
Placement of Virtual Containers on NUMA systems: A Practical and
Comprehensive Model

Justin Funston∗, Maxime Lorrillere∗, Alexandra Fedorova∗, Baptiste Lepers†,
David Vengerov‡, Jean-Pierre Lozi‡, Vivien Quéma§

∗University of British Columbia, †EPFL, ‡Oracle Labs, §IMAG

Abstract

Our work addresses the problem of placement of threads,
or virtual cores, onto physical cores in a multicore
NUMA system. Different placements result in varying
degrees of contention for shared resources, so choosing
the right placement can have a large effect on perfor-
mance. Prior work has studied this problem, but either
addressed hardware with specific properties, leaving us
unable to generalize the models to other systems, or mod-
eled much simpler effects than the actual performance in
different placements.

Our contribution is a general framework for reasoning
about workload placement on machines with shared re-
sources. It enables us to build an accurate performance
model for any machine with a hierarchy of known shared
resources automatically, with only minimal input from
the user. Using our methodology, data center operators
can minimize the number of NUMA (CPU+memory)
nodes allocated for an application or a service, while en-
suring that it meets performance objectives.

1 Introduction

We address the problem of placing a virtual container on
a multicore NUMA system. Hardware resources allo-
cated to a container determine how well it performs and
how much energy it consumes. Roughly speaking, there
are two decisions affecting which hardware resources are
allocated to a container. First, the user decides how many
cores, memory and perhaps other resources the container
requires. Second, the system software decides, when
launching the container, how to map the container’s vir-
tual cores onto physical cores. Our work proposes a so-
lution for automatically making this second decision.

The placement of virtual cores onto physical cores can
have a large and unpredictable effect on performance.
Consider the following experiment, where we use Mon-
goDB’s WiredTiger key-value store [3] running a B-tree

1 node 2 nodes 4 nodes0

50
0

10
00

15
00

20
00

Op
er

at
io

ns
/s

 (x
10

00
) SMT

no-SMT

(a) WiredTiger, Intel

2 nodes 4 nodes 8 nodes0

20
0

40
0

60
0

Op
er

at
io

ns
/s

 (x
10

00
) SMT

no-SMT

(b) WiredTiger, AMD

Figure 1: Throughput of the WiredTiger key-value store
on two NUMA systems.

search using 16 threads. We run this application in a lxc
container on an Intel NUMA system and on an AMD
NUMA system (Fig. 2 provides their overview). Sup-
pose our goal is to maximize the throughput. How should
we place this container? Assuming that each virtual core
gets its own physical core, how do we place virtual cores
onto NUMA nodes? Do we squeeze them onto as few
nodes as possible?, do we spread them evenly across all
nodes?, or do we use a middle ground?

As Fig. 1 shows the right answer can vary greatly from
one system to the next. On the Intel system, the applica-
tion performs significantly better when all of its threads
run on a single node. On the AMD system, four nodes
are better than two, only if we do not use SMT, but using
eight nodes does not buy you better performance1.

There is a number of factors responsible for this dis-
similar behaviour. When all threads are squeezed into
a single NUMA node, they experience more resource
sharing: on the Intel system they have no choice but to
share the SMT pipeline and the L3 cache. Resource shar-
ing can be contentious (where threads compete for cache
space and hardware queues [34]) or cooperative (where
threads pre-fetch data for each other [27]). Furthermore,
with all the threads running on a single NUMA node,

1A single-node configuration for AMD is not shown: we used 16
virtual cores, so we could not fit them onto a single node (with 8 cores)
while ensuring that each virtual core gets its own physical core.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211983354?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


cross-thread communication has a lower latency, because
it occurs via the L3 cache, as opposed to a slower cross-
chip interconnect. Apparently, the benefits of faster com-
munication and cooperative resource sharing outweigh
the cost of resource contention on the Intel system, but
not on the AMD system.

The best-performing placement for a container, there-
fore, is difficult to predict. The problem becomes even
harder if the goal is to not only pick the best-performing
placement, but to achieve a trade-off between the num-
ber of used nodes and performance. Our work proposes
a solution that works as follows:
Step 1: The user provides a simple abstract specification
of the shared resources present on the target hardware.
Identifying the right level of abstraction was key to be-
ing able to automatically construct models for different
target systems. The abstraction we propose in this work
is called scheduling concerns (§4).
Step 2: Using shared resource specification, our algo-
rithm generates, for a given container size, a list of im-
portant placements – placements that will likely yield
different performance on the target hardware2. This step
is crucial for automatically training a model: while the
total number of potential placements is measured in bil-
lions (making training infeasible), the number of impor-
tant placements is only a couple dozen. We introduce the
concept of important placements and propose the algo-
rithms for automatically generating them (§4).
Step 3: Using our script, the user trains a machine learn-
ing model for the target hardware and the target number
of vCPUs (§5). Unlike prior work, we do not rely on
hardware performance events (HPE) as model features.
Manual selection of the right HPEs puts too much bur-
den on the user. Automatic selection turned out to be im-
practical on modern machines with 1000s of HPEs. In-
stead, our model uses as inputs actual performance mea-
surements obtained in two different placements. This
approach makes our model-building methodology easier
to port across hardware, reduces the training time and
achieves higher accuracy, compared to using HPEs.
Step 4: The scheduler runs the virtual container in two
different placements, for a couple of seconds in each,
feeds their performance into the model and obtains a vec-
tor of predicted performance values in each important
placement. Using this vector, the system decides what
placement to use and remaps the virtual cores. Since the
container needs to run in two placements, its memory
may need to be migrated if these placements do not use
the same NUMA nodes. We improve on memory migra-
tion in Linux and evaluate its overhead in §7.

Our solution enables determining the best placement
for a specific virtual container, but not how to interleave

2§4 defines the important placement.

different containers on the same NUMA node. Some
data center operators we spoke to do not interleave con-
tainers, others do, so we leave that decision up to the
operator. Going back to the scenario in Fig.1, using our
tools the scheduling system can quickly decide that on
the Intel host it is sufficient to provide a single NUMA
node for the key-value store in order to maximize its
throughput. Then the remaining nodes can be used to
host other containers. We believe that our techniques can
be used to build scheduling systems that pack virtual con-
tainers onto physical hardware more efficiently.

Our main contribution is abstractions and methodol-
ogy for constructing accurate and portable models for
predicting performance of a container in various place-
ments on NUMA systems, regardless of what shared
resources are present. We evaluate it by automatically
generating performance models for two different hard-
ware systems and measuring their accuracy using cross-
validation (§6). We also present a use case demonstrating
how the model could be used in practice (§7).

