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Abstract

Let G be a simple linear algebraic group over an algebraically closed field K
of characteristic p > 0. In this thesis, we investigate closed connected reductive
subgroups X < G that contain a given distinguished unipotent element u of G.
Our main result is the classification of all such X that are maximal among the
closed connected subgroups of G.

When G is simple of exceptional type, the result is easily read from the tables
computed by Lawther in [Law09]. Our focus is then on the case where G is simple
of classical type, say G = SL(V), G = Sp(V), or G = SO(V). We begin by
considering the maximal closed connected subgroups X of G which belong to one
of the families of the so-called geometric subgroups. Here the only difficult case
is the one where X is the stabilizer of a tensor decomposition of V. For p = 2
and X = Sp(V7) ® Sp(V3), we solve the problem with explicit calculations; for the
other tensor product subgroups we apply a result of Barry [Barl5].

After the geometric subgroups, the maximal closed connected subgroups that
remain are the X < G such that X is simple and V is an irreducible and tensor
indecomposable X-module. The bulk of this thesis is concerned with this case.
We determine all triples (X, u, ) where X is a simple algebraic group, u € X is
a unipotent element, and ¢ : X — @ is a rational irreducible representation such
that ¢(u) is a distinguished unipotent element of G. When p = 0, this was done
in previous work by Liebeck, Seitz and Testerman [LST15].

In the final chapter of the thesis, we consider the more general problem of
finding all connected reductive subgroups X of G that contain a distinguished
unipotent element u of G. This leads us to consider connected reductive overgroups
X of u which are contained in some proper parabolic subgroup of G. Testerman
and Zalesski [TZ13] have shown that when w is a regular unipotent element of G,
no such X exists. We give several examples which show that their result does not
generalize to distinguished unipotent elements. As an extension of the Testerman-
Zalesski result, we show that except for two known examples which occur in the
case where (G,p) = (C3,2), a connected reductive overgroup of a distinguished
unipotent element of order p cannot be contained in a proper parabolic subgroup
of G.

Keywords: group theory, representation theory, algebraic groups, unipotent ele-
ments, classical groups.






Résumé

Soit G un groupe algébrique simple sur un corps algébriquement clos K de caracté-
ristique p > 0. Dans cette thése, nous nous intéressons aux sous-groupes X < G
fermés réductifs connexes qui contiennent un élément unipotent distingué u de G.
Notre principal résultat est une classification de tels X qui sont maximaux parmi
les sous-groupes fermés connexes de G.

Quand G est simple de type exceptionnel, le resultat peut facilement étre
trouvé dans les tableaux calculés par Lawther dans [Law09]. L’accent est donc
porté sur le cas ou G est simple de type classique, disons G = SL(V'), G = Sp(V),
ou G = SO(V). Nous commengons par examiner les sous-groupes X maximaux
parmi les sous-groupes fermés connexes de G, qui appartiennent a I'une des familles
dénommées sous-groupes géométriques. Ici le seul cas difficile est celui ott X est un
stabilisateur d’une décomposition tensorielle de V. Pour p = 2 et X = Sp(V}) ®
Sp(V3), nous résolvons le probléme par des calculs explicites; pour les autres sous-
groupes tensoriels nous appliquons un résultat de Barry [Barl5].

Aprés les sous-groupes géométriques, les sous-groupes X maximaux parmi les
sous-groupes fermés connexes de G restants sont les X < G tels que X est simple
et V est un X-module irréductible et indécomposable en produit tensoriel. La
majeure partie de cette thése se rapporte a ce cas. Nous déterminons tous les
triplets (X, u, ) o X est un groupe algébrique simple, v € X est un élément
unipotent, et v : X — G est une représentation rationnelle irréductible telle que
©(u) est un élément unipotent distingué de G. Dans le cas p = 0, cela a été fait
dans des travaux antérieurs de Liebeck, Seitz et Testerman [LST15].

Dans le dernier chapitre de cette thése, nous considérons un probléme plus
général de trouver tous les sous-groupes X < G fermés réductifs connexes qui
contiennent un élément unipotent distingué u de G. Cela nous améne & étudier
les sous-groupes X qui contiennent u et qui sont contenus dans un sous-groupe
parabolique propre de G. Testerman et Zalesski [TZ13] ont montré que si u est
régulier, il n’existe aucun tel X. Nous donnons plusieurs exemples qui démontrent
que leur resultat ne se généralise pas aux éléments unipotents distingués. Comme
une extension du résultat de Testerman-Zalesski, nous montrons, sauf dans deux
cas ou (G,p) = (C9,2), qu’'un sous-groupe fermé réductif connexe qui contient
un élément unipotent distingué d’ordre p ne peut pas étre contenu dans un sous-
groupe parabolique propre de G.

Mots-clefs: théorie des groupes, théorie des représentations, groupes algébriques,
éléments unipotents, groupes classiques.
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Chapter 1

Introduction

This thesis concerns the subgroup structure and representation theory of simple
linear algebraic groups G over an algebraically closed field K. Two major open
problems for researchers working in this subject are

(1) Understanding the rational irreducible representations of G;

(2) Classifying all positive-dimensional reductive subgroups of G up to conjugacy

in G.

When K is a field of characteristic zero, both problems have been well under-
stood for a fairly long time. For (1), we have classical results such as the Weyl
character formula and Freudenthal’s formula for weight multiplicities. For (2), the
work of Dynkin [Dyn52a| [Dyn52b] gives a full list of all maximal closed connected
subgroups of G. Furthermore, it follows from a theorem of Mostow [Mos56] that
any maximal connected reductive subgroup of G is either a maximal closed con-
nected subgroup, or a Levi subgroup of GG. Consequently in characteristic zero, we
have a recursive way of clagsifying the connected reductive subgroups of G.

In the case where K is a field of positive characteristic, considerable progress
has been made towards both problems in the past decades. One key result is in the
work of Seitz and Testerman, who considered maximal subgroups for G of classical
type [Sei87| [Tes88] [Tes89|. Except for the so-called geometric subgroups (e.g.
parabolic subgroups, stabilizers of tensor decompositions), any maximal closed
connected subgroup of G is a simple algebraic group X which acts irreducibly and
tensor indecomposably on the natural module of G [Sei87, Theorem 3|. In their
work, Seitz and Testerman proved that apart from a known list of exceptions!,
any such X is a maximal closed connected subgroup of GG. This is analogous to
Dynkin’s result [Dynb2a| in characteristic zero, but in positive characteristic the
“known list of exceptions” is much larger and different techniques are needed for
establishing the list. Later for G simple of exceptional type, Liebeck and Seitz
[LS04] found all maximal positive-dimensional closed subgroups of G.

Despite these and plenty of other advances made during the years, many pro-
blems still remain open and a complete solution to the two problems (1) and
(2) above seems to be unattainable for the foreseeable future. For example, the
consensus among researchers seems to be that even finding the dimensions of the

"However, we should mention that there is a recently discovered mistake in [Sei87], which
caused a family of examples to be missing from the “known list of exceptions” given in [Sei87,
Table 1]. This mistake is corrected by Cavallin and Testerman in their preprint [CT17].
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rational irreducible G-modules will remain an open problem for some time. Hence
it is unrealistic to try to classify all possible reductive subgroups of all simple
linear algebraic groups.

In order to get a glimpse of the complete picture, one has to then focus on more
specific problems, such as the classification of certain types of reductive subgroups.
The main contribution of this thesis is one such classification result: we give a
complete classification of the maximal closed connected reductive subgroups of G
that contain distinguished unipotent elements (see Definition 1.1.1 and Problem
1.1.2 below). This generalizes previous results found in [Sup95, Theorem 1.9],
[SS97], and [LST15].

Roughly, one can think of the main topic of this thesis as a part of a general
approach or philosophy for studying subgroup structure, where one classifies the
subgroups containing elements that are “special” in some sense, see [Sax98| for
a survey of some results. Besides being helpful for understanding the subgroup
structure of linear groups, solutions to such problems have been motivated by
applications in recognition algorithms for linear groups [NP92| and the Inverse
Galois Problem in number theory [GM14].

More specifically, the problem of classifying overgroups of specific classes of
unipotent elements is a topic which many researchers have considered, one example
is the work of Liebeck and Seitz [L.S94] on subgroups containing root elements.
It is perhaps slightly surprising that in many cases a full classification is feasible,
and just the presence of a single unipotent element of specific type in a reductive
subgroup can tell us a lot about its structure. For example, all connected reductive
subgroups of SL(V') containing a full Jordan block can be classified [SS97| [TZ13].

1.1 Main problem and statements of results

We now introduce the main problem of this thesis and make some preliminary
obversations. Later in this section we state our main results. To begin, we need
the following definition.

Definition 1.1.1. Let ©v € G be a unipotent element. We say that v € G is
2

distinguished if Cg(u) does not contain a nontrivial torus®.

Basic properties of distinguished unipotent elements that are needed in this
work will be given in Chapter 2. The main problem we are concerned with (and
which we will solve in this thesis) is the following.

Problem 1.1.2 (Main problem). Let u € G a distinguished unipotent element.
Classify all maximal closed connected subgroups X of G that contain u, up to
G-conjugacy.

Recall that as a corollary of the Borel-Tits theorem, any maximal closed con-
nected subgroup X of G is either parabolic or reductive. Furthermore, it is well
known that all parabolic subgroups of G contain a representative of every unipo-
tent conjugacy class of G. Therefore Problem 1.1.2 is solved in the case where X
is parabolic.

2Equivalently, we can say that a unipotent element u € G is distinguished if the identity
component of Cg(u) is unipotent. Another equivalent formulation is that w is not contained in
any proper Levi factor of G.
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Suppose then that X is a reductive maximal closed connected subgroup of G.
If G is simple of exceptional type, a complete list of such X is given by Liebeck
and Seitz in [LS04|. Furthermore, for each such X, Lawther gives in [Law09] for
each unipotent element u € X the conjugacy class of w in G. Thus when G is
simple of exceptional type, the solution of Problem 1.1.2 is easily read from the
tables in [Law09].

What our work will focus on then is the case where G is simple of classical
type. It is easy to see (Lemma 2.1.2) that the isogeny type of G will not make any
difference in the solution Problem 1.1.2. Therefore we can assume that G = SL(V),
G =Sp(V), or G =SO(V), where V is a finite-dimensional vector space over K.
For what follows, set char K = p > 0. The maximal closed connected subgroups
of G can be described with [Sei87, Theorem 3], as follows®:

3

Theorem 1.1.3. Let G = SL(V) (dimV > 2), G = Sp(V) (dimV > 2), or
G = SO(V) (dimV > 5), where V is a finite-dimensional vector space over K.
Let X be a proper closed connected subgroup of G. Then X is mazimal among the
closed connected subgroups of G if and only if one of the following holds:

(a) G = SL(V), and X = Sp(V) or X = SO(V) (Ezception: X = SO(V) and
p=2).
(b) G=Sp(V),p=2,dimV > 2, and X = SO(V).

(¢) G =S0O(V), p=2,dimV is even, and X is the stabilizer of a nonsingular
1-space.

(d) X is a mazimal parabolic subgroup of G.

(e) G = Sp(V) or G = SO(V), V.= W @ W, where W is a non-degenerate
subspace of V', and X = stabg(W)°.

= V1 ® Vo and one of the following holds:
() V = Vi @ Vi and one of the foll hold
(i) G = SL(V), and X = SL(V1) ® SL(Va), where dimV; > 2 (Exception:
dimV; =2 =dim V).
(i) G =S0(V) and X = Sp(V1) ® Sp(V2), where dimV; > 2.
(ii) G=S0(V), p#2, and X = SO(V1) ® SO(V2), where dimV; > 3.
(iv) G =Sp(V), p # 2, and X = Sp(V1) ® SO(Va), where dimV; > 2 and
dim V5 > 3.

(g) X is simple, V | X is simple and tensor indecomposable, and there does not
erist Y < G with (X,Y,V) in [Sei87, Table 1] or [CT17, Theorem 1.2].

Our approach will be to solve Problem 1.1.2 for each of the subgroups (a)
- (g) in Theorem 1.1.3. The proof will be given in Section 5.14. It will be seen

*Here we have modified the statement of [Sei87, Theorem 3| slightly. The dimension restricti-
ons such as dim V' > 5 for G = SO(V) are set because we only consider G simple. Furthermore, as
mentioned in footnote 1, it was recently discovered that there is family of examples missing from
[Sei87, Table 1]; thus we have included a reference to the correction given by Cavallin and Tester-
man. Also, we have corrected a small inaccuracy: the statement of [Sei87, Theorem 3 (f)] excludes
some subgroups which are maximal, namely the tensor product subgroups Sp,(K) ® Sp,,, (K)
in SO4m (K).
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that in cases (a) - (e) of Theorem 1.1.3, the solution of Problem 1.1.2 will follow
from basic results in the literature. In case (f) of Theorem 1.1.3, the solution will

follow with the main result of Section 3.6 (Proposition 3.6.6) and a result of Barry
[Bar15]*.
For the rest of this text, we will make the following assumption.

Assume that p > 0.

The solution of Problem 1.1.2 for the subgroups (a) - (f) in Theorem 1.1.3 is
given by the following result. Below for a unipotent element u € G, the notation
Vg denotes the indecomposable K [u]-module of dimension d, on which u acts with
a single Jordan block. This and other pieces of notation used in this thesis are
given in 1.4 below.

Theorem 1.1.4. Let G = SL(V) (dimV > 2), G = Sp(V) (dimV > 2), or
G = SO(V) (dimV > 5), where V is a finite-dimensional vector space over K.
Fiz a distinguished unipotent element uw € G. Let X be one of the mazimal closed
connected subgroups of G given in (a) - (f) of Theorem 1.1.8. Then the cases where
X contains a G-congugate of u are precisely the following:

(a) G=SL(V), X =Sp(V) (dimV even) or X = SO(V) (p # 2 and dim V' odd),

and v is a reqular unipotent element.

(b) G=Sp(V),p=2,dimV > 2, X =SO(V), and the number of Jordan blocks

of u is even.

(¢) G=SO(V),p=2,dimV is even, X is the stabilizer of a nonsingular 1-space,
and u has a Jordan block of size 2.

(d) X is a mazimal parabolic subgroup.

(e) G =Sp(V) or G = SO(V), V = W @ W+ where W is a non-degenerate
subspace of V, X = stabg(W)°, and V | Ku] = @'_, Vi, © D Vd;_ for
integers di,d;- > 1 such that the following conditions hold:

o dimW =3 d;.
o Ifp=2and G=SO(V), then t =0 mod 2.

(f) V =V1 ® Vo with dimV; < dim V, and one of the following holds:

(i) G=SO(V),p=2,dimV; =2, X = Sp(V1)®Sp(V2), and the orthogonal
decomposition V | K[u] (Proposition 2.4.4) is equal to V(2d1)? + -+ +
V(th)2 for some 1 < dy < --- <d; such that d; is odd for all 1.

(i) G=Sp(V) or G=SO(V), p # 2, X is as in Theorem 1.1.3 (i1), (i) or
(v); and for m = dim Vy and n = dim Vs one of the following conditions
hold:

e The pair (m,n) is contained in the set . of Definition 3.3.12, and
VI Ku =B, Vingn—2it1. (In this case V | Klu] =V, @ V,, ).

*More precisely, the description of the set . that we use in Theorem 1.1.4 (f) is taken from
[Bar15, Theorem 2, Theorem 3].
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o There exist integers 1 <njp < ng < --- < ng such that Ele n; =n,
n; =ny mod 2 foralll <i,7 <t,nj—mn;_1 >2m forall2 <i<t,
the pair (m,n;) is contained in the set % of Definition 3.3.12 for
all 1 <i<t, and

min(m,n1)

t m
V] Klu] = Voi4m—2j+1 ® @ @ Vii+m—2j+1-
j=1 i=2 j=1

(In this case V | K[u]| =V, @ (Vi ® Vo, & - @ V).

Remark 1.1.5. We have assumed that p > 0, but it is easy to see that essentially
the same result as Theorem 1.1.4 applies when p = 0. Specifically, when p = 0,
the cases (b), (c) and (f)(i) of Theorem 1.1.4 no longer apply, and in case (f)(ii)
the conditions (m,n) € . and (m,n;) € . should be removed.

What remains then is the case of the irreducible subgroups in Theorem 1.1.3
(g). The bulk of this thesis is devoted to solving Problem 1.1.2 in this case. To do
this, it will be enough to solve the following problem, which has been solved in
characteristic zero by Liebeck, Seitz and Testerman |[LST15].

Problem 1.1.6. Let .#(V) be a connected simple classical group over K (that
is, Z(V) = SL(V), #(V) = Sp(V) or (V) = SO(V)). Determine all closed
connected simple subgroups G < (V') and unipotent elements uw € G such that
the following hold:

(i) The group G acts on V irreducibly and tensor indecomposably,

(i1) The element u € G is a distinguished unipotent element of 7 (V).

This is essentially a problem about the representation theory of simple alge-
braic groups. In what follows, we will say that a G-module V' (or representation
¢ G — GL(V)) is symplectic if V admits a non-degenerate G-invariant alter-
nating bilinear form, and orthogonal if V' admits a non-degenerate G-invariant
quadratic form. Note that if V is irreducible, then any such form is unique up to
a scalar multiple (Lemma 4.4.3 and Lemma 4.4.5). Thus if a rational irreducible
representation ¢ : G — GL(V) is symplectic or orthogonal, then we can write
respectively ¢(G) < Sp(V) or ¢(G) < SO(V) without ambiguity.

We will now make the following definition to present Problem 1.1.6 in a diffe-
rent way.

Definition 1.1.7. Let u € G be a unipotent element and let ¢ : G — GL(V)
be a rational representation. For the G-module V', we say that u acts on V as a
distinguished unipotent element, if one of the following holds.

(i) p(u) is a distinguished unipotent element in SL(V).

(il) V is symplectic, and ¢(u) is a distinguished unipotent element in Sp(V),
where Sp(V) is the stabilizer of a non-degenerate G-invariant alternating
bilinear form.

(iii) V is orthogonal, and ¢(u) is a distinguished unipotent element in SO(V),
where SO(V) is the identity component of the stabilizer of a non-degenerate
G-invariant quadratic form.
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The following lemma is immediate from Lemma 2.1.2 (ii).

Lemma 1.1.8. Let u € G be a unipotent element. If u acts on a rational G-module
as a distinguished unipotent element, then u is distinguished in G.

With Lemma 1.1.8, Problem 1.1.6 becomes equivalent to the following problem.

Problem 1.1.9. Let G be connected and simple and let uw € G be a distinguished
unipotent element. Find all irreducible, tensor-indecomposable G-modules V' such
that u acts on 'V as a distinguished unipotent element. Furthermore, for each such
V', determine whether V is symplectic, orthogonal, both, or neither.

Note that by Steinberg’s tensor product theorem, it is enough to solve Problem
1.1.9 in the case where V is a p-restricted irreducible G-module. The first part
of the solution to Problem 1.1.9 will follow from the following two theorems. See
Definition 2.7.2 for the definition of m,,(\).

Theorem 1.1.10. Assume that p # 2. Let G be simple, and let \ be a non-zero
p-restricted dominant weight. A unipotent element u € G acts on the irreducible
G-module L (\) of highest weight X\ as a distinguished unipotent element if and
only if one of the following holds:

(i) (u of order >p) G, \, p and u occur in Table 1.1 or Table 1.2,
(ii) (u of order p) G, X\ and w occur in Table 1.1 or Table 1.2 and p > m, (),

(iil) G = G2, A = w1 + 2ws, u is a regular unipotent element, and p = 5.

Theorem 1.1.11. Assume that p = 2. Let G be simple, and let \ be a non-zero
2-restricted dominant weight. A unipotent element u € G acts on the irreducible
G-module Lg(\) of highest weight X\ as a distinguished unipotent element if and
only if G, X\ and u occur in Table 1.3.

For the second part of Problem 1.1.6, we have to determine whether the Lg(\)
given in Theorem 1.1.10 and Theorem 1.1.11 are symplectic, orthogonal, both, or
neither. In the case where p = 2 this is easily done with Lemma 4.4.3 and Table
4.1. Consider then p = 2. If A # —wpA, then Lg(\) is not self-dual and thus
is not symplectic nor orthogonal. Suppose then that A\ = —wgA. Then Lg(A) is
self-dual and is symplectic by a result observed in [Fon74| (see Lemma 4.4.5). The
question of whether Lg(\) is orthogonal is more subtle and in general an open
problem. However, for the A occurring in Table 1.3, the orthogonality of Lg(\)
can be decided from the results in [Korl7]; we have included this information in
Table 1.3 below®.

As a first step to the solution of Problem 1.1.6, we note the following. It is well
known that in SL(V') there is only one class of distinguished unipotent elements,
the class of a full Jordan block (Lemma 2.2.2). The irreducible representations
¢ : G — GL(V) where ¢(u) is a full Jordan block have been known for some time
already.

SFor many of the entries, this could also done using older results from the literature, see for
example [GW95, Theorem 3.4] and [Gow97, Corollary 4.3].
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Theorem 1.1.12 ([Sup95, Theorem 1.9]). Let G be connected simple and let
A € X(T)" be p-restricted. A unipotent element u € G acts on Lg(\) with a

single Jordan block if and only if u is a reqular unipotent element in G and one of
the following holds:

(i
(iil) G=A;, G=B; or G=C}, and A\ = wy.

)
)
(iil) G = A; and \ = w.
(iv) G = Cy and \ = w.
)

(v) G=G2 and A = w;.

