercivity of B (Assumption 3) in (4.10), while
the second term follows from the inequality

‖cik[i]‖+ ‖bik[i]‖ ≤ ‖cik‖+ ‖bik‖ .

• We want to bound the two summands of (4.31). Let us start with bounding ‖aik‖, for which
we have for all i:

max
1≤i≤N

‖aik‖ ≤
k−1∑

m=k−2τ

‖xm+1 − xm‖

= η

k−1∑
m=k−2τ

‖em − Sxm‖

≤ η

(
k−1∑

m=k−2τ

‖em‖+
k−1∑

m=k−2τ

‖Sxm‖
)

≤ η

k−1∑
m=k−2τ

(‖dm‖+ β‖cm − bm‖+ ‖Sxm‖) . (4.32)

The first inequality follows from the definitions of aik in (4.7), the first equality from (4.8),
while the last two inequalities from the triangle inequality and (4.12).

4.8 Appendices 75

• Bound ‖ck − bk‖: Following the same process as in (4.32), we have that

max
1≤i≤N

(‖cik‖+ ‖bik‖) ≤
k−1∑

m=k−3τ

‖xm+1 − xm‖+
k−1∑

m=k−2τ

‖xm+1 − xm‖

≤ η
(k−1∑

m=k−3τ

(‖dm‖+ β‖cm − bm‖+ ‖Sxm‖)+

k−1∑
m=k−2τ

(‖dm‖+ β‖cm − bm‖+ ‖Sxm‖)
)

. (4.33)

Finally, (4.32), and (4.33) can be bounded by means of the quantity (Σ), and by substituting (4.32)
to (4.31), the result follows.

4.8.4 Proof of Lemma 16

Let us start by bounding the quantities involved in (Σ), namely ‖bk‖, ‖ck‖ and ‖dk‖ with respect
to the maximum distance from the optimizer. The following inequalities hold:

‖bk‖ ≤ N max
1≤i≤N

‖bik‖

‖ck‖ ≤ N max
1≤i≤N

‖cik‖

‖dk‖ ≤ (1 + γL)N max
1≤i≤N

‖aik‖ . (4.34)

Note, also, that ∀ i = 1, . . . , N and for li ∈ {1, . . . , 3τ} holds

‖xk − xk−li‖ = ‖xk − x∗ + x∗ − xk−li‖
≤ ‖xk − x∗‖+ ‖x∗ − xk−li‖ .

Since the first inequality holds ∀ i = 1, . . . , N , by denoting i∗ = argmax
i∈{1,...,N}

‖xk − xk−li‖, we get

max
1≤i≤N

‖xk − xk−li‖ = ‖xk − xk−li∗‖

≤
(
‖xk − x∗‖+ ‖x∗ − xk−li∗‖

)
.

76
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

From the definition of aik in (4.7) we have that

max
1≤i≤N

‖aik‖ ≤ max
1≤i≤N

‖xk − xk−li‖

≤
(
‖xk − x∗‖+ ‖x∗ − xk−li∗‖

)
≤

(
‖xk − x∗‖+ max

k−2τ≤m≤k−1
distm

)
≤ 2 max

k−2τ≤m≤k
distm , (4.35)

for some li ∈ {1, . . . , 2τ}.

Substituting in (4.34), and following developments similar to (4.35), we conclude that

‖bk‖ ≤ 2N max
k−2τ≤m≤k

distm

‖ck‖ ≤ 2N max
k−3τ≤m≤k

distm

‖dk‖ ≤ 2(1 + γL)N max
k−2τ≤m≤k

distm (4.36)

Using (4.36), the sums can be easily bounded as shown below.

k−1∑
m=k−K

‖am‖ ≤ 2NK max
k−K−2τ≤j≤k−1

distj

k−1∑
m=k−K

‖bm‖ ≤ 2NK max
k−K−2τ≤j≤k−1

distj

k−1∑
m=k−K

‖cm‖ ≤ 2NK max
k−K−3τ≤j≤k−1

distj

k−1∑
m=k−K

‖dm‖ ≤ 2(1 + γL)NK max
k−K−2τ≤j≤k−1

distj

k−1∑
m=k−K

‖Sxm‖ ≤ 2K max
k−K≤j≤k−1

distj , (4.37)

the last inequality following from Corollary 1.

From the definition of ΣK(k) in (Σ) and from (4.37), by introducing

Y := 1 + γL+ 2β,

4.8 Appendices 77

we have that

ΣK(k) ≤
k−1∑

m=k−K

(‖dm‖+ β‖cm‖+ β‖bm‖+ ‖Sxm‖)

≤ 2K(Y N + 1)︸ ︷︷ ︸
W (K)

max
k−K−3τ≤j≤k−1

distj

Since (Σ) is bounded, we can accordingly bound (4.13a) and (4.13b):

‖ck − bk‖ ≤ ηN2Σ3τ (k)

≤ ηN2W (3τ) max
k−6τ≤j≤k−1

distj

= η2(3τ)N(Y N + 1) max
k−6τ≤j≤k−1

distj (4.38a)

‖dk‖ ≤ ηN(1 + γL)Σ2τ (k)

≤ ηN(1 + γL)W (2τ) max
k−5τ≤j≤k−1

distj

= η(1 + γL)4τN(Y N + 1) max
k−5τ≤j≤k−1

distj . (4.38b)

Using (4.38a) and (4.38b), ‖ek‖ from (4.12) can be bounded as

‖ek‖ ≤ ‖dk‖+ β‖ck − bk‖
≤ η N(Y N + 1)(4τ(1 + γL) + 6βτ)︸ ︷︷ ︸

X

max
k−6τ≤j≤k−1

distj , (4.39)

where we bounded the quantities with the maximum delay that appeared in (4.38a) and (4.38b).

4.8.5 Proof of Thoerem 7

Proof Note that (4.16) simplifies to

η2X2

(
1

ε
+

η(1 + δ)

δ

)
< ν − ε .

As a result, we need to find parameters η, β, γ, δ, ε such that the following set of inequalities are
satisfied: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

η2X2
(
1
ε +

η(1+δ)
δ

)
< ν − ε,

Y = 1 + γL+ 2β,
X = N(Y N + 1)(4τ(1 + γL) + 6βτ),
δ > 0,
ε > 0,
β > 0,
0 < γ < γmax,
0 < η < 1

2(1+δ) .

(4.40)

78
Chapter 4. Inertial Parallel and Asynchronous Forward-Backward Iteration for

Distributed Convex Optimization

The upper bound γmax ensures that the stepsize γ is admissible (a possible option is, e.g., γmax =
2/L as proven in Appendix 4.8.6). We start be noting that the values of δ and ε are irrelevant as
long as they are positive. To this end, we can start by choosing ε such that ν − ε > 0. From the
inequality η < 1/(2(1 + δ)) it follows that

1

ε
+

η(1 + δ)

δ
<

2δ + ε

2δε
,

thus having

η2 <
2δε(ν − ε)

X2(2δ + ε)
,

from which the result follows.

4.8.6 Cocoercivity and quasi-strong monotonicity of S

Proof of Corollary 1.

From [BC11, Proposition 4.33] we have that T is nonexpansive if and only if S is 1/2-cocoercive.
Hence it suffices to show that T is nonexpansive. From Assumption 3, B is 1/L-cocoercive, which
means that γB is 1/γL-cocoercive. It follows from [RL15, Lemma 5.1 (iv)] that TB = I − γB is
γL/2-averaged. From [BC11, Proposition 4.25 (i)] it follows that TB is nonexpansive provided that
γ < 2/L. Finally, from Assumptions 2 and 3 we conclude that T is nonexpansive as the composition
of nonexpansive operators.

Lemma 17. If B is μ-strongly monotone, then the operator S is quasi-ν-strongly monotone, where
ν = 1−

√
(1− 2γμ+ μγ2L).

Proof: The Lemma is proven in [PXYY16, Proposition 2] for the case of the proximal gradient
method. The proof below is essentially the same generalized for an operator T . From [BC11, Exam-
ple 22.5] we have that if T is c-Lipschitz continuous for some c ∈ [0, 1) then I−T is (1− c)-strongly
monotone. Let us then prove that T is indeed Lipschitz continuous. For any x ∈ H and x∗ ∈ fixT
it holds that:

‖TBx− TBx∗‖2 = ‖x− x∗‖2 − 2γ〈x− x∗, Bx−Bx∗〉+ γ2‖Bx−Bx∗‖2

≤ ‖x− x∗‖2 − γ(2− γL)〈x− x∗, Bx−Bx∗〉
≤ ‖x− x∗‖2 − μγ(2− γL)‖x− x∗‖2

= (1− 2γμ+ μγ2L)‖x− x∗‖2 ,

�

where the first inequality follows from the 1/L-cocoercivity of B, while the second one from the
μ-strong monotonicity of B.

Thus ‖TBx − TBx∗‖ ≤
√
(1− 2γμ+ μγ2L)‖x − x∗‖ and since TA is nonexpansive, we have

that ‖Tx − Tx∗‖ ≤
√
(1− 2γμ+ μγ2L)‖x − x∗‖. Finally, S is quasi-ν-strongly monotone with

ν = 1−
√
(1− 2γμ+ μγ2L) for γ < 2/L.

Chapter 5

Communication Reduction in
Distributed Optimization via Estimation
of the Proximal Operator

5.1 Introduction

The benefit of the proposed asynchronous optimization approach presented in Chapter 4 is the
increased number of updates (communication rounds) per unit of time, hence the inherent assump-
tion is that communication is cheap in comparison to computation. In this chapter we reverse the
trade-off and favor computation over communication, assuming that a communication round is
(much) costlier than solving the agent’s local optimization problem.

We consider the same distributed optimization framework, i.e., a population of independent
agents with a global coordinator. In the majority of the distributed optimization schemes, including
the instances of the FBS iteration of Chapter 4, the agents’ subproblems that need to be solved are
cast as proximal minimization problems (2.5). In the course of the execution, the agents need to
communicate the solutions to the proximal minimization subproblems to the coordinator, who will,
in turn, manipulate the agents’ objectives by broadcasting incentives that skew their local policies
toward the global target.

In such multi-agent frameworks, extensive communication might be undesirable for a variety
of reasons. Such reasons involve the existence of delays due to a weak network, the fact that the
agents might run on energy-limited resources which are drained rapidly with frequent activations,
or plainly speeding up computation by skipping insignificant agent updates. It would, therefore,
be useful if the coordinator could ‘guess’ the optimizers of its agents and base the selection of the
agent to update on the satisfaction of some criterion.

We propose a reduced communication framework for distributed optimization problems. This
is achieved by estimating a convex set containing the solution of a proximal minimization problem.
Construction of the set is based on the theory of the Moreau envelope function (2.7) and its
important connections with the proximal operator. The structural properties of the Moreau envelope
allow the coordinator to restrict the area of all possible optimizers within a convex set, explicitly
described as the intersection of ellipsoids and iteratively refined every time that a communication

5.2 Related work 81

round occurs. Subsequently, the coordinator can make a guess regarding the solution of the agent’s
optimizer by choosing a value from the constructed set and spare a communication round provided
that the guess is adequately good.

Before devising a communication protocol, we analyze the properties of the constructed ellip-
soidal sets that contain the unknown gradient. We show that the sets can be recovered as limiting
cases of ε-subdifferential sets (see Chapter 2, Definition 6) associated to functions that upper bound
the Moreau envelope function and that they are optimal with respect to the tightest upper bound of
the (unknown) Moreau envelope. As a byproduct of the performed analysis, we prove a fundamental
inequality for differentiable convex functions by means of ε-subdifferential sets. We subsequently
devise communication tests that enable adoption of the proposed framework for the PGM (pro-
jected and proximal gradient methods), for a randomized coordinate descent version of PGM, and
for ADMM. In addition, we model the effect incurred by the lack of communication as an error
in the solution of the optimization problem. By analyzing this result in the context of fixed-point
iterations with errors, we prove asymptotic convergence of the sequence to an optimizer.

The chapter is organized as follows: Section 5.3 defines the problems we want to solve and
sketches the followed approach. Section 5.4 contains the main analysis, showing how a fundamental
gradient inequality, that can be used to explicitly construct a set that contains an optimizer, is
related to the ε-subdifferential set of a quadratic upper bound to the envelope function and prove
that it is optimal with respect to some metric. In Section 5.5 we couple the proposed scheme
to several decomposition methods and devise certification tests that decide when the gradient
set should be updated, namely when a communication round should be triggered in each case.
Subsequently, convergence results are proven in Section 5.6. Finally, in Section 5.7 we provide
evidence about the performance of the proposed scheme by solving another load sharing problem
for microgrids. We conclude with some comments in Section 5.8.

5.2 Related work

A comprehensive theory of the Moreau envelope function can be found in [RW98], while the algorith-
mic aspects of the proximal iteration and its gradient descent interpretation are analyzed in [LS97].
Recently the authors of [PSB14; STP17] introduced new envelope functions so as to analyze more
complicated splitting algorithms as unconstrained gradient iterations. In our proposed scheme, the
convex set within which the possible optimizers reside can be essentially constructed by making use
of a fundamental gradient inequality as will be shown in Section 5.4. Interestingly, a similar line
of thinking has been followed in [THG17] in order to compute the exact worst-case performance
of fixed-step first-order methods for unconstrained optimization of smooth convex functions. We
are not aware of other works that seek to ‘learn’ the solutions to proximal minimization prob-
lems, or, in fact to any other optimization problem. In the context of communication avoidance
in distributed optimization, the work [SDDGD17] proposes a scheme for reducing communication
rounds for a stochastic version of the iterative soft thresholding algorithm. In a similar but rather
more generic manner, the authors in [SFMTJ16; MKJSJRT17] propose communication-efficient
distributed-optimization frameworks for large-scale machine learning applications.

82 Chapter 5. Estimating the Proximal Operator

5.3 Problem description

Consider the proximal minimization problem

prox γf (z) = argmin
x∈Rn

{
f(x) +

1

2γ
‖x− z‖2

}
. (5.1)

We are interested in a distributed optimization setting where each of a population of agents solves
(privately) a proximal minimization problem of this form, and a global coordinator intervenes to
steer the agents toward the minimizer of some (global) objective. A sequence of points {zk} at
which problem (5.1) is solved is generated by the coordinator. Focusing on just one agent for the
purpose of the analysis, we want to estimate, to the best possible accuracy, the optimizer of (5.1)
for a given (arbitrary) sequence {zk}, without having to solve the optimization.

Recall from (2.8) that the unique solution to the proximal minimization xγ(z) = proxγf (z) can
be written as

xγ(z) = z − γ∇fγ(z) . (5.2)

It is evident from (5.2) that, given an arbitrary point z, the gradient ∇fγ(z) is all that is
needed in order to reconstruct the optimizer of (5.1). Estimating the exact gradient ∇fγ(z) might
not be possible, so we opt for constructing a set of possible gradients at z and a way to evaluate
the worst-case gradient (how far away one can be from the actual gradient) contained in the set.

Our approach is to construct such a set and to continually refine it (shrink it) every time that
an exchange occurs between the coordinator and the agent, namely every time that (5.1) is solved
for a point z. We are going to refer to points at which the problem is actually solved, as query
points. The coordinator’s goal is to estimate the solution of (5.1) at a point of interest by using the
solution at previous query points.

Assume the existence of a number of generated query points zj , j ∈ J . We proceed to construct
a set that contains the gradient ∇fγ(v) at the point of interest v in five distinct steps described
below.

1. We first devise a family of (local) nested sets that all contain ∇fγ(v). Each family is centered
around its corresponding query point zj .

2. We show that the family of sets can be represented by a convex inequality.

3. We find the smallest set in the family for each query point zj .

4. We devise a (global) set within which ∇fγ(v) resides by taking the intersection of the smallest
sets for all zj ’s.

5. We derive the relation between the global set and the tightest known function that upper
bounds fγ(v).

6. We derive an approximation of the global set that can be used for numerical computations.

5.4 Estimating the solution to a proximal minimization problem 83

5.4 Estimating the solution to a proximal minimization problem

Quadratic upper bound Since we want to locate the unknown gradient ∇fγ(v) in a set, what
comes to mind is a notion of subdifferential of some function at v. The function we are about to use
is a quadratic upper bound on the Moreau envelope, implied by the Lipschitz gradient property of
fγ .

Proposition 1. The Moreau envelope fγ admits a quadratic upper bound in terms of the linear
approximation of fγ based on the gradient at any v ∈ R

n, i.e.,

f
γ
(z; v) = fγ(v) + 〈∇fγ(v), z − v〉+ 1

2γ
‖z − v‖22, z, v ∈ R

n , (5.3)

(see, e.g., [Ber15, Section 6.1]).