2 Background and Related Work

Workload placement on multicore systems has been ex-
plored for over a decade. Early studies examined con-
tention between single-threaded applications for a spe-
cific resource, such as the SMT instruction pipeline [25,
14], or shared caches and memory controllers [34, 12,
21, 31]. Later work extended the techniques to multi-
threaded workloads and to additional resource combina-
tions, such as SMT and shared caches [33], memory con-
trollers and the shared interconnect [9, 18]. While laying
a crucial foundation for our work, these prior techniques
did not provide a general solution for reasoning about
such systems. For instance, while the work of Zhuravlev
et al. [34] showed us how to avoid interference for shared
memory controllers and the work of Lepers et al. [18]
showed us how to place applications on machines with
asymmetric interconnects, we still do not know how to
build a model that combines both concerns.

Techniques used in prior work did not allow for auto-
matic combination of several models. Every model re-
quired manual design: careful selection of hardware per-
formance events [34, 17, 18, 9, 12] or even manual craft-
ing of artificial “probe” workloads or “Rulers” [31, 33]
that must be run side-by-side with the target workloads
to determine their sensitivity to contention.

Dwyer used an automated model-building method-
ology, where automatically selected features (from all
HPEs available on the machine) were fed into a variety of
machine-learning models [11]. However, the model pre-
dicted a rather simple outcome: a performance degrada-
tion when a target workload was co-scheduled with an in-
terfering one, and not the performance in different place-



ments. Consistent with our finding that HPEs observed
in a single placement are poor model features, Dwyer’s
study reported rather poor prediction accuracy.

A recent system, Pandia [15] not only accurately pre-
dicts performance of different workload placements on
a multicore NUMA machine, but also predicts how an
application would perform with different numbers of
threads. Unforunately, to make predictions, Pandia re-
quires performance observations of six runs with dif-
ferent thread counts, which is difficult to do online be-
cause most real applications cannot easily reconfigure
their thread count on demand. Despite addressing many
limitations of previous work, fundamentally Pandia still
relies on the machine-specific modelling methodology
that prevents easily transferring results to other systems.
Pandia’s authors capture factors that contribute to perfor-
mance, such as cache contention, latency of communi-
cation, and load balancing, in a set of machine-specific
equations. If the model had to be adapted to another ma-
chine, the equations would have to be manually reformu-
lated.

We believe that investing that much effort into design-
ing new models for every new type of hardware puts an
unreasonable burden on system engineers. Instead, we
sought a future-proof methodology that uses easily avail-
able information about a machine’s shared resources and
automatically builds an accurate performance model.

There are two recent studies that address a different
problem, but use techniques that could be adopted in our
work. CherryPick [4] handles cloud configuration op-
tions, like CPU count, amount of RAM, disk speed, and
network speed, but not multicore resources. CherryPick
uses Bayesian optimization to minimize the number of
search configurations needed and achieves high accuracy
despite the non-linearity of performance. The Bayesian
optimization approach could potentially work well with
our goal and resources, and is a possible avenue of fu-
ture work. PARIS [30] is similar to CherryPick in that it
handles the same type of resources and its goal is to help
cloud customers choose the correct cloud configuration.
It does not abstract or handle multi-core resources.

3 Assumptions and Limitations

Identically scored placements yield identical perfor-
mance. As we explain in §4, a placement is identified
by the degree of sharing for each hardware resource, to
which we refer as the score. A vector of scores identi-
fies a placement. Placements with identical score vectors
are deemed to yield identical performance for a given
workload. This assumes that our machine model must
be informed about all shared resources that might affect
performance. Most solutions in this space also assume
awareness of all shared resources. A radically different

approach would be a statistical technique that searches
for an optimally performing placement by trying a suffi-
cient number of random placements [23]. Unfortunately,
the best known techniques require trying thousands of
placements and assume that performance in all place-
ments fits a Generalized Pareto distribution — an as-
sumption that does not hold in our case.

A workload is encapsulated in a virtual container.
Data centers use virtualization for a variety of reasons,
so this assumption dovetails with our target environment.
Managed cloud environments present their offerings as
a menu of virtual instances with a fixed number of vC-
PUs per instance (see [1], for example). As a result, we
can feasibly train a separate model for each type of hard-
ware and each vCPU count; we do not have to incor-
porate the effects of varying number of threads into the
model, which would make it more complicated. We are
not addressing the problem of finding the optimal num-
ber of threads or vCPUs for the workload; for that, users
can resort to other tools [15, 26].

A NUMA node is a unit of resource allocation. Our
solution predicts the performance of a container in all
important placements, provided that the target container
does not share NUMA nodes with other containers. Un-
used NUMA nodes can be safely used to run other con-
tainers without interference as long as those nodes do not
share the interconnect – a condition that can be automati-
cally checked using the machine specification3. Suppose
that the “best” number of NUMA nodes chosen for a con-
tainer gives us more physical cores than the container
needs. Then the remaining cores would be left idle if no
other containers used them. Some data center operators
find this acceptable, reasoning that the cost of leaving
cores idle is negligible relative to missing performance
targets; others contend that maximizing the utilization of
physical cores is very important. Our solution does not
dictate the decision. If the operator chose to interleave
containers on NUMA nodes, our modeling techniques
would need to be extended to provide performance pre-
dictions under interleaving. Another alternative would
be to only interleave with “safe” containers, e.g., those
with low CPU utilization or otherwise known to cause
negligible interference. We leave the exploration of these
scenarios to future work.

We consider only balanced placements. A balanced
placement is one where the number of vCPUs is evenly
divisible by any number of shared resource units consid-
ered for placement. For instance, if we have shared L3
caches on the system, we will only consider placements
where the number of vCPUs sharing each L3 cache is
equal. Uneven sharing can cause unpredictable perfor-
mance effects on the workload, for example by creating

3Experimental results confirming this statement are available [13].



stragglers, so we choose to not model these effects.

4 Abstract machine model

A major obstacle to a solution to the placement prob-
lem is the sheer number of possible placements. For 16
virtual cores on a 64 core system, the number of possi-
ble placements is the combinations of 16 objects chosen
from a set of 64, which is on the order of 1014. It is es-
sential to exploit the symmetry in the system to reduce
the number of placements to a manageable number. By
this we mean that for most types of shared resources it
does not matter which shared resources are being used
but how much of the shared resources is available to the
workload. For instance, for the workload in Fig. 1 on the
AMD system, it does not matter which L3 cache it uses,
all that matters is whether it has two, four or eight L3
caches at its disposal.4

We tackle this with the concept of scheduling con-
cerns. A single scheduling concern is responsible for
a single hardware resource, or an inseparable set of
hardware resources that affect the performance of vCPU
placements. The primary purpose of a scheduling con-
cern is to provide a numerical score when given a vCPU
placement. The score represents the static utilization
of the particular resource, meaning that it only depends
on the vCPU placement, not the dynamic behavior of a
workload. A simple example is an “L2 cache” resource.
If in a given placement all the virtual cores share a single
L2 cache, the score for the L2 cache scheduling concern
will be equal to one. If in another placement the cores
are spread over two L2 caches, the score will be equal to
two, and so on. So, two placements might use completely
different NUMA nodes and physical cores, but if they
use the same number of L2 caches then they will both
have the same L2 cache score. From the vantage point of
the L2 cache, these placements will be identical in terms
of performance. For non-symmetrical resources, such as
the cross-chip interconnect on some systems, instead of
counting how many links are used by a placement in or-
der to obtain the score, we would add up the total avail-
able bandwidth of all links used by a placement. A vector
of numeric scores for all scheduling concerns uniquely
identifies each placement that is distinct with respect to
sharing of resources. Placements with identical vectors
are deemed identical with respect to resource sharing, so
we can discard the duplicates when training our model.
By considering only the placements with distinct score
vectors, we substantially reduce the space of relevant
placements and make the problem tractable.