By Theorem 1.1.12, we can reduce the proof of Theorem 1.1.10 and Theorem
1.1.11 to the case of irreducible representations ¢ : G — GL(V') where V is sym-
plectic or orthogonal. Equivalently, we reduce to the case where V is self-dual as a
G-module (Lemma 4.4.3). When p # 2, by the description of distinguished unipo-
tent elements in classical groups (Proposition 2.3.4), the problem is then reduced
to finding all distinguished unipotent elements v € G and self-dual irreducible
G-modules V' such that ¢(u) has all Jordan block sizes distinct, and either all
block sizes are even or all block sizes are odd. When p = 2, Jordan block sizes
do not determine whether a unipotent element is distinguished or not, but one
knows that a distinguished unipotent element has all Jordan block sizes even with
multiplicity < 2 (Proposition 2.4.4 (ii)). Our strategy for Theorem 1.1.11 is then
to determine the cases where ¢(u) has all Jordan block sizes even with multiplicity
< 2, and then determine among these when ¢(u) is distinguished.
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G A Class of u | u of order > p My ()
Ay w1 regular any 21
Al >2 w1 + wy regular Proposition 5.3.2 (ii) 21

Ay 0<c<p-—1| regular none c

As w3 regular p=>5 6

B w1 any any

B3 101 regular p=>5 12

Bs 002 regular p=>5 12

Bs 300 regular none 18
Bl >3 2w regular Proposition 5.7.7 (b) (ii) 41
B;,l>3 wo regular Proposition 5.5.5 (b) (ii)-(iii) | 41 —2
B;,3<1<8 Wn regular Proposition 5.10.1 @
C w1 any any

Cy 00, 1 <b<5 | regular p= 3b

Cy 06, 1 <b<5 | regular p=3 4b

Co 11 regular p=3 7

Co 12 regular none 11

Cs 21 regular none 10

Cs 300 regular none 15

Cs w3 regular p=3,5 9

Cy w3 regular none 15

Cy w4 regular none 16

Cs w3 regular none 21

Cs ws regular none 25
Ci,1>3 2w regular Proposition 5.7.11 (b) (ii) 4l -2
C,1>3 wo regular Proposition 5.5.10 (b) (ii)-(iv) | 41 —4
Dyl >4 w1 any

Dg We regular p=3,5,7 15

DG We [3, 9] p= 7 11

Dg ws regular p=11 28
Dy, l >4 even | 2w regular Proposition 5.7.8 (b) (ii) 4 —4
D, l>40dd | wy regular Proposition 5.5.6 (b) (ii)-(iii) | 41 —6

Table 1.1: char K # 2: Distinguished actions for irreducible representations of
simple G of classical type.
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G | A | Class of u | u of order > p My (N)
Go | 10 | regular p=3,5 6
Gs | 01 | regular p=3,5 10
Go | 11 | regular none 16
Gy | 20 | regular p=>5 12
Go | 02 | regular none 20
Go | 30 | regular none 18
F, | wy | regular p=>5,7,11 22
Fy | wyg | regular p=3,5,7,11 16
F4 (] F4(CL1) p= 5, 7 10
Es | wo | regular p=25,7,11 22
E; | wy | regular p=11 34
E7 | wy | regular p=3,5,11,13,17 | 27
E7 wr E7(a1) p= 5, 13 21
E7 wr E7(a2) P = 5, 7,11 17
Es | ws | regular p=11,13,17,23 | 58
Eg ws Eg(al) p= 11 46

Table 1.2: char K # 2: Distinguished actions for irreducible representations of

simple G of exceptional type.
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G A unipotent class L(\) | K[ul orthogonal?
A,l>1 w1 regular [1+1] not self-dual
A, l>1 wi regular [1+1] not self-dual
As wy + wy | regular (4] yes
As wa regular (2, 4] yes
Ay w1 + wy | regular [42,82] yes
B, CL,l>2 ]| w any distinguished no
B, Cy wo regular [4] no
BQ, CQ w2 2% [22] no
B3, Cs3 wo regular 6, 8] yes
Bs, Cs w3 regular (2, 6] yes
By, Cy4 Wy regular [82] yes
B4, 04 Wy 21, 61 [22, 62] yes
Bs, Cs wo regular [6,8,14,16] yes
Bs, Cs ws regular [2,6,10,14] yes
Bg, Cﬁ W2 217 101 [6, 8, 1027 14, 16] no
B6, 06 We 21, 101 [22, 627 102, 142] yes
Dy, 1 >4 w1 any distinguished yes
Dy w3 any distinguished yes
Dy wy any distinguished yes
Dg wo regular [6,8,10%,14,16] no
Dg ws regular [2,6,10,14] yes
Dsg we regular [2,6,10,14] yes
Gy w1 regular 6] no
Go wa regular 6, 8] yes
Fy Wy regular [10, 16] yes
Fy w1 regular (10, 16] yes
E; wry regular (2,10, 18, 26] yes
E; w1 regular (8,10, 16,18,22,26,32] | no

Table 1.3: char K = 2: Distinguished actions for irreducible representations of
simple G.
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1.2 A more general problem

The main problem of this thesis (Problem 1.1.2) is a special case of the following
more general problem, which remains open.

Problem 1.2.1. Let u € G a distinguished unipotent element. Classify all con-
nected reductive subgroups X of G that contain u, up to G-conjugacy.

In the final chapter of this thesis, we will present some partial results on
Problem 1.2.1. In order to present these results, we will next describe the most
natural strategy for solving Problem 1.2.1. A first step for solving Problem 1.2.1
would be to find the mazimal connected reductive subgroups X of GG that contain a
distinguished unipotent element w. Then since v must also be distinguished in X,
the strategy is to do the same thing with X and proceed in this way inductively
down the subgroup lattice.

However, in the induction step one encounters a non-trivial problem which
needs to be dealt with. Let Y < G be a positive-dimensional connected reductive
subgroup containing w. Then Y is contained in some mazximal closed connected
subgroup M of G. As a corollary of the Borel-Tits theorem, we know that M
is parabolic or reductive. If M is connected reductive, then by our solution to
Problem 1.1.2, we know the possibilities for M and could apply induction.

But if M is parabolic, it is not obvious what one should do here. In this
case Y cannot be contained in a Levi factor of M, because u is a distinguished
unipotent element. In the terminology due to Serre [Ser05], this means that Y is
a non-G-completely reducible (non-G-cr) subgroup (Definition 6.1.1). Essentially,
the obstacle arising here is that while we have a good understanding of what
reductive maximal connected subgroups look like (by [LS04] and [Sei87|), we know
little about subgroups which are maximal connected reductive but not maximal
connected.

Fix v and G in Problem 1.2.1. With the remarks in the previous paragraphs
in mind, a natural strategy for solving Problem 1.2.1 proceeds with the following
steps.

Step I: Find all reductive maximal closed connected subgroups of G containing
U.

Step II: Determine if a closed connected reductive subgroup of G containing u
can be contained in a proper parabolic subgroup of GG, and if so, find
them.

Step III: Use the results in steps I and II to find all closed connected reductive
subgroups of G containing u.

The main result of this thesis is the completion of Step I, i.e. the solution of
Problem 1.1.2. Tt is easy to see (Lemma 6.1.2) that Step II is asking to classify, up
to G-conjugacy, all non-G-cr connected reductive subgroups X of G that contain
u. In previous literature, a result due to Testerman and Zalesski states that no
such X exists if u is a regular unipotent element |[TZ13|. One might hope that
this would generalize to distinguished unipotent elements, but it turns out that
this is not the case. Several examples are given in Chapter 6, see e.g. Example
6.3.3. However, the general impression is that such examples are quite rare. This
is seen in the main result of Chapter 6 (Theorem 6.2.12), which gives a complete
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classification in the case where u has order p; the result is that there are only two
examples, both of which occur in the case (G, p) = (Cs,2).

1.3 The structure of this thesis

The structure of the text is as follows. This introductory chapter will end with
Section 1.4 below, where we fix (mostly standard) notation and terminology that
will be used throughout the text. Chapter 2 contains basic facts about conjugacy
classes of unipotent elements in simple algebraic groups. Most of the results in
Chapter 2 are well known, proofs are given for some results for which we were
unable to find a reference.

Chapter 3 is concerned with the properties of unipotent linear maps on a
finite-dimensional vector space. Most of the chapter concerns the Jordan decom-
position of the tensor product, exterior square and symmetric square of unipotent
linear maps. In characteristic zero this would be a trivial topic, but in our setting
(p > 0) this becomes more difficult. We describe results from the literature which
allow one to determine these decompositions, and then apply them to establish
various facts which will be needed in the sequel. One useful result is Proposition
3.5.3, which determines when the symmetric square or the exterior square of a
unipotent Jordan block has no repeated block sizes in its Jordan decomposition.
Also important for later use will be lemmas 3.4.10, 3.4.11, 3.4.12, and 3.4.13, which
describe the smallest Jordan block sizes occurring in the symmetric and exterior
square of a unipotent matrix. In Section 3.6, we describe the conjugacy class of a
unipotent element u; ® ug € Sp(V1) ® Sp(V2) in Sp(V; ® V2) in some small cases
when p = 2. Chapter 3 finishes with Section 3.7, where we will prove Theorem
1.1.4, one of our main results.

In Chapter 4, we consider the representation theory of simple algebraic groups
that will be needed in the text. Most important result for our main problem is
Proposition 4.6.8, which is key in our proof of Theorem 1.1.10 in the case where u
has order p. Proposition 4.6.8 gives a classification of SLo(K)-modules on which
a non-identity unipotent element u of SLo(K) acts with <1 Jordan block of size
p. An important consequence of this will be Proposition 4.6.10, which shows that
a self-dual SLy(K')-module is semisimple if u acts on it with < 1 Jordan block of
size p.

Chapter 5 is devoted to the proof of two of our main results, Theorem 1.1.4
and Theorem 1.1.10. Here we begin with Section 5.1, which contains the main
reduction for Theorem 1.1.10 in the case where u has order > p. Essentially, we
show that if u € G has order > p, then it is enough to prove Theorem 1.1.10 for
a small number of A. Section 5.2 contains a similar reduction for Theorem 1.1.11,
the main result when p = 2. Sections 5.3-5.12 contain the proof of Theorem 1.1.10
and Theorem 1.1.11 for various families of \ that we need to consider. Most of the
work is in Section 5.5 and Section 5.7, where we establish Theorem 1.1.10 in the
case where G is of classical type and A = w9 or A = 2w;. The results established in
Chapter 3 are key in the proofs of our results. In Section 5.13, we prove Theorem
1.1.10 in the case where u has order p. The proof is based on Proposition 4.6.10
and Theorem 2.6.8, which allow us to apply the methods of Liebeck, Seitz and
Testerman in [LST15|. The proofs of Theorem 1.1.4 and Theorem 1.1.10 are given
in Section 5.14.

In Chapter 6, the final chapter of the thesis, we consider connected reductive
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subgroups that are non-G-cr and contain a distinguished unipotent element u of
G. The main result is Theorem 6.2.12, which is gives a complete classification in
the case where u has order p. In the case where u has order > p, we present some
examples and partial results.

1.4 Notation and terminology

Throughout the whole text, let K be an algebraically closed field of characteristic
p > 0. Unless otherwise mentioned, G denotes a connected semisimple algebraic
group over K, and V will be a finite-dimensional vector space over K. If G is
simple, then we say that p is good for G in the following cases:

e (7 is simple of type A;; for all p > 0,

e ( is simple of type B, Cj, or Dy; for p > 2,

e ( is simple of type Ga, Fy, Eg, or Ey; for p > 3,
e (G is simple of type Eg, for p > 5.

Otherwise we say that p is bad for G. We say that p is very good for G if p is
good for G and in addition p 1 {+1 if G is of type A;. If G is connected semisimple,
then we say that p is good for G if it is good for each simple factor of G, otherwise
we say that p is bad for G.

All groups that we consider are linear algebraic groups over K, and by a
subgroup we always mean a closed subgroup. For an algebraic group X, we denote
its identity component by X°. For an element u € X of finite order, we denote
the order of u by |ul.

All modules and representations that we consider will be finite-dimensional
and rational. Throughout we will view G as its group of rational points over K,
and often G will studied either as a Chevalley group constructed with the usual
Chevalley construction (see e.g. [Ste68|), or as a classical group in its natural
representation (i.e. G = SL(V'), G = Sp(V) or G = SO(V)). We will occasionally
denote G by its type, so notation such as G = (C; means that G is a simple
algebraic group of type Cj.

Let | = rankG. For G we will use the following notation, similarly to the
notation used in |Jan03].

e T: A maximal torus of G.

X(T): Character group of T

®: Root system of G with respect to 7. These are elements of X (7).

A: A system of simple roots for .

®T: The set of positive roots in ®, with respect to A.

0: The half-sum of positive roots, i.e. § = %Za6¢‘+ a.

e =<: The usual partial ordering on X (T, i.e. p < X if and only if A = u, or
A — p is a sum of positive roots.

W: Weyl group of G with respect to T.
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e (—,—): W-invariant inner product on the vector space X (T') ®z R.

e o' (for a € ®): the dual root oV = (3%)

e ®V: The dual root system {a" : a € ®}.

o (—,—): defined as (\, u) = 2(51\7;7)) for all A\, € X(T).

e X(T)": The set of dominant weights for G, with respect to A. This is the
set of A € X(T') which satisfy (A, ) > 0 for all a € A.

e chV: Character of a G-module V' (an element of Z[X (T)]).
o my (p): Multiplicity of the weight p € X(7T') in the G-module V.

® wi,ws,...,w; € X(T)* fundamental dominant weights, with respect to A.
We use the standard Bourbaki labeling of the simple roots, as given in
[Hum72, 11.4, pg. 58].

e my()\) (u € G unipotent, A € X(T)"): See Definition 2.7.2.

e L(\), Lg()\): Trreducible G-module with highest weight A € X (T')*.
e V(N), Ve(\): Weyl module for G with highest weight A € X (7).

e T()\), Te(N): Tilting module for G with highest weight A € X (7).
e rad V(\): The unique maximal submodule of V().

e ¢: The G-conjugacy class of g € G.

e Z(@): Lie algebra of G.

We will use the notation Lg(A) instead of L(A) whenever we want to make
clear that Lg(A) is a module for G (similarly Vi (A) and Tz (N)).

For a dominant weight A € X (T)*", we can write A = Zi:l m;w; where m; €
Z>o. We say that A is p-restricted if 0 <m; <p—1forall 1 <¢ <L

Let u € GL(V') be unipotent. Suppose that u has Jordan block sizes 1 < d; <
do < --- < dy and let n; > 1 be the number of blocks of size d; occurring in
the Jordan form on u. We will often use the notation [d}*,...,d;"] to denote the
Jordan form of u. Here if n; = 1, we will write d; instead of dil. We will often say
that u acts on V with Jordan blocks [dy*,...,d;"]. We also say that u acts on V
with no repeated blocks if n; =1forall 1 <i <t Ift=1and ny =1, we say that
u acts on V with a single Jordan block or as a full Jordan block.

It will often be convenient for us to describe the action of u on a representation
in terms of K[u]-modules. Suppose that u has order ¢ = p'. Then there exist
exactly ¢ indecomposable K[u]-modules Vi, Vo, ..., V,. Here dimV; = i and u
acts on V; as a full Jordan block. We will denote by r - V,, the direct sum V,, &
-+ @ Vy, where V,, occurs r times. If V is a K[u]-module with decomposition
V=nVg @& - ®nVy, where 1 < dy < dy < --- < d¢ and n; > 1, we will
sometimes write this as V' = [d}",...,d}"]. We will say that V has no repeated
blocks if n; =1 for all 1 <7 <t.

A bilinear form b is non-degenerate, if its radical radb = {v € V : b(v,w) =
0 for all w € V'} is zero. For a quadratic form @ : V' — K on a vector space V, its
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polarization is the bilinear form bg defined by bg (v, w) = Q(v+w) — Q(v) — Q(w)
for all v,w € V. We say that @ is non-degenerate, if its radical radQ = {v €
radbg : Q(v) = 0} is zero.

For a representation V of G, a bilinear form (—, —) is said to be G-invariant
if (gv,gw) = (v,w) for all g € G and v,w € V. We say that V is symplectic if
it has a non-degenerate G-invariant alternating bilinear form, and we say V is
orthogonal if it has a non-degenerate G-invariant quadratic form.

For a vector space V over K, we will denote by Sp(V) the group of linear
maps stabilizing a non-degenerate alternating bilinear form on V', and by O(V)
the group of linear maps stabilizing a non-degenerate quadratic form on V. The
identity component of O(V) will be denoted by SO(V'). Note that if p # 2, then
SO(V) = O(V)NSL(V). If p = 2, then SO(V') is the kernel of the Dickson invariant
on O(V).

Given a morphism ¢ : G’ — G of algebraic groups, we can twist representations
of G with ¢. That is, if p : G — GL(V) is a representation of G, then p¢ is a
representation of G'. We denote the corresponding G’-module by V. For the
Frobenius map F : G — G, we will denote V" = v,

If a representation V' of GG has composition series V =V; D Vo D --- DV, D
Vi+1 = 0 with composition factors W; = V;/V;11, we will occasionally denote this
by V = W]_/WQ/"‘/Wt.

We denote by v, the p-adic valuation on the integers, so for a nonzero integer
n € Z we define v,(n) to be the largest integer k > 0 such that p* divides n.






Chapter 2

Unipotent elements in simple
algebraic groups

2.1 Preliminaries

The purpose of this chapter is to list various basic facts about unipotent elements
in G that will be needed in the sequel. As in the main problem of this thesis,
our main interest is in distinguished unipotent elements (Definition 1.1.1). One
particularly important class of distinguished unipotent elements is the class of
reqular unipotent elements, which will come up often.

Definition 2.1.1. Let u € G be a unipotent element. We say that u € G is
regular, if dim Cg(u) = rank G.

It is well known that a regular unipotent element of G is distinguished [SS70,
1.14.(a)]. Furthermore, we know that there exists a unique conjugacy class of
regular unipotent elements in (&, and this conjugacy class is dense in the variety
of all unipotent elements of G [SS70, Theorem 1.8|. In the sections that follow, we
will describe the regular and distinguished unipotent conjugacy classes in groups
of classical type.

We will also need the following basic lemma referred to in the introduction,
which will allow us to establish our results without being concerned with the
isogeny type of G.

Lemma 2.1.2. Let f : G1 — Go be an isogeny between two simple algebraic
groups G1 and Gy. Then

(i) The map [ restricts to a bijection between the unipotent varieties of Gy and
Go, and f induces a bijection between the unipotent conjugacy classes of G

and Go.

(ii) Let u € Gy be a unipotent element. Then u is distinguished in G if and only
if f(u) is distinguished in Gs.

(iii) The map f induces a bijection between the set of closed connected reductive
subgroups of G1 and G2 via X — f(X).

Proof. Claim (i) follows as in [Car85, Proposition 5.1.1]. Claim (ii) also follows
with a standard argument that we give here for completeness. Suppose first that

17
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u is centralized by a non-trivial torus S < G1. Then since ker f is finite, it follows
that f(5) is a non-trivial torus centralizing f(u).

For the other direction of (ii), suppose that f(u) is centralized by a non-trivial
torus S’ < Gy. Since f is surjective, we have S’ = f(S) for S = f~1(5")°. Since
S is connected and consists of semisimple elements, it is a torus. We proceed to
show that S centralizes u. To this end, note first that since S’ centralizes f(u),
it follows that [s,u] € ker f for all s € S. On the other hand, the set [S, u] of all
commutators [s,ul], s € S, is irreducible, being the image of S under the rational
map defined by s+ [s, u]. Since the kernel ker f is finite, it follows that [S,u] = 1,
so S is a non-trivial torus centralizing u.

For (iii), note first that images of reductive groups are reductive. Thus we
have a map X — f(X) between the closed connected reductive subgroups of G
and G5. We show that this map is bijective. If XY < G are closed connected
reductive subgroups and f(X) = f(Y), then X ker f = Y ker f. Since ker f is
finite, we have (X ker f)° = X and (Y ker f)° =Y, which gives X =Y. Therefore
the map in question is injective. To show surjectivity, suppose that Z < Gy is
a closed connected reductive subgroup. Since f is surjective, we have f(X) = Z
for X = f~1(Z)°. What remains is to see that X is reductive, and this follows
easily from the fact that ker f is finite. Indeed, if U is a non-trivial closed connected
unipotent which is normal in X, then f(U) would be a non-trivial closed connected
unipotent subgroup which is normal in Z. ]

To describe unipotent conjugacy classes for a simple algebraic group with given
root system @, it follows from Lemma 2.1.2 (i) that it is enough to do this for
some fixed isogeny type. For simple groups of classical type, in the sections that
follow we will give a description of unipotent conjugacy classes in SL(V'), Sp(V)
and SO(V).

5

2.2 Unipotent elements in SL(V)

Because we are working over an algebraically closed field, the description of the
unipotent conjugacy classes in SL(V) is simply a matter of linear algebra, as shown
by the following lemma which is well known.

Lemma 2.2.1. Let x,y € GL(V). If x and y are conjugate in GL(V'), then x and
y are conjugate in SL(V).

Proof. Suppose that y = g~ 'zg for some g € GL(V). Then for any scalar ¢ € K,
we have y = h™lzh for h = cg. Since K is algebraically closed, we can choose a
scalar ¢ such that det(h) = 1. O

Therefore in SL(V'), the conjugacy class of a unipotent element is determined
by its Jordan form. In other words, unipotent conjugacy classes in SL(V') can be
labeled by partitions of dim V.

In SL(V) there is only one conjugacy class of distinguished unipotent elements,
and this is the class of regular unipotent elements. We record this in the following
lemma. For a proof, see for example [L.S12, Proposition 3.5].

Lemma 2.2.2. Let u € SL(V) be unipotent. Then the following statements are
equivalent.

(i) w is distinguished in SL(V).
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(i) w is regqular in SL(V').

(iii) w has only one Jordan block.

2.3 Unipotent elements in classical groups (p # 2)

Assume that p # 2.

The correspondence between partitions and unipotent conjugacy classes holds
also in other classical groups in odd characteristic. The following propositions are
well known. See for example Theorem 3.1.(i), Theorem 3.1.(ii) and Proposition
3.5 in [LS12].