The quadratic uppper bounding function (5.3) will enable us to compute the desired set. Con-
sider a query point, namely z1. This point is associated to the quadratic approximation f

γ
(z; z1)

that upper bounds fγ . Looking at Figure 5.2, we observe that the point (v, fγ(v)) lies below the epi-
graph of fγ

(z; z1). Since we only have knowledge about the location of v and the function f
γ
(z; z1),

we cannot say anything about the slope ∇fγ(v). We can, however, construct a family of slopes
depicted by the blue lines and demarcated by the extreme slopes of fγ

(z; z1) at v. This brings up
the notion of the ε-subdifferential set, given in Definition 6.

A family of local sets The ε-subdifferential set provides us with a way to restrict the set within
which the actual gradient of the Moreau envelope at v, ∇fγ(v), resides.

In order to do so, we introduce the following parameterization:

ε∗(v; z1) = f
γ
(v; z1)− fγ(v) . (5.4)

Let us explain what equation (5.4) represents with the help of Figure 5.1. For any ε > 0 denoting
the vertical distance from f

γ
(v; z1) at v, we can draw the extreme slopes of all the hyperplanes

that are tangent to the epigraph of f
γ
(z; z1) and generate an outer approximation of f

γ
(z; z1).

The endpoints of these ε-subdifferential sets are depicted with grey lines. Equation (5.4) defines
the smallest ε-subdifferential set for which we can show that the gradient ∇fγ(v) resides inside. We
will carry out the remaining analysis for the case that only one query point, namely z1, has been
generated, while the point of interest will be z = v.

Proposition 2. The following statements characterize the set in which ∇fγ(v) is located.

1. The gradient of the Moreau envelope at a point v is contained in the ε∗(v; z1)-subdifferential
set of the upper-bounding quadratic function f

γ
(z; z1) evaluated at v and constructed around

the query point z1, i.e.,
∇fγ(v) ∈ ∂ε∗(v;z1)f

γ
(v; z1) .

2. The ε∗(v; z1)-subdifferential set is nonempty, convex and compact.

Proof: The proof is deferred to Appendix 5.9.1. �

84 Chapter 5. Estimating the Proximal Operator

v z1 z

ε

epi (f
γ
(z ; z1))

epi (f γ(z))

(v , f
γ
(v ; z1)− ε)

(∇f γ(v),−1)

(a) An ε-subdifferential set represented as a
cone.

v z1 z

(∇f γ(v),−1)
ε∗(v ; z1)

epi (f
γ
(z ; z1))

epi (f γ(z))
(v , f γ(v))

(b) The smallest ε-subdifferential set.

Figure 5.1: The epigraph of the envelope function fγ(z) and that of the quadratic upper bounding function
f
γ
(z; z1) are illustrated. For any point centered at v that lies ε below the epigraph of f

γ
(z; z1), the ε-

subdifferential set is depicted as the normal cone of the set constructed by the tangent hyperplanes of
epi (f

γ
(z; z1)), depicted with the grey lines, at (v, f

γ
(v; z1) − ε). The actual gradient ∇fγ(v) is contained

in all ∂εf
γ
(v; z1) for ε ≥ ε∗(v; z1). As ε is getting smaller, the subdifferential sets shrink, and converge to

∂ε∗(v;z1)f
γ
(v; z1), depicted by the normal cone to the set illustrated by the blue lines in the right figure.

5.4 Estimating the solution to a proximal minimization problem 85

The proposition suggests the existence of a set that contains the gradient ∇fγ(v) , namely the
set ∂ε∗(v;z1)f

γ
(v; z1) which describes a family of admissible slopes.

Explicit representation of the local sets We will, subsequently, construct ∂ε∗(v;z1)f
γ
(v; z1) in

an explicit way. To this end, we introduce the function

f
γ
z (d; z1) = f

γ
(z + d; z1)− f

γ
(z; z1), ∀d ∈ R

n

and its conjugate [Roc70, Chapter 23]

(f
γ
z)

�(g; z1) = (f
γ
)�(g; z1) + f

γ
(z; z1)− 〈z, g〉 . (5.5)

The following Proposition holds.

Proposition 3. The ε-subdifferential set of fγ
(z; z1), evaluated at z = v, is given by

∂εf
γ
(v; z1) =

{
g | (f

γ
v)

�(g; z1) ≤ ε
}

, (5.6)

for any ε > 0.

Proposition 3 relates the ε-subdifferential of a function with the epigraph of its conjugate. More
detailed discussions can be found in [Roc70, Chapter 23], [Ber15, Section 6.7.1]. This equivalence
allows us to construct the ε∗(v; z1)-subdifferential set described in Proposition 2 provided that (5.5)
is computable. We prove below that this is indeed the case.

Proposition 4. The set ∂εf
γ
(v; z1) is given by

∂εf
γ
(v; z1) =

{
g | (γ/2)‖g −∇fγ(z1)‖22 − 〈g −∇fγ(z1), v − z1〉+ (1/2γ)‖z1 − v‖22 ≤ ε

}
. (5.7)

Proof: The conjugate of (5.3) can be easily computed using the definition since the function
is a convex quadratic. The claim follows directly from computing it and substituting the result
in (5.5). �

The smallest local set Propositions 2 and 4 tell us that the gradient ∇fγ(v) is contained within
any of the 2-norm balls associated to the query point z1 and described by (5.7). The radius of the
balls varies with ε. A question that naturally arises is related to the size of this set, namely, whether
we can find the smallest set in the family described by (5.7).

Proposition 5. Given a point v ∈ R
n and a distance ε < ε∗(v; z1), there exists a function f(x)

with an associated Moreau envelope fγ(z) and the corresponding local upper-bounding function
f
γ
(v; z1) centered at some query point z1, such that ∇fγ(v) /∈ ∂εf

γ
(v; z1).

Proof: The proof can be found in Appendix 5.9.2. �

86 Chapter 5. Estimating the Proximal Operator

Proposition 5 states that plugging ε∗(v; z1) in (5.7) results in the smallest set of the family containing
∇fγ(v) for a general function f . The set can be written as

G(v; z1) : = ∂ε∗(v;z1)f
γ
(v; z1)

=
{
g | (γ/2)‖g −∇fγ(z1)‖22 − 〈g, v − z1〉 ≤ fγ(z1)− fγ(v)

}
. (5.8)

A global gradient set To recap, we showed that ∇fγ(v) is contained in the family of ε-
subdifferential sets ∂εf

γ
(v; z1) constructed around v and associated to the query point z1 (Proposi-

tion 2), that these sets can be explicitly described (Proposition 4) and that the smallest set of the
family is recovered for the choice of ε = ε∗(v; z1) from (5.4) (Proposition 5).

Making use of (5.8), the set of possible gradients of fγ at v can be described by

G(v) : =
⋂
j∈J

∂ε∗(v;zj)f
γ
(v; zj)

=
⋂
j∈J

{
g | γ‖g −∇fγ(zj)‖22 − 〈g −∇fγ(zj), v − zj〉 ≤ 0

}
, (5.9)

where J is a set of indices cooresponding to generated query points. As a consequence, the set of
potential gradients can be described as an intersection of a finite number of 2-norm balls. It also
trivially holds that

⋂∞
j=1 G(v; zj) = {∇fγ(v)}, i.e., upon complete construction of the envelope,

the above intersection reduces to the singleton set {∇fγ(v)}.

Relation to tightest upper bounding function As a last step, we will derive the relation
between G(v) and the ε-subdifferential set associated to the tightest constructed upper bound of fγ

at v.
To this end we introduce the function corresponding to the convex hull of the generated upper

bounding quadratics
f
γ
(z | J) = conv{fγ

(z; zj) | j ∈ J } . (5.10)

Note the abuse of notation in (5.10) since it actually describes a set and not a function. To define
it properly, we should write

f
γ
(z | J) = inf∑

j∈J θjzj=z,

θj≥0,
∑

j∈J θj=1

∑
j∈J

θjf
γ
(z; zj) ,

according to [Roc70, Theorem 5.6], however we will keep using (5.10) for simplicity.
The function is illustrated in Figure 5.2 for two scalar functions. The dependence on J demon-

strates that the function is refined (becomes tighter) with the generation of new query points. The
following result holds:

Theorem 8. Given a number of generated query points {zj}, j ∈ J and v ∈ R
n,

G(v) = ∂ε∗(v|J)f
γ
(v | J) ,

where ε∗(v | J) = f
γ
(v | J)− fγ(v).

5.4 Estimating the solution to a proximal minimization problem 87

vz2 z1 z

(∇f γ(v),−1)

epi (f
γ
(z ; z1))

epi (f
γ
(z ; z2))

epi (f γ(z))

vz2 z1 z

(∇f γ(v),−1)

epi (f γ(z))

epi (f
γ
(z | J))

ε∗(v | J)

Figure 5.2: Assuming two query points z1 and z2, ∇fγ(v) can be located in the intersection of the two nor-
mal cones, which is sketched in purple color. In addition, the function f

γ
(z | J) = conv{fγ

(z; z1), f
γ
(z; z2)}

is drawn in deep red color. It is evident that the normal cone corresponding to the intersection of the two
sets (left) is identical to the set ∂ε∗(v|J)f

γ
(v | J) on the right.

Proof: The proof can be found in Appendix 5.9.3. �

An approximation of the global set A problematic aspect of the global set G(v) when it
comes to computing it, is the dependence on the unknown quantity fγ(v) in (5.8). We want to drop
this dependency by approximating G(v) with another set, namely Ĝ(v).

To that end, we use the fundamental inequality (see, e.g., [Ber15, Proposition 6.1.9])

fγ(z1)− fγ(v) ≤ −〈∇fγ(z1), v − z1〉 − γ
2‖∇fγ(v)−∇fγ(z1)‖22 .

Using the inequality above in the right-hand side of (5.8) leaves us, still, with another unknown
quantity, i.e., ∇fγ(v). A reasonable thought would be to replace ∇fγ(v) with g and look for a
g ≈ ∇fγ(v) that satisfies the above inequality. By doing so, we end up with the inequality

Ĝ(v; z1) :=
{
g | γ‖g −∇fγ(z1)‖22 − 〈g −∇fγ(z1), v − z1〉 ≤ 0

}
. (5.11)

Interestingly, (5.11) is the necessary condition for convexity and Lipschitz continuity of the gradient
of fγ , the so-called co-coercivity property of the gradient, applied to the pair of points (z1, v). As
such, the set Ĝ(v; z1) is a valid approximation of (5.8) in the sense that it contains the unknown
gradient ∇fγ(v). In addition, it does not depend on any unknown quantities. The (approximate)
global set is given by

Ĝ(v) =
⋂
j∈J

Ĝ(v; zj) .

Remark 11. We cannot say anything about the relative size of the sets Ĝ(v) and G(v). As a matter
of fact, we can devise examples that show that no set is strictly contained in the other. Therefore,
we simply use Ĝ(v) in the computations since we can explicitly compute it.

88 Chapter 5. Estimating the Proximal Operator

5.5 Communication

Let us now move back to the original distributed setting. Consider an optimization problem of the
form

minimize h(x) +
N∑
i=1

fi(xi) , (5.12)

where fi : R
ni
→ R∪{+∞}, i = 1, . . . , N are convex functions private to the corresponding agents

and h : Rn
→ R ∪ {+∞}, n =
∑N

i=1 ni, is the convex objective of the coordinator.
The aim is to devise communication tests based on which the coordinator will decide whether to

trust its approximate optimizer or to query the agent. Let us denote with Gi(vi; zi,j), i = 1, . . . , N
the set given by (5.11), associated to agent i. The coordinator can keep in its memory a set
Gi(vi) :=

⋂
j∈Ji

Gi(vi; zi,j), Ji being the number of queries generated up to the current algorithmic
iteration, for every agent i = 1, . . . , N . The set is updated whenever a communication round occurs.
With every query point, Gi(vi) is augmented by one more inequality. The challenge that needs to
be addressed is twofold:

1. Compute or locate an approximate minimizer of the proximal minimization problem of agent
i.

2. Verify the suitability of the computed solution, i.e., design a certification test based on which
the decision to communicate or not is taken.

We are going to discuss tests for three algorithmic approaches that solve (5.12), namely the
projected gradient method, the proximal gradient method and the alternating direction method of
multipliers (Section 2.2).

Projected Gradient Method (ProjGM) Consider the case when fi(xi) = δ(xi | Xi), and
Xi, i = 1, . . . , N are convex compact sets, h is convex differentiable with L-Lipschitz continuous
gradient, and a relaxed version of the Projected Gradient Method is used in order to solve (5.12),
namely the iteration becomes

xk+1
i = PXi(x

k
i − c∇ih(x

k)) , (5.13)

with a stepsize c ∈ (0, 2/L).
Observe that

PXi(v
k
i) = vki − γ∇fγ

i (v
k
i) ,

where vki = xki − c∇ih(x
k) and γ > 0. The aim is to choose a point gki ∈ Gi(v

k
i) such that

gki ≈ ∇fγ
i (v

k
i).

It follows from the descent property of the projected gradient method that 〈∇h(xk), xk+1−xk〉 <
0 (see, e.g., [Ber15, Proposition 6.1.1]). Consequently, the worst-case optimizer can be found be
solving the following Quadratically Constrained Quadratic Program (QCQP):

maximize 〈∇h(xk), vk − xk − γg〉 =: T (g, vk)
subject to g ∈ G(vk) ,

(5.14)

5.5 Communication 89

with variable g ∈ R
n. Note that the underlying assumption behind solving (5.14) is that the point

xk is feasible, which is not necessarily the case if (5.13) has been generated by the coordinator.
After the test T (g, vk) ≤ 0 has been passed, any point g ∈ G(vk) can be chosen.

Proximal Gradient Method (PGM) In the more general case that fi encapsulates a con-
vex objective restricted within some convex set and h is convex differentiable with L-Lipschitz
continuous gradient, iteration (5.13) becomes the relaxed proximal iteration

xk+1
i = prox γfi(x

k
i − γ∇ih(x

k)) . (5.15)

Similar to the projected gradient method, an inherent property of the proximal gradient scheme is
the objective value decrease per iteration (see, e.g., [Ber15, Proposition 6.3.2]).

h(xk+1) +

N∑
i=1

fi(x
k+1
i) ≤ h(xk) +

N∑
i=1

fi(x
k
i)−

1

2γ
‖xk+1 − xk‖2, ∀γ ∈ (0, 1/L] . (5.16)

Since the exact value of fi(x
k+1
i) cannot be known, it is impossible to directly apply (5.16)

in order to evaluate a worst case gradient. We can, however, devise a more conservative test that
results in a sufficient condition for communication.

Proposition 6. The optimization problem

maximize h(vk − γg)− 〈g, vk − xk〉 =: T (g, vk)
subject to g ∈ G(vk) (5.17)

results in a sufficient decrease condition if

T (g, vk) ≤ h(xk) +

N∑
i=1

fi(x
k
i)−

N∑
i=1

min
j∈J

{fγ
i (v

k
i ; zi,j)} −

1

2γ
‖vk − xk‖2 . (5.18)

Proof: The proof can be found in Appendix 5.9.4. �

Except for the case that h is an affine function, problem (5.17) is nonconvex. In order to solve
it we can resort either to some heuristic or an algorithm that will result in a local optimizer. In
the case that h is quadratic, a solution to a (conservative) convex approximation of (5.17) can be
recovered by solving two Semidefinite Programs (SDP’s). We first compute the maximum volume
ellipsoid that lies in G(vk), which can be cast as an SDP. Enlarging this by a factor of n about
its center results in an ellipsoid that covers G(vk) (see [BV04, Section 8.4]). Subsequently, we solve
the convex maximization problem of maximizing T (g, vk) over the covering ellipsoid, which can
be exactly relaxed into another SDP [BV04, Appendix B.1]. It should be noted, of course, that
the additional layers of conservativeness that have been added might result in the test not being
passed, rendering it practically useless for communication savings.

Alternating Direction Method of Multipliers (ADMM) Let us finally consider the most
general case of solving (5.12) when h is not necessarily differentiable and fi encapsulates a convex

90 Chapter 5. Estimating the Proximal Operator

objective restricted within some convex set. ADMM comprises the iterations:

xk+1 = argmin
x

{
h(x) + (ρ/2)‖x− yk + (1/ρ)λk‖2

}
yk+1
i = argmin

yi

{
fi(yi) + (ρ/2)‖yi − xk+1

i − (1/ρ)λk
i ‖2

}
λk+1 = λk + ρ(xk+1 − yk+1) ,

(5.19)

ρ > 0. The splitting described in (5.19) is achieved by introducing a copy y = x and the associated
dual variables λ. Observe that the y-minimization step constitutes local proximal minimization
problems of the form

yk+1
i = prox 1

ρ
fi
(xk+1

i + (1/ρ)λk
i︸ ︷︷ ︸

vki

)

= vki − γ∇fγ
i (v

k
i), γ = 1/ρ . (5.20)

For agent i, we know that any point lying in the interior of the set Gi(v
k
i) is a potential candidate.

