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Abstract— Recently, a new data-driven method for robust
control with H∞ performance has been proposed. This method
is based on convex optimization and converges to the optimal
performance when the controller order increases. However,
for low-order controllers, the performance depends heavily
on the choice of some fixed parameters that are used for
convexifying the optimization problem. In this paper, several
data-driven optimization algorithms are proposed to improve
the solution for low-order controllers. A non-convex problem is
solved (in a data-driven sense) where the parameters of a fixed-
structure low-order controller are optimized; the solution to the
problem guarantees the stability of the closed-loop system whilst
ensuring robust performance. It is shown that by optimizing
all of the controller parameters, the H∞ performance for low-
order controllers can be significantly improved. The simulation
examples illustrate how the proposed method can be used to
eliminate the sensitivity associated with the fixed parameters
and optimize the system performance.

I. INTRODUCTION

The data-driven control strategy mitigates the problems
with model-based controller designs by avoiding the problem
of unmodelled dynamics associated with low-order para-
metric models. A survey on the differences between the
model-based control and data-driven control schemes has
been addressed in [1] and [2]. The data-driven controller
design methodology can be realized in two manners: using
time-domain or frequency-domain data. In this paper, the
frequency-domain approach will be utilized for the con-
troller design. It is important to note that the term “data-
driven” in this paper signifies that the controller synthesis
is independent of the parametric model of the process. In
other words, controllers are synthesized by only using the
frequency response of the process.

In addition to avoiding the problem of unmodelled dy-
namics, the use of controllers with pre-defined structures
is also important. In the classical robust control design
method, the order of the resulting full-order controllers can
be quite large; in fact, the order can be as large as the
order of the augmented plant [3], [4]. However, in industrial
and practical applications, controllers are often implemented
in dedicated hardware which are constrained to specific
controller structures.

It is well known that fixed-structure controller design in
the model-based setting is a non-convex optimization prob-
lem. Nonsmooth optimization methods for fixed-structure
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controllers are used in [5], [6] and [7]; these methods
are implemented in the MATLAB Robust Control Toolbox.
However, these non-smooth techniques cannot synthesize
controllers based on the frequency response of the system
(they need a parametric model), and are limited to certain
system dynamics (i.e., a pure delay must be approximated
by a Padé function).

Solving the H∞ problem can be accomplished in a data-
driven setting. For fixed-structure controllers, the authors
in [8]–[13] use linearly parameterized (LP) controllers in
a data-driven setting in order to convexify the H∞ prob-
lem. However, the results depends on the choice of some
fixed parameters in the controller. By convexifying the H∞
problem, the global optimal solution to an approximate
problem is obtained; however, a question one may ask is
why are convexification methods imposed to find a solution
to the approximate H∞ problem when one can simply use
nonlinear solvers to find a local solution of the true H∞
problem? This is the question that will be addressed in this
paper.

In [14], a new data-driven method for H∞ controller
design by convex optimization was proposed; a controller
was represented as a ratio of two transfer functions (TFs) that
were linearly parameterized using a vector of basis functions.
It was shown that as the order of these TFs increased,
then the H∞ performance converged to the global optimal
solution (regardless of the basis function that is used). For
a low-order controller, however, the results depend on the
choice of the basis functions and is not necessarily optimal.
This paper presents an extension of the work in [14], and its
purpose is to devise a data-driven approach for improving the
H∞ performance for low-order fixed-structure controllers.
Several non-convex optimization problems are proposed to
optimize the basis function parameters for fixed-structure
low-order controllers (while guaranteeing the closed-loop
stability). In particular, a new particle swarm optimization
(PSO) algorithm is formulated to optimize the controller
parameters and guarantee the stability of the closed-loop
system while ensuring robust performance (without any
approximation). As with all nonlinear solvers, there are trade-
offs that exist between the optimization time and the quality
of the optimal solution; these trade-offs will be investigated
by comparing the optimal solutions from various methods.

This paper is organized as follows: In Section II, the
class of models and controllers are defined; additionally, this
section will introduce the notion of H∞ control and elicit
some of the concepts in [14]. Section III will address the
control objectives and the conditions required for satisfying
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the H∞ criterion. Section IV will demonstrate the effective-
ness of the proposed methods by comparing the solutions for
two simulation examples. Finally the concluding remarks are
given in Section V.