4The exception is asymmetric resources, for instance if one NUMA
node is positioned closer to the system NIC than others; our model
allows caputring this asymmetry.

There are two additional pieces of information a
scheduling concern needs in order to identify the im-
portant placements. The first is whether the concern’s
score is proportional to the user’s cost, which is the case
for resources like NUMA nodes because fewer nodes
(lower score) means more containers can be packed onto
a system. If a lower score for a resource only meant
worse performance, we could simply discard placements
with a lower score for that resource (all other scores be-
ing equal) from our list of important placements. But
since we want users to be able to make cost-performance
trade-offs, placements with lower scores but potentially
lower cost could still be relevant. The second piece of
information needed by a scheduling concern is whether
the resource encompassed by a concern can ever have
an inverse relationship with performance. For some re-
sources, like the L2 cache, a higher score is usually bet-
ter, but for some workloads such as those showing co-
operative cache sharing, a smaller score (using fewer L2
caches) may actually improve performance. For other re-
sources, like the shared interconnect described below, a
lower score will never improve performance and would
not result in a lower cost for the user, so we can safely ig-
nore placements with lower scores when all else is equal.

In practice, a single scheduling concern may cover
multiple shared resources because some resources are
inseparable with respect to thread placement. Threads
sharing a physical core via SMT typically share a cache,
the instruction front-end, and functional units. In cases
like this, a single scheduling concern is still sufficient.

Our AMD system (Fig. 2) has multiple NUMA nodes,
an asymmetric interconnect, and a form of SMT. For this
system we developed the scheduling concerns shown in
Table 1. For the L2/SMT and L3 concerns, the score for
a particular placement can be calculated directly from in-
formation provided by the operating system. The OS also
provides information on the interconnect topology, but it
is simpler and more accurate to measure the aggregate
bandwidth with a benchmark (e.g. stream [20]) for each
possible combination of nodes.

For example, for a 16-vCPU container in an eight-
node placement without SMT the score vector for the
AMD system is [16, 8, 35000], because this placement
uses 16 L2 caches (16 hardware threads, one per cache),
eight L3 caches (8 nodes) and has an IC bandwidth of
35GB/s. For the same placement, but with SMT, the
score vector would be [8, 8, 35000], because on each
node two hardware threads would be collocated on the
same L2 cache, so we would use half the L2 caches than
in the case without SMT.

Each concern is relatively easy to implement, and can
be developed independently. Since it does not require
a performance expert, we envision the specification of
concerns being provided as part of system BIOS. Over-



(a) AMD Opteron 6272 node

Node 0

Node 6

Node 5

Node 3

Node 4

Node 2

Node 1

Node 7

(b) AMD interconnect (c) Intel Xeon E7-4830 v3 node

Figure 2: The two systems used in our study. The first is a quad AMD Opteron 6272. It has eight NUMA nodes
(schematically shown in Figure 2a) connected with an asymmetric interconnect (Figure 2b) and a total of 64 cores.
Pairs of cores share the instruction front-end, L2 cache, and floating point units. The second system is a quad Intel
Xeon E7-4830 v3 with four NUMA nodes (Figure 2c) and 96 hardware threads (12 physical cores per node with
SMT). The interconnect (not shown) is symmetric.

Concern Score Resources Cost? Inverse Perf Possible?

L2/SMT Number of L2 caches in use
L2 cache, instruction fetch
and decode, and floating point
units

Y Y

L3 Number of L3 caches in use L3 cache, memory controller,
and bandwidth to DRAM Y Y

Interconnect
Aggregate bandwidth between
nodes in use Interconnect bandwidth N N

Table 1: Scheduling concerns used on our AMD test system (shown in Figure 2).

all, we found scheduling concerns to be a powerful ab-
straction that enables encoding shared resources on a
variety of hardware and makes the model easy to port
to new hardware.

Next, from the concerns and hardware topology we
need to derive the important placements. An important
placement must have a score that ensures it satisfies three
properties: (1) conform to our balanced assumption, (2)
be feasible: i.e., not assign more than one vCPU to a
single hardware thread, and (3) not be superseded by a
strictly better placement.

Given a score s and the number of vCPUs v, the bal-
ance property is encoded as v mod s = 0, and the feasi-
bility property is encoded as v/s ≤Capacity, where ca-
pacity is the number of hardware threads available in a
single instance of the resource if applicable: e.g. there
are eight hardware threads per L3 cache on our AMD
test system. We also define the Count of a concern as
the total number of that resource on the system, so our
AMD test system has an L2Count of 32 for example. The
first step in generating important placements is generat-
ing the possible scores that satisfy the balance and fea-
sibility requirements individually. This is done for each
scheduling concern that can affect cost or have an inverse
relationship with performance. For our AMD test system
this step is shown in Algorithm 1.

Now that we have all balanced and feasible place-
ments, and before filtering the duplicates, we need to
enumerate all possible placements whose performance
the scheduler might want to predict if more than one
container were running on the system. For example,
suppose that after placing one container onto two nodes
on the system, the scheduler might want to place other
containers on the remaining nodes, so it should be able
to predict the performance on any combination of those
nodes. Therefore, we must keep track of possible place-
ments on those remaining nodes in order to properly train
the model. The packings are generated with a recursive
method shown in Algorithm 2. On our AMD system,
we use the L3 scores because the L3 scheduling concern
corresponds to NUMA nodes, and NUMA nodes are our
unit of resource allocation (see §3).

Next, as shown in Algorithm 3, packings that are du-
plicates and packings that are not Pareto-efficient with
respect to the interconnect score are filtered out (since
the interconnect concern does not affect cost and cannot
have an inverse relationship with performance). Because
the L2 and L3 scores can affect cost or have an inverse re-
lationship with performance, placements are not filtered
based on them.