Proposition 2.3.1. Suppose that G = Sp(V') or G = O(V). Then two unipotent

elements of G are conjugate in G if and only if they have the same Jordan block
structure.

Proposition 2.3.2. Let u € SL(V') be unipotent. Suppose that u has Jordan block
sizes 1 < dy < dg < --- < dy and let n; > 1 be the number of blocks of size d;
occurring in the Jordan form on u. Then

(i) A conjugate of u lies in Sp(V') if and only if n; is even for all i such that d;
1s odd.

(ii) A conjugate of u lies in SO(V') if and only if n; is even for all i such that d;
1S even.

(iii) Suppose that u € SO(V). Then the conjugacy class of uPWV) consists of a

single SO(V')-class, unless d; is even for all i, in which case uPV) splits into

two SO(V)-classes.

Proposition 2.3.3. In a simple classical group G with natural module V', the
Jordan block structure of a reqular unipotent element u € G is as follows.

(i) G =SL(V): single Jordan block of size dim V.
(ii) G = Sp(V): single Jordan block of size dim V.
(iii) G =SO(V), dimV odd: single Jordan block of size dim V.

(iv) G =8S0(V), dimV even: [dimV —1,1].

Proposition 2.3.4. In a simple classical group G with natural module V', the
Jordan block structure of a distinguished unipotent element u € G is as follows.

(i) G =SL(V): single Jordan block of size dim V.
(i) G =Sp(V): [d1,da,...,di] where d; are distinct even integers.

(iii) G =8SO(V): [d1,da, ..., ds] where d; are distinct odd integers.
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2.4 Unipotent elements in classical groups (p = 2)
Assume that p = 2.

We will describe the classification of unipotent conjugacy classes in the classi-
cal groups Sp(V'), O(V) and SO(V'), where dim V' is even. For dim V' odd, there
exists an isogeny SO(V) — Sp(V/V"1), so with Lemma 2.1.2 we will also get a
classification in this case.

For the rest of this section, let G = Sp(V'), where dim V' is even. Let (—, —)
be the G-invariant alternating bilinear form on V and let @ : V — K be a non-
degenerate quadratic form which has polarization (—, —). We denote by O(V') the
group of linear maps on V' that stabilize the quadratic form Q. Now O(V) < G,
and the following result shows that a classification of the unipotent conjugacy
classes of G gives a corresponding classification for O(V).

Theorem 2.4.1. (i) The group O(V) intersects every conjugacy class of G.

(ii) Let g,9" € O(V). Then g and ¢' are conjugate in O(V) if and only if they
are conjugate in G.

(iii) Let u € SO(V) be a unipotent element. Then u is distinguished in G if and
only if u is distinguished in SO(V).

Proof. Statements (i) and (ii) follow from [Dye79, Theorem 4, Theorem 5|. State-
ment (iii) follows from [LS12, Lemma 6.15 (ii)]. O

We will be using the classification of unipotent conjugacy classes of G as given
by Hesselink in [Hes79|. Roughly, the result of Hesselink states that the conjugacy
class of a unipotent element of GG is determined by its Jordan block sizes on V
and some additional data associated with each Jordan block size. In particular,
it turns out (in contrast to the odd characteristic case) that the Jordan block
sizes are not enough to determine whether a unipotent element is distinguished
or not. For example, suppose that dimV = 2d where d is even. Then it follows
from the results described below that G has exactly two conjugacy classes of
unipotent elements which act on V' with two Jordan blocks of size d. One of the
classes consists of distinguished unipotent elements, and the other one consists of
non-distinguished unipotent elements.

We now describe the main result of Hesselink. Let u € G be unipotent and
suppose that the Jordan block sizes of w acting on V are 1 <d(1) < d(2) <--- <
d(t), with block size d(i) occurring with multiplicity n; > 1. Set X = u — 1. For
n > 0, define a quadratic form a,, : V — K by a,(v) = (X" v, X™0) for all
v € V. Define the indez function of V as the map xv : Z>o — Z, where

xv(m) =min{n > 0: X™v = 0 implies a,(v) = 0}

for all m > 0. Then by [Hes79, Theorem 3.8] the conjugacy class of u in G is
uniquely determined by the d(i), n; and the function xy. In fact, the conjugacy
class of u is determined by the values of xy on the d(i).

Proposition 2.4.2 ([Hes79, 3.9|). The conjugacy class of u in G is uniquely

determined by the symbol (d(l);t(d(l)),d(Q)Zf/(d@)), . .,d(t);:/(d(t»).

To describe when w is a distinguished unipotent element in G, we will use the
description of Liebeck and Seitz given in [LS12, Chapter 6].
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Definition 2.4.3. Let W be a K [u]-module W with a u-invariant form (—, —). We
say that W is orthogonally indecomposable, if W cannot be written as a orthogonal
direct sum of two non-zero K[ul-submodules.

Now as a K[u]-module, V' decomposes into an orthogonal direct sum of ortho-
gonally indecomposable modules. In [Hes79|, Hesselink classifies the orthogonally
indecomposable summands that can occur. They fall into two families which are
labeled by integers, we denote them here by V(m) with m > 2 even, and by W (m)
with m > 1.

We will not go into any detail in this section on how these indecomposables
are defined or classified. For more details and for a construction of V(m) and
W (m), see for example |LS12, Chapter 6.1]. For now it will be enough to know
the following facts.

e The indecomposable V(m) has dimension m and u acts on V(m) with a
single Jordan block of size m.

e The indecomposable W (m) has dimension 2m, and W(m) = Wy, @ Ws as a
K[u]-module, where W; are totally singular and u acts on W; with a single
Jordan block of size m.

It turns out that the decomposition of V into an orthogonal direct sum of
submodules of the form V(m) and W(m) determines the conjugacy class of u in
G. More specifically, we have the the following:

Proposition 2.4.4 (|[LS12, Proposition 6.1, Lemma 6.2, Proposition 6.22]). Let
u € G be unipotent. Then there is an orthogonal decomposition

t

VKR = Y Wm e Y vk
j=1

i=1

with b; <2 forall j and1 <my <--- <my, and 1 < ky < --- < ks. Furthermore,
we have the following:

(i) The summands occurring in the decomposition are unique and determine the
conjugacy class of u in G.

(ii) The element u is distinguished in G if and only if V| Klu] = 377_, V(2k;)b.
(ili) If u € O(V), then u € SO(V) if and only if >_, b; is even.

(iv) If u € SO(V), then the conjugacy class uCY) consists of a single SO(V)-
class, unless V| K[u] = 3>0_, W(m;)%, in which case u®V) splits into two
SO(V)-classes.

(v) The element u is regular in G if and only if V | K[u] = V(2k).

(vi) If u € SO(V), then u is regular in SO(V') if and only if V | K[u] = V(2k) +
V(2).

Finally, we will explain how to translate between the descriptions of the con-
jugacy classes given in Proposition 2.4.2 and Proposition 2.4.4.
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Lemma 2.4.5. Let u € G be unipotent, and suppose that

t

Vv \L K[u] = Z W(mi)ai P Z V(2]€])b]

=1 j=1

with b; < 2 for all j and 1 < mq < -+ < my, and 1 < ky < -+ < kg. Let
1<d(1) <d(2) <---<d(t') be the Jordan block sizes of u acting on V. Then for
all i, we have the following.

(i) If m = d(i) is odd, then xv(m) = "1,

(ii) If m = d(i) is even, then xv(m) = % if V(m) occurs as an orthogonal direct

summand of V' | Klu].

(i) If m = d(i) is even, then xv(m) = 52 if V(m) does not occur as an
orthogonal direct summand of V' | K[u].

Proof. Write V' | K[u] = W1®---®W, as an orthogonal direct sum of orthogonally
indecomposable K |[u]-modules, so now each summand is equal to some W(m;)
(1<i<t)yor V(2k;) (1<j<s).

Let m = d(i). By [Hes79, 3.5], we have the following:

XV (m) (m) = %, if m is even.
-2

Xw (m) (M) = o 5 if m is even.
—1

Xw (m) (M) = m2 : if m is odd.

Furthermore, by [Hes79, 3.9 (b)] for all 1 <4 < r we have 0 < yw,(m) < im,
with equality if and only if m is even and W; = V(m). Now our claim about the
value of yy(m) follows from the fact that by [Hes79, 3.7 (c)] we have xy(m)
maxy <i<r{xw; (m)}.

o O

Following [Spa82, 1.2.6, pg. 20] we define a map ¢ on the Jordan block sizes
of a unipotent element u € Sp(V).

Definition 2.4.6. Let d be a Jordan block size of u € Sp(V'). We define £(d) €
{0,1} as follows:

e If d is odd, then £(d) = 0.

o If d is even, then £(d) = 0 if V(d) does not occur as an orthogonal direct

summand of V' | K[u]. (By Lemma 2.4.5, this is equivalent to xy (d) = %)

e If d is even, then e(d) = 1 if V(d) occurs as an orthogonal direct summand

of V| K[u]. (By Lemma 2.4.5, this is equivalent to yy (d) = 4).

As an immediate corollary of Theorem 2.4.2, Lemma 2.4.5, and Proposition
2.4.4, we get the following.

Corollary 2.4.7. Let u € G be unipotent and suppose that the Jordan block sizes
of u acting on V are 1 < d(1) < d(2) < --- < d(t), with block size d(i) occurring
with multiplicity n; > 1. Then
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(i) The conjugacy class of u in Sp(V') is uniquely determined by the symbol

(d(l)?(ld(l))’ d(2)?(2d(2))’ T ’d(t)g(td(t)))‘
(ii) The element u is distinguished in Sp(V') if and only if n; <2 and £(d(i)) = 1
for all 1.

In later sections, we will label the conjugacy classes in Sp(V') by the decompo-
sition V' | K[u] given by Proposition 2.4.4, or by the symbols given by Corollary
2.4.7 (i). By Theorem 2.4.1, we can use the same labeling for unipotent conjugacy
classes of O(V'). Furthermore, by Proposition 2.4.4 (iv), for distinguished SO(V)-
classes we can use the same labeling without ambiguity. Note also that by Lemma
2.1.2 (i), we can (and will) also use this labeling for any simple group of type Cj
or Dl.

To end this section, we give a lemma which is useful for computing the values

e(d(i)) defined above.

Lemma 2.4.8. Let u € Sp(V) be unipotent and suppose that the Jordan block
sizes of u acting on V are 1 < d(1) < d(2) < --- < d(t), with block size d(i)
occurring with multiplicity n; > 1. Fiz m = d(i) and set X =u — 1. Then:

(i) If m is odd, then e(m) = 0.

(ii) Assume that m is even. Let vy, ..., v, be a basis of Ker X™. Then the follo-
wing are equivalent:

(a) e(m) =0.
(b) (X™ tv,v) =0 for all v € Ker X™.
(¢) (X Lo, v) =0 forall 1 <i<r.

Proof. Claim (i) follows from the definition of .

For (ii), suppose that m is even. By Lemma 2.4.5, we have ¢(m) = 0 if and
only if xy(m) = mT_Q Since xy(m) > mT_2 by Lemma 2.4.5, it follows that
g(m) = 0 if and only if amsz(v) = 0 for all v € Ker X". Thus to prove that (a)
and (b) are equivalent, it will be enough to show that (X" v, v) = am_(v) for
all v € Ker X™.

To this end, let v,w € Ker X™. It is a consequence of [Spa82, Lemme 11.6.10,
pg. 99| (with e; = X™ v and f; = X™ Jw there) that for all 1 <i,j <m —1
such that 7 + 7 = m, we have

(X", XIw) + (X', X7 w) = 0. (*)

Applying (*) with i =1,i=2, ..., i =m — 1, we get

i=1 (v, X" ) = (Xv, X" 2w)
i=2 (Xv, X" 2w) = (X0, X" 3w)
i=k (XF Ly, X Fw) = (X Fy, X7 EHD )

i=m-—1 (X" 20, Xw) = (X" o, w)
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It follows that for all v,w € Ker X™ we have (X™ v, w) = (X0, X™ 1)
for all 1 <i <m — 1. With i = m/2, this shows that

(X" 0,0) = (X Fo, X3 10) = am_y (0)
for all v € Ker X". Hence (a) and (b) are equivalent.

It is trivial that (b) implies (c). To show that (c) implies (b), fix a basis
v1,...,v, of Ker X™. Applying (*) with i = m — 1, we get (X™ lvj,v5) +
(X™ 1y, vj) =0 for all 1 < j,5" < r. Thus for v = Z;Zl cjvj € Ker X™ we get
(XM=l v) = > i1 c?(melvj,vj). Hence (X" to,v) = 0 if (X™ 1vj,05) = 0
forall 1 <j <r. O

Remark 2.4.9. Following the results above, it is straightforward to implement a
computer program that determines the conjugacy class of u € GG, when given the
matrix of u and the alternating G-invariant bilinear form (—, —) with respect to
some basis of V. Some of our computer calculations (see Section 2.9) are based on
the use of such a program.

Indeed, calculating with ranks of powers of X = u — 1 allows one to find
very quickly the Jordan block sizes of u acting on V (see Lemma 3.1.2). Then
for each Jordan block size d of u, one needs to calculate £(d). This is done by
applying Lemma 2.4.8. If d is odd, then ¢(d) = 0. If d is even, we compute a basis
v1,..., v, for Ker X4 Then by Lemma 2.4.8 (ii) we have £(d) = 0 if and only if
(Xd Ly, 0;) =0forall 1 <i <.

2.5 Explicit distinguished unipotent elements (p # 2)

Assume that p # 2.

The purpose of this section is to describe representatives for distinguished
unipotent conjugacy classes in the classical groups Sp(V') and SO(V), in terms of
their action on the natural module V.

Note first that it will be enough to construct unipotent elements acting on V
with a single Jordan block. Indeed, consider the case G = Sp(V'). Then a distin-
guished unipotent element u € G should act on V' with Jordan block sizes dq, ..., d;
where d; are distinct even integers such that Zle d; = dim V' (Proposition 2.3.4
(iii)). We can decompose V into a orthogonal direct sum V = W1 & - - @ Wy, where
each W; is a non-degenerate subspace and dim W; = d;. Now if u; € Sp(W;) acts
W; with a single Jordan block of size d;, then u = u; @ --- & uy € Sp(V) acts on
V with Jordan blocks [d1, ..., d;]. In precisely the same way, we see that it will be
enough to construct (for dim V' odd) unipotent elements u € SO(V') acting on V/
with a single Jordan block.

For the construction of unipotent elements with a single Jordan block, we
proceed as in [Jan04, 1.7]. Let d > 0 and let V be a vector space of dimension d

with basis eq, eg,. .., eq. Define a bilinear form (—,—) on V by
(-1 ifi+j=d+1,
(ei,e5) = .
0 otherwise.
Then (—, —) is non-degenerate, and

( )i symmetric, if d is odd,
- =) 18 . . .
alternating, if d is even.
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Define a linear map X : V. — V by Xe; = —e;_1, where we set e¢; = 0 for
j <.

Then X is skew with respect to the form (—, —), that is, (Xv,w)+ (v, Xw) =0
for all v,w € V. Now X is a nilpotent element, so the Cayley transform u =
(1—X)(1+X)~!is a unipotent linear map which leaves the form (—, —) invariant
[Wey39, Lemma 2.10.A, pg. 57|. That is, (uwv,uw) = (v,w) for all v,w € V.
Furthermore, the Cayley transform of u is equal to (1 — u)(1 +u)~! = X, so we
have (u — 1)e; = (u+ 1)e;—; for all 1 < i < n. From this it is straightforward to
see that for all 1 <14 < d, we have

uei:ei-i-QZGj

j<i

and that u acts on V' with a single Jordan block.

Therefore the unipotent element u defined by (u—1)e; = (u+ 1)e;—1 works as
a representative for the unipotent class of a single Jordan block. If d is odd, then
(=, —) is symmetric and u € SO(V'), where SO(V) is the stabilizer of (—,—). If d
is even, then (—,—) is alternating and v € Sp(V'), where Sp(V') is the stabilizer
of (—,—).

2.6 Unipotent elements and labeled Dynkin diagrams
(p good)

Assume that G is a connected semisimple algebraic group, and that p is good for

G.

Definition 2.6.1. We say that a parabolic subgroup P < G with Levi factor L
and unipotent radical @ is distinguished if dim L = dim Q/[Q, Q]. If P = P; with
J C A, the labeled Dynkin diagram associated with P is defined by labeling o € A
with 0 if « € J and with 2 if o & J.

Definition 2.6.2. Let P be a parabolic subgroup of G. We say that a unipotent
element u € R, (P) is a Richardson element for P if the P-conjugacy class of u is
dense in R, (P).

In good characteristic, there is a uniform way of classifying the unipotent
conjugacy classes in GG. Roughly, this is done by establishing a correspondence be-
tween the unipotent elements of G and the Richardson elements of distinguished
parabolic subgroups of Levi factors of G. In this section we will describe this cor-
respondence for distinguished unipotent elements of GG, and the correspondence
between distinguished unipotent elements and labeled Dynkin diagrams. In ge-
neral, we note that each unipotent conjugacy class (not just distinguished) has a
labeled Dynkin diagram associated to it. But for the purposes of the present work,
we will only need to know what the labeled Dynkin diagrams of distinguished uni-
potent elements look like.

The distinguished parabolic subgroups and their labelings were determined by
Bala and Carter in |[BC76a] and [BC76b|. The following theorem shows that in
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good characteristic there is a bijection between distinguished unipotent classes
and distinguished parabolic subgroups®.

Theorem 2.6.3 (Bala-Carter Theorem). Let u € G be a distinguished unipotent
element. Then there exislts a unique distinguished parabolic subgroup P < G such
that u is a Richardson element for P.

In view of Theorem 2.6.3, the following definition makes sense.

Definition 2.6.4. Let u € G be a distinguished unipotent element. Let P = Py,
J C A be a distinguished parabolic corresponding to u in Theorem 2.6.3. Then
the labeled Dynkin diagram associated with u is defined to be the labeled Dynkin
diagram associated with P.

In good characteristic, the conjugacy classes of distinguished unipotent ele-
ments in classical groups (SL(V'), Sp(V) and SO(V')) are determined by Jordan
block sizes (Propositions 2.3.1, 2.3.4 and 2.3.2). Using the Jordan block sizes, there
is a straightforward method for computing the associated labeled Dynkin diagram.
We record this in the following proposition, which is given as in [L.S12, Theorem
3.18]. Recall that we use the standard Bourbaki labeling of the simple roots, as
given in [Hum?72, 11.4, pg. 58|.

Proposition 2.6.5. Let G = SL(V), Sp(V), or SO(V) and let u € G be a dis-
tinguished unipotent element. Suppose that u acts on V with Jordan block sizes
[di,...,di], where t > 1 and 1 < dy < --- < dy. Then the labeled Dynkin diagram
of u is given as follows.

(i) If G =SL(V) (type A), then t =1, u is a reqular unipotent and the labeling
1§ 22...2.

(ii) If G = Sp(V) (type C), the labeling is given as follows. If t = 1 (i.e. u is
reqular), then the labeling is 22...2. If t > 1, then starting from the left
hand side of the Dynkin diagram, begin with (dy — dy—1 — 2)/2 labels 2; then
(di—1 —di—2)/2 sequences 20; then (di—o — di—3)/2 sequences 200; and so on,
until we get to dy/2 sequences 20...0 (t —1 zeros); and finally label 2 on the
last node.

(iii) If G = SO(V) with dim V" odd (type B), the labeling is given as follows. If
t =1 (i.e. u is regular), then the labeling is 22...2. If t > 1, then starting
from the left hand side of the Dynkin diagram, begin with (dy — di—1 — 2)/2
labels 2; then (di—1 — di—2)/2 sequences 20; then (di—o — di—3)/2 sequences

and finally label the rest of the diagram with 20...0 ((t —1)/2 zeros).

(iv) If G = SO(V) with dim V' even (type D), the labeling is given as follows.
Starting from the left hand side of the Dynkin diagram, begin with (d; —
di—1 —2)/2 labels 2; then (dy—1 — di—2)/2 sequences 20; then (dy—o — di—3)/2
sequences 200; and so on, until we get to (di —1)/2 sequences 20...0 (t —1
zeros); finally if t > 2 label the rest of the diagram with 20...0 (t/2 zeroes);
if t = 2 label the last two nodes 22.

5Theorem 2.6.3 was originally proven by Bala and Carter in the case where p = 0 or p
large. In [Pom77]| and [Pom80|, Pommerening extended the results of Bala and Carter to good
characteristic. The approach of Pommerening was based on case-by-case analysis. Later Premet
[Pre03] gave the first uniform proof, which was simplified by Tsujii in [Tsu08].
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Remark 2.6.6. According to Proposition 2.6.5, for classical groups the labeled
Dynkin diagrams of distinguished unipotent elements begin with a string of 2s,
then some number of 20s, then some number of 200s; and so on, until the last
one or two nodes for which the pattern depends on the type of the group and the
unipotent class. We call the string of 2s in the beginning the initial string.

For distinguished unipotent classes in exceptional groups, we name them with
the usual Bala-Carter label of the associated distinguished parabolic subgroup,
as given in [BC76b|. For each of these classes, we record the associated labeled
Dynkin diagrams in the following proposition. See for example [Car85, 5.9, pg.
175-177] or [LS12, Table 2.2, pg. 25].

Proposition 2.6.7. Let G be simple of exceptional type and u € G a distinguished
unipotent element. If u is regular, then the labeled Dynkin diagram of u is 22...2.
If w is not reqular, then the labeled Dynkin diagram of u is as in Table 2.1.