II. PRELIMINARIES

In order to avoid the risk of any confusion, the notation
that will be used in this paper will first be defined. R and
R+ represent the set of all real numbers and real numbers
greater than zero, respectively. <{·} denotes the real part
of a complex variable. Bold-faced variables will represent
column vectors (i.e., the vector v = [v1, . . . , vn]> ).

A. Class of Models

The set of all linear time-invariant (LTI) single-input-
signal-output (SISO) strictly proper frequency response mod-
els belonging to the family of perturbed plants with mul-
timodel and multiplicative uncertainty can be defined as
follows:

G = {Gp(jω)[1 + ∆(jω)W2p(jω)]; p = 1, . . . , np} (1)

where Gp(jω) is the nominal frequency response of the pth

process, W2p(jω) is an uncertainty weight with bounded
infinity norm, ∆(jω) is an unknown stable TF satisfying
‖∆‖∞ < 1, and np is the number of models. For simplicity,
one model from the set G will be analyzed, and the subscript
p will be omitted, but the results are applicable to multi-
model uncertainty as well (as will be shown in the simulation
examples).

Let the set RH∞ represent the family of all stable,
proper, real-rational transfer functions with bounded infinity
norm. We assume that the plant is represented as G(s) =
N(s)M−1(s) such that {N(s),M(s)} ∈ RH∞ are called
the coprime factors of G(s) over RH∞ [15]. The frequency
response of such a system is given by:

G(jω) = N(jω)M−1(jω), ω ∈ Ω (2)

where Ω = R∪{∞}. Note that for stable systems, we assume
M(jω) = 1 and so N(jω) is available by spectral analysis
from a set of data. For unstable systems, the frequency
response of the coprime factors can be identified from a
closed-loop experiment with a stabilizing controller [14].

B. Class of Controllers

The controller can be described as K(s) = X(s)Y −1(s),
where {X(s), Y (s)} ∈ RH∞. The TFs X(s) and Y (s) for
this control scheme will be parameterized in the decision
vector ρ, and can be expressed as

X(s,ρ) = ρ>x φ(s, ξ), Y (s,ρ) = ρ>y φ(s, ξ) (3)

where ρx ∈ Rnx , ρy ∈ Rny , and φ(s, ξ) are vectors of stable
transfer functions chosen from a set of orthogonal basis
functions. An example of such a function is the Laguerre
basis function [16]:

φ1(s) = 1, φq(s, ξ) =

√
2ξ (s− ξ)q−2

(s+ ξ)
q−1 (4)

for q = 2, . . . , {nx, ny}, where ξ ∈ R+.
A PID controller can also be represented in this form.

Suppose that the desired controller structure is given as:

K(s,ρ) = kp + ki
1

s
+ kd

s

Tfs+ 1
(5)

where Tf ∈ R+. Then the controller can be expressed as in
(3) with

ρ>x = [ρ1 ρ2 ρ3]

ρ>y = [Tf 1 0]

φ(s, ξ) = [s2 s 1]>(s+ ξ)−2

(6)

where the parameters of ρx are ρ1 = kpTf + kd, ρ2 =
kp + kiTf , ρ3 = ki.

C. Nominal Performance via Convex Optimization

The methods described in this paper are associated with
minimizing the H∞ norm of a desired weighted sensitivity
function. The sensitivity function S(s) and complementary
sensitivity function T (s) associated with this control scheme
can be formulated as follows:

S(s,ρ) := e(s)/r(s) = [1 + L(s,ρ)]−1

= M(s)Y (s,ρ)[N(s)X(s,ρ) +M(s)Y (s,ρ)]−1

(7)
T (s,ρ) := y(s)/r(s) = L(s,ρ)[1 + L(s,ρ)]−1

= N(s)X(s,ρ)[N(s)X(s,ρ) +M(s)Y (s,ρ)]−1

(8)
where L(s,ρ) = G(s)K(s,ρ); r(s), y(s) and e(s) = r(s)−
y(s) are the Laplace transforms of the reference input, the
system output, and the tracking error signal, respectively.