Assuming that we have such a point, we need to decide whether the resulting gki checks out as a
valid gradient estimate. In order to do so, we propose a heuristic test based on the progress of
the ADMM residual. The residual is defined with respect to the consensus condition x = y, i.e.,
sk = ‖xk − yk‖, and the communication test reads:

T (sk, sk+1) := sk − sk+1 < 0 . (5.21)

Monotonic decrease of the residual is neither a necessary nor a sufficient condition for the
convergence of ADMM. It can be used, nevertheless, as a certification test for assessing the validity
of the approximate proximal minimizer.

Sparing further details, if we were to use (5.21) so as to follow a worst-case approach, as we
did with ProjGM and PGM, we would end up with a nonconvex problem. We will, instead, use a
heuristic approach to recover any g ∈ G.

More specifically, any guess for ∇fi(v
k
i) denoted by gki will give rise to an approximate minimizer

ŷk+1
i = vki −γgki . This minimizer is used, in turn, to update the dual variable λ̂k+1

i . After performing
these updates for all the agents, inequality (5.21) is checked for x = xk. If it holds, no communication
is necessary, while in the opposite case all the agents need to communicate.

The rational behind checking inequality (5.21) for x = xk is to assess whether any progress has
been made with regard to reaching optimality and in comparison to the previous pair (xk, λk). If
not, there is an indication that (some of) the approximate optimizers ŷk+1

i were not ‘in the right
direction’, thereby it is better to correct via communication. In addition, the test only involves h
in its evaluation, and thus can be performed at the coordinator’s level with no extra knowledge
about the agents.

Let us summarize what we have so far: We can either compute the worst-case optimizer g for an
agent and check whether it passes a test, or make a guess for an optimizer and perform a posteriori
validation through a test. The choice depends mainly on how easy it is to compute the worst-case
gradient. As we have indicated, this is possible for ProjGM by solving (5.14), and potentially too

5.5 Communication 91

conservative (and too expensive) for both PGM (5.17) and ADMM.

5.5.1 Non worst-case candidates

Solving the convex programs (5.14) and (5.17) results in the acquisition of worst-case optimizers
for the projected (and proximal) gradient methods. We present below two methods that choose a
possible gradient gk ∈ G(vk) in case that we cannot, or do not want to adopt such conservative
solutions.

Projection of the ‘closest’ gradient onto the feasible set. A reasonable guess for a ‘good’
gki would be to identify the hyperplane that is closest to fγ

i at vki , namely to find the index

j∗ = argmax
j∈Ji

{
fγ
i (zi,j) + 〈∇fγ

i (zi,j), v
k
i − zi,j〉

}
, (5.22)

expecting that the gradient of the envelope won’t have changed much if the points zi,j∗ and vki
are close to each other. If ∇fγ

i (zi,j∗) ∈ Gi(v
k
i), then gki = ∇fγ

i (zi,j∗), otherwise the projection of
∇fγ

i (zi,j∗) onto Gi(v
k
i) is taken. The latter is achieved by solving the QCQP

minimize ‖gi −∇fγ
i (zi,j∗)‖2

subject to gi ∈ Gi(v
k
i ; zi,j), j = 1, . . . ,Ji ,

(5.23)

with variable gi ∈ R
ni .

Chebyshev center. Another approach would be to update xk+1
i based on the gki that resides in

the Chebyshev center of the set Gi(v
k
i), i.e., gki is the center of the largest ball inscribed in the set

Gi(v
k
i). The center can be computed by solving the SDP [BV04, Section 8.5.1]:

max. Ri

s.t.

⎡
⎣−λi,j − ci,j + b�i,jA

−1
i bi,j 0 (gi +A−1

i bi,j)
�

0 λi,jI RiI

gi +A−1
i bi,j RiI A−1

i

⎤
⎦ � 0,

j = 1, . . . ,Ji ,

(5.24)

with variables Ri ∈ R, λi,j ∈ R, gi ∈ R
ni , while

Ai = γI, i = 1, . . . , N

bi,j = −γ∇fγ
i (zi,j)− (1/2)(vki − zi,j),

ci,j = ∇fγ
i (zi,j)

�(γ∇fγ
i (zi,j) + vki − zi,j) .

5.5.2 The algorithmic schemes

Putting together the results of the preceding sections, we describe below reduced communication
schemes that solve problem (5.12) using the discussed algorithms.

92 Chapter 5. Estimating the Proximal Operator

Algorithm 9 Distributed Optimization with Estimated Proximal Operator for PGM (ProjGM)

Require: x0i ∈ R
ni , Gi = ∅, suitable c and γ. Iteration counter is set to k = 0, kstop > 0.

1: while k < kstop do
2: Compute vk = xk − c∇h(xk) // Coordinator
3: Solve (5.17) (or (5.14)) // Coordinator
4: if T (g, vk) < 0 then
5: Choose any g ∈ G(vk), set gk = g // Coordinator
6: Compute xk+1 = vk − γgk // Coordinator
7: else
8: Transmit vki to Agent i, i = 1, . . . , N // Coordinator
9: Solve (5.15) (or (5.13)) // Agent i

10: Transmit xk+1
i to the Coordinator // Agent i

11: Update set Gi with xk+1
i // Coordinator

12: end if
13: end while
14: k ← k + 1

Algorithm 10 Distributed Optimization with Estimated Proximal Operator for ADMM

Require: x0i ∈ R
ni , Gi = ∅, i = 1, . . . , N , constant ρ > 0. Iteration counter is set to k = 0,

kstop > 0.
1: while k < kstop do
2: Compute xk+1 from (5.19) // Coordinator
3: Compute vk = x̃k+1 + (1/ρ)λk // Coordinator
4: Solve (5.23) i = 1, . . . , N to get gk = g // Coordinator
5: Compute yk+1 = vk − (1/ρ)gk // Coordinator
6: Compute λk+1 from (5.19) // Coordinator
7: Compute sk+1 = ‖xk+1 − yk+1‖ // Coordinator
8: if T (sk, sk+1) < 0 then
9: Transmit vki to Agent i, i = 1, . . . , N // Coordinator

10: Compute yk+1
i from (5.19) // Agent i

11: Compute λk+1
i from (5.19) // Agent i

12: Transmit (yk+1
i , λk+1

i) to the Coordinator // Agent i
13: Update sets of query points with zi,j = vki and Gi(vi) = Gi(vi) ∩ Gi(vi; zi,j)

with ∇fγ
i (v

k
i) = ρ(vki − yk+1

i), i = 1, . . . , N // Coordinator
14: end if
15: end while
16: k ← k + 1

5.6 Convergence 93

In the way that both Algorithms 9 and 10 are written, if the test is not passed, all the agents will
need to communicate. One could, however, design different communication schemes. For example,
the coordinator could start transmitting to the agents sequentially until the test is passed. Indeed,
any subset of agents could be selected based on some specified criterion, as long as the test is
passed. To this end, we present in Algorithm 11 below a randomized coordinate descent version of
the proposed scheme for P(roj)GM.

Algorithm 11 Randomized Coordinate Descent with Estimated Proximal Operator for PGM
(ProjGM)

Require: x0i ∈ R
ni , Gi = ∅, suitable c and γ, discrete probability distribution

(p1, . . . , pN),
∑N

i=1 pi = 1, pi > 0. Iteration counter is set to k = 0, kstop > 0.
1: while k < kstop, choose agent ik with probability pik := P[ik = i] = pi, do
2: Compute vkik = xkik − c∇ikh(x

k) // Coordinator
3: Solve (5.14) (or (5.17)) // Coordinator
4: if T (g, vk) < 0 then
5: Choose any gik ∈ Gik , set gkik = gik // Coordinator
6: Compute xk+1

ik
= vkik − γgkik // Coordinator

7: else
8: Transmit vkik to Agent i // Coordinator
9: Solve (5.15) (or (5.13)) // Agent ik

10: Transmit xk+1
ik

to the Coordinator // Agent ik

11: Update set Gik with xk+1
ik

// Coordinator
12: end if
13: end while
14: k ← k + 1

5.6 Convergence

In this section we give conditions that ensure convergence of the scheme described by Algorithms 10
and 11. The key point is to write the approximate proximal minimization step as a regular proximal
iteration with additive error. Consequently, the analysis follows by employing results from inexact
fixed point iteration theory.

In order to have a unified convergence framework, all three splitting methods presented above
(ProjGM, PGM and ADMM) are cast as KM iterations described in Section 2.15 with additive
errors. Consequently, and to be able to prove any convergence result, the iterations should be
under-relaxed with some parameter ηk ∈ [0, 1]. Let us summarize the relaxed versions of the three
schemes, (5.13), (5.15) and (5.19), below.

1. Projected Gradient Method

xk+1
i = (1− ηk)xki + ηkPXi(x

k
i − c∇ih(x

k)) . (5.25)

94 Chapter 5. Estimating the Proximal Operator

2. Proximal Gradient Method

xk+1
i = (1− ηk)xki + ηk prox γfi(x

k
i − γ∇ih(x

k)) . (5.26)

3. Alternating Direction Method of Multipliers

xk+1 = prox 1
ρ
h(y

k − (1/ρ)λk)

x̃k+1 = ηkxk+1 + (1− ηk)yk

yk+1
i = prox 1

ρ
fi
(x̃k+1

i + (1/ρ)λk
i)

λk+1 = λk + ρ(x̃k+1 − yk+1) .

(5.27)

We start by analyzing ADMM and subsequently move to the coordinate descent PGM iteration.

5.6.1 Convergence of ADMM

For analysis purposes, we are going to express ADMM as a Douglas-Rachford Splitting (DRS)
iteration of the dual variables λ. The equivalence of the two algorithms can be found in, e.g.,
[EB92], while a detailed derivation of ADMM from DRS is given in Appendix A. By using standard
conjugate duality (Section 2.1), we can rewrite (5.12) as

minimize H(λ) + F (λ) , (5.28)

where λ is the dual variable in (5.19), H(λ) := h�(−λ) and F (λ) :=
∑N

i=1 f
�
i (λi). Applying the

ADMM iteration (5.27) to solve (5.12) is equivalent to applying the following DRS iteration to
problem (5.28):

rk+1 = prox ρH(2λk − zk)

zk+1 = zk + ηk(rk+1 − λk)

λk+1 = prox ρF (z
k+1) , (5.29)

where
prox ρF (z

k+1) := (prox ρf�
1
(zk+1

1), . . . ,prox ρf�
N
(zk+1

N)).

We will now illustrate that the approximate minimizer yk+1
i of (5.27) can be expressed as the

solution of a proximal minimization problem with some additive error. Let us first express the
approximate iteration ŷk+1

i = vki − γgki as an inexact proximal minimization solve. To this end, we
introduce the error sequence

{ek} = {gk −∇fγ(vk)} , (5.30)

with ∇fγ(vk) = (∇fγ
1 (v

k
i), . . . ,∇fγ

N (vkN)). Using (5.30), the following result holds:

5.6 Convergence 95

Proposition 7. Algorithm 10 can be expressed as the inexact DRS iteration

rk+1 = prox ρH(2λk − zk)

zk+1 = zk + ηk(rk+1 − λk)

λk+1 = prox ρF (z
k+1) + ek , (5.31)

with ek defined in (5.30).

Proof: The proof is deferred to Appendix 5.9.5. �

Capitalizing on this result, the inexact DRS iteration (5.31) can be analyzed in the more general
context of inexact fixed point iterations, analyzed in detail in [LFP16, Section 5.2]. To this end,
the iteration can be written in the more compact notation

zk+1 = zk + ηk(Tzk + ζk − zk) , (5.32)

by introducing the operator

T =
1

2
(refl ρH refl ρF + I) ,

with T : Rn
→ R
n and

ζk =
1

2

(
refl ρH

(
refl ρF (z

k) + 2ek
)
+ zk

)
− Tzk . (5.33)

With iteration (5.32) in place, we are ready to give conditions for the convergence of the DRS
iteration (5.31) and, consequently, of (the under-relaxed variant of) Algorithm 10.

Theorem 9. [CP07, Theorem 2] Consider Algorithm 10 with x = x̃, where x̃ is defined in (5.27).
The multiplier sequence {λk} generated by the algorithm will converge to an optimizer of (5.28)
provided that

∑∞
k=1 η

k‖ek‖ < ∞ and
∑∞

k=1 η
k(2− ηk) = ∞.

Remark 12. The sequence {‖ek‖} is bounded since ‖ek‖ ≤ N max
1≤i≤N

‖gki − ∇fγ
i (v

k
i)‖. Since con-

dition (5.21) will be enforcing communication until feasibility is achieved, more query points will
be generated and lim

j→∞
⋂

j∈Ji
Ĝi(vi; zi,j) = {∇fγ

i (vi)}. Since we do not know anything about the

rate of convergence, we need to resort to a generic sequence {ηk} that would enforce convergence,
e.g., ηk = 1/(k2‖ek‖). The quantity ‖ek‖ can be (over-)approximated by taking, e.g., the smallest
ellipsoid of the ones that are intersected and compute its diameter.

Remark 13. The convergence result presented above is only useful for analysis purposes, since in
practice we would not use a diminishing stepsize which typically results in very slow convergence.

5.6.2 Convergence of randomized coordinate descent PGM

In the case of Algorithm 11 we are going to use a rather different approach to prove convergence.
Since the coordinate descent scheme assumes one agent update per iteration and the probability

96 Chapter 5. Estimating the Proximal Operator

of an update complies to some prior distribution, we will prove convergence of the iterates {xk} to
some optimizer x∗ in expectation. To this end, we make the assumption that h is strongly convex
with strong convexity constant μ. Moreover, we assume that every K > 0 iterations a full correction
takes place, namely all the agents communicate their actual optimizers to the coordinator, and that
K is bounded.

Theorem 10. Let N agents update with probabilities pi and pmin = min
i∈{1,...,N}

pi. Let ν = 1 −√
(1− 2γμ+ μγ2L), where L is the Lipschitz constant of ∇h and μ the strong convexity constant

of h, while γ < 2/L. If x∗ is the unique optimizer of Problem (5.12), for any time instant k > K,
the sequence {xk} generated by Algorithm 11 satisfies

E[‖xk+K − x∗‖2] ≤
(
1− ρ(μ− ε)

N

)k

E[‖xK − x∗‖2]

+
ρ

N

(
1

ε
+

ρ(1 + δ)

Npminδ

) k∑
j=1

(
1− ρ(μ− ε)

N

)k−j

E[‖eK−1+j‖2] , (5.34)

for ρ ∈ (0, Npmin/(2(1+ δ))), ηk = ρ
Npik

, δ > 0, ν > ε > 0, and ek = (ek1, . . . , e
k
N) ∈ R

Nn the vector

that is constituted of the components eki = γ(∇fγ
i (v

k)− gki), i = 1, . . . , N , while eK = 0.

Proof: The proof is deferred to Appendix 5.9.6. �

Theorem 10 states that if the algorithm is terminated earlier, the sequence {xk} will converge (in
expectation) to a ball that is centered at the optimum and has a radius that increases with the
expected error that has been accumulated since the last correction occured.

Remark 14. The absence of any assumptions on h results in a diminishing stepsize rule in the case
of ADMM (Theorem 9), in contrast to the randomized coordinate descent PGM where ηk need not
be vanishing. On the other hand, only convergence within a ball centered at the optimum can be
shown in the latter case, while the diminishing sequence {ηk} will result in asymptotic convergence.

5.7 Applications

5.7.1 Distributed Load Sharing

The sharing problem takes the form

minimize
T−1∑
t=0

(
N∑
i=1

pcbi (t)− r(t))2 +
N∑
i=1

fi(p
cb
i , ui, xi) , (5.35)

which is identical to the one given in (2.23), with variables pcbi , ui, xi. The variable pcbi (t) refers
to the total consumption of the ith building at time instant t, where i = 1, . . . , N , and pcbi =
(pcbi (0), . . . , pcbi (T − 1)) ∈ R

T , pcb = (pcb1 , . . . , pcbN) ∈ R
NT . The reference power profile is denoted

by r(t), while time spans from t = 0, . . . , T − 1, i.e., we have a T -timesteps ahead prediction of the

5.7 Applications 97

power profile. The first term, h(pcb) =
∑T−1

t=0 (
∑N

i=1 p
cb
i (t) − r(t))2, penalizes the deviation of the

total power contribution to the reference power profile. The individual components fi(p
cb
i , ui, xi)

are local performance criteria coupled with implicit descriptions of convex sets, constructed by the
intersection of linear equations (agent dynamics) and constraints, details that are hidden from the
global node. More details are given below.