Type | Unipotent class | Labeled diagram
G2 Gz(al) 02
Fy Fy(ay) 2202
F4 F4(a2) 0202
Fy Fy(as3) 0200
Es Eg(ay) 222022
EG Eﬁ(ag) 200202
Er Er(ay) 2220222
E; Er(a2) 2220202
E; Er(a3) 2002022
E; Er(ayq) 2002002
E; Er(as) 0002002
Eg Eg(ay) 22202222
FEg Eg(as9) 22202022
Eg Eg(as3) 20020222
Eg Eg(CL4) 20020202
Eg Eg(by) 20020022
FEg Eg(as) 20020020
Ey Eg(bs) 00020022
Eg Eg(ag) 00020020
Es Eg(bﬁ) 00020002
Eg Eg(ay) 00002000

Table 2.1: Labeled diagrams of non-regular distinguished unipotent elements for
simple groups of exceptional type.

Following [LT99, pg. 7|, we define the labeled diagram of a simple subgroup
A < G of type A; as follows. Let A < G be a simple subgroup of type A;. Now
there exists a surjective morphism ¢ : SLo(K) — A of algebraic groups. Set

TA_{qﬁ(g‘ M01>:MGK*}.
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By replacing A with a conjugate, we can assume that T4 is contained in the chosen
maximal torus 7" of G. For each root a € @, let ¢, be the integer such that

(oo )

One can now choose the base A in a way such that ¢, > 0 for all « € T [LT99,
Proposition 2.3]. We then define a labeled diagram of A to be the Dynkin diagram
of G with node o € A labeled by cy.

The following theorem is a key tool for the proof of Theorem 1.1.10 for unipo-
tent elements of order p.

Theorem 2.6.8 (|[LT99, Theorem 4.2|). Let u € G be a unipotent element of
order p. Then there exists a subgroup A < G of type Ay such that w € A and a
labeled diagram of A is that of w.

Now let u € G be a unipotent element of order p and let © € A, where A < G
is as in Theorem 2.6.8. In this setting, one can study the action of v € G on a
representation V' of G by considering the restriction V' | A. Indeed, here knowledge
of the labeled diagram of u tells how T-weights restrict to T4-weights. Therefore
one gets information on the composition factors of V' | A, which can be used to
gain information on the action of uw on V. This is explored in more detail in Section
4.6 and Section 5.13.

2.7 Largest Jordan block size of a unipotent element

Let w € G be a unipotent element and let V be a G-module, afforded by ¢ :
G — GL(V). Denote by d, the largest Jordan block size of ¢(u). The purpose
of this section is to describe various upper bounds which are known for d,. The
motivation for this is the fact that if u acts on V as a distinguished unipotent
element, then we get an upper bound on dimV that is a quadratic polynomial
in d,. This will be key in our solution of Problem 1.1.9, and will be explained in
sections 5.1 and 5.2.

For basic upper bounds on d, the following elementary observation will be
useful, as found for example in [Sup95, Lemma 2.2, Lemma 2.15].

Lemma 2.7.1. Let uw € G be a unipotent element. Then
(i) du < |ul,
(i1) If v’ € G is a reqular unipotent element, then d, < d,.

Proof. Let f:V — V be any unipotent linear map on V. For any k > 1, we have
(f — l)pk = fP* — 1. Therefore (f — 1)P" =0 for |f| = p%, and thus the largest
Jordan block size of f is < p®. This gives (i).

For (ii), note that if v’ € G is any unipotent element such that the conjugacy
class u® is contained in the Zariski closure of ()%, then d, < d, since {f €
GL(V) : (f —1)% = 0} is Zariski closed in GL(V'). Thus (ii) follows from the fact
that the regular unipotent class is dense in the unipotent variety of G. ]

Definition 2.7.2. Suppose that p is good for G, let © € G be a unipotent element,
and let A € X(T')". Write the dominant weight A as A\ = 2221 gioi, where ¢; € QT
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for all 1 < ¢ <[ (this is possible for example by [Hum72, Section 13, Table 1]).
Define

l
ma(N) =Y digi,
i=1
where d; is the label of «; in the labeled Dynkin diagram of .

If w is regular, then m,(\) = 222:1 ¢; in Definition 2.7.2. Note also that for
any unipotent element u € G, we have my, (A + p) = my(A) + my(p) for all
A\peX(T)".

For the rest of this section we give some properties of m,, (), mostly in the
case where u is a regular unipotent element.

Lemma 2.7.3. Write A = 22:1 ciw;, where w; are the fundamental dominant
weights with the usual Bourbaki labeling. For a reqular unipotent u, the values of
my(N) for each irreducible root system are as in the table below.

D | my(N)
Ay 22:1 i(l+1—1)g
B | Y22l 41— i) 4 )
C | il —d)e
l

1
2i20 —i— 1o+ Ehe 4+ D,

Go | 6¢1 + 10cy

Fy | 22¢1 4+ 42¢o + 30c3 4 16¢4

Eg | 16¢1 + 22¢9 + 30c3 + 42¢4 + 30c¢5 4 16¢4

E7 | 34c1 + 49¢cy + 66¢3 + 96¢4 + THes + 526 + 27cr

Fgs | 92¢1 + 136¢2 + 182¢3 + 270¢y + 220c5 + 168c6 + 114c7 + 58cg

Proof. Write \ = 22:1 ciw;. Then my(A) = Zé:l cimy(w;) since my (A1 + A2) =
My (A1) + my(A2). Using the values of the ¢; for the fundamental weights given in
[Hum72, Section 13, Table 1], it is easy to compute m,(w;) for each irreducible
root system. We omit this computation. O

Lemma 2.7.4. Let u € G be a regular unipotent element. Then u has order p if
and only if pfmy(w;) for all 1 <1 <.

Proof. Now there exists a number Mg > 0, depending only on the type of G, such
that a regular unipotent element v € G has order p if and only if p > Mg. For
G of type A;, By, C; or Dy we have Mg =1+ 1, Mg = 21+ 1, Mg = 2] and
Mg = 2l — 1 respectively (Proposition 2.3.3).

If G has type A;, we have my(w;) = i(l + 1 — i) by Lemma 2.7.3. Therefore
Pt my(w;) for all 1 < ¢ <[ if and only if p ti for all 1 < ¢ <[, which is equivalent
top > 1+ 1. If G has type B;, C}, or Dy, a similar application of Lemma 2.7.3
shows that p ¥ my(w;) for all 1 < ¢ < [if and only if p > 2/ + 1, p > 2] and
p > 2] — 1, respectively.
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Suppose then that G is simple of exceptional type. If G has type Ga, Fy, Eg,
FEr, or Eg, then we have Mo =7, Mg = 13, Mg = 13, Mg = 19, and Mg = 31
respectively (Appendix A). For each exceptional type, using Lemma 2.7.3, one can
easily verify that the prime factors occurring in m,,(w;) are precisely all the primes
< Mg. Therefore p > Mg if and only if p ¥ my(w;) for all 1 < i < rankG, as
desired. For convenience we have listed the prime factors of the m,(w;) in Table
2.1. O

Go | Fy

&

6 E;

s

[\]
w

w1 2,3
wo | 2,5
w3
w4
w5
We
wr
ws

J

—_
w

W W W
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Table 2.1: Prime factors occurring in my,(w;)
ment in G of exceptional type.

where u is a regular unipotent ele-

The following lemma, which has some useful implications for the representation
theory of G. Recall that § € X(T)" denotes the half-sum of the positive roots in
®, and that § = 22:1 wj.

Lemma 2.7.5. Let u € G be a reqular unipotent element. Then the inequality
mu(X) > (A48, ) — 1 holds for all \ € X(T)" and o € d+.

Proof. Let A € X(T)" and a € ®T. Write A = 2221 ciw; and o = Zi:l ki,
where ¢;, k; are nonnegative integers. Then

l l

l
At+d,a) = (ci+ 1) i @) S i+ ks (0, 00) _ S e+ 1)t

where t; = kz% Note that a¥ = > t;aY, so by the equalities above (A+d, a)
gets its largest value when o is the highest root of the dual root system ®V with
respect to the base AV [Hum72, Lemma 10.4A]. In other words, (A + 4, a) gets its
largest value when « is the highest short root 5 of ® with respect to the base A.
Therefore it will be enough to show that m,(\) > (A +4,5) — 1.

According to |Ser94, Proposition 5|, we have

A+6,8) <1+ > (\a)

acdt

Hence it will be enough to show that Za€¢+ (A, @) = my()\). To this end, write
A= 2221 gici, where ¢; € Q7. Then

l
> Na)=D> i ) (aia)
=1

acdt = aedt
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so it will be enough to prove that »° g+ (@i, @) = 2. That is, it suffices to prove
that Za€¢+_{ai}<ai,a> = 0. Now «; is a simple root, so the reflection o, per-
mutes the positive roots other than a; [Hum72, Lemma 10.2B|. Hence

Z (g, ) = Z (00, (i), 00, () = Z (—ay, ),

acdt—{a;} acdt—{a;} aedt—{a;}
which gives Zaeqﬁi{ai}(ai,a) =0. 0

Now the following corollary of Lemma 2.7.5 is immediate from the Jantzen
sum formula [Jan03, 11.8.19].

Corollary 2.7.6. Let A € X(T)" and let u € G be a regular unipotent element.
If p > my(X), then Vg (X) is irreducible.

We finish by describing a connection between m,(A) and simple algebraic
groups in characteristic 0. Let G¢ be a simple algebraic group over C with the same
root system ® as G. Now the Bala-Carter classification of unipotent conjugacy
classes and the results described in 2.6 are still valid for G¢. Thus we can make
the following definition.

Definition 2.7.7. Assume that p is good for G and let u € G be a unipotent
element. We denote by uc some representative uc € Ge of a unipotent conjugacy
class of G¢ which has the same labeled diagram as wu.

Furthermore, Theorem 2.6.8 holds for G¢, so we can find a simple subgroup
Xc < Ge of type A7 such that uc € X¢ and such that X¢ has the same labeled
diagram as uc.

The following theorem is a straightforward consequence of various results ob-
served by Suprunenko [Sup09, Lemma 2.38, Lemma 2.39, Corollary 2.40].

Theorem 2.7.8. Let u € G be a unipotent element and A € X(T)". Then u acts
on Lg(N) with largest Jordan block of size at most m,,(\) + 1.

Proof. Let G, uc, Xc be as above. Now L. () | Xc has highest weight m, (),
so it follows that uc acts on Lg. () with largest Jordan block of size m,, () + 1.

Now the claim follows from Lemma 2.38 in [Sup09], once we observe that
Lemma 2.39 in [Sup09| holds also for exceptional groups; see for example [LS12,
Table 13.3, pg. 172] and [LS12, 18.1, pg. 287]. O

We will say that the action of u on Viz(A) has the same Jordan block sizes as
the corresponding action in characteristic 0, if the Jordan block sizes of u acting
on Vg (A) are same as the Jordan block sizes of uc acting on Vg ().

Lemma 2.7.9. Let u € G be a unipotent element and let X € X (T)" be nonzero.
If p > my(N), then the action of u on V() has the same Jordan block sizes as
the corresponding action in characteristic 0.

Proof. Keep the notation G¢, uc, Xc¢ as before. Assume that p > m,, (). It follows
now from Theorem 2.7.8 that u has order p. Thus by Theorem 2.6.8, we can find a
subgroup X < G of type Ay containing u and having the same labeled diagram as
u. The module V() | X has highest weight m,, (). Since p > m, (), it follows
from |AJL83, Lemma 2.2| that V() | X is semisimple.
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Now note that V. (M) L Xc and V(M) L X have the same character, so they
have the same composition factors. Since both of them are semisimple and all

composition factors of Viz(A) | X have highest weight strictly less p, the claim
follows. U

2.8 Representatives for unipotent classes in Chevalley
groups

For computer calculations, it is often convenient to consider a simple linear alge-
braic group G as a Chevalley group, constructed via the Chevalley construction
as in [Ste68|. In this section we will describe how to construct representatives
u € G for all unipotent classes of a Chevalley group G. For the purposes of this
text, these representatives are needed only for the implementation of some of our
computer calculations, which are described in 2.9.

We begin by recalling the Chevalley construction. Details can be found in
[Ste68]. Let @ be a root system with base A and set of positive roots ®T. Let g¢
be a complex semisimple Lie algebra with root system ®, and fix some Chevalley
basis {X, :a € P}U{H, : a € A} of gc. Now for all o, 5 € & with a+ € @, we
have [X, Xg] = No g Xa+s. We call N, g the structure constants of the Chevalley
basis. Here we have N, g = £(k + 1), where k is the largest integer such that
B — ka € ®. Let %z be the Kostant Z-form with respect to this Chevalley basis.
That is, %y is the subring of the universal enveloping algebra of gc generated by

1andalle—§f0ra€<I>andk21.

Let Vi be some irreducible representation of the Lie algebra gc. Then one can
find a %-invariant lattice Vz in V. Define V = V; ®7 K. Since V7 is invariant
under %z, and since X, act as nilpotent linear maps on V¢, we can define z,(c) =
exp(cX,) € GL(V) for all @ € ® and ¢ € K. Then a Chevalley group over K
induced by V (which depends on the choice of V) is the subgroup

G = (zq(c): v € P,c € K)

of GL(V).

One can show that GG is a connected semisimple linear algebraic group with
root system ®. Furthermore, it is well known that any unipotent element of G
is conjugate to an element of the form [] .4+ Za(ca), where the product is ta-
ken with respect to some ordering of ®*. The following useful lemma is due to
Steinberg.

Lemma 2.8.1 ([Ste65, Lemma 3.2 (c)|). A unipotent element [[,cqp+ Talca) of
G is regqular if and only if co # 0 for all o € A.

Our goal is to find representatives of the form [] .4+ Za(ca) for each unipotent
conjugacy class of G. We will do this in this section, and moreover the represen-
tatives that we give will have the property that ¢, € {—1,0,1} for all a € ®*.
Note that by [Ste68, Corollary 5, pg. 44| and Lemma 2.1.2 (i), the conjugacy class
of such a representative does not depend on the choice of the representation Vg
we choose. However, the conjugacy class of an unipotent element given by the
expression Hae<I>+ Zo(Co) might be ambiguous if the structure constants Nq g are
not specified. We explain next how we will choose the structure constants.

We define a total order (as in [Car72, 2.1]) on ® in the following way. For
a,B € &, we define o < S if and only if « = 3, or  — a = Zle ¢, for some
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1 <k < lsuch that ¢; € Z for all 1 < i < k, and ¢; > 0. As in [Car72, 4.2],
we will say that a pair (a, ) is special if a,3 € &7, a < B, and a+ € ®. A
special pair («, 8) will be called eztraspecial, if for any special pair (o, ") with
o + B = a+ B, we have a < . As noted in |Car72, 4.2|, each v € &+ — A
corresponds to a unique extraspecial pair («, 8) with a + 8 = v, and this defines
a bijection between ®* — A and the set of extraspecial pairs.

It is possible to show [Car72, Proposition 4.2.2] that the structure constants
N g of the Chevalley basis are determined by the values of N, g for extraspecial
pairs («, ). In what follows, we will always use a Chevalley basis such that the
structure constants for extraspecial pairs are positive. Such a basis can always be
found, since by [Car72, Proposition 4.2.2] the signs of the structure constants N, g
for extraspecial pairs («, §) can be chosen arbitrarily. For types B;, C}, and Dy, we
will use a Chevalley basis described in [Jan73, 11, pg. 38]. For our purposes, the
main reason to use structure constants which are positive for extraspecial pairs is
that these are also the default structure constants used in MAGMA.

Definition 2.8.2. A subsystem subgroup of G is a connected semisimple subgroup
of G which is normalized by a maximal torus of G.

We will see in this section that for most of the unipotent conjugacy classes of
G, we can find a class representative in a proper subsystem subgroup of G; this
will reduce the description of the unipotent class representatives to a relatively
small number of cases. Typical examples of subsystem subgroups are given by
closed subsets W of ®.

Definition 2.8.3. We say that W C & is closed, if both of the following hold:
(i) v = —-U.
(ii) For all o, 8 € ¥ such that a+ 8 € ®, we have a + 3 € U.

It is well known (see for example [MT11, Theorem 13.6]) that for any closed
subset W C &, we have a subsystem subgroup

(xa(c) e ¥, ce K)

of G with root system W.
Next we need to make some remarks about graph automorphisms and their

action on unipotent conjugacy classes. The following result is proven in [Ste68,
Corollary (b) of Theorem 29].

Lemma 2.8.4. Assume that G is simply connected. Let o' : A — A be a graph
automorphism of the Dynkin diagram A. Then there exists an isomorphism o :
G — G and signs €4 = £1 such that e = 1 for all o € £A, and o(z4(c)) =
Toi(a)(Eac) for alla € @ and c € K.

For a graph automorphism ¢’ : A — A of the Dynkin diagram, we call the
isomorphism ¢ in Lemma 2.8.4 the graph automorphism of G induced by o. We
know that each graph automorphism of A is either an involution or a triality graph
automorphism of Dy4. The following two lemmas describe the action of involutory
graph automorphisms on unipotent conjugacy classes.
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Lemma 2.8.5 (|LS12, Corollary 6|). Let G be a simply connected algebraic group
of type A; or Eg and let o be a graph automorphism of G. Then o fizes all unipotent
classes of G.

Lemma 2.8.6. Let G be a semisimple algebraic group of type Dy (1 > 2) with
natural module V', and let o be the graph automorphism of G induced by the graph
automorphism swapping the two end nodes of the Dynkin diagram. Then o fizes
all unipotent classes of G, except the following ones:

(i) p # 2: For all ¢; even such that Zle ¢; = 1, the automorphism o swaps the
two classes of unipotents u which satisfy V | K[u] = @_,2-V,,.

(ii) p = 2: For all ¢; even such that 22:1 ¢; = 1, the automorphism o swaps the
two classes of unipotents u which satisfy V | K[u] = @_, W(c;).

Proof. For | # 4 this is [LS12, Corollary 6]. However, the same proof also works
for [ = 4. O

To complete the picture, one should still describe the action of a triality graph
automorphism of D,. We postpone a discussion of this to Section 2.10.

We now move on to describing the unipotent class representatives. For simple
linear algebraic groups of exceptional type, explicit representatives for all unipo-
tent conjugacy classes have been written down in [Sim13, Tables 3.1-3.9|, where
the representatives were found using [LS12| and computations done by Ross Lawt-
her. We list these representatives for the distinguished unipotent classes in tables
2.1 - 2.5, where in some cases the representative given depends on the characte-
ristic p of K. In the tables we denote x;(c) = z4,(c) for all 1 < i < N, where
N = |®"| and &+ = {ay,...,an} is ordered with the total order < described
above. We have given the ordering explicitly in Appendix C. This ordering of the
roots is the same one that is used in MAGMA. Note that the ordering of positive
roots used in [Sim13] for type Fy is different to this ordering. We also remark that
in [Sim13] the structure constants used are those given in [GAP16]|, which are
usually different from those used in MAGMA. However, we have verified that the
representatives given in tables 2.1 - 2.5 work with both sets of structure constants.

For classical types, we will describe representatives for all unipotent conjugacy
classes in the subsections that follow.

Class P Representative
Go any | x1(1)z2(1)
Ga(ar) | any | z2(1)z5(1)
(A1)3 3 $1(1)1‘5(1)

Table 2.1: Representatives for distinguished unipotent classes of a Chevalley group
of type Gba.

2.8.1 Type A, 1 >1

Let e1,...,e;, €41 be a basis for a complex vector space Vg, and let V7 be the
Z-lattice spanned by this basis. Let s[(V¢) be the Lie algebra formed by the linear
endomorphisms of V¢ with trace zero. Then sl(Vg) is a semisimple Lie algebra
of type A;. Let h be the Cartan subalgebra formed by the diagonal matrices in
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Class P Representative
Fy any | x1(1)az(1)zs(1)aa(1)
Fy(aq) any | x1(1)xa(1l)xe(1)z7(1)
Fy(a2) 2 x4(1)z7(1)xs(1)zg(1)
# 2 | za(D)az(1)as(1)ag(1)
F4(a3) any Ig(l):l:g,(l)xg(l)a}lg(l)
(Cs(a1))2 | 2 | w2(1)wa(1)zg(1)w20(1)
(AQAl)Q 2 $1(1):E3(1):E4(1)$16(1)

Table 2.2: Representatives for distinguished unipotent classes of a Chevalley group
of type Fj.

Class P Representative

Eg any | 1(1)z2(1)zs(1)za(1)as(1)ze(1)
Eg(a1) | any | z1(1)z2(1)ze(1)210(1)25(1)26(1)
Eglaz) | 2 | m1(D)as(L)zg(1)z11(1)z14(1)z19(1)
75 2 1‘13(1)331(1).’E15(1)1‘6(1)3514(1)564(1)

Table 2.3: Representatives for distinguished unipotent classes of a Chevalley group
of type Eg.

Class P Representative
Er any | z1(1)wz(1)as(1)za(1)as(1)ae(1)z7(1)
Ez(a1) | any | z1(1)zs(1)z10(1)ze(1)2s(1)we(1)z7(1)
Er(ag) | any | z1(1)xa(1)as(1)ze(1)zr1(1)z12(1)213(1)
Er(as) | 2 | wr(Dar(Dag(l)zio(1)z12(1)z16(1)22(1)

# 2 | z15(1)z1(1)z17(1)2e(1)27(1)216(1)24(1)
Er(ag) | 2 | wr(Dza(Dar(1)wio(1)we2(1)ze3(1)24(1)

# 2 | z1(D)za(D)ar(1)z13(1)@15(1)216(1)217(1)223(1)
Er(as) | 3 | @a(D)w1s(1)@16(1)a19(1)z20(1) 221 (1) 220 (1)

# 3 | za(D)z7(1)woo(1)z21(1)z22(1)223(1)224(1)

Table 2.4: Representatives for distinguished unipotent classes of a Chevalley group
of type E7.

s[(Ve), with respect to the basis (e;). For 1 < i < n, define maps ¢; : h — C by
gi(h) = h;, where h is a diagonal matrix with diagonal entries (hq,...,h;, hii1).
Now ® = {e; —¢; : i # j} is the root system for sl(Vg) and @7 = {g; — ¢; :
i < j} is a system of positive roots. The base A of ® corresponding to ®* is
A={ay,...,qq}, where a; = ¢; — g4 for all 1 < i <.

