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Abstract—We have recently developed a conservative finite
volume particle method (FVPM) that can efficiently model 2D
and 3D fluid flow with free-surfaces and complex geometry, as
well as fluid-structure interaction. In this paper we present a
new FVPM formulation that features spherical kernel support
in place of the original cubic support. Spherical kernels have no
directionality and result in smooth interactions between particles,
which improves the accuracy and robustness of the method.
Building on the spherical kernel FVPM, we introduce a new
surface tension model. The formulation, derived from a physical
model, is based on macroscopic symmetrical particle-particle
interaction forces and results in a stable surface tension force
with no ad-hoc parameters.

I. INTRODUCTION

The Finite Volume Particle Method (FVPM) is a meshless
arbitrary Lagrangian-Eulerian (ALE) method introduced by
Hietel et al. [1] in 2000 for compressible flows. This method
has since been used in a wide range of applications such as
incompressible flows [2], solid mechanics [3], fluid-structure
interactions [4], [5], free-surface flows in Pelton turbines [6],
[7], and silt erosion [8].

The FVPM features many of the attractive properties of both
particle methods, such as Smoothed Particle Hydrodynamics
(SPH) [9], and conventional mesh-based Finite Volume Meth-
ods (FVM) [10]. In FVPM, like in SPH, computational nodes
usually move with the material velocity, which is compatible
with the Lagrangian form of the equation of motion. This
enables the method to handle moving interface problems like
free-surface flows, without dealing with mesh deformation or
tangling. Moreover, FVPM does not require mesh generation
which is a costly stage in simulation of flows with complex
geometries.

Similarly to FVM, FVPM is locally conservative and con-
sistent, regardless of any variation in volume sizes. In fact,
FVPM can be interpreted as a generalization of conventional
mesh-based FVM [11]. In FVM, the computational domain is
partitioned into finite control volumes with defined surfaces.
The area vector of the surfaces is used as a weight for
the flux exchanged between the control volumes. In FVPM,
control volumes are replaced by overlapping particles and the
exchange occurs through the interfaces defined by overlapping
regions. For each pair of overlapping particles, two interaction
vectors are defined and their difference is analogous to the area

vector in FVM. The interaction vectors can be computed by
either numerical or exact integration. Numerical integration
is costly and approximate, and is mostly used for bell-
shaped kernels [2], [12], [13]. Exact integration, introduced
by Quinlan et al. [5], is based on top-hat kernels, resulting
in a reasonable compromise between efficiency and accuracy.
This method was originally developed for 2D computations
using circular and rectangular top-hat kernels [14]. Recently,
Jahanbakhsh et al. [15] developed a 3D FVPM formulation
which features exact integration based on cubic-supported top
hat kernels.

However, employing rectangular top-hat kernels such as
square or cubic-supported kernels in FVPM results in two
important issues. First of all, these kernels have directional-
ity, which destroys volume conservation in pure rigid body
rotation and accordingly impairs the accuracy of the method.
Secondly, the particle interaction can result in hard contact
which causes high-frequency errors. Both issues disappear
with circular or spherical-supported top-hat kernels.We present
in this paper a technique which uses spherical top-hat kernels
for exact integration of the FVPM interaction vectors. This
technique is based on an innovative surface partitioning algo-
rithm relying on logical set operations and precise area eval-
uation to robustly handle complicated particle intersections.

In addition to the intrinsic advantages of spherical kernel
support, the new formulation can be used as the base of an
innovative surface tension model. The model uses the inter-
action vectors calculations to compute a symmetrical particle-
particle surface tension force. Unlike most symmetrical surface
tension models in SPH [16], the formulation is derived from
a macroscopic physical model. The model uses only surface
tension and equilibrium contact angle as input parameters and
the resulting force is stable and consistant while conserving
momentum. In order to illustrate the performance of the new
surface tension model, we present simulations of a drop in air
and falling onto plane of various wetting conditions.

This paper is organized as follows. Section II summarizes
the FVPM equations for fluid flow computations. In section III,
we present our approach to efficiently compute the interaction
vectors with spherical support kernel, and section IV presents
the new surface tension model. Finally, applications of the new
FVPM formulation and surface tension model to water drops
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are presented in section V.