Modeling of the agents

The microgrid comprises small and medium office buildings, generated by the OpenBuild soft-
ware [GQJ15]. An instance of a local optimization problem for building i is

fi(p
cb
i , ui, xi) = w

T−1∑
t=0

max
{
ci(t)(p

cb
i (t)− pbasei (t)),

0.5ci(t)(p
cb
i (t)− pbasei (t)),

− 0.5ci(t)(p
cb
i (t) + 3pbasei (t))

}
+ δ((pcbi , ui, xi) | Cbuild) , (5.36)

Cbuild =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

xi(t+ 1) = Aixi(t) +Biui(t)
xi(0) = xiniti

pcbi (t) =
∑Mi

j=1 uij(t)

Cixi(t) ∈ Xi(t)
‖ui(t)‖∞ ≤ umax

i

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

.

Note that this is identical to the description in (2.25), where in addition to feasibility, the buildings
have certain preferences when it comes to tracking a given power profile. The local objective is
weghted versus the global tracking cost by means of a constant w > 0. When the profile causes
the total power consumption to exceed some threshold, the cost of electricity increases, while when
the total power consumption drops below some threshold the ambient temperature might become
discomforting (although tolerable) for the residents. This discontent is expressed in (5.36) by the
piecewise affine function expressed by the max term in the objective. The data ci(t) is the associated
electricity cost for bulding i at time t and pbase is the expected baseline consumption, the deviation
from which is penalized or subsidized.

Instead of carrying the full building description as in Cbuild, which would result in a high-
dimensional optimization problem, the authors in [GBSJ15] propose a low-dimensional modeling
abstraction of the building as a ‘thermal battery’. A robust optimization problem is solved to ensure
that the trackable power profiles pcbi (t) =

∑Mi
j=1 uij(t) ∈ R

T for building i reside inside a convex
set, namely Pcb

i , and satisfy the constraints imposed in (5.36).

Using the aforementioned abstraction, the optimization problem associated to building i be-

98 Chapter 5. Estimating the Proximal Operator

Simulation characteristics

Data 1st January 2013
Location Lausanne
Time 00:00 - 23:00
Sampling time 60 min
Horizon 24 −
Dimension Pcb

i 96 −

Buildings

Desired temperature 20 ◦C
Minimum temperature (day/night) 18/15 ◦C
Maximum temperature (day/night) 22/25 ◦C
Tariff (day/night) 21.6/12.7 13.15/8.3 ct./kWh
Heat pump COPhot 3.0 −
Heat pump COPcold 3.0 −

Small Medium
Number of systems 28 22 #
Area 511 4982 m2

Number of states 15 54 −
Number of inputs 5 18 −
Average thermal consumption 4 40 W/m2

Table 5.1: Micro-grid case study overview

comes

fi(p
cb
i) = w

T−1∑
t=0

max
{
ci(t)(p

cb
i (t)− pbasei (t)),

0.5ci(t)(p
cb
i (t)− pbasei (t)),

− 0.5ci(t)(p
cb
i (t) + 3pbasei (t))

}
+ δ(pcbi | Pcb

i) , (5.37)

We can now solve (5.35) with fi given by (5.37) using Algorithm 10.

Simulation setup

Our purpose is to assign one-hour reference tracking to a population that consists of agents described
in the previous section. We consider N = 50 buildings, different electricity tariffs that vary according
to the time of the day as well as the size of the load. The tracking term w in (5.37) is set to 0.05
in order to prioritize tracking over the agents’ local objectives. Other details associated to the
simulation are given in Table 5.1.

We solve problem (5.37) using ADMM (5.19) with ρ = 20. A comparison is performed between
the exact solution of the problem instance, and three schemes that allow for reduced communication.
We consider:

5.7 Applications 99

1. The proposed reduced communication approach presented in Algorithm 10.

2. Directly using the tightest hyperplane as given in (5.22) (without evaluating the communica-
tion test (5.21)).

3. Using the previous guess for the pair (yi, λi) whenever there is no communication, i.e., yk+1
i =

yki and λk+1
i = λk

i .

In addition, we trigger a compulsory communication round to and from all the agents every 10
iterations, i.e., whenever mod (k, 10) = 0. The proximal minimization problems are solved in
MATLAB using the YALMIP optimizer [L0̈4] with the Gurobi solver. The termination criterion
is a combination of feasibility and optimality, namely we iterate until inclusion of pcbi in Pcb

i is
satisfied for all agents with accuracy 10−4, while the distance between two consequtive iterates
satisfies ‖(pcb)k − (pcb)k−1‖/‖(pcb)k−1‖ ≤ 10−4.

Figure 5.3 depicts the number of iterations versus the number of communication rounds using
the four approaches discussed above. We observe from Figure 5.3a that Algorithm 10 achieves ap-
proximately 32% reduction in communication in comparison to the regular ADMM implementation.
The number of iterations is, as expected, increased (from 19 to 52). When the tightest hyperplane
identified by (5.22) is used, the algorithm still converges, the communication rounds increase by
16% and the number of iterations jumps up to 72. Figure 5.3b indicates that when the agents’
updated values are set to the previous ones, the algorithm does not converge.

The tracking quality of the mix is depicted in Figure 5.4. The small buildings’ constribution
is colored in pink, while that of the medium scale buildings in blue. The reference signal in red
has been normalized with respect to the baseline. When the buildings are asked to decrease their
consumption (negative contribution), participation is more vigorous, while in the opposite case
(increase consumption, positive contribution) the asymmetry caused by the objective (5.36) renders
the mix ‘lazier’ to react.

To sum up, it is observed that when the proximal solution is estimated, the communication
rounds are significantly reduced, by more than 30%. This reduction is accompanied by a significant
increase in the number of iterations needed for convergence. The cause for this increase can be
attributed to the excursions that the trajectory takes, most probably caused by the erroneous
optimizers that are selected in the early iterations. We see that confining the potential optimizers
within the set has a beneficial effect in comparison to just guessing the solution, although it comes
at the cost of solving a QCQP of complexity that is growing with the number of generated query
points.

5.7.2 Optimal Price Adjustment

We consider a setup identical to the one presented above, with the difference being that we now
solve the dispatchability problem (2.24). Problem (5.35) takes the form

minimize
N∑
i=1

f cb
i (pcbi , ui, xi) + fbess(pbess)

subject to
T∑
t=1

pbess(t) +
N∑
i=1

(pcbi (t)− p̂cbi (t)) = r(t) ,

(5.38)

100 Chapter 5. Estimating the Proximal Operator

0 10 20 30 40 50 60 70 80
Iterations

10-6

10-4

10-2

100

R
es

id
ua

l

Exact VS Approximate Proximal Minimization

0

10

20

C
om

m
un

ic
at

io
n

ro
un

ds

Exact
Inexact - Algorithm 1
Inexact - Tightest hyperplane

(a) Exact ADMM versus Algorithm 10 versus Tightest hyperplane
approach.

0 20 40 60 80 100
Iterations

10-10

10-8

10-6

10-4

10-2

100

R
es

id
ua

l

Exact VS Approximate Proximal Minimization

0

10

20
C

om
m

un
ic

at
io

n
ro

un
ds

Exact
Inexact - Algorithm 1
Inexact - Keep previous

(b) Exact ADMM versus Algorithm 10 versus Keeping-value-constant
approach.

Figure 5.3: Performance in terms of communication savings.

5.7 Applications 101

Load sharing

0 5 10 15 20 25
Time[60mins]

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

O
ut
pu
t[M

W
]

Figure 5.4: Tracking of a reference by a mix of small (pink) and medium scale (blue) buildings.

where

fbess(pbess) :=
{1

2

T∑
t=1

‖SOC(t)− SOCref(t)‖22 | pbess ∈ Cbess
}

, (5.39)

Cbess =

⎧⎪⎪⎨
⎪⎪⎩

SOC(t+ 1) = aSOC(t) + bpbess(t)
SOC(0) = SOC init

SOCmin ≤ SOC(t) ≤ SOCmax

pbessmin ≤ pbess(t) ≤ pbessmax

⎫⎪⎪⎬
⎪⎪⎭ ,

while f cb
i is given by (5.37).

After performing the simple reformulation suggested in [BPCPE11, Section 7.3.2], the dispatch-
ability problem (5.38) reduces to the optimal exchange problem given below.

zk+1
i = argmin

zi

{
fi(zi)− 〈zi, λk〉+ (ρ/2)‖zi − (zki − z̄k)‖22

}
, i = 1, . . . , N + 1

λk+1 = λk + ρ(z̄k+1 − r/N) ,
(5.40)

where we have denoted zi = pcbi , i = 1, . . . , N , zN+1 = pbess, fi = f cb
i , i = 1, . . . , N , fN+1 = fbess

while z̄ = 1
N+1

∑N+1
i=1 zi.

Except for the fact that (5.40) gives a simple way to solve (5.38), there is another interesting
observation to make. Examined through the lens of Walras’ (simultaneous) tâtonnement [Wal96]
or price adjustment process, we can give the following intrepretation to (5.40) [Uza60]:

1. At each iteration, the coordinator (Secretary of Market) announces a price vector λ.

2. Each agents submits to the coordinator a vector zi with its quantities of demand and supply

102 Chapter 5. Estimating the Proximal Operator

of electrical power based on the announced price vector.

3. The coordinator adapts the price vector to the received supply/demand profiles and the
process repeats until the total supply equals the reference.

If the quadratic term that appears in the proximal minimization agent subproblems is removed, we
end up with dual decomposition, the most basic algorithmic form of tâtonnement. As mentioned
in [BPCPE11, Section 7.3.2], the term added by ADMM indicates each agent’s commitment to help
clear the market.

By ‘learning’ the envelope function of each agent, the coordinator is capable of bounding the
predicted individual demands inside some set for a given price vector. With this in mind, one can
think of Algorithm 10 applied to (5.40) as a mechanism design protocol, where the goal is to elicit
private information from each of multiple agents in order to select a desirable system wide outcome.

In addition, the process always operates as a communication reduction scheme, the performance
of which is illustrated in Figure 5.5. The residual is formed as the relative distance of the current
power consumption vector to the optimizer. When terminated early (Figure 5.5a), the scheme
reduces considerably the number of both iterations for convergence and communication rounds.
Since this measurement can be considered unreliable due to the oscillatory nature of the residual
trajectory, in Figure 5.5b we illustrate a running average of the last 100 iterations of the residual.
We observe a (much) larger number of iterations to reach the same accuracy, followed by a modest
(27%) decrease in communication.

5.7.3 Randomized Coordinate Load Sharing

We finally consider once more the distributed load sharing problem in the beginning of the section,
this time, though, the agents do not pursue any individual objectives, namely only the indicator
function of the composite cost (5.37) is considered. We solve problem (5.35) using the projected
gradient method with randomized coordinate descent. Uniform updates are considered, i.e., pi =
1/N while we set ηk = η = 0.9 ∀k (its value should be smaller according to Theorem 10, but
the formula is rather conservative, while the aforementioned choice performed well in practice). A
comparison is performed between the exact solution of the problem and Algorithm 11. The latter
is implemented in two different ways: We first consider the worst-case approach (5.14) for locating
each agent’s optimizer. Afterwards, we compare to the centering approach (5.24). The proximal
minimization problems and the QCQPs of the worst-case scenario are solved in MATLAB using
the YALMIP optimizer [L0̈4] with the Gurobi solver, while the SDPs are solved using CVX [CR12]
with SEDUMI [Stu98].

Figure 5.6 depicts the number of iterations versus the number of communication rounds in all
three approaches, namely exact, inexact worst-case and inexact with centering. The termination
criterion is a combination of feasibility and optimality, namely we iterate until inclusion of pcbi in
Pcb
i is satisfied for all agents with accuracy 10−3, while the distance to the optimizer ‖(pcb)k −

(pcb)∗‖/‖(pcb)∗‖ ≤ 10−1. It is observed that in both cases where the proximal solution is estimated,
the communication rounds are significantly reduced, i.e., by more than 70% in the worst-case
approach and by more than 30% in the centering approach. In addition, with the centering approach
the number of iterations for convergence is also reduced by about 25%. Surprising though it might

5.7 Applications 103

0 20 40 60 80 100 120 140 160
Iterations

10-5

10-4

10-3

10-2

10-1

100

R
es

id
ua

l

Exact VS Approximate Proximal Minimization

0

40

80

120

160

200

C
om

m
un

ic
at

io
n

ro
un

ds

Estimated
Exact

(a) Exact ADMM versus Algorithm 10: Convergence.

0 50 100 150 200 250 300 350
Iterations

10-5

10-4

10-3

10-2

10-1

100

R
es

id
ua

l

Exact VS Approximate Proximal Minimization

0

40

80

120

160

200

C
om

m
un

ic
at

io
n

ro
un

ds
Estimated
Exact

(b) Exact ADMM versus Algorithm 10: Averaged residual conver-
gence.

Figure 5.5: Performance in terms of communication savings for the price adjustment (dispatch) problem.

104 Chapter 5. Estimating the Proximal Operator

0 500 1000 1500 2000 2500
Iterations

10-2

100

R
es

id
ua

l

Exact VS Approximate Proximal Minimization

0

400

800

1200

1600

2000

C
om

m
un

ic
at

io
n

ro
un

ds

Estimated
Exact

(a) Exact ADMM versus Algorithm 11: Worst-case gradient esti-
mate (5.14).

0 200 400 600 800 1000 1200 1400
Iterations

10-2

100

R
es

id
ua

l

Exact VS Approximate Proximal Minimization

0

400

800

1200

1600

2000

C
om

m
un

ic
at

io
n

ro
un

ds

Estimated
Exact

(b) Exact ADMM versus Algorithm 11: Gradient estimate is the
Chebychev center (5.24).

Figure 5.6: Performance in terms of communication savings for the randomized coordinate descent imple-
mentation of the load sharing problem.

5.8 Conclusion 105

seem, this is possible since the estimated gradient gki might result in an infeasible approximate
optimizer (pcbi)k+1 for some i, such that (pcbi)k+1 /∈ Pcb

i , thus giving rise to a more aggressive step.
In conclusion, we can say that estimating the solution to the proximal minimization problem

seems to be more beneficial in the case where coordinate descent is applied instead of the regular
algorithmic iteration. Our explanation for this observation has as follows. Since in the coordinate
descent case there is only one agent update per iteration, there is no significant change between two
consecutive optimizers. This, in turn, renders the non-communication test easier to pass, resulting
in fewer communication rounds. Moreover, the typically large number of iterations necessary for
convergence gives the coordinator enough time to ‘learn’ the agents.

5.8 Conclusion

Modern multi-agent setups consist of several heterogeneous components equipped with prediction
and control algorithms, that attribute to them some decision-making capacity. These attributes
ask for distributed solutions which come with an inherent communication overhead. We propose a
framework where the communication requests are reduced by enabling the central coordinator to
gradually ‘learn’ the optimization model of the agents and to trigger them based on the result of a
predesigned certification test.

A more interesting goal would be to generalize the scheme to decentralized settings, for instance,
to wireless sensor networks where only one-hop communication is allowable. Such networks are char-
acterized by high energy consumption related to communication, often several orders of magnitude
greater than the energy required for local computations [RN04]. As a result, our proposed approach
could become of practical relevance.

5.9 Appendices

5.9.1 Proof of Proposition 2

Without loss of generality we derive the analysis for the query point z1 to be consistent with Fi-
gure 5.1.

1. We need to show that ∇fγ(v) ∈ ∂ε∗(v;z1)f
γ
(v; z1). Employing Definition 6, we start by showing

that
f
γ
(z; z1) ≥ f

γ
(v; z1) + 〈∇fγ(v), z − v〉 − ε∗(v; z1), ∀z ∈ R

n .

We will proceed and prove the statement by contradiction. Suppose that ∃ z ∈ R
n, such that

f
γ
(z; z1) < f

γ
(v; z1) + 〈∇fγ(v), z − v〉 − ε∗(v; z1)

holds. From the definition of ε∗(v; z1) (equation (5.4)), the above inequality is equivalent to:

f
γ
(z; z1) < 〈∇fγ(v), z − v〉+ fγ(v) .

From convexity of fγ , it holds that fγ(v) + 〈∇fγ(v), z − v〉 ≤ fγ(z), ∀z ∈ R
n, therefore we

106 Chapter 5. Estimating the Proximal Operator

conclude that ∃ z ∈ R
n such that

f
γ
(z; z1) < fγ(z) ,

which leads to a contradiction. Consequently, ∇fγ(v) ∈ ∂ε∗(v;z1)f
γ
(v; z1).