For 1 <i,7 <[+ 1, let E;; be the linear endomorphism on V¢ such that
E; j(ej) = e; and E; j(er) = 0 for k # j. A Chevalley basis for sl(V¢) with positive
structure constants for extraspecial pairs is given by X, .. = E; ; for all i # j.
Let %z be the Kostant Z-form with respect to this Chevalley basis of sl(V).

Note that Vy is a %;-invariant lattice in V. We define V = V; ®7 K. Then the
following lemma is well known, and amounts to the fact that SL(V') is generated
by transvections.

Lemma 2.8.7. The Chevalley group of type A; induced by V is equal to G =
SL(V).
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Class P Representative
By any | z1(1)za(1)zs(1)zs(1)zs(1)ae(1)z7(1)ws(1)
Eg(a1) any | w1(1)w2(1)z10(1)z11(1)ws(1)we(1)27(1)2s(1)
Es(a2) any 951(1)952(1)553( Jr10(1)712(1)713(1)214(1)28(1)
FEs(as3) 2 z7(L)xs(1)z9(1)@10(1)211(1)712(1)213(1)219(1)
#2 | ;1(Dag(D)ze(1)a7(1)ws(1)z17(1)z18(1)w19(1)
FEs(as) 2 z9(1)z10(1)z11(1)212(1)213(1)214(1)215(1)219(1)
#2 | ;1(Daa(D)we(1)azg(1)wi7(L)z1s(1)z19(1)221(1)
FEs(by) 2 z7(L)as(1)zg(1)@17(1)218(1)719(1) 220 (1)221(1)
#2 | z1(V)za(L)wr(1)wg(1)w1a(1)w17(1)m10(1)w26(1)
Eg(as) 2 z9(1)w14(1)w15(1)z17(1)218(1)@19(1) D20 (1)226(1)
# 2 r1()z12(1)214(D)z15(1) 217 (1) @1 (1) w26 (1) 227 (1)
Es(bs) 3 z4(L)ws(1)z17(1)z18(1) w21 (1)w23(1)224(1)233(1)
#3 | wa(D)zr(L)as(1)z1s(L)a1g(1)wes(1)asi(1)wss(1)
Es(as) 3 24(1)w12(1)@14(1)215(1)223(1) w25 (1) W26 (1)231 (1)
#3 | za(D)zr(1)z18(1)219(1)223(1) 229 (1) 231 (1)2333(1)
Eig(bs) 2 24(1)w15(1)w1s(1)z19(1)223(1) w31 (1)ws3(1)as0(1)
3 z4(1)z17(1)212(1) 229 (1) 230 (1) 231 (1) 234 (1) 2035 (1)
# 2,3 | z4(L)ag(1)z1s(1)w19(1)wo3(1)zs1(1)ass(1)wse(—1)z41(1)
Es(ar) any | @30(1)w33(1)w35(1)z36(1)za0(1)2a5(1)253(1)258(1)
(A7)3 3 w1 (Das(1)za(1)ws(1)we(1)w7(1)ws(1)aer(1)
(D7(a1))2 | 2 z2(1)ws(1)z10(1)z12(1)we(1)z7(1)ws(1)zs3(1)
(D5432)2 | 2 z1 (Do (D)zs(1)za(1)ws(1)z7(1)wg(1)as1 (1)

Table 2.5: Representatives for distinguished unipotent classes of a Chevalley group
of type Eg.

By abuse of notation we will identify the basis (e;®1) of V with (e;). Recall that
by Lemma 2.2.1, the conjugacy class of a unipotent element v € GG is determined
by its Jordan block sizes. In other words, the unipotent conjugacy classes in G are
labeled by symbols [d1,...,d;], where 1 < d; <--- <d; and Zﬁ:l di =1+ 1. Set
ki=1land k; =1+ Z;;ll d; for 1 <i <t. Let V; be the subspace of V' with basis
Bi={ej:ki<j<ki+di—1}. Now V=V @ -- @V, so we have a naturally
embedded subgroup SL(V7) x --- x SL(V;) < G, where SL(V;) is the subgroup of
all g € G such that g(V;) = V; and ge; = e; for all e; € B;.

Note next that a representative of the unipotent conjugacy class labeled by
[d1,...,d] is given by u = wuj - --u, where u; € SL(V;) acts on V; with a single
Jordan block of size d;. If d; = 1, such an wu; is given by u; = 1. Suppose then
that d; > 1. Now by Lemma 2.8.7, the subgroup SL(V;) is a subsystem subgroup
of SL(V') with root system {£(e; —e;/) : k; < j < j < ki+d; — 1} of type Ag,_1,
and a base {o; : k; < j < k; +d; — 2}. Thus it follows from Lemma 2.2.2 and
Lemma 2.8.1 that u; = Hf’:zi’_Q To,; (1) € SL(V;) acts on V; with a single Jordan
block of size d;. Therefore we have the following result.

Lemma 2.8.8 (Type A). Let G = SL(V) be a Chevalley group of type A; as
defined above, where | > 1. Let 1 < dy < --- < dy, where Zle di =1+ 1. Set
ki =1 and k; = 1+Z};11dj for 1 < i <t. Define

17 Zfd =1
U; = d—
[T %2 a0,(1), ifdi > 1.

Jj=k;
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Then w = uy -+ - uy lies in the unipotent class of G labeled by [dy, ..., dy].

2.8.2 Type (), 1>1

!
@ a =3 =1 kY

gitej, 1<i<y<l Zigkgj—l oy + nglcgl—l 20 + oy

25i7 1 < 1 < l Zigkglfl QOék + o

Table 2.6: Type C}, expressions for roots aw € ®T in terms of base A.

Let eq,...,e;,e_;,...,e_1 be a basis for a complex vector space Vg, and let Vy
be the Z-lattice spanned by this basis. We define a non-degenerate alternating
bilinear form (—,—) on V¢ by setting (e;,e—;) = 1 = —(e_;,e;) and (e;,e5) = 0
for i # —j. Let sp(V) be the Lie algebra consisting of the linear endomorphisms
X of V¢ satisfying (Xv,w) + (v, Xw) = 0 for all v,w € V¢. Then sp(V¢) is a
semisimple Lie algebra of type Cj. Let h be the Cartan subalgebra formed by the

diagonal matrices in sp(V¢). Then h = {diag(h1,..., h;,—hy,...,—h1) : hy € C}.
For 1 <i </, define maps ¢; : h — C by ¢;(h) = h; where h is a diagonal matrix
with diagonal entries (hi,...,h;,—hi,...,—h1). Now ® = {£(g; £¢;) : 1 <i <

J <1} U{£2¢ : 1 < i <} is the root system for sp(Vg), and &+ = {g; £ ¢; :
1<i<j<Ii}U{2;:1<i<I}isasystem of positive roots. The base A of ®
corresponding to ®* is A = {ay,...,q}, where a; = &; — g;41 for 1 < i < [ and
a; = 2¢;. We give the expressions of roots a € ®T in terms of A in Table 2.6.

For all 7,7 let E; ; be the linear endomorphism on V¢ such that E; j(e;) = e;
and E; j(ex) = 0 for k # j. Then a Chevalley basis for sp(Vc) with positive
structure constants for extraspecial pairs is given by

Xej—e; = Eij—E_j_; for all 7 # j,
Xejve; = Ej—i + Ei for all 7 # j,
X (ei4ey) = E-jit+ E_ij for all 7 # j,
Xoe, = i —; for all 4,

X _9e, =FE_;; for all i.

Note that Vy is a %y-invariant lattice in Vp. We define V = V5 ®7 K. Now
(—,—) also gives a non-degenerate alternating bilinear form on V', and we have
the following result.

Lemma 2.8.9 (|Ree57, 5|). The Chevalley group of type C; induced by V' is equal
to the group G = Sp(V') of invertible linear maps V- — V preserving (—, —).

By abuse of notation we identify the basis (e; ® 1) of V' with (e;). Let uw € G
be a unipotent element.

Suppose first that p # 2. Then by Proposition 2.3.1, the conjugacy class of u in
G is uniquely determined by the Jordan block sizes of u on V. Furthermore, each
Jordan block of odd size must occur with even multiplicity by Proposition 2.3.2
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(i). That is, the conjugacy class of u is uniquely determined by the decomposition

t s
VK@ =2 V., o P Vay,
i=1 j=1

wherel <¢; <---<c¢areodd,and 1 < d; < --- <ds, and Zle ci—i—Z;:l dj =1.
Consider next p = 2. It follows from Proposition 2.4.4 that the conjugacy class
of u is uniquely determined by the decomposition

V1K =W(e)+- -+ W(e)+V(2d1) + -+ V(2ds)

into an orthogonal direct sum of K[u]-modules, where 1 < ¢; < -+ < ¢, 1 <
dy < --- <ds, and each V(2k) occurs at most twice as a summand (equivalently,
dito > d; for all 7). Furthermore, since u acts on W(¢;) with two Jordan blocks of
size ¢; and on V(2d;) with a single Jordan block of size 2d;, we have S°i_ ¢; +
E;Zl dj =1.

Let p again be arbitrary, and let (¢;) and (dj) be the two (possibly empty)
sequences associated with V' | K[u| as above. Define ¢;; = d; for all 1 < i < s.
Set ki=1,and k;=14c1+ -+ 1forl<i<t+s Foralll<i<t+s,let
Vi be the subspace of V' spanned by B; = {e4; : ki < j < k; +¢; —1}. Now V is
an orthogonal direct sum V =V} @ --- & V44, so we have a naturally embedded
subgroup Sp(V1) x - -+ x Sp(Vits) < G, where Sp(V;) is the subgroup of all g € G
such that g(V;) =V, and ge; = e; for all e; & B;.

It follows then that a representative of the unipotent class determined by the
two sequences (¢;) and (d;) is given by uy - - - us1s, where u; € Sp(V;) and we have
the following:

(C1) If 1 <i <t, then u; acts on V; with two Jordan blocks of size ¢;. Furthermore,
if p=2, then V; | K[u;] = W(¢).

(C2) Ift+1 <i<t+s, then u; acts on V; with a single Jordan block of size 2d;.

Note that by Lemma 2.8.9, the subgroup Sp(V;) is a subsystem subgroup of
Sp(V') with root system ®; = {+(ej £ ejr) : ki <j <j < hki+c¢—1}U{£2¢;:
ki < j < ki+ ¢ — 1} of type C,. Furthermore, the root system ®; has a base
Aj=A{aj ki <j<kit+ci—2yU{2p1¢-1}

For 1 <i <t if ¢; =1, it is clear that (C1) is satisfied by u; = 1. Suppose then
that ¢; > 1. Now it is a consequence of the next lemma that u; = H;CQZ’_Q Tq, (1)
satisfies (C1).

Lemma 2.8.10. Let G = Sp(V') be a Chevalley group of type C| as defined above,
where | > 2. Set uw = xq,(1) - x4, ,(1). Then u acts on V with two Jordan block
sizes of l. Furthermore, if p =2, we have V | K[u] = W (l).

Proof. Now by Lemma 2.8.1, the element w is a regular unipotent element of a
Levi factor L = SLj(K) of type A;_1. For p = 2, it is shown in [LS12, 6.1] that we
have V' | K[u] = W(l), as desired.

Suppose then that p # 2. As noted in [LS12, Proof of Corollary 3.6, we have
VIL=ZWeaeW?* where W is the natural module of L. Now by Proposition 2.3.3
(i), a regular unipotent element of L acts on W (hence also on W*) with a single
Jordan block of size [, so the claim follows. ]
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Consider then t+1 <1 < t+s. It follows from Proposition 2.3.3 and Proposition
2.4.4 (v) that (C2) is satisfied when we take u; to be a regular unipotent element
of Sp(V;). Thus by Lemma 2.8.1, condition (C2) is satisfied when we pick u; =
xgekﬁ%_l(l) ifc; =1, and u; = Hfg@flﬁ T, (1) - x25ki+ci—1(1) if ¢; > 1.

Putting all of this together, we get the following two lemmas which describe
representatives for the unipotent classes of G.

Lemma 2.8.11 (Type C (p # 2)). Assume that p # 2. Let G = Sp(V) be a
Chevalley group of type C; as defined above, where [ > 1. Let 1 < ¢; < --- < ¢
be odd, let 1 < dy < --- < ds, where Zle ¢ + ijl d;j = 1. Set ciy; = d; for all
1<i<s, and define kg =1, and k;j =14c1+ -+ ci—1 for 1 <i < s. Define

1, if1<i<tandc =1,
152 2, (1), if1<i<tandc; > 1,

e xggkﬁcrl(l), ft+1<i<t+sandc; =1,
[ 20, (1) - w2y, (1), ift+1<i<t+sandc>1.

Then u = uy -+ - Uy lies in the unipotent class of G determined by the decompo-

t s
sition V | K[u] = 2 Ve, & P Va,
i=1 j=1

Lemma 2.8.12 (Type C (p = 2)). Assume that p = 2. Let G = Sp(V) be a
Chevalley group of type C; as defined above, where [ > 1. Let 1 < ¢; < --- < ¢
and 1 < dy < --- < ds, where diyo > d; for all i, and Zle ¢+ ijl dj =1. Set
Ciri = di for all 1 < i <'s, and define k1 =1, and k; = 1+4+c1 + - + ¢i—1 for
1 <i<s. Define

1, if1<i<tandc =1,
152 2, (1), if1<i<tandc;>1,

“ xggkﬁcrl(l), ft+1<i<t+sandc; =1,
H?f@fi_g Ta; (1) e o (1), ft+1<i<t+sandc>1

Then u = uy - - - Uy lies in the unipotent class of G determined by the orthogonal

decomposition V | K[u] = W(c1) + -+ W(e) + V(2d1) + - - - + V(2ds).

2.8.3 Type D, 1 >2

o @ = Yi_; ke
g—¢ej, 1<i<j<l di<k<j—1 Ok
gitey, 1<i<j<I—1|3ichcjor @+ jchci—220k+ 1+ o
git+e, 1<i<i-1 Di<k<i—2 Ok + 0y

Table 2.7: Type D;, expressions for roots a € ®T in terms of base A.

Let e1,...,e;,e_y,...,e_1 be a basis for a complex vector space Vg, and let V7 be
the Z-lattice spanned by this basis. We have a non-degenerate symmetric bilinear
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form (—,—) on Vg defined by (e;,e—;) = 1 = (e_j,e;) and (e;,e;) = 0 for i #
—j. Let so(V¢) be the Lie algebra formed by the linear endomorphisms X of V¢
satisfying (Xv,w) + (v, Xw) = 0 for all v,w € V. Then so(V¢) is a semisimple
Lie algebra of type D;. Note that here type D5 is the same as type A; x A, and
D3 is the same as type As.

Let h be the Cartan subalgebra formed by the diagonal matrices in so(V¢).
Then b = {diag(hi,...,h;,—hy,...,—h1) : hy € C}. For 1 < i < [, define maps
g; : b — C by g;(h) = h; where h is a diagonal matrix with diagonal entries
(hi,...,hy,—hyy ..., —h1). Now & = {£(g; £¢;) : 1 < i < j < I} is the root
system of so(Vg), and @+ = {g; £¢; : 1 <4 < j < [} is a system of positive
roots. Here the base A of ® corresponding to ®* is A = {ay,...,q}, where
o =¢g; —giq1 for 1 <i <l and oy = g1 + ;. We give the expressions of roots
a € ®T in terms of A in Table 2.7.

As before, for all 4,7 let E;; be the linear endomorphism on V¢ such that
E; j(ej) = e; and E; j(ey) = 0 for k # j. Then a Chevalley basis for so(V¢) with
positive structure constants for extraspecial pairs is given by

XEZ.,EJ. = Ei,j - E,j,,i for all 7 7& j,
XEiJrEj = Ejyfi — Ei,fj for all 7 < j,
X—(EH-EJ') = E_Z'J‘ — E_jﬂ‘ for all 7 < j.

Now Vz is a %z-invariant lattice in Vp. We define V' = Vz ®7z K. By abuse of
notation we identify the basis (e; ® 1) of V' with (e;).

Note that (—,—) also defines a non-degenerate form on V. Furthermore, the
quadratic form gc : Vo — C defined by gc(v) = %(U, v) restricts to qz : Vg — Z.
Thus we have a quadratic form ¢ = ¢z ®z K on V which has the form (—, —)
as its polarization. Let G be the Chevalley group of type D; given by V. Then ¢
is a non-degenerate G-invariant quadratic form on V', and we have the following

result.

Lemma 2.8.13 (|Reeb7, 6], [Hée84, 14.2]). The Chevalley group of type D induced
by V is equal to the group G = SO(V).

Here by SO(V') we mean the identity component of O(V'), where O(V) is the
subgroup of all g € GL(V') which satisfy ¢(gv) = ¢(v) for all v € V. Let u € G be
a unipotent element.

Suppose first that p # 2. Considering the action of u on V', by Proposition 2.3.2
(ii) each Jordan block of even size must occur with even multiplicity. Furthermore,
the dimension dim V' is even, so there must be an even number of Jordan blocks
of odd size. Thus we have a decomposition

t t+s
VK =P2- Ve @ (Va1 @ Vaas )
i=1 j=t+1

where 1 < ¢ <--- < ¢pareeven, and 0 < dpy < dj < - < dyys < djy,, and
SiiCit Z;Ziﬂ(dj +d;+1) =1

By Proposition 2.3.2, this decomposition uniquely determines the conjugacy
class of u in G, except when V | K[u] = @'_,2-V,,, in which case we have two
classes with this decomposition. To find representatives for each of these classes,
let 7 : G — G be the automorphism associated with the involutory graph au-
tomorphism of the Dynkin diagram which swaps the two end nodes. By Lemma
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2.8.6 (i), if u is some unipotent element with V | K[u] = @'_,2 -V, then u

and 7(u) are not conjugate. Therefore it will suffice to find some u € G with this

decomposition, as then u and 7(u) give representatives for the two classes.
Consider next p = 2. By Proposition 2.4.4, we have that u acts on V with an

even number of Jordan blocks, and thus there is an orthogonal decomposition

t t+s
VIEKu =W o @ (V(d)+V(2d))
i=1 j=t+1
where 1 < ¢; < - < ¢, and 1 < dyyy < djy < -0 < dyys < diy, and

SiciCit Z;Ziﬂ(dj +d;) =1

By Proposition 2.4.4 (iv), this decomposition uniquely determines the conju-
gacy class of u in G, except when V | K[u] = @!_, W(c;), in which case we have
two classes with this decomposition. As in the p # 2 case, it will suffice to find just
one u with such a decomposition. Then by Lemma 2.8.6 (ii) the elements u and
7(u) are representatives for the two conjugacy classes with this decomposition.

Let p again be arbitrary. Let (¢;), (d;), and (d}) be the (possibly empty)
sequences associated with V' | Klu| as above. Now for t + 1 < ¢ < t + s, set
¢; =di+d+1ifp#2and ¢; = d;+dif p=2.Set ky = land k; = 1414+ +¢iq
forl<i<t+s Foralll <i<t+s,let V; be the subspace of spanned by B; =
{exj 1 ki <j < ki+c;—1}. Now V is an orthogonal direct sum V = Vi @- - - @ Vi,
so we have a naturally embedded subgroup SO(V7) x - - - x SO(Viys), where SO(V;)
is the subgroup of all g € SO(V) such that ge; = e; for all e; & B;.

It follows then that for a w € G with V' | K[u| as given by the sequences (¢;),
(dj), and (d}), we can choose u = uj - - - ut4s, where u; € SO(V;) and we have the
following:

(D1) If1 <4 < t, then u; acts on V; with two Jordan blocks of size ¢;. Furthermore,
it p=2, then V; | K[u;] = W ().

(D2) If t +1 < i < t+ s and p # 2, then u; acts on V; with Jordan blocks
[2d; + 1,2d] + 1].

(D3) Ift+1<i<t+sandp=2 then V; | Ku] =V (2d;) + V(2d)).

Note that by Lemma 2.8.13, the subgroup SO(V;) is a subsystem subgroup
of SO(V) with root system ®; = {£(e; +ej) : ki < j < j < ki +¢ — 1} of
type D.,. Furthermore, the root system ®; has a base A; = {a; : ky < j <
ki + ¢ — 2} U {€k¢+ci*2 + gkﬂrcifl}'

Consider first u; for 1 <7 < t. Now it is a consequence of the next lemma that

(D1) holds for u; = [[5% % 2, (1),

Lemma 2.8.14. Let G = SO(V) be a Chevalley group of type Dy as defined above,
where | > 2. Set u=1x4,(1)- 2, ,(1). Then u acts on V with two Jordan block
sizes of l. Furthermore, if p =2, we have V' | K[u] = W ().

Proof. The claim follows with the same proof as Lemma 2.8.10. O

For u; with t+1 < i < t+s, consider first p # 2. If d; = d; = 0, condition (D2)
holds for w; = 1. If d; = 0 and d > 0, then by Proposition 2.3.3 condition (D2)
holds when wu; is a regular unipotent element of SO(V;). Thus by Lemma 2.8.1, we
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have (D2) when u; = Hf’:'zlﬁ Tay (1) ey, o aten, e, 1 (1) I diyd > 0, then by
the next lemma, the condition (D2) holds when u; = v;v], where

ki+di—2
Vi = H xaj(l) ‘ﬂfskﬁdi—r%ﬁcrl(l) ’ xski+drl+€ki+crl(1)
J=ki
and
ki+Cl—2
Ug = H xaj(]') .xski+ci72+5ki+ci71(_1)'
Jj=kit+d;

Lemma 2.8.15. Assume that p # 2. Let G = SO(V) be a Chevalley group of
type D; as defined above, where | > 3. Let e + f + 1 = [, where e, f > 0. Set
up = Hze;ll Ta;i(1) - @ee—e, (1) - Tep4e (1) and ug = Hé;i+1 Ta; (1) - T, (—1). Then
the unipotent element uw = uyug acts on 'V with Jordan blocks [2e +1,2f + 1].