As an example of a Pareto-efficient packing, on our
AMD system we need to keep the 4-node placement that



Algorithm 1 Generating possible L2 and L3 scores
L3Scores = List()
for i← 1,L3Count do

if v/i≤ L3Capacity∧ v mod i = 0 then
L3Scores.append(i)

end if
end for
L2Scores = List()
for i← 1,L2Count do

if v/i≤ L2Capacity∧ v mod i = 0 then
L2Scores.append(i)

end if
end for
return L3Scores, L2Scores

Algorithm 2 Generating packings of placements
Packings = List()
procedure GENPACK(L3Scores, NodesLeft, Current)

for all L3S in L3Scores do
if L3S > len(NodesLeft) then

continue
end if
for all n in Combinations(NodesLeft, L3S) do

Remaining = NodesLeft - n
NewPacking = Current.append(n)
if len(Remaining) > 0 then

GenPack(L3Scores, Remaining,
NewPacking)

else
Packings.append(NewPacking)

end if
end for

end for
end procedure
return Packings

uses nodes {2,3,4,5} because it is the 4-node placement
with the highest interconnect score. Therefore the place-
ment using nodes {0,1,6,7} is also an important place-
ment and will be kept because it is the placement that
can be packed with the best 4-node placement. Contin-
uing, suppose that we consider a 4-node placement that
uses nodes {0,1,4,5}. If we were to use this placement
at runtime, the remaining set of four nodes, potentially
used for another workload, is {2,3,6,7}. Both of these
placements have poor interconnect scores, in part be-
cause there is a two-hop distance between nodes {0,5}
and nodes {3,6}. Instead, we can pack the machine with
a better combination of 4-node placements: {0,2,4,6}
and {1,3,5,7}. Using this observation, the vectors for
placements {0,2,4,6} and {1,3,5,7} will be kept over
the worse pair of 4-node placements.

Algorithm 3 Generating important placements
Nodes = range(0, L3Count)
Packings = GenPack(L3Scores, Nodes, List())
Remove duplicates from Packings
for all (a,b) in Permutations(Packings, 2) do

if L3 Scores in a 6= L3 Scores in b then
continue

end if
aIC = Sorted interconnect scores of a placements
bIC = Sorted interconnect scores of b placements
ToRemove = True
for i in range(0, len(aIC)) do

if aIC[i]> bIC[i] then
ToRemove = False

end if
end for
if ToRemove then

Remove a from Packings
end if

end for
ImportantPlacements = List()
for all Placements p in Packings do

n← L2Count/L3Count
L3S = L3 Score of p
for all L2S in L2Scores do

if n ·L3S≥ L2S then
ImportantPlacements.append(p)

end if
end for

end for
return ImportantPlacements

After this process is complete, we are left with the im-
portant placements. For our AMD system we have 13
of them: two 8-node placements (one sharing L2 caches
and one not), three 2-node placements (with the best and
second-best interconnect score, and one placement used
to pack when specific 4-node placements are used), and
eight 4-node placements (half sharing L2 caches, half
not, and various interconnect scores relevant for pack-
ing). Our Intel test system (Fig. 2), on the other hand,
only uses an L2/SMT concern and an L3 concern. With
24 virtual cores per container, it has seven important
placements which are all of the placements that satisfy
the balance and feasibility constraints: a one node place-
ment sharing L2 caches, two 2-node placements, two 3-
node placements, and two 4-node placements.

5 Performance Predictions

Automatic model-building techniques learn how to map
a set of features describing data to a predicted outcome.



The outcome we would like to model is a vector of per-
formance values in all important placements, relative to
a baseline placement. For example, if there are three
important placements, and the performance in the sec-
ond and third is 20% and 30% better than that in the
first baseline placement, the performance vector will be:
[1.0,0.8,0.7]. Our data elements are executions of work-
loads in different placements, and the features are some
metrics describing the execution.

Model-building methodology and feature selection.
To build a model, we use a multi-output Random For-
est regressor (RF). RF is a machine learning technique
known for its ability to learn non-linear functions with
very little or no tuning. More complex techniques, like
deep neural networks, can yield slightly higher accuracy,
but require substantial tuning and are prone to overfitting,
especially if not given the “right” features.

Any modelling technique requires predictive input fea-
tures. Feature selection turned out to be a challenge. In
the past, to model performance on multicore systems, re-
searchers used hardware performance events as inputs to
the model. In most cases, the HPEs were selected man-
ually5, which required substantial insight into the intri-
cacies of hardware architecture and its effects on soft-
ware. Our goal was to make model training automatic,
so manual HPE selection was not an option. Automatic
selection, on the other hand, turned out to be impractical.

Modern machines have many hundreds of HPEs, some
more than 1000 [32]. Automatic feature selection would
measure all HPEs during training and use feature selec-
tion to identify the best predictors. Only four HPEs can
be measured at a time, because there is usually only four
hardware counter registers, so measuring all the HPEs
for the entire training set can take weeks (66 days on our
Intel machine), even if we use sampling.

In an effort to find an acceptable compromise, we first
used a combination of the manual and automatic ap-
proaches. We started with a set of plausible features (41
HPEs on the Intel test system and 25 the AMD) cov-
ering cache, memory, TLB, interconnect, and pipeline
behaviour, which are metrics commonly used in sim-
ilar work. We then used Sequential Forward Selec-
tion [10, 16] (SFS) to pick the best ones. The final RF
model would take a vector of selected HPEs observed in
a single baseline placement as the input and produce the
performance vector as the output. Even after this rigor-
ous feature selection process, we were not happy with
the accuracy (see §6).

Finally, we designed a solution that is more robust, re-
quires little training time, and is largely automatic. In-
stead of relying on HPEs describing various architec-

5Dwyer’s [11] and Zellweger’s [32] works are the only exceptions
known to us.

tural events, we rely on observations of actual perfor-
mance in two different configurations from the set of im-
portant placements. Performance can be measured using
instructions per cycle (IPC), transactions per second, or
any other application-specific metric – the only require-
ment is that it must be possible to obtain this metric on-
line. Specifying the performance metric for a container
is the only manual part of the process. Beyond that, the
training process automatically finds the two of the im-
portant placements that give the highest accuracy when
used as inputs to the model. The final model takes as
inputs the performance observations in these two place-
ments and outputs the predicted performance vector. A
separate model is trained for each number of vCPUs used
in virtual containers.

The downside of this approach is that at runtime we
have to run the container in two placements instead of
one before obtaining the predictions, but the advantage
is that the predictions are more accurate and we do not
have to use the time-consuming feature selection process
for each new target hardware.

Figure 3: Performance relative to the baseline placement
(#2) for workloads in two example clusters on Intel.

Why do performance observations have good predic-
tive ability? Empirical evidence suggests that workloads
naturally fall into several categories, according to the
shapes of their performance vectors. Figure 3 shows two
example categories on the Intel system. As we can see,
the vectors within the category are almost identical, but
the vectors in different categories are very distinct.