Given a performance weighting filter W1(jω) with
bounded infinity norm, the nominal performance is given by
[15]:

‖W1S‖∞ < γ (9)

where γ = 1. However, the problem of minimizing the upper
bound γ will be considered in this paper, where γ ∈ R+. The
condition in (9) can also be expressed as

|W1(jω)S(jω,ρ)| < γ, ∀ω ∈ Ω (10)

For notation purposes, the dependence in jω will be omitted
and will only be reiterated when deemed necessary. The
dependence on ρ will continue to be highlighted. By substi-
tuting the frequency responses of (7) and (8) into (10), the
condition for nominal performance can be expressed as

γ−1|W1MY (ρ)| < |ψ(ρ)|, ∀ω ∈ Ω (11)

where ψ(ρ) = NX(ρ) +MY (ρ).
Consider a circle in the complex plane at a specific

frequency in Ω which is centered at ψ(ρ) and has radius
γ−1|W1MY (ρ)|. The constraint in (11) ensures that for
any frequency point in Ω, the circle associated with this
frequency point will not encircle the origin. In [14], the
authors show that there exists a function F that can rotate
this circle such that it lies on the right-hand side of the jω
axis of the complex plane (i.e., all values on and within the



circle have positive real parts). This condition is recalled with
the following Lemma:

Lemma 1. Suppose that H(ρ) = W1MY (ρ)ψ−1(ρ) is the
frequency response of a bounded analytic function in the
right-half plane. Then, the following constraint is met

sup
ω∈Ω
|H1(ρ)| < γ (12)

if and only if there exists a stable transfer function F (s) that
satisfies

<{ψ(ρ)F} > γ−1|W1MY (ρ)F |, ∀ω ∈ Ω.

Proof : The proof has been omitted to conserve space.
However, the proof of a similar condition can be found in
[14]. �

With the above Lemma, a necessary and sufficient condi-
tion can be derived for attaining nominal performance whilst
ensuring the closed-loop stability. In [14], it was shown that
if X(ρ) and Y (ρ) are linearly parameterized, then a quasi-
convex optimization problem can be formulated as follows:

minimize
γ,ρ

γ

subject to: γ−1|W1MY (ρ)| < <{ψ(ρ)}
∀ω ∈ Ω

(13)

The optimal solution to the above optimization problem
can be obtained by fixing γ and implementing a bisection
algorithm, where the problem is iteratively solved until
the optimal solution is obtained within a given tolerance
[17]. Notice that (13) is a semi-infinite programming (SIP)
optimization problem since there are a finite number of
optimization variables and an infinite number of constraints.
This problem can be transformed into a semi-definite pro-
gramming (SDP) problem by presetting a frequency grid ω
and solving a finite number of constraints. This frequency
grid can be predefined in a variety of manners (see [18],
[19]).

III. OPTIMIZATION PROBLEMS

In order to preserve the convexity of the H∞ problem
in (13) (with fixed-structure controllers), it is sufficient to
invoke linearly parameterized TFs for X(ρ) and Y (ρ) where
both TFs contain basis functions with fixed values. In [14],
it was shown that when the orders of X(ρ) and Y (ρ)
increased, then γ from (13) converged monotonically to
the global optimal solution of the H∞ problem. However,
it is impractical and sometimes impossible to implement
the resulting high-order controllers to real systems. For
low-order controllers, the optimal solution from the convex
problem may be far from the global solution, and is very
sensitive to the pre-set values of the basis function parameters
[20]. A solution to this problem is to simultaneously optimize
the controller parameters ρ and the basis function parameter
ξ by a nonlinear optimization algorithm.

An alternative is to formulate an optimization problem
based on the results of Lemma 1 in order to improve the
performance for low-order controllers.

Theorem 1. The local optimal solution for obtaining
H∞ performance and closed-loop stability using the fixed-
structure controllers X(ρ) and Y (ρ) is achieved if F (ρf ) is
parameterized with a set of stable orthogonal basis functions
and the following optimization problem is realized:

minimize
γ,ρ,ρf

γ

subject to: γ−1|W1MY (ρ)F (ρf )| < <{ψ(ρ)F (ρf )}
∀ω ∈ Ω

(14)

Proof : According to Lemma 1, it is known that there
exists a stable transfer function F such that the constraint
to the H∞ problem is satisfied. Therefore, F = F (ρf ) can
be chosen such that it incorporates stable basis functions
(such as the Laguerre basis functions). Thus the local optimal
solution to the H∞ problem can be obtained by minimizing
γ, fixing the orders of X(ρ) and Y (ρ), and implementing
the optimization problem in (14).