2. The property follows directly from the fact that f
γ
(z; z1) is real-valued, along with [Ber15,

Proposition 6.7.1].

5.9.2 Proof of Proposition 5

All we need in order to prove the statement is a function f for which ε∗(v; z1) results in a tight
bound. Let us assume that f(x) is an indicator function of some convex set X and thus given by
f(x) = δ(x | X). Let us also assume that the set (5.7) associated to ε∗(v; z1) is not the smallest,
i.e., ∃ ε > 0 such that ε = f

γ
(v; z1)− fγ(v)− α for some α > 0, and that ∇fγ(v) ∈ ∂εf

γ
(v; z1), or

f
γ
(z; z1) ≥ f

γ
(v; z1) + 〈∇fγ(v), z − v〉 − ε, ∀z ∈ R

n .

Substituting ε from above, we have that

f
γ
(z; z1) ≥ fγ(v) + 〈∇fγ(v), z − v〉+ α, ∀z ∈ R

n . (5.41)

For z = z1, equation (5.41) reads

fγ(z1) ≥ fγ(v) + 〈∇fγ(v), z1 − v〉+ α .

If z1 ∈ X , i.e., z1 ∈ dom(f), it holds ∀v ∈ X that fγ(z1) = fγ(v) = 0 and ∇fγ(v) = 0.
Consequently, the previous inequality results in α ≤ 0, which leads to a contradiction. Therefore,
there exists no set ∂εf

γ
(v; z1) smaller than ∂ε∗f

γ
(v; z1) that contains ∇fγ(v).

5.9.3 Proof of Theorem 8

We need to compute explicitly the ε-subdifferential sets of both f
γ
(v) and f

γ
(v; z1) and subsequently

perform the comparison. We will need the following result from [Roc70]:

Lemma 18. [Roc70, Theorem 16.5] The conjugate of fγ
(z | J) is given by

(f
γ
)�(g | J) = (conv{fγ

(z; zj) | j ∈ J })� = sup
j∈J

{(fγ
)�(g; zj)}.

• Let us fix the distance of fγ(v) from the quadratic upper bounds as demonstrated in Fi-
gure 5.2. The ε∗(v; zj)-subdifferential sets for f

γ
(v; zj), j ∈ J are:

∂ε∗(v;zj)f
γ
(v; zj) =

{
g | (fγ

v)
�(g; zj) ≤ ε∗(v; zj)

}
=
{
g | (fγ

)�(g; zj) + f
γ
(v; zj)− 〈v, g〉 ≤ ε∗(v; zj)

}
, (5.42)

where we used relation (5.6) in the first equality and (5.5) in the second.

5.9 Appendices 107

• For f
γ
(v):

∂ε∗(v|J)f
γ
(v | J) =

{
g | (fγ

v)
�(g | J) ≤ ε∗(v | J)

}
=

{
g | (fγ

)�(g | J) + f
γ
(v | J)− 〈v, g〉 ≤ ε∗(v | J)

}
=

{
g | (sup

j∈J
{(fγ

)�(g; zj)}+ f
γ
(v | J)− 〈v, g〉 ≤ ε∗(v | J)

}
,

(5.43)

where we used relation (5.6) in the first equality, (5.5) in the second, and Lemma 18 in the
third.

Equation (5.43) holds for each (f
γ
)�(g; zj) individually since it holds for the pointwise supremum.

In addition, it is evident from Figure 5.2 that ε∗(v | J), expressing the distance of fγ
(v | J) from

the Moreau envelope fγ(v), can be expressed with respect to any of the distances ε∗(v; zj), reduced
by a factor of fγ

(v; zj)− f
γ
(v | J). Equation (5.43) thus ends up reading

∂ε∗(v|J)f
γ
(v | J) =

{
g | (fγ

)�(g; zj) + f
γ
(v; zj)− 〈v, g〉 ≤ ε∗(v; zj), ∀j ∈ J

}
,

so ∂ε∗(v|J)f
γ
(v | J) =

⋂
j∈J ∂ε∗(v;zj)f

γ
(v; zj) from (5.42).

5.9.4 Proof of Proposition 6

Starting from the fact that xk+1 = vk − γgk, we want to find from (5.16) the worst-case point g
such that

h(vk − γg) +
N∑
i=1

fi(v
k
i − γgi) ≤ h(xk) +

N∑
i=1

fi(x
k
i)−

1

2γ
‖vk − γg − xk‖2 ,

or

max
g

{
h(vk − γg) +

N∑
i=1

fi(v
k
i − γgi) +

1

2γ
‖vk − γg − xk‖2

}
≤ h(xk) +

N∑
i=1

fi(x
k
i) .

It holds that

h(vk − γg) +
N∑
i=1

fi(v
k
i − γgi) +

1

2γ
‖vk − γg − xk‖2 =

h(vk − γg) +

N∑
i=1

fγ
i (v

k
i)−

1

2γ
‖γg‖2 + 1

2γ
‖γg − vk + xk‖2 =

h(vk − γg) +
N∑
i=1

fγ
i (v

k
i)− 〈g, vk − xk〉+ 1

2γ
‖vk − xk‖2 ≤

h(vk − γg) +
N∑
i=1

min
j∈J

{fγ
i (v

k
i ; zi,j)} − 〈g, vk − xk〉+ 1

2γ
‖vk − xk‖2 ,

108 Chapter 5. Estimating the Proximal Operator

where the first equality follows from (2.7), the second from the development of the quadratic form
and the inequality from the fact that fγ

i (v
k
i) ≤ f

γ
i (v

k
i ; zi,j), ∀j ∈ J .

5.9.5 Proof of Proposition 7

We start by analyzing the ADMM iterations in (5.19). The proximal and dual iterations can be,
respectively, expressed as

ŷk+1
i = vki − γgki

= vki − γ∇fγ
i (v

k
i)− γeki

= prox 1
ρ
fi
(vki)︸ ︷︷ ︸

yk+1
i

−(1/ρ)eki

λ̂k+1
i = λk

i + ρ(x̃k+1
i − ŷk+1

i)

= λk
i + ρ(x̃k+1

i − yk+1
i)︸ ︷︷ ︸

λk+1
i

+eki . (5.44)

Let us introduce the variable μk
i := λk

i + ρx̃k+1
i and write the dual update as

λk+1
i = μk

i − ρprox 1
ρ
fi
(vki)

= μk
i − ρprox 1

ρ
fi
(μk

i /ρ) , (5.45)

where the second equality follows from (5.20).

We still need to express the error in (5.44) with respect to the functions appearing in (5.29).
The Moreau identity is a useful Lemma that associates a convex function with its conjugate and is
given below.

Lemma 19. Let f : Rn
→ R ∪ {+∞} be a closed proper convex function. Then for any x ∈ R
n

prox ρf∗(x) + ρprox f/ρ(x/ρ) = x, ∀ 0 < ρ < +∞ .

Using Lemma 19 in (5.45), it directly follows that that λk+1
i = prox ρf�

i
(λk

i + ρx̃k+1
i). Substituting

in (5.44), we finally get that

λ̂k+1
i = prox ρf�

i
(λk

i + ρx̃k+1
i) + eki . (5.46)

It follows from the definition of F (λ) and (5.46) that Algorithm 10 can be equivalently cast as the
inexact DR iteration provided that zk+1 = λk + ρx̃k+1. The proof of this last point follows directly
from the slides [Van10, Lecture 13].

5.9 Appendices 109

By switching the second and third updates, the DR iteration (5.29) can be written as

rk+1 = prox ρH(2λk − zk)

λk+1 = prox ρF (z
k + η(rk+1 − λk))

zk+1 = zk + η(rk+1 − λk) . (5.47)

By introducing the variable w = z − λ, the iteration above can be cast as

rk+1 = prox ρH(λk − wk)

λk+1 = prox ρF (λ
k + wk + η(rk+1 − λk))

wk+1 = wk + λk + η(rk+1 − λk) .

It is shown in the slides that the x-update of the ADMM algorithm (5.19) can be expressed as
xk+1 = 1

ρ(r
k+1 +wk − λk). Similarly, the y-update of the algorithm can be written as yk+1 = 1

ρw
k.

Putting these two together, we have that

x̃k+1 = ηxk+1 + (1− η)yk

= η
1

ρ
(rk+1 + wk − λk) + (1− η)

1

ρ
wk .

Then λk + ρx̃k+1 = λk +wk + η(rk+1−λk), which is the z-update given in (5.47) after substituting
z = w + λ.

5.9.6 Proof of Theorem 10

The key point is to observe that the approximate iteration xk+1
i = vki − γgki can be expressed as

an inexact proximal gradient iteration. To this end, we introduce the error sequence {ek} so as to
write

eki + prox γfi(v
k
i) = vki − γgki , (5.48)

while
prox γfi(v

k
i) = vki − γ∇fγ

i (v
k
i) . (5.49)

Substituting (5.49) in (5.48) we have that

eki = γ(∇fγ
i (vi,k)− gki) . (5.50)

Using the error (5.50), the randomized coordinate descent iteration can be expressed as{
xk+1
ik

= xkik + ηk
(
ekik + prox γfik

(
xkik − γ∇ikh(x

k)
)
− xkik

)
xk+1
i �=ik

= xki �=ik
,

or, more compactly, as

xk+1 = xk + ηkUik

(
prox γF

(
xk − γ∇h(xk)

)
− xk + ek

)
. (5.51)

110 Chapter 5. Estimating the Proximal Operator

The matrix Uik : RNn
→ R
Nn is drawn from a set of orthogonal projection matrices {Ui}Ni=1 such

that Ui : x
→ (0, . . . , 0, xi, 0, . . . , 0), i = 1, . . . , N and
∑N

i=1 Ui = I. Consequently, Uik isolates the
ithk component of its argument, thus it updates the corresponding component of x, while the other
components (agents) are set to their previous values. The proximal operator prox γF is defined as

prox γF (x
k+1) := (prox γf1(x

k+1
1), . . . ,prox γfN (x

k+1
N)).

Equation (5.51) is an instance of a more general inexact fixed-point iteration. Such iterations
have been heavily studied in the literature. The works [LFP16; RFP13; SRB11] consider the case of
deterministic fixed-point iterations with errors both in the gradient and in the proximal operator,
where the errors are summable, while [PXYY16] analyze asynchronous fixed-point iterations, where
the errors appear due to outdated samples in the update. It turns out that the asynchronous
iteration in the latter works takes the form (5.51), the only difference being the expression for the
error (5.50). We can thus employ similar arguments for proving convergence.

By introducing the operator

T : Rn
→ R
n, T := prox γF (I − γ∇h)

and
S : Rn
→ R

n, S = I − T .

equation (5.51) can be written as

xk+1 = xk + ηkUik(Tx
k − xk + ek) = xk − ηkUiks

k , (5.52)

where sk = Sxk − ek, and ek is given by (5.50). We set the relaxation parameter to ηk = ρ
Npik

,
where ρ > 0 will be bounded from above later on.

Our purpose is to bound the distance of xk+1 to the fixed point x∗ as a function of ‖xk − x∗‖
and ‖ek‖, always in expectation. We thus introduce Xk =

{
x0, x1, . . . , xk

}
, and by taking the

conditional expectation and squaring (5.52), we get

E[‖xk+1 − x∗‖2 | Xk] = ‖xk − x∗‖2 − 2
ρ

N
E[〈xk − x∗,

1

pik
Uiks

k〉 | Xk] +
ρ2

N2
E[‖ 1

pik
Uiks

k‖2 | Xk]

= ‖xk − x∗‖2 − 2
ρ

N

N∑
i=1

pi〈xk − x∗,
1

pi
Uis

k〉+ ρ2

N2

N∑
i=1

pi〈
1

pi
Uis

k,
1

pi
Uis

k〉

≤ ‖xk − x∗‖2 − 2
ρ

N
〈xk − x∗, sk〉+ ρ2

N2pmin
‖sk‖2 , (5.53)

where the second equality follows from the definition of the expectation and the third one from the
fact that Ui is an orthogonal projection operator.

Let us now analyze the second and third term in (5.53).

• Bound −2 ρ
N 〈xk − x∗, sk〉: From the definition of sk = Sxk − ek, it holds that

〈xk − x∗, sk〉 = 〈xk − x∗, Sxk〉 − 〈xk − x∗, ek〉 . (5.54)

5.9 Appendices 111

We will now upper-bound the resulting inner product terms. In order to do so, we must use
both the Lipschitz continuity of ∇h and the strong convexity of h.

Lemma 20. Let S = I − prox γF (I − γ∇h) as defined above. Then

〈xk − x∗, Sxk〉 ≥ 1

2
‖Sxk‖2 .

Proof: If T = prox γF (I − γ∇h) is a nonexpansive operator, then the property holds for
S = I −T from [BC11, Proposition 4.33]. Nonexpansivity of T can be easily shown (see, e.g.,
[PXYY16, Proposition 2.2]), from where the result follows. �

Lemma 21. Denoting as L be the Lipschitz continuous gradient constant of h and μ its
strong convexity modulus, it holds that

〈xk − x∗, Sxk〉 ≥ ν‖xk − x∗‖2 ,

where ν = 1−
√
(1− 2γμ+ μγ2L) for γ < 2/L.

Proof: From [BC11, Example 22.5] we have that if T is β-Lipschitz continuous for some
β ∈ [0, 1) then I − T is (1− β)-strongly monotone. It is proven in [PXYY16, Proposition 2.2]
that ‖Tx− Tx∗‖ ≤

√
(1− 2γμ+ μγ2L)‖x− x∗‖ for γ < 2/L, so T is β-Lipschitz continuous

with β =
√

(1− 2γμ+ μγ2L), which concludes the proof. �

Using Lemmata 20 and 21 we get

− 2
ρ

N
〈xk − x∗, Sxk〉 ≤ −ρν

N
‖xk − x∗‖2 − ρ

2N
‖Sxk‖2 . (5.55)

For the second inner product term in (5.54) we can easily derive the bound

2
ρ

N
〈xk − x∗, ek〉 ≤ 2

ρ

N
‖xk − x∗‖‖ek‖ . (5.56)

Equations (5.55) and (5.56) result in the bound

− 2
ρ

N
〈xk − x∗, sk〉 ≤ −ρν

N
‖xk − x∗‖2 − ρ

2N
‖Sxk‖2 + 2

ρ

N
‖xk − x∗‖‖ek‖ . (5.57)

• Bound ρ2

N2pmin
‖sk‖2: Using again the definition of sk, we have that

‖sk‖2 = ‖Sxk‖2 + ‖ek‖2 − 2〈Sxk, ek〉

≤ ‖Sxk‖2 + ‖ek‖2 + δ

pmin
‖Sxk‖2 + 1

δpmin
‖ek‖2 , (5.58)

112 Chapter 5. Estimating the Proximal Operator

where the inner product term was bounded by employing Young’s inequality.1 We finally get
the bound:

ρ2

N2pmin
‖sk‖2 ≤ ρ2

N2pmin
(1 + δ)‖Sxk‖2 + ρ2

N2pminδ
(1 + δ)‖ek‖2 . (5.59)

Using (5.57) and (5.59), inequality (5.53) can be written as

E[‖xk+1 − x∗‖2 | Xk] ≤ ‖xk − x∗‖2 − ρν

N
‖xk − x∗‖2

+
ρ

N

(
ρ(1 + δ)

Npmin
− 1

2

)
‖Sxk‖2

+ 2
ρ

N
‖xk − x∗‖‖ek‖+ ρ2

N2pminδ
(1 + δ)‖ek‖2 . (5.60)

The third term in the sum can be eliminated by asumming that

ρ(1 + δ)

Npmin
− 1

2
< 0 ⇒ ρ <

Npmin

2(1 + δ)
, (5.61)

which gives rise to the inequality

E[‖xk+1 − x∗‖2 | Xk] ≤ ‖xk − x∗‖2 − ρν

N
‖xk − x∗‖2 + 2

ρ

N
‖xk − x∗‖‖ek‖+ ρ2

N2pminδ
(1 + δ)‖ek‖2 .

(5.62)
The complicating term on the right hand side can be eliminated by using once more Young’s
inequality, i.e.,

2
ρ

N
‖xk − x∗‖‖ek‖ ≤ 2

ρ

N

(
ε

2
‖xk − x∗‖2 + 1

2ε
‖ek‖2

)
=

ρε

N
‖xk − x∗‖2 + ρ

Nε
‖ek‖2 .

Using the above in (5.62) and taking the expectation in both sides, we recover the inequality

E[‖xk+1 − x∗‖2] ≤
(
1− ρ(ν − ε)

N

)
E[‖xk − x∗‖2] + ρ

N

(
1

ε
+

ρ(1 + δ)

Npminδ

)
E[‖ek‖2] ,

for ρ ∈ (0, Npmin/(2(1 + δ))) and any δ > 0, ε > 0, which concludes the proof.