II. GOVERNING EQUATIONS AND FVPM FORMULATION

A. Governing Equations

The equations of motion for isothermal and weakly com-
pressible flows are derived from the mass and linear momen-
tum conservation laws

∂U

∂t
+∇ · F (U) = 0 (1)

where U represents the conserved variables and F represents
the flux functions. For fluid flow equations, the corresponding

variables and flux functions are respectively U =

(
ρ
ρC

)
and F =

(
ρC
ρC ⊗C − s+ pI

)
, where C represents the

fluid velocity, ρ the density, p the pressure, and s the deviatoric
stress tensor. To close the system of equations, the Murnaghan-
Tait equation of state is used for water [17]

p =
ρ◦a

2

γ

((
ρ

ρ◦

)γ
− 1

)
(2)

where a is the numerical speed of sound, ρ◦ is the reference
density and γ is a constant coefficient that we set to γ = 7.
In weakly compressible flow simulations, the numerical speed
of sound a is ten times the maximum fluid velocity, which
significantly reduces the computational cost [18].

B. The FVPM Formulation

The FVPM formulation for conservation laws (1) reads

d

dt
(U iVi) =

∑
j

(U ij ⊗ ẋij − F ij) ·∆ij

+ (U b ⊗ ẋb − F b) ·Bi (3)

and
dVi
dt

=
∑
j

ẋij ·∆ij + ẋb ·Bi (4)

with
∆ij = Γij − Γji (5)

ẋij = (ẋj · Γij − ẋi · Γji)
∆ij

∆ij ·∆ij
(6)

Bi = −
∑
j

∆ij (7)

where U i is the conserved variable of ith particle, Vi is its
volume, U ij and F ij are the conserved variable and flux func-
tion at the interface of particles i and j, respectively, whereas
ẋij is the velocity at which the interface moves. Similarly,
U b, F b and ẋb are the conserved variable, flux function and
particle velocity at the boundary. ∆ij and Bi are the vectors
which weight exchanged fluxes between particles and with
the boundary, respectively. These vectors are computed from
interaction vectors Γij which read

Γij =

∫
Ω

ψi∇Wj

σ
dV. (8)

In (8), ψi denotes the Shepard shape function for the ith

particle defined as

ψi (x) =
Wi (x)

σ (x)
(9)

where Wi is a kernel function,

Wi (x) = W (x− xi, hi) (10)

and σ is the kernel summation

σ (x) =
∑
j

Wj (x) . (11)

Wi (x) is defined as zero outside Ωi, the support of particle
i. Particle volume Vi is defined as

Vi =

∫
Ω

ψi dV . (12)

In (10), hi is known as the smoothing length of particle i, and
defines the particle size and hence the spatial resolution of the
scheme. It is worth mentioning that, as long as the sampling
point x is selected within the particles smoothing support,
σ (x) > 0, and accordingly the shape function (9) is defined
at that position. Since the computational domain is defined
by the union of the particles smoothing support, the shape
function does not need to be defined outside of this union.
The readers are referred to [15] for the formulas derivation
details.

III. COMPUTATION OF INTERACTION VECTORS FOR
SPHERICAL PARTICLES

To solve (3), the interaction vector Γij must be computed
according to (8). For conventional bell-shaped kernels, this
integral is difficult or impossible to exactly evaluate. The
alternative approach is to use quadrature rules which are ap-
proximate and costly [1], [2]. Until recently, the computational
needs of this approach precluded the use of FVPM for 3D
applications.

Quinlan and Nestor [5] and Quinlan et al. [14] introduced
top-hat kernels with circular and rectangular supports to com-
pute the integrals exactly and efficiently in 2D. The top-hat
kernel is defined as

Wi (x) =

{
1 x ∈ Ωi

0 otherwise
. (13)

This kernel choice enables integrals over the particle support
volume to be reduced to integrals over the bounding surface
of the particle support. According to Jahanbakhsh et al. [15],
computation of the interaction vector Γji requires that the
supporting border of ith particle, ∂Ωi, be partitioned into
subsurfaces of constant σ values, which are termed elementary
surfaces. Then, Γji is computed exactly as

Γji = −
∑

P∈(Ωj∩∂Ωi)

(
SP

σ+
Pσ
−
P

)
(14)

where SP denotes the area vector of the elementary surface
P , Ωj denotes the supporting volume of jth particle, while
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σ+
P and σ−P denote the kernel summations outside and inside

Ωi, respectively.
Equation (14) is valid for top-hat kernels regardless of the

particle support shape. Since Wi (x) = 1 inside particle i,
σ (x) for a top-hat kernel is simply the number of particles
covering the point x.

