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Abstract

Humans are comparison machines: comparing and choosing an item among a set of
alternatives (such as objects or concepts) is arguably one of the most natural ways for
us to express our preferences and opinions. In many applications, the analysis of data
consisting of comparisons enables finding valuable information. But datasets often contain
inconsistent comparison outcomes, because human preferences shift and observations are
tainted by noise. A principled approach to dealing with intransitive data is to posit a
probabilistic model of comparisons. In this thesis, we revisit Luce’s choice model, the
study of which began almost a century ago, in the context of large-scale online data
collection. We set out to learn a ranking over a set of items from comparisons in a
computationally, statistically and data efficient way.

First, we consider the algorithmic problem of estimating model parameters from
choice data, and we seek to improve upon the computational and statistical efficiency of
existing methods. Our contribution is to show that it is possible to express the maximizer
of the model’s likelihood function as the stationary distribution of a Markov chain. This
enables the use of fast linear solvers or well-studied iterative methods for Markov chains
for parameter inference in Luce’s model.

Second, we develop a data-efficient method for learning a ranking, by adaptively
choosing pairs of items to compare, based on previous comparison outcomes. We begin by
showing that Quicksort, a widely-known sorting algorithm, works well even if comparison
outcomes are noisy. Under distributional assumptions on model parameters, we provide
asymptotic bounds on the quality of the ranking it recovers. Building on this result,
we use sorting algorithms as a basis for a simple, practical active-learning method that
performs well on real-world datasets, at a small fraction of the computational cost of
competing methods.

Third, we focus on structured choices in a network. In particular, we study a model
where users navigate in a network (e.g., following links on the Web) and set out to
estimate transition probabilities along the edges of the network from limited observations.
We show that if transitions follow Luce’s axiom, their probability can be inferred using
only data consisting of the (marginal) traffic at each node of the network. We propose

v



Abstract

a robust inference algorithm that admits a computationally-efficient implementation.
Our method scales to networks with billions of nodes and achieves good predictive
performance on clickstream data.

Beyond human preferences, probabilistic models of pairwise comparisons can also be
applied to sports. Consider football: two teams are compared against each other, and
the better one wins. In the last part of this thesis, we look at a concrete application
of pairwise comparison models and tackle the task of predicting outcomes of matches
between national football teams. These teams play only a few matches every year, hence
it is difficult to accurately assess their strength. Noting that national team players also
compete against each other in clubs, we propose a way to overcome this challenge by
taking into account outcomes of matches between clubs, of which there are plenty. We
do so by embedding all matches in player space, and devise a computationally-efficient
inference procedure. The resulting model predicts international tournament results more
accurately than those using only national team results.

Keywords comparisons, choices, rankings, probabilistic models, statistical inference,
algorithms, machine learning, active learning, networks
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Résumé

Nous, humains, sommes des machines à comparer. Faire une comparaison et choisir un
objet ou un concept parmi un ensemble d’alternatives est sans doute l’une des façons les
plus naturelles d’exprimer nos préférences et nos opinions. Dans le cadre de beaucoup
d’applications pratiques, l’analyse de données sous forme de comparaisons permet de
trouver des informations précieuses. Mais les jeux de données recueillis contiennent
souvent des résultats de comparaisons en contradiction les uns avec les autres, parce que
nos préférences changent et que les comparaisons observées sont contaminées par du bruit.
Une approche raisonnée pour traiter de telles données intransitives consiste à postuler
un modèle probabiliste de comparaisons. Dans cette thèse, nous revisitons le modèle de
choix proposé par Luce (dont l’étude remonte à près d’un siècle) dans le contexte de la
collecte de données en ligne et à grande échelle. Notre but est d’apprendre un classement
sur un ensemble d’objets à partir de comparaisons d’une façon efficace : statistiquement,
en matière de ressources de calcul et sur le plan de la quantité de données.

Tout d’abord, nous examinons le problème algorithmique de l’estimation des para-
mètres du modèle à partir de données sous forme de comparaisons et cherchons à améliorer
l’efficacité statistique et calculatoire des méthodes existantes. Notre contribution consiste
à montrer qu’il est possible d’exprimer les paramètres qui maximisent la vraisemblance
du modèle par la distribution stationnaire d’une chaîne de Markov. Ceci ouvre la voie à
l’utilisation de programmes de résolution d’équations linéaires rapides ou à l’utilisation
de méthodes itératives pour chaînes de Markov pour estimer les paramètres du modèle
de Luce.

Deuxièmement, nous développons une méthode économe en données pour apprendre
un classement. Cette méthode consiste à choisir des paires d’objets à comparer de
façon adaptive, en fonction des résultats de comparaisons observés précédemment. Nous
commençons par montrer que Quicksort, un algorithme de tri connu, fonctionne bien
même si les résultats des comparaisons sont bruités. Sous certaines hypothèses sur la
distribution des paramètres du modèle, nous fournissons des bornes asymptotiques sur la
qualité du classement retourné par Quicksort. En nous appuyant sur ce résultat, nous
utilisons des algorithmes de tri comme point de départ d’une méthode simple et pratique
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Résumé

d’apprentissage actif. Celle-ci donne de bons résultats sur des jeux de données du monde
réel tout en utilisant seulement une petite fraction des ressources de calcul nécessaires
aux méthodes concurrentes.

Troisièmement, nous nous penchons sur un problème de choix structurés dans un
réseau. Plus précisément, nous étudions un modèle où des utilisateurs naviguent sur un
réseau (par exemple en suivant des liens sur le Web) et entreprenons d’apprendre les
probabilités de transition sur les arêtes à partir d’observations limitées. Nous montrons
que si les transitions suivent l’axiome de Luce, leur probabilité peut être déduite du trafic
(marginal) à chaque nœud. Nous proposons un algorithme d’estimation des paramètres
qui est robuste et qui admet une implémentation efficace en ressources de calcul. Notre
méthode peut s’appliquer à des réseaux composés de milliards de nœuds et atteint de
bons résultats pour la prédiction de flux de clics sur le Web.

Au-delà des préférences humaines, les modèles probabilistes de comparaisons par
paire peuvent aussi s’appliquer au sport. Pensez au football : deux équipes se comparent
l’une à l’autre, et la meilleure des deux gagne. Dans la dernière partie de cette thèse, nous
considérons un cas pratique et nous nous attaquons au problème de prédire les résultats
de matchs entre équipes nationales. Ces équipes ne jouent que quelques matchs chaque
année et de ce fait il est difficile de juger de leur force de façon précise. En observant
que les joueurs appelés en sélection nationale jouent aussi les uns contre les autres dans
leur club respectif, nous proposons une façon de surmonter cette difficulté en prenant
en compte les matchs entre clubs (desquels il est facile d’obtenir une grande quantité).
Notre méthode se base sur une projection des matchs dans un espace des joueurs et
s’appuie sur une procédure d’apprentissage économe en temps de calcul. Le modèle qui
en résulte prédit les résultats de tournois internationaux d’une façon plus précise que
d’autres modèles n’utilisant que les matchs entre équipes nationales.

Mots-clés comparaisons, choix, classements, modèles probabilistes, inférence statis-
tique, algorithmes, apprentissage automatique, apprentissage actif, réseaux
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Mathematical Notation

Symbol Description

x Plain lowercase letters denote scalar values.

x = [xi] Boldface lowercase letter denote column vectors.

X = [xij ] Boldface uppercase letters denote matrices.

X Calligraphic uppercase letters denote sets.

R, R>0, N Number types: real, positive real and natural numbers, respectively.

[N ] Set of consecutive natural numbers {1, . . . , N}.

i � j Pairwise comparison outcome “i wins over j”.

i � A Multiway comparison outcome “i is chosen among alternatives A”.

P [A] Probability of the event A.

1{A} Indicator variable of the event A.

E [x] Expectation of the random variable x.

Var [x] Variance of the random variable x.

Cov [x, y] Covariance of the random variables x and y.

O(f(x)) g(x) = O(f(x)) ⇐⇒ lim supx→∞|g(x)|/f(x) < ∞.

o(f(x)) g(x) = o(f(x)) ⇐⇒ limx→∞ g(x)/f(x) = 0.

Ω(f(x)) g(x) = Ω(f(x)) ⇐⇒ f(x) = O(g(x)).

ω(f(x)) g(x) = ω(f(x)) ⇐⇒ f(x) = o(g(x)).
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1 Introduction

1.1 Motivation

Making a choice is a fundamental way for us to express our opinions and preferences.
We choose the music we listen to and the movies we watch, and we choose the place
where we live and the political candidate we vote for. We constantly compare alternatives
in order to discern the one that best suits us. Unsurprisingly, a great understanding of
collective and personal opinions can be gained by observing the outcomes of comparisons
that we make.

The idea of analyzing human choices has been a longstanding topic of interest to
researchers and practitioners across a wide range of disciplines, including psychology,
sociology and economics. To give just one example among many, discrete choice analysis
(DCA) has become an essential item in the econometrician’s toolbox. DCA has important
applications: for example, it accurately predicted the impact of a new metro line in the
San Francisco Bay area on the usage of various modes of transport [McFadden et al.,
1977]. The theory and methods developed in this context resulted in a Nobel prize for its
main inventor [McFadden, 2001].

This thesis is part of the quest to improve the analysis of human choices. We are interested
in the problem of extracting concise information (e.g., about our preferences) from raw
choice data, i.e., observations that discriminate one out of several alternatives. Concretely,
a typical task of interest would be to obtain a ranking of all alternatives from most
to least preferred, often by means of numerical scores that describe the utility of each
alternative and that are predictive of future choices. Even though research on choice
models has produced a number of well-established methods, modern online applications
(of which we give examples shortly) call for new approaches that can cope with large-scale
data. Indeed, both the large number of observations and the large number of alternatives
that are typical in modern applications raise new challenges: it becomes important to
develop methods that are efficient—not only in order to quickly process all observations,
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Chapter 1. Introduction

but also in order to end up with sufficient information about every alternative. This
notion of efficiency is the guiding thread of this thesis and will be expanded upon in
Section 1.3.

Why Study Choice Data? If we are ultimately interested in, say, a numerical utility
score for each alternative, a sensible question to ask is: Why not directly ask for such a
score? Two important reasons come to mind.

1. It is particularly natural and easy for humans to make comparisons. A popular
theory in social psychology even states that comparing ourselves to others is one
the primary ways in which we learn about and define ourselves, our beliefs and
opinions [Festinger, 1954]. Arguably, it is more difficult for us to give meaningful
and consistent numerical scores. What does a “3.5 star” rating on a restaurant
really mean? In a world where everything is relative, an absolute rating might just
be the wrong abstraction.

2. In some cases, it is possible to observe choices implicitly, simply by recording the
actions that we take and the context in which we take them. This makes the process
of collecting choices much less obtrusive than explicitly asking for feedback. In
practice, it means that it is often possible to access much larger datasets, potentially
leading to more accurate models.

Dealing with Inconsistent Data At first sight, the task of understanding opinions
from comparison data might appear to be easy. And indeed it would be, if observed
choices were a perfect reflection of a single set of opinions. However, when we start looking
at data collected “in the wild”, it becomes quickly apparent that comparison outcomes
are not always consistent with each other: faced with the same alternatives, we sometimes
appear to be making different choices. This is due to a multitude of factors: For example,
(a) parts of the context in which the choice is made might not be observed, yet they might
significantly influence the outcome; (b) if we try to summarize collective preferences
based on individual choices, we can obviously expect some level of disagreement among
individuals, even if some trends are shared; and (c) errors sometimes creep into the data,
due to erroneous measurements or imperfect interpretations. A premise of this thesis is
that these inconsistencies are unavoidable. But they can be dealt with in a principled
way, using a probabilistic model. In a nutshell, this approach states that, given a set of
alternatives, any comparison outcome is possible, but some outcomes are more likely
than others, depending on the underlying preferences. The task is then reduced to finding
preferences that explain the observations well. This approach has been dominant in the
field and is the one that we adopt in this thesis. It will be explained further in Section 1.2.

2



1.1. Motivation

Modern Applications Choice models have a long and rich history, but there has
recently been a resurgence of interest in the context of large-scale online data collection.
Indeed, the Web makes it easy for organizations to reach users throughout the world
and to record their interactions with the organization’s services. Let us consider three
examples.

• Commercial online service-providers have increasingly relied on recommender sys-
tems (i.e., systems that learn user preferences) in order to increase user engagement
and drive up sales. Spotify and Netflix, two popular services that stream music
and videos, respectively, learn preferences based on implicit observations about the
users’ choices (which songs or movies they listen to). Amazon, a large e-commerce
site, suggests personalized recommendations based on users’ previous purchases.

• Scientists have built online platforms that enable them to collect large amounts
of comparison data in order to answer challenging psychological and sociological
research questions. For example, the GIFGIF project1 aims at understanding the
emotional content of animated GIF images, by showing users a pair of images and
asking them the question: “Which image better expresses [happiness, shame, ...]?”
The Place Pulse project2 seeks to understand how different city neighborhoods
are perceived, by using similar pairwise comparison questions. In both cases,
comparisons are a natural way to elicit feedback from users. These two projects
have each collected millions of data points over thousands of objects, and they
resulted in fascinating findings that were previously out of reach using traditional
methods.

• Pairwise comparisons are at the heart of wiki surveys, a novel surveying method
developed by Salganik and Levy [2015]. Wiki surveys attempt to bridge the gap
between questionnaires, which scale well but do not enable new information to
emerge, and interviews, which are expensive to conduct but can lead to serendipitous
discoveries. For example, the administration of New York City has used this service
to gather feedback on a sustainability plan. Users could either propose new ideas or
answer comparison questions of the type “Which [of the following two ideas] do you
think is better for creating a greener, greater New York City?” The service makes
it possible to simultaneously elicit new ideas and prioritize existing ones. At the
time of writing, 11 739 surveys were created on http://www.allourideas.org/,
totaling 17.8 million votes over 631 682 ideas.

Beyond Preferences: Applications to Sport Finally, we note that the very same
methods used to model human choices can also be used to address problems that might
first appear to be conceptually very different. In this thesis, we consider the problem

1See: http://www.gif.gf/.
2See: http://pulse.media.mit.edu/.

3



Chapter 1. Introduction

of predicting the outcome of football matches given historical data. In football, two
teams are compared against each other during a match, at the end of which one of them
wins. Using our previous terminology, we can frame the teams as alternatives being
compared, and the winner as the outcome of the comparison. It is interesting to note
that, historically, the main models and ideas used in this thesis have been developing
simultaneously in the context of analyzing human choices, as well as sports outcomes, as
we will see in the next section.

1.2 Probabilistic Models of Choice

In this section, we introduce the statistical models and associated methods that will be
used or referred to throughout this thesis. We take a historical perspective: the context in
which these models and methods were developed is fascinating. Although this section only
gives a brief overview of the developments, it contains pointers for the reader interested
in more comprehensive information.

1.2.1 Thurstone’s Model

In 1927, Thurstone published an article that is widely regarded as foundational in the field
of probabilistic models of comparison outcomes [Thurstone, 1927a]. He was interested in
the problem of measurement in psychology and developed a method that explains the
responses of human subjects to comparisons between two stimuli among N . In order to
capture the fact that the response to a stimulus can vary, Thurstone suggested modeling
the perceived value of a stimulus i during some experiment by means of a random variable
xi ∈ R. The outcome of the comparison between stimuli i and j is given by comparing
a realization of the corresponding two random variables, i.e., by the event xi > xj . He
further postulated that these random variables follow a jointly Gaussian distribution
x ∼ N(θ, Σ). Denoting by i � j the event “i wins over j”,

P [i � j] = P [xi > xj ] = Φ
(

θi − θj√
Σii + Σjj − 2Σij

)
,

where Φ(·) is the cumulative density function of the standard normal distribution
and the last equality is obtained by noting that xi − xj ∼ N(θi − θj , Σii + Σjj − 2Σij).
Thurstone considered several variants of the model that place successively more restrictive
assumptions on the covariance matrix Σ. The variant that is perhaps most widely-used
nowadays is obtained by setting Σ = 1

2I. In this case,

P [i � j] = Φ(θi − θj). (1.1)

The vector of N parameters θ = [θ1 · · · θN ]� ∈ RN governs the probabilities of all
(N

2
)

possible pairwise comparisons. Intuitively, θi can be interpreted as the score of stimulus
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1.2. Probabilistic Models of Choice

i, and the probability of observing a comparison outcome for i and j that is consistent
with the true order increases with the distance θi − θj . Note that as (1.1) only involves
pairwise distances, the parameters θ are identifiable only up to a constant. In order to
resolve this ambiguity, the parameters are often chosen such that

∑
i θi = 0.

Perhaps the first application that Thurstone had in mind relates to psychophysics.
Imagine being given two balls and asked the question: “Which of these two balls is
heavier”? Given a collection of observations of this sort (some of which are possibly
inconsistent), model (1.1) could be used to embed the stimuli on a real-valued scale
(compactly summarizing all the data) by means of estimating the parameters θ.

Application to Social Values Thurstone quickly realized that there was potential
beyond psychophysics. The same year, he published a study in which the method is
applied to social values [Thurstone, 1927b]. This study seeks to understand the seriousness
of 19 different criminal offenses in the United States, including crimes such as bootlegging,
arson, seduction and homicide. Subjects (266 undergraduate students) were instructed to
answer a questionnaire containing pairwise comparison questions of the type: “Which
crime is more serious, i or j?” The study perfectly illustrates the advantage of eliciting
feedback in the form of comparisons rather than absolute ratings. Arguably, it would
have been very difficult for the subjects to give a numerical score to each crime in a
consistent way: in absolute terms, many crimes are extremely serious, and only relative
judgments can make nuances appear.

Based on the outcomes of comparisons and using (1.1), Thurstone used a least-squares
procedure to estimate the parameters θ. This enabled the representation of crimes on a
global scale from least to most serious, in a way that reflected the subjects’ opinions. Using
the data tabulated in his 1927b paper, we could replicate3 the analysis he performed.
Figure 1.1 displays the resulting scale.

A Note on Inference The first approaches to learning the parameter vector θ

from data relied on least-squares fitting [Thurstone, 1927b, Mosteller, 1951]. Nowa-
days, maximum-likelihood estimation is more common. Indeed, the likelihood (1.1) is
log-concave in θ, and standard off-the-shelf convex solvers can be used to find the maxi-
mizer. It is also interesting to note that Thurstone’s model lends itself particularly well to
approximate Bayesian inference methods [Chu and Ghahramani, 2005a,c]. An important
quantity in Bayesian inference is the marginal likelihood, typically of the form

∫
RN

P [i � j | θ] N(θ | μ, S)dθ.

3The method used to fit the parameters of the model differs slightly from that of Thurstone [1927b].
However, the differences with the original plot are almost not perceptible.
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Figure 1.1 – Scale of seriousness of offenses (from left to right: least to most serious),
using the data in Thurstone [1927b]. Nineteen crimes are embedded on a scale using
Thurstone’s model, based on 266 students’ answers to 171 pairwise comparisons each.

In the case of Thurstone’s model, this integral admits a simple closed-form solution. See,
e.g., Rasmussen and Williams [2006, Section 3.9].

1.2.2 Bradley–Terry Model

Almost concurrently to Thurstone, Zermelo proposed (in German) a method for ranking
chess players based on match outcomes [Zermelo, 1928]. He set out to address two
problems: (a) coping with unbalanced tournaments, where players play an unequal
number of games and against different sets of opponents, and (b) estimating the relative
strength of players in a way that is predictive of future match outcomes. To this end, he
introduced a probabilistic model of game outcomes. In his model, every player i ∈ [N ]
is characterized by a latent strength parameter γi ∈ R>0. The probability of player i

winning against player j is a function of their relative strength:

P [i � j] =
γi

γi + γj
. (1.2)

Note that the parameters γ are identifiable only up to a multiplicative factor; for this
reason, it is often assumed that

∑
i γi = 1. Zermelo suggested finding the parameters γ

by maximizing their likelihood given the observed data, an idea that was very advanced
at the time. He formulated a necessary and sufficient condition4 for the existence of a
unique maximum-likelihood estimate, developed an iterative algorithm5 to find it and
proved the algorithm’s convergence. Overall, his treatment of the model is very thorough
and complete; unfortunately it appears to have been largely ignored for about 50 years

4The maximum-likelihood estimate exists if and only if there is no way to partition all players into two
disjoint non-empty subsets A, B ⊂ [N ], such that there is no player in A that has won a match against a
player in B. See also Theorem 2.1.

5Interestingly, the same algorithm was later rediscovered multiple times in different contexts [Bradley
and Terry, 1952, Ford, 1957, Dykstra, 1960, Hastie and Tibshirani, 1998, Hunter, 2004, Caron and Doucet,
2012].
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[David, 1988]. See Glickman [2013] for a compelling introduction to Zermelo’s paper.
Finally, note that the chess rating system presently in use by the World Chess Federation
is directly based on Zermelo’s model [Elo, 1978].

Relation to Thurstone’s Model Over two decades later, Bradley and Terry [1952],
apparently unaware of Zermelo’s work, rediscovered the model in the context of the
rank analysis of experiments based on pairwise comparisons, linking the model back to
the analysis of human opinions. The connection to Thurstone’s model began becoming
clear in Bradley [1953], where Bradley shows that by setting θi = log γi for all i, the
probability (1.2) can be rewritten as

P [i � j] =
1

1 + exp[−(θi − θj)]
. (1.3)

Hence, the Bradley–Terry model (as it is commonly referred to) is another instance of a
generalized linear model [Agresti, 2015] for pairwise comparisons: the outcome probability
depends on the distance θi − θj between the two parameters corresponding to the score of
the alternatives. Yellot [1977] further expanded the connection, by showing that P [i � j]
in (1.3) can be rewritten as P [xi > xj ] for independent random variables {xk : k ∈ [N ]}
such that xk ∼ Gumbel(θk, 1), that is, P [xk ≤ y] = exp{− exp[−(y − θk)]}. Outcomes
can therefore also be thought of as the comparison of the realizations of two random
variables centered around the alternatives’ scores, similarly to Thurstone’s model, which
gave rise to a random utility interpretation. Finally, Stern [1992] showed that both
Thurstone’s and the Bradley–Terry model can be unified under a more general model
using the gamma distribution. In practice, both models give quantitatively similar results
in most cases [Tsukida and Gupta, 2011]. Figure 1.2 illustrates the probabilities (1.1)
and (1.3) as a function of θi − θj .