To generate these categories we used k-means cluster-
ing. To automatically determine the best value for k, we
select the k that maximizes the average Silhouette coef-
ficient [24, 2] over all data points, which is the standard
practice in the field. This clustering method produced
six categories on our systems (full results are reported
in [13]). This suggests that workloads may naturally
form distinct categories depending on their performance
trends. For example, workloads that are not memory in-
tensive and are not adversely affected by sharing SMT
contexts could belong to the same category (where thread
placement does not matter). Another category could be
one where using fewer NUMA nodes and fewer phys-
ical cores greatly hurts performance, and so on. Then
there is no surprise that a ML model could quickly nar-
row down the category, and hence the shape of the per-



formance vector, from two observations of performance.

6 Evaluation

In this section we focus on evaluating the accuracy of
predictions. Since our training method does not require
automatic feature selection, training the model takes sec-
onds. The algorithms used to determine important place-
ments also run in a matter of seconds. The inference time
is negligible (milliseconds).

We had three model variants to compare: the first
one used as inputs the actual performance measurements
observed in two important placements, the second used
only the HPEs observed in a single placement, the third
used both. The third variant did not improve accuracy
over the first one, so we do not include the data for it.

The set of applications we experimented with are
drawn from the NAS Parallel Benchmark suite [6], Par-
sec suite [7], the Metis map-reduce benchmarks [19], and
BLAST [5]. Also included are the Linux kernel compile
gcc benchmark, two Spark graph workloads, TPC-C [28]
and TPC-H [29] on Postgres and a WiredTiger [3] BTree
benchmark. Workloads were run using lxc containers
and configured to use 16 vCPUs on the AMD system
and 24 vCPUs on the Intel system (Fig. 2). Within con-
tainers, the number of application threads is set so as to
achieve >70% CPU utilization on each core, typical of
what is done in practice.

Figure 4 show the actual and predicted performance
for each workload for important placements on the AMD
and Intel systems. The x-axis shows the IDs of the im-
portant placements, numbered 1–13 on the AMD sys-
tem and 1–7 on the Intel system. The y-axis shows the
performance in the placements relative to the baseline.
Placement #1 was used as the baseline for the AMD sys-
tem, and placement #2 for the Intel system – the baseline
placement can be any of the two placements whose per-
formance is required as the input to the model.

The results are per-application cross-validated. For
example, when training the model that will be used for
predicting a Spark workload neither the data from spark-
cc (a Spark connected components algorithm run on the
LiveJournal database) nor spark-pr-lj (a PageRank al-
gorithm run on the LiveJournal database) is included in
the training. We cross-validated every workload, but for
space constraints we omit the results for most of the NAS
and Parsec benchmarks. They are qualitatively similar to
others and we are happy to provide them upon request.

Overall the accuracy when using only the actual per-
formance measurements as model features is high. The
predicted performance is within 4.4% of actual on av-
erage on the AMD system, and within 6.6% on Intel.
A couple of exceptions are the cases where the train-
ing set did not include any workloads that behaved simi-

larly to the predicted benchmark, for example kmeans on
the AMD system, which was the only benchmark in our
training set that preferred SMT, or canneal on Intel.

Prediction accuracy when using only the HPEs from
a single placement was a lot less reliable. On the AMD
system it produced good results overall, but the accuracy
was still noticeably worse compared to the model vari-
ant that relied only on actual performance measurement.
On Intel the model relying only on HPEs produced many
poor predictions. It completely missed the performance
trend for ft.C and freqmine, produced errors of over 40%
for kmeans and WTbtree, and is noticeably worse for sev-
eral other workloads.

An example of why HPEs observed in a single place-
ment could have poor predictive power, and one of the
reasons why the Intel system produced worse predic-
tions, is predicting the effect of inter-thread communica-
tion latency. There is a huge latency difference for com-
munication between a single-node placement and place-
ments including more than one node. For some applica-
tions, reduced inter-thread communication latency when
all threads are running on a single node has a major per-
formance impact, as is the case for WTbtree. Separating
the sensitivity to latency from overall memory intensive-
ness (which can be measured by the cache miss rate) is
difficult to do with HPEs. Similarly, it is also very dif-
ficult to determine if a workload’s working set will fit in
a given number of L3 caches by only measuring HPEs
on a single placement. We conclude that using actual
performance observations as model features is likely to
produce higher accuracy, in addition to being a more
practical method of training the model, than using se-
lected architectural events.

7 Using the model in practice

There are many ways in which data center operators can
use our model. To illustrate one potential use case we
set up a scenario, where the user would like to pack as
many instances of a given virtual container into a phys-
ical server while respecting a performance target. For
demonstration of the complete solution we implemented
its prototype (covering steps 1-4 in §1). To assess the
overheads, we measure the costs of container migration.

We use virtual containers of three types: WiredTiger
running a B-tree search workload, Postgres running
TPC-H, and Spark running PageRank on a LiveJournal
database. For clarity, we present the results of homoge-
neous configurations, where many containers of the same
type are packed into each system. Performance results
with our model in heterogeneous configurations can be
inferred from these figures, because different containers
collocated on the same system do not interfere with our
approach. Actual data can be provided upon request.



Actual Predicted: Perf Measurements Predicted: HPE

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

2 4 6 8 10 12

BLAST/AMD

0.8

1

1.2

2 4 6 8 10 12

canneal/AMD

0.8

1

1.2

2 4 6 8 10 12

fluidanimate/AMD

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

1 2 3 4 5 6 7

BLAST/Intel

0.8

1

1.2

1 2 3 4 5 6 7

canneal/Intel

0.8

1

1.2

1 2 3 4 5 6 7

fluidanimate/Intel

Placement #

Placement # Placement # Placement #

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

2 4 6 8 10 12

freqmine/AMD

0.8

1

1.2

2 4 6 8 10 12

gcc/AMD

0.8

1

1.2

2 4 6 8 10 12

kmeans/AMD

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

1 2 3 4 5 6 7

freqmine/Intel

0.8

1

1.2

1 2 3 4 5 6 7

gcc/Intel

71 2 3 4 5 6

kmeans/Intel

0.6

1

1.4

Placement #

Placement # Placement # Placement #

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

2 4 6 8 10 12

pca/AMD

0.8

1

1.2

2 4 6 8 10 12

postgres-tpch/AMD

0.8

1

1.2

2 4 6 8 10 12

postgres-tpcc/AMD

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

1 2 3 4 5 6 7

pca/Intel

0.8

1

1.2

1 2 3 4 5 6 7

postgres-tpch/Intel

0.8

1

1.2

1 2 3 4 5 6 7

postgres-tpcc/Intel

Placement #

Placement # Placement # Placement #

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

2 4 6 8 10 12

spark-cc/AMD

0.8

1

1.2

2 4 6 8 10 12

spark-pr-lj/AMD

0.0

0.4

1

2 4 6 8 10 12

streamcluster/AMD

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

1 2 3 4 5 6 7

spark-cc/Intel

0.8

1

1.2

1 2 3 4 5 6 7

spark-pr-lj/Intel

0.8

1

1.2

1 2 4 7

streamcluster/Intel

Placement #

Placement # Placement # Placement #

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

2 4 6 8 10 12

swaptions/AMD

0.6

0.8

1

2 4 6 8 10 12

ft.C/AMD

0.6

0.8

1

2 4 6 8 10 12

dc.B/AMD

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

1 2 3 4 5 6 7

swaptions/Intel

1 2 3 4 5 6 7

ft.C/Intel

0.6

1

1.4

0.8

1

1.2

1 2 3 4 5 6 7

dc.B/Intel

Placement #

Placement # Placement # Placement #

R
e
la

ti
v
e
 p

e
rf

.