Proof. The claim is proven by Suprunenko in [Sup09, Lemma 2.24], where the
expression with root subgroups has some different signs since the Chevalley basis
used in [Sup09] has different structure constants than our Chevalley basis. We give
an outline for the proof for completeness. We have V.= W @& W’ an orthogonal
direct sum, where W = (e41,...,exe, g —e_y) and W' = (e (cq1)s - - - €4(-1), €1+
e_;). Thus we have a naturally embedded subgroup SO(W) x SO(W’) < G. Now
SO(W) is generated by the root elements corresponding to simple roots and their
negatives, and these are

Tta,(C) ceKand1<i<e-—1,
Tee—e (€)Teo1¢,(C) ce K,
T—gote, (€)T—co—5,(C) ce K.

The corresponding root elements for SO(W') are

Ttq,(C) ceKande+1<i<l—-2,
xal—l(c)xaz(_c) ce K,
ZT_q, 4 ()T_q,(—C) ce K.

By Lemma 2.8.1 the element u; is a regular unipotent element of SO(W) and
ug is a regular unipotent element of SO(W”), so the claim follows from Proposition
2.3.3 (iii). O

Finally we explain how to choose u; for t +1 < ¢ < t+ s when p = 2. If
d; = 1, then by 2.4.4 (vi) we have (D3) when u; is a regular unipotent element of
SO(V;). It follows then from Lemma 2.8.1 that we can choose u; = Hfj,;fl_z Tq, (1)
Tey yo, aten, te, 1 (1) and (D3) will hold. Suppose then that d; > 1, so now d; +d; >
4. It follows from the next lemma (recall that we are assuming d; > d;, so here

c; —2>d; > %) that (D3) holds when

kz-‘rdi—Q kZi—‘rCi—Q
Ui = H xaj(l) ’ xfkﬁd;ﬂfﬁkﬁciﬂ(l) ’ xEki+d(L_,1+€ki+crl(1) : H xaj(l)-
J=ki J=ki+d;

Lemma 2.8.16. Assume that p = 2. Let G = SO(V') be a Chevalley group of
type Dy as defined above, where | > 4. Let | —2 > e > Then for the unipotent

l

5.
element u = Hf;ll xai(1)-m€c,sl(1)-1‘56%[(1)-1_[5-;;1 Zq, (1), we have an orthogonal
decomposition V | K[u] =V (2¢) + V(2] — 2e).
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Proof. We compute explicitly the action of v on the basis e 1, ..., e4; to determine
the decomposition V' | K[u]. By looking at the Chevalley basis we are using, we
see that zo, (1) = I+ Ej i1 +E_(i41),—; forall 1 <4 <1—1, where I is the identity
and E; j is defined as before. Furthermore, we see that x., ., (1) = [+ E.;+E_
and ¢, 4¢,(1) =1 + E; . + E. ;. Now it is straightforward to see that u acts on
the basis elements as follows:

e — eq
2<i<e)erreite 1+ +e
(1<i<e—1)e ;i ei+e_(i1

€eeetej+e ctete 1+--+er

€et+l F7 €etl
(e+2<i<l—1)e > ei+ei1+ - +ees1
ee—e +e_1+---+er
(e+1<i<l—2)e e ji+e_(it)
e -1 e_q-nyterteete—1+-+e
e j+—e_j+e.+ee1+---+e

A calculation shows that the fixed point space of u has dimension 2, and that it
is spanned by e; and e.41. Therefore the Jordan normal form of u has two Jordan
blocks. To see that the Jordan block sizes are 2e and 2] — 2e, it will be enough to
show that (u—1)%¢ = 0 and (u — 1)2¢"1 # 0, as then the largest Jordan block size
in u is 2e. To this end, a calculation shows that (u — 1)%%¢; = 0 for all the basis
vectors e;, and that

if 1/2
(u—1)26_1(6,1): €1, ?e> />
€et1+e1, ife=1/2.

It follows then from Proposition 2.4.4 that either V' | K[u] = V(2e)+V (2e—2l)
or V| K[u] = W(2e). Our goal is to show that V' | K[u] = V(2e) + V(2e — 2I).
Now (u — 1)%¢ = 0, so by Lemma 2.4.8 this is equivalent to finding a v € V such
that ((u—1)2¢"1v,v) # 0. By the calculation done above, we can choose v = e_1,
as then ((u —1)%¢"tv,v) = (e1,e_1) # 0. O

Now putting all of this together, we get the following two lemmas.

Lemma 2.8.17 (Type D (p # 2)). Assume that p # 2. Let G = SO(V) be a
Chevalley group of type D; as defined above, where | > 2. Let 1 < c1 < --- < ¢ be
even, let 0 < dpq < dy ) < < dpps < dj,, such that >0, ci—l—zgfzﬂ (dj+dj+
1) =1 Setc; = di+d+1 fort+1 < i <t+s, setky =1and k; =1+c1+---+ci1
forl<i<t+s. Fort+1<i<t+s withd;d, >0, set
ki+d;—2
v; = H Ta; (1) ey a1 —epyier (1) ey tepyeni (1):
J=k;
For allt+1<i<t+s withd, >0, set

ki4c;—2

U'/L‘ = H xaj(l) “Lep,ye;—2ter;1o;-1 (_1)
J=ki+d;
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Define
[ 2 a0, (1), fl1<i<t
1, ift+1<i<t+sandd;=d,=0.
u; =
R A ift+1<i<t+sandd;=0,d;>0.
(T ift+1<i<t+s andd;d,>0.
t t+s
Then uw = uy -+ - uyts satisfies V| Klu] = @2 Ve, ® @ (VQdiH @ V2d3.+1>.
i=1 j=t+1

Lemma 2.8.18 (Type D (p = 2)). Assume that p = 2. Let G = SO(V) be a
Chevalley group of type Dy as defined above, where | > 2. Let 1 < ¢ < --- < ¢,
and 1 < dpy1 < dj g <+ <dpys < dj,,, such that 3 i_, Ci"’Z?:_ftH(dj +d;) =1.
Setci=di+d, fort+1<i<t+s,setky=1andk;=14+c,+ -+ c¢i_1 for
1<i<t+s Fort+1<i<t+s withd; > 1, set

ki+d,—2

k3

Vi = H xa_](l) : xski+d;*17€ki+ci*1(1) : mski+d271+€ki+ci*l(1)'
J=ki

Forallt+1<i<t+swithd,>1, set

kitci—2
v = H xag(l)
Jj=ki+d,
Define
1, if 1 <i<tandc =1.
" Hfggld To;(1), f1<i<tandc;>1.
), ift+1<i<t+sandd; = 1.
v; v}, ft+1<i<t+sandd; > 1.
t t+s
Then w = uq - - - upts satisfies V | Klu] = @W(Cl) ® @ (V(2d;) + V(2d})).
i=1 j=t+1

What remains is to describe representatives in the cases where we have two
unipotent conjugacy classes with the same decomposition V' | Ku]. For these
cases, representatives are given by the next two lemmas.

Lemma 2.8.19 (Type D, split classes). Let G = SO(V') be a Chevalley group of
type Dy as defined above, where | > 2. Let 1 < c¢1 < --- < ¢ be such that ¢; is even
for all i and Zézlci =0 Setki=1andk;=14+c1+---+c¢_1 forl <i<t
For all 1 < i < t, define u; = H?Q}}flﬁ To,;(1). Set uy = x4,(1) if ¢z = 2 and

up =TI o, (D20, (1) if ¢t > 2. Then:

(i) If p # 2, the unipotent elements uy---ur—1us and uy---up_qu; are repre-
sentatives for the two classes of unipotent elements u with V| Klu] =

@E:l 2. VCz

(i) If p = 2, the unipotent elements uy ---ug_1uy and uy ---u_1u) are repre-
sentatives for the two classes of unipotent elements uw with V. | Klu] =

@E:l W(ci).
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Proof. For both claims, we see from Lemma 2.8.17 and Lemma 2.8.18 above that
for u = uy---uy we have V | Ku] = @i_,2-V,, if p # 2 and V | K[u] =
@Ezl W (e¢;) if p = 2. Furthermore, for the graph automorphism 7 of G induced
by the graph automorphism of A swapping the two end nodes, we have 7(z4,(1)) =
Zo; (1) for 1 < i <1 —2, and 7(zq, (1)) = xq,(1), T(a,(1)) = x4, ,(1). Thus
T(u) = uy - - - up—quy, so now the claim follows from Lemma 2.8.6. O

2.8.4 Type B,1>2(p=2)

Suppose that p = 2. Let ® be a simple root system of type C; and let G be a
simply connected Chevalley group over K with this root system. Then the dual
root system ®V is a simple root system of type B;. Denote by GV the simply
connected Chevalley group over K with root system ®V, and denote by oV the
dual root corresponding to a root a € ®. Since p = 2, it follows from [Ste68,
Theorem 28] that there is an isogeny f : G — GV of algebraic groups satisfying

Tav(C if v is a long root,
f(zalc) =4 ( 2 L
xov(c®) if «is a short root.

for all « € ® and c € K.

Now by Lemma 2.1.2 (i), the map f defines a bijection between the unipotent
conjugacy classes of G and GV. Furthermore, if A is a base for ®, then AY =
{a¥ :a € A} is a base for @V, and (V)T = {a" : @ € &} is the set of positive
roots. Thus by using Lemma 2.8.12, we find representatives Hae(¢V)+ TV (Cav)
for unipotent conjugacy classes of GV, as desired.

2.8.5 Type B, 1 >1(p#2)

l
o] =D ke

gi—¢gj, 1<i<j<Il|Ychej1
gite, 1<i<j<U| Xicpejor O+ 2 j<p< 20%

€4, 1<i<li Zigkgl (&7

Table 2.8: Type B, expressions for roots o € ® in terms of base A.

Agsume that p # 2. Let ey,...,e5,e9,e_q,...,e_1 be a basis for a complex vector
space Vg, and let Vz be the Z-lattice spanned by this basis. We have a non-
degenerate symmetric bilinear form (—,—) on V¢ defined by (eje—;) = 1 =

(e—i,€;), by (eo,e0) =2, and (e;,e;) = 0 for i # —j. Let so(V) be the Lie algebra
formed by the linear endomorphisms X of V¢ satisfying (Xv,w) + (v, Xw) = 0
for all v,w € Vg. Then so(V¢) is a simple Lie algebra of type Bj. Let bh be
the Cartan subalgebra formed by the diagonal matrices in so(Vg). Then h =
{diag(hy,...,h;,0,—hy,...,—h1): h; € C}. For 1 < <[, define maps ¢; : h — C
by €;(h) = h; where h = diag(h,...,h;,0,—h;,...,—h1). Now & = {£(g; +
gj) 11 <i<j<Il}uU{te 11 < i <} is the root system of so(V¢), and
Pt ={g;£e;: 1 <i<j<Ii}U{g :1<i<I}isasystem of positive roots. The
base A of ® corresponding to @ is A = {aq,...,q;}, where a; = &; — g;41 for
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1 <i<land a; = . We give the expressions of roots o € ®* in terms of A in
Table 2.8.

As before, for all 4,7 let E;; be the linear endomorphism on V¢ such that
E;j(ej) = e; and E; j(ey) = 0 for k # j. Then a Chevalley basis for so(V¢) with
positive structure constants for extraspecial pairs is given by

Xeje; = Eij—E_j for all 7 # j,
Xejve; = Ej—i— Ei for all 7 < j,
X (civey) = E-ij — E—j; for all ¢ < j,
X, =2F;0— Eo—; for all 4,

X_ ¢, =Fo; —2F_;p for all i.

Now V7 is a %z-invariant lattice in Vg. We define V' = Vz ®7z K. Note that (—, —)
also defines a non-degenerate symmetric form on V. Then we have the following
result.

Lemma 2.8.20 ([Ree57, 7). The Chevalley group of type By induced by V' is equal
to the group G = SO(V') of invertible linear maps V' — V with determinant 1 that
preserve (—, —).

By abuse of notation we identify the basis (e;®1) of V with (e;). Let u € G be
a unipotent element. Since p # 2, by Proposition 2.3.1 and Proposition 2.3.2 the
conjugacy class of v in G is uniquely determined by the Jordan block sizes of u
on V. By Proposition 2.3.2 (ii), we know that each Jordan block of even size must
occur with even multiplicity. Furthermore, since dim V' is odd, the total number of
Jordan blocks of odd size must be odd. Thus the conjugacy class of u is uniquely
determined by the decomposition

t s
VIKu =2 V., eP (V2d]-+1 ® V2d;.+1> D Vad, 141,
i=1 j=1

where 1 < ¢ <--- < ¢ areeven, and 0 < d; < dj <--- <ds <d, <ds41, and
i G+ i (dy + di 1) + dgyr =L

Now let W be the subspace of V spanned by By = {e+j : 1 < j <l—dsy1} and
let W5 be the subspace of V spanned by By = {e4j : l —ds1+1 < j <1} U{ep}.
We have an orthogonal direct sum V = W7 & Ws, so there is a naturally embedded
subgroup SO(W7) x SO(W3) < SO(V'), where SO(W;) is the subgroup of all g € G
such that g(W;) = W; and ge; = e; for all e; € B;.

It follows then that a representative for the unipotent class determined by
the (possibly empty) sequences (c;), (dj), and (d}) is given by u = ujuz, where
Uy € SO(Wl) and

t s
Wi L K] = @2 Ve, & P (Vo018 Vaur )

i=1 j=1

and where ug € SO(Ws) and wug acts on Wy with a single Jordan block of size
2dsy1 + 1.

For finding w1, note first that if dimW; < 2, then we can choose u; = 1.
Suppose then that dim Wy > 2 and write dim W7 = 2k. Then it is a consequence
of Lemma 2.8.13 that SO(W;) is a subsystem subgroup of type Dj with root
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system {£(g; £¢;) : 1 <1i < j < k}. The root system has a base {&; — ;41 :1 <
i <k—1}U{ep_1 +e}, with set of positive roots {e; +¢;:1 <i < j <k}. Now
one can apply Lemma 2.8.17 to find a suitable u; € SO(W7) as a product of root
elements.

We proceed to explain how to find us. If ds1 = 0, then it is clear that we can
choose ug = 1. Suppose then that ds+1 > 0. Now it is a consequence of Lemma
2.8.20 that SO(W>) is a subsystem subgroup of G' with root system {%(g; £ ¢;) :
l—dsy1+1 <i<j<Il}U{xe :l—dsy1+1 < i <1} and a base {o; :
I —dsi1+1<i<I}. It follows from Proposition 2.3.3 and Lemma 2.8.1 that we
can choose ugy = Hé‘:l—dsﬂﬂ Ta, (1)

2.9 Computation of Jordan block sizes in irreducible
representations

For our solution of Problem 1.1.6, we have to answer the following question in
some specific cases.

Problem 2.9.1. Let ¢ : G — GL(V) be a non-trivial rational irreducible repre-
sentation of G. For a unipotent element u € G, what are the Jordan block sizes of

p(u)?

Since in characteristic p = 2 the Jordan block sizes do not determine when a
unipotent element of a classical group (Sp(V') or SO(V)) is distinguished (Section
2.4), we will also have to consider the following question.

Problem 2.9.2. Assume that p = 2. Let ¢ : G — GL(V) be a non-trivial ratio-
nal irreducible representation of G with o non-degenerate G-invariant alternating
bilinear form. For a unipotent element u € G, what is the conjugacy class of p(u)

in Sp(V)?

Recall that we are working over a field of positive characteristic. Thus in general
Problem 2.9.1 and Problem 2.9.2 are out of reach by current methods, as even
finding the dimensions of the rational irreducible representations is a major open
problem. However, for fixed G, a fixed unipotent conjugacy class € of G, and V
of small dimension, it is possible to calculate the Jordan block sizes of ¢(u) for
u € € and the orthogonal decomposition of V' | K[u] with a computer. We will
proceed to explain the methods we have used to do this.

First note that using the methods from 2.8, we can find a representative u =
[loco+ zalca) of €, where ¢, € Z for all « € ®F. Let X € X(T)" be non-zero
p-restricted dominant weight, and write A = Zi-:l a;w;, where 0 < a; < p—1. Our
goal is to determine the decomposition L () | Ku].

Recall that the Weyl module Viz(A) has a unique maximal G-submodule M,
and Vg(N\)/M = Lg(X). Furthermore, M is also the unique maximal G(IF,)-
module of Vi (A) by [Won72, Theorem 2D]|. Since our representative u is in G(F,),
we do our computations with the finite group G(F)).

The G(Fp)-module Viz(\) can be constructed with the Chevalley construction.
This can be done with MAGMA, which uses an implementation of the algorithm
in [CMTO04]. For example, the following MAGMA commands construct the repre-
sentation r : G(F,) = GL(Vg(w2)) for G(IF,) of type As:
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G := GroupOfLieType("A3", GF(p) : Isogeny := "SC");
r :— HighestWeightRepresentation (G, [0,1,0]);

In particular, with respect to a fixed K-vector space basis of weight vectors
(given by MAGMA), we can compute the matrix of z,(c) acting on Viz(\) for all
a € ¢ and ¢ € F),. In the example above, we would get the matrix of 24,4, (1)
acting on Viz(\) with the following commands. Note that here x4, 10,(1) = 24, (1)
in the ordering of ®* used in MAGMA, which is the total order < defined in
Section 2.8.

g = elt< G | <4,1>>;
r

(g);

Since Vg (A) has a unique maximal submodule, it follows that Vg(A)* has a
simple socle, isomorphic to Lg(A)* and generated by a maximal vector f € Vg(A)*
of weight —wg(A), which is unique up to a scalar. Then using the matrices giving
the action of z,(c) on Viz(\), we can compute a basis for Gf = Lg(A)* and thus
the matrix of z,(c) acting on Lg(A)* for any a € ® and ¢ € [F,. By using the
expression of u as a product of the elements x,(c), we then get the matrix of u
acting on Lg(A)*. Now it is a simple matter of computing ranks of some matrices
to find the Jordan block sizes of w acting on Lg(A)* (see Lemma 3.1.2). These
Jordan block sizes are the same as of u acting on Lg(\), giving us the Jordan
block sizes occurring Lg(A) | Kul.

If p # 2 we now have all the information we need for our purposes. If p = 2
and Lg()\) is self-dual, we also need a way to determine the conjugacy class of
the image of w in Sp(Lg(A)). To this end, one can use the MAGMA command
InvariantBilinearForms to find a non-degenerate alternating bilinear
form on Lg(\) invariant under the action of z4(c) for all @ € ® and ¢ € K. It is
then straightforward to apply Lemma 2.4.5 to determine the conjugacy class of u
in Sp(La(N)) (see Remark 2.4.9).

2.10 Action of triality on unipotent conjugacy classes
of D4

In this section, we finish the discussion on the action of graph automorphisms
given in Section 2.8 and give the action of a graph automorphism of G = Dy
induced by triality. We will do this by direct computation. For p = 3 the result is
given in |[LLS14, Proof of Lemma 3.2].

We begin by recalling the Chevalley construction from Section 2.8.3. Let the
root system ® = {£(g; £ ¢;) : 1 <1i < j <4} of type Dy be as in 2.8.3, with base
A = {1, as,a3,04}, where o = g; — ;41 for 1 < i < 3, and ay = €3 + 4. We
choose a Chevalley basis {X, : @ € ®} U{H, : « € A} as in Section 2.8.3.

Let G be a simply connected Chevalley group constructed with the Chevalley
construction, using this Chevalley basis. Let G’ = SO(V') be the Chevalley group
constructed using V¢ as in Section 2.8.3. Denote the root elements generating G’
by «l,(c), where & € ® and ¢ € K. By [Ste68, Corollary 5, pg.44|, we have a
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surjective morphism ¢ : G — G’ such that ¢(z4(c)) = 2/, (c) for all & € ® and
ce K.

We will order the positive roots &+ = {ay,..., a2} with the total order <
defined in Section 2.8. We give the order explicitly in Table 2.1. One finds that
the structure constants N, g for our Chevalley basis are as given in Table 2.2.

Now let ¢/ : A — A be the triality graph automorphism of A, which acts on
the simple roots as follows.

a1 — Q3
a9 = (9
a3 — 0y

gy = o1

Then by Lemma 2.8.4, there exists an isomorphism ¢ : G — G and signs
€a = 1 such that e, = 1 for all @ € A, and o(z4(c)) = To/(a)(€ac) for all a € @
and c € K.

The signs e, for the isomorphism ¢ are uniquely determined, and can be
found using the Chevalley commutator relations [Ste68, Corollary to Lemma 15|
as follows. Since the root system Dy is simply laced, the commutator relations have
the simple form [z4(c), 25(d)] = z4+8(Na ged) for all o, B € @ such that a4+ 3 €
. Applying o to both sides we get the relation €aggNyr(a).01(8) = €at+sNa,s
From this one can calculate that ¢, = 1 for all a, except @ = £(a; + a2) and
a = *+(ag + ay), for which g, = —1.

Our goal next is to compute the action of ¢ on the unipotent conjugacy classes
of G. The first step is to find representatives for all unipotent conjugacy classes.
This can be done with the results of Section 2.8.3. We have listed representatives
in Table 2.3 and Table 2.4. Note that there are some pairs of classes of unipotent
elements u with same decomposition V' | KJu|. To distinguish between them, in
tables 2.3 and 2.4 we have labeled one of them with the symbol (V' | K[u])" and
the other by (V | Klu])".

Now using the signs e, determined above, we find o(u) as a product of root
elements, for each unipotent class representative u € G in tables 2.3 and 2.4. Using
this and the map ¢ : G — G’ defined above, we find explicit matrices for ¢(o(u)),
which allows one to compute the decomposition V' || K[o(u)] (see Remark 2.4.9).
The end result of this computation is that the orthogonal decompositions are as
given in Table 2.5 and Table 2.6.