1.2.3 Luce’s Choice Axiom

The two models discussed above are limited to comparisons between pairs of items. How
to generalize these models to multiway comparisons? Given a set of alternatives A ⊆ [N ]
and an item i ∈ A, denote by i � A the event “i is chosen among alternatives A”. A
natural way to extend the Bradley–Terry model (1.2) to choices among arbitrarily many
alternatives is as follows:

P [i � A] =
γi∑

j∈A γj
. (1.4)

Simply put, the probability of a choice is always proportional to the strength γi of the
item i, no matter what the set of alternatives is. This choice model is due to Luce [1959],
who showed that it is closely related to the following property.
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Figure 1.2 – Comparison of the Bradley–Terry model (solid line) and a rescaled version
of Thurstone’s model (dotted line). The scaling constant is chosen such that the slope at
the origin matches.

Definition (independence of irrelevant alternatives). A probabilistic choice model is
said to satisfy the independence from irrelevant alternatives (IIA) property if for any
A ⊆ [N ] and any i, j ∈ A,

P [j � A]
P [i � A]

=
P [j � i]
P [i � j]

.

The IIA property is essentially equivalent6 to Luce’s choice axiom [1959, p. 6], and
in this thesis we will refer to these two concepts interchangeably. Luce’s fundamental
contribution was to show that the IIA property enables an axiomatic characterization of
the choice probabilities.

Proposition 1.1 (Luce, 1959). A choice model satisfies the IIA property if and only if
there exists a vector γ ∈ R>0 such that the choice probabilities are given by (1.4).

Proof. It is trivial to verify that choice probabilities given by (1.4) satisfy IIA for any
γ. We will now show that the IIA property actually implies the existence of such a
parametric representation of choice probabilities. Let z ∈ [N ] be an arbitrary alternative,
and let

γi =

⎧⎨
⎩P [i � z] /P [z � i] if i �= z,

1 otherwise.

6Luce [1959] introduces the IIA property as a consequence of the choice axiom, which is slightly more
general: its formulation permits P [i � A] = 0, a technicality that we will not consider in this thesis.
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Let A ⊆ [N ] be any (non-empty) set of alternatives, and let B = A ∪ {z}. By IIA,

P [i � B] = γiP [z � B] ∀i ∈ B

=⇒ P [j � B]
P [i � B]

=
γj

γi
=

P [j � i]
P [i � j]

=
P [j � A]
P [i � A]

∀i, j ∈ A

=⇒ P [j � A] =
γj

γi
P [i � A] ∀i, j ∈ A.

Furthermore, as
∑

j∈A P [j � A] = 1, we have, for all i ∈ A,

1 =
∑
j∈A

γj

γi
P [i � A] =⇒ P [i � A] =

γi∑
j∈A γj

,

which concludes the proof.

Independence of irrelevant alternatives is a powerful property, as it leads to a choice model
that represents combinatorially many choice probabilities by using only N parameters.
This makes tractable the problem of learning the choice probabilities from a possibly
small number of observations, but it inevitably restricts the expressivity of the model.
In cases where some alternatives are very similar, IIA can turn out to be unrealistic, as
shown by Debreu [1960] in a simple example. In the context of modern applications with
a large number of items, which is the focus of this thesis, we believe that this trade-off is
acceptable (and perhaps even necessary).

Extension to Rankings Numerous extensions of Luce’s choice model have been
proposed in the literature, enabling the analysis of observations beyond those of the
type “one out of K”. Perhaps one of the most widely-used extensions relates to ranking.
Letting i(r) be the item of rank r, Plackett [1975] suggested modeling the probability of
a ranking on K ≤ N items as

P [i(1) � i(2) � · · · � i(K)] =
K−1∏
r=1

γi(r)∑K
s=r γi(s)

,

for some γ ∈ R>0. This can be seen as K − 1 independent choices made using Luce’s
model, iteratively, over the remaining alternatives. Therefore, this model is referred to as
the Plackett–Luce model.

Random Utility Models Finally, we note that all the models discussed so far can be
analyzed and generalized in the framework of random utility models [Train, 2009]. This
enables, for example, an extension of Thurstone’s model to multiway comparisons, in
a similar way to Luce’s extension of the Bradley–Terry model. In this framework, the
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choice probabilities are defined by the probability of certain orderings of a collection of
random variables (representing the utility of the alternatives).

1.3 Outline and Contributions

In this thesis, we address the problem of efficiently finding a ranking over a set of items
(usually, by means of estimating choice model parameters). Efficiency is the guiding
thread.

• As the size of datasets grows large, it becomes important to develop inference
methods that are computationally efficient, without sacrificing their statistical
efficiency, i.e., their accuracy.

• As the number of distinct items grows large, it becomes important to sample
observations judiciously, such that the observations bring as much information as
possible; we will refer to this as data efficiency.

In Chapter 2, we focus on algorithms for parameter inference and develop two procedures
for models based on Luce’s choice axiom. We do so by casting the inference problem
as that of finding the stationary distribution of a Markov chain, an approach already
suggested by Negahban et al. [2012] in the context of pairwise comparisons. Finding
the stationary distribution of a Markov chain is a well-studied problem, and fast solvers
are commonly available. We first show how the Markov chain can be derived from the
likelihood function, a key insight that enables the generalization of Negahban et al.’s
ideas to other models based on Luce’s choice axiom. The first algorithm, LSR, finds a
spectral estimate of model parameters by solving a homogeneous Markov chain: it is
computationally very efficient and the estimate turns out to be more accurate than those
obtained using competing methods with a similar running time. The second algorithm,
I-LSR, finds the maximum-likelihood estimate (MLE) by solving a non-homogeneous
Markov chain. The MLE is statistically more efficient than the spectral estimate but
is also computationally more expensive. Even then, I-LSR turns out to be significantly
faster than other commonly used algorithms for finding the MLE.

In Chapter 3, we shift our attention to the task of “intelligently” collecting pairwise
comparison outcomes, based on the observed outcomes of previous comparisons. Supposing
that we can adaptively choose which pair of items to query at every point in time, we seek
to maximize the information obtained about the model (in particular, about the ranking
of the N items) in addition to minimizing the number of queries. In the machine-learning
literature, this is known as the active-learning problem [Settles, 2012]. We start by
analyzing Quicksort [Hoare, 1962], a popular sorting algorithm that computes a ranking
when comparisons are always consistent with the true order. Under natural assumptions
on the distribution of Bradley–Terry model parameters (that characterize the difficulty
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of rankings), we show that Quicksort is remarkably resilient to inconsistent comparison
outcomes. This leads to a practical and data-efficient sampling strategy that repeatedly
runs a sorting algorithm until a given comparison budget is exhausted. With respect to
competing active-learning strategies, our method achieves similar data-efficiency but is
significantly less computationally expensive.

In Chapter 4 we consider a setting in which choices happen in a network, inspired by the
work of Kumar et al. [2015]. We want to understand how users navigate in a network
(e.g., which links they click on the Web), assuming that we have access to the aggregate
traffic at each node in the network but not to the individual choices (i.e., the actual
transitions). If transitions satisfy Luce’s choice axiom, we show that the aggregate traffic
is a sufficient statistic for the transition probabilities. Next, we develop an inference
algorithm that (a) is robust to various ill-posed scenarios and (b) can be implemented
efficiently. For example, the algorithm successfully scales to a snapshot of the WWW
hyperlink graph containing billions of nodes. Finally, using real-world clickstream data,
we demonstrate that our method is able to estimate transition probabilities well, despite
the strong assumptions implied by Luce’s axiom.

Lastly, in Chapter 5, we leave the realm of human opinions and switch over to an
application in sports. In particular, we examine the problem of predicting the outcome of
football matches between national teams. This problem is challenging, because national
teams play only a few games every year, hence their strength is difficult to estimate
based solely on the outcomes of the matches they play. Observing that most players in
national teams play against each other in club competitions, we seek to take advantage
of the (comparatively) large number of matches between clubs in order to improve the
predictions. To this end, we embed all matches in a player space and use a kernel method
to ensure that the model inference is computationally tractable. We evaluate the resulting
prediction by using data from the last three European championships, and we find that
those based on the joint model are more accurate than those based solely on the results
between national teams.
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2 Parameter Inference

In this chapter1, we study the problem of inferring parameters of models derived from
Luce’s choice axiom. We begin by showing that the maximum-likelihood estimate (MLE)
can be expressed as the stationary distribution of a Markov chain. This conveys insight
into several recently proposed spectral inference algorithms. We then take advantage of
this perspective and formulate a new spectral algorithm that generalizes and improves
upon prior work. With a simple adaptation, this algorithm can be used iteratively,
producing a sequence of estimates that converges to the MLE. The MLE version runs
faster than competing approaches on a benchmark of five datasets.

2.1 Introduction

Markov chains have been used in recent work to aggregate inconsistent outcomes of
pairwise comparisons and (partial) rankings [Dwork et al., 2001, Negahban et al., 2012,
Azari Soufiani et al., 2013]. The idea is to build a Markov chain that is biased towards
items that have won comparisons often, and to reduce the problem of ranking items to
that of finding the stationary distribution of the chain (the ranking is then induced by
the items’ stationary probabilities). In this chapter, we highlight a connection between
the MLE of models based on Luce’s choice axiom and the stationary distribution of a
Markov chain parametrized by the observed choices. By formalizing this link, we unify
previous algorithms and explicate them from an ML inference perspective. Furthermore,
the link suggests two new algorithms for parameter inference in Luce’s general choice
model. First, we develop a simple, consistent, and computationally efficient spectral
algorithm that is applicable to a wide range of models derived from Luce’s choice axiom.
The exact formulation of the Markov chain used in the algorithm is distinct from related
work [Negahban et al., 2012, Azari Soufiani et al., 2013] and achieves a significantly
better statistical efficiency at no additional computational cost. Second, we observe that,
with a small adjustment, the algorithm can be used iteratively, and it then converges

1This chapter is based on Maystre and Grossglauser [2015].

13



Chapter 2. Parameter Inference

to the MLE. An evaluation on five real-world datasets reveals that it runs consistently
faster than competing approaches and has a more predictable performance that does not
depend on the structure of the data. The key step, finding a stationary distribution, can
be offloaded to commonly available linear-algebra primitives, which makes our algorithms
scale well. The method we propose is intuitively pleasing, simple to understand and
implement, and it outperforms the state of the art. Therefore, we believe that it is highly
useful to practitioners.

Outline of the Chapter We begin by introducing some notations and presenting a
few useful facts about the MLE and about Markov chains. In Section 2.2, we discuss
related work. In Section 2.3, we present our algorithms and, in Section 2.4, we evaluate
them on synthetic and real-world data.

2.1.1 Maximum-Likelihood Estimate

Suppose that we collect M independent choice observations in the multiset D =
{(cm, Am) : m = 1, . . . , M}. Each observation consists of a choice cm among a set
of alternatives Am; we say that i wins over j and denote by i � j whenever i, j ∈ Am

and cm = i. We postulate that the choices are generated from Luce’s choice model and,
for simplicity, we denote the model parameter associated with item cm by γm. From (1.4),
it follows that the log-likelihood of parameters γ given observations D is given by

	(γ) =
M∑

m=1

[
log γm − log

∑
j∈Am

γj

]
. (2.1)

In order to ensure that the parameters are likelihood-identifiable, we assume without
loss of generality that

∑
i γi = 1. Next, we introduce a new object.

Definition (comparison graph). The comparison graph GD = (V, E) is a directed graph
with V = [N ] and (j, i) ∈ E if and only if i wins at least once over j in D.

The existence and uniqueness of the MLE is completely determined by the connectivity
of GD, as the following well-known theorem shows.

Theorem 2.1 (Zermelo, 1928, Ford, 1957, Hunter, 2004). The likelihood function (2.1)
admits a unique maximizer γ� ∈ RN

>0 such that ∑
i γ�

i = 1 if and only if GD is strongly
connected.

Throughout this chapter, we assume that GD is strongly connected. In practice, if this
assumption does not hold, we can consider each strongly-connected component separately.
Finally, note that even though 	(γ) admits a unique maximizer, it is not concave. However,
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reparametrizing the model using θi
.= log γi, the log-likelihood becomes

	(θ) =
M∑

m=1

[
θm − log

∑
j∈Am

exp θj

]
,

which is strictly concave in θ (when GD is strongly connected). Furthermore, for all
i ∈ [N ],

∂	

∂γi
=

∂	

∂θi
· ∂θi

∂γi
=

∂	

∂θi
· 1

γi
=⇒ ∂	

∂θi
= 0 ⇐⇒ ∂	

∂γi
= 0.

As the strictly concave function 	(θ) has a single stationary point (i.e., a single point
where the gradient is zero), it follows that 	(γ) has a single stationary point at γ�.

2.1.2 Markov Chains

We represent a finite, continuous-time Markov chain on N states by a directed graph
G = (V, E), where V = [N ] and E is the set of transitions with positive rate2. If G is
strongly connected, the Markov chain is said to be ergodic and admits a unique stationary
distribution π ∈ RN

>0,
∑

i πi = 1. The global balance equations relate the transition rates
{λij} to the stationary distribution as follows:

∑
j �=i

πiλij =
∑
j �=i

πjλji ∀i. (2.2)

The stationary distribution is therefore invariant to changes in the time scale, i.e.,
to a rescaling of the transition rates. Given transition rates Λ = [λij ], finding the
stationary distribution π can be implemented in several different ways. We distinguish
implementations based on whether they consider a continuous-time or a discrete-time
perspective on Markov chains.

Continuous-Time Perspective Let Q be the infinitesimal generator matrix of the
Markov chain, i.e., qij

.= λij and qii
.= − ∑

j λij . The stationary distribution satisfies
π�Q = 0; this is simply a matrix formulation of the global balance equations (2.2).
Therefore, one approach to finding the steady-state distribution is to compute the rank-1
left null space of Q. This can be done, e.g., by LU decomposition, a basic linear-algebra
primitive. In the case where Q is dense, the running time of a typical implementation is
O(N3), but highly optimized parallel implementations such as that provided by LAPACK
[Anderson et al., 1999] are commonly available. In the sparse case, LU decomposition
can be done significantly faster using adapted algorithms, such as that of Demmel et al.
[1999].

2Our exposition of Markov chains is succinct, and the interested reader is encouraged to consult Levin
et al. [2008] for a more thorough exposition.
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Discrete-Time Perspective Let ε < 1/ maxi |qii|, then P = I + εQ is the transition
matrix of a discrete-time Markov chain that satisfies π�P = π�. In this case, finding
the steady-state distribution is equivalent to finding the left eigenvector associated with
the leading eigenvalue of the transition matrix P . This is also a well-studied linear
algebra problem for which plenty of efficient, off-the-shelf algorithms exist. For example,
power iteration methods can find the eigenvector in a few (sparse) matrix multiplications.
Beyond these well-known algorithms, recently proposed randomized approaches such as
that of Halko et al. [2011] make it possible to scale to very-large problem sizes (N ∼ 106

or more).

Both the continuous-time and the discrete-time perspectives yield exactly the same
resulting stationary distribution, and the algorithms presented in this chapter are oblivious
to this choice.

2.2 Related Work

Spectral methods applied to ranking and scoring items from noisy choices have a long-
standing history. To the best of our knowledge, Saaty [1980] was the first to suggest
using the leading eigenvector of a matrix of inconsistent pairwise judgments to score
alternatives. Two decades later, Page et al. [1998] developed PageRank, an algorithm
that ranks Web pages according to the stationary distribution of a random walk on
the hyperlink graph. In the same vein, Dwork et al. [2001] proposed several variants of
Markov chains for aggregating heterogeneous rankings. Their idea was to construct a
random walk that is biased towards high-ranked items, and use the ranking induced
by the stationary distribution. More recently, Negahban et al. [2012] presented Rank
Centrality, an algorithm for aggregating pairwise comparisons close in spirit to that
of Dwork et al. [2001]. When the data are generated under the Bradley–Terry model,
this algorithm asymptotically recovers model parameters with only ω(N log N) pairwise
comparisons (when comparison pairs are chosen uniformly at random). For the more
general case of rankings under the Plackett–Luce model, Azari Soufiani et al. [2013]
propose to break rankings into pairwise comparisons and to apply an algorithm similar to
Rank Centrality. The authors show that the resulting estimator is statistically consistent.
Lastly, Fogel et al. [2014] take a seriation approach to ranking from pairwise comparisons
and develop a different type of spectral algorithm. Interestingly, many of these spectral
algorithms can be related to the method of moments, a broadly applicable alternative to
maximum-likelihood estimation [Casella and Berger, 2002, Section 7.2.1].

The history of algorithms for maximum-likelihood inference under Luce’s model goes back
even further. In the special case of pairwise comparisons, the same iterative algorithm was
independently discovered by Zermelo [1928], Ford [1957] and Dykstra [1960]. Much later,
this algorithm was explained by Hunter [2004] as an instance of minorization-maximization
(MM) algorithm and extended to the more general choice model. Today, Hunter’s MM
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algorithm is the de facto standard for ML inference in Luce’s model. As the likelihood
can be written as a concave function, off-the-shelf optimization procedures such as the
Newton-Raphson method can also be used, although they have been reported to be slower
and less practical [Hunter, 2004]. Recently, Kumar et al. [2015] looked at the problem of
finding the transition matrix of a Markov chain, given its stationary distribution. The
problem of inferring Luce’s model parameters from data can be reformulated in their
framework, and the MLE is the solution to the inversion of the stationary distribution.
Their work stands out as the first to link ML inference to Markov chains, albeit very
differently from the way presented in this chapter.

Beyond algorithms, properties of the maximum-likelihood estimator in this model were
studied extensively. Hajek et al. [2014] consider the Plackett–Luce model for K-way
rankings. They give an upper bound to the estimation error and show that the MLE is
minimax-optimal. In summary, they show that only ω(N/K log N) samples are enough
to drive, as N increases, the mean-square error down to zero. Rajkumar and Agarwal
[2014] consider the Bradley–Terry model for pairwise comparisons. They show that the
ML estimator is able to recover the correct ranking, even when the data are generated as
per another model, e.g., Thurstone’s [Thurstone, 1927b], as long as a so-called low-noise
condition is satisfied. Some authors also propose Bayesian inference methods as an
alternative to likelihood maximization. Caron and Doucet [2012] present a Gibbs sampler,
and Guiver and Snelson [2009] present an approximate inference algorithm based on
expectation propagation.

We provide a unifying perspective on recent advances in spectral algorithms [Negahban
et al., 2012, Azari Soufiani et al., 2013] from a maximum-likelihood estimation perspective.
It turns out that this perspective enables us to make contributions on both sides: We
develop an improved and more general spectral ranking algorithm, and we propose a
faster procedure for ML inference by using this algorithm iteratively.

2.3 Algorithms

We begin by expressing the MLE under the choice model as the stationary distribution of
a Markov chain. We then take advantage of this formulation to propose novel algorithms
for model inference. Although our derivation is made in the general choice model, we
also discuss implications for the special cases of pairwise data in Section 2.3.3, K-way
ranking data in Section 2.3.4, and pairwise comparisons with ties in Section 2.3.5.

2.3.1 MLE as a Stationary Distribution

For each item i ∈ [N ], we define two sets of indices. Let Wi
.= {m : i ∈ Am, cm = i} and

Li
.= {m : i ∈ Am, cm �= i} be the indices of the observations where item i wins over and
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loses against the alternatives, respectively. We start from the log-likelihood 	(γ) in (2.1);
the optimality condition ∇	(γ�) = 0 implies

∂	(γ)
∂γi

∣∣∣∣
γ=γ�

=
∑

m∈Wi

[ 1
γ�

i

− 1∑
j∈Am

γ�
j

]
−

∑
m∈Li

1∑
j∈Am

γ�
j

= 0 ∀i (2.3)

⇐⇒
∑
j �=i

⎡
⎣ ∑

m∈Wi∩Lj

γ�
j∑

k∈Am
γ�

k

−
∑

m∈Wj∩Li

γ�
i∑

k∈Am
γ�

k

⎤
⎦ = 0 ∀i. (2.4)

In order to go from (2.3) to (2.4), we multiply by γ�
i and rearrange the terms. To simplify

the notation, let us further introduce the function

f(S, γ) .=
∑
A∈S

1∑
i∈A γi

,

which takes observations S ⊆ D and an instance of model parameters γ, and returns a
non-negative real number. Let Di�j

.= {(cm, Am) ∈ D : m ∈ Wi ∩ Lj}, i.e., the set of
observations where i wins over j. Then (2.4) can be rewritten as

∑
j �=i

γ�
i · f(Dj�i, γ�) =

∑
j �=i

γ�
j · f(Di�j , γ�) ∀i. (2.5)

This formulation conveys a new viewpoint on the MLE. It is easy to recognize the global
balance equations (2.2) of a Markov chain on N states (representing the items), with
transition rates λji = f(Di�j , γ�) and stationary distribution γ�. These transition rates
have an interesting interpretation: f(Di�j , γ) is the count of how many times i wins
over j, weighted by the strength of the alternatives. At this point, it is useful to observe
that for any parameters γ, f(Di�j , γ) > 0 if and only if (j, i) ∈ E . Combined with the
assumption that G is strongly connected, it follows that any γ parametrizes the transition
rates of an ergodic (homogeneous) Markov chain. The ergodicity of the inhomogeneous
Markov chain, where the transition rates are constantly updated to reflect the current
distribution over states, is shown by the following theorem.

Theorem 2.2. The Markov chain with inhomogeneous transition rates λji = f(Di�j , γ)
converges to the maximum-likelihood estimate γ�, for any initial distribution in the open
probability simplex.

Proof. Let Q(γ) be the infinitesimal generator matrix of the Markov chain γ(t). The
dynamics of the Markov chain are described by the differential equation

dγ�

dt
= γ�Q(γ). (2.6)

By construction, the invariant distributions of the Markov chain coincide with the
maximizers of the log-likelihood (2.1). Hence, we know that γ� is the unique equilibrium
point for (2.6), i.e., satisfying γ�Q(γ) = 0. We will now show that this point is globally
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2.3. Algorithms

Algorithm 2.1 Luce Spectral Ranking.
Require: observations D

1: Λ ← 0N×N

2: for (i, A) ∈ D do
3: for j ∈ A \ {i} do
4: λji ← λji + N/|A|
5: end for
6: end for
7: return stationary distribution of Markov chain with transition rates Λ

and asymptotically stable, i.e., γ(t) → γ� as t → ∞ for any γ(0) in the open probability
simplex. To this end, it suffices to show that V (γ) = −	(γ) + 	(γ�) is a Lyapunov
function for the dynamical system (2.6). First, we have that V (γ�) = 0 and V (γ) > 0 for
all γ �= γ� (by definition of the MLE). Second, we note that γ�Q(γ) = diag (γ) ∇	(γ).
Hence,

dV

dt
= (∇V )� dγ

dt
= −[∇	(γ)]�diag (γ) ∇	(γ) < 0,

for all γ �= γ�. Third, 	(γ) grows unboundedly as γ approaches the boundary of the
probability simplex [Hunter, 2004, Lemma 1] and therefore V (γ) does so as well. The
result then follows by applying the Barbashin-Krasovskii theorem, a standard result
found, e.g., in Khalil [1996, Chapter 3].

