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Abstract– The Finite Volume Particle Method (FVPM) is 

a mesh-free Arbitrary Lagrangian-Eulerian (ALE) 

method for fluid flow simulations which includes many of 

the desirable features of mesh-based Finite Volume 

Method (FVM) and SPH. In this paper, we introduce a 

GPU-accelerated 3-D FVPM in-house solver, called 

GPU-SPHEROS. The solver features spherical particles 

support and, has been developed in CUDA featuring the 

Thrust library, and optimized CUDA kernels for both 

compute-bound and memory-bound algorithms. We 

achieved a substantial speedup by a factor of more than 

9x on NVLink-based Tesla P100 Pascal GPU compared 

to a CPU node equipped with two Intel® Xeon® E5-2660 

v2 CPUs. In the present paper, the deviation of a circular 

water jet impinging a flat plate has been also simulated 

entirely on GPU, as a case study. 

I. INTRODUCTION 

FVPM is a mesh-free particle-based method, which 
is both locally conservative and consistent. FVPM 
includes many of the attractive features of both particle 
methods such as SPH [1] and conventional mesh-based 
FVM [2]. This makes the aforementioned method more 
robust for free-surface modelling and solid 
deformations. Hietel et al. [3] introduced FVPM in 
2000 applied for compressible flow computations. In 
2009, Nestor et al. [4] extended the method to 
incompressible flows. In 2014. Quinlan et al. [5] 
presented an exact method for computing FVPM 
interaction vectors in 2-D. This method then extended 
by Jahanbakhsh et al. [6] for 3-D cuboidal particles. 
While cuboidal particle supports have the advantage of 
very simple geometric computations, they have the 
disadvantages of directionality and discontinuous 
interactions. These drawbacks motivated Jahanbakhsh 
et al. [7] to use spherical particles support with top-hat 
kernels. 

GPU-SHEROS is a GPU-accelerated in-house 
solver based on FVPM, which is used for numerical 

simulation of fluid flow. The capability of Graphic 
Processing Units (GPUs) to handle particle-based 
methods has been demonstrated by several studies such 
as [8], [9], [10]. Herault et al. [8] used GPU-SPHysics 
to simulate the water waves surf zone based on SPH 
method. They proposed various techniques to get a 
higher performance on GPU, e.g. efficient memory 
access and restriction of absolute minimum use of 
conditional instructions. Nocentino and Rhodes [9] 
described the optimization of memory access methods 
on GPU using Morton order indexing. They showed 
that Morton ordering reduces the number of memory 
transactions and provides more efficient memory 
access. Bédorf et al. [11] simulated the N-body problem 
entirely on GPUs. They used an octree algorithm based 
on space filling curves to perform particles’ nearest 
neighbor search. They reported the speedup for each 
part. For example for sorting the data they achieved 
speedup of higher than 11x on GTX480.  

II. NUMERICAL METHOD 

A. Governing equations 

The equations of motion for isothermal and weakly-
compressible flows are derived from the mass and 
momentum conservation law [6]. 
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where 𝜌 is the density, C is the fluid velocity vector, p 
is the static pressure, s is the deviatoric stress tensor and 
g is the gravitational acceleration. d/dt denotes the 
substantial time derivative. For Newtonian fluids, the 
deviatoric stress s can be written as: 
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ALGORITHM I. GPU-SPHEROS OVERALL ALGORITHM 

for each time step t 
      for each particle i 

          find the neighbor particles j  

      end for  
      for each particle i 

         for each neighbor j 

            Compute interaction vectors based on spherical-support 
        end for 

     end for 

     for each particle i  
        for each neighbor j        

            Compute momentum flux from pressure and deviatoric  

            stress  

              𝑓𝑖 = ∑ ((𝜌𝑪𝒙̇ − 𝜌𝑪𝑪)𝑖𝑗 − 𝑷𝑖𝑗 + 𝑮𝑖𝑗)𝑖 . ∆𝒊𝒋 − 𝑝𝑏𝑩𝑖 

            Compute mass flux including the smoothing mass term: 

                          𝑚𝑖 = ∑ ((𝜌𝒙̇ − 𝜌𝑪)𝑖𝑗 + 𝑮𝒊𝒋)𝑖 . ∆𝒊𝒋 

            Compute volume flux: 