1For two nonnegative real numbers x and y, it holds that xy ≤ δx2

2
+ y2

2δ
for every δ > 0.

Chapter 6

Extensions and Conclusions

The goal of this dissertation was to design decomposition methods that offer novel solutions to
model-based constrained optimal control problems, both in the centralized and the distributed case.
We studied the strengths of these methods in three distinct directions. First, we showed how proper
splitting can efficiently solve a problem that was otherwise not solvable. Then we demonstrated how
splitting can positively affect convergence speed in distributed optimization. Finally, we presented
splitting methods as design mechanisms for protocols that reduce the need for communication in
distributed settings. We offer below some more detailed concluding remarks for each chapter of this
thesis, and an extended discussion on potential future directions.

6.1 Infinite horizon control

In Chapter 3 we proposed a way to solve the infinite-horizon constrained linear quadratic regulator
problem, a problem that has, among others, inspired the development of the concept of receding
horizon and, consequently, of linear model predictive control. The advantages of solving the CLQR
over applying MPC are two: optimality and enlargement of the feasible region. Optimality is not
that crucial since, in real setups, a plethora of factors might contribute to render the solution
suboptimal, several of which are not related to the length of the horizon (e.g., model mismatch).
The size of the region of attraction is more significant; it can, however, be addressed by empirically
choosing a large horizon. Taking these points into account, we are of the opinion that CLQR should
be preferred over MPC only if the two schemes are comparable in terms of their computational
overhead, that is to say, only when solving the CLQR is not (much) more expensive than applying
MPC.

The computational complexity of the scheme is, of course, dependent on the type of optimal
control problem that we want to solve. First and foremost, very few problems have a closed-form
solution when taking an infinite horizon perspective, a fact that limits the applicability of CLQR to
quadratic or discounted linear objectives. Focusing on control problems (infinite-horizon inventory
models have also appeared in the literature [FZ84]), we discuss below a few possible directions.

1. Tracking. The setpoint tracking case should be a direct extension of the regulation problem,
by considering, e.g., the Δ-formulation of the former and by casting the problem as a regula-
tion one. Pitfalls might, however, appear, when e.g., the reference setpoint is on the boundary

6.2 Asynchronous optimization 115

of the constraint set, an event that would lead to the selection of very long horizons. The
per-step computational complexity should remain the same as in the regulation case.

2. Soft-constrained. This problem arises when the states are given some constraint-violation
margin and this margin is penalized in the objective [ZJM10]. It is not obvious how an
infinite-horizon solution could be recovered in this case.

3. Stochastic. The family of stochastic optimal control problems is quite big and thus several
interesting cases can be examined. The unconstrained counterpart of the LQR problem, the
Linear Quadratic Gaussian controller can be computed in the case where the (linear) dy-
namics are affected by Gaussian process noise. Any attempt to introduce state and/or input
constraints increases significantly the problem’s difficulty and gives rise to a wide variety of
formulations [Mes16] (probabilistic VS hard, joint VS individual etc.). It is common practice
to fix the form of the control policy (typically affine) in order to deal with the increased
complexity of these formulations. The addition of an infinite horizon is a topic open for ex-
perimentation.

4. Large-scale systems. Consider a physical system with a considerable amount of inputs and
outputs, enough to be characterized ‘large-scale’. There are several cases where the system
can be represented in a ‘computationally friendlier’ way, where, e.g., there exists a state-
space transformation that decouples the system into smaller subsystems. This is the case
with symmetric systems [CLP08; DB15]. In the framework of unconstrained optimal control,
the latter property allows for the design of individual optimal LQR controllers for the decou-
pled subsystems. Unfortunately, when constraints are present, the coupling reappears. The
application of decomposition methods in order to mitigate this coupling, or to, at least, tackle
it in a computationally efficient way while preserving the infinite-horizon structure is an open
question.

Note that the problems mentioned above can be combined with a variety of convex constraint
sets for the inputs and/or the states. The solution proposed in this thesis is applicable to poly-
topic constraints only. More general convex sets should also be addressable since, in principle, the
vanishing Lagrange multiplier sequence that permits the finite representation of the problem is a
consequence of the linear complementarity KKT condition, i.e., every Lagrange multiplier is an
indicator of membership of a state-input pair with respect to (a subset of) an invariant set. The
latter membership property should (eventually) hold for any convex set in the Lagrangian duality
framework.

Wrapping up, there is a variety of directions that can be followed to extend the results of
Chapter 3. What is left to be assessed is whether the infinite-horizon optimal control schemes that
will emanate from these directions can do the job that traditional MPC does (i) better and (ii) at
a comparable computational cost.

6.2 Asynchronous optimization

The proposed asynchronous inertial fixed-point iteration of Chapter 4 is an instance of a rapidly-
growing family of asynchronous optimization algorithms. We see two distinct directions for improve-

116 Chapter 6. Extensions and Conclusions

ment and further development of these methods: computational improvements and reconsideration
of their applicability in different contexts.

When it comes to computational speedup, injection of second-order information would seri-
ously improve asynchronous (first-order) iterations, since problems of such large a scale tend to
become ill-conditioned quickly. This suggestion has become commonplace for first-order methods
and several successful attempts have been made toward this direction. There is, however, an ev-
ident absence of efforts to address this problem in asynchronous settings, probably due to the
fact that this family of algorithms is still new and unexplored. To this end, we find promising
recent advancements that treat splitting algorithms like FBS and DRS as unconstrained gradient
iterations of smooth envelope functions [PSB14; STP17]. Adopting this viewpoint allows for the
use of smooth unconstrained optimization algorithms, like Newton-type methods, with favorable
convergence properties. The authors have already generalized the approach to devise superlinearly
convergent KM iterations [TP17b], thus it would be valuable to try and embed this approach
in an asynchronous framework, with the possible challenge of designing distributed quasi-Newton
schemes.

The second aspect we want to discuss is the range of applications that asynchronous algorithms
can serve. We insisted in Chapter 4 that, although currently these methods are heavily used in the
machine learning community, there are worthwhile applications in contexts where heterogeneous
populations of (physical) agents cooperate to solve a complex problem in a network structure,
a description that pertains to cyber-physical systems, or, more specifically, to Internet of Things
(IoT) applications. The asynchronous FBS scheme we proposed for the active dispatch of smart
distribution networks only scratches the surface of the pool of potential applications.

1. Our scheme is limited to specific network topologies with one coordinator and several agents
(star-shaped). A variety of other topologies can be tackled, with decentralized architectures
being especially interesting.

2. Our scheme is applied to a specific smart grid-related application, but the potential of asyn-
chronous optimization algorithms spans a wider range of applications. Take for example a
setup similar to ours, i.e., a coordinator and a (very) large population of agents. If the global
signal that the coordinator broadcasts only depends on some characteristic of the aggregate
population and not on the individual characteristics of the agents, the problem has a flavor of
mean field control [SGL15]. Introducing asynchronicity to the agents’ updates would result in
novel and more practical versions of asynchronous mean field control. As a second example,
one can consider sensor networks. Sensors typically run on low power requirements, thus hav-
ing the flexibility to choose whether to transmit or not is crucial for extending their lifetime.
An asynchronous scheme would enable such an option.

3. Our scheme only considers asynchronicity from the computational viewpoint, i.e., it only takes
into account the heterogeneity in the computation times of the optimizing agents. A more
interesting setup emerges when the agents themselves operate at very different timescales,
i.e., when the dynamics differ significantly and the fastest systems evolve too fast for the
algorithm to converge. Interesting questions arise both with respect to the asynchronous
scheme’s advantages over the synchronous one when it comes to early termination and with

6.3 Learning a proximal problem 117

respect to the stability properties of the overall network that might be jeopardized due to the
highly suboptimal solution.

6.3 Learning a proximal problem

Chapter 3 deals with the subject of locating an optimizer of a special convex optimization problem, a
process that can be viewed as online identification of a nonlinear mapping. Although the case we are
tackling is quite specific in terms of the identified convex program’s form, the idea of approximating
or ‘learning’ an optimization process can be potentially implemented by employing more general
tools developed by the machine learning (ML) community. From a technical viewpoint, the question
of how to embed structural information about the process to be learned in a learning algorithm
naturally arises. In the case of the proximal operator, e.g., we would ideally want to use an ML
method that incorporates information about smoothness and convexity of the Moreau envelope
function.

In terms of applicability, we only used the scheme for potential communication reduction in a
coordinator-driven setting. Let us consider a few more settings of potential interest.

1. In the context of mechanism design, the scheme we described could be used to infer preferences
of competing players. In the design of games, it is commonly assumed that the marginal utility
functions of the agents are concave. As a consequence, the market designer could set up a
policy that forces the agents to solve proximal minimization problems so as to learn their
preferences. This controversial policy would allow the designer to reach faster its system-level
goal.

2. The problem of learning the value function of an MPC problem is of paramount importance to
the control community and has led to the development of branches like explicit MPC, where
the value function and the optimal control policy are computed a priori and are stored in a
lookup table. This explicit representation of the controller is only possible for (very) small
problems. A question possibly worth exploring is whether the proposed approach, essentially
equivalent to learning the optimizer of a parametric convex program where the parameter
enters quadratically in the cost, can be of any use to approximate control policies.

3. Our proposed process for ‘learning’ the set of optimizers can be described as follows:

(a) The coordinator feeds an input vector to its local agent model.

(b) If the resulting output, i.e., the estimate of the optimizer, does not pass a certain vali-
dation test, the coordinator transmits the input vector to the agent.

(c) The agent replies by sending the actual optimizer.

(d) The coordinator corrects its agent model based on the newly received information from
the agent.

The framework described above has many similarities with the process of online learn-
ing [SS12]. Let us briefly give a description of the process based on the latter reference.
Online learning is performed in a sequence of T consecutive rounds:

118 Chapter 6. Extensions and Conclusions

(a) On round t, the learner is first given a question, cast as a vector xt, and is required to
provide an answer to this question.

(b) The learner’s prediction is performed based on a hypothesis, ht : X
→ Y, where X is
the set of questions and Y is the set of possible answers.

(c) After predicting an answer, the learner receives the correct answer to the question,
denoted yt, and suffers a loss according to a loss function l(ht, (xt, yt)). The function l
assesses the quality of the hypothesis ht on the example (xt, yt).

(d) The ultimate goal of the learner is to minimize the cumulative loss he suffers along his
run. To achieve this goal, the learner may choose a new hypothesis after each round so
as to be more accurate in later rounds.

Finding the connections between the two problems might result in improvements of the
proximal learning algorithm that we propose, both in terms of faster convergence and for
verifying the quality of the approximation.

We are closing this section with a more general comment. This work focused strictly and deliber-
ately on convex optimization algorithms. There is, however, a significant amount of work generated
over the last few years on proximal splitting, and more general operator splitting methods, for
nonconvex optimization problems [BST13; TP17a]. Distributed nonconvex optimization algorithms
have been deployed to solve energy-network problems [LHSJ17; HJ17], and we recently had the first
asynchronous nonconvex splitting schemes [Dav16]. Developments of the last few years have made
nonconvexity a crucial issue in most ML applications, while at the same time, the majority of the
physical systems in optimal control problems remains highly nonlinear. The explosive development
of the aforementioned algorithms suggests that we should not shy away from directly tackling the
nonconvexities. In our view, the preference in solving convex approximations of otherwise nonconvex
problems should only stem from the fact that convex programs are more mature, and consequently
less dependent on fine-tuning of parameters. Once nonconvex algorithms reach a similar state of
maturity, there will be no reason why they should not be preferred.

Appendix A

Appendix

A.1 Derivation of the Alternating Direction Method of Multipliers
from Douglas-Rachford Splitting

We consider the dual problem (2.4) and denote h(λ) := f�(A�λ) and f ∈ Γ0(R
n), g ∈ Γ0(R

m).
The DRS scheme constitutes of the three iterations:

vk+1 = prox γh

(
λk − wk

)
(A.1)

λk+1 = prox γg�

(
vk+1 + wk

)
(A.2)

wk+1 = wk + vk+1 − λk+1 . (A.3)

We are going to analyze the three iterations sequentially, following the approach form the lecture
notes [Van10].

For (A.1), we have that

prox γh

(
λk − wk

)
= argmin

v∈Rm

{
h(v) + (1/2γ)‖v − λk + wk‖22

}
,

the optimality condition of which is

0 ∈ −A∂f�(−A�v) + (1/γ)(v − λk + wk) (A.4)

Let us rewrite the proximal step (A.1) as a minimization update. For this purpose, consider the
minimization problem

minimize f(z) + (γ/2)‖Az + (λk − wk)/γ‖22

with variable z ∈ R
n, which can be equivalently written as

minimize f(z) + (γ/2)‖u‖22
subject to Az + (λk − wk)/γ = u,

(A.5)

A.1 Derivation of the Alternating Direction Method of Multipliers from
Douglas-Rachford Splitting 121

with variables z ∈ R
n, u ∈ R

m. Introducing a Lagrange multiplier v ∈ R
m, the optimality conditions

for problem (A.5) become:

−A�v ∈ ∂f(z), γu = v, Az + (λk − wk)/γ − u = 0 ,

which, by elimination of the variables z, u, can be written as

0 ∈ −A∂f�(−A�v) + (1/γ)(v − λk + wk),

which is (A.4). Furthermore, we have from (A.1) that

vk+1 − λk + wk ∈ −γ∂h(vk+1)

= −γ(−A∂f�(−A�vk+1))

= γAzk+1 ,

where the first equality is due to the definition of h and zk+1 is a minimizer of problem (A.5). To
wrap up, Step (A.1) can be written as

zk+1 = argmin
z∈Rn

{
f(z) + (γ/2)‖Az + (λk − wk)/γ‖22

}
vk+1 = λk − wk + γAzk+1 . (A.6)

Step (A.2) reads as λk+1 = prox γg�
(
λk + γAzk+1

)
. Using again Lemma 1, Step (A.2) is equivalent

to

yk+1 = prox g/γ

(
Azk+1 + λk/γ

)
λk+1 = λk + γ(Azk+1 − yk+1) .

Finally, Step (A.3) results in wk+1 = γyk+1. Substituting wk+1 back to (A.6), we end up with the
ADMM iterations.

Bibliography

[AA01] F. Alvarez and H. Attouch, “An Inertial Proximal Method for Maximal Mono-
tone Operators via Discretization of a Nonlinear Oscillator with Damping”, Set-
Valued Analysis, vol. 9, no. 1, pp. 3–11, 2001.

[Abr17] J. Abrell, The Swiss Wholesale Electricity Market, https://www.ethz.ch/

content/dam/ethz/special-interest/mtec/cer-eth/economics-energy-

economics - dam / documents / people / jabrell / Abrell _ Swiss _ Wholesale _

Electricity_Market.pdf, 2017.

[Alv04] F. Alvarez, “Weak convergence of a relaxed and inertial hybrid projection-
proximal point algorithm for maximal monotone operators in Hilbert space”,
SIAM Journal on Optimization, vol. 14, no. 3, pp. 773–782, 2004.

[AM12] D. Axehill and M. Morari, “An alternative use of the riccati recursion for efficient
optimization”, Systems & Control Letters, vol. 61, no. 1, pp. 37 –40, 2012.

[Ant98] A. C. Antoulas, “Approximation of linear dynamical systems”, in Encyclopedia of
Electrical and Electronics Engineering, John Wiley and Sons, 1998, pp. 403–422.

[AP15] H. Attouch and J. Peypouquet, “The rate of convergence of Nesterov’s accel-
erated forward-backward method is actually faster than 1/k2”, arXiv preprint
arXiv:1510.08740, 2015.

[BA12] L. M. Briceno-Arias, “Forward-Douglas-Rachford splitting and forward-
partial inverse method for solving monotone inclusions”, arXiv preprint
arXiv:1212.5942, 2012.

[BC11] H. Bauschke and P. Combettes, Convex Analysis and Monotone Operator Theory
in Hilbert Spaces. Springer, 2011.

[Ber15] D. P. Bertsekas, Convex Optimization Algorithms. Athena Scientific, 2015.

[BPCPE11] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers”,
Found. Trends Mach. Learn., 2011.

[BST13] J. Bolte, S. Sabach, and S. Teboulle, “Proximal alternating linearized mini-
mization for nonconvex and nonsmooth problems”, Mathematical Programming,
vol. 146, no. 1-2, pp. 459–494, 2013.

[BT09] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for
linear inverse problems”, SIAM J. Imaging Sci., 2009.

BIBLIOGRAPHY 123

[BT14] A. Beck and M. Teboulle, “A fast dual proximal gradient algorithm for con-
vex minimization and applications”, Operations Research Letters, vol. 42, no. 1,
pp. 1–6, 2014.