2.3.2 Approximate and Exact ML Inference

We approximate the Markov chain described in (2.5) by considering a priori that all
alternatives have equal strength. That is, we set the transition rates λji

.= f(Di�j , γ)
by fixing γ to [1/N · · · 1/N ]�. For i �= j, the contribution of i winning over j to the
rate of transition λji is N/|A|. In other words, for each observation, the winning item is
rewarded by a fixed amount of incoming rate that is evenly split across the alternatives
(the chunk allocated to itself is discarded). We interpret the stationary distribution γ̄

as an estimate of model parameters. Algorithm 2.1 summarizes this procedure, called
Luce Spectral Ranking (LSR). If we consider a growing number of observations, LSR
converges to the true model parameters γ ′, even in the restrictive case where the sets of
alternatives are fixed.

Theorem 2.3. Let U = {An} be a collection of sets of alternatives such that for any
partition of U into two non-empty sets S and T , (∪A∈SA) ∩ (∪A∈T A) �= ∅. Let Mn be
the number of choices observed over alternatives An. Then γ̄ → γ ′ as Mn → ∞ ∀n.

Proof. Let M → ∞ be a shorthand for Mn → ∞ ∀n. The condition on U is equivalent
to stating that the hypergraph H = (V, U), with V = [N ], is connected. It implies that,
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Chapter 2. Parameter Inference

asymptotically, the comparison graph GD is strongly connected. Indeed, for a given set of
alternatives An, let i, j ∈ An. The probability that (j, i) ∈ E is

1 −
(

1 − γ′
i∑

k∈An
γ′

k

)Mn

> 1 − (1 − γ′
i)Mn Mn→∞−−−−−→ 1,

where we use the fact that γ′
i > 0 for all i. Therefore, asymptotically, every alternative

set An forms a clique in GD. By assumption of connectivity on the hypergraph H, the
comparison graph is strongly connected.

Now that we know that the Markov chain is ergodic, we will show that the stationary
distribution matches the true model parameters. Let cn

m be a random variable denoting
the item chosen in the m-th observation over alternatives An, and let 1{X } be the indicator
variable for the event X . By the law of large numbers, for any item i ∈ An,

lim
Mn→∞

1
Mn

Mn∑
m=1

1{cn
m=i} =

γ′
i∑

k∈An
γ′

k

. (2.7)

Now consider two items i and j. If they have never been compared, λij = λji = 0.
Otherwise, suppose that they have been compared in alternative sets whose indices are
in B = {n : i, j ∈ An}. By construction of the transition rates in LSR, we have that

λij

λji
=

∑
n∈B

∑Mn
m=1 1{cn

m=j} N/|An|∑
n∈B

∑Mn
m=1 1{cn

m=i} N/|An|
.

From (2.7) it follows that

lim
M→∞

λij

λji
=

∑
n∈B(γ′

j/
∑

k∈An
γ′

k) N/|An|∑
n∈B(γ′

i/
∑

k∈An
γ′

k) N/|An| =
γ′

j

γ′
i

.

Therefore, when M → ∞,

∑
j �=i

γ′
iλij =

∑
j �=i

γ′
i

(
γ′

j

γ′
i

λji

)
=

∑
j �=i

γ′
jλji ∀i.

We recognize the global balance equations (2.2), and it follows that γ ′ is the stationary
distribution of the Markov chain.

Starting from the LSR estimate, we can iteratively refine the transition rates of the
Markov chain and obtain a sequence of estimates. By (2.5), the only fixed point of this
iteration is the MLE γ�. We call this procedure I-LSR and describe it in Algorithm 2.2.

LSR (or one iteration of I-LSR) entails (a) filling a matrix of (weighted) pairwise counts
and (b) finding a stationary distribution. Let D

.=
∑

m|Am|, and let S be the running
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2.3. Algorithms

Algorithm 2.2 Iterative Luce Spectral Ranking.
Require: observations D

1: γ ← [1/N · · · 1/N ]�
2: repeat
3: Λ ← 0N×N

4: for (i, A) ∈ D do
5: for j ∈ A \ {i} do
6: λji ← λji + 1/

∑
k∈A γk

7: end for
8: end for
9: γ ← stationary distribution of Markov chain with transition rates Λ

10: until convergence

time of finding the stationary distribution. Then LSR has running time O(D + S). As
a comparison, one iteration of the MM algorithm [Hunter, 2004] is O(D). Finding the
stationary distribution can be implemented in different ways. For example, in a sparse
regime where D � N2, the stationary distribution can be found with the power method
in a few O(D) sparse matrix multiplications. In practice, it is not clear whether D or S

turns out to be dominant in the running time.

2.3.3 Bradley–Terry Model

A widely-used special case of Luce’s choice model occurs when all sets of alternatives
contain exactly two items, i.e., when the data consist of pairwise comparisons. This model
was proposed by Zermelo [1928] and later by Bradley and Terry [1952]. As the stationary
distribution is invariant to changes in the time scale, we can rescale the transition rates
and set λji

.= |Di�j | when using LSR on pairwise data. Let S be the set containing the
pairs of items that are compared at least once. In the case where each pair (i, j) ∈ S are
compared exactly C times, LSR is strictly equivalent to a continuous-time Markov-chain
formulation of Rank Centrality [Negahban et al., 2012]. In fact, our derivation justifies
Rank Centrality as an approximate ML inference algorithm for the Bradley–Terry model.
Furthermore, we provide a principled extension of Rank Centrality to the case where
the number of observed comparisons is unbalanced. Rank Centrality considers transition
rates proportional to the ratio of wins, whereas (2.5) justifies making transition rates
proportional to the count of wins.

Negahban et al. [2012] also provide an upper bound on the error rate of Rank Centrality,
which essentially shows that the error rate is minimax-optimal. Because the two estimators
are equivalent in the setting of balanced pairwise comparisons, the bound also applies to
LSR.
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Chapter 2. Parameter Inference

2.3.4 Plackett–Luce Model

Another case of interest is when observations do not consist of only a single choice,
but of a ranking over the alternatives. We now suppose that we have a dataset of M

observations consisting of K-way rankings, 2 ≤ K ≤ N . For conciseness and without loss
of generality, we suppose that K is the same for all observations. Let one such observation
be i(1) � · · · � i(K), where i(r) is the item with r-th rank. The Plackett–Luce model
(c.f. Section 1.2.3) posits

P [i(1) � · · · � i(K)] =
K∏

r=1

γi(r)∑K
s=r γi(s)

.

A ranking can thus be interpreted as a sequence of K − 1 independent choices: choose
the first item, then choose the second among the remaining alternatives, etc. With this
point of view in mind, LSR and I-LSR can easily accommodate data consisting of K-way
rankings, by decomposing the M observations into M ′ = M(K − 1) choices.

Azari Soufiani et al. [2013] provide a class of consistent estimators for the Plackett–
Luce model, using the idea of breaking rankings into pairwise comparisons. Although
they explain their algorithms from a generalized-method-of-moments perspective, it is
straightforward to reinterpret their estimators as stationary distributions of particular
Markov chains. In fact, for K = 2, their algorithm GMM-F is identical to LSR. When
K > 2 however, breaking a ranking into

(K
2

)
pairwise comparisons implicitly makes the

(incorrect) assumption that these comparisons are statistically independent. The Markov
chain that LSR builds breaks rankings into pairwise rate contributions, but weights
the contributions differently depending on the rank of the winning item. In Section 2.4,
we show that this weighting turns out to be crucial. Our approach yields a significant
improvement in statistical efficiency yet keeps the same attractive computational cost
and ease of use.

2.3.5 Rao–Kupper Model

The link between the MLE and the stationary distribution of a Markov chain seemingly
applies to other variants and extensions of Luce’s choice model. For an illustration, we
consider the model proposed by Rao and Kupper [1967], which extends the Bradley–Terry
model to the case where a comparison between two items can result in a tie. This model
is useful, e.g., for chess, where a significant fraction of comparison outcomes do not result
in either a win or a loss. Letting α ∈ [1, ∞), the probabilities of i winning over and tying
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2.3. Algorithms

with j, respectively, are given by

p(i � j) =
γi

γi + αγj
,

p(i ≡ j) =
γiγj(α2 − 1)

(γi + αγj)(αγi + γj)
.

Informally, the parameter α controls the expected probability of observing a tie in the
comparison of two items of equal strength. We assume that α is fixed, and derive an
expression of the MLE γ�. Let aji be the number of times i wins over j, and tij = tji be
the number of ties between i and j. The log-likelihood can be written as

	(γ) =
∑

i

∑
j �=i

aji [log γi − log(γi + αγj)]

+
∑

i

∑
j>i

tij

[
log γi + log γj + log(α2 − 1) − log(γi + αγj) − log(αγi + γj)

]
.

This function admits a unique MLE γ�, and the optimality condition ∇	(γ�) = 0 implies

∂	(γ)
∂γi

∣∣∣∣
γ=γ�

=
∑
j �=i

[
aji

( 1
γ�

i

− 1
γ�

i + αγ�
j

)
− aij

α

αγ�
i + γ�

j

+ tij

( 1
γ�

i

− 1
γ�

i + αγ�
j

− α

αγ�
i + γ�

j

)]
= 0

⇐⇒
∑
j �=i

[
aji

αγ�
j

γ�
i + αγ�

j

− aij
αγ�

i

αγ�
i + γ�

j

+ tij

α(γ�
j )2 − α(γ�

i )2

(γ�
i + αγ�

j )(αγ�
i + γ�

j )

]
= 0

⇐⇒
∑
j �=i

[aji + tji
γ�

j

αγ�
i +γ�

j

γ�
i + αγ�

j

γ�
j −

aij + tij
γ�

i
γ�

i +αγ�
j

αγ�
i + γ�

j

γ�
i

]
= 0.

Therefore, the MLE can be interpreted as the stationary distribution of a Markov chain
with transition rates

λij =
aij + tij

γ�
i

γ�
i +αγ�

j

αγ�
i + γ�

j

.

Given these transition rates, the extension of Algorithms 2.1 and 2.2 is straightforward.
For example, for LSR, the transition rates simplify to λij ∝ aij + tij(1 + α)−1.

Beyond the Rao–Kupper model, we believe that our algorithms can be generalized to
further models that are based on the choice axiom. However, this axiom is key, and
other choice models (such as Thurstone’s [1927a]) do not seem to admit the stationary-
distribution interpretation we derive here.
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Chapter 2. Parameter Inference

2.4 Experimental Evaluation

In this section, we compare LSR and I-LSR to other inference algorithms, in terms of
statistical efficiency and empirical performance. First, in order to measure the statistical
efficiency of the estimators, we generate synthetic data from a known ground truth.
Then, we look at five real-world datasets and investigate the practical performance of
the algorithms in terms of accuracy, running time and convergence rate.

Error Metric As the probability of i winning over j depends on the ratio of strengths
γi/γj , the strengths are typically logarithmically spaced. In order to evaluate the accuracy
of an estimate γ to ground truth parameters γ ′, we therefore use a log transformation,
reminiscent of the random-utility-theoretic formulation of the choice model. Define
θi

.= log(γi) − κ, with κ chosen such that
∑

i θi = 0, and let θ = [θi]. We will consider
the root-mean-squared error

ERMS = ‖θ − θ′‖2/
√

N.

2.4.1 Statistical Efficiency

To assess the statistical efficiency of LSR and other algorithms, we follow the experimental
procedure of Hajek et al. [2014]. We consider N = 1024 items, and draw θ′ uniformly at
random in [−2, 2]N . We generate M = 64 full rankings over the N items from a Plackett–
Luce model parametrized with γ ∝ [eθi ]. For a given K ∈ {21, . . . , 210}, we break down
each of the full rankings as follows. First, we partition the items into N/K subsets of size
K uniformly at random. Then, we store the K-way rankings induced by the full ranking
on each of those subsets. As a result, we obtain MN/K statistically independent K-way
partial rankings. For a given estimator, these data produce an estimate θ, for which we
record the root-mean-square error to θ′. We consider four estimators. The first two (LSR
and ML) work on the ranking data directly. The remaining two follow Azari Soufiani
et al. [2013] who suggest breaking down K-way rankings into

(K
2

)
pairwise comparisons.

These comparisons are then used by LSR, resulting in Azari Soufiani et al.’s GMM-F
estimator, and by an ML estimator (ML-F). In short, the four estimators vary according
to (a) whether they use as-is rankings or derived comparisons, and (b) whether the model
is fitted using an approximate spectral algorithm or using the exact MLE. Figure 2.1 plots
ERMS for increasing sizes of partial rankings, as well as a lower bound to the error of any
estimator for the Plackett–Luce model (see Hajek et al. [2014] for details). We observe
that breaking the rankings into pairwise comparisons (*-F estimators) incurs a significant
efficiency loss over using the K-way rankings directly (LSR and ML). We conclude that
by correctly weighting pairwise rates in the Markov chain, LSR distinctly outperforms
the rank-breaking approach as K increases. We also observe that the MLE is always
more efficient. Spectral estimators such as LSR provide a computationally inexpensive,
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Figure 2.1 – Statistical efficiency of different estimators for increasing sizes of partial
rankings. As K grows, breaking rankings into pairwise comparisons becomes increasingly
inefficient. LSR remains efficient at no additional computational cost.

asymptotically consistent estimate of parameters, but this observation justifies calling
them approximate inference algorithms.

2.4.2 Empirical Performance

We investigate the performance of various inference algorithms on five real-world datasets.
The NASCAR [Hunter, 2004] and sushi [Kamishima and Akaho, 2009] datasets contain
multiway partial rankings. The YouTube3, GIFGIF4 and chess5 datasets contain pairwise
comparisons. Among these, the chess dataset is particular in that it features 45% of
ties; in this case, we use the model proposed by Rao and Kupper [1967]. We preprocess
each dataset by discarding items that are not part of the largest strongly connected
component in the comparison graph, in order to ensure that the MLE is well-defined.
For each dataset, the number of items N , the number of rankings M , as well as the size
K of a partial ranking after preprocessing are given in Table 2.1.

Experimental Procedure We run all experiments on a machine with a quad-core 2.0
GHz Haswell processor and 16 GB of RAM, running Mac OS X 10.9. For LSR and I-LSR,
we use a slightly adapted version the Python code presented in Listing 2.1, which calls a

3See: https://archive.ics.uci.edu/ml/machine-learning-databases/00223/.
4See: http://lucas.maystre.ch/gifgif-data.
5See: https://www.kaggle.com/c/chess.
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dense LU factorization routine. We implement the Rank Centrality (RC), GMM-F and
MM [Hunter, 2004] algorithms in Python as well. For the Newton-Raphson algorithm,
we implement the choice model on top of the popular statsmodels Python library6 that
provides a Newton-Raphson solver. We have compared our implementation of the MM
algorithm to that of Hunter written in Matlab7 and observed that ours has comparable
running time. For the chess dataset, we use the Rao–Kupper model with α =

√
2 for

simplicity. Note that this parameter could also be estimated from the data, however in
our experiments we focus on the performance of algorithms for estimating γ.

Listing 2.1 – Python implementation of one iteration of I-LSR.
import numpy as np
import scipy . linalg as spl

def weighted_lsr (n, rankings , weights ):
chain = np. zeros ((n, n), dtype = float )
for ranking in rankings :

sum_weights = sum( weights [x] for x in ranking )
for i, winner in enumerate ( ranking ):

val = 1.0 / sum_weights
for loser in ranking [i +1:]:

chain [loser , winner ] += val
sum_weights -= weights [ winner ]

chain -= np.diag( chain . sum(axis =1))
return statdist ( chain )

def statdist ( chain ):
lu , piv = spl. lu_factor ( generator .T)
res = spl. solve_triangular (lu [: -1 ,: -1] , -lu [: -1 , -1])
res = np. append (res , 1.0)
return res / res.sum ()

We first compare the estimates produced by three approximate ML inference algorithms,
LSR, GMM-F and RC. Note that RC applies only to pairwise comparisons, and that
LSR is the only algorithm able to infer the parameters in the Rao-Kupper model. Also
note that, in the case of pairwise comparisons, GMM-F and LSR are strictly equivalent.
In Table 2.1, we report the root-mean-square deviation to the MLE θ� and the running
time T of the algorithm.

The smallest value of ERMS is highlighted in bold for each dataset. We observe that in the
case of multiway partial rankings, LSR is almost four times more accurate than GMM-F
on the datasets considered. In the case of pairwise comparisons, RC is slightly worse
than LSR and GMM-F, because the number of comparisons per pair is not homogeneous
(see Section 2.3.3). The running time of the three algorithms is comparable.

Next, we turn our attention to ML inference and consider three iterative algorithms:
I-LSR, MM and Newton-Raphson. For Newton-Raphson, we use an off-the-shelf solver.
Each algorithm is initialized with γ(0) = [1/N · · · 1/N ]�, and convergence is declared

6See: http://statsmodels.sourceforge.net/
7See: http://sites.stat.psu.edu/~dhunter/code/btmatlab/
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Table 2.1 – Performance of approximate ML inference algorithms.

LSR GMM-F RC

Dataset N M K ERMS T [s] ERMS T [s] ERMS T [s]

NASCAR 83 36 43 0.194 0.03 0.751 0.06 — —
Sushi 100 5 000 10 0.034 0.22 0.130 0.19 — —

YouTube 16 187 1 128 704 2 0.417 34.18 0.417 34.18 0.432 41.91
GIFGIF 5 503 95 281 2 1.286 1.90 1.286 1.90 1.295 2.84

Chess 6 174 63 421 2 0.420 2.90 — — — —

when ERMS < 0.01. In Table 2.2, we report the number of iterations I needed to reach
convergence, as well as the total running time T of the algorithm.

Table 2.2 – Performance of iterative ML inference algorithms.

I-LSR MM Newton

Dataset ξ I T [s] I T [s] I T [s]

NASCAR 0.832 3 0.08 4 0.10 — —
Sushi 0.899 2 0.42 4 1.09 3 10.45

YouTube 0.002 12 414.44 8 680 22 443.88 — —
GIFGIF 0.408 10 22.31 119 109.62 5 72.38

Chess 0.007 15 43.69 181 55.61 3 49.37

The smallest total running time T is highlighted in bold for each dataset. We observe
that Newton-Raphson does not always converge, despite the log-likelihood being strictly
concave8. I-LSR consistently outperforms MM and Newton-Raphson in running time.
Even if the average running time per iteration is in general larger than that of MM, it
needs considerably fewer iterations: For the YouTube dataset, I-LSR yields an increase
in speed of over 50 times.

The slow convergence of minorization-maximization algorithms is known [Hunter, 2004],
yet the scale of the issue and its apparent unpredictability is surprising. In Hunter’s MM
algorithm, updating a given γi involves only parameters of items to which i has been
compared. Therefore, we speculate that the convergence rate of MM is dependent on
the expansion properties of the comparison graph GD. For an illustration, we consider
the sushi dataset. To quantify the expansion properties, we look at the spectral gap ξ of
a simple random walk on GD; intuitively, the larger the spectral gap is, the better the
expansion properties are [Levin et al., 2008]. The original comparison graph is almost
complete, and ξ = 0.899. By breaking each 10-way ranking into 5 independent pairwise

8On the NASCAR dataset, this has also been noted by Hunter [2004]. Computing the Newton step
appears to be severely unstable for many real-world datasets. We believe that this instability can be
addressed by a careful choice of starting point, step size, or by monitoring the numerical stability; however,
these modifications are non-trivial and put an additional burden on the practitioner.
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Figure 2.2 – Convergence rate of I-LSR and MM on the sushi dataset. When partial
rankings (K = 10) are broken down into independent comparisons (K = 2), the compari-
son graph becomes sparser. I-LSR is robust to this change, whereas the convergence rate
of MM significantly decreases.

comparisons, we effectively sparsify the comparison graph. As a result, the spectral gap
decreases to 0.815. In Figure 2.2, we show the convergence rate of MM and I-LSR for
the original (K = 10) and modified (K = 2) datasets. We observe that both algorithms
display geometric convergence, however the rate at which MM converges appears to
be sensitive to the structure of the comparison graph. In contrast, I-LSR is robust to
changes in the structure. The spectral gap of each dataset is listed in Table 2.2.

2.5 Summary

In this chapter, we have developed a stationary-distribution perspective on the maximum-
likelihood estimate of Luce’s choice model. This perspective explains and unifies several
recent spectral algorithms from an ML inference point of view. We have presented our
own spectral algorithm, that works on a wider range of data, and shown that the resulting
estimate significantly outperforms previous approaches in terms of accuracy. We have
also shown that this simple algorithm, with a straightforward adaptation, can produce
a sequence of estimates that converge to the ML estimate. On real-world datasets, our
ML algorithm is always faster than the state of the art, at times by up to two orders of
magnitude.
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2.5. Summary

Beyond statistical and computational performance, we believe that a key strength of our
algorithms is that they are simple to implement. As an example, our implementation of
LSR fits in ten lines of Python code. The most complex operation—finding a stationary
distribution—can be readily offloaded to commonly available and highly optimized linear-
algebra primitives. As such, we believe that our contribution is useful for practitioners.
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3 Active Learning

In this chapter1, we develop a data-efficient method for learning a ranking from adaptively
chosen pairwise comparisons (a setting known as active learning). Our goal is to recover
the ranking accurately, but to sample the comparisons sparingly. If all comparison
outcomes are consistent with the ranking, the optimal solution is to use an efficient
sorting algorithm, such as Quicksort. But how do sorting algorithms behave if some
comparison outcomes are inconsistent with the ranking? We give favorable guarantees for
Quicksort for the Bradley–Terry model, under natural assumptions on the parameters.
Furthermore, we empirically demonstrate that sorting algorithms lead to a very simple
and effective active-learning strategy: repeatedly sort the items. This strategy performs as
well as state-of-the-art methods (and much better than random sampling), at a minuscule
fraction of the computational cost.

3.1 Introduction

Whereas pairwise comparison models and related inference algorithms have been exten-
sively studied, the issue of which pairwise comparisons to query has received significantly
less attention from the research community. To understand the potential benefits of
adaptively selecting samples, consider the case where comparison outcomes are noiseless,
i.e., consistent with a linear order on a set of N items. If pairs of items are selected at
random, it is necessary to collect Ω(N2) comparisons to recover the ranking [Alon et al.,
1994]. In contrast, by using an efficient sorting algorithm, O(N log N) adaptively chosen
comparisons are sufficient. In this chapter, we demonstrate that sorting algorithms can
also be helpful in the noisy setting, where some comparison outcomes are inconsistent
with the ranking: despite errors, sorting algorithms tend to select informative samples.
We focus on the Bradley–Terry (BT) model, that captures the intuitive notion that some
pairs of items are easy to compare, but some are more difficult (c.f. Section 1.2.2).

