
GPU-SPHEROS: A GPU-Accelerated Versatile

Solver Based on the Finite Volume Particle

Method

Siamak Alimirzazadeh1*, Ebrahim Jahanbakhsh1,2, Audrey Maertens1, Sebastian Leguizamon1, François Avellan1

1Laboratory for Hydraulic Machines, École polytechnique fédérale de Lausanne, Lausanne, Switzerland
2Institute of Computational Science (ICS), Università della Svizzera italiana, Lugano, Switzerland

*siamak.alimirzazadeh@epfl.ch

Abstract– The Finite Volume Particle Method (FVPM) is

a mesh-free Arbitrary Lagrangian-Eulerian (ALE)

method for fluid flow simulations which includes many of

the desirable features of mesh-based Finite Volume

Method (FVM) and SPH. In this paper, we introduce a

GPU-accelerated 3-D FVPM in-house solver, called

GPU-SPHEROS. The solver features spherical particles

support and, has been developed in CUDA featuring the

Thrust library, and optimized CUDA kernels for both

compute-bound and memory-bound algorithms. We

achieved a substantial speedup by a factor of more than

9x on NVLink-based Tesla P100 Pascal GPU compared

to a CPU node equipped with two Intel® Xeon® E5-2660

v2 CPUs. In the present paper, the deviation of a circular

water jet impinging a flat plate has been also simulated

entirely on GPU, as a case study.

I. INTRODUCTION

FVPM is a mesh-free particle-based method, which
is both locally conservative and consistent. FVPM
includes many of the attractive features of both particle
methods such as SPH [1] and conventional mesh-based
FVM [2]. This makes the aforementioned method more
robust for free-surface modelling and solid
deformations. Hietel et al. [3] introduced FVPM in
2000 applied for compressible flow computations. In
2009, Nestor et al. [4] extended the method to
incompressible flows. In 2014. Quinlan et al. [5]
presented an exact method for computing FVPM
interaction vectors in 2-D. This method then extended
by Jahanbakhsh et al. [6] for 3-D cuboidal particles.
While cuboidal particle supports have the advantage of
very simple geometric computations, they have the
disadvantages of directionality and discontinuous
interactions. These drawbacks motivated Jahanbakhsh
et al. [7] to use spherical particles support with top-hat
kernels.

GPU-SHEROS is a GPU-accelerated in-house
solver based on FVPM, which is used for numerical

simulation of fluid flow. The capability of Graphic
Processing Units (GPUs) to handle particle-based
methods has been demonstrated by several studies such
as [8], [9], [10]. Herault et al. [8] used GPU-SPHysics
to simulate the water waves surf zone based on SPH
method. They proposed various techniques to get a
higher performance on GPU, e.g. efficient memory
access and restriction of absolute minimum use of
conditional instructions. Nocentino and Rhodes [9]
described the optimization of memory access methods
on GPU using Morton order indexing. They showed
that Morton ordering reduces the number of memory
transactions and provides more efficient memory
access. Bédorf et al. [11] simulated the N-body problem
entirely on GPUs. They used an octree algorithm based
on space filling curves to perform particles’ nearest
neighbor search. They reported the speedup for each
part. For example for sorting the data they achieved
speedup of higher than 11x on GTX480.

II. NUMERICAL METHOD

A. Governing equations

The equations of motion for isothermal and weakly-
compressible flows are derived from the mass and
momentum conservation law [6].

. C
d

dt


  

(1)

and

. ()
C

s I g
d

p
dt

    

(2)

where 𝜌 is the density, C is the fluid velocity vector, p
is the static pressure, s is the deviatoric stress tensor and
g is the gravitational acceleration. d/dt denotes the
substantial time derivative. For Newtonian fluids, the
deviatoric stress s can be written as:

298

12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017

ALGORITHM I. GPU-SPHEROS OVERALL ALGORITHM

for each time step t
 for each particle i

 find the neighbor particles j

 end for
 for each particle i

 for each neighbor j

 Compute interaction vectors based on spherical-support
 end for

 end for

 for each particle i
 for each neighbor j

 Compute momentum flux from pressure and deviatoric

 stress

 𝑓𝑖 = ∑ ((𝜌𝑪𝒙̇ − 𝜌𝑪𝑪)𝑖𝑗 − 𝑷𝑖𝑗 + 𝑮𝑖𝑗)𝑖 . ∆𝒊𝒋 − 𝑝𝑏𝑩𝑖

 Compute mass flux including the smoothing mass term:

 𝑚𝑖 = ∑ ((𝜌𝒙̇ − 𝜌𝑪)𝑖𝑗 + 𝑮𝒊𝒋)𝑖 . ∆𝒊𝒋

 Compute volume flux:

 𝑉̇𝑖 = ∑ 𝒙̇𝒊𝒋. ∆𝒊𝒋𝑖 + 𝒙̇𝒊. 𝑩𝒊

 end for

 end for

 for each particle i (using 2nd order Runge-Kutta)
 Update volume, mass and momentum

 Update density and compute pressure from eq. of state

 Compute velocity correction and update particle velocity
 Update particle position

 end for

 𝑡 ← 𝑡 + ∆𝑡

end for

1
2 (tr())

3
s ε ε I 

(3)

where 𝜇 is the dynamic viscosity and ε̇ is the
deformation rate tensor given by:

 
2

C C
ε

T
  



(4)

The pressure is calculated based on the following
equation of state:

2

0

0

1
a

p



 

 

  
   
   

(5)

where a is speed of sound, 0 is the reference density

and  is the constant coefficient which is taken equal

to 7. In weakly compressible flow simulations, the

speed of sound a is considered at least 10 times greater

than the maximum fluid velocity to reduce the

computational cost [6]. The mass and momentum

conservation equations can be written in the following

PDE form arising from the conservation law.

. () 0
U

F U
d

dt
 

(6)

where U and F represents the conserved variable the
flux function, respectively which for fluid flow
equations read:

U
C





 
  
 

(7)

and,

C
F

C C s Ip





 
  

   
(8)

Being a meshless method, FVPM is intended for
problems where mesh-based methods may fail or have
difficulties, such as moving or free boundaries or fluid-
structure interaction problems.

B. Finite Volume Particle Method

The FVPM formulation for conservation laws, (9)
reads:

   

 

U U x F

U x F B

i i ij ij ij ij

j

b b b i

d
V

dt
   

   



(9)

and

x x Bi

ij ij b i

j

dV

dt
   

(10)

with

Γ Γij ij ji  
 (11)

 x x Γ x Γ
ij

ij j ij i ji

ij ij


 

 

(12)

and,

Bi ij

j

  

(13)

where Ui is the conserved variable of the ith particle, Vi
is its volume, Uij and Fij are the conserved variable and

the flux function at the interface of particles i and j,
respectively, whereas 𝒙̇ij is the velocity at which the

interface moves. Similarly, Ub, Fb and 𝒙̇b are the
conserved variable, flux function and particle velocity
at the boundary. Bi and ∆ij are the vectors which weight

exchanged fluxes with the boundary and between
particles, respectively. These vectors are computed
from interaction vector Гij, which reads,

 
Γ

x

i j

ij

W





 

(14)

In (13), i denotes the Shepard shape function for the

ith particle defined as:

299

12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017

 

 

x

x

i

i

W





(15)

where Wi(x) is a kernel function,

   ,x x xi i iW W h 

(16)

and 𝜎 is the kernel summation,

()xj

j

W 

(17)

Wi(x) is defined as zero outside Ω𝑖 , the support of
particle i.

1
(x)

0 otherwise

i

i

x
W





(18)

The particle volume 𝑉𝑖 is defined as:

i

i iV dV


 

(19)

In (16), ih is known as the smoothing length of particle

i, and defines the particle size and hence the spatial

resolution of the scheme.

III. SPHEROS AND GPU-SPHEROS

SPHEROS is a FVPM versatile in-house solver,
which inherits desirable features of both SPH and
mesh-based FVM and is able to simulate the interaction
between fluid, solid and silt. It has been already
developed and validated for different CFD benchmarks
[6]. GPU-SPHEROS is the GPU-accelerated version of
the code and has been developed and implemented in
CUDA in order to exploit the GPU many-core
architecture. The overall algorithm of GPU-SPHEROS
is shown in algorithm I, which includes three main
parts:

a) Particles octree-based neighbor search.
b) Computing the particle interaction vectors

based on a spherical-support.
c) Computing fluxes, forces, and 2nd-order

Runge-Kutta time integration.