It follows that

σP = σ−P = σ+
P + 1 (15)

and, in accordance with Quinlan et al. [14], (14) simplifies to

Γji =
∑

p∈(Ωj∩∂Ωi)

SP

(
1

σP + 1
− 1

σP

)
. (16)

The key innovations of the present work is the exact compu-
tation of particle interaction vectors Γij for spherical particles
using top-hat kernels. The first stage is a surface partitioning
algorithm which identifies the elementary surfaces formed by
sphere intersections and computes kernel summations σ for
each elementary surface (i.e. the number of particles inside
which the surface lies).

A. Surface Partitioning

In this algorithm, we compute all the elementary surfaces
generated on ∂Ωi by the neighbors of particle i. The four steps
of the surface partitioning algorithm are summarized bellow
(see [19] for more details).

1) Construction of spherical caps: A spherical cap is the
region of a sphere which lies on either side of a given plane
[20]. The intersection of a sphere ∂Ωi with a ball Ωj generates
a spherical cap. The first step in the surface partitioning
algorithm is finding all the spherical caps generated after
intersecting the surface of ith particle with its neighboring
particles.

2) Intersection of surface circles: Each spherical cap has a
circular base which may intersect circles formed by other caps.
In the second step, we check each pair of circles appearing on
the surface of ith particle for intersection. This is equivalent to
finding the intersection of three spherical surfaces ∂Ωi, ∂Ωj
and ∂Ωk.

3) Construction of arc sets: In the third step, we construct
the indivisible arcs formed by the circles’ intersections and
located on ∂Ωi. Each arc is defined by two end-points and the
circle of which it is a subset. In addition, we assign an integer
index to each arc ranging from 1 to Narc, where Narc denotes
the total number of arcs on ∂Ωi. The sign of the index indicates
the arc direction with respect to the normal of the associated
circle. Thus, the direction of the arc can be reversed by
negating its index number. Every arc is a boundary of exactly
two elementary surfaces, and the use of positive and negative
indices will later enable the two boundaries to be represented
distinctly. For the spherical surface ∂Ωi, we can construct
a complex arc set U = {−1,+1,−2,+2,−3,+3, ...,±Narc}
which contains all the arcs of ∂Ωi. Similarly, we construct a
complex arc set, namely Aij , for each spherical cap Cij . This
set includes the positive indices of the arcs formed by the base

circle of Cij , as well as positive and negative indices of the
arcs located inside Ωj .

4) Partitioning: In the fourth step, we partition the spher-
ical surface ∂Ωi into the elementary surfaces which are
indivisible and do not overlap with each other. The main
idea of the partitioning procedure is to intersect the spherical
surface with all the spherical caps, one after another. After
the first intersection, the sphere surface is decomposed into
two subsurfaces inside and outside of the first spherical cap.
For the second intersection, we find the intersections of the
two subsurfaces from previous step with the second cap. This
way, new subsurfaces are generated, which are either inside or
outside the second cap and will be used for the next step. If we
continue this procedure for all the caps, the final subsurfaces
are the required elementary surfaces. To implement this idea,
we apply set operations to the complex arc sets constructed
in the previous step. These operations are carried out for all
neighbors j where j = 1 . . . Ncap and Ncap denotes the number
of spherical caps or, equivalently, the number of neighboring
particles. To start, we define S0

S0 = {U} (17)

where S0 is a set of arc sets that contains only U . Then, for
each Aij representing the cap Cij , we write

Sj = {X ∩Aij : X ∈ Sj−1} ∪ {X −Aij : X ∈ Sj−1}. (18)

After performing this operation Ncap times, every arc set in
SNcap lies inside a unique set of spherical caps, and outside
all others. Therefore, it is an elementary surface which cannot
be further subdivided and is defined by the intersection of a
unique combination of spherical caps of neighboring particles.

During the partitioning process, we can easily find the value
of σ, which is constant over each elementary surface. For
this purpose, we store the σ value for each subsurface X and
initiate it to 1 for X ∈ S0 at the beginning of process. Then,
for each iteration of j over (18), σ values are increased by 1
for X ∈ {X ∩ Aij : X ∈ Sj−1} and remain unchanged for
X ∈ {X −Aij : X ∈ Sj−1}.