1This chapter is based on Maystre and Grossglauser [2017b].
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First, we study the output of a single execution of Quicksort when comparison outcomes
are generated from a BT model, under the assumption that the distance between adjacent
parameters is (stochastically) uniform across the ranking. We measure the quality of
a ranking estimate by its displacement with respect to the ground truth, i.e., the sum
of rank differences. We show that Quicksort’s output is a good approximation to the
ground-truth ranking: no method comparing every pair of items at most once can do
better (up to constant factors). Furthermore, we show that by aggregating O(log5 N)
independent runs of Quicksort, it is possible to recover the exact rank for all but a
vanishing fraction of the items. These theoretical results suggest that adaptive sampling
is able to bring a substantial acceleration to the learning process.

Second, we propose a practical active-learning (AL) strategy that consists of repeatedly
sorting the items. We evaluate our sorting-based method on three datasets and compare
it to existing AL methods. We observe that all the strategies that we consider lead
to better ranking estimates noticeably faster than random sampling. However, most
strategies are challenging to operate and computationally expensive, thus hindering
wider adoption [Schein and Ungar, 2007]. In this regard, sorting-based AL stands out, as
(a) it is computationally-speaking as inexpensive as random sampling, (b) it is trivial to
implement, and (c) it requires no tuning of hyperparameters.

Outline of the Chapter After concluding this section with some preliminaries, we
review related literature in Section 3.2. Next, in Section 3.3, we study the displacement
of Quicksort’s output under noisy comparisons. In Section 3.4, we empirically evaluate
several AL strategies on three datasets. For clarity of presentation, we defer some proofs
to Section 3.5.

3.1.1 Preliminaries and Notation

Without loss of generality, we assume that the N items are enumerated by increasing
preference2, i.e., i < j means that j is (in expectation) preferred to i for all i, j ∈ [N ].
When j is preferred to i as a result of a pairwise comparison, we denote the observation
by i ≺ j. If i < j, we say that i ≺ j is a consistent outcome and j ≺ i an inconsistent
(incorrect) outcome. We denote by BT(θ) a Bradley–Terry model with parameters
θ = [θ1 · · · θN ]� ∈ RN . A ranking σ is a function that maps an item to its rank, i.e.,
σ(i) = rank of item i. The (ground-truth) identity ranking is denoted by id, i.e. id(i) = i.
To measure the quality of a ranking σ with respect to the ground-truth, we consider the

2This convention greatly simplifies the notation throughout the chapter, but differs from that used in
most of the preference-learning literature. In this chapter, the item with rank 1 is the worst.
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displacement

Δ(σ) =
N∑

i=1
|σ(i) − i|,

also known as Spearman’s footrule distance. Another metric widely used in practice is
the Kendall–Tau distance, defined as K(σ) =

∑
i<j 1{σ(i)>σ(j)}. Diaconis and Graham

[1977] show that both metrics are equivalent up to a factor of two, i.e.,

Δ(σ)/2 ≤ K(σ) ≤ Δ(σ).

Hence, bounds on Δ(σ) also hold for K(σ) up to constant factors. Finally, we say that
an event A holds with high probability if P [A] → 1 as N → ∞. For a random variable
X and a sequence of numbers aN , we say that X = O(aN ) with high probability if
P [|X| ≤ caN ] → 1 as N → ∞ for some constant c that does not depend on N .

3.2 Related Work

Passive Setting Recently, there have been a number of results on the sample com-
plexity of the BT model, based on the assumption that all pairs of items are chosen
before any comparison outcome is revealed [Negahban et al., 2012, Hajek et al., 2014,
Rajkumar and Agarwal, 2014, Vojnovic and Yun, 2016]. In general, these results reveal
that choosing pairs of items uniformly at random is essentially optimal. Furthermore,
they suggest that the ranking induced by the BT model cannot be recovered with less
than Ω(N2) comparisons. Our work shows that by adaptively selecting pairs based on
observed outcomes, we observe substantial gains.

Active Preference Learning AL approaches for learning a ranking from noisy com-
parison outcomes have been studied under various assumptions. Braverman and Mossel
[2008] examine a model where outcomes of pairwise comparisons are flipped with a
small, constant probability. Ailon [2012] considers an adversarial setting (comparison
outcomes can be arbitrary) and investigates AL in the context of finding a ranking that
minimizes the number of inconsistent outcomes, also known as the minimum feedback-arc
set problem on tournaments (MFAST). These theoretical studies imply, in their respective
settings, that O(N logK N) comparison outcomes are enough to recover a near-optimal
ranking, for some constant K. Jamieson and Nowak [2011] propose an efficient active-
ranking algorithm that is applicable if items can be embedded in RD (e.g., using D

features) and assuming that admissible rankings satisfy some geometric constraints. Wang
et al. [2014] study a collaborative preference-learning problem (each user is modeled by a
different BT model) and show that a variant of uncertainty sampling—a well-known AL
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strategy—works well for their problem. Here, we assume that we do not have access to
item features and that comparison outcomes follow a single BT model.

Bayesian Methods From a practical standpoint, Bayesian methods provide an effec-
tive way to select informative samples [MacKay, 1992]. However, they can be difficult
to scale if the number of items is large. Work on Bayesian active preference learning
includes Chu and Ghahramani [2005a], Houlsby et al. [2012], Salimans et al. [2012] and
Chen et al. [2013]. We compare our AL strategy to these methods in Section 3.4.

Multi-Armed Bandit The dueling bandit problem [Yue et al., 2009] is somewhat
related to our work. In this problem, the goal is to identify the best item, based on noisy
comparison outcomes, using as few adaptively chosen samples as possible. Two recent
papers also extend the problem to that of recovering the entire ranking (instead of only
the top element). The work of Szörényi et al. [2015] is the closest to ours, as it also
uses the BT model. They show that a quasilinear number of comparisons is sufficient
for recovering the true ranking (under some conditions on θ), a result that is similar to
our Theorem 3.6. Heckel et al. [2016] investigate a non-parametric model and develop
some theoretical guarantees. In contrast to these works, we study practical comparison
budgets: we give theoretical guarantees for the output obtained from a single call to
Quicksort, and in our experiments we never exceed ≈ 10 calls.

Quicksort The Quicksort algorithm [Hoare, 1962] is one of the most widely studied
sorting procedures. Quicksort has been shown to produce useful rankings beyond classic
sorting problems. For example, Ailon et al. [2008] show that Quicksort produces (in
expectation) a 3-approximation to the MFAST problem. Quicksort combined with BT
comparison outcomes has also been proposed as a probabilistic ranking model [Ailon,
2008]. We take advantage of some of the properties of this ranking model in order to
derive the theoretical results of Section 3.3.

3.3 Theoretical Results

In this section, we begin by studying the behavior and output of Quicksort under
inconsistent comparison outcomes, without any assumptions on the noise generating
process. Then, starting in Section 3.3.1, we focus on comparison outcomes generated by
the BT model. For clarity, longer proofs are deferred to Section 3.5.

Quicksort (Algorithm 3.1) is best described as a recursive procedure. At each step of the
recursion, a pivot item p is chosen uniformly at random (line 3). Then, during the partition
operation (lines 4–10), every other item is compared to p and added to the set L or R,
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Algorithm 3.1 Quicksort.
Require: set of items V ⊆ [N ]

1: if |V| < 2 then return list(V) � Terminating case.
2: L ← ∅, R ← ∅

3: p ← element of V selected uniformly at random
4: for i ∈ V \ {p} do
5: if i ≺ p then � Pairwise comparison.
6: L ← L ∪ {i}
7: else
8: R ← R ∪ {i}
9: end if

10: end for
11: return Quicksort(L) · p · Quicksort(R)

depending on the outcome of the comparison with the pivot. If all comparison outcomes
are consistent, it is well-known that Quicksort terminates after sampling O(N log N)
comparisons with high probability. What happens if we drop the consistency assumption?
The following two lemmas state that these key properties remain valid, no matter which
(and how many) comparison outcomes are inconsistent.

Lemma 3.1. Quicksort always terminates and samples each of the N(N −1)/2 possible
comparisons at most once.

Proof. The proof is identical to the consistent setting. Consider the state of L and R at
the end of a partition operation. Because |L| + |R| = |V| − 1, the recursive calls are made
on sets of items of strictly decreasing cardinality, and the algorithm terminates after a
finite number of steps. Furthermore, suppose that Quicksort samples an outcome for the
pair (i, j). Then either i or j is the pivot in a partition operation. In either case, the
pivot is not included in the recursive calls, which ensures that (i, j) cannot be compared
again.

Lemma 3.2. Quicksort samples O(N log N) comparisons with high probability.

Proof (sketch). We follow a standard analysis of Quicksort [see, e.g., Dubhashi and
Panconesi, 2009, Section 3.3.3]. With high probability, we choose a “good” pivot (i.e.,
one that results in a balanced partition) a constant fraction of the time. In this case, the
depth of the call tree is O(log N). As there are at most N comparisons at each level of
the call tree, we conclude that Quicksort uses O(N log N) comparisons in total. With
respect to the standard proof, ours requires additional work in order to formalize the
notion of “good” pivot to the setting where comparison outcomes are not consistent with
a linear order.
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Lemma 3.2 complements Theorem 3 in Ailon and Mohri [2010], which states that Quicksort
samples O(N log N) in expectation. These results might suggest that all properties of
Quicksort carry over to the noisy setting. This is not the case. For example, although
Quicksort uses approximately 2N ln N comparisons on average in the noiseless setting
[Sedgewick and Wayne, 2011], this number can be distinctly different with inconsistent
comparison outcomes3.

Quicksort (and efficient sorting algorithms in general) infer most pairs of items’ relative
position by transitivity and rely heavily on the consistency of comparison outcomes. In the
noisy case, it is therefore important to precisely understand the effect of an inconsistent
outcome on the output of the algorithm; this effect extends beyond the pair of items
whose comparison outcome was inconsistent. For this purpose, the next Lemma bounds
the displacement of Quicksort’s output as a function of the inconsistent outcomes.

Lemma 3.3. Let E be the set of pairs sampled by Quicksort whose outcome is inconsistent
with id. Let σ be the output of Quicksort. Then,

Δ(σ) ≤ 2
∑

(i,j)∈E
|i − j|

Proof (sketch). Consider the first partition operation, with pivot p, resulting in partitions
L and R. Denote the set of pairs of items involved in errors made during this partition
operation by E1. We can show that the displacement is bounded by

Δ(σ) ≤ ΔL(σ) + ΔR(σ) + 2
∑

(i,j)∈E1

|i − j|,

where ΔL(σ) and ΔR(σ) represent the displacement of the ordering induced by σ on L
and R, respectively. In other words, the total displacement can be decomposed into a
term that represents the “local” displacement due to the partition operation and into
two terms that account for errors in the recursive calls. We obtain the desired result by
recursively bounding ΔL(σ) and ΔR(σ).

Informally, Lemma 3.3 states that the displacement can be bounded by a sum of “local
shifts” due to the inconsistent outcomes and that the price to pay for any information
inferred by transitivity is bounded by a factor two. Lemma 3.3 is a crucial component
of our subsequent analysis of BT noise, and we believe that it can be useful in order to
investigate Quicksort under a wide variety of other noise generating processes.

3E.g., if comparison outcomes are uniformly random, all items are “good” pivots with high probability,
and the average number of comparisons will be closer to N log2 N on average, for large N .
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3.3.1 Poisson-Distributed Parameters

From here on, we assume that comparison outcomes are generated from BT(θ). Clearly,
any results on the displacement of a ranking estimated from samples of a BT model will
depend on θ; it is easy to construct a model instance for which it is arbitrarily hard to
recover the ranking, by choosing parameters sufficiently close to each other. Our approach
is as follows. We postulate a family of distributions over θ, and we give bounds on the
displacement that hold with high probability.

We suppose that comparison outcomes are (in expectation) uniformly noisy across the
ranking: i.e., comparing two elements at the bottom is (a priori) as difficult as comparing
two elements at the top or in the middle. This means that the probability distribution
over parameters θ1, . . . , θN results in (random) distances |θi+k − θi| that depend only on
k. One such distribution arises if the parameters are drawn from a Poisson point process
of rate λ. That is,

i.i.d. x1, . . . , xN−1 ∼ Exp(λ), θi =
i−1∑
n=1

xn. (3.1)

The average distance between two items separated by k positions in the ordering is
E [θi+k − θi] = k/λ. Although the distance between adjacent items is constant in ex-
pectation, we let some parameters be arbitrarily close4. The parameter λ indirectly
controls the expected level of noise; a large λ is likely to result in a larger number of
inconsistent outcomes. Although the precise choice of this Poisson model is driven by
tractability concerns, in Section 3.3.2 we argue that it is essentially equivalent to choosing
the parameters independently and uniformly at random in the interval [0, (N + 1)/λ],
when λ is fixed and N is large. We are now ready to state our main result.

Theorem 3.4. Let θ be sampled from a Poisson point process of rate λ. Let σ be the
output of Quicksort using comparison outcomes sampled from BT(θ). Then,

Δ(σ) = O(λ2N), (3.2)
max

i
|σ(i) − i| = O(λ log N), (3.3)

with high probability.

Proof (sketch). Let zij be the indicator random variable of the event “the comparison
between i and j results in an error”, and let dij = |θi − θj |. The distance dij is a sum of
|i − j| i.i.d. exponential random variables, i.e., dij ∼ Gamma(|i − j|, λ), and we can show

4In particular, the expected minimum distance between two items (i.e., the min of N exponential
r.v.s) decreases as (Nλ)−1 as N increases.
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that

E [zij ] = E
[

1
1 + exp(dij)

]
≤ E [exp(−dij)] = (1 + 1/λ)−|i−j|.

Using Lemma 3.3 and the fact that every pair of items is compared at most once, we find

E [Δ] ≤ 2
∑
i<j

|i − j|E [zij ] ≤ 2N
∞∑

k=0
k(1 + 1/λ)−k = 2Nλ(λ + 1).

The random variables {zij} are not independent (they are independent when conditioned
on θ) but, with some more work, we can show that Var [Δ] = O(N). By using a
Chebyshev bound, (3.2) follows.

In order to prove (3.3), we take advantage of a theorem due to Ailon [2008] which states
that

P [σ(i) < σ(j) | θ] = P [i ≺ j | θ] ,

even if i and j were not directly compared with each other. We use a Chernoff bound on
dij to show that the relative order between any two items separated by at least O(λ log N)
positions is correct with high probability. The second part of the claim follows easily.

Note that any method that compares each pair of items at most once results in a ranking
estimate τ with displacement Δ(τ) = Ω(N) with high probability: As there is only a
single (possibly inconsistent) comparison outcome between each pair of adjacent items,
it is likely that a constant fraction of the items will be ranked incorrectly, resulting in a
displacement that grows linearly in N . Hence, our bound on Δ(σ) shows that Quicksort
is order-optimal (in N).

In light of Theorem 3.4, a natural question to ask is as follows. How many comparisons
are needed in order to find the correct ranking? Finding the exact ranking is difficult:
in fact, Ω(N) comparison outcomes are necessary in order to discriminate the closest
pair of items reliably, as we show next. Suppose that we are given K comparisons to find
the relative order between i and j, and define eij as the event “more than half of the K

comparison outcomes between i and j are inconsistent”.

Proposition 3.5. Let θ be sampled from a Poisson point process of rate λ. Then, there
is a pair i, j ∈ [N ] and a constant c > 0 independent of N such that if K = o(λN),

P [eij ] ≥ c

with high probability.
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Algorithm 3.2 Multisort.
Require: set of items V ⊆ [N ], number of iterations K

1: S ← ∅

2: for k = 1, . . . , K do
3: σ ← Quicksort(V)
4: S ← S ∪ {σ}
5: end for
6: return Copeland aggregation of S

Proof. The distance between the two closest items is dmin = mini|θi+1 − θi| = minn xn,
i.e., the minimum of N −1 independent exponential random variables of rate λ. Therefore,
dmin ∼ Exp((N − 1)λ), and for N ≥ 2 with probability at least 1 − e−1/2 ≈ 0.39 we have
dmin ≤ (λN)−1. Let zk be the indicator random variable for the event “the outcome of
the k-th comparison is incorrect”. Assuming that dmin ≤ (λN)−1 and that λN ≥ 1/2,

P [zk = 0] ≤ 1
1 + exp[−1/(λN)]

≤ 1
2 − 1/(λN)

=
1
2

·
(

1 +
1

2λN − 1

)

≤ 1
2

exp
[ 1

2λN − 1

]
,

where we used the inequality ex ≥ 1 + x twice. The probability of correctly identifying
the relative order between the two closest items based on K comparisons is

P
[

K∑
k=1

zk ≤ K/2
]

≤
K/2∑
�=1

(
K

	

)
P [zk = 0]K ≤ exp

[
K

2λN − 1

]
· 2−K

K/2∑
�=1

(
K

	

)

=
1
2

exp
[

K

2λN − 1

]
.

As P [eij ] = 1 − P
[∑K

k=1 zk ≤ K/2
]
, it follows that, if K = o(λN), the probability of

incorrectly identifying the relative order between the two closest items is bounded from
below by a positive constant.

As finding the exact ranking appears to be difficult, we instead focus on finding a ranking
that matches the ground truth everywhere, except at a vanishing fraction of the items.

Multiple runs of Quicksort likely produce different outputs, because of the noisy com-
parison outcomes and because the algorithm itself is randomized (the pivot selection is
random). By aggregating K independent outputs of Quicksort, is it possible to produce
a better ranking estimate? Similarly to Szörényi et al. [2015], we combine the K outputs
σ1, . . . , σK into an aggregate ranking σ̂ using Copeland’s method. The method assigns,
to each item, a score that corresponds to the number of items that it beats in a majority
of the rankings, and it then ranks the items by increasing score [Copeland, 1951]. We
call the procedure Multisort and describe it in Algorithm 3.2.
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Theorem 3.6. Let θ be sampled from a Poisson point process of rate λ. Let σ̂ be the
output of Multisort using K = O(λ2 log5 N) and comparison outcomes sampled from
BT(θ). Then,

Δ(σ̂) = o(λN)

with high probability.

Proof (sketch). We use results on the order statistics of the distances x1, . . . , xN−1

between successive items, as defined in (3.1), to partition the items into two disjoint
subsets B and G. The set B contains a vanishing (1/ log2 N)-fraction of “bad” items that
are difficult to order. The set G is such that the smallest distance dij from any item i ∈ G
to any other item j ∈ [N ] is bounded from below by c/(λ log2 N). We can show that
with K = O(λ2 log5 N), for any i ∈ G and j ∈ [N ] we have i < j ⇐⇒ σ(i) < σ(j) in a
majority of the Quicksort outputs (with high probability). This implies that σ̂(i) = i for
all i ∈ G with high probability. Using (3.3) for items in B, we have

Δ(σ̂) = |B| · O(λ log N) = O(λN/ log N)

with high probability.

Theorem 3.6 states that all but a vanishing fraction of items are correctly ranked using
O(λ2N log6 N) comparisons. This result should be compared to that of Rajkumar and
Agarwal [2014] obtained in the passive setting, which suggests that Ω(N2) comparisons
are needed if samples are selected uniformly at random.

Empirical Validation In Figure 3.1, we illustrate Theorems 3.4 and 3.6 by running
simulations for increasing N and different values of λ. The bound on Δ(σ) is tight in
N , but the dependence on λ appears to be linear rather than quadratic. The bound
on maxi|σ(i) − i| appears to be tight in N and λ. Finally, we compare the Copeland
aggregation of K outputs of Quicksort with the ranking induced by the maximum-
likelihood estimate (MLE), inferred from the outcomes of all the pairwise comparisons
sampled by the K runs. Although the ranking induced by the MLE does not benefit
from the guarantees of Theorem 3.6, it performs better in practice. We will make use of
this observation in Section 3.4.
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Figure 3.1 – Empirical validation of Theorem 3.4 and illustration of Theorem 3.6. Every
simulation is repeated 50 times, and we report the mean and the standard deviation.
Top and middle: total and maximum displacement (respectively) for increasing N and
different values of λ. Bottom: displacement of the aggregate ranking σ̂ for increasing K,
fixing N = 200 and λ = 4 and using two different aggregation rules.
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3.3.2 Independent Uniformly Distributed Parameters

A different (perhaps more natural) assumption about the parameters θ is to consider
that they are drawn independently and uniformly at random over some interval. That is,

i.i.d. θ̄1, . . . , θ̄N ∼ U(0, (N + 1)/λ),

with θ1, . . . , θN the order statistics of θ̄, i.e., the random variables arranged in increasing
order. From some elementary results on the joint distribution of order statistics [see, e.g.,
Arnold et al., 2008], we have that

|θi+k − θi| ∼ (N + 1)/λ · Beta(k, N − k + 1),

i.e., |θi+k − θi| is distributed as a Beta random variable rescaled between 0 and (N + 1)/λ.
Letting fk,N (x) be the probability density of |θi+k − θi|, we have, for any fixed k and λ,

fk,N (x) ∝ xk−1
[
1 − λx

N + 1

]N−k
N→∞−−−−→ xk−1e−λx.

We recognize the functional form of the density of a Gamma(k, λ) distribution. Hence,
the Poisson model and the i.i.d. uniform model are essentially equivalent for fixed λ and
large N , and we can expect the results developed in Section 3.3.1 to hold in the i.i.d.
uniform case as well.

3.4 Experimental Evaluation

In practice, the comparison budget for estimating a ranking from noisy data might
typically be larger than that for a single call to Quicksort, and it might not exactly
match the number of comparisons required to run a given number of calls to Quicksort to
completion. Building upon the observations made at the end of Section 3.3.1, we suggest
the following practical active-learning strategy: For a budget of M pairwise comparisons,
run the sorting procedure repeatedly until the budget is depleted (the last call might have
to be truncated); then, retain only the set of M comparison pairs and their outcomes
and discard the rankings produced by the sorting procedure; the final ranking estimate
is then induced from the MLE over the set of M comparison outcomes.

In this section, we demonstrate the effectiveness of this sampling strategy on synthetic
and real-world data. In particular, we show that it is comparable to existing AL strategies
at a minuscule fraction of the computational cost.
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3.4.1 Competing Sampling Strategies

To assess the relative merits of our sorting-based strategy, we consider three strategies
that are representative of the state of the art in active preference learning.