A. Octree-based neighbor search

In the present research, an octree algorithm which
was introduced by Bédorf et al. [11], has been
implemented for parallel particle neighbor search.
Space filling curves (here, Morton-curve) have been
used for tree construction, reordering particles data. In
fact, the Morton keys of particles give a 1-D
representation of the original n-D coordinate space and
are computed using bitwise operations based on multi-
level masking. After the Morton keys are generated, the
particles ID are sorted based on their corresponding
Morton keys to improve the memory access and cache-
coherency during the next computations. A parallel

radix sort algorithm provided by Thrust library has been
used for sorting the data.

Once the particles ID are sorted based on their
corresponding Morton keys, the particles have to be
grouped into different tree cells. For this purpose,
different levels of bitwise masking must be applied to
particles Morton keys. The particles with identical
masked Morton key are assigned to the same cell,
which is also a branch of the tree. If the number of
particles in one cell is less than the defined parameter
Nleaf, then the next level of masking is not applied to the
particles belonging to that cell which is then called leaf.
The counting procedure of the particles is based on
parallel stream compaction algorithms using the Thrust
library. The masking and particles grouping process is
repeated for every single level, sequentially, until all the
particles are assigned to leaves or the maximal depth of
the tree is reached, whichever occurs first. An example
of a generated tree based on the Morton curve (or z-
curve) method for Nleaf = 4 is shown in Figure 1.

Figure 1. Schematic representation of a constructed quadtree

(right) and example of paticle grouping based on space filling curve
algorithm for 28 particles with Nleaf = 4 (left). For particle grouping

into tree cells, we apply the binary level mask to particles Morton

keys and group the particles with indentical key to the same cell.
The cells with less than Nleaf particles are flagged as leaf (green

cells) and are not masked further. The other cells are called nodes

(which are colored in gray) and their particles are masked in the
next level(s). We perform these flagging and checking process each

level to construct the tree. The tree construction procedure will be

stoped once all the particles are assigned to leaves, or when the
maximal level is reached. In the present figure, a quadrtree with

two level of masking has been represented schemtically as an

example.

Once the tree is constructed, one can find the
neighbor cells of each branch based on their Morton
keys. In order to identify the neighbors of a particle,
only the distance between particles belonging to the
same leaf and its neighbor leaves needs to be checked,
thus avoiding unnecessary computations. A highly-
optimized kernel has been implemented for this task.

B. Exact computation of interaction vectors

Computing the interaction vectors requires that the
supporting border of ith particle 𝜕Ω𝑖 be partitioned into
sub-surfaces of constant 𝜎 values, which are termed
elementary surfaces. Then the interaction vector Гij is

computed exactly as:

300

12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017

Figure 2. The intersection of 𝜕Ω𝑖 spherical surface of ith particle,

with its neighboring particles. The spherical subsurfaces are shown

in different colors with corresponding σ value [7].

 

Γ
j i

e

ji

e e e

S

  
  

 
  

 


(20)

where 𝑆𝑒 denotes the area vector of the elementary
surface e, Ω𝑗 denotes the supporting volume of jth

particle, while 𝜎𝑒
+ and 𝜎𝑒

− denote the kernel
summations outside and inside Ω𝑖 , respectively.

Elementary surfaces can have complex or even
disjointed shapes, making partitioning challenging. A
schematic of partitioning of a spherical-support is
shown Figure 2. The required computation of the area
of elementary surfaces is also more difficult and
computationally costly. The detailed algorithm has
been explained in [7].