The constraint in this problem implies that
<{F (ρf )ψ(ρ)} > 0. Therefore, the Nyquist plot of
F (ρf )ψ(ρ) will not encircle the origin, and thus the
Nyquist plot of [F (ρf )ψ(ρ)]−1 will also not encircle the
origin (which implies that [F (ρf )ψ(ρ)]−1 is stable and that
the closed-loop system is stable). �

For continuous-time systems, the function F (ρf ) can be
selected as F (ρf ) = ρ>f φ(ξf ) where ρf ∈ Rnf and φ(ξf )
is the vector of Laguerre basis functions asserted in (4)
with the Laguerre parameter defined as ξf ∈ R+. It is
imperative to note that F (ρf ) is not part of the controller;
it is a function which realizes the necessary and sufficient
condition in Lemma 1. The type of optimization problem in
(14) depends on the parameterization of X(ρ), Y (ρ), and
F (ρf ).

A. Bilinear Programming

If X(ρ), Y (ρ), and F (ρf ) are linearly parameterized
(where the Laguerre parameter ξ and ξf are fixed for each
function), then the optimization problem in (14) becomes a
bilinear problem (BP) when an iterative algorithm is used to
compute the optimal γ. It is known that if (a?, b?) is a local
solution to a BP given an objective function f(a, b), then

min
a
f(a, b?) = f(a?, b?) = min

b
f(a?, b) (15)

Given this property of BPs, the local solution to the BP can
be obtained by solving a finite set of convex optimization
problems until convergence is achieved. The basic idea for
solving (14) in this manner is to fix the orders of X(ρ)
and Y (ρ) and solve a set of convex problems for increasing
orders of F (ρf ) until convergence is achieved for γ (within
a given tolerance). This optimization technique is known as
the “Mountain Climbing” method [21].

B. Particle Swarm Optimization

When the basis function parameters ξ and ξf in X(ρ),
Y (ρ) and F (ρf ) are decision variables, then the problem in
(14) becomes nonlinear. One of the problems with solving



this nonlinear problem is defining the initial values for
the decision variables. Since there can be many variables
involved in this optimization problem, defining the initial
variables to achieve the global optimal solution to the H∞
problem may not be trivial.

PSO is a powerful optimization method that can solve
both linear and nonlinear problems and can be used to solve
the problem in (14) without specifying initial conditions. It
is based on the principle that groups of individuals work
together to improve both their collective and individual
performance [22]. Due to the constraints imposed in (14),
an exterior method (i.e., Non-Death-Penalty approach) will
be implemented in order to obtain the optimal solution to
the problem. With this method, the constrained optimization
problem can be transformed to the following unconstrained
problem:

minimize
x

Φ(jω,x) (16)

where x> = [ρ>,ρ>f , ξ
>, γ] and ξ = [ξ, ξf ]> is the vector

of basis function parameters. We have

Φ(jω,x) = γ +
1

Q

Q∑
k=1

αkZk(jω,x)

Zk(jω,x) = [max(0, zk(jω,x))]β

zk(jω,x) = |W1(jω)M(jω)Y (jω,x)F (jω,x)|
− γ<{ψ(jω,x)F (jω,x)}

(17)

The value of β is usually taken to be 1 or 2 and αk ∈ R+

is the penalty factor [22]. In this paper, β = 1 will be
considered. A very large penalty factor will ensure fast
convergence to a local solution (even if it is far from the
optimal), while a small penalty factor will cause the PSO
algorithm to spend much time searching in infeasible regions
and may converge to an infeasible solution [23]. For this
particular problem, the value of αk will be a constant, since
the weighting factor for each constraint should be the same
(αk = α). In other words, the constraint should not be
weighted differently for varying frequencies. To obtain more
details with regards to the PSO algorithm and how it was
applied to the problems in this paper, see [20].

IV. SIMULATION EXAMPLES

Let us now consider two examples in order to determine
the validity of the proposed method(s). The YALMIP library
[24] in conjunction with MATLAB was used to solve the
convex problem (i.e., the sequential set of convex problems
to solve the BP).

For each example, the proposed method will be used
where the non-convex problem is solved using three different
approaches:

• Method 1: Linearly parameterizing X(x), Y (x), and
F (x) (where the basis function parameters in ξ are fixed
a-priori) and use the BP algorithm to solve a sequential
set of convex problems until convergence is achieved for
increasing nf .

• Method 2: Formulate non-LP functions for X(x) and
Y (x) (with F (x) = 1) and use the PSO algorithm to
optimize ρ and ξ.