                                         𝑉̇𝑖 = ∑ 𝒙̇𝒊𝒋. ∆𝒊𝒋𝑖 + 𝒙̇𝒊. 𝑩𝒊 

        end for 

     end for 

     for each particle i (using 2nd order Runge-Kutta) 
   Update volume, mass and momentum  

   Update density and compute pressure from eq. of state 

   Compute velocity correction and update particle velocity 
   Update particle position 

    end for 

    𝑡 ← 𝑡 + ∆𝑡 

end for 
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where 𝜇 is the dynamic viscosity and ε̇ is the 
deformation rate tensor given by: 
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The pressure is calculated based on the following 
equation of state:  
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where a is speed of sound, 0  is the reference density 

and   is the constant coefficient which is taken equal 

to 7. In weakly compressible flow simulations, the 

speed of sound a is considered at least 10 times greater 

than the maximum fluid velocity to reduce the 

computational cost [6]. The mass and momentum 

conservation equations can be written in the following 

PDE form arising from the conservation law.  
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where U and F represents the conserved variable the 
flux function, respectively which for fluid flow 
equations read: 
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Being a meshless method, FVPM is intended for 
problems where mesh-based methods may fail or have 
difficulties, such as moving or free boundaries or fluid-
structure interaction problems. 

B. Finite Volume Particle Method 

The FVPM formulation for conservation laws, (9) 
reads: 
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and, 

Bi ij

j

  
 

(13) 

where Ui  is the conserved variable of the ith particle, Vi 
is its volume, Uij and Fij are the conserved variable and 

the flux function at the interface of particles i and j, 
respectively, whereas 𝒙̇ij is the velocity at which the 

interface moves. Similarly, Ub, Fb and 𝒙̇b are the 
conserved variable, flux function and particle velocity 
at the boundary. Bi and ∆ij are the vectors which weight 

exchanged fluxes with the boundary and between 
particles, respectively. These vectors are computed 
from interaction vector Гij, which reads, 
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In (13), i denotes the Shepard shape function for the 

ith particle defined as: 
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where Wi(x) is a kernel function, 

   ,x x xi i iW W h 
 

(16) 

and 𝜎 is the kernel summation, 

( )xj

j
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(17) 

Wi(x) is defined as zero outside Ω𝑖 , the support of 
particle i.  

1
(x)

0 otherwise
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The particle volume 𝑉𝑖 is defined as: 

i

i iV dV


 
 

(19) 

In (16), ih is known as the smoothing length of particle 

i, and defines the particle size and hence the spatial 

resolution of the scheme.  

III. SPHEROS AND GPU-SPHEROS 

SPHEROS is a FVPM versatile in-house solver, 
which inherits desirable features of both SPH and 
mesh-based FVM and is able to simulate the interaction 
between fluid, solid and silt. It has been already 
developed and validated for different CFD benchmarks 
[6]. GPU-SPHEROS is the GPU-accelerated version of 
the code and has been developed and implemented in 
CUDA in order to exploit the GPU many-core 
architecture. The overall algorithm of GPU-SPHEROS 
is shown in algorithm I, which includes three main 
parts: 

a) Particles octree-based neighbor search. 
b) Computing the particle interaction vectors 

based on a spherical-support. 
c) Computing fluxes, forces, and 2nd-order 

Runge-Kutta time integration. 

A. Octree-based neighbor search 

In the present research, an octree algorithm which 
was introduced by Bédorf et al. [11], has been 
implemented for parallel particle neighbor search. 
Space filling curves (here, Morton-curve) have been 
used for tree construction, reordering particles data. In 
fact, the Morton keys of particles give a 1-D 
representation of the original n-D coordinate space and 
are computed using bitwise operations based on multi-
level masking. After the Morton keys are generated, the 
particles ID are sorted based on their corresponding 
Morton keys to improve the memory access and cache-
coherency during the next computations. A parallel 

radix sort algorithm provided by Thrust library has been 
used for sorting the data.  