Uncertainty Sampling Developed in the context of classification tasks, this popular
active-learning heuristic suggests to greedily sample the point that lies closest to the
decision boundary [Settles, 2012]. In the context of a ranking task, this corresponds to
sampling the pair of items whose relative order is most uncertain. After t observations,
given an estimate of model parameters θt, the strategy selects the (t+1)-st pair uniformly
at random in

arg min
i�=j

|θt
i − θt

j |.

This set can be computed in time O(N log N) by sorting the parameters. The parameters
themselves need to be estimated, e.g., using (penalized) ML inference that in practice
can be the dominating cost.

Bayesian Methods If we have access to a full posterior distribution qt(θ) instead of a
point estimate θt, we can take advantage of the extra information on the uncertainty of
the parameters to improve the selection strategy. A principled approach to AL consists
of sampling the point that maximizes the expected information gain [MacKay, 1992, Chu
and Ghahramani, 2005a]. That is, the pair of items at iteration t + 1 is selected in

arg max
i�=j

H(qt) − E
[
H(qt+1)

]
, (3.4)

where H(·) denotes the entropy function. A conceptually similar but slightly different
selection strategy is given by Chen et al. [2013]. Letting qij be the marginal distribution
of (θi, θj), the pair is selected in

arg max
i�=j

E
[
KL(qt+1

ij ‖qt
ij)

]
, (3.5)

where KL(·) denotes the Kullback–Leibler divergence. Computing the exact posterior is
not analytically tractable for the BT model, but a Gaussian approximation can be found
in time O(N3). Criteria (3.4) and (3.5) can be computed in constant time for each pair
of items. The dominating cost is again that of estimating θ (or, in this case, q(θ)).

In addition to these existing AL strategies, we also include in our experiments a variation
of our sorting-based strategy that uses Mergesort instead of Quicksort. In the noiseless
setting, Mergesort is known to use on average ≈ 39 % fewer comparisons than Quicksort
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Table 3.1 – Time (in seconds) to select the (N +1)-st pair. See text for details.

T [s]

Strategy N = 102 N = 103 N = 104

uncertainty 0.05 0.5 11
entropy 0.3 40 —
KL-divergence 0.9 71 —
Mergesort < 0.001 < 0.001 < 0.001
Quicksort < 0.001 < 0.001 < 0.001
random < 0.001 < 0.001 < 0.001

per run [Knuth, 1998], but it does not benefit from the theoretical guarantees developed
in Section 3.3.

3.4.2 Running Time

In this section, we briefly discuss the running time of the methods. We implement
ML and Bayesian approximate inference algorithms for the BT model as a Python
library (see Appendix A). For approximate Bayesian inference, we use a variant of
the expectation-propagation algorithm outlined by Chu and Ghahramani [2005a]. All
experiments are performed on a server with a 12-core Xeon X5670 processor running at
2.93 GHz. Numerical computations take advantage of the Intel Math Kernel Library.

We illustrate the running time of AL strategies as follows. For N ∈ {102, 103, 104}, we
generate outcomes for N comparisons pairs chosen uniformly at random among N items.
For each strategy, we then measure the time it takes to select the (N +1)-st pair of items
adaptively. The results are presented in Table 3.1. Note that these numbers are intended
to be considered as orders of magnitude, rather than exact values, as they depend on
the particular combination of software and hardware that we use. The running time of
the Bayesian AL strategies exceeds 10 hours for N = 104, and the calls were stopped
ahead of completion. Our sorting-based methods, like random sampling, are the only
AL strategies whose running time is constant for increasing N (and for increasing M).
In fact, their running time is negligible in comparison to the other strategies, including
uncertainty sampling.

3.4.3 Data Efficiency

We now investigate three datasets and measure the displacement of rankings estimated
from adaptively-chosen samples, as a function of the budget M . Note that in order to use
uncertainty sampling and Bayesian methods, it is necessary to choose a regularization
strength or prior variance in the inference step. Different values can result in drastically
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Figure 3.2 – Synthetic dataset with λ = 5 and N = 200. The experiment is repeated
10 times, and we report the mean and the standard deviation. Compared to random
sampling, AL results in significantly better rankings for a given budget M .

different outcomes (in particular for uncertainty sampling) and, in practice, choosing a
good value can be a significant challenge. In the following, we report results for the values
that worked best a posteriori. Observe that, in contrast, our sorting-based approach is
entirely parameter-free.

Synthetic Dataset We generate N i.i.d. parameters θ1, . . . , θN uniformly in [0, (N +
1)/λ] and draw samples from BT(θ). The ground-truth ranking is the one induced by
the parameters. Figure 3.2 presents results for N = 200 and λ = 5. In comparison to
random sampling, AL is very effective and results in significantly better ranking estimates
for any given number of comparisons. The two Bayesian methods, though being the
most computationally expensive, perform the best for all values of M but are nearly
indistinguishable from uncertainty sampling. The two sorting-based strategies perform
similarly (with a small edge for Mergesort). They are slightly worse than the Bayesian
methods but are still able to reap most of the benefits of active learning.

Sushi Dataset Next, we consider a dataset of sushi preferences [Kamishima and Akaho,
2009]. In this dataset, 5 000 respondents give a strict ordering over 10 different types
of sushi. These 10 sushi are chosen among a larger set of N = 100 items. To suit our
purposes, we decompose each 10-way partial ranking into pairwise comparisons, resulting
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Figure 3.3 – Experimental results on the sushi dataset. Every experiment is repeated 10
times, and we report the mean and the standard deviation. Sorting-based and Bayesian
AL strategies have near-identical performance starting from M ≈ 1 000.

in 225 000 comparison outcomes. We use all comparisons to fit a BT model that induces
a ground-truth ranking5.

The comparisons are dense, and there is at least one comparison outcome for almost
all pairs. When an outcome for pair (i, j) is requested, we sample uniformly at random
over all outcomes observed for this pair. In the rare case where no outcome is available,
we return i ≺ j with probability 1/2. This enables us to compare sampling strategies
in a realistic setting, where the assumptions of the BT model do not necessarily hold
anymore.

Results are shown in Figure 3.3. Once again, active learning performs noticeably better
than random sampling. On this real-world dataset, the performance of our sorting-based
strategies is indistinguishable from that of the Bayesian methods, after completing one
entire call to the sorting procedure (slightly less than 1 000 comparisons). This result
should be interpreted in light of the time needed to select all 104 pairs: a fraction of a
second for sorting-based strategies, and several hours for the Bayesian methods. Finally,
we observe that the performance of uncertainty sampling progressively degrades as M

increases. A detailed analysis reveals that uncertainty sampling increasingly focuses on a
small set of hard-to-discriminate pairs, symptomatic of a well-known issue [Settles, 2012].

5The BT-induced ranking is almost the same as that obtained using the Copeland score. The results
are very similar if the Copeland aggregation is used as ground truth.
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Figure 3.4 – Experimental results on the GIFGIF dataset. Every experiment is repeated
10 times, and we report the mean and the standard deviation. Most AL strategies are
computationally too expensive—except for sorting-based methods.

GIFGIF Dataset GIFGIF6 is a project of the MIT Media Lab that aims at explaining
the emotions communicated by a collection of animated GIF images. Users of the website
are shown a prompt with two images and a question, “Which better expresses x?” where
x is one of 17 emotions. The users can click on either image, or use a third option,
neither. To date, over three million comparison outcomes have been collected. For the
purpose of our experiment, we restrict ourselves to a single emotion, happiness; and we
ignore outcomes that resulted in neither. We consider 106 887 comparison outcomes over
N = 6 120 items—a significant increase in scale, compared to the sushi dataset.

As the data, despite a relatively large number of comparisons, remain sparse (less than
20 comparisons per item on average), we proceed as follows. We fit a BT model by using
all the available comparisons and use the induced ranking as ground truth. We then
generate new, synthetic comparison outcomes from the BT model. In this sense, the
experiment enables us to compare sampling strategies by using a large BT model with
realistic parameters. The large number of items makes uncertainty sampling and the
two Bayesian methods prohibitively expensive. We try a simplified, computationally
less expensive version of uncertainty sampling where, at every iteration, each item is
compared to its two closest neighbors, but this heuristic fails spectacularly: The resulting
displacement is over 5× larger than random sampling for M = 106 and is therefore not
reported here.

6See http://www.gif.gf/. Data available at http://lucas.maystre.ch/gifgif-data.
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Figure 3.4 compares the displacement of random sampling to that of the two sorting-
based sampling strategies for increasing M . The adaptive sampling approaches perform
systematically better. After 106 comparisons, the displacement of random sampling is
14 % and 23 % larger than that of Quicksort and Mergesort, respectively. Conversely,
in order to reach any target displacement, Mergesort requires approximately 2× fewer
comparisons than random sampling.

3.5 Proofs

Section 3.5.1 contains the proofs of Lemmas 3.2 and 3.3. Section 3.5.2 presents the
proof for our results on the displacement of the output of a single call to Quicksort
(Theorem 3.4), and Section 3.5.3 shows our result on the displacement of the Copeland
aggregation of multiple outputs (Theorem 3.6).

3.5.1 Lemmas 3.2 and 3.3

We start by briefly presenting a result from graph theory that will be useful in the
proof of Lemma 3.2. A tournament is a directed graph obtained by assigning a direction
to every edge of a complete graph. The score sequence of a tournament is defined as
the nondecreasing sequence of the vertices’ outdegrees. The following proposition is by
Landau [1953].

Proposition 3.7. Let (s1, . . . , sN ) with 0 ≤ s1 ≤ · · · ≤ sN be the score sequence of a
tournament on N vertices. Then,

n − 1
2

≤ sn ≤ N + n − 2
2

∀ n ∈ [N ].

We use a tournament on N vertices to represent the outcome of a comparison between
each pair of items. In particular, we represent the outcome i ≺ j by an edge (i, j). In
this case, the outdegree of a vertex i corresponds to the number of items which “won” in
a comparison against i. Note that the comparison outcomes do not need to be transitive,
i.e., the tournament can contain cycles.

The proof of Lemma 3.2 is adapted from standard results on Quicksort, see, e.g., Dubhashi
and Panconesi [2009, Section 3.3.3]. These results are based on the fact that it is likely
that the random choice of pivot leads to a well-balanced partition into subsets L and R.
In our setting, the comparison outcomes do not need to be consistent with an ordering
of the items, therefore we cannot use the standard argument based on the pivot’s rank.
Instead, we use the tournament representation of the comparison outcomes and analyze
the pivot’s out-degree (using Proposition 3.7) to ensure that the partition is balanced
often enough.
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Proof of Lemma 3.2. We show that the maximum call depth of Quicksort is at most
�48 log N� with high probability. The statement follows by noting that at most N

comparisons are used at each level of the call tree.

By Lemma 3.1, Quicksort samples a comparison outcome for each pair of items at most
once. Therefore, we can represent these (a priori unobserved) pairwise outcomes as a
tournament T = ([N ], A). At each step of the recursion, we select a pivot p uniformly at
random in the set V (line 3), and compare it to the rest of the items in the set (line 5).
Let TV denote the subgraph of T induced by V. Given that the comparison outcomes
follow from the edges of the tournament, L is equal to the set of incoming neighbors
of p in TV . (Correspondingly, R is equal to the set of the outgoing neighbors.) Hence,
the outdegree of p in TV determines how balanced the partition is. The probability that
the outdegree of p lies in the middle half of the score sequence is 1/2, and if it does,
Proposition 3.7 tells us that

|V| − 7
8

≤ outdeg(p) ≤ 7|V| − 5
8

.

In this case, at the end of the partition |L| and |R| are of size at most 7|V|/8, and in at
most log8/7(N) ≤ 8 log N such partitions we get to a subset of size one and match the
terminating case. Even though we do not select, every time, the pivot in the middle half,
it is unlikely that more than c · 8 log N recursions are needed (for some small constant c)
to select the pivot in the middle range at least 8 log N times. Let zd i.i.d ∼ Bern(1/2) be
the indicator variable for the event “the pivot is selected in the middle half at level of
recursion d”. Using a Chernoff bound, we have

P

⎡
⎣
48 log N�∑

d=1
zd ≤ 8 log N

⎤
⎦ ≤ 1

N2 ,

i.e., the depth of a leaf in the call tree is at most �48 log N� with probability at least
1 − 1/N2. As there are at most N leaves in the tree, the maximum depth is bounded by
the same value with probability at least 1 − 1/N .

In order to prove Lemma 3.3, we introduce some additional notation. Let SN be the set
of all permutations on [N ]. For any σ ∈ SN and V ⊆ [N ], let σV : V → {1, . . . , |V|} be
the ordering induced by σ on V. We generalize the definition of displacement as

ΔV(σ, τ) =
∑
i∈V

|σV(i) − τV(i)|.

For conciseness, we use the shorthand ΔV(σ) .= ΔV(σ, id), where id is the identity
permutation.
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ΔV(σ̃)
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t = 3

ΔV(σ̃)

ΔV(σ̃)

ΔV(σ̃)

0 0 0 0 0 0 0 0 0 → 0

0 0 1 2 0 3 0 0 0 → 6

0 2 3 4 0 4 4 1 0 → 18

0 2 3 4 4 1 5 5 1 → 25

Figure 3.5 – Illustration of the decomposition of ΔV(σ̃) into contributions of individual
errors over a sequence of steps. In this example, V = {1, . . . , 9}, p = 5 and there are
five errors. At step t = 1, we process the errors (5, 3) and (5, 6); at step t = 2, we
process the errors (5, 2) and (5, 8), and finally, at step t = 3, we process the error
(5, 9). The shifts caused by an error are highlighted in red and green. In this example,
ΔV(σ̃) = 25 < 2

∑
(i,j)∈EV |i − j| = 26.

Proof of Lemma 3.3. Denote by A the collection of working sets that were used as input
to one of the recursive calls to Quicksort. For V ∈ A, let EV be the set of pairs sampled
by Quicksort to partition V and which result in an error. Note that EV ∩ EV ′ = ∅ for
V �= V ′, and that

⋃
V EV = E . We will show that for all V ∈ A,

ΔV(σ) ≤ ΔL(σ) + ΔR(σ) + 2
∑

(i,j)∈EV

|i − j|, (3.6)

where L, R ∈ A are the two sets obtained at the end of the partition operation. The
lemma follows by taking V = [N ] and recursively bounding ΔL(σ) and ΔR(σ).

Consider the partition operation on V , with pivot p, resulting in partitions L and R. Let
σ̃ be the ordering on V that (a) ranks L at the bottom, p in the middle and R at the
top, and (b) matches the identity permutation on L and R, i.e., ΔL(σ̃) = ΔR(σ̃) = 0. In
a sense, σ̃ is the ordering that would be obtained if there were no further errors in the
remaining recursive calls. Using the triangle inequality, we have that

ΔV(σ) ≤ ΔV(σ, σ̃) + ΔV(σ̃). (3.7)

By definition of σ̃, we have that

ΔV(σ, σ̃) = ΔL(σ, σ̃) + ΔR(σ, σ̃) = ΔL(σ) + ΔR(σ), (3.8)

where the first equality follows from (a), and the second follows from (b).
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Finally, we bound ΔV(σ̃). Let E−
V = {(p, i) ∈ EV : i < p}, and similarly E+

V = {(p, i) ∈
EV : i > p}. Without loss of generality, we can assume that V consists of consecutive
integers, and that κ

.= |E−
V | ≤ |E+

V |. We proceed as follows: starting from the ranking idV ,
we progressively incorporate errors into the ranking, ending with σ̃ once all errors have
been treated. To understand the effect of each error on ΔV(σ̃), we look at errors in the
following specific sequence.

1. At steps t = 1, . . . , κ, we consider the t-th “smallest” errors in E−
V and E+

V . That is,
we process (p, i) ∈ E−

V and (p, i′) ∈ E+
V such that |p − i| and |p − i′|, respectively,

are the smallest among errors not yet treated.

2. At steps t = κ + 1, . . . , |E+
V |, we process the remaining errors in E+

V , once again in
increasing order of distance to p.

Figure 3.5 illustrates the state of the ranking at different steps on a concrete example.
We start with the first case, i.e., t ≤ κ. The effect of the errors (p, i) and (p, i′) on ΔV(σ̃)
is as follows.

• All items j < i and j > i′ are not affected by the two errors: their position remains
the same.

• The position of the pivot p remains the same, as the two errors balance out.

• Item i is shifted by |p − i| + 1 positions to the right, just right of p. Similarly, item
i′ is shifted by |p − i′| + 1 positions to the left, just left of p.

• The |p − i| − 1 items that are between p (excluded) and i are shifted by 1 position
to the left. Similarly, the |p − i′| − 1 items that are between p and i′ are shifted by
1 position to the right.

Hence, the two errors contribute 2(|p − i| + |p − i′|) towards ΔV(σ̃). Now consider the
second case, when t > κ. The effect of an error (p, i) is as follows.

• All items j > i and all the items on the left of p are not affected by the error: their
position remains the same.

• The (at most) |p − i| items that are between p (included) and i are shifted by 1
position to the right.

• Item i is shifted by at most |p − i| positions to the left, just left of p.
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As a result, the error contributes at most 2|p − i| to the displacement. Adding up the
contributions of all the errors, it follows that

ΔV(σ̃) ≤ 2
∑

(i,j)∈EV

|i − j|. (3.9)

Combining (3.8) and (3.9) using (3.7) we obtain (3.6), which concludes the proof.

3.5.2 Theorem 3.4

From now on, we focus on parameters drawn from a Poisson process of rate λ, as described
in Section 3.3.1. We consider a worst-case scenario and assume that Quicksort samples a
comparison outcome for every pair of items. Let zij be the indicator random variable of
the event “the comparison between i and j resulted in an error”. By Lemma 3.3, we have

Δ(σ) ≤ 2
∑
i<j

|i − j|zij (3.10)

In the following, we will bound some of the statistical properties of the random variables
{zij}. We start with a lemma that bounds their mean.

Lemma 3.8. For any 1 ≤ i < j ≤ N ,

E [zij ] ≤
(

λ

λ + 1

)j−i

.

Proof. Let dij = θi − θj be the (random) distance between items i and j. This distance
is a sum of k = j − i independent exponential random variables, and therefore dij ∼
Gamma(k, λ). The comparison outcome is generated as per the BT model; conditioned
on the distance dij , the random variable zij is a Bernoulli trial with probability [1 +
exp(dij)]−1. Therefore, we have that

E [zij ] ≤ E [exp(−dij)] =
(

λ

λ + 1

)k

Next, we bound their covariance. Note that the random variables {zij} are in general not
unconditionally independent. They become independent only when conditioned on θ.
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Lemma 3.9. For any 1 ≤ i < j ≤ N and any 1 ≤ u < v ≤ N , let A = {i .. j−1} and
B = {u .. v−1}.

Cov [zij , zuv] ≤

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

0 if A ∩ B = ∅,(
λ

λ + 1

)j−i

if A = B,
(

λ + 1
λ + 2

)j−i+v−u

otherwise.

Proof. If A and B are disjoint, the distances dij and duv are independent random variables.
Conditioned on the distances, the comparison outcomes are independent Bernoulli trials,
and we conclude that zij and zuv are independent. In the two remaining cases, we bound
E [zijzuv] ≥ Cov [zij , zuv]. If A = B, then zij = zuv and we have

E [zijzuv] = E
[
z2

ij

]
= E [zij ]

and we apply Lemma 3.8. Finally, if A and B are neither equivalent nor disjoint, the two
comparison outcomes are independent Bernoulli trials conditioned on the distances dij

and duv, but the distances are not independent. Consider the case where i < u < j < v.
Even though dij and duv are dependent, the distances diu, duj , djv are independent
Gamma random variables of rate λ and shape u − i, j − u and v − j, respectively, and

E [zijzuv] ≤ E [exp{−(diu + duj) − (duj + djv)}]

=
(

λ

λ + 1

)u−i (
λ

λ + 2

)j−u (
λ

λ + 1

)v−j

≤
(

λ + 1
λ + 2

)j−i+v−u

The other cases are treated analogously.

Lemmas 3.8 and 3.9 will be useful in proving the first part of Theorem 3.4. For the second
part, we need a result from Ailon [2008], which characterizes the pairwise marginals of
the distribution over rankings induced by Quicksort with comparisons sampled from a
BT model.

Theorem 3.10 (Ailon, 2008, Theorem 4.1). Let σ be the output of Quicksort using
comparison outcomes sampled from BT(θ). Then, for any i, j ∈ [N ],

P [σ(i) < σ(j) | θ] = P [i ≺ j | θ]

Note that the result is non-trivial as i and j might not have been directly compared to
each other: their relative position might have been deduced by transitivity from other
comparison outcomes. We are now ready to prove Theorem 3.4.
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Proof of Theorem 3.4. We begin with the first part of the theorem, which bounds the
displacement Δ(σ). For clarity of exposition, we use the notation zi→k instead of zij if
j = i + k. Using (3.10) and Lemma 3.8, we can bound the expected displacement as

E [Δ] ≤
N−1∑
i=1

N−i∑
k=1

2kE [zi→k] ≤ N
∞∑

k=1
2k

(
λ

λ + 1

)k

= 2Nλ(λ + 1).

In a similar way, using Lemma 3.9, we can bound the variance of the displacement as

Var [Δ] ≤
N−1∑
i=1

N−i∑
k=1

4k2Var [zi→k] + 2
N−1∑
i=1

N−i∑
k=1

2k
i+k∑

u=i+1

N−u∑
�=1

2	Cov [zi→k, zu→�]

≤ N
∞∑

k=1
4k2

(
λ

λ + 1

)k

+ 2N
∞∑

k=1
2k2

(
λ + 1
λ + 2

)k

·
∞∑

�=1
2	

(
λ + 1
λ + 2

)�

≤ 1500N(λ5 + 1).

Combining the bounds for the mean and the variance with Chebyshev’s inequality, we
have that

P
[
Δ(σ) ≥ 50N(λ2 + 1)

]
≤ λ/N,

which concludes the proof of the first part of the claim.

The second part of the theorem bounds the maximum displacement for any single item.
We start by showing that with high probability, there is no pair of items separated by
at least O(λ log N) positions that is “flipped” in the output of Quicksort. Let i and j

be two items such that i < j and let k = |i − j|. Then dij ∼ Gamma(k, λ), and using a
Chernoff bound we obtain

P [dij ≤ k/(eλ)] ≤ exp(−k/e).

If k ≥ 3(λ + 1)e log N , we find that

P [dij ≤ k/(eλ)] ≤ P [dij ≤ 3 log N ] ≤ N−3. (3.11)

Using the fact that the pairwise marginals of Quicksort match the pairwise comparison
outcome probabilities (Theorem 3.10), we find

P [σ(j) < σ(i)] = P [j ≺ i] ≤ exp(−3 log N) = N−3. (3.12)

Combining (3.11) and (3.12), and using a union bound over the
(N

2
)

pairs, we see that
with probability 1−1/N there is no pair of items (i, j) separated by at least 3(λ+1)e log N

position with i < j but σ(j) < σ(i). Finally, suppose that there is an i such |σ(i) − i| = k.
Without loss of generality, we can assume that i < σ(i). This means that there are k
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items larger than i that are on the left of i in σ. In particular, there is an item j > i such
that |i − j| ≥ k and σ(j) < σ(i). This concludes the proof.