Computing the particles interaction vectors, Гij and

Гji is the most costly part of GPU-SPHEROS. Once the

particles neighbors identified, all the data are available
to compute these vectors. Different non-concurrent
CUDA kernels have been implemented for each part of
the interaction vectors algorithm releasing one thread
per particle to perform these computations. Since the
size of some vectors have to be defined during the run-
time, we pre-allocate a large memory size by estimating
the upper-bound required memory. The kernels then
perform the computations for a batch of particles in
parallel, with subsequent batches released sequentially
until all the interaction vectors have been computed.
This way, we avoid dynamic memory operations (e.g.
deallocation/reallocation and resizing) inside the
kernels by providing sufficient pre-allocated memory
for each batch. The batch size and the pre-allocated
memory pool for each batch can affect both the amount

of parallelization and the occupied memory size and
there is a trade-off between size of batches and required
memory. In fact, these values are set for each simulation
in order to ensure a good performance and sufficient
available memory for the simulation.

C. Time integration and flux discretization

Once the interaction vectors Гij and Гji are

computed, the solver would be ready to compute forces
and fluxes for all the particles. To compute these values,
the discretized governing Eqs. (8) and (9) should be
solved for each particle (see algorithm I). For time
integration, we use the 2nd-order explicit Runge–Kutta
predictor-corrector scheme and for numerical stability,
the Courant–Friedrichs–Lewy (CFL) condition for 1st-
order upwind discretization must be satisfied, i.e.

C

i

i

h
t 

(21)

Here, for a given CFL number, t is adapted for each

time step as:

CFL min
C

i

i i

h
t

a

 
    

 
(22)

where 𝑎𝑖 is the local sound speed.

Similar to interaction vectors, here we release one
thread per particle to compute of fluxes and forces. For
instance, the thread, which is released for the ith particle,
is responsible for all the mass and momentum
exchanges between particle i and all its neighbors.
Despite computing the interaction vectors, there is not
any particle batching process for computing these
values and we indeed can benefit from the maximum
level of parallelization harnessing GPU many-core
architecture without any sequential batch releasing
procedure.

D. Boundary conditions

All the employed approaches to enforce boundary
conditions have been presented in [6]. For no-slip wall
boundary, we overlay a layer of boundary particles that
their motion is fixed by the wall boundary dynamics.
Their density is initially set to the fluid reference
density.

For the inlet, the same approach is used to update
the mass and the volume of the boundary particles.
However, the inlet boundary particles move with the
velocity known from the discharge rate and are fed to
the system as soon as they cross the inlet border. In this
case, new boundary particles replace the fed ones.

For the free-surface, no boundary particles are used
but instead, a boundary flux is added to the mass,
momentum and volume equations, as can be seen in
Eqs. (9) and (10). More details can be found in [6]
regarding the boundary conditions enforcement.

301

12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017

Figure 3. GPU-SPHEROS: flowchart of numerical simulation

E. Data transfer

Since PCIe or even NVLink are much slower than
memory bandwidth of GPUs, we try to avoid any data
transfer between CPU and GPU memory for a single
GPU case except when we need to save data as output.
All parts of the algorithm have been implemented on
the GPU to be able to manage data exclusively on
device memory, avoiding expensive host-device
communication. The overall flowchart of an executing
simulation is shown in Figure 3.

IV. CASE STUDY

The FVPM capability and accuracy has been
already validated for different test cases such as viscous
flow in a 2-D and 3-D lid-driven cavity, free-surface
flow during impingement of a liquid jet on a flat plate
and, moving boundary problems, addressing key
aspects of the method [6,7].

However, for the present paper, deviation of a
circular water jet impinged on a flat plate has been
simulated using GPU-SPHEROS and the results have
been compared to the experimental data measured by
Kvicinsky et al. [12]. A schematic outline of this case
study is represented in Figure 4.

Figure 4. Schematic outline of the setup for impinging jet case

study.

Figure 5. The pressure coefficient Cp plotted along x axis. FVPM

solution is compared to experimental data [12]

The reference velocity at the inlet is

|Cref | = 19.81 m s-1 and the gravity acceleration g is

9.81 m s-2. We inject jet particles as a circular inlet
boundary and the plate is assumed as no-slip wall
boundary. The center of the plate corresponds to the
center of the Cartesian coordinate system and the plate
is perpendicular to the jet. The inlet of the jet has the
diameter of D = 0.03 m and is located at Z = 2.5×D above
the flat plate. Figure 5 depicts the pressure coefficient
Cp, along the x axis. Cp is averaged in the period ranging
between t = 0.025 s and t = 0.05 s to filter out the
pressure oscillations caused by compressibility. The
particles impinging the flat plate is shown in Figure 6.