Once the particles ID are sorted based on their 
corresponding Morton keys, the particles have to be 
grouped into different tree cells. For this purpose, 
different levels of bitwise masking must be applied to 
particles Morton keys. The particles with identical 
masked Morton key are assigned to the same cell, 
which is also a branch of the tree. If the number of 
particles in one cell is less than the defined parameter 
Nleaf, then the next level of masking is not applied to the 
particles belonging to that cell which is then called leaf. 
The counting procedure of the particles is based on 
parallel stream compaction algorithms using the Thrust 
library. The masking and particles grouping process is 
repeated for every single level, sequentially, until all the 
particles are assigned to leaves or the maximal depth of 
the tree is reached, whichever occurs first. An example 
of a generated tree based on the Morton curve (or z-
curve) method for Nleaf = 4 is shown in Figure 1.  

  

Figure 1.  Schematic representation of a constructed quadtree 

(right) and example of paticle grouping based on space filling curve 
algorithm for 28 particles with Nleaf = 4 (left). For particle grouping 

into tree cells, we apply the binary level mask to particles Morton 

keys and group the particles with indentical key to the same cell. 
The cells with less than Nleaf particles are flagged as leaf (green 

cells) and are not masked further. The other cells are called nodes 

(which are colored in gray) and their particles are masked in the 
next level(s). We perform these flagging and checking process each 

level to construct the tree. The tree construction procedure will be 

stoped once all the particles are assigned to leaves, or when the 
maximal level is reached. In the present figure, a quadrtree with 

two level of masking has been represented schemtically as an 

example. 

Once the tree is constructed, one can find the 
neighbor cells of each branch based on their Morton 
keys. In order to identify the neighbors of a particle, 
only the distance between particles belonging to the 
same leaf and its neighbor leaves needs to be checked, 
thus avoiding unnecessary computations. A highly-
optimized kernel has been implemented for this task. 

B. Exact computation of interaction vectors 

Computing the interaction vectors requires that the 
supporting border of ith particle 𝜕Ω𝑖 be partitioned into 
sub-surfaces of constant 𝜎 values, which are termed 
elementary surfaces. Then the interaction vector Гij is 

computed exactly as: 
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Figure 2.  The intersection of 𝜕Ω𝑖 spherical surface of ith particle, 

with its neighboring particles. The  spherical subsurfaces are shown 

in different colors with corresponding σ value [7].  
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where 𝑆𝑒 denotes the area vector of the elementary 
surface e, Ω𝑗 denotes the supporting volume of jth 

particle, while 𝜎𝑒
+ and 𝜎𝑒

− denote the kernel 
summations outside and inside Ω𝑖 , respectively. 

Elementary surfaces can have complex or even 
disjointed shapes, making partitioning challenging. A 
schematic of partitioning of a spherical-support is 
shown Figure 2. The required computation of the area 
of elementary surfaces is also more difficult and 
computationally costly. The detailed algorithm has 
been explained in [7].  

Computing the particles interaction vectors, Гij and 

Гji is the most costly part of GPU-SPHEROS. Once the 

particles neighbors identified, all the data are available 
to compute these vectors. Different non-concurrent 
CUDA kernels have been implemented for each part of 
the interaction vectors algorithm releasing one thread 
per particle to perform these computations. Since the 
size of some vectors have to be defined during the run-
time, we pre-allocate a large memory size by estimating 
the upper-bound required memory. The kernels then 
perform the computations for a batch of particles in 
parallel, with subsequent batches released sequentially 
until all the interaction vectors have been computed. 
This way, we avoid dynamic memory operations (e.g. 
deallocation/reallocation and resizing) inside the 
kernels by providing sufficient pre-allocated memory 
for each batch. The batch size and the pre-allocated 
memory pool for each batch can affect both the amount 

of parallelization and the occupied memory size and 
there is a trade-off between size of batches and required 
memory. In fact, these values are set for each simulation 
in order to ensure a good performance and sufficient 
available memory for the simulation. 

C. Time integration and flux discretization 

Once the interaction vectors Гij and Гji are 

computed, the solver would be ready to compute forces 
and fluxes for all the particles. To compute these values, 
the discretized governing Eqs. (8) and (9) should be 
solved for each particle (see algorithm I). For time 
integration, we use the 2nd-order explicit Runge–Kutta 
predictor-corrector scheme and for numerical stability, 
the Courant–Friedrichs–Lewy (CFL) condition for 1st-
order upwind discretization must be satisfied, i.e. 