3.5.3 Theorem 3.6

In order to prove Theorem 3.6, we first need a basic result on the order statistics of
exponential random variables. Let x1, . . . , xN , be i.i.d. exponential random variables of
rate λ. Let x(1), . . . , x(N) be their order statistics, i.e., the random variables arranged in
increasing order. Then,

x(n) =
n∑

i=1

1
N − i + 1

yi, (3.13)

where y1, . . . , yN are i.i.d. exponential random variables of rate λ [see, e.g., Arnold et al.,
2008, Section 4.6].

Proof of Theorem 3.6. We consider the order statistics of the N − 1 i.i.d. exponential
random variables x1, . . . , xN−1 which define the distances between neighboring items. Let
N ′ = �N/ log2 N�, and denote by B ⊂ [N ] the set of items at both ends of x(1), . . . , x(N ′−1).
These “bad” items are close to their nearest neighbor, and we simply invoke Theorem 3.4
to claim that each of these items is shifted by at most O(λ log N) positions with high
probability. Consider now the “good” items, i.e., those in G = [N ] \ B. Using (3.13) and
for N large enough,

P
[
x(N ′) ≤ 1/(eλ log2 N)

]
≤ P

⎡
⎣ N ′∑

i=1
yi/N ≤ 1/(eλ log2 N)

⎤
⎦ ≤ exp(−N ′/e) ≤ 1/N.

The second-to-last inequality follows from a Chernoff bound similar to that used in the
proof of Theorem 3.4. Therefore, with high probability, all items in G are at distance
larger than c/(λ log2 N) from their nearest neighbor for some constant c.

We will now show that after K = O(λ2 log5 N) runs of Quicksort, σ̂(i) = i with high
probability for all i ∈ G. Let i ∈ G, j ∈ [N ] be a pair of items, and without loss of generality
assume that i < j. Let tk be the indicator random variable for the event “σ(i) < σ(j) in
the k-th run of Quicksort”, and let p = P [tk = 1]. Then, using Theorem 3.10,

p − 1
2

= P [i ≺ j] − 1
2

=
1 − exp(−dij)

2[1 + exp(−dij)]

≥ 1 − exp[−1/(eλ log2 N)]
4

≥ 1
8eλ log2 N

with high probability. In the last inequality, we used the fact that 1 − e−x ≥ x/2 for
x ∈ [0, 1]. The random variables t1, . . . , tK are independent Bernoulli trials, and using a
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Chernoff bound we obtain

P [σ̂(j) < σ̂(i)] = P
[

K∑
k=1

tk ≤ K/2
]

≤ exp[−2K(p − 1/2)2] ≤ exp
[
− K

32e2λ2 log4 N

]
.

By choosing K = 96e2λ2 log5 N , we have P [σ̂(j) < σ̂(i)] ≤ N−3, and using a union
bound we see that with probability 1 − 1/N we have σ̂(i) = i for all i ∈ G. Therefore,
the total displacement is

Δ(σ̂) =
∑
i∈B

|σ̂(i) − i| ≤ |B| · 3(λ + 1)e log N = O(λN/ log N).

This concludes the proof.

3.6 Summary

We have demonstrated that active learning can substantively accelerate the task of
learning a ranking from noisy comparisons gains—both in theory and in practice. With
the advent of large-scale crowdsourced ranking surveys, exemplified by GIFGIF and
wiki surveys [Salganik and Levy, 2015], there is a clear need for practical AL strategies.
However, existing methods are complex and computationally expensive to operate even
for a reasonable number of items (a few thousands). We have shown that a deceptively
simple idea—repeatedly sorting the items—is able to bring in all the benefits of active
learning, is trivial to implement, and is computationally no more expensive that random
sampling.
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4 Choices in Networks

In this chapter1, we address the problem of understanding how users navigate in a
network of N nodes. We consider a setting where only aggregate node-level traffic is
observed and tackle the task of learning edge-transition probabilities. We cast it as a
preference-learning problem and study a model where choices follow a variant of Luce’s
axiom. In this case, the O(N) marginal counts of node visits are a sufficient statistic
for the O(N2) transition probabilities. We show how to make the inference problem
well-posed, regardless of the network’s structure, and we develop an iterative algorithm
that scales to networks that contain billions of nodes and edges. We apply the model to
two clickstream datasets and show that it successfully recovers the transition probabilities
by using only the network structure and marginal (node-level) traffic data. Finally, we
also consider an application to mobility networks and apply the model to one year of
rides on New York City’s bicycle-sharing system.

4.1 Introduction

Consider the problem of estimating click probabilities for links between pages of a website,
given a hyperlink graph and aggregate statistics on the number of times each page has
been visited. Naively, we might expect that the probability of clicking on a particular
link should be roughly proportional to the traffic of the link’s target. However, this
neglects important structural effects: a page’s traffic is influenced by (a) the number of
incoming links, (b) the traffic at the pages that link to it, and (c) the traffic absorbed by
competing links. In order to successfully infer click probabilities, it is therefore necessary
to disentangle the preference for a page (i.e., the intrinsic propensity of a user to click on
a link pointing to it) from the page’s visibility (the exposure it gets from pages linking to
it). Building upon recent work by Kumar et al. [2015], we present a statistical framework
that tackles a general formulation of the problem: Given a network (representing possible
transitions between nodes) and the marginal traffic at each node, recover the transition

1This chapter is based on Maystre and Grossglauser [2017a].

57



Chapter 4. Choices in Networks

probabilities. This problem is relevant to a number of scenarios (in social, information or
transportation networks) where transition data is not available due to privacy concerns
or monitoring costs, for example.

We begin by postulating the following model of traffic. Users navigate from node to
node along the edges of the network, by making a choice between adjacent nodes at
each step, which is reminiscent of the random-surfer model introduced by Brin and Page
[1998]. Choices are assumed to be independent and generated according to a variant
of Luce’s model [Luce, 1959]: each node in the network is characterized by a latent
strength parameter, and (stochastic) choice outcomes tend to favor nodes with greater
strengths. In this model, estimating the transition probabilities amounts to estimating
the strength parameters. Unlike in the setting in which choice models are traditionally
studied [Train, 2009, Vojnovic and Yun, 2016], we do not observe distinct choices among
well-identified sets of alternatives. Instead, we only have access to aggregate, marginal
statistics about the traffic at each node in the network. In this setting, we make the
following contributions.

1. We observe that marginal per-node traffic is a sufficient statistic for the strength
parameters. That is, the parameters can be inferred from marginal traffic data
without any loss of information.

2. We show that if the parameters are endowed with a prior distribution, the inference
problem becomes well-posed, regardless of the network structure. This is a crucial
step in making the framework applicable to real-world datasets.

3. We show that model inference can scale to very large datasets. We present
an iterative EM-type inference algorithm that enables a remarkably efficient
implementation—each iteration requires the computational equivalent of two itera-
tions of PageRank.

We evaluate two aspects of our framework by using real-world networks. We begin
by demonstrating that local preferences can indeed be inferred from global traffic: we
investigate the accuracy of the transition probabilities recovered by our model on three
datasets for which we have ground-truth transition data. First, we consider two hyperlink
graphs that represent the English Wikipedia (over two million nodes) and a Hungarian
news portal (approximately 40 000 nodes), respectively. We model clickstream data as a
sequence of independent choices over the links available at each page. Given only the
structure of the graph and the marginal traffic at every node, we estimate the number of
transitions between nodes, and we find that our estimate matches ground-truth edge-level
transitions accurately in both instances. Second, we consider the network of New York
City’s bicycle-sharing service. For a given ride, given a pick-up station, we model the
drop-off station as a choice out of a set of locations. Our model yields promising results,
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suggesting that our method can be useful beyond clickstream data. Next, we test the
scalability of the inference algorithm. We show that the algorithm is able to process a
snapshot of the WWW hyperlink graph that contains over a hundred billion edges using
a single machine.

Outline of the Chapter In Section 4.2, we briefly review related literature. In
Section 4.3, we formalize the network choice model and present some important statistical
properties of the model. In Section 4.4, we propose a prior distribution that makes the
inference problem well-posed and describe an inference algorithm that enables an efficient
implementation. We evaluate the model and the inference algorithm in Section 4.5.

4.2 Related Work

A variant of the network choice model was recently introduced by Kumar et al. [2015], in
an article that lays much of the groundwork for this chapter. Their generative model of
traffic and the parametrization of transition probabilities based on Luce’s axiom form the
basis of our work. Kumar et al. define the steady-state inversion problem as follows: Given
a directed graph G and a target stationary distribution, find transition probabilities that
lead to the desired stationary distribution. This problem formulation assumes that G
satisfies restrictive structural properties (strong-connectedness, aperiodicity) and is valid
only asymptotically, when each user’s sequence of choices is very long. Our formulation
is, in contrast, more general. In particular, we eliminate any assumptions about the
structure of G and cope with finite data in a principled way—in fact, our derivations
are valid for choice sequences of any length. One of our contributions is to explain the
steady-state inversion problem in terms of (asymptotic) maximum-likelihood inference
in the network choice model. Furthermore, the statistical viewpoint that we develop
also leads to (a) a robust regularization scheme that lets us handle graphs of arbitrary
structure, and (b) a simple and efficient EM-type inference algorithm. These important
extensions make the model easier to apply to real-world data.

Luce’s Choice Axiom The general problem of estimating parameters of models
based on Luce’s axiom has received considerable attention, as discussed at length in
Chapters 1 and 2. Of particular interest in the context of this work, Hunter [2004]
develops an inference algorithm from the perspective of the minorization-maximization
(MM) method. This method is easily generalized to other models that are based on Luce’s
axiom, and it yields simple, provably convergent algorithms for maximum-likelihood
(ML) or maximum-a-posteriori point estimates. Caron and Doucet [2012] observe that,
by introducing suitable latent variables, these MM algorithms can be further recast as
expectation-maximization (EM) algorithms. They use this observation to derive Gibbs
samplers for a wide family of models. We take advantage of this line of work, in Section 4.4,
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when developing an inference algorithm for the network choice model. In recent years,
several authors also analyzed the sample complexity of the ML estimate in Luce’s choice
model [Hajek et al., 2014, Vojnovic and Yun, 2016] and investigated alternative spectral
inference methods [Negahban et al., 2012, Azari Soufiani et al., 2013]. Some of these
results could be applied to our setting, but in general they require observing distinct
choices among well-identified sets of alternatives2.

Network Analysis Understanding the preferences of users in networks is of significant
interest in many domains. For brevity, we focus mostly on literature related to hyperlink
graphs. A method that has undoubtedly had a tremendous impact in this context is
PageRank [Brin and Page, 1998]. PageRank computes a set of scores that are proportional
to the amount of time a surfer, who clicks on links randomly and uniformly, spends at
each node. These scores are based only on the structure of the graph. The network choice
model presented in this chapter appears to be similar at first, but tackles a different
problem. In addition to the structure of the graph, it uses the traffic at each page, and
computes a set of scores that reflect the (non-uniform) probability of clicking on each
link. Nevertheless, there are striking similarities in the implementation of the respective
inference algorithms (see Section 4.5). The HOTness method proposed by Tomlin [2003]
is somewhat related, but tries to tackle a harder problem. It attempts to estimate jointly
the traffic and the probability of clicking on each link, by using a maximum-entropy
approach. At the other end of the spectrum, BrowseRank [Liu et al., 2008] uses detailed
data collected in users’ browsers to improve on PageRank. Our method uses only marginal
traffic data that can be obtained without tracking users. Finally, in the context of mobility
analysis, we mention the works of Ashbrook and Starner [2003] and Kafsi et al. [2015],
both of which use Markovian models to predict human mobility across in a network of
locations.

4.3 Network Choice Model

Let G = (V, E) be a directed graph on N nodes (corresponding to items) and M edges,
with edge weights wij > 0 for all (i, j) ∈ E . We denote the out-neighborhood of node i

by N +
i and its in-neighborhood by N −

i . We consider the following choice process on G.
A user starts at a node i and is faced with alternatives N +

i . The user chooses item j and
moves to the corresponding node. At node j, the user is faced with alternatives N +

j and
chooses k, and so on. At any time, the user can stop. Figure 4.1 gives an example of a
graph and the alternatives available at a step of the process.

To define the transition probabilities, we follow Kumar et al. [2015] and posit a proba-
bilistic model of choice, which extends that of Luce [1959]. For every node i and every

2This is also the case for the spectral inference algorithm developed in Chapter 2 of this thesis, which
cannot be applied in the setting studied in this chapter.
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Figure 4.1 – An illustration of one step of the process. The user is at node 6 and can
reach nodes N +

6 = {1, 2, 5, 7}.

j ∈ N +
i , the probability that j is selected among alternatives N +

i can be written as

pij =
wijγj∑

k∈N +
i

wikγk
, (4.1)

for some parameter vector γ = [γ1 · · · γN ]� ∈ RN
>0. Intuitively, the parameter γi can be

interpreted as the utility of item i. The edge weights are relevant in situations where
the current context modulates the alternatives’ utility; for example, they can be used to
encode the position or prominence of a link on a page in a hyperlink graph, or the distance
between two locations in a mobility network. Luce’s original choice model is obtained
by setting wij

.= 1 for all i, j. Note that pij depends only on the out-neighborhood of
node i. As such, the choice process satisfies the Markov property, and we can think of
the sequence of choices as a trajectory in a Markov chain.

In the context of this model, we can formulate the inference problem as follows. Given a
directed graph G = (V, E), edge weights {wij} and data on the aggregate traffic at each
node, find a parameter vector γ that fits the data.

Notation In some expressions, we use κ to denote a constant that does not depend on
the parameter vector γ. Its value can change from line to line.

4.3.1 Sufficient Statistic

We begin by showing that O(N) values summarizing the aggregate traffic at each node
are a sufficient statistic of the transition counts. Let cij denote the number of transitions
that occurred along edge (i, j) ∈ E . Starting from the transition probability defined
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in (4.1), we can write the log-likelihood of γ given data D = {cij : (i, j) ∈ E} as

	(γ; D) =
∑

(i,j)∈E
cij

[
log wijγj − log

∑
k∈N +

i

wikγk

]

=
N∑

j=1

∑
i∈N −

j

cij log γj −
N∑

i=1

∑
j∈N +

i

cij log
∑

k∈N +
i

wikγk +
∑

(i,j)∈E
cij log wij ,

=
N∑

i=1

[
c−

i log γi − c+
i log

∑
k∈N +

i

wikγk

]
+ κ, (4.2)

where c−
i =

∑
j∈N −

i
cji and c+

i =
∑

j∈N +
i

cij is the aggregate number of transitions
arriving in and originating from i, respectively. This formulation of the log-likelihood
exhibits a key feature of the model: the set of 2N counts {(c−

i , c+
i ) : i ∈ V} is a sufficient

statistic of the M = O(N2) counts {cij : (i, j) ∈ E} for the parameters γ. The following
theorem is an extension of a well-known result for Luce’s choice model [Bühlmann and
Huber, 1963].

Theorem 4.1. The set of aggregate transitions {(c−
i , c+

i ) : i ∈ V} is a minimally
sufficient statistic for the parameters γ.

Proof. Let f({cij} | γ) be the discrete probability density function of the data under the
model with parameters γ. By Theorem 6.2.13 in Casella and Berger [2002], {(c−

i , c+
i )} is

a minimally sufficient statistic for γ if and only if, for any {cij} and {dij} in the support
of f ,

f({cij} | γ)
f({dij} | γ)

is independent of γ ⇐⇒ (c−
i , c+

i ) = (d−
i , d+

i ) ∀i. (4.3)

Taking the log of the ratio on the left-hand side and using (4.2), we find that

log
f({cij} | γ)
f({dij} | γ)

=
N∑

i=1

[
(c−

i −d−
i ) log γi − (c+

i −d+
i ) log

∑
k∈N +

i

wikγk

]
+ κ.

From this, it is easy to see that the ratio of densities is independent of γ if and only if
c−

i = d−
i and c+

i = d+
i , which verifies (4.3).

In other words, it is enough to observe marginal information about the number of arrivals
and departures at each node—we call this collective data the traffic at a node—and no
additional information can be gained by observing the full choice process. This makes
the model particularly attractive, because it means that it is unnecessary to track users
across nodes. In several applications of practical interest, tracking users is undesirable,
difficult, or outright impossible, due to (a) privacy reasons, (b) monitoring costs, or
(c) lack of data in existing datasets.
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Note that if we make the additional assumption that the flow in the network is conserved,
then c−

i = c+
i . If users’ typical trajectories are made of many hops, it is reasonable to

approximate c−
i or c+

i by using this assumption, should one of the two quantities be
missing.

4.3.2 Steady-State Inversion Problem

In recent work, Kumar et al. [2015] define the problem of steady-state inversion as follows:
Given a strongly-connected directed graph G = (V, E) with edge weights {wij} and a
target distribution over the nodes π, find the transition matrix of a Markov chain on
G with stationary distribution π. As there are M = O(N2) degrees of freedom (the
transition probabilities) for N constraints (the stationary distribution), the problem is
in most cases underdetermined. Following Luce’s ideas, the transition probabilities are
constrained to be proportional to a latent score of the destination node as per (4.1), thus
reducing the number of parameters from M to N . Denote by P (s) the Markov-chain
transition matrix parametrized with scores s. The score vector s is a solution for the
steady-state inversion problem if and only if π� = π�P (s), or equivalently

πi =
∑

j∈N −
i

wjisi∑
k∈N +

j
wjksk

πj ∀i. (4.4)

In order to formalize the connection between Kumar et al.’s work and ours, we express the
steady-state inversion problem as that of asymptotic maximum-likelihood estimation in
the network choice model. Suppose that we observe node-level traffic data D = {(c−

i , c+
i ) :

i ∈ V} about a trajectory of length T starting at an arbitrary node. We want to obtain an
estimate of the parameters γ� by maximizing the average log-likelihood 	̂(γ) = 1

T 	(γ; D).
From standard convergence results for Markov chains [Kemeny and Snell, 1976], it follows
that as G is strongly connected, limT →∞ c−

i /T = limT →∞ c+
i /T = πi. Therefore,

	̂(γ) =
N∑

i=1

[
c−

i

T
log γi − c+

i

T
log

∑
k∈N +

i

wikγk

]
T →∞−−−−→

N∑
i=1

πi

[
log γi − log

∑
k∈N +

i

wikγk

]
.

Let γ� be a maximizer of the average log-likelihood. When T → ∞, the optimality
condition ∇	̂(γ�) = 0 implies, for all i,

∂	̂(γ)
∂γi

∣∣∣∣
γ=γ�

=
πi

γ�
i

−
∑

j∈N −
i

wjiπj∑
k∈N +

j
wjkγ�

k

= 0

⇐⇒ πi =
∑

j∈N −
i

wjiγ
�
i∑

k∈N +
j

wjkγ�
k

πj . (4.5)
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Comparing (4.5) to (4.4), it is clear that γ� is a solution of the steady-state inversion
problem. As such, the network choice model presented in this chapter can be viewed as a
principled extension of the steady-state inversion problem to the finite-data case.

4.3.3 MLE

The log-likelihood (4.2) is not concave in γ, but it can be made concave by using the
standard reparametrization γi = eθi . Therefore, any local minimum of the likelihood is
a global minimum (c.f. Section 2.1.1). Unfortunately, it turns out that the conditions
guaranteeing that the ML estimate is well-defined (i.e., that it exists and is unique) are
restrictive and impractical. The following definition extends the notion of comparison
graph of Section 2.1.1 to the case of choices in networks.

Definition (comparison graph). Let G = (V, E) be a directed graph and {aij : (i, j) ∈ E}
be non-negative numbers. The comparison graph induced by {aij} is the directed graph
G′ = (V, E ′), where (i, j) ∈ E ′ if and only if there is a node k such that i, j ∈ N +

k and
akj > 0.

The numbers {aij} in the definition can be loosely interpreted as transition counts
(although they do not need to be integers). Intuitively, there is an edge (i, j) in the
comparison graph whenever there is at least one instance in which i and j are among
the alternatives and j is selected. The notion of comparison graph leads to a precise
characterization of whether the ML estimate is well-defined or not, as shown by the next
theorem—an extension of Theorem 2.1 to the network choice model.

Theorem 4.2. Let G = (V, E) be a weighted, directed graph and {(c−
i , c+

i )} be the
aggregate number of transitions arriving in and originating from i, respectively. Let {aij}
be any set of non-negative real numbers that satisfy

∑
j∈N −

i

aji = c−
i ,

∑
j∈N +

i

aij = c+
i ∀i.

Then, the maximizer of the log-likelihood (4.2) exists and is unique (up to rescaling) if
and only if the comparison graph induced by {aij} is strongly connected.

Proof. The proof borrows from Hunter [2004], in particular from the proofs of Lemmas 1
and 2. Using γi = eθi , we can rewrite the reparametrized log-likelihood using {aij} as

	(θ) =
N∑

i=1

∑
j∈N +

i

aij

[
θj − log

∑
k∈N +

i

wikeθk

]
,
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and, without loss of generality, we can assume that
∑

i θi = 0 and minij wij = 1. We
study the conditions under which (a) super-level sets of the likelihood function 	(θ) are
bounded, and (b) the likelihood function is strictly concave.

First, we prove that the super-level set {θ : 	(θ) ≥ c} is bounded and compact for any
c, if and only if the comparison graph is strongly connected. The compactness of all
super-level sets ensures that there is at least one maximizer. Pick any unit-norm vector
u such that

∑
i ui = 0, and let θ = su When s → ∞, then eθi > 0 and eθj → 0 for some

i and j. As the comparison graph is strongly connected, there is a path from i to j, and
along this path there must be two consecutive nodes i′, j′ such that eθi′ > 0 and eθj′ → 0.
The existence of the edge (i′, j′) in the comparison graph means that there is a k such
that i′, j′ ∈ N +

k and akj′ > 0. Therefore, the log-likelihood can be bounded as

	(θ) ≤ akj′

[
θj′ − log

∑
q∈N +

k

wkqeθq

]
≤ akj′

[
θj′ − log(eθj′ + eθi′ )

]
,

and lims→∞ 	(θ) = −∞. Conversely, suppose that the comparison graph is not strongly
connected and partition the vertices into two non-empty subsets S and T such that there
is no edge from S to T . Let c > 0 be any positive constant, and take θ̃i = θi + c if i ∈ S
and θ̃i = θi if i ∈ T (renormalize such that

∑
i θ̃i = 0). Clearly, 	(θ̃) ≥ 	(θ), and, by

repeating this procedure, ‖θ‖ can be driven to infinity without decreasing the likelihood.