B. Area Vector Computation

In order to compute the interaction vectors according to
(16), the projected area vectors SP of the elementary surfaces
constructed in the previous section are needed. However,
existing formulas for spherical polygons are only valid only
for spherical polygons made of great circle arcs, i.e. arcs of
circles that contain a diameter of the sphere [22]. Since the
elementary surfaces are bounded by small circle arcs, i.e. arcs
of circles that do not contain a diameter of the sphere [21],
these formulas cannot be directly applied.

To compute the area vector of an elementary surface, we
define a the north pole of the sphere and construct a triangle
4sabc for each arc ıbc defining the surface and compute the
area vector of each triangle, as illustrated in figures 1. Here,
the superscript s in 4s stands for small circle and denotes
a triangle with one small circle arc ıbc and two great circle
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Fig. 1. On the left, the spherical triangle 4gabc and the crescent ⌓bc are
shown in red and green, respectively. 4gabc is made of the three great circle
arcs passing through a, b and c. ⌓bc is bounded by a small and a great circle
arc connecting b and c. On the right, the spherical triangle 4gdijbc and the
crescent ⌓bc are shown in red and green, respectively. 4sdijbc is made of
the three great circle arcs passing through dij , b and c. ⌓bc is bounded by
a small and a great circle arc connecting b and c.

arcs ıab and ıca. If we can compute the area vectors of the
triangles, summing them up will give us the area vector of the
elementary surface. This technique has been used to compute
the surface area of a spherical polygon in [23] and can be
generalized to area vector computation.

We then decompose4sabc into a spherical triangle4gabc
and a crescent ⌓bc, such that 4gabc is made of three great
circle arcs and ⌓bc is surrounded by small and great circle
arcs connecting b and c. The superscript g in 4g stands for
great circle and denotes a spherical triangle.

The area vector of the spherical triangle, S4gabc, can be
directly computed according to [23]. To compute the area
vector of the crescent ⌓bc, we define dij , the intersection
of (xixj) with ∂Ωi. The area vectors S4gdijbc and S4sdijbc

can now be computed directly, which yields the area vector of
the crescent ⌓bc

S⌓bc = S4sdijbc − S4gdijbc (19)

Finally, the area vector of 4sabc reads

S4sabc = S4gabc + S⌓bc (20)

To compute the area vector of any given elementary surface
P , we sum up the vector areas of all triangles 4sabc

SP =

|P|∑
n=1

S4sabncn (21)

where SP denotes the area vector of P , |P| denotes the
number of arcs forming P and bn and cn denote the ends
of the nth arc in P . It is worth mentioning that, since P can
contain negative arc indices, we have to change the order of
bn and cn for those arcs in order to have the correct sign for
their corresponding areas.

IV. SURFACE TENSION

In the context of SPH, the traditional approaches for mod-
eling surface tension apply a force normal to the interface
with an intensity determined by the given surface tension

coefficient and the curvature of the interface [24]–[26]. A
smooth color function is used to describe the different phases,
and the interface is defined as a finite transitional band, where
the color gradient does not vanish. Those approaches compute
the normal for each particle using the gradient of the smoothed
color field, while the curvature is computed by taking either the
second derivative of the smoothed color field or the divergence
of the normal field.

Such methods can accurately estimate the effects of surface
tension but they require second order derivatives which are
very sensitive to particle disorder and sometimes lead to
significant errors. Moreover, since the forces are applied to
the fluid particles as external forces in a non-symmetric way,
those approaches do not conserve momentum. Finally, these
methods do not readily generalize to fluid-solid interactions
with wetting effects. A normal correction method is sometimes
adopted to include the effects at the triple line [27], [28], but
since the dynamic contact angle is usually not known [29], it
only applies to quasi-static cases.

Taking advantage of the particle-based nature of SPH,
several methods have been proposed to model surface tension
with cohesive pair-wise forces mimicking microscopic inter-
phase attractive potentials. Although the implementation of
an inter-phase attractive potential is straightforward, one of
the difficulties is that the resulting surface tension needs to
be calibrated. Furthermore, with given parameters, the surface
tension is resolution-dependent and does not converge to a
fixed value with increasing resolution.