[BT89] D. P. Bertsekas and J. N. Tsitsiklis, Parallel and distributed computation. Pren-
tice Hall Inc., 1989.

[BV04] S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University
Press, 2004.

[CCPV14] P. L. Combettes, L. Condat, J. C. Pesquet, and B. C. Vũ, “A forward-backward
view of some primal-dual optimization methods in image recovery”, in The IEEE
International Conference on Image Processing, 2014, pp. 4141–4145.

[CD15] A. Chambolle and C. Dossal, “On the convergence of the iterates of "FISTA"”,
Journal of Optimization Theory and Applications, vol. Volume 166, no. Issue 3,
p. 25, 2015.

[CE16] P. L. Combettes and J. Eckstein, “Asynchronous Block-Iterative Primal-Dual
Decomposition Methods for Monotone Inclusions”, Mathematical Programming,
2016.

[CLP08] R. Cogill, S. Lall, and P. A. Parrilo, “Structured semidefinite programs for the
control of symmetric systems”, Automatica, vol. 44, no. 5, pp. 1411 –1417, 2008.

[CM96] D. Chmielewski and V. Manousiouthakis, “On constrained infinite-time linear
quadratic optimal control”, Systems & Control Letters, vol. 29, no. 3, pp. 121
–129, 1996.

[CP07] P. L. Combettes and J.-C. Pesquet, “A Douglas-Rachford splitting approach to
nonsmooth convex variational signal recovery”, IEEE Journal of Selected Topics
in Signal Processing, vol. 1, no. 4, pp. 564–574, Dec. 2007.

[CR12] I. CVX Research, CVX: Matlab software for disciplined convex programming,
version 2.0, http://cvxr.com/cvx, Aug. 2012.

[CV14] P. L. Combettes and B. C. Vũ, “Variable metric forward–backward splitting
with applications to monotone inclusions in duality”, Optimization, vol. 63, no. 9,
pp. 1289–1318, 2014.

[Dav15a] D. Davis, “Convergence rate analysis of the forward-Douglas-Rachford splitting
scheme”, arXiv preprint arXiv:1410.2654, 2015.

[Dav15b] D. Davis, “Convergence rate analysis of primal-dual splitting schemes”, SIAM
Journal on Optimization, vol. 25, no. 3, pp. 1912–1943, 2015.

[Dav16] ——, “The Asynchronous PALM Algorithm for Nonsmooth Nonconvex Prob-
lems”, arXiv preprint arXiv:1604.00526, 2016.

[DB15] C. Danielson and S. Bauer, “Numerical decomposition of symmetric linear sys-
tems”, in 2015 54th IEEE Conference on Decision and Control (CDC), 2015,
pp. 2061–2066.

124 BIBLIOGRAPHY

[DHL17] I. Dunning, J. Huchette, and M. Lubin, “Jump: A modeling language for math-
ematical optimization”, SIAM Review, vol. 59, no. 2, pp. 295–320, 2017. doi:
10.1137/15M1020575.

[Dom13] A. Domahidi, Methods and tools for embedded optimization and control, Doctoral
Thesis, 2013.

[DY16] D. Davis and W. Yin, “Convergence rate analysis of several splitting schemes”,
in Splitting Methods in Communication, Imaging, Science, and Engineering, R.
Glowinski, S. J. Osher, and W. Yin, Eds. Springer International Publishing,
2016, pp. 115–163.

[DZZMJ12] A. Domahidi, A. Zgraggen, M. N. Zeilinger, M. Morari, and C. N. Jones, “Effi-
cient Interior Point Methods for Multistage Problems Arising in Receding Hori-
zon Control”, in The IEEE Conference on Decision and Control, Maui, HI, USA,
2012, pp. 668 –674.

[EB92] J. Eckstein and D. Bertsekas, “On the Douglas-Rachford splitting method and
the proximal point algorithm for maximal monotone operators”, Math. Program.,
vol. 55, no. 3, pp. 293–318, 1992.

[EC10] J. M. Eyer and G. P. Corey, “Energy storage for the electricity grid : benefits
and market potential assessment guide : a study for the DOE Energy Storage
Systems Program.”, Feb. 2010.

[FAJ14] H. R. Feyzmahdavian, A. Aytekin, and M. Johansson, “A delayed proximal gra-
dient method with linear convergence rate.”, in Machine Learning for Signal
Processing (MLSP), IEEE International Workshop, 2014, pp. 1–6.

[FAVDFDJJJ17] H. Ferreau, S. Almèr, R. Verschueren, M. Diehl, D. Frick, A. Domahidi, G. S. J.L.
Jerez, and C. Jones, “Embedded Optimization Methods for Industrial Automatic
Control ”, IFAC-PapersOnLine, vol. 50, pp. 13 194–13 209, 1 2017.

[FBD08] H. J. Ferreau, H. G. Bock, and M. Diehl, “An online active set strategy to
overcome the limitations of explicit MPC”, International Journal of Robust and
Nonlinear Control, 2008.

[FGNSPJ17] L. Fabietti, T. T. Gorecki, E. Namor, F. Sossan, M. Paolone, and C. N. Jones,
“Dispatching active distribution networks through electrochemical storage sys-
tems and demand side management”, in 2017 IEEE Conference on Control Tech-
nology and Applications (CCTA), 2017, pp. 1241–1247.

[FGQBLJ17] L. Fabietti, T. Gorecki, F. Qureshi, A. Bitlislioglu, I. Lymperopoulos, and C.
Jones, “Experimental implementation of frequency regulation services using com-
mercial buildings”, IEEE Transactions on Smart Grid, vol. PP, no. 99, pp. 1–1,
2017.

[FJ13a] G. Frison and J. B. Jørgensen, “A fast condensing method for solution of linear-
quadratic control problems”, in Proceedings of the 52nd IEEE Conference on
Decision and Control, CDC 2013, December 10-13, 2013, Firenze, Italy, 2013,
pp. 7715–7720.

BIBLIOGRAPHY 125

[FJ13b] ——, “Efficient implementation of the Riccati recursion for solving linear-
quadratic control problems.”, in CCA, IEEE, 2013, pp. 1117–1122.

[FSKJ16] L. Ferranti, G. Stathopoulos, T. Keviczky, and C. N. Jones, “Constrained LQR
Using Online Decomposition Techniques ”, in Decision and Control (CDC), 2016
IEEE 55th Annual Conference on, 2016.

[FZ84] A. Federgruen and P. Zipkin, “Computational Issues in an Infinite-Horizon, Mul-
tiechelon Inventory Model ”, Operations Research, vol. 32, pp. 818–836, 4 1984.

[G9̈1] O. Güler, “On the Convergence of the Proximal Point Algorithm for Convex Min-
imization”, SIAM Journal on Control and Optimization, vol. 29, no. 2, pp. 403–
419, 1991.

[GB] P. Giselsson and S. Boyd, “Linear Convergence and Metric Selection in Douglas
Rachford Splitting and ADMM”, To appear in IEEE Transactions on Automatic
Control,

[GB14a] ——, “Diagonal scaling in Douglas-Rachford splitting and ADMM”, 53rd IEEE
Conference on Decision and Control, 2014.

[GB14b] ——, “Monotonicity and restart in fast gradient methods”, in Decision and Con-
trol (CDC), 2014 IEEE 53rd Annual Conference on, 2014, pp. 5058–5063.

[GB15] ——, “Metric selection in fast dual forward backward splitting”, Automatica,
vol. 62, pp. 1–10, 2015.

[GBSJ15] T. T. Gorecki, A. Bitlislioglu, G. Stathopoulos, and C. N. Jones, “Guarantee-
ing input tracking for constrained systems: theory and application to demand
response”, in American Control Conference (ACC)., 2015, pp. 232–237.

[GBTM04] P. Grieder, F. Borrelli, F. Torrisi, and M. Morari, “Computation of the con-
strained infinite time linear quadratic regulator”, Automatica, vol. 40, no. 4,
pp. 701 –708, 2004.

[GFQJ17] T. T. Gorecki, L. Fabietti, F. A. Qureshi, and C. N. Jones, “Experimental demon-
stration of buildings providing frequency regulation services in the swiss market”,
Energy and Buildings, vol. 144, pp. 229 –240, 2017.

[Goh17] G. Goh, “Why momentum really works”, Distill, 2017. doi: 10.23915/distill.
00006. [Online]. Available: http://distill.pub/2017/momentum.

[GOP17] M. Gurbuzbalaban, A. Ozdaglar, and P. Parrilo, “On the convergence rate of
incremental aggregated gradient algorithms”, SIAM Journal on Optimization,
2017.

[GQJ15] T. T. Gorecki, F. A. Qureshi, and C. N. Jones, Openbuild: An integrated simu-
lation environment for building control, 2015.

[GTSJ15] E. Ghadimi, A. Teixeira, I. Shames, and M. Johansson, “Optimal parameter
selection for the alternating direction method of multipliers (admm): Quadratic
problems”, IEEE Transactions on Automatic Control, vol. 60, no. 3, pp. 644–658,
2015.

126 BIBLIOGRAPHY

[Gül92] O. Güler, “New proximal point algorithms for convex minimization”, SIAM Jour-
nal on Optimization, vol. 2, no. 4, pp. 649–664, 1992.

[HJ17] J.-H. Hours and C. N. Jones, “An alternating trust region algorithm for dis-
tributed linearly constrained nonlinear programs, application to the optimal
power flow problem”, Journal of Optimization Theory and Applications, vol. 173,
no. 3, pp. 844–877, 2017.

[HKJM13] M. Herceg, M. Kvasnica, C. N. Jones, and M. Morari, “Multi-Parametric Toolbox
3.0”, in Proc. of the European Control Conference, http://control.ee.ethz.
ch/~mpt, Zürich, Switzerland, 2013, pp. 502–510.

[IH16] F. Iutzeler and M. J. Hendrickx, “A Generic Linear Rate Acceleration
of Optimization algorithms via Relaxation and Inertia”, arXiv preprint
arXiv:1603.05398v2, 2016.

[Jon12] C. N. Jones, Model predictive control, Course Notes, 2012.

[Kal60] R. Kalman, “Contributions to the theory of optimal control”, Boletin de la So-
ciedad Matematica Mexicana, 1960.

[Kra55] A. Krasnosel’skĭi, “Two remarks on the method of successive approximations”,
Uspekhi Matematicheskikh Nauk, vol. 10, no. 1, pp. 123–127, 1955.

[L0̈4] J. Löfberg, “Yalmip : A toolbox for modeling and optimization in MATLAB”,
in Proceedings of the CACSD Conference, Taipei, Taiwan, 2004.

[LFP16] J. Liang, J. Fadili, and G. Peyré, “Convergence rates with inexact non-expansive
operators”, Mathematical Programming, vol. 159, no. 1, pp. 403–434, 2016.

[LHSJ17] Y. Liu, J. H. Hours, G. Stathopoulos, and C. N. Jones, “Real-time distributed
algorithms for nonconvex optimal power flow”, in 2017 American Control Con-
ference (ACC), 2017, pp. 3380–3385.

[Lor15] D. Lorenz, “The heavy ball method as ‘perturbed gradient method’”, Blog: reg-
ularize, 2015. [Online]. Available: https://regularize.wordpress.com/2015/
06/30/the-heavy-ball-method-as-perturbed-gradient-method/#eqheavy-

ball1.

[LS97] C. Lemaréchal and C. Sagastizábal, “Practical Aspects of the Moreau–Yosida
Regularization: Theoretical Preliminaries”, SIAM Journal on Optimization,
vol. 7, no. 2, pp. 367–385, 1997.

[LW15] J. Liu and S. J. Wright, “Asynchronous stochastic coordinate descent: Paral-
lelism and convergence properties”, SIAM Journal on Optimization, vol. 25, no. 1,
pp. 351–376, 2015.

[Mai08] P.-E. Maingé, “Convergence theorems for inertial KM-type algorithms ”, Journal
of Computational and Applied Mathematics, vol. 219, no. 1, pp. 223 –236, 2008.

[Man53] R. Mann, “Mean value methods in iteration”, Proceedings of the American Math-
ematical Society, vol. 4, no. 3, pp. 506–510, 1953.

BIBLIOGRAPHY 127

[Mar70] B. Martinet, “Régularisation d’inéquations variationnelles par approximations
successives”, Revue Française de Informatique et Recherche Opérationelle, vol. 4,
no. R3, pp. 154–158, 1970.

[Mar72] ——, “Détermination approchée d’un point fixe d’une application pseudo-
contractante”, C.R. Acad. Sci. Paris, vol. 274A, pp. 163–165, 1972.

[MB12] J. Mattingley and S. Boyd, “CVXGEN: a code generator for embedded convex
optimization”, Optimization and Engineering, 2012.

[Mes16] A. Mesbah, “Stochastic model predictive control: An overview and perspectives
for future research ”, IEEE Control Systems, vol. 36, pp. 30–44, 2016.

[MKJSJRT17] C. Ma, J. Konecný, M. Jaggi, V. Smith, M. I. Jordan, P. Richtárik, and M. Takác,
“Distributed optimization with arbitrary local solvers”, Optimization Methods
Software, vol. 32, no. 4, pp. 813–848, Jul. 2017, issn: 1055-6788.

[MO03] A. Moudafi and M. Oliny, “Convergence of a splitting inertial proximal method
for monotone operators ”, Journal of Computational and Applied Mathematics,
vol. 155, no. 2, pp. 447 –454, 2003.

[Mor62] J. J. Moreau, “Fonctions convexes duales et points proximaux dans un es-
pace hilbertien.”, Comptes Rendus de l’Académie des Sciences (Paris), Série
A, vol. 255, 1962.

[Mor65] ——, “Proximité et dualité dans un espace Hilbertien”, Bulletin de la Société
Mathématique de France, vol. 93, no. 2, pp. 273–299, 1965.

[MZHR16] I. Mitliagkas, C. Zhang, S. Hadjis, and C. Ré, “Asynchrony begets momentum,
with an application to deep learning”, in 2016 54th Annual Allerton Conference
on Communication, Control, and Computing (Allerton), 2016, pp. 997–1004.

[Nes04a] Y. Nesterov, Introductory lectures on convex optimization: A basic course.
Springer, 2004, vol. 87.

[Nes04b] Y. Nesterov, Introductory lectures on convex optimization: A basic course. 2004.

[Nes83] ——, “A method for solving the convex programming problem with convergence
rate O(1/k2)”, Dokl. Akad. Nouk SSSR, 1983.

[NP15] I. Necoara and A. Patrascu, “DuQuad: an inexact (augmented) dual first order
algorithm for quadratic programming”, arXiv preprint arXiv:1504.05708, 2015.

[Nura] A. Nursimulu, Demand-Side Flexibility for Energy Transitions: Policy Recom-
mendations for Developing Demand Response. EPFL Energy Center and Inter-
national Risk Governance Center, Policy Brief.

[Nurb] ——, Demand-Side Flexibility for Energy Transitions: Ensuring the Competitive
Development of Demand Response Options.

[NY83] A. Nemirovski and D. B. Yudin, Problem complexity and method efficiency in
optimization, ser. Wiley-Interscience series in discrete mathematics. Chichester,
New York: Wiley-Interscience, 1983, isbn: 0-471-10345-4. [Online]. Available:
http://opac.inria.fr/record=b1091338.

128 BIBLIOGRAPHY

[OBP15] P. Ochs, T. Brox, and T. Pock, “iPiasco: Inertial Proximal Algorithm for strongly
convex Optimization”, Journal of Mathematical Imaging and Vision, vol. 53,
no. 2, pp. 171–181, 2015.

[OSB13] B. O’Donoghue, G. Stathopoulos, and S. P. Boyd, “A splitting method for op-
timal control.”, IEEE Trans. Contr. Sys. Techn., vol. 21, no. 6, pp. 2432–2442,
2013.

[Pas77] G. Passty, “Ergodic convergence to a zero of the sum of monotone operators in
hilbert space”, J. Math. Anal. Appl., 1977.

[PB14a] N. Parikh and S. Boyd, “Proximal algorithms”, Foundations and Trends in Op-
timization, vol. 1, no. 3, 2014.

[PB14b] P. Patrinos and A. Bemporad, “An accelerated dual gradient-projection algo-
rithm for embedded linear model predictive control”, Automatic Control, IEEE
Transactions on, vol. 59, no. 1, pp. 18–33, 2014.

[Pol64] B. Polyak, “Some methods of speeding up the convergence of iteration methods”,
USSR Computational Mathematics and Mathematical Physics, vol. 4, no. 5, pp. 1
–17, 1964.

[Pol87] B. Polyak, “Introduction to Optimization”, Optimization Software, 1987.