• Method 3: Formulate non-LP functions for X(x), Y (x)
and F (x) and use the PSO algorithm to optimize all
parameters in x.

For comparative purposes, the solutions from all three meth-
ods will be compared to the solution obtained from the
hinfstruct function in MATLAB. As a result, examples
from the literature with parametric models are chosen.

Remark. It is emphasized that a direct comparison with
hinfstruct is not the objective of these examples, since
the proposed method does not use the parametric models
(only the frequency data are used in the optimization prob-
lems).

All optimization problems were solved using a computer
with a Intel-i7 core (3.4 GHz) processor and with 8 GB of
RAM running on a 64-bit Windows 7 platform. The MATLAB
version (R2015b) was used for running all algorithms.

A. Example 1: Robust PID Design

Consider the unstable non-minimum phase system ana-
lyzed in [25] and [26]:

G(s) =
s− 1

s2 + 0.8s− 0.2
(18)

which is subject to multiplicative uncertainty with the
weighting filter W2(s) = (s+ 0.1)(s+ 1)−1. The objective
of this case study is to design a robust stabilizing PID
controller such that the following robust stability and nominal
performance conditions are satisfied:

‖W1S‖∞ < γ and ‖W2T‖∞ < γ (19)

where performance weighting filter is chosen as [25]:
W1(s) = 10(100s + 1)−1. Since G(s) is unstable, the
coprime functions can be selected as N(s) = (s−1)(s+1)−2

and M(s) = (s2 + 0.8s− 0.2)(s+ 1)−2, where it is evident
that G(s) = N(s)M−1(s). For a PID controller, the structure
of the functions X(x) and Y (x) can be selected with the
vectors defined in (6). Therefore, the following optimization
problem is considered for satisfying (19):

minimize
x

γ

subject to: γ−1|W1MY (x)F (x)| < <{ψ(x)F (x)}
γ−1|W2NX(x)F (x)| < <{ψ(x)F (x)}
ω ∈ Ω

(20)
1) Simulation Results: The problem in (20) was solved

using the proposed method with a frequency grid from 10−2

to 102 [rad/s] (using 200 logarithmically spaced points). Let
γnf

denote the optimal solution to the problem for a given
order nf of F (x). The BP was solved with the iterative
convex method (i.e., the Mountain Climbing method) for
different basis function values (with ξ = ξf ); Fig. 1 displays
the optimal solution as a function of nf . It can be observed
that regardless of the basis function parameter, the solution



Fig. 1. Optimal solution to (20) using the proposed bilinear and PSO
algorithms. The optimal solution produced by hinfstruct (solid-red
line).

TABLE I
COMPARISON OF OPTIMAL SOLUTIONS WITH OPTIMIZATION TIME

γ? Optimization Time [min]
Method 1 0.737 [4, 21]

Method 2 0.799 0.48

Method 3 0.737 0.50

Convex Method [14] 1.113 0.84

hinfstruct 0.737 0.18

converges to the same value (which in this case, is γ? =
0.737). The hinfstruct function from MATLAB produces
the same value.

Now consider the parameterizations of Method 2 and
Method 3; with Method 3, F (x) was selected with nf = 2.
The author in [20] has provided the details with regards to the
parameters used in the PSO algorithm and how the optimal
solution was obtained. Table I compares the optimal solutions
obtained with the optimization time for each method. The
convex method refers to the algorithm in [14] with ξ = 1.
Note that the optimization time of Method 1 varies based on
which basis function parameter is used. The variation time
shown in this table is based on the values used in Fig. 1.
Method 3 achieves a low optimal value with little time;
therefore, in a data-driven sense, optimizing X(x), Y (x)
and F (x) using the PSO algorithm proves to be the more
efficient solution for this problem.

Figure 1 also displays the solution for varying nf using
Method 3. It can be observed that when these basis function
parameters are optimized, a 1st order function for F (x)
produces a solution approximately equal to the solution
from hinfstruct. Thus optimizing the basis function
parameters using the PSO algorithm proves to be more
efficient, since convergence to a solution is obtained without
implementing high orders of F (x).