0.8

1

1.2

2 4 6 8 10 12

wc/AMD

0.8

1

1.2

2 4 6 8 10 12

wr/AMD

0.8

1

1.2

2 4 6 8 10 12

WTbtree/AMD

R
e
la

ti
v
e
 p

e
rf

.

1 2 3 4 5 6 7
0.6

0.8

1

1.2
wc/Intel

0.8

1

1.2

1 2 3 4 5 6 7

wr/Intel

1 2 3 4 5 6 7

WTbtree/Intel

0.6

1

1.4

Placement #

Placement # Placement # Placement #

Figure 4: Accuracy of predictions.



ML Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4
Performance goal

90%

100%

110%

0

10

20

30

40

b
a
rs

: 
in

st
a
n
ce

s/
m

a
ch

in
e

: 
%

 o
f 

v
io

la
ti

o
n
s

(a) WiredTiger/AMD

ML Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4
Performance goal

90%

100%

110%

0

3

6

9

12

b
a
rs

: 
in

st
a
n
ce

s/
m

a
ch

in
e

: 
%

 o
f 

v
io

la
ti

o
n
s

(b) Postgres(TPC-H)/AMD

ML Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4
Performance goal

90%

100%

110%

0

6

12

18

24

b
a
rs

: 
in

st
a
n
ce

s/
m

a
ch

in
e

: 
%

 o
f 

v
io

la
ti

o
n
s

(c) Spark(PageRank)/AMD

ML Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4
Performance goal

90%

100%

110%

0

5

10

15

20

b
a
rs

: 
in

st
a
n
ce

s/
m

a
ch

in
e

: 
%

 o
f 

v
io

la
ti

o
n
s

(d) WiredTiger/Intel

ML Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4
Performance goal

90%

100%

110%

0

4

8

12

16

b
a
rs

: 
in

st
a
n
ce

s/
m

a
ch

in
e

: 
%

 o
f 

v
io

la
ti

o
n
s

(e) Postgres(TPC-H)/Intel

ML Conservative Aggressive Aggressive
(Smart)

0

1

2

3

4
Performance goal

90%

100%

110%

0

10

20

30

40

b
a
rs

: 
in

st
a
n
ce

s/
m

a
ch

in
e

: 
%

 o
f 

v
io

la
ti

o
n
s

(f) Spark(PageRank)/Intel

Figure 5: Instances per machine (left y-axis, higher is better) and % performance goal violation (right y-axis, lower is
better).

The performance goal can be specified in terms of an
application-level metric such as transactions per second
or a generic metric such as instructions-per-cycle. The
placement policy is agnostic to the metric used and only
requires that the application make this metric available at
runtime. For simplicity, we set the performance goals to
correspond to 90%, 100% and 110% of the performance
observed in the baseline placement.

We compare four hypothetical container placement
policies. The first policy, referred to as ML, is based on
our techniques. It decides how many nodes to allocate to
the container based on performance observations in two
placements and the model presented in the previous sec-
tion. It runs the workload in two placements during the
first few seconds of the execution without interrupting
the workload, and then migrates it into the best predicted
placement. To separate various aspects of performance,
the results shown here do not include the migration over-
head; it is studied separately in the next section. The sec-
ond policy, Conservative, is a naı̈ve policy that allocates
the entire machine to each instance, allowing only one
instance per machine. The third policy, Aggressive, is
another simple policy that fills the system with as many
instances as possible, maximizing machine utilization at
the risk of performance violations. For example, our
AMD system allows up to four 16-core instances and our
Intel system up to four 24-core instances. Neither Con-
servative nor Aggressive pin vCPUs to cores, allowing
Linux to perform the mapping in the way it wishes, and
possibly creating unneeded contention. We also evaluate
a more sophisticated fourth policy, Smart-Aggressive.
This policy is similar to Aggressive, except each instance

is pinned to the best minimum set of nodes, which we de-
fine as having the highest interconnect bandwidth. This
policy requires an analysis of the interconnect topology
in order to find the correct set of nodes.

We could not make a fair comparison to any other
method presented in earlier work. As we explained in §2,
most earlier models targeted very different systems and
most did not predict performance vectors, so we could
not apply them directly.

We evaluate the policies by measuring how many in-
stances of the same workload they were able to pack per
machine (higher is better) and the degree of violation of
the performance goal as the percent of the target (lower is
better). All workloads were run using lxc containers and
configured to use 16 vCPUs on the AMD system and 24
vCPUs on the Intel system. Figure 5 show the results for
the three container types. The bars show the number of
instances packed (left y-axis), while the “stars” shows the
deviation from the target performance goal, expressed as
percentage (right y-axis).

The ML policy always meets the performance goal
while in most cases packing more instances per machine
than the conservative scheduler. The conservative policy
almost always packs fewer instances per machine than
ML, but also, surprisingly, may cause performance tar-
get violations, because Linux may map vCPUs unevenly
to shared resources, causing unnecessary contention.

The aggressive policy packs a maximum possible
number of containers per machine, at the cost of perfor-
mance target violations, up to 46% with WiredTiger on
AMD, and 43% with Spark on Intel. It is surprising that
even when the aggressive policy packs the same num-



ber of containers per machine as the model-based pol-
icy, it still often reports a higher violation percent. That
is because this policy allows virtual containers to share
NUMA nodes. Smart-aggressive addresses this short-
coming, but even that policy can cause performance vi-
olations (e.g., 20% for WiredTiger on AMD), because it
does not take into account all ways in which workload
placement might affect performance.