Nugent and Posch [30] used attractive forces, corresponding
to the cohesive pressure in the van der Waals equation of
state, to simulate surface tension in two-dimensional SPH
simulations. Tartakovsky and Meakin [31] used a similar
approach but instead of a van der Waals interaction applied a
combination of repulsive and attractive forces within the range
of the standard SPH kernel. In both methods the particular
magnitude of surface tension depends on the intensity of
the particle-particle interactions. These interactions are not
readily available, and need to be fitted for each case in
order to reproduce the desired contact angles and surface
tension. Akinci et al. [16] proposed an interesting combination
of cohesion, surface area minimization and adhesion which
seems interesting for graphic applications but, like the previ-
ous methods, the forces rely on ad-hoc resolution-dependent
parameters, which is not appropriate for scientific applications.

In most practical applications, the surface tension and con-
tact angles are given as macroscopic input parameters, which
often vary from case to case. Therefore, despite the appealing
physical principle underlying these effective interaction meth-
ods, an approach that simply uses the surface tension as an
input parameter is advantageous. In this section, we present
a pair-wise surface tension model based on macroscopic
interaction which naturally extends to model wetting effects
and does not require parameter tuning. The model is based
on the surface tension γ acting on a macroscopic free surface



11th international SPHERIC workshop Munich, Germany, June, 14-16 2016

element P of a fluid

F ST (P) = −γ
∫
∂P
τ dr (22)

where F ST is the surface tension force and τ the local tangent
to the surface P , normal to ∂P , and pointing inwards.

Let us consider an elementary surface P ∈ ∂Ωj and identify
it to a macroscopic surface element of fluid. If particle i, with
center at xi, is moved by δxi, the work done by F ST on P
is

δWi(P, δxi) = −γ δSP = −γ dSP
dxi

· δxi

= F STi (P) · δxi (23)

where SP is the area of surface P . Therefore, the surface
tension force on particle i due to the elementary free surface
P is

F STi (P) = −γ dSP
dxi

(24)

Summing up the surface tension forces from all the elementary
surfaces, the surface tension force on particle i reads

F STi = −γ
∑
j

∑
P∈{∂Ωj :σ=1}

dSP
dxi

(25)

Since P ∈ ∂Ωj , the surface area gradient is given by

dSP
dxi

=


γ

∫
∂P
τ dr if j 6= i,

−γ
∫
∂P
τ dr if j = i

(26)

Let us now consider b̆ncn ∈ ∂Ωi ∩ ∂Ωj , an elementary
arc bounding two elementary free surfaces Pi and Pj . The
surface tension force on particle i arising from the arc can
be calculated using the arc properties calculated during the
surface partitioning ∫

b̄ncn

τ i dr = τ̂ni
ri
dij

(27)

where ri is the radius of particle i, dij = ||xj − xi||, and

τ̂ni = 2 sin(α/2)(xj −mn)

+ (xj −mn) · nij(α− 2 sin(α/2))nij (28)

with α the central angle of the arc, mn the middle of the arc
and nij = (xj − xi)/dij .

Finally, defining AFSij the set of arcs separating free surfaces
from particles i and j, the surface tension force on i from
particle j reads

F STji = −γ
|AFS

ij |∑
n=1

(
τ̂nj

rj
dij
− τ̂ni

ri
dij

)(
1− 1

η2

)
(29)

where the last parenthesis with η = (ri + rj)/dref is a correc-
tion factor compensating for the artificially larger surface area
due to the use of spherical particles to represent a flat surface.

It appears clearly from (29) that the surface tension force is a
symmetric interparticle force.

Let us now consider a configuration with three interfaces:
liquid-air (ILA), liquid-solid (ILS), and solid-air (ISA), with
respective interfacial energy γLA, γLS , and γSA. The surface
tension force on fluid particle i generalizes easily from (25)

F STi = −γLA
∑
P∈ILA

dSP
dxi

− γLS
∑
P∈ILS

dSP
dxi

− γSA
∑
P∈ISA

dSP
dxi

(30)

In general, the liquid-solid and solid-air interfacial energy
are not known, but the equilibrium contact angle θC can be
measured experimentally. The equilibrium contact angle is
linked to the interfacial energies by

γSA − γLS = γLA cos θC (31)

Using (31) and the property that the total area of the solid
surface is constant, (30) simplifies to

F STi = −γLA

( ∑
P∈ILA

dSP
dxi

+ cos θC
∑
P∈ISA

dSP
dxi

)
(32)

where the derivatives are computed according to (26) and (27).
In FVPM, this force is added to the right hand side of the
momentum component of the conservation equations (3).