B. Example 2: Multimodel Uncertainty

For this example, a robust controller will be designed
for a family of unstable systems. This example is taken
from the Robust Control Toolbox of MATLAB. The nominal
plant model for this family of systems is given as G0(s) =
2(s−2)−1; this model is perturbed through various types of
uncertainties such as time delay, high frequency resonance,

pole/gain migration, and extra lag; the family of perturbed
models are given as follows:

G1(s) = G0(s)
1

0.06s+ 1

G2(s) = G0(s)
502

s2 + 10s+ 502

G3(s) = G0(s)
702

s2 + 28s+ 702

G4(s) = G0(s)e−0.04s

G5(s) =
2.4

s− 2.2

G6(s) =
1.6

s− 1.8

(21)

The performance filter W1(s) and noise filter W2(s) are
chosen to be equal to the filters asserted in [16], i.e.,

W1(s) =
0.33s+ 4.248

s+ 0.008496

W2(s) =
0.1975s2 + 0.6284s+ 1

7.901 · 10−5s2 + 0.2514s+ 400

(22)

For this problem, the control objective is to minimize γ and
satisfy the following criteria for all seven models:

‖W1S`‖∞ < γ and ‖W2T`‖∞ < γ (23)

for ` = 0, . . . , 6. The hinfstruct function in MATLAB’s
Robust Control Toolbox uses this criteria to design a con-
troller, and achieves an optimal solution of γ? = 0.886 (with
200 random initiations) when a 6th order controller is used
(with integral action).

The same problem is now solved using the proposed
approach. First, the coprime factors N`(s) and M`(s) for
` = 0, . . . , 6 must be established. Since each model is
unstable, then each coprime factor must be selected such
that {N`(s),M`(s)} ∈ RH∞ for all `. A simple choice is
to divide both the numerator and denominator of each model
by a factor (s+ 100)λ` (as defined in [14]), where λ` is the
largest degree of the denominator of the `-th respective plant
model.

1) Simulation Results: The problem in (23) is solved
using the proposed approach by considering a logarithmically
spaced frequency grid with 300 points from 10−1 [rad/s]
to 104 [rad/s]. First, consider the parameterization process
asserted in Method 1; a 6th order controller is designed
(5th order controller with one integrator) using the Laguerre
basis functions defined in (4) with ξ = 20 (as defined in
[14]) and with ξf = 20. The BP is then solved using the
“Mountain Climbing” method until convergence is achieved
(within 10−5) for nf = 10.

Now consider the parameterization method asserted in
Method 2 and Method 3 (where Method 3 will use a function
F (x) with nf = 10). The author in [20] has provided
the details with regards to the parameters used in the PSO
algorithm and how the optimal solution was obtained. A
comparison of the optimal solutions with the optimization
time for each method satisfying the criteria in (23) are
tabulated in Table II (where each method implements a 6th

order controller). From all of these algorithms, it can be
observed that the proposed method using Method 3 yields the
best solution for this problem. Note that reducing the number
of random initializations with hinfstruct produces a



TABLE II
COMPARISON BETWEEN OPTIMAL SOLUTIONS AND OPTIMIZATION TIME

FOR MULTIMODEL PROBLEM

γ? Optimization Time [min]
Method 1 0.830 606

Method 2 0.880 207

Method 3 0.817 401

Convex Method [14] 0.881 15

hinfstruct 0.886 212

Fig. 2. Step responses of S`(s) ∀` using the proposed PSO algorithm
(blue) and with the controller obtained from hinfstruct (red).

solution close to the solution in Table II (a difference of
approximately 1%).

Figure 2 shows a comparison of the step responses of
S`(s) using the proposed PSO method (with function param-
eterization as asserted in Method 3) and hinfstruct. It
can be observed that the results are comparable; however, the
proposed method produces reduced overshoot (at the expense
of a larger optimization time).

V. CONCLUSION

A data-driven approach has been implemented in order
to design robust controllers that achieve H∞ performance.
A new PSO algorithm was formulated in a data-driven
setting to solve a non-convex optimization problem and
optimize all parameters of a fixed-structure controller while
guaranteeing the stability of the closed-loop system. The
simulation examples show that for very low-order controllers
(such as the PID controller), the solutions to the non-convex
optimization problems yield better results in a short amount
of time. For higher order controllers, the convex method
produces a reasonable value (with respect to the optimal
values of the non-convex problems) in a relatively short time.
For future work, it will be desired to compare the solutions
and optimization times using other nonlinear solvers (such
as genetic algorithms, evolutionary programming, and differ-
ential evolution).
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