302

12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017

Figure 6. Water jet paticles impinging on a flat plat

TABLE I. OPTIMIZATION PROCEDURE OF VOLUME INTEGRAL

GRADIENT KERNEL FOR 3.3×10
5
 PARTICLES ON TESLA K40

level Technique/optimization
Time

[ms]

0 Thrust sequential reduction inside kernel ~100

1
for loop inside the kernel instead of thrust

reduction inside kernel
23.69

2 Unrolling loops 5.27

3 Using vector type load/store 3.23

4 Pointer aliasing 2.89

V. OPTIMIZATION

The optimization procedure for GPU-SPHEROS is
mainly focused on memory access efficiency, since it
affects the performance of the GPU, considerably. Here
we provide an optimization example for a kernel, which
computes the pressure volume integral gradients. The
volume integral gradient is computed based on (22).

1

2

i j

i ij

ji

p p
p

V


  

(22)

The optimization process for this kernel is
summarized in TABLE I. It is important to note that
before optimization, the data have been sorted based on
the particles Morton code to improve the memory
particles Morton code to improve the memory access
efficiency.

All the optimizations have been applied and tested
on a Tesla K40 GPU. The applied techniques are
explained below:

 Using “for loop” inside the kernel was more
efficient than the reduction using the Thrust
library inside kernel.

 Unrolling the loop inside the kernel reduces
dynamic instruction count, due to fewer
compare and branch operations. The compiler
can also improve the Instruction Level
Parallelism (ILP) due to availability of
independent instruction.

 Using vector type arrays such as “double4”
instead of 64-bit “double” non-vectors can
improve the memory access efficiency by
grouping same datatypes together. At the
instruction level, a multi-word vector load or
store only requires a single instruction to be
issued, and total instruction latency for
particular memory transaction will be
decreased.

 By restricting pointers, we promise the
compiler that two or more pointers will never
overlap the memory. This helps the compiler to
apply further optimizations.

The number of threads per block has been also
optimized to improve the kernel performance even if
the occupancy is degraded. In fact, a higher
performance is not always achieved with higher
occupancy. Readers are referred to [13] for more details
on the relation between occupancy and performance.

Figure 7. Time percentage of three different parts of the overall

algorithm of GPU-SPHEROS

303

12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017

Figure 8. Achieved speedup: PCIe-based Tesla K40 and NVLink-

enabled Tesla P100 vs Intel® Xeon® E5-2660 v2

Figure 9. Solver throughput for Intel® Xeon® E5-2660 v2, PCIe-

based Tesla K40 and NVLink-enabled Tesla P100

VI. SPEEDUP

After optimization, the performance of GPU-
SPHEROS on both PCIe-based Tesla K40 and
NVLink-based Tesla P100 has been compared to CPU
version. The CPU version utilizes MPI for
parallelization on multi-core CPU nodes. The weight of
all three parts of the GPU-SPHEROS algorithm is
shown in Figure 7. As one can see, computing the
interaction vectors is around 68% of the total
computations. Reasonably, this part is the priority for
further optimizations.

However, we already achieved a substantial
speedup by parallelizing the computations on GPU
many-core architecture. For instance, on NVLink-
based Tesla P100 with Pascal new architecture, the

software is 9.5x faster compared to one CPU node
equipped with two Intel® Xeon® E5-2660 v2 CPUs.
Each CPU has 20 cores with activated hyper-threads.
The speedup and software throughput are shown in
Figures 8 and 9, respectively. We achieved almost same
speedup for different problem sizes. To measure the
speedup, we generated a uniform distribution of the
particles in a cube and then applied a ±0.1ℎ𝑖 random
disturbance to the particles’ position. This way, the
generated distribution is very similar to the realistic
simulations, which we perform.