What still remains is to check, for the split classes, which image of o gives the
class (V' | KJu])', and which one gives (V | K[u])". Since ¢ is an automorphism
of order 3, the orbits of ¢ acting on the unipotent classes have size 1 or 3. From
this fact and the decompositions V' | K[o(u)] it is easy to deduce that the action
of o on the unipotent classes is precisely as given in Table 2.5 and Table 2.6.

Remark 2.10.1. There are also many other ways to determine the conjugacy
class of o(u) without relying on the computation of V' | K[o(u)]. For example, it
is immediate from Lemma 2.8.1 that the regular unipotent class is stabilized by
.

We see in particular that in all cases all distinguished unipotent classes are
stabilized by ¢. Combining this observation with Lemma 2.8.5 and Lemma 2.8.6,
we get the following corollary.
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Proposition 2.10.2. Let G be a simple algebraic group and let o be a graph
automorphism of G. Then

(i) o fizes all distinguished unipotent classes of G.

(ii) LetV be a G-module and u € G a distinguished unipotent element. Then V |
Ku] = V7 | Klu|. In particular, the element u acts on'V as a distinguished
unipotent element if and only if u acts on V7 as a distinguished unipotent

element.
o= o a:Z?Zlkiai a=¢ f¢j
aq aq €1 — &2
Q2 a2 €2 — &3
asg a3 €3 — &4
(07 Qy €3+ ¢€4
as a1+ 9 €1 — €3
Qg Qg + a3 €2 — €4
lo%4 o + ay got ey
as a1 + oo + ag €1 — &4
Qg a1+ ag + ay €1+ ¢€4
Qo a2 + as + ay g9t €3
o011 art+art+ast+ag | €1+€3
Q12 a1 +2a0 +asz+ay | €1+ &9
Table 2.1: Positive roots of Dj.
a1 gy 3 4 a5 Qg Q7 Qg Q9 Qg 01 (12
aq 1 1 1 1
as | -1 1 1 1
o3 -1 -1 1 1
oy -1 -1 1
as 1 1 -1
ag | -1 -1 1
a7 | -1 -1 1
ag -1 -1
Qg -1 -1
10 -1 1
o1 -1
12

Table 2.2: Structure constants Na, o; used for Dy, with empty entries indicating
zero and roots ordered as in Table 2.1.
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Unipotent class Representative
V(2)+V(6) Ty (1)Tay (1) Tas (1), (1)
V(4)2 :Bal(1)1‘52_54(1)$52+54(1)$a3(1)
w(4) Tay (1)Tay (1)Tas(1)
W(4)" Ty (1)Tay (1)Ta, (1)

W) +V(2) +V(4) | Za;(1)Tay (1), 4e5(1)
W(1) +W(3) Ty (1)Tay (1)

W(Z) + V(2)2 xa1(1)w61+62(1)$a3(1)
(W(2)*) Ty (1)Ta; (1)

(W(2)2>// Tay (1)Tay(1)

V(2)? + W (1)? Ty (1)e, 4, (1)
W(2)+W(1)? o, (1)

Table 2.3: Representatives for unipotent classes of G = D4 when p = 2.

Unipotent class | Representative

[1,7] Tay (1)Zas(1)Zag(1)Ta, (1)
[33 5} xal(l)x@ 64( )x62+64( )xaa( )xom(_l)
[1375] $a1(1)$52 64( )1'52+54( )
[47] Tay (1)ay(1)zag(1)

[4%)" Tay (1)Zay (1)2a,(1)
[1%,3%] oy (1), (1)

[1’2273] xal(l)x€1+€2(1)xas(1)
[1573] xal(]‘)x51+52 1

2*) oy (1)Tas (1)

[24]” Tay (1)Ta,(1)

[19,2%] Zay (1)

Table 2.4: Representatives for unipotent classes of G = D4 when p # 2.

Unipotent class of u | Unipotent class of o(u)
V(2) + V(6) V(2) +V(6)

V(4)? V(4)?

w(4) W(1) +V(2) +V(4)
w(4)" w(4)

W) +V(2)+VH4) | W@

W(1) +W(3) W(1) + W (3)

W(2) +V(2)? W(2) +V(2)?
(W(2)%y W(1)? +V(2)?
(W(2)%)" (W(2)2)
W(1)?+V(2)° (W(2)%)”

W(2) + W (1) W(2) + W(1)?

Table 2.5: Action of o on unipotent classes of G = D4 when p = 2.
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Unipotent class of u

Unipotent class of o(u)

Table 2.6:

Chapter 2.

Action of ¢ on unipotent classes of G = D4 when p # 2.



Chapter 3

Linear algebra

In this chapter, we give various lemmas about unipotent linear maps that will be
needed in the sequel.

Let f:V — V be a linear map. If W is a subspace of V invariant under f, we
will denote the restriction of f to W by fy and the linear map induced on V/W

by fvw-
3.1 Basic lemmas about unipotent elements

Definition 3.1.1. Let v € GL(V) be unipotent. For all m > 1, we denote by
rm(u) the number of Jordan blocks of size m in the Jordan decomposition of w.

Lemma 3.1.2. Let u € GL(V) be unipotent and denote X = u — 1. Then for all
m > 1, we have

(1) = rank X™ ! 4 rank X1 — 2 rank X™

and
(1) = 2dimker X™ — dim ker X! — dim ker X™ L.

Proof. The formulas follow from the fact that dimker X = Y~/ | t;, where tj, is
the number of Jordan blocks of size > k [Jan04, 1.1]. O

Lemma 3.1.3. Let u be a unipotent matrix of order p. Then the number Jordan
blocks of size p in the Jordan decomposition of u is equal to rank(u — 1)P~1.

Proof. By Lemma 3.1.2, we have that the number of Jordan blocks of size p is
equal to rank(u—1)P*! +rank(u—1)P~! —2rank(u—1)P. The claim follows because
(u—1)? = (u— 1P =0. O

The next lemma is observed in [Sup01, (1), pg. 2585]. We include the proof
(which is easy) for completeness.

Lemma 3.1.4. Let u be a unipotent linear map on the vector space V and suppose
that u has order p. Suppose that V' has a filtration V. =W1 D Wy D --- D Wy D
Wii1 = 0 of K[u]-submodules. Then ry(u) > S i, (U, jwi,)-

Proof. Let X =u — 1. Writing X as a block triangular matrix, we have

53
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(Xyy, )Pt * * *

0 (XWt—l/Wt>p71 * . *

Xrl = 0 0 *
0 0 0 (Xwywp)" ™!

so rank XP~1 > S rank(Xyy, /w,,, )P and the claim follows from Lemma
3.1.3. ]

3.2 Jordan blocks in subspaces and quotients

Some of the irreducible representations Lg(A) of G that we have to consider in
the solution of Problem 1.1.6 are best understood as subquotients of certain inde-
composable modules W. In many cases that are relevant to us, the module W will
be uniserial of the form Lg(0)/La(MN)/La(0). For example, if G = SL(V), then
W=V@V*=Lg0)/Lg(wi +w;)/Lc(0) (uniserial) if p divides dim V. We have
a decent understanding of what Jordan blocks sizes of u € G acting on W look
like, and the idea is that we can use this information to study the Jordan block
sizes of u acting on Lg(\).

We begin with two lemmas which describe how the Jordan block sizes change
when moving from the whole space to a subspace of codimension one, or to a
quotient by a one-dimensional subspace.

Lemma 3.2.1. Let u € GL(V) be unipotent and denote X = u — 1. Suppose that
W C V is a subspace invariant under u such that dimV/W = 1. Let m > 0 be
such that ker X™ C W and ker X™ 1 ¢ W. Then

(a) if m =0, we have

[ ) rl(uw) = rl(u) — 1,
o ri(uw) =ri(u) for all i # 1.

(b) if m > 1, we have

Tmi1(uw) = Tmy1(u) — 1,
T (W) = T (u) + 1,
ri(uw) = ri(u) for all i # m,m+ 1.

Proof. Now ker X C W for all 0 < i < m, which means that dim ker X%'/V =
dimker X* for all 0 < i < m. By Lemma 3.1.2, this implies that for all 1 <7 <
m — 1, we have r;(u) = r;(uwy).

Next note that ker X* ¢ W for all i > m + 1, which means that V/W =
(ker X' + W) /W = W/ker X' N W. Hence dimker X{;, = dimker X’ — 1 for all
i > m++1. Thus by Lemma 3.1.2, we have ry, (uw) = rp(uw) +1 if m > 1. Similarly
Tmt1(uw) = rmp1(uw) — 1 and rj(uw) = ri(u) for all i > m + 2. O

Lemma 3.2.2. Let u € GL(V') be unipotent and denote X = u — 1. Suppose that
W C V is a subspace invariant under u such that dimW = 1. Let m > 0 be such
that W C X™(V) but W ¢ XmH(V). Then
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(a) if m =0, we have

o ri(uyyw) =ri(u) — 1,

o ri(uyw) = ri(u) for all i # 1.

(b) if m > 1, we have

Tmt1(uyyw) = rmy1(u) — 1,
Tm(uyw) = rm(u) + 1,

ri(uyw) = ri(u) for alli #m,m+ 1.

Proof. Now X{, ., (V/W) = (X(V) + W)/W = X (V)/(W N X(V)). Thus for
0 <7 < m we have rankX‘Z//W = rank X' — 1, because W C X*(V). Similarly
we have rank Xy, = rank X* for ¢ > m + 1, because W Z X'(V) and thus
W N XY (V) = 0. Therefore by Lemma 3.1.2, we have 7, (uy y) = rm(u) + 1 if
m > 1. Similarly one sees 741 (uy /) = rmy1(u) — 1 and 7 (uyw) = ri(u) for
all i« #m,m + 1. O

In general, if u € GL(V) is unipotent, then it is possible to find a filtration
0=V cCcViC---CV,=V of u-invariant subspaces such that dimV;/V;_; =1
for all 1 <4 < n. For any such filtration, we can use Lemma 3.2.1 and Lemma
3.2.2 to describe, in terms of the Jordan block sizes of u on V', the possible Jordan
block sizes of v acting on any subquotient V;/V;. We record one such description
in the next lemma.

Lemma 3.2.3. Let u € GL(V) be unipotent and suppose that there exist u-
invariant subspaces W' C W C V such that dimV/W = 1 and dim W' = 1.
Denote the image of u in GL(W/W') by «'. Then one of the following holds:

(i) ri(u) =ri(u) — 2, and ri(v') = r(u) for all k # 1.

(ii) There exists m > 2 such that o, (u') = rp(u) — 2, rp_1(v) = rp_1(u) + 2,
and ri(u") = ri(u) for all k & {m,m — 1}.

(iii) There exists m > 3 such that ry,(u') = rp(u) — 1, rp—o(u’) = rp—o(u) + 1,
and ri(u') = ri(u) for all k & {m,m — 2}.

(iv) ro(u) = ra(u) — 1, and ri(v') = ri(u) for all k # 2.

(v) There exists m > n+ 2, n > 2 such that rp(u') = rp(u) — 1, rp_1(u’) =
Tm—1(u) + 1, rp(u') = rp(u) = 1, rp_1 (W) = rp_1(u) + 1, and rg(u') = rg(u)
forallk & {m,m — 1,n,n — 1}.

(vi) There exists m > 3 such that rp(u') = rm(u) — 1, rp_1(u') = rp_1(u) + 1,
ri(u') =11 (u) — 1, and ri(u') = ri(u) for all k & {1,m,m — 1}.

Proof. The claim follows by first applying Lemma 3.2.1 to v and W, and then
Lemma 3.2.2 on uyy and W/W'. O

Definition 3.2.4. Suppose that p # 2. We will say that the action of a unipotent
element u € GL(V) on V is inadmissible, if at least one of the following holds:
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e Some Jordan block of u of size > 1 has multiplicity > 3.

e There are > 2 Jordan block sizes of u with multiplicity > 2.

Otherwise we will say that the action of w on V is admissible.

Definition 3.2.5. Suppose that p = 2. We will say that the action of a unipotent
element u € GL(V') on V is inadmissible, if at least one of the following holds:

e Some Jordan block size of u has multiplicity > 4.
e There are > 2 Jordan block sizes of v with multiplicity > 3.
e There are > 2 odd Jordan block sizes of u with multiplicity > 2.

e Some Jordan block size of u has multiplicity > 3, and w has a Jordan block
of odd size.

Otherwise we will say that the action of w on V' is admissible.

The point of making these two definitions is in the two lemmas below, which
say that in certain cases if the action of u is “inadmissible”, then u does not act
as a distinguished unipotent element on a particular subquotient. These lemmas
will be applied in Chapter 5 when we consider irreducible representations such as
L4, (w1 +wy) and L¢, (w2), which can be constructed as such subquotients.

Lemma 3.2.6. Suppose that p # 2. Let u € GL(V) and suppose that there exist
Ku]-submodules W C W' C V such that dimW = 1, dimV/W' = 1 and that
u leaves a non-degenerate symmetric form invariant on W' /W . If the action of
w on V is inadmissible, then the image of u in SO(W'/W) is not a distinguished
unipotent element.

Proof. Denote the image of u in SO(W'/W) by «'. Suppose that the action of u on
V is inadmissible. We will show that «’ has a Jordan block size of multiplicity > 2,
and thus cannot be a distinguished unipotent element in SO(W'/W) (Proposition
2.3.4). To do this, we apply Lemma 3.2.3 and consider the different possibilities
(i) - (vi) to the Jordan block sizes of u' given there. Below (i) - (vi) will always
refer to the different cases of Lemma 3.2.3, and m and n will be the integers in
cases (ii), (iii), (v), and (vi) of Lemma 3.2.3.

Suppose that the action of u on V' is inadmissible. First, if u has some Jordan
block of size > 1 with multiplicity > 3, then in all cases (i) - (vi) it is clear that
ri(u’) > 2 for some k.

The other possibility is that two distinct block sizes of v have multiplicity > 2,
say Tiy(u), rgy (u) > 2 for some ko > ky > 1. In cases (i), (ii), (iii) and (iv) it is
clear that we have rg, (u/) > 2 or 1y (u') > 2.

In case (v), if we had r¢(u') < 1 for all k, then we must have m = ko and
n = k. Furthermore, now ry,(u) = 2, r,(u) = 2, 80 rpy,(v') = r,(v') = 1. Since we
are assuming that u' leaves a nondegenerate symmetric form invariant on W/W’,
the multiplicity of a block of even size must be even. Therefore both m and n are
odd. But then m — 1 and n — 1 are even, so ry,—1 (') and 7,_1(u’) are even. Since
Tm—1(u'),rp—1(u') are > 1 in this case, we have in fact rp,—1(v'), rp—1(u) > 2.

Finally consider the possibility of case (vi). Similarly to case (v), if we had
ri(u') < 1 for all k, then we have m = ko and 1 = k{, and ry,(u) = 2 and
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r1(u) = 2. Therefore ry,(u') = 1. Again since u' leaves a nondegenerate symmetric
form invariant on W/W’ any block of even size has even multiplicity, so it follows
that m must be odd. Then m — 1 is even, so because rp,—1(u/) > 1 in this case,
we have rp,—1(u') > 2. O

Lemma 3.2.7. Suppose that p = 2. Lel uw € GL(V') and suppose that there exist
Ku]-submodules W C W' C V' such that dim W = 1, dimV/W' =1 and that u
leaves a non-degenerate alternating bilinear form invariant on W' /W . If the action
of w on V' is inadmissible, then the image of u in Sp(W'/W) is not a distinguished
unipotent element.

Proof. Denote the image of v in Sp(W’/W) by u/. Suppose that the action of u on
V is inadmissible. We will show that «’ has either a Jordan block of odd size, or a
Jordan block of of multiplicity > 3, and thus cannot be a distinguished unipotent
element in Sp(W'/W) (Proposition 2.4.4). To do this, we apply Lemma 3.2.3 and
consider the different possibilities (i) - (vi) to the Jordan block sizes of u' given
there. Below (i) - (vi) will always refer to the different cases of Lemma 3.2.3, and
m and n will be the integers in cases (ii), (iii), (v), and (vi) of Lemma 3.2.3.
Suppose that the action of w on V is inadmissible. Consider first the case where
some block size of u has multiplicity > 4, say 7, (u) > 4 for some ko > 1. In case
(1) we have rg,(u') >4 or r1(u") > 2, and so ' is not distinguished in Sp(W'/W).
Consider then case (ii). If m # ko, then ry,(u') > 4 and thus «/ is not distinguished
in Sp(W'/W). If m = ko, then r,(u') > 2. So if ko is odd, then «' has odd block
sizes and cannot be distinguished in Sp(W'/W). On the other hand if kg is even,
then r,—1(u') > 2 and again ' has odd block sizes. In cases (iii), (iv), (v) and
(vi) it is clear that rg,(u') > 3 and thus v is not distinguished in Sp(W'/W).
Suppose next that v has two distinct Jordan block sizes, each occurring with
multiplicity > 3, say k{ > ko > 1 with Tk (w), 75y (uw) > 3. In all cases it is clear
that 7y (u'), 7, (u) > 1, so if kf or ko is odd then u’ has odd block sizes and cannot
be distinguished in Sp(W’/W). Suppose then that k{, and ko are even. Then in
cases (i), (i), (ili), (iv) and (vi) it is clear that rj (u') > 3 or 7y, (u') > 3 so '
cannot be distinguished in Sp(W’/W). In case (v) we also have ry (u') > 3 or
Tko(u') > 3 unless k) = m and ko = n. If k{j = m and ko = n, then rp,_1(u/) > 1
and so «’ has odd block sizes and cannot be distinguished in Sp(W'/W).
Consider next the case where u has > 2 odd Jordan block sizes of u with
multiplicity > 2. That is, suppose that there exist k{, > kg > 1 odd such that
Ty (u) > 2 and g, (u) > 2. In all cases it is clear that ry, (u') > 1 or rg,(u') > 1,
so v’ has odd block sizes and cannot be distinguished in Sp(W'/W).
Finally, suppose that some Jordan block size of u has multiplicity > 3, and that
u has a Jordan block of odd size. That is, assume that there exists (), ko > 1 such
that ko is odd, rj, (u) > 3 and rg, (u) > 1. Now if kg is odd, then ry (v') > 1, and so
u’ has an odd block size and cannot be distinguished in Sp(W’/W). Assume then
that kj is even. In case (i) we have 7y, (u') > 3 and thus « is not distinguished in
Sp(W'/W). In cases (ii) and (vi) we have ry (u') > 3if ko # m, and ryy _y(u') > 2
if kj = m (giving odd block sizes), so u’ is not distinguished in Sp(W'/W).
Similarly in case (v) ry (u') > 3 if kg # mun, and ry o (u') > 2if kg = m
or ki = n (giving odd block sizes), so u' is not distinguished in Sp(W'/W). In
case (iii), we have ry (u') > 3 if kj # m and ry,(v') > 1 of ky = m, so v has
an odd block size and cannot be distinguished in Sp(W'/W). In case (iv) we
have ry,(u/) > 1 and so «’ has odd block sizes and cannot be distinguished in

Sp(W'/W). 0
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Lemma 3.2.8. Suppose that p = 2. Let u € GL(V) and suppose thal there exist
Ku]-submodules W, W' of V' such that dimW' =1, V.= W @ W and that u
leaves a non-degenerate alternating bilinear form invariant on W. If the action
of u on V is inadmissible, then the image of w in Sp(W) is not a distinguished
unipotent element.

Proof. Now the Jordan blocks of the restriction uy of u to W are the same as
those of u acting on V', except that a Jordan block of size 1 is removed. If the
action of w on V is inadmissible, then clearly uyy has a block of odd size or some
block of multiplicity > 3. O

3.3 Decomposition of tensor products

In this section, we give various results about the Jordan form of the tensor pro-
duct of two unipotent matrices. To consider the Jordan decomposition of tensor
products of unipotent matrices, it is convenient to express them in terms of the
representation theory of a cyclic p-group. We will use the notation for indecom-
posable K[u]-modules as described in Section 1.4, where w is a unipotent linear
map of order ¢ = p®.

There is a large amount of literature concerning the decomposition of V,,, ®
V,, into a direct sum of indecomposables, for example [Sri64], [Ral66], [McF79],
[Nor95]|, [Hou03|, and [Bar11]. There is no explicit formula for the decomposition of
Vi ® Vi, as there is in characteristic 0, but there are various recursive descriptions
which suffice for our purposes.

We will often study the decomposition of V;,, @ V,,, A%(V;,) and S%(V},) using
certain finite sequences of integers, which are defined in terms of m, n, and p. For
these finite sequences of integers, the next definition gives various notation which
will be convenient later.

Definition 3.3.1 (|Bar11]|, [GPX16, Definition 1]). Let s = (aq,...,ay) and s’ =

(b1, ...,by) be finite sequences of integers. The following notation will be defined.
(i) Forall k € Z, set s+ k= (a1 + k,...,an + k).

(ii) Define s ® s = (a1,...,an,b1,...,bp).

(iii) Define the negative reverse of s by nr(s) = (—an,...,—a1).

(iv) Denote by s~ the subsequence of positive terms in s, and by s< the subse-

quence of negative terms in s.

(v) The k-multiple of s is the sequence (kay, ..., kai,..., kay,...ka,) of length
kn (each element and its multiplicity in the sequence is multiplied by k).

(vi) For m € Z and k € Z>¢, denote (m : k) = (m,m, ..., m), where m occurs k
times. Here (m : 0) is the empty sequence ().

(vii) For 1 <k < mn, the kth term of the sequence s will be denoted by s(k).

We will now describe one of the main results in [Barll| which gives the de-
composition of V,,, ® V}, into a direct sum of indecomposables. This information is
contained in a sequence s,(m,n) defined below.
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Definition 3.3.2 (|Barl5, Definition 1|). Let 0 < m < n be integers. The se-
quence sp(m,n) of integers is defined recursively as follows. Define s,(0,n) =
(0 : n). Assume now that 0 < m < n and let & > 0 be the integer such that
pF < n < pFtl. Write n = bpF 4+ d, where 0 < b < p and 0 < d < pF. Write
m = ap® + ¢ where 0 < a < p and 0 < ¢ < p*. We define

sp(mv n) = 51 B 52 D s3,
where s3 = nr(s1) and s1 and sy are given by the following exhaustive list of cases.