Memory migration overhead. Memory migration in
Linux is known to be inefficient [18]. Since we need
to measure the performance of workloads in two or three
configurations, fast memory migration is needed in that
phase to reduce overheads. Lepers et al. [18] propose a
method that freezes the application and migrates pages
with concurrent worker threads. We improve on this
by migrating the page cache and reducing locking over-
head. Table 2 shows migration times for the workloads
of §5. We observed similar results on the Intel system.
Note that page cache migration time is counted with our
method only since Default Linux doesn’t support it – and
yet, it can be a large part of migration overhead (93%
with BLAST, 75% with TPC-C and 62% on TPC-H). We
are able to migrate a large amount of memory in a few
seconds, usually one order of magnitude faster than De-
fault Linux (38× faster for Spark). Linux is especially
inefficient for workloads with many processes such as
TPC-C, since it has per-task overhead linked to updating
the cpuset at each migration.

A drawback of our method is that it requires freezing
the container during migration in order to reduce con-
tention on some critical kernel locks. It is therefore suit-
able for non-latency-sensitive workloads. For latency-
sensitive workloads, we have the option of not freezing
the container and to instead throttle the bandwidth given
to the migration process so as to reduce the impact on
the running application. Thus, the migration takes more
time but with a smaller impact on the running container.
Using this method, the overhead of migration for the
WiredTiger workload6 is between 3% and 6%, and the
migration takes 60 seconds. In comparison, Linux takes
43.8 seconds, has a overhead of 20% at best and com-
pletely freezes the applications for several seconds. It
also does not migrate the page cache.

Overall, we observe that the migration overhead is
proportional to the amount of memory used by the con-
tainer, except in cases with extremely high thread counts.
Using the container’s memory footprint, the user can es-
timate whether the migration cost warrants an online de-
ployment of the placement algorithm, or if it is preferable
to use it offline for placement of recurring jobs.

6We picked WiredTiger for this evaluation since other the other
workloads we use don’t report the evolution of performance during the
execution.

Benchmark Memory
(GB)

Fast
Migration (s)

Default
Linux (s)

BLAST 18.5 3.0 5.9
canneal 1.1 0.3 3.9

fluidanimate 0.7 0.3 2.3
freqmine 1.3 0.3 4.2

gcc 1.4 0.3 2.8
kmeans 7.2 1.5 6.5

pca 12.0 2.8 10.0
postgres-tpch 26.8 5.8 117.1
postgres-tpcc 37.7 14.9 431.0

spark-cc 17.0 3.7 139.9
spark-pr-lj 17.1 3.8 137.0

streamcluster 0.1 0.1 0.4
swaptions 0.01 0.1 0.0

ft.C 5.0 1.3 19.4
dc.B 27.3 5.4 51.7

wc 15.4 3.4 19.5
wr 17.1 3.6 18.9

WTbtree 36.3 6.3 43.8

Table 2: Migration performance on the AMD system,
compared to the default Linux migration method. The
amount of memory includes processes’ memory and the
page cache associated with the container.

8 Conclusion

Modern multicore systems have a complex hierarchy of
shared resources and performance can vary wildly de-
pending on how virtual CPUs are mapped to hardware
contexts. Operators waste resources and money by us-
ing conservative and sub-optimal placement policies. We
have shown a solution to this problem using a methodol-
ogy to abstract a system’s shared resources, identify im-
portant placements, and predict their performance. Our
method can lead to very significant advantages in ma-
chine utilization while keeping performance guarantees.

CPU architecture is continually changing, often by
sharing resources between cores in new ways, in order
to continue scaling the core count. AMD’s newly intro-
duced Zen architecture [8] has L3 cache sharing separate
from sharing the memory controller. Intel’s Haswell-E
architecture has asymmetric links between NUMA nodes
through its cluster-on-die feature [22], which has unique
performance implications different from other asymmet-
ric architectures. The flexibility of our methods means
that they can be used on systems like these or future ar-
chitectures without significant retooling by an expert.

References
[1] Amazon EC2 Instance Types. https://aws.amazon.com/

https://aws.amazon.com/ec2/instance-types


ec2/instance-types.

[2] Selecting the number of clusters with silhouette analysis on
KMeans clustering. http://scikit-learn.org/stable/

auto_examples/cluster/plot_kmeans_silhouette_

analysis.html.

[3] The WiredTiger key-value store. http://www.wiredtiger.

com.

[4] ALIPOURFARD, O., LIU, H. H., CHEN, J., VENKATARAMAN,
S., YU, M., AND ZHANG, M. Cherrypick: Adaptively un-
earthing the best cloud configurations for big data analytics. In
14th USENIX Symposium on Networked Systems Design and Im-
plementation (NSDI 17) (Boston, MA, 2017), USENIX Associa-
tion, pp. 469–482.

[5] ALTSCHUL, S. F., GISH, W., MILLER, W., MYERS, E. W.,
AND LIPMAN, D. J. Basic local alignment search tool. Journal
of molecular biology 215, 3 (1990), 403–410.

[6] BAILEY, D. H., BARSZCZ, E., BARTON, J. T., BROWNING,
D. S., CARTER, R. L., DAGUM, L., FATOOHI, R. A., FRED-
ERICKSON, P. O., LASINSKI, T. A., SCHREIBER, R., SIMON,
H. D., VENKATAKRISHNAN, V., AND WEERATUNGA, S. The
Nas Parallel Benchmarks. IJHPCA 5, 3 (1991), 63–73.

[7] BIENIA, C., AND LI, K. Parsec 2.0: A new benchmark suite for
chip-multiprocessors. In Proceedings of the 5th Annual Workshop
on Modeling, Benchmarking and Simulation (2009).

[8] CLARK, M. A New, High Performance x86 Core Design from
AMD. In Hot Chips: A Symposium on High Performance Chips
(2016).

[9] DASHTI, M., FEDOROVA, A., FUNSTON, J., GAUD, F.,
LACHAIZE, R., LEPERS, B., QUEMA, V., AND ROTH, M. Traf-
fic management: A holistic approach to memory placement on
numa systems. SIGPLAN Not. 48, 4 (Mar. 2013), 381–394.

[10] DRAPER, N. R., AND SMITH, H. Applied regression analysis.
John Wiley & Sons, 1966.

[11] DWYER, T., FEDOROVA, A., BLAGODUROV, S., ROTH, M.,
GAUD, F., AND PEI, J. A practical method for estimating perfor-
mance degradation on multicore processors, and its application to
hpc workloads. In Proceedings of the International Conference
on High Performance Computing, Networking, Storage and Anal-
ysis (Los Alamitos, CA, USA, 2012), SC ’12, IEEE Computer
Society Press, pp. 83:1–83:11.

[12] FEDOROVA, A., SELTZER, M., AND SMITH, M. D. Improv-
ing performance isolation on chip multiprocessors via an operat-
ing system scheduler. In Proceedings of the 16th International
Conference on Parallel Architecture and Compilation Techniques
(Washington, DC, USA, 2007), PACT ’07, IEEE Computer Soci-
ety, pp. 25–38.