Second, we prove that if the comparison graph is strongly connected, the log-likelihood
is strictly concave (in θ). In particular, for any p ∈ (0, 1),

	 [pθ + (1 − p)η] ≥ p	(θ) + (1 − p)	(η), (4.6)

with equality if and only if θ ≡ η up to a constant shift. Strict concavity ensures that
there is at most one maximizer of log-likelihood. We start with Hölder’s inequality, which
implies that, for positive {xk} and {yk}, and p ∈ (0, 1),

log
∑

k

xp
ky1−p

k ≤ p log
∑

k

xk + (1 − p) log
∑

k

yk.

with equality if and only xk = cyk for some c > 0. Letting xk = wikeθk and yk = wikeηk ,
we find that for all i

log
∑

k∈N +
i

wikepθk+(1−p)ηk ≤ p log
∑

k∈N +
i

wikeθk + (1 − p) log
∑

k∈N +
i

wikeηk , (4.7)

with equality if and only if there exists c ∈ R such that θk = ηk + c for all k ∈ N +
i .

Multiplying by aij and summing over i and j on both sides of (4.7) shows that the log-
likelihood is concave in θ. Now, consider any partition of the vertices into two non-empty
subsets S and T . Because the comparison graph is strongly connected, there is always
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c−2 = 2

c+4 = 1

c−4 = 1

c+2 = 1
c−1 = 1

c+1 = 1

c−3 = 1, c+3 = 2

(a) network structure

1

2

4

3

(b) comparison graph

Figure 4.2 – An innocent-looking example where the ML estimate does not exist. The
network structure, aggregate traffic data and compatible transitions are shown on the
left. The comparison graph (right) is not strongly connected.

k ∈ V, i ∈ S and j ∈ T such that i, j ∈ N +
k and aki > 0. Therefore, the left and right

side of (4.6) are equal if and only if θ ≡ η up to a constant shift.

In order to verify the necessary and sufficient condition of Theorem 4.2 given {(c−
i , c+

i )},
we have to find a non-negative solution {aij} to the system of equations

∑
j∈N −

i

aji = c−
i ,

∑
j∈N +

i

aij = c+
i ∀i.

Dines [1926] presents a simple algorithm to find such a non-negative solution. Alternatively,
Kumar et al. [2015] suggest recasting the problem as one of maximum flow in a network.
However, the computational cost of running Dines’ or max-flow algorithms is significantly
greater than that of running the inference algorithm that we develop later, in Section 4.4.1.

Example In order to illustrate Theorem 4.2, we describe an innocuous-looking example
where the MLE does not exist. Consider the network structure and traffic data depicted
in Figure 4.2. The network is strongly connected and every node i has positive incoming
and outgoing traffic c−

i and c+
i . Nevertheless, the corresponding comparison graph is not

strongly connected, and it turns out that the likelihood can be made arbitrarily large by
increasing γ1, γ2 and γ4. In this simple example, we indicate the edge transitions that
generated the observed marginal traffic in bold. Given this information, the comparison
graph is easy to find, and the necessary and sufficient condition is easy to check. But
in general, finding a set of transitions that is compatible with given marginal per-node
traffic data is a nontrivial computation.

66



4.3. Network Choice Model

Necessary Condition As the conditions of Theorem 4.2 involve the observed traffic,
we might ask the following question. Is there a simpler condition on the structure of G
such that the MLE is well-defined, given sufficiently many transitions? We provide an
answer in the form of a necessary condition for the uniqueness of the MLE that involves
only the structure of the network. We begin with a definition that uses the notion of
hypergraph, a generalized graph where edges can be any non-empty subset of nodes.

Definition (alternatives hypergraph). Given a directed graph G = (V, E), the alternatives
hypergraph is defined as H = (V, A), with A = {N +

i : i ∈ V}.

Intuitively, H is the hypergraph induced by the sets of alternatives available at each
node. Equipped with this definition, we can state the following corollary of Theorem 4.2.

Corollary 4.3. If the alternatives hypergraph is not connected, then for any data D
there are γ and λ such that γ �= cλ for any c ∈ R>0 and 	(γ; D) = 	(λ; D).

Proof. If the alternatives hypergraph is disconnected, then for any data D, the comparison
graph is disconnected too. Furthermore, the connected components of the comparison
graph are subsets of those of the hypergraph. Partition the vertices into two non-empty
subsets S and T such that there is no hyperedge between S to T in the alternatives
hypergraph. Let A = {i : N +

i ⊂ S} and B = {i : N +
i ⊂ T }. By construction of the

alternatives hypergraph, A ∩ B = ∅ and A ∪ B = V . The log-likelihood can be rewritten
as

	(θ) =
∑
i∈A

∑
j∈N +

i

aij

[
log γj − log

∑
k∈N +

i

wikγk

]

+
∑
i∈B

∑
j∈N +

i

aij

[
log γj − log

∑
k∈N +

i

wikγk

]
.

The sum over A involves only parameters related to nodes in S, whereas the sum over
B involves only parameters related to nodes in T . Because the likelihood is invariant
to a rescaling of the parameters, it is easy to see that we can arbitrarily rescale the
parameters of the vertices in either S or T without affecting the likelihood.

The network of Figure 4.1 illustrates an instance where even the necessary the condition
fails: although the graph G is strongly connected, its associated alternatives hypergraph
H (depicted in Figure 4.3) is disconnected, and no matter what the data D is, the ML
estimate will never be uniquely defined. Note that this problematic situation does not
affect only carefully hand-crafted networks: the alternatives hypergraph of all three
real-world networks considered in Section 4.5 are disconnected as well.
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Figure 4.3 – The alternatives hypergraph associated with the network of Figure 4.1. The
hyperedge associated with N +

6 is highlighted in red. Note that the component {3, 4} is
disconnected from the rest of the hypergraph.

4.4 Well-Posed Inference

The shortcomings of the MLE discussed in the previous section drive us to seek a more
robust estimator. Following the ideas of Caron and Doucet [2012], we introduce an
independent Gamma prior on each parameter, i.e., i.i.d. γ1, . . . , γN ∼ Gamma(α, β).
Adding the log-prior to the log-likelihood, we can write the log-posterior as

log p(γ | D) =
N∑

i=1

[
(c−

i + α − 1) log γi − c+
i log

( ∑
k∈N +

i

wikγk

)
− βγi

]
+ κ. (4.8)

The Gamma prior translates into a form of regularization that makes the inference
problem well-posed, as shown by the following theorem.

Theorem 4.4. If i.i.d. γ1, . . . , γN ∼ Gamma(α, β) with α > 1, then the log-posterior
(4.8) always has a unique maximizer γ� ∈ RN

>0.

Proof. Under the reparametrization γi = eθi , the log-prior and the log-likelihood become

log p(θ) =
N∑

i=1

[
(α − 1)θi − βeθi

]
+ κ

	(θ; D) =
N∑

i=1

[
c−

i θi − c+
i log

∑
k∈N +

i

wikeθk

]
+ κ.

It is easy to see that the log-likelihood is concave and the log-prior strictly concave in
θ (for α > 1). As a result, the log-posterior is strictly concave in θ, which ensures that
there exists at most one maximizer.

68



4.4. Well-Posed Inference

Now consider any transition counts {cij} that satisfy c−
i =

∑
j∈N −

i
cji and c+

i =
∑

j∈N +
i

cij .
The log-posterior can be written as

log p(θ | D) =
N∑

i=1

∑
j∈N +

i

cij

[
θj − log

∑
k∈N +

i

wikeθk

]
+

N∑
i=1

[
(α − 1)θi − βeθi

]
+ κ

≤ −N2 · max
i,j

log wij +
N∑

i=1

[
(α − 1)θi − βeθi

]
+ κ.

For α > 1, it follows that lim‖θ‖→∞ log p(θ | D) = −∞, which ensures that there is at
least one maximizer.

Note that varying the rate β in the Gamma prior simply rescales the parameters γ.
Furthermore, it is clear from (4.1) that such a rescaling affects neither the likelihood
of the observed data nor the prediction of future transitions. As a consequence, we can
assume that β = 1 without loss of generality.

4.4.1 ChoiceRank Algorithm

The maximizer of the log-posterior does not have a closed-form solution. In the spirit
of the algorithms of Hunter [2004] for variants of Luce’s choice model, we develop a
minorization-maximization (MM) algorithm. Simply put, the algorithm iteratively refines
an estimate of the maximizer by solving a sequence of simpler optimization problems.
Using the inequality log x ≤ log x̃ + x/x̃ − 1 (with equality if and only if x = x̃), we can
lower-bound the log-posterior (4.8) by

f (t)(γ) = κ +
N∑

i=1

[
(c−

i + α − 1) log γi − βγi

− c+
i

(
log

∑
k∈N +

i

wikγ
(t)
k +

∑
k∈N +

i
wikγk∑

k∈N +
i

wikγ
(t)
k

− 1
)]

,

(4.9)

with equality if and only if γ = γ(t). Starting with an arbitrary γ(0) ∈ RN
>0, we repeatedly

solve the optimization problem

γ(t+1) = arg max
γ

f (t)(γ).

Unlike the maximization of the log-posterior, the surrogate optimization problem has a
closed-form solution, obtained by setting ∇f (t) to 0:

γ
(t+1)
i =

c−
i + α − 1∑

j∈N −
i

wjiμ
(t)
j + β

, where μ
(t)
j =

c+
j∑

k∈N +
j

wjkγ
(t)
k

. (4.10)
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The sequence of iterates provably converges to the maximizer of the log-posterior (4.8),
as shown by the following theorem.

Theorem 4.5. Let γ� be the unique maximum a-posteriori estimate. Then for any initial
γ(0) ∈ RN

>0 the sequence of iterates defined by (4.10) converges to γ�.

Proof. The proof follows that of Theorem 1 in Hunter [2004]. Let M : RN
>0 → RN

>0
be the (continuous) map implicitly defined by one iteration of the algorithm. For con-
ciseness, let g(γ) .= log p(γ | D). As g has a unique maximizer and is concave using
the reparametrization γi = eθi , it follows that g has a single stationary point. First,
observe that the minorization-maximization property guarantees that g [M(γ)] ≥ g(γ).
Combined with the strict concavity of g, this ensures that limt→∞ g(γ(t)) exists and is
unique for any γ(0). Second, g [M(γ)] = g(γ) if and only if γ is a stationary point of g,
because the minorizing function is tangent to g at the current iterate. It follows that
limt→∞ γ(t) = γ�.

How fast does the sequence of iterates converge? It is known that MM algorithms exhibit
geometric convergence in a neighborhood of the maximizer [Lange et al., 2000], but a
thorough investigation of the convergence properties is left for future work.

The structure of the updates in (4.10) leads to an extremely simple and efficient imple-
mentation, described in Algorithm 4.1: we call it ChoiceRank. A graphical representation
of an iteration from the perspective of a single node is given in Figure 4.4. Each iteration
consists of two phases of message passing, with γi flowing towards in-neighbors N −

i , then
μi flowing towards out-neighbors N +

i (each message being weighted by the edge strength
wij). The updates to a node’s state are a function of the sum of the messages. As the
algorithm does two passes over the edges and two passes over the vertices, an iteration
takes O(M + N) time. The edges can be processed in any order, and the algorithm
maintains a state over only O(N) values associated with the vertices. Furthermore, the
algorithm can be conveniently expressed in the well-known vertex-centric programming
model [Malewicz et al., 2010]. This makes it easy to implement ChoiceRank inside
scalable, optimized graph-processing systems such as Apache Spark [Gonzalez et al.,
2014].

4.4.2 EM Viewpoint

The MM algorithm can also be interpreted from an expectation-maximization (EM)
viewpoint, following the ideas of Caron and Doucet [2012]. We introduce N independent
random variables Z = {zi : i = 1, . . . , N}, where

zi ∼ Gamma
(

c+
i ,

∑
j∈N +

i

wijγj

)
.
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Algorithm 4.1 ChoiceRank.

Require: graph G = (V, E), counts {(c−
i , c+

i )}, edge weights {wij}
1: γ ← [1 · · · 1]�
2: repeat
3: z ← 0N � Recompute μ
4: for (i, j) ∈ E do zi ← zi + wijγj

5: for i ∈ V do μi ← c+
i /zi

6: z ← 0N � Recompute γ
7: for (i, j) ∈ E do zj ← zj + wijμi

8: for i ∈ V do γi ← (c−
i + α − 1)/(zi + β)

9: until γ has converged

1
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γ3
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μ2 μ4
γ2
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γ
(t+1)
2 =

c−2 + α− 1
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(t)
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c+2

w21γ
(t)
1 + w23γ

(t)
3

Figure 4.4 – One iteration of ChoiceRank from the perspective of node 2. Messages flow
in both directions along the edges of the graph G, first in the reverse direction (in dotted)
then in the forward direction (in solid).

With the addition of these latent random variables, the complete log-likelihood becomes

	(γ; D, Z) = 	(γ; D) +
N∑

i=1
log p(zi | D, γ)

=
N∑

i=1

[
c−

i log γi − c+
i log

∑
k∈N +

i

wikγk

]

+
N∑

i=1

[
c+

i log
∑

k∈N +
i

wikγk − zi

∑
k∈N +

i

wikγk

]
+ κ

=
N∑

i=1

[
c−

i log γi − zi

∑
k∈N +

i

wikγk

]
+ κ.
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Using a Gamma(α, β) prior for each parameter, the expected value of the log-posterior
with respect to the conditional Z | D under the estimate γ(t) is

Q(γ, γ(t)) = EZ|D,γ(t) [	(γ; D, Z)] + log p(γ)

=
N∑

i=1

[
c−

i log γi − c+
i

∑
k∈N +

i
wikγk∑

k∈N +
i

wikγ
(t)
k

]
+

N∑
i=1

[
(α − 1) log γi − βγi

]
+ κ.

The EM algorithm starts with an initial γ(0) and iteratively refines the estimate by
solving the optimization problem γ(t+1) = arg maxγ Q(γ, γ(t)). It is not difficult to see
that for a given γ(t), maximizing Q(γ, γ(t)) is equivalent to maximizing the minorizing
function f (t)(γ) defined in (4.9). Hence, the MM and the EM viewpoint lead to the exact
same sequence of iterates.

The EM formulation leads to a Gibbs sampler in a relatively straightforward way [Caron
and Doucet, 2012]. We leave a systematic treatment of Bayesian inference in the network
choice model for future work.

4.5 Experimental Evaluation

In this section, we investigate (a) the ability of the network choice model to accurately
recover transitions in real-world scenarios, and (b) the potential of ChoiceRank to scale
to very large networks.

4.5.1 Accuracy on Real-World Data

We evaluate the network choice model on three datasets that are representative of two
distinct application domains. Each dataset can be represented as a set of transition counts
{cij} on a directed graph G = (V, E). We aggregate the transition counts into marginal
traffic data {(c−

i , c+
i ) : i ∈ V} and fit a network choice model by using ChoiceRank (for

simplicity, we set wij ≡ 1 for all datasets). We set α = 2.0 and β = 1.0 (these small
values simply guarantee the convergence of the algorithm for any network structure) and
declare convergence when ‖γ(t) − γ(t−1)‖/N < 10−8. Given γ, we estimate transition
probabilities by using pij ∝ γj as given by (4.1). To the best of our knowledge, there is
no other published method that tackles the problem of estimating transition probabilities
from marginal traffic data. Hence, we compare our method to three baselines based on
simple heuristics.

Traffic Transitions probabilities are proportional to the traffic of the target node:
qT

ij ∝ c−
j .
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PageRank Transition probabilities are proportional to the PageRank score of the target
node: qP

ij ∝ PRj .

Uniform Any transition is equiprobable: qU
ij ∝ 1.

The four estimates are compared against estimates of transition probabilities derived
from ground-truth edge traffic data: p�

ij ∝ cij . We emphasize that although per-edge
transition counts {cij} are needed to evaluate the accuracy of the network choice model
(and the baselines), these counts are not necessary for learning the model—per-node
marginal counts are sufficient.

Given a node i, we measure the accuracy of a distribution qi over outgoing transitions
using two error metrics, the KL-divergence and the (normalized) rank displacement:

DKL(p�
i , qi) =

∑
j∈N +

i

p�
ij log

p�
ij

qij
,

DFR(p�
i , qi) =

1
|N +

i |2
∑

j∈N +
i

|σ�
i (j) − σ̂i(j)|,

where σ�
i (respectively σ̂i) is the ranking of elements in N +

i by decreasing order of p�
ij

(respectively qij). We report the distribution of errors “over choices”, i.e., the error at
each node i is weighted by the number of outgoing transitions c+

i .

Clickstream Data

Wikipedia The Wikimedia Foundation has a long history of publicly sharing aggregate,
page-level Web-traffic data3. Recently, it also released clickstream data from the English
version of Wikipedia [Wulczyn and Taraborelli, 2016], providing us with essential ground-
truth transition-level data. We consider a dataset that contains information, extracted
from the server logs, about the traffic each page of the English Wikipedia received during
the month of March 2016. Each page’s incoming traffic is grouped by HTTP referrer,
i.e., by the page visited prior to the request. We ignore the traffic generated by external
websites such as search engines and keep only the internal traffic (18% of the total traffic
in the dataset). In summary, we obtain counts of transitions on the hyperlink graph of
English Wikipedia articles. The graph contains N = 2 316 032 nodes and M = 13 181 698
edges, and we consider slightly over 1.2 billion transitions over the edges. On this dataset,
ChoiceRank converges after 795 iterations.

3See: https://stats.wikimedia.org/.
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Kosarak We also consider a second clickstream dataset from a Hungarian online news
portal4. The data consist of 7 029 013 transitions on a graph containing N = 41001 nodes
and M = 974 560 edges. ChoiceRank converges after 625 iterations.

The four topmost plots of Figure 4.5 show the error distributions. ChoiceRank significantly
improves on the baselines, both in terms of KL-divergence and rank displacement. These
results give compelling evidence that transitions do not occur proportionally with the
target’s page traffic: in terms of KL-divergence, ChoiceRank improves on Traffic by
a factor 3× and 2×, respectively. PageRank scores, though reflecting some notion of
importance of a page, are not designed to estimate transitions, and understandably the
corresponding baseline performs poorly. Uniform (perhaps the simplest of our baselines)
is (by design) unable to distinguish among transitions, resulting in a large displacement
error. We believe that its comparatively better performance in terms of KL-divergence
(for Wikipedia) is mostly an artifact of the metric, which encourages “prudent” estimates.
Finally, in Figure 4.6 we observe that ChoiceRank seems to perform comparatively better
as the number of possible transition increases.

NYC Bicycle-Sharing Data

Next, we consider trip data from Citi Bike, New York City’s bicycle-sharing system5.
For each ride on the system made during the year 2015, we extract the pick-up and
drop-off stations and the duration of the ride. Because we want to focus on direct trips,
we exclude rides that last more than one hour. We also exclude source-destinations pairs
which have less than 1 ride per day on average (a majority of source-destination pairs
appears at least once in the dataset). The resulting data consist of 3.4 million rides on a
graph containing N = 497 nodes and M = 5 209 edges. ChoiceRank converges after 7 508
iterations. We compute the error distribution in the same way as for the clickstream
datasets.

The two bottommost plots of Figure 4.5 display the results. The observations made on
the clickstream datasets carry over to this mobility dataset, albeit to a lesser degree.
A significant difference between clicking a link and taking a bicycle trip is that, in the
latter case, there is a non-uniform “cost” of a transition due to the distance between
source and target. In future work, we might consider experimenting with edge weights
{wij} that capture this.

4.5.2 Scaling to Large Networks

To demonstrate ChoiceRank’s scalability, we develop a simple implementation in the
Rust programming language, based on the ideas of COST [McSherry et al., 2015]. Our

4The data are publicly available at http://fimi.ua.ac.be/data/.
5The data is available at https://www.citibikenyc.com/system-data.
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Figure 4.5 – Error distributions of the network choice model and three baselines for the
Wikipedia, Kosarak and Citi Bike datasets. The boxes show the interquartile range, the
whiskers show the 5th and 95th percentiles, the red horizontal bars show the median and
the red squares show the mean.
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Figure 4.6 – Average KL-divergence as a function of the number of possible transitions
for the Wikipedia dataset. ChoiceRank performs comparatively better in the case where
a node’s out-degree is large.

code is publicly available online6. The implementation repeatedly streams edges from
disk and keeps four floating-point values per node in memory: the counts c−

i and c+
i ,

the sum of messages zi, and either μi or γi (depending on the stage in the iteration).
As edges can be processed in any order, it can be beneficial to reorder the edges in a
way that accelerates the computation. For this reason, our implementation preprocesses
the list of edges and reorders them in Hilbert curve order7. This results in better cache
locality and yields a significant speedup.

We test our implementation on a hyperlink graph extracted from the 2012 Common
Crawl Web corpus8 that contains over 3.5 billion nodes and 128 billion edges [Meusel
et al., 2014]. The edge list alone requires about 1 TB of uncompressed storage. There
is no publicly available information on the traffic at each page, therefore we generate a
value ci for every node i randomly and uniformly between 100 and 500, and set both
c−

i and c+
i to ci. As such, this experiment does not attempt to measure the validity of

the model (unlike the experiments of Section 4.5.1). Instead, it focuses on testing the
algorithm’s potential to scale to very large networks.

6See: https://github.com/lucasmaystre/choicerank.
7A Hilbert space-filling curve visits all the entries of the adjacency matrix of the graph, in a way that

preserves locality of both source and destination of the edges.
8The data are available at http://webdatacommons.org/hyperlinkgraph/.
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Results We run 20 iterations of ChoiceRank on a dual Intel Xeon E5-2680 v3 machine,
with 256 GB of RAM and 6 HDDs configured in RAID 0. We arbitrarily set α = 2.0 and
β = 1.0 (but this choice has no impact on the results). Only about 65 GB of memory is
used, all to store the nodes’ state (4 × 4 bytes per node). The algorithm takes a little
less than 39 minutes per iteration on average. Collectively, these results validate the
feasibility of model inference for very large datasets.

It is worth noting that, despite tackling different problems, the ChoiceRank algorithm
exhibits interesting similarities with a message-passing implementation of PageRank
commonly used in scalable graph-parallel systems such as Pregel [Malewicz et al., 2010]
and Spark [Gonzalez et al., 2014]. For comparison, using the COST code [McSherry et al.,
2015] we run 20 iterations of PageRank on the same hardware and data. PageRank uses
slightly less memory (about 50 GB, or one less floating-point number per node) and
takes about half of the time per iteration (a little over 20 minutes). This is consistent
with the fact that ChoiceRank requires two passes over the edges per iteration, whereas
PageRank requires one. The similarities between the two algorithms lead us to believe
that ChoiceRank can benefit from any new system optimization developed for PageRank.