VII. CONCLUSION

In the present paper, General Purpose GPU
(GPGPU) computing has been utilized to accelerate
SPHEROS as a particle-based FVPM solver. The data
used to compute interaction vectors and exchanged
fluxes, have been already sorted during the neighbor
search process using a radix sort parallel algorithm to
avoid inefficient memory access. On NVLink-based
Tesla P100, we could achieve almost 10x faster running
speed compared to one CPU node equipped with two
Intel® Xeon® E5-2660 v2 processors. We observed
that the code is executed 3.8x faster on NVLink-based
Tesla P100 compared to PCIe-based Tesla K40, since
its theoretical bandwidth and double-precision peak
performance are 2.5x and 3.7x higher, respectively. The
code has been optimized for a Pascal-based architecture
GPU and is actually expected to run on a Pascal-based
multi-GPU cluster. The preferred candidate to further
speed up the software is the interaction vectors
computations, which takes around 70% of overall time.
The next candidate can be the octree-based neighbor
search, which constitutes around 27% of the simulation
overall time.

ACKNOWLEDGMENT

This research was supported by the Swiss
Commission for Technology and Innovation (CTI) with

grant N° 17568.1. PFEN.IW.

The authors would also like to thank NVIDIA for
the GPU grant program as well as their technical
support.

REFERENCES

[1] R.A. Gingold, J.J. Monaghan, Smoothed particle
hydrodynamics-theory and application to non-spherical stars,
Mon. Not. R. Astron. Soc. 181 (1977) 375–389.

[2] R.J. LeVeque, Finite Volume Methods for Hyperbolic
Problems, Vol. 31, Cambridge university press, 2002

[3] D. Hietel, K. Steiner, J. Struckmeier, A finite-volume particle
method for compressible flows, Math. Models Methods Appl.
Sci. 10 (9) (2000) 1363–1382.

[4] R.M. Nestor, M. Basa, M. Lastiwka, N.J. Quinlan, Extension
of the finite volume particle method to viscous flow, J. Comput.
Phys. 228 (5) (2009) 1733–1749.

[5] Nathan J. Quinlan, Libor Lobovsky, Ruairi M. Nestor,
Development of the meshless finite volume particle method
with exact and efficient calculation of interparticle area,

304

12th international SPHERIC workshop Ourense, Spain, June 13-15, 2017

Computer Physics Communications, Volume 185, Issue 6,
June 2014, Pages 1554–1563

[6] E. Jahanbakhsh, C. Vessaz, A. Maertens and F. Avellan,
Development of a Finite Volume Particle Method for 3-D fluid
flow, Computer Methods in Applied Mechanics and
Engineering, vol. 298, p. 80-107, 2016.

[7] E. Jahanbakhsh, A. Maertens, N.J. Quinlan, C. Vessaz, F.
Avellan, Exact finite volume particle method with spherical-
support kernels, Comput. Methods Appl. Mech. Engrg. 317
(2017) 102–127.

[8] A. Hérault, A. Vicari, C. del Negro, and R.A. Dalrymple,
Modeling Water Waves in the Surf Zone with GPU-SPHysics,
in Proceeding of the Fourth SPHERIC Workshop, Nantes,
2009.

[9] A. E. Nocentino and P. J. Rhodes, Optimizing memory access
on GPUs using Morton order indexing, in Proceedings of the
48th Annual Southeast Regional Conference, ACM, New
York, USA, 2010.

[10] D. Valdez-Balderas, J. M. Domínguez and B. D. Rogers,
Towards accelerating smoothed particle hydrodynamics
simulations for free-surface flows on multi-GPU clusters,
Journal of Parallel and Distributed Computing, vol. 73, no.
11, pp. 1483-1493, 2013.

[11] J. Bédorf, E. Gaburov and S. P. Zwart, A sparse octree
gravitational N-body code that runs entirely on the GPU
processor, Journal of Computational Physics, vol. 231, no.
7, pp. 2825-2839, 2012.

[12] S. Kvicinsky, F. Longatte, F. Avellan, J. Kueny, Free surface
flows: Experimental validation of the Volume of Fluid (VOF)
method in the plane wall case, in: Proceedings of 3rd
ASME/JSME, San Francisco, ASME, New York, 1999, pp. 1–
8.

[13] http://www.nvidia.com/content/gtc-2010/pdfs/2238_gtc2010.pdf

(last access on May 3rd, 2017)

305

View publication statsView publication stats