C

i

i

h
t 

 
(21) 

Here, for a given CFL number, t  is adapted for each 

time step as: 

CFL min
C

i

i i

h
t

a

 
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   
(22) 

where 𝑎𝑖 is the local sound speed.   

Similar to interaction vectors, here we release one 
thread per particle to compute of fluxes and forces. For 
instance, the thread, which is released for the ith particle, 
is responsible for all the mass and momentum 
exchanges between particle i and all its neighbors. 
Despite computing the interaction vectors, there is not 
any particle batching process for computing these 
values and we indeed can benefit from the maximum 
level of parallelization harnessing GPU many-core 
architecture without any sequential batch releasing 
procedure.  

D. Boundary conditions 

All the employed approaches to enforce boundary 
conditions have been presented in [6]. For no-slip wall 
boundary, we overlay a layer of boundary particles that 
their motion is fixed by the wall boundary dynamics. 
Their density is initially set to the fluid reference 
density.  

For the inlet, the same approach is used to update 
the mass and the volume of the boundary particles. 
However, the inlet boundary particles move with the 
velocity known from the discharge rate and are fed to 
the system as soon as they cross the inlet border. In this 
case, new boundary particles replace the fed ones. 

For the free-surface, no boundary particles are used 
but instead, a boundary flux is added to the mass, 
momentum and volume equations, as can be seen in 
Eqs. (9) and (10). More details can be found in [6] 
regarding the boundary conditions enforcement. 
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Figure 3.  GPU-SPHEROS: flowchart of numerical simulation 

E. Data transfer 

Since PCIe or even NVLink are much slower than 
memory bandwidth of GPUs, we try to avoid any data 
transfer between CPU and GPU memory for a single 
GPU case except when we need to save data as output. 
All parts of the algorithm have been implemented on 
the GPU to be able to manage data exclusively on 
device memory, avoiding expensive host-device 
communication. The overall flowchart of an executing 
simulation is shown in Figure 3. 

IV. CASE STUDY 

The FVPM capability and accuracy has been 
already validated for different test cases such as viscous 
flow in a 2-D and 3-D lid-driven cavity, free-surface 
flow during impingement of a liquid jet on a flat plate 
and, moving boundary problems, addressing key 
aspects of the method [6,7].  

However, for the present paper, deviation of a 
circular water jet impinged on a flat plate has been 
simulated using GPU-SPHEROS and the results have 
been compared to the experimental data measured by 
Kvicinsky et al. [12]. A schematic outline of this case 
study is represented in Figure 4.  

 

 

Figure 4.  Schematic outline of the setup for impinging jet case 

study. 

 

Figure 5.  The pressure coefficient Cp plotted along x axis. FVPM 

solution is compared to experimental data [12] 

The reference velocity at the inlet is 

|Cref | = 19.81 m s-1 and the gravity acceleration g is 

9.81 m s-2. We inject jet particles as a circular inlet 
boundary and the plate is assumed as no-slip wall 
boundary. The center of the plate corresponds to the 
center of the Cartesian coordinate system and the plate 
is perpendicular to the jet. The inlet of the jet has the 
diameter of D = 0.03 m and is located at Z = 2.5×D above 
the flat plate. Figure 5 depicts the pressure coefficient 
Cp, along the x axis. Cp is averaged in the period ranging 
between t = 0.025 s and t = 0.05 s to filter out the 
pressure oscillations caused by compressibility. The 
particles impinging the flat plate is shown in Figure 6.  

 

302



12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017 

 

 

Figure 6.  Water jet paticles impinging on a flat plat  

TABLE I.  OPTIMIZATION PROCEDURE OF VOLUME INTEGRAL 

GRADIENT KERNEL FOR 3.3×10
5
 PARTICLES ON TESLA K40 

level Technique/optimization 
Time 

[ms] 

0 Thrust sequential reduction inside kernel ~100 

1 
for loop inside the kernel instead of thrust 

reduction inside kernel 
23.69 

2 Unrolling loops 5.27 

3 Using vector type load/store 3.23 

4 Pointer aliasing 2.89 

V. OPTIMIZATION 

The optimization procedure for GPU-SPHEROS is 
mainly focused on memory access efficiency, since it 
affects the performance of the GPU, considerably. Here 
we provide an optimization example for a kernel, which 
computes the pressure volume integral gradients. The 
volume integral gradient is computed based on (22).  