4.6 Summary

In this chapter, we have presented a method that tackles the problem of finding the
transition probabilities along the edges of a network, given only the network’s structure
and aggregate node-level traffic data. This method generalizes and extends ideas recently
presented by Kumar et al. [2015]. We have demonstrated that in spite of the strong
model assumptions needed to learn O(N2) probabilities from O(N) observations, the
method still manages to recover the transition probabilities to a good level of accuracy
on two clickstream datasets, and shows promise for applications beyond clickstream data.
In summary, we believe that our method will be useful to practitioners interested in
understanding patterns of navigation in networks from aggregate traffic data, commonly
available, for example, in public datasets.
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5 Predicting Football Matches

In this chapter1, we shift our attention from human choices to sports outcomes. In
particular, we draw attention to a connection between skill-based models of game
outcomes (built on the Bradley–Terry model) and Gaussian-process classification models.
The Gaussian-process perspective enables (a) a principled way of dealing with uncertainty
and (b) rich models, specified through kernel functions. Using this connection, we tackle
the problem of predicting outcomes of football matches between national teams. We
develop a player kernel that relates any two football matches through the players
lined up on the field. This makes it possible to share knowledge gained from observing
matches between clubs (available in large quantities) and matches between national
teams (available only in limited quantities). We evaluate our approach on the Euro 2008,
2012 and 2016 final tournaments.

5.1 Introduction

Statistical models of game outcomes have a rich and diverse history, beginning with
Zermelo almost a century ago (c.f. Section 1.2.2). In this chapter, we revisit his ideas
and highlight their connections to modern machine-learning techniques. In particular,
we show how the Bradley–Terry model can be cast as a Gaussian-process classification
model. The Gaussian-process framework provides two key advantages. First, it brings
all the benefits of Bayesian inference. In particular it provides a principled way to deal
with the uncertainty associated with noisy observations and with predictions. Second, it
opens up new modeling perspectives through the specification of kernel functions.

Equipped with this, we study the problem of predicting outcomes of football matches
between national teams. We identify two key challenges, (a) that of data sparsity (national
teams usually play no more than ten matches per year), and (b) that of data staleness
(the team roster is constantly evolving). Taking inspiration from the observation that

1This chapter is based on Maystre, Kristof, González Ferrer, and Grossglauser [2016].
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Figure 5.1 – Players of national teams qualified for the Euro 2016 (top row) are playing
in clubs across Europe and beyond (bottom row). The English, German and Italian club
championships contain the most selected players.

national teams’ players frequently face each other in competitions between clubs (see
Figure 5.1), we show that these two difficulties can be addressed by the introduction of
a player kernel. This kernel relates any two matches through the players lined up on
the field, and makes it possible to seamlessly use matches between clubs to improve a
predictive model ultimately used for matches between national teams. This is beneficial
because, in contrast to national teams, clubs play much more frequently, hence more data
are available to train the model. This also implicitly addresses the staleness problem, as
a team is defined by the set of players present at a given match.

Outline of the Chapter The remainder of this short chapter is organized as follows.
We review related work in Section 5.2. In Section 5.3, we formalize the link between the
Bradley–Terry model and Gaussian-process classification, and present the player kernel.
Then, in Section 5.4, we evaluate our predictive model on the Euro 2008, 2012 and 2016
final tournaments.
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5.2 Related Work

Zermelo’s 1928 paper (discussed in Section 1.2.2) presented the first statistical model
of chess game outcomes. His model, associated with a simple online stochastic gradient
update rule, is known as the Elo rating system [Elo, 1978]. This rating system is
currently used by the World Chess Federation (FIDE) to rank chess players2 and by
the International Federation of Football Association (FIFA) to rank women’s national
football teams3, among others.

The model and related inference algorithms have been extended in various ways, e.g.,
by considering other types of outcomes [Rao and Kupper, 1967, Maher, 1982] or by
permitting parameters to evolve over time [Glickman, 1993, Fahrmeir and Tutz, 1994,
Cattelan et al., 2013]. One direction that is of particular interest in this chapter is the
handling of the uncertainty of the estimated skill parameters. Glickman [1999] proposes
an extension that simultaneously updates ratings and associated uncertainty values, after
each observation, by using a simple closed-form update. Herbrich et al. [2006] propose
TrueSkill, a comprehensive Bayesian framework for estimating player skills in various
types of games based on the expectation-propagation algorithm. The models and methods
described in this chapter are similar to TrueSkill, as will be discussed in Section 5.3. In the
context of learning users’ preferences from pairwise comparisons, Chu and Ghahramani
[2005c] were the first to link the Bayesian treatment of pairwise comparisons models to
Gaussian-process classification [Rasmussen and Williams, 2006].

5.3 Methods

In this section, we first show how the Bradley–Terry model of pairwise comparisons (the
modern name of Zermelo’s model), can be expressed in the Gaussian-process framework.
The Gaussian-process viewpoint shifts the focus from items (or, in our case, contestants)
to games: the statistical relationship between outcomes of several games is given by a
covariance function. Second, we present the player kernel, a covariance function that
relates football matches through lineups.

5.3.1 Gaussian-Process Classification Viewpoint

Suppose that we observe outcomes of comparisons between two items (e.g., two players
or two teams) in a universe of items denoted 1, . . . , N . We begin by restricting ourselves
to binary outcomes, i.e., we assume that one of the two items necessarily wins. The
Bradley-Terry model postulates that each item i can be represented by a parameter
θi ∈ R, indicative of its relative strength against an opponent. Given these parameters,

2See: https://ratings.fide.com/.
3See: http://www.fifa.com/fifa-world-ranking/procedure/women.html.
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the probability of observing the outcome i � j is given by

P [i � j] =
1

1 + exp[−(θi − θj)]
=

1
1 + exp(−θ�x)

, (5.1)

where θ = [θi] and x ∈ RN is such that xi = 1, xj = −1 and xk = 0 for k �= i, j. As
such, the pairwise comparison model can be seen as a special case of logistic regression
[Bishop, 2006, Chapter 4], where the feature vector simply indicates the winning and
losing items. Furthermore, logistic regression is itself a special case of Gaussian-process
classification [Rasmussen and Williams, 2006, Chapter 3].

Definition (Gaussian process). A Gaussian process

f(x) ∼ GP[m(x), k(x, x′)]

is a stochastic process defined by a mean function m(x) .= E [f(x)] and a positive
semi-definite covariance (or kernel) function k(x, x′) .= Cov [f(x), f(x′)]. Given any
finite collection of points x1, . . . , xM , the Gaussian process sampled at these points has
a multivariate Gaussian distribution

[
f(x1) · · · f(xM )

]
∼ N(m, K),

where mu = m(xu) and kuv = k(xu, xv).

It is not hard to show that if θ ∼ N(0, σ2I), then f(x) = θ�x is a Gaussian process with
m(x) = 0 and k(x, x′) = σ2x�x′. This enables us to interpret (5.1) as the likelihood of
a Gaussian-process classification model with the logit link function.

The Gaussian-process viewpoint shifts the focus from the parametric representation
of the function f(x) (in the case of (5.1), a linear function of items strengths) to the
covariance between two function evaluations, as defined by the kernel function k(x, x′).
Intuitively (and informally), the model can simply be specified by stating how similar any
two match outcomes are expected to be. Furthermore, the Gaussian-process viewpoint
also makes it possible to take advantage of the vast amount of literature and software
related to accurate, efficient, and scalable inference.

Handling Draws Rao and Kupper [1967] propose an extension of the pairwise com-
parison model for ternary (win, draw, loss) outcomes. In this extension, the two different
types of outcomes have probabilities

P [i � j] =
1

1 + exp[f(x) − α]
P [i ≡ j] = (e2α − 1)P [i � j] P [j � i] ,
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where α > 0 is an additional hyperparameter controlling the frequency of draws (see
also Section 2.3.5). Because a draw can be written as the product of a win and a loss,
model inference can still be performed using only a binary Gaussian-process classification
model, with the changes needed to the link function being minimal.

5.3.2 The Player Kernel

We now consider an application to football and propose a method to quantify how similar
two match outcomes are expected to be. Let 1, . . . , P denote all distinct players appearing
in a dataset of matches. We define a team’s lineup as the set consisting of the 11 players
starting the match. For a given match, let W and L be the lineups of the winning and
losing teams, respectively. Define z ∈ RP such that zp = 1 if p ∈ W, zp = −1 if p ∈ L
and zp = 0 otherwise. We then define the player kernel as

k(z, z′) = σ2z�z′.

Intuitively, the function is positive if the same players are lined up in both matches,
and the same players win (respectively, lose). The function is negative when players win
one match, but lose the other. Finally, the function is zero, e.g., when the lineups are
completely disjoint.

This kernel implicitly projects every match into the space of players, and defines a
notion of similarity in this space. In the case of national teams qualified to Euro final
tournaments, we find that this approach is very useful: a significant part of national teams’
players take part in one of the main European leagues and play with or against each
other. International club competitions (such as the UEFA Champions League) further
contribute to the “connectivity” among players. Figure 5.2 illustrates the similarity of
matches across different competitions in 2011–2012.

It is interesting to note that the player kernel corresponds to a linear model over the
players. That is, it is equivalent to assuming that there is one independent skill parameter
per player, and that the strength of a team is the sum of its players’ skills. Such a
model contains a massive number of parameters (possibly much more than the number
of observations), and there is little hope for a reliable estimation of every parameter. In
fact, in Section 5.4 we observe that the model is “weakly” parametric: the number of
distinct players usually grows with the number of matches observed. The kernel-based
viewpoint that we take emphasizes the fact that estimating these parameters explicitly is
not necessary.

Relation to TrueSkill Our Gaussian-process model coupled with the player kernel is
very similar to TrueSkill [Herbrich et al., 2006]. The most important difference is that we
take advantage of the dual representation and operate in the space of matches, instead of
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Figure 5.2 – Heat map of the magnitude of the kernel matrix for 3 184 matches played
over the year preceding Euro 2012. White indicates zero correlation, black indicates
non-zero correlation. Matches between national teams exhibit non-zero covariance with
matches of all other competitions.

in the space of players. Beyond the conceptual reasons outlined above, the model makes
inference less computationally intensive for the datasets that we consider.

5.4 Experimental Evaluation

In this section, we evaluate our predictive model on the matches of the Euro 2008, 2012
and 2016 final tournaments and compare it to several baselines.

We collect a dataset of matches from (a) official and friendly competitions involving
national teams, and (b) the most prestigious European club competitions, starting from
July 1st, 2006. The list of competitions is displayed in Table 5.1. There are approximately
15× more matches between clubs than there are matches between national teams in our
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Table 5.1 – List of competitions included in the dataset, spanning matches from 2006 to
2016. The majority of matches are played in competitions between clubs.

Competition Country Involves clubs

Bundesliga Germany •
Confederations Cup International
EC Qualification International
European Championship International
Friendlies International
Ligue 1 France •
Premier League England •
La Liga Spain •
Serie A Italy •
UEFA Champions League International •
UEFA Europa League International •
World Cup International

dataset. With respect to the model outlined in Section 5.3, our final predictive model
processes one additional feature that encodes which team played at home (this feature
is null for matches played on neutral ground). We train the model using a dataset D
consisting of all M matches that were played prior to the start of the competition on
which we test. When computing the kernel matrix (whether on training or on test data)
we use the starting lineups, usually announced shortly before the start of the match. It
is interesting to note that the number of distinct players P appearing in the dataset
exceeds the number of training instances in each case (the values of M and P are shown
in Table 5.2).

Starting from a Gaussian prior distribution over the M matches f = [f1 · · · fM ]� ∼
N(f | m, K), we seek to find the posterior distribution

p(f | D) ∝ N(f | m, K)
M∏

m=1

1
1 + exp(−fm)

.

This distribution is intractable, and we use the expectation-propagation algorithm4 to
approximate it by a multivariate normal distribution [Minka, 2001]. Once the posterior is
computed, we can use it to generate predictions for new matches [Rasmussen and Williams,
2006]. These predictions come in the form of probability distributions [pW, pD, pL] over
the three outcomes (win, draw, loss).

We compare our predictive distributions against three baselines. First, we consider a
simple Rao-Kupper model based on national team ratings obtained from a popular

4We use the GPy Python library (see: https://sheffieldml.github.io/GPy/) to fit the model;
inference takes a minute for the 2008 test set (17 minutes for 2016).
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Chapter 5. Predicting Football Matches

Table 5.2 – Average logarithmic loss of our predictive model (PlayerKern), a model based
on national team ratings (Elo), betting odds (Odds) and a random baseline (Random)
on the final tournaments of three European championships. M is the number of training
instances, P the number of distinct players and T the number of test instances.

Competition M P T PlayerKern Elo Odds Random

Euro 2008 4 390 7 875 31 0.969 0.910 0.979 1.099
Euro 2012 15 594 21 735 31 0.939 1.003 0.953 1.099
Euro 2016 24 887 33 157 51 1.067 1.102 1.020 1.099

website5. This model is similar to ours, but (a) it does not relate matches through players,
hence does not consider club outcomes, and (b) as ratings are fixed values, it does not
consider uncertainty in the ratings. Second, we consider average probabilities derived
from the odds given by three large betting companies. Third, we consider a random
baseline which always outputs [1/3, 1/3, 1/3]. The predictive distributions are evaluated
using the average logarithmic loss over T test instances

− 1
T

T∑
i=1

[
1{yi=W} log pW

i + 1{yi=D} log pD
i + 1{yi=L} log pL

i

]
.

The logarithmic loss penalizes more strongly predictions that are both confident and
incorrect. Table 5.2 summarizes the results.

Our predictive model performs well for 2008 and 2012, but slightly less so for 2016. It is
noteworthy that the 2016 final tournament was generally less predictable than earlier
editions. The case of the Elo baseline is interesting, as its accuracy varies wildly. Reasons
for this might include the noise due to the online gradient updates, and the lack of proper
uncertainty quantification in the ratings. Our method, in contrast, seems to produce
more conservative predictions, but manages to achieve a more consistent performance.

5.5 Summary

In this short chapter, we have exposed a connection between a well-known pairwise
comparison model and Gaussian-process classification, and have proposed a kernel that
is able to transfer knowledge across different types of football matches—those between
clubs and those between national teams. We have shown that a predictive model built on
these ideas achieves a logarithmic loss that is competitive with betting odds. In future
work, we would like to investigate how to incorporate aging into the model, i.e., how to
progressively downweight older data.

5See: http://www.eloratings.net/.
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6 Conclusion

Modern technologies enable the collection of comparison data at an unprecedented scale,
opening up many new opportunities for businesses and researchers. But they also raise
substantial challenges. Often, the number of parameters of the models used to analyze the
data grows concurrently to the amount of data. This calls for new, efficient methods for
collecting comparisons and learning models. In this thesis, we propose several solutions
that highlight different aspects of efficiency.

• In Chapter 2, we address the problem of parameter inference for Luce’s choice
model. By expressing stationary points of the likelihood function as the stationary
distribution of a Markov chain, we link recently proposed spectral estimators to
maximum-likelihood methods. This link enables the development of new inference
algorithms that are statistically and computationally efficient.

• In Chapter 3, we consider the active-learning setting. We study theoretically and
empirically the performance of Quicksort when pairwise comparison outcomes follow
the Bradley–Terry model. In scenarios where it is possible to adaptively select pairs
of items to compare, we show that sorting-based active-learning strategies lead
to significant gains in sample efficiency. Compared to competing active-learning
methods, ours is computationally cheaper.

• In Chapter 4, we focus on choices in networks. In this case, we achieve data efficiency
in a different way: we find that it is not necessary to observe distinct choices among
well-defined sets of alternatives in order to estimate model parameters. Marginal
information about the incoming and outgoing traffic at each node is sufficient. The
network structure also enables a fast algorithm that scales to very large graphs.

• Finally, in Chapter 5, we tackle a concrete problem in sports. Based on past
outcomes of football matches, we seek to predict the outcome of future matches
between national teams. We devise a method that uses all the available data
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Chapter 6. Conclusion

efficiently: it considers the outcome of all matches—including those between clubs—
and obtains predictions that outperform competing models. It does so by implicitly
projecting the football matches in the space of players.

The approach we take in most of this thesis consists of distilling challenges faced in
modern applications of choice models into simple and fundamental problems. We then
propose methods to address these problems. We have applied these methods to real
use-cases; however, there remain important classes of practical applications for which
our methods are not applicable directly. We discuss three directions in which our work
could be extended.

Item features With the exception of Chapter 5, we have assumed that the item
strengths {γi} or {θi} are free parameters. However, in some applications, we
might have access to features that relate items to each other. We distinguish two
cases. First, suppose that item i is described by a real-valued feature vector xi ∈ RD,
where typically D � N . Then, by setting θi = x�

i w for some latent parameter
vector w ∈ RD, we obtain the multinomial logit model [McFadden, 1973, Train,
2009]. Inference in this model is well-studied, but the issue of effective and efficient
active learning remains widely open. Second, suppose that item i is described by a
binary vector xi ∈ {0, 1}D describing the presence or absence of certain features.
Then, we can model comparison outcomes using the elimination-by-aspects (EBA)
model [Tversky, 1972], a model closely related to that of Luce. Preliminary work
shows that the algorithms developed in Chapter 2 could be extended to the EBA
model in the case of pairwise comparisons.

Context of comparisons Sometimes, the context in which choices are made is impor-
tant. For example, we might prefer to listen to a different type of music depending
on whether we are spending a quiet moment or doing sports, or whether it is summer
or Christmas time, etc. In cases where the context is explicit, we fall back to the
problem of integrating side information in the form of feature vectors. However, if
the context is not explicitly observed, the problem becomes more difficult. We make
a step towards addressing this problem in Ko et al. [2016], where we study a setting
in which we observe sequences of choices. We propose a model where the context
at time t is encoded by previous choices made by a user in (−∞, t), and where the
effective utility θ

(t)
i of item i at time t varies accordingly. In general, integrating

latent context into choice models remains an interesting avenue for future research.

Personalization In applications using recommender systems, the task is often to learn
a distinct preference profile for each user. For example, online service providers use
these systems in order to tailor their service to the specific tastes of a user. An
obvious but inefficient way to achieve personalization is to learn a distinct choice
model for every user. As many users share similar preferences, it is sensible to take
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advantage of similar users’ choices to learn a given user’s preferences. One approach
is to postulate that there are a small number of (global) instances of Luce’s model,
and that individual preferences are formed by (user-specific) mixtures of these
models [Gormley and Murphy, 2008, Ammar, 2015]. The inference problem then
consists of jointly learning the global models and the user-specific mixture weights.
To this end, the algorithms developed in Chapter 2 could be used to carry out the
M step in the EM algorithm of Gormley and Murphy [2008].

A potential weakness of models based on Luce’s axiom (as well as those based on
Thurstone’s ideas, see Section 1.2.1) is that they are sensitive to outliers: the probability
that the outcome of a comparison between i and j is inconsistent decreases exponentially
fast with |θi − θj |. Hence, a small fraction of outliers (due, e.g., to the actions of dishonest
users) can affect the model significantly. In addition to the extensions outlined above, the
study of robust alternatives to Luce’s model is an important direction for future work. On
the one hand, model inference will likely require the development of new tools, beyond
those presented in this thesis. On the other hand, there is hope that the sorting-based
active-learning strategies presented in Chapter 3—including the theoretical bounds on
Quicksort’s performance—can be extended to heavy-tailed noise.

In conclusion, we hope to have convinced the reader that the study of comparison models
is of paramount importance to improve online applications, because choices are the
most natural way for humans to express their opinions (whether implicitly or explicitly).
This thesis hopefully brings us a step closer towards effective methods for eliciting and
analyzing comparison outcomes. As several challenges remain, research on choice models
has a bright future ahead of itself.
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A Python Library

In this appendix1, we give a brief overview of choix, an open-source Python library
that provides implementations of inference algorithms for models based on Luce’s choice
axiom. The library was used for most experiments presented in this thesis and its code is
publicly available at https://github.com/lucasmaystre/choix.

A.1 Types of Data

The library handles four different types of observations, all of which are special cases of
Luce’s general choice model, defined in Section 1.2.3. The specialization enables (a) to
write programs more concisely, (b) to represent the data using less memory, and (c) to
perform computations more efficiently.

Pairwise comparisons The specialization of Luce’s model to the case of pairwise
comparisons is usually referred to as the Bradley–Terry model.

Partial rankings If the data consists of rankings over (a subset of) the items, the model
variant is referred to as the Plackett–Luce model. A K-way ranking is effectively
equivalent to K − 1 successive choices over the remaining alternatives.

Top-1 lists Also referred to in this thesis as multiway choices, top-1 lists correspond to
choices of one item out of several identified alternatives. This type of observation
subsumes all others.

Choices in a network When choices arise in a network, only the marginal incoming
and outgoing traffic at every node of the network is necessary for inferring model
parameters (see Chapter 4). Functions handling networked choice data thus dispense
us from having to specify alternatives available at every choice.

1This appendix is based in part on the documentation of the choix library, available online at
http://choix.lum.li/en/latest/.
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Appendix A. Python Library

A.2 Inference Algorithms

For each type of data, choix exposes several different algorithms for parameter inference.
This makes it possible to compare algorithms, e.g., in terms of numerical stability and
running time, and to choose the one that works best in the particular regime of interest.

Luce Spectral Ranking The library provides a reference implementation of the two
algorithms developed in Chapter 2: LSR and I-LSR. Rank Centrality [Negahban
et al., 2012] is also implemented.

Minorization-Maximization The classic MM algorithm finds the MLE using a simple
iterative procedure. This algorithm is known since the seminal work of Zermelo
[1928].

Convex optimization The choice model’s likelihood function is convex when using
the parametrization in θ, and off-the-shelf convex optimizers can be used for
maximum-likelihood inference. choix offloads this task to the scipy library2.

Approximate Bayesian inference The expectation-propagation algorithm provides
an effective way for computing an approximate posterior distribution of the pa-
rameters [Minka, 2001, Chu and Ghahramani, 2005b]. It is useful in cases where a
measure of the uncertainty of the parameters’ values is needed (e.g., in order to
implement some of the Bayesian active-learning baselines of Chapter 3).

It is interesting to note that there is not one algorithm that consistently outperforms all
others in all regimes. For example, algorithms based on the convex formulation of the
model are numerically more stable when the range of the parameters θ is large. However,
when the range is small, they can be orders of magnitude slower than, e.g., LSR.

2See: https://www.scipy.org/scipylib/index.html.
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