[13] FUNSTON, J. R. A model for thread and memory place-
ment on NUMA systems. PhD Dissertation, University of
British Columbia https://open.library.ubc.ca/cIRcle/

collections/ubctheses/24/items/1.0363032, 2018.

[14] FUNSTON, J. R., EL MAGHRAOUI, K., JANN, J., PATTNAIK,
P., AND FEDOROVA, A. An smt-selection metric to improve
multithreaded applications’ performance. In Proceedings of the
2012 IEEE 26th International Parallel and Distributed Process-
ing Symposium (Washington, DC, USA, 2012), IPDPS ’12, IEEE
Computer Society, pp. 1388–1399.

[15] GOODMAN, D., VARISTEAS, G., AND HARRIS, T. Pandia:
Comprehensive contention-sensitive thread placement. In Pro-
ceedings of the Twelfth European Conference on Computer Sys-
tems (New York, NY, USA, 2017), EuroSys ’17, ACM, pp. 254–
269.

[16] JOHN, G. H., KOHAVI, R., AND PFLEGER, K. Irrelevant
features and the subset selection problem. In Machine learn-
ing: proceedings of the eleventh international conference (1994),
pp. 121–129.

[17] KNAUERHASE, R., BRETT, P., HOHLT, B., LI, T., AND HAHN,
S. Using os observations to improve performance in multicore
systems. IEEE Micro 28, 3 (May 2008), 54–66.

[18] LEPERS, B., QUÉMA, V., AND FEDOROVA, A. Thread and
memory placement on numa systems: Asymmetry matters. In
Proceedings of the 2015 USENIX Conference on Usenix Annual
Technical Conference (Berkeley, CA, USA, 2015), USENIX ATC
’15, USENIX Association, pp. 277–289.

[19] MAO, Y., MORRIS, R., AND KAASHOEK, F. Optimizing
MapReduce for multicore architectures. Tech. rep., 2010.

[20] MCCALPIN, J. D. Memory bandwidth and machine balance in
current high performance computers. IEEE Computer Society
Technical Committee on Computer Architecture (TCCA) Newslet-
ter (Dec. 1995), 19–25.

[21] MERKEL, A., STOESS, J., AND BELLOSA, F. Resource-
conscious scheduling for energy efficiency on multicore proces-
sors. In Proceedings of the 5th European Conference on Com-
puter Systems (New York, NY, USA, 2010), EuroSys ’10, ACM,
pp. 153–166.

[22] MOLKA, D., HACKENBERG, D., SCHÖNE, R., AND NAGEL,
W. E. Cache coherence protocol and memory performance of
the intel haswell-ep architecture. In Parallel Processing (ICPP),
2015 44th International Conference on (2015), IEEE, pp. 739–
748.

[23] RADOJKOVIC, P., CARPENTER, P. M., MORETÓ, M.,
CAKAREVIC, V., VERDÚ, J., PAJUELO, A., CAZORLA, F. J.,
NEMIROVSKY, M., AND VALERO, M. Thread assignment in
multicore/multithreaded processors: A statistical approach. IEEE
Trans. Computers 65, 1 (2016), 256–269.

[24] ROUSSEEUW, P. J. Silhouettes: a graphical aid to the interpreta-
tion and validation of cluster analysis. Journal of computational
and applied mathematics 20 (1987), 53–65.

[25] SNAVELY, A., AND TULLSEN, D. M. Symbiotic jobschedul-
ing for a simultaneous multithreaded processor. In Proceedings
of the Ninth International Conference on Architectural Support
for Programming Languages and Operating Systems (New York,
NY, USA, 2000), ASPLOS IX, ACM, pp. 234–244.

[26] SRIDHARAN, S., GUPTA, G., AND SOHI, G. S. Adaptive, effi-
cient, parallel execution of parallel programs. In Proceedings of
the 35th ACM SIGPLAN Conference on Programming Language
Design and Implementation (New York, NY, USA, 2014), PLDI
’14, ACM, pp. 169–180.

[27] TAM, D., AZIMI, R., AND STUMM, M. Thread clustering:
Sharing-aware scheduling on smp-cmp-smt multiprocessors. In
Proceedings of the 2Nd ACM SIGOPS/EuroSys European Con-
ference on Computer Systems 2007 (New York, NY, USA, 2007),
EuroSys ’07, ACM, pp. 47–58.

[28] TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC
Benchmark C. http://www.tpc.org/tpcc/, 2010.

[29] TRANSACTION PROCESSING PERFORMANCE COUNCIL. TPC
Benchmark H. http://www.tpc.org/tpch/, 2014.

[30] YADWADKAR, N. J., HARIHARAN, B., GONZALEZ, J. E.,
SMITH, B., AND KATZ, R. H. Selecting the best VM across
multiple public clouds: a data-driven performance modeling ap-
proach. In Proceedings of the 2017 Symposium on Cloud Com-
puting, SoCC 2017, Santa Clara, CA, USA, September 24 - 27,
2017 (2017), pp. 452–465.

https://aws.amazon.com/ec2/instance-types
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
http://scikit-learn.org/stable/auto_examples/cluster/plot_kmeans_silhouette_analysis.html
http://www.wiredtiger.com
http://www.wiredtiger.com
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0363032
https://open.library.ubc.ca/cIRcle/collections/ubctheses/24/items/1.0363032
http://www.tpc.org/tpcc/
http://www.tpc.org/tpch/


[31] YANG, H., BRESLOW, A., MARS, J., AND TANG, L. Bubble-
flux: Precise online QoS management for increased utilization in
warehouse scale computers. In ACM SIGARCH Computer Archi-
tecture News (2013), vol. 41, ACM, pp. 607–618.

[32] ZELLWEGER, G., LIN, D., AND ROSCOE, T. So many per-
formance events, so little time. In Proceedings of the 7th ACM
SIGOPS Asia-Pacific Workshop on Systems (New York, NY,
USA, 2016), APSys ’16, ACM, pp. 14:1–14:9.

[33] ZHANG, Y., LAURENZANO, M. A., MARS, J., AND TANG, L.
Smite: Precise QoS prediction on real-system smt processors to
improve utilization in warehouse scale computers. In Proceed-
ings of the 47th Annual IEEE/ACM International Symposium on
Microarchitecture (2014), IEEE Computer Society, pp. 406–418.

[34] ZHURAVLEV, S., BLAGODUROV, S., AND FEDOROVA, A. Ad-
dressing shared resource contention in multicore processors via
scheduling. In Proceedings of the Fifteenth Edition of ASPLOS
on Architectural Support for Programming Languages and Oper-
ating Systems (New York, NY, USA, 2010), ASPLOS XV, ACM,
pp. 129–142.


	Introduction
	Background and Related Work
	Assumptions and Limitations
	Abstract machine model
	Performance Predictions
	Evaluation
	Using the model in practice
	Conclusion