1

2

i j

i ij

ji

p p
p

V


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(22) 

The optimization process for this kernel is 
summarized in TABLE I. It is important to note that 
before optimization, the data have been sorted based on 
the particles Morton code to improve the memory 
particles Morton code to improve the memory access 
efficiency.  

 

 

All the optimizations have been applied and tested 
on a Tesla K40 GPU. The applied techniques are 
explained below: 

 Using “for loop” inside the kernel was more 
efficient than the reduction using the Thrust 
library inside kernel.  

 Unrolling the loop inside the kernel reduces 
dynamic instruction count, due to fewer 
compare and branch operations. The compiler 
can also improve the Instruction Level 
Parallelism (ILP) due to availability of 
independent instruction.  

 Using vector type arrays such as “double4” 
instead of 64-bit “double” non-vectors can 
improve the memory access efficiency by 
grouping same datatypes together. At the 
instruction level, a multi-word vector load or 
store only requires a single instruction to be 
issued, and total instruction latency for 
particular memory transaction will be 
decreased. 

 By restricting pointers, we promise the 
compiler that two or more pointers will never 
overlap the memory. This helps the compiler to 
apply further optimizations. 

The number of threads per block has been also 
optimized to improve the kernel performance even if 
the occupancy is degraded. In fact, a higher 
performance is not always achieved with higher 
occupancy. Readers are referred to [13] for more details 
on the relation between occupancy and performance. 

 

 

Figure 7.  Time percentage of three different parts of the overall 

algorithm of GPU-SPHEROS      
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Figure 8.  Achieved speedup: PCIe-based Tesla K40 and NVLink-

enabled Tesla P100 vs Intel® Xeon® E5-2660 v2  

 

Figure 9.  Solver throughput for Intel® Xeon® E5-2660 v2, PCIe-

based Tesla K40 and NVLink-enabled Tesla P100 

VI. SPEEDUP 

After optimization, the performance of GPU-
SPHEROS on both PCIe-based Tesla K40 and 
NVLink-based Tesla P100 has been compared to CPU 
version. The CPU version utilizes MPI for 
parallelization on multi-core CPU nodes. The weight of 
all three parts of the GPU-SPHEROS algorithm is 
shown in Figure 7. As one can see, computing the 
interaction vectors is around 68% of the total 
computations. Reasonably, this part is the priority for 
further optimizations.  

However, we already achieved a substantial 
speedup by parallelizing the computations on GPU 
many-core architecture. For instance, on NVLink-
based Tesla P100 with Pascal new architecture, the 

software is 9.5x faster compared to one CPU node 
equipped with two Intel® Xeon® E5-2660 v2 CPUs. 
Each CPU has 20 cores with activated hyper-threads. 
The speedup and software throughput are shown in 
Figures 8 and 9, respectively. We achieved almost same 
speedup for different problem sizes. To measure the 
speedup, we generated a uniform distribution of the 
particles in a cube and then applied a ±0.1ℎ𝑖 random 
disturbance to the particles’ position. This way, the 
generated distribution is very similar to the realistic 
simulations, which we perform.  

VII. CONCLUSION  

In the present paper, General Purpose GPU 
(GPGPU) computing has been utilized to accelerate 
SPHEROS as a particle-based FVPM solver. The data 
used to compute interaction vectors and exchanged 
fluxes, have been already sorted during the neighbor 
search process using a radix sort parallel algorithm to 
avoid inefficient memory access. On NVLink-based 
Tesla P100, we could achieve almost 10x faster running 
speed compared to one CPU node equipped with two 
Intel® Xeon® E5-2660 v2 processors. We observed 
that the code is executed 3.8x faster on NVLink-based 
Tesla P100 compared to PCIe-based Tesla K40, since 
its theoretical bandwidth and double-precision peak 
performance are 2.5x and 3.7x higher, respectively. The 
code has been optimized for a Pascal-based architecture 
GPU and is actually expected to run on a Pascal-based 
multi-GPU cluster. The preferred candidate to further 
speed up the software is the interaction vectors 
computations, which takes around 70% of overall time.  
The next candidate can be the octree-based neighbor 
search, which constitutes around 27% of the simulation 
overall time.  
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