[PSB14] P. Patrinos, L. Stella, and A. Bemporad, “Douglas-Rachford splitting: Complex-
ity estimates and accelerated variants”, in The 53rd IEEE Annual Conference
on Decision and Control, 2014, pp. 4234–4239.

[PXYY16] Z. Peng, Y. Xu, M. Yan, and W. Yin, “ARock: an Algorithmic Framework for
Asynchronous Parallel Coordinate Updates”, SIAM Journal on Scientific Com-
puting, vol. 38, no. 5, 2016.

[RB16] E. Ruy and S. Boyd, “A Primer on Monotone Operator Methods”, Applied and
Computational Mathematics an International Journal, vol. 15, no. 1, 2016.

[RFP13] H. Raguet, J. Fadili, and G. Peyré, “A Generalized Forward-Backward Splitting”,
SIAM Journal on Imaging Sciences, vol. 6, no. 3, pp. 1199–1226, 2013.

[RJM09] S. Richter, C. N. Jones, and M. Morari, “Real-time input-constrained MPC using
fast gradient methods”, in Proceedings of the 48th IEEE Conference on Decision
and Control, CDC 2009, combined withe the 28th Chinese Control Conference,
December 16-18, 2009, Shanghai, China, 2009, pp. 7387–7393.

[RL15] H. Raguet and L. Landrieu, “Preconditioning of a generalized forward-backward
splitting and application to optimization on graphs”, SIAM Journal on Imaging
Sciences, vol. 8, no. 4, pp. 2706–2739, 2015.

[RM09] J. Rawlings and D. Mayne, Model Predictive Control: Theory and Design. Nob
Hill Pub., 2009, isbn: 9780975937709. [Online]. Available: https : / / books .

google.ch/books?id=3_rfQQAACAAJ.

[RN04] M. Rabbat and R. Nowak, “Distributed optimization in sensor networks”, in
Third International Symposium on Information Processing in Sensor Networks,
2004. IPSN 2004, 2004, pp. 20–27.

BIBLIOGRAPHY 129

[Roc70] R. T. Rockafellar, Convex Analysis. Princeton University Press, 1970.

[Roc76] R. T. Rockafellar, “Monotone Operators and the Proximal Point Algorithm”,
SIAM Journal on Control and Optimization, 1976.

[RW98] R. Rockafellar and R. J.-B. Wets, Variational Analysis. Heidelberg, Berlin, New
York: Springer Verlag, 1998.

[San10] C. Sanderson, “Armadillo: An Open Source C++ Linear Algebra Library for
Fast Prototyping and Computationally Intensive Experiments”, NICTA, Tech.
Rep., 2010.

[SBC14] W. Su, S. Boyd, and E. Candes, “A Differential Equation for Modeling Nesterov’s
Accelerated Gradient Method: Theory and Insights”, in Advances in Neural In-
formation Processing Systems 27, Curran Associates, Inc., 2014, pp. 2510–2518.

[SD87] M. Sznaier and M. Damborg, “Suboptimal control of linear systems with state
and control inequality constraints”, in IEEE Conference on Decision and Control,
1987.

[SDDGD17] S. Soori, A. Devarakonda, J. Demmel, M. Gurbuzbalaban, and M. Dehnavi,
“Avoiding Communication in Proximal Methods for Convex Optimization Prob-
lems”, arXiv preprint arXiv:1710.08883, 2017.

[SFMTJ16] V. Smith, S. Forte, C. Ma, J. M. Takác Martin, and M. Jaggi, “Cocoa: A general
framework for communication-efficient distributed optimization”, arXiv preprint
arXiv:1611.02189, 2016.

[SGL15] M. C. S. Grammatico F. Parise and J. Lygeros, “Decentralized convergence to
Nash equilibria in constrained mean field control”, IEEE Transactions on Auto-
matic Control, 2015.

[SGMS16] D. Sturzenegger, D. Gyalistras, M. Morari, and R. S. Smith, “Model Predictive
Climate Control of a Swiss Office Building: Implementation, Results, and Cost-
Benefit Analysis”, IEEE Transactions on Control Systems Technology, vol. 24,
no. 1, pp. 1–12, 2016.

[SJ18a] G. Stathopoulos and C. N. Jones, “An Inertial Parallel and Asynchronous
Forward-Backward Iteration for Distributed Convex Optimization”, Submitted
to Journal of Optimization Theory and Applications, 2018.

[SJ18b] ——, “Communication reduction in distributed optimization via estimation of
the proximal operator”, Submitted to IEEE Transactions on Control of Network
Systems, 2018.

[SJ18c] G. Stathopoulos and C. N. Jones, “A coordinator-driven communication reduc-
tion scheme for distributed optimization using the projected gradient method”,
in Proceedings of the 17th IEEE European Control Conference, ECC 2018, Li-
massol, Cyprus, 2018.

[SKJ14] G. Stathopoulos, M. Korda, and C. N. Jones, “Solving the infinite-horizon con-
strained LQR problem using splitting techniques”, in 19th IFAC World Congress,
2014.

130 BIBLIOGRAPHY

[SKJ17] ——, “Solving the Infinite-Horizon Constrained LQR Problem using Accelerated
Dual Proximal Methods”, IEEE Transactions on Automatic Control, vol. 62,
no. 4, pp. 1752–1767, 2017.

[SNCP16] F. Sossan, E. Namor, R. Cherkaoui, and M. Paolone, “Achieving the Dispatcha-
bility of Distribution Feeders Through Prosumers Data Driven Forecasting and
Model Predictive Control of Electrochemical Storage”, IEEE Transactions on
Sustainable Energy, vol. 7, no. 4, pp. 1762–1777, 2016.

[SR98] P. Scokaert and J. B. Rawlings, “Constrained Linear Quadratic Regulation”,
IEEE Transactions on Automatic Control, vol. 43, no. 8, pp. 1163–1169, 1998.

[SRB11] M. W. Schmidt, N. L. Roux, and F. R. Bach, “Convergence Rates of Inexact
Proximal-Gradient Methods for Convex Optimization”, in Advances in Neural
Information Processing Systems 24: 25th Annual Conference on Neural Infor-
mation Processing Systems 2011, Granada, Spain., 2011, pp. 1458–1466.

[SS12] S. Shalev-Shwartz, “Online learning and online convex optimization”, Founda-
tions and Trends R© in Machine Learning, vol. 4, no. 2, pp. 107–194, 2012. [On-
line]. Available: http://dx.doi.org/10.1561/2200000018.

[SSPJ14] G. Stathopoulos, A. Szucs, Y. Pu, and C. N. Jones, “Splitting methods in con-
trol”, in Proceedings of the 13th IEEE European Control Conference, ECC 2014,
Strasbourg, France, 2014, pp. 2478 –2483.

[SSSPJ16] G. Stathopoulos, H. Shukla, A. Szucs, Y. Pu, and C. N. Jones, “Operator split-
ting methods in control”, Foundations and Trends R© in Systems and Control,
vol. 3, no. 3, pp. 249–362, 2016.

[ST14] R. Shefi and M. Teboulle, “Rate of Convergence Analysis of Decomposition
Methods Based on the Proximal Method of Multipliers for Convex Minimiza-
tion”, SIAM Journal on Optimization, 2014.

[STP17] L. Stella, A. Themelis, and P. Patrinos, “Forward–backward quasi-newton meth-
ods for nonsmooth optimization problems”, Computational Optimization and Ap-
plications, vol. 67, no. 3, pp. 443–487, 2017.

[Stu98] J. F. Sturm, Using sedumi 1.02, a matlab toolbox for optimization over symmetric
cones, 1998.

[Swi03] Swissgrid, Test for secondary control capability, http://www.swissgrid.ch/
dam/swissgrid/experts/ancillary_services/prequalification/D130422_

Test-for-secondary-control-capability_V2R1_EN.pdf, 2003.

[THG17] A. B. Taylor, J. M. Hendrickx, and F. Glineur, “Smooth strongly convex interpo-
lation and exact worst-case performance of first-order methods”, Mathematical
Programming, vol. 161, no. 1, pp. 307–345, 2017.

[TP17a] A. Themelis and P. Patrinos, “Douglas-Rachford splitting and ADMM
for nonconvex optimization: tight convergence results”, arXiv preprint
arXiv:1709.05747, 2017.

BIBLIOGRAPHY 131

[TP17b] ——, “SuperMann: a superlinearly convergent algorithm for finding fixed points
of nonexpansive operators”, arXiv preprint arXiv:1609.06955, 2017.

[Tse08] P. Tseng, “On accelerated proximal gradient methods for convex-concave opti-
mization”, submitted to SIAM Journal on Optimization, 2008.

[Tse91] ——, “Applications of splitting algorithm to decomposition in convex program-
ming and variational inequalities”, SIAM J. Control Optim., vol. 29, no. 1,
pp. 119–138, 1991.

[Ull11] E. Ullmann, A Matlab toolbox for C-code generation for first order methods,
Master’s thesis, ETH Zurich, 2011.

[Uza60] H. Uzawa, “Walras’ tâtonnement in the theory of exchange”, The Review of
Economic Studies, vol. 27, no. 3, pp. 182–194, 1960.

[Van10] L. Vandenberghe, Optimization methods for large-scale systems, UCLA EE 236C
lecture notes, 2010.

[VKMAC17a] E. Vrettos, E. C. Kara, J. MacDonald, G. Andersson, and D. S. Callaway, “Ex-
perimental Demonstration of Frequency Regulation by Commercial Buildings -
Part I: Modeling and Hierarchical Control Design”, IEEE Transactions on Smart
Grid, vol. PP, no. 99, pp. 1–1, 2017, issn: 1949-3053. doi: 10.1109/TSG.2016.
2628897.

[VKMAC17b] ——, “Experimental Demonstration of Frequency Regulation by Commercial
Buildings - Part II: Results and Performance Evaluation”, IEEE Transactions
on Smart Grid, vol. PP, no. 99, pp. 1–1, 2017.

[Wal96] L. Walras, “Éléments d’économie politique pure, ou théorie de la richesse so-
ciale.”, F. Rouge, 1896.

[Wri15] S. J. Wright, “Coordinate descent algorithms”, Mathematical Programming,
vol. 151, no. 1, pp. 3–34, 2015.

[ZJM10] M. N. Zeilinger, C. N. Jones, and M. Morari, “Robust stability properties of soft
constrained mpc”, in 49th IEEE Conference on Decision and Control (CDC),
2010, pp. 5276–5282.

G I O R G O S S TAT H O P O U L O S

personal information

email georgios.stathopoulos@epfl.ch

website http://people.epfl.ch/georgios.stathopoulos

phone (M) +41 (0) 787 585 903

research interests

• Convex optimization algorithms & theory
Developing first order convex optimization algorithms with applications to
small embedded-control problems and/or large-scale optimization problems

• Demand-response for smart buildings
Proposing demand-response policies for commercial buildings and
characterizing a building’s flexibility by means of robust optimization
techniques

• Distributed model predictive control of smart grids
Application of distributed optimization to predictive control problems at the
level of distribution networks

education

2012-2018 École Polytechnique Fédérale de Lausanne, Switzer-
land

School: Mechanical EngineeringPhD
Thesis: Distributed Optimization and Control using Operator Splitting Methods
Description: Design decomposition methods that tackle both small-scale
centralized control problems and larger-scale multi-agent distributed control
problems. Devise faster algorithms for embedded applications and
reduced-communication schemes for multi-agent applications. Develop
optimizing contollers capable of coordinating the flow of power to and from
large networks of smart buildings in order to offer critical services to the power
grid. Optimize buildings’ usage for several purposes and on different
abstraction levels.
Advisor: Prof. Colin. N. Jones

2010-2012 Delft University of Technology, The Netherlands

School: Mechanical EngineeringMSc
Program: Systems & Control
Thesis: Fast Optimization-based Control and Estimation Using Operator Splitting
Methods, conducted at Stanford University
Description: Participated in the development of an algorithm that solves large
scale optimization problems at very high speeds. Applied to supply chain
management and portfolio optimization problems. The algorithm has since
become a benchmark for speed comparisons with other methods.
Advisors: Prof. Tamás Keviczky, Prof. Stephen Boyd, Prof. Bart De Schutter

2003-2009 Patras University, Greece

School: Electrical and Computer EngineeringDiploma
Thesis: Robust Control and Fault Detection for a Flexible Link Manipulator
Description: Development of an adaptive controller for a flexible link

2

manipulator, where a Set Membership Identifier computes the feasible set for
the model parameters and the controller tunes its gains through an on-line
minimization of a cost function.
Advisor: Prof. Anthony Tzes

honors and awards

Graduated Cum Laude, MSc in Systems and Control, Delft Uni. of Technology

Justus and Louise van Effen scholarship grant, 2011

experience

4-9/2017 LATERITE, Data Advisory

Description: Designed a systems dynamic model of Rwanda’s educationContractor-
Consultant system using modern machine learning techniques. The model is under

development and currently targeted to inform the next Education Sector
Strategic Plan of the Government of Rwanda.

7-11/2016 Mitsubishi Electric Research Laboratories,
Cambridge MA

Description: Evaluated algorithms for solving constrained optimal controlSummer intern
problems, suggested improvements to existing methods and derived new
approaches specific to the control of thermodynamic machines such as vapor
compression systems.

publications

G. Stathopoulos and C. N. Jones. Communication reduction in distributedSubmitted
Manuscripts optimization via estimation of the proximal operator.

G. Stathopoulos and C. N. Jones. An Inertial Parallel and Asynchronous
Forward-Backward Iteration for Distributed Convex Optimization.

G. Stathopoulos, M. Korda and C. N. Jones. Solving the Infinite-horizonJournal Articles
Constrained LQR Problem using Accelerated Dual Proximal Methods. In IEEE
Transactions on Automatic Control, vol. 62, no.4, pp.17521767, 2017

G. Stathopoulos, H. Shukla, A. Szücs, Y. Pu and C. N. Jones. Operator Splitting
Methods in Control. In Foundations and Trends R© in Systems and Control, vol.3,
no.3, pp.249-362, 2016

B. O’ Donoghue, G. Stathopoulos and S. Boyd. A Splitting Method for Optimal
Control. In IEEE Transactions on Control Systems Technology, vol. 21, no.6,
pp.2432-2442, 2013

G. Stathopoulos and C. N. Jones, A coordinator-driven communication reductionConference
Articles scheme for distributed optimization using the projected gradient method, in

Proceedings of the 17th IEEE European Control Conference, ECC 2018,
Limassol, Cyprus, 2018

H. Ferreau, S. Almèr, R. Verschueren, M. Diehl, D. Frick, A. Domahidi, G.
Stathopoulos, J.L. Jerez, and C. N. Jones, Embedded Optimization Methods for
Industrial Automatic Control, IFAC- PapersOnLine, vol. 50, pp. 13 19413 209, 1
2017

Y. Liu, J. H. Hours, G. Stathopoulos, and C. N. Jones, Real-time distributed
algorithms for nonconvex optimal power flow, in 2017 American Control
Conference (ACC), 2017

3

T. T. Gorecki, A. Bitlislioğlu, G. Stathopoulos and C. N. Jones. Guaranteeing
Input Tracking For Constrained Systems: Theory and Application to Demand Response.
American Control Conference, Chicago, Illinois, USA, 2015

G. Stathopoulos, M. Korda and C. N. Jones. Solving the infinite-horizon
constrained LQR problem using splitting techniques. 19th IFAC World Congress,
Cape Town, South Africa, 2014

L. Ferranti, G. Stathopoulos, T. Keviczky, and C. N. Jones, Constrained LQR
Using Online Decomposition Techniques, in Decision and Control (CDC), 2016
IEEE 55th Annual Conference on, 2016

G. Stathopoulos, A. Szücs, Y. Pu and C. N. Jones. Splitting methods in control.
13th European Control Conference, Strasbourg, France, 2014

G. Stathopoulos, T. Keviczky and Y. Wang. A hierarchical time-splitting approach
for solving finite-time optimal control problems. 12th European Control Conference,
Zurich, Switzerland, 2013

N. Karamolegkos, G. Stathopoulos and A. Tzes. Adaptive Minimum Uncertainty
Control for a Flexible Link Manipulator. 17th Mediterranean Conference on
Control and Automation, Thessaloniki, Greece, 2009

technical skills

R, Matlab, Julia, C, C++Scientific software
/ Programming

LATEX, Linux, MacOs, Microsoft WindowsOther

other skills

Greek (native), English (C2 Level), French (B1 Level)Languages

personal development

Worked with the NPO SAVE Foundation to teach computer literacy and scienceVolunteer
Experience courses to high school children who live in townships in the outskirts of Cape

Town, South Africa. September 2014.

Challenges of Global Poverty, MIT, edX. Certified.MOOCs

The Analytics Edge, MIT, edX. Certified.