V. APPLICATIONS

A. Levitating cubic drop
The first expected effect of surface tension is minimizing

the surface energy, and hence produce spherical drops in
the absence of gravity. However, when cohesion forces are
used to model surface tension, spherical drops do not always
turn into spheres [16]. Akinci et al. [16] argue that cohesion
forces alone cannot reproduce the macroscopic surface tension
behavior and an extra force is necessary to enforce surface area
minimization.

With our model, a single force, based on macroscopic
surface tension, enables proper prediction of drop shape, as
illustrated in figure 2. Indeed, unlike the cohesion models, our
surface tension force is derived from macroscopic consider-
ations. The resulting force acts as a cohesion force since, if
ri = rj , F STji is aligned with nij . However, the summation
over the neighbors indirectly computes the curvature, and the
resulting surface tension force also minimizes the surface area
and provides the expected pressure difference between the
drop and the atmosphere.

B. Wetting effects
Next, a spherical drop impacts a horizontal plane with two

different wetting conditions.
We first consider a hydrophobic plane with equilibrium

contact angle θC = 140◦ (Figure 3). The surface tension force
on particle i can be expressed as

F STi = −0.072
dSLA

dxi
+ 0.055

dSSA

dxi
. (33)
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Fig. 2. Cubic drop (left) evolving into a spherical drop (right) under the action
of surface tension γ = 0.072N/m. The particles of radius ri = 0.183mm are
initially randomly distributed in a cube of width 2.75mm. The particles are
colored according to their pressure and an arrow, sized and colored according
to the gradient of the free surface area, is also represented for each particle.
The radius of the final drop is 1.73mm, which according to the Young-Laplace
equation, would result in a pressure jump of 83 Pa.

Fig. 3. Spherical water drop of radius 1.2mm falling onto a hydrophobic
plane, 1.2ms (left) and 100ms (right) after impact. Arrows, sized and colored
according to the gradient of the liquid-air interface area (left) and solid-air
interface area (right) are represented for each particle.

As the drop hits the plane, the force due to the liquid-air
interface points inwards, in order to minimize the liquid-air
surface area. The force due to the solid-air interface also points
inward, in order to minimize the liquid-solid interface, or
maximize the solid-air interface. At equilibrium, the resulting
drop is mostly spherical, with a small surface contact between
the drop and the plane; a configuration in which the horizontal
component of both forces cancel.

When a hydrophilic plane is used, with contact angle θC =
40◦ (Figure 4), the surface tension force on particle i can be
expressed as

F STi = −0.072
dSLA

dxi
− 0.055

dSSA

dxi
. (34)

Fig. 4. Spherical water drop of radius 1.2mm falling onto a hydrophilic
plane, 1.2ms (left) and 100ms (right) after impact. Arrows, sized and colored
according to the gradient of the liquid-air interface area (left) and solid-air
interface area (right) are represented for each particle.

As the drop hits the plane, the force due to the liquid-air
interface points inwards, in order to minimize the liquid-air
surface area. However, the force due to the solid-air interface
points outward, in order to maximize the liquid-solid interface,
or minimize the solid-air interface. At equilibrium, the water
is spread in a thin sheet on the plane; a configuration in which
the horizontal component of both forces cancel.

VI. CONCLUSION

The Finite Volume Particle Method is an attractive method
for the computation of fluid flow problems including complex
moving boundaries due to its consistency, conservative and
ALE properties. However, directionality and hard interaction
of the cubic-supported kernels can badly affect the accuracy
and stability of the computations. Employing a spherical-
supported top-hat kernel can alleviate these issues but requires
a precise and fast algorithm for computing the spherical
interaction vectors.

In this paper, we have presented a surface partitioning
algorithm that can handle any type of geometries formed on
a sphere after being intersected by other spheres. Then, we
have proposed a method to exactly evaluate the area vector of
the partitions. These values are used for exact computation of
the interaction vectors and analytic evaluation of surface area
gradients.

We have then presented an innovative surface tension model
for particle methods with spherical support. The method uses
symmetrical particle-particle interaction but, unlike micro-
scopic cohesion-based models, the method is derived from
macroscopic considerations. The inputs to the model are
surface tension and equilibrium contact angle, and the force
is computed at little cost using the surface area gradients
evaluated during the partitioning process. We have shown
through simulations of drops in various configurations that the
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proposed method properly reproduces the physics of surface
tension regardless of the wetting conditions.
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