Case (1): m +n > p**1. Then

k+1 k:+1)

m+n-—p
k+1

s1=(p

s = sp(* ! =, p" —m)

Case (2): m+n < p**! and ¢+ d > p*. Then
s1=((a+b+1)p":c+d—ph)
so = sp((a+b+1)pF —n, (a+b+1)p* —m)

Case (3): m+n <p"tl 1 <c+4+d<pF and a > 0. Then
51 = sp(min(c, d), max(c,d)) + (a + b)p*
52 = sp((a +0)p* —n, (a+b)p* —m)

Case (4): m+n <pftl 1 <c+d<p*, a=0,and d > 0. Then
s1= sp(m, bp® — d)< + 2bp"
so=(0:n—m)

Case (5): m+n <ptl 1 <c+d<p*, a=0,and d =0. Then
s1 = (bp"* : m)
s9 = (0: bp* —m)

Case (6): m+n <p**t! ¢=0, and d = 0. Then
st =((a+b—1)p": p")

s2 = sp((a —1)p*, (b - 1)p*)

For more detail and examples on how to apply Definition 3.3.2, see [Barll]
and [Barl5j|.

Lemma 3.3.3 ([Barll, Proposition 1]). Assume that 0 < m <n. Then
(i) sp(m,n) is a nonincreasing sequence of m + n integers.
(i) n—=m+1<s,(m,n)(l) <m+n—1when1<1<m.

(iii) sp(m,n)(m+n—1+1) = —sy(m,n)(l) for 1 <l <m+n.



60 Chapter 3.

(iv) sp(m,n)(l) >0 for 1 <1 <m, and sp(m,n)(l) <0 forn+1<1<m+n,
and s,(m,n)(l) =0 otherwise.

Remark 3.3.4. For 0 < m < n, in Definition 3.3.2 we set s,(m,n) = s1 ® s D s3,
where s3 = nr(s;) and s; and sy are given depending on which of the cases (1)-(6)
of Definition 3.3.2 hold for m and n.

According to Lemma 3.3.3 (i) the sequence s,(m,n) is nonincreasing, so it
follows that so(i) < s1(j) for all 7 and j. In fact, something slightly stronger is true:
we can show that s2(i) < s1(j) for all ¢ and j. We omit the full details, but this is
easy to verify in each of the cases (1)-(6) of Definition 3.3.2, using the fact (Lemma
3.3.3) that for all 0 < m/ <n/, we have —m/ —n/ +1 < s,(m/,n’) (k) <m/+n'—1
forall 1 <k <m'+n'.

Now in terms of the sequence s,(m, n), the decomposition of V,,, ® V,, is given
by the following result. Note that the statement makes sense in view of Lemma
3.3.3 (iv).

Theorem 3.3.5 (|Barll, Theorem 1]). Let 0 < m < n < q. Then
Vi @ Vi, = 6BZLZIVsp(m,n)(k)

We will need the following description of V,,, ® V;, which holds in the case where
1 <m,n < p. This is a consequence of [Fei82, ch. VIII, Theorem 2.7|, as noted in
[Sup09, Lemma 2.8]. It could also be deduced from Theorem 3.3.5.

Lemma 3.3.6. Let 1 <m <n <p. Then

Vi @ Vo 2 @V i1 ©N -V = @ Vi yon 2i01 @ N -V,

1=

where h = min{m,p —n} and N = max{0, m +n — p}. In particular, V;, ® V, =
m -V, for all1 <m < p.

The following corollary is an easy consequence of Lemma 3.3.6 and will be
useful later. It is also a special case of [Barl5, Theorem 2.

Corollary 3.3.7. Let 1 <m <n <p. Then

() Ifp>n+m—1, then V;, ® Vi =2 &7 Wiomiait1 = O Virm—2i41-

(ii) If p<n+m—1, then V,, ® V,,, has > 2 Jordan blocks of size p.

Proof. Let h and N be as in Lemma 3.3.6. If p > n+m — 1, then h = m and
N = 0, so the claim follows immediately from Lemma 3.3.6. If p = n+m — 1,
then h=m —1 and N =1, so by Lemma 3.3.6 we have

Vi@V, = @;’;‘021/21'“ ®V, = 69?;61 n—m+2i+1

as claimed. Finally if p < n+m — 1, then N > 2, so by Lemma 3.3.6 the tensor
product V,, ® V,,, has > 2 Jordan blocks of size p. O

The following theorem is due to Glasby, Praeger and Xia. It reduces finding
the decomposition of V,,, ® V,, to the case where p does not divide ged(m,n). In
the case where m < n < p, this was proven by Renaud in |[Ren79, Lemma 2.2|.
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Theorem 3.3.8 (|GPX16, Theorem 5|). Let 0 < m <n < gq. Then for all k > 0,
the sequence sp(pkm,pkn) is the p*-multiple of sp(m,n).

The following results are well known and could be deduced using Theorem
3.3.5. They also follow from |[GPX16, Theorem 4, Table 1].

Lemma 3.3.9. Let n > 2. Then

VeV, ifn=0 modp

Vi1 ® Vo1 ifn#0 mod p

Lemma 3.3.10. Assume that p # 2 and let n > 3. Then

Vo@®eVy, eV, ifn=0 modp
Vic1 @ Vi1 ®Vigo ifn=1 modp

Vo ® Vi1 ® Va1 ifn=-1 mod p
Vaea @ Vi, @ Vg ifn#0,1,—1 mod p

Vn®v}’):

Lemma 3.3.11. Assume that p =2 and let n > 3. Then

Vi VeV, ifn=0 mod 4
Vi1 ® Vi1 @ Vpgo ifn=1 mod 4
Vo @V, @ Viyo ifn=2 mod4
Vo ®@ Vi1 @ Voy1 ifn=3 mod4

Vo ® V3 =

We present a result due to Barry which determines when V,, ® V,, has no
repeated blocks. For this we will need the following definition from [Barl5].

Definition 3.3.12. Assume that p # 2. We define the following sets of pairs of
integers. Let

1
S:{(kad)31<k§d§p+1—k}u{(k,p+k—l):1<k§% ,

For all integers t > 2, we define Sy = (11 \ T») U T3, where

t—1 t—1
£1 ., +1 =1 .
TIZ{(iPtflerT,th 1+])T)11§z§p i<j<p—i-1}
t—1 t—1
A o S SR e . p—1
Ty={(ip '+ ——ip '+ ——) 11 <i<——
2 2
t—1 t—1
1 —1 1
Ty = {(ip ' + 2 2+ Jip L+ B 5 +pt):1§i§pT

We define the set . to be the set of all pairs (m,n) and (n,m) of integers
such that 1 < m < n and one of the following conditions hold:

(i) m=1.

(i) 1 < m < p, and (m,n’) € S, where n is the unique integer such that
m<n <p+m-—1and n’=n mod p.

(iii) p=t <m < p' (t > 2), and (m,n’) € S, where n' is the unique integer such
that m <n/ <p'4+m —1and n’ =n mod p'.
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Using his results in [Barll| (Theorem 3.3.5 above), Barry has shown the fol-
lowing.

Theorem 3.3.13 ([Barl5, Theorem 2, Theorem 3, Corollary 1|). Assume that
p#£ 2. Let myn > 1. Then

(i) The tensor product Vi, ® V,, has no repeated blocks if and only if (m,n) is
contained in the set . of Definition 3.3.12.
(i) If Vi, ® Vi, has no repeated blocks, then Vy, @ V,,, = @?ilf(m’n)Vner—%H-
Theorem 3.3.14 (|Barl5, Theorem 1]). Assume that p = 2. Let 1 < m < n.
Then

(i) The tensor product V,, @ V,, has no repeated blocks if and only if one of the
following conditions hold:

e m=1,
e m=2andn=1 mod 2,
e m=23andn =2 mod 4.

(ii) If Vi ® Vi, has no repeated blocks, then V,, @ V,,, = @?irll(m’n)Vner,ng.

Later in this chapter we will give a result similar to Theorem 3.3.13 for A%(V},)
and S%(V,) (Proposition 3.5.3).

With Theorem 3.3.13 and Theorem 3.3.14, one could actually give a description
of all K[u]-modules V' and W such that V ® W has no repeated blocks. We finish
this section by giving this description in a specific case which is relevant to Problem
1.1.2, namely the case where p # 2 and all the Jordan block sizes in V and W
are of the same parity (see Lemma 3.3.17 below). At the end of this chapter, this
result will be used in the proof of Theorem 1.1.4 in the tensor product subgroup
case.

Lemma 3.3.15. Assume that p # 2. Let m > 1 and 1 < n < n’ be integers such
that n = n' mod 2. Suppose that Vi, @ (V,, & V,/) has no repeated blocks. Then
n' —n > 2m, and in particular n' > m.

Proof. First note that V,, @ (V,, & V) = (Vi, @ Vi) & (Vi, ® V), so it follows
that V,,, ® V}, and V,,, ® V,,» have no repeated blocks.

Suppose that n’ < m. In this case we have V,,, @V}, = D Vingn—2i41 and V,, ®
Vi = 69?/ 1Vingn'—2j4+1 by Theorem 3.3.13 (ii). The largest block size occurring in

Vin ® Vy, is m+n — 1. We claim that V,, ® V,,, also has a block of size m +n — 1.
For this, note that the block sizes occurring in V,;, ® V,,; are all the integers which
lie in the interval [m —n’ 4+ 1,m +n’ — 1], and which are congruent to m —n’ + 1
mod 2. A straightforward verification shows that m 4+ n — 1 is such an integer, so
Vin ® Vi also has a block of size m +mn — 1. Thus V,,, ® (V,, ® V,,v) has > 2 Jordan
blocks of size m + n — 1, which is a contradiction.

Therefore we must have n’ > m, so now V,,, @ V,, = @?E?(m’n)Vme_ng and
Vin @ Viy = @71, Vivim—2j11 by Theorem 3.3.13 (ii). The Jordan block sizes of
Vin ® V,, consist of integers in the interval [[m — n| 4+ 1,m + n — 1] congruent to
n +m — 1 mod 2, while the Jordan block sizes of V,,, ® V,,» consist of integers
in the interval [n’ —m + 1,n’ + m — 1] congruent to n’ + m — 1 mod 2. Now
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n+m-—1=n"4+m—1 mod 2, so in order for (V;, @ V,,) & (V;, ® V,r) to
have no repeated blocks, the two intervals must be disjoint. This is equivalent to
m+n—1<n'—m+ 1, which is equivalent to n’ —n > 2m since n’ =n mod 2.
This completes the proof of the lemma. ]

Lemma 3.3.16. Assume that p # 2. Let m,m’,n,n’ > 1 be integers such that
m =m' mod 2 and n =n' mod 2. Then (Vy, ® Vi) @ (Vi ® Vi) has repeated
blocks.

Proof. Without loss of generality, we can assume that m < m/ and n < n'. If
(Vin @ Vi) @ (V,, @ V,r) has no repeated blocks, then the same is true for its direct
summand V,,» @ (V,, & V), so by Lemma 3.3.15 we have n’ > m/. On the other
hand, now the direct summand (V,, @ V;,) ® V,,» also has no repeated blocks, so
by Lemma 3.3.15 we have m’ > n’, which is a contradiction. ]

Lemma 3.3.17. Assume that p # 2. Let Vi and Vo be K[u]-modules such that
1 < dimV; < dimVy, Vi | K[u] = @ Vi, Vo | K[u] = @', Va,, where
1<m; <---<mgandl <ny <--- <ny are integers such that m; = my mod 2
forall1 <i,7 < s andnj =ny mod 2 for all 1 < j,5 <t.

Suppose that s > 1 ort > 1. Then Vi ® Vo has no repeated block sizes if and
only if the following conditions hold:

(i) s=1, so Vi | K[u] =V, for m =my;
(il) nj —ni—1 >2m for all 2 <i <t;
(iii) (m,n;) is contained in the set . of Definition 3.3.12, for all 1 < i <t.

Furthermore, when (i), (i), and (iii) hold, we have

min(m,n1)

Vl X V2 = @ Vn1+m 2j+1 b @ @ Vnz-i-m 2j+1-

=2 j=1

Proof. Suppose that the conditions (i), (ii), and (iii) hold, so Vi = V,, and V5 =
EB;-:anj, where 1 < ny < --- < ng. Note that we have n; > m for all 2 <i <t by
(ii). It follows then from condition (iii) and Theorem 3.3.13 (ii) that

min(m,ni)

Vl X ‘/2 - @ Vn1+m 27+1 @ @ @ Vn,er 25+1,
=2 j=1

proving the last claim of the lemma. In order to show that V3 ® V5 has no repeated
blocks, note that the Jordan block sizes occurring in V3 ® Vo are the integers
congruent to n; +m-+1 mod 2 which lie in one of the intervals [[ny —m/|+1,n1 +
m—1], [n; —m+1,n; + m — 1], i > 2. It follows from (ii) that these intervals are
pairwise disjoint, so V; ® V5 has no repeated blocks.

For the “only if” direction of the claim, suppose that Vi ® V5 has no repeated
blocks. First of all, we claim that ¢ = 1 or s = 1. Indeed, if t,s > 1, then
(Viny ® Viny) @ (Vyy, ®V,,,) is a direct summand V; ® Va, so we have a contradiction
by Lemma 3.3.16. Next we show that s = 1. If s > 1, then we must have t = 1.
Now note that (Vi,, & Vin,) @ Vy,, has no repeated blocks, being a direct summand
of V1 ®V5. By Lemma 3.3.15 we have mo > n1, but this contradicts the assumption
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dim V) < dimV, = ny. Therefore s = 1, in other words, condition (i) holds. Set
m =mq, so Vi3 =V,,. Now

t
Vi@V =EHVin® Vi,

so it follows from Theorem 3.3.13 (i) that for all 1 < i < ¢, the pair (m,n;)
is contained in the contained in the set .7 of Definition 3.3.12. In other words,
condition (iii) holds.

Since Vi, @ (Vi @ Vi) is a direct summand of V; ® Va, by Lemma 3.3.15 we
have ng > m. Thus by Theorem 3.3.13 (ii), we have

min(m,n1)

ViV, = @ Voi4m—2j41 ® @ @ Vaitm—2j+1-

=2 j=1

In order for Vi ® V5 to have no repeated blocks, it follows as in the first paragraph
that the intervals [|[ny —m|+1,n1 +m—1], [n; —m+1,n; +m—1], i > 2 must be
pairwise disjoint. It is straightforward to verify that this is equivalent to condition
(ii), which completes the proof of the lemma. O]

3.4 Jordan decompositions in tensor squares (p # 2)

In this section, we make the following assumption.
Assume that p # 2.

The purpose of this section is to describe and apply the results of Barry in
[Bar11], which give the decomposition of the K[u]-modules A%(V;) and S%(V;,)
into a direct sum of indecomposables, where u is a unipotent linear map of order
q=n.

Set sp(n) := sp(n,n) for all n > 0. As a special case of Theorem 3.3.5, the
positive terms of the sequence sy(n) give the decomposition of V,, ® V;, into a
direct sum of indecomposables. That is,

Vo ® Vi, = @51 Ve, (n) (k)

forall 0 <n <gq.
It is easily checked from Definition 3.3.2 that the following lemma holds.

Lemma 3.4.1. Ifn =0, then s,(0) = (0:0) = (). Assume then that n > 0, and
let k >0 be such that p* < n < pF*1, and write n = bp* 4+ d, where 1 < b < p and
0<d<pF. Then sp(n) is defined recursively as follows.

Case (1): 2n > pFtl.

sp(n) ( k+1 . -9 — k+1) @ Sp(pk+1 _ n) D (_pk+1 S — pk+1)

Case (2): 2n < p"*! and d > L;l (in this case k > 0).

sp(n) = ((2b+1)p" : 2d—p") @5, ((2b+1)p* —n) @ (—(2b+1)p" : 2d—p")
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Case (3): 2n <p"lt and1<d < Z% (in this case k > 0).
sp(n) = (sp(d) + 20p%) @ 5(26p" — 1) ® (s(d) — 20p*)
Case (4): 2n < pF*! and d = 0.
sp(n) = ((2b = 1)p" : p) @ (b = p") @ (= (2b — 1)p" : p¥)

The sequence s,(n) has the following properties, cf. Lemma 3.3.3.

Lemma 3.4.2. Assume that n > 0. Then

(i) sp(n) is a nonincreasing sequence of 2n integers.

(i

)
) 1< sp(n)(1) <2n—1 when 1 <1< n.
(iii) sp(n)(2n+1—1) = —sp(n)(l) for 1 <1< 2n.
)
)

(
(iv) sp(n)(l) >0 for 1 <1 <n and sp(n)(l) <0 forn+1<1<2n.
(v) sp(n)(j) is odd for all 1 < j < 2n.

Proof. Statements (i), (ii), (iii) and (iv) follow from Lemma 3.3.3. We proceed to
prove (v) by induction on n. If n = 1, then s,(n) = (1, —1). Suppose then that
n > 1. Now p* < n < pF*t! for some k > 0, and n = bp* + d for 1 < b < p and
0<d<pF Ifnisasin case (1), (2) or (4) of Lemma 3.4.1, then the claim follows
by induction (note that p**1, (204 1)p* and (2b — 1)p* are odd). In case (3) the
claim also follows, since s,(d)+2bp* and s, (2bp* —n) are sequences of odd integers
by induction. O

Note that the largest entry in s,(n), i.e., the largest Jordan block occurring
in V,, ® V,,, is easily deduced from Lemma 3.4.1. We will also need to know the
smallest Jordan block sizes occurring in V,, ® V,,. This information is given in the
following lemma.

Lemma 3.4.3. Let n > 1. Set o = vp(n) and f = max{vy(n — 1),v,(n + 1)}.
Then the smallest entries of the sequence sp(n)s are given as follows.

(i) If « > 0, then sp(n)s = (..., p*,p%, ..., p%) where p* occurs exactly p®
times in the sequence.

(ii) If « =0 and B > 0, then sp(n)s = (..., PP, 08, ..., pP, 1) where p® occurs
ezactly p® — 2 times in the sequence.

(iii) If « =0 and B = 0, then sp(n)s = (..., 3,1) where 3 occurs only once in
the sequence.

Proof. We proceed to prove the claim by induction on n. If n = 2, then it is easy
to see from Lemma 3.4.1 that s,(n)> = (3,1) for all p and that the claim holds.

Suppose that n > 2 and let k be such that p* < n < pFtt. We first take care
of two special cases, namely n = pF*! —1 and n = p*. If n = p**1 —1, then a = 0
and # = k + 1. Furthermore,

sp(n) = (pk+1 ;pk+1 o 2) @ (17 _1) @ (_pk+1 :pk+1 . 2)
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by Lemma 3.4.1 (1), so the claim holds. For n = p¥, we have sy(n) = (p* :
") @ (—p”* : p*) by Lemma 3.4.1 (4), so the claim holds.

Suppose then that p* < n < p**! — 1. By Lemma 3.4.1, we have
sp(n) = 51 ® sp(n') & nr(s1),

where s; is a sequence of positive integers and in cases (1), (2), (3) and (4) of
Lemma 3.4.1 we have n/ = p**1 —n, n/ = (2b + 1)p* — n, n' = 2bp* — n and
n' = n — p” respectively. Note that every entry of the sequence s,(n’) is < than
any entry of the sequence s; (Remark 3.3.4). Thus by applying induction on s, (n’),
the claim for s,(n)s follows once we verify that all of the following hold: n’ > 1,
vp(n') = vp(n) and {vp(n' + 1), 1p(n" = 1)} = {vp(n+1),1(n — 1)}.

To this end, using p* < n < pFt! — 1, an easy check in cases (1)-(4) of

Lemma 3.4.1 shows that n’ > 1. Next, note that we have n’ = —n mod p¥,
son'£1 = —(nF1) modpF. Since 1 < n’ < n < pF*t! — 1, it follows that
vp(n') = vp(n) and vp(n+1) = v,(n F1). O

In characteristic zero, the decomposition of the exterior and symmetric square
of a unipotent matrix is easy to describe. This is seen from the following result,
which is presumably well known, but we give a proof for completeness.

Proposition 3.4.4. Let uc be a unipotent Jordan block acting on a C-vector space
V' of dimension n > 1.

(i) The Jordan block sizes of uc acting on S*(V) are [2n—1,2n—5,...,c|, where
c=14fn is odd and c = 3 if n 1s even.

(ii) The Jordan block sizes of uc acting on A*(V) are [2n—3,2n—7,...,c], where
c=3ifn is odd and c =1 if n 1s even.

Proof. We apply the representation theory of SLy(C). In an irreducible represen-
tation V' of SLy(C), a nonidentity unipotent element of SL(C) acts as a single
Jordan block. Representations of SLg(C) over C are semisimple, so then the Jordan
block structure of uc acting on S?(V') and A%(V) is determined by the irreducible
summands. These summands are determined by the weight multiplicities.

Fix the maximal torus formed by the diagonal matrices in SLa(C). We can
identify the weights with integers, and then in V' we have a basis of weight vectors
e1, €2, ...,e, where e; has weight n—2i+1. Now 5’2(V) has a basis of weight vectors
given by e;e;, with 1 < i < j < n where e;e; has weight 2n—2(i+j —1). It follows
that in S?(V) the highest weight 2n — 2 has multiplicity 1, the weight 2n — 6 has
multiplicity 2, and generally 2n — 4k + 2 has multiplicity &k for 1 < k < "T“ From
this (i) follows.

Similarly in A2(V) a basis of weight vectors is given by e; A ej, with 1 <4 <
j < n, and where e; A e; has weight 2n — 2(i + j — 1). The highest weight 2n — 4
has multiplicity 1, the weight 2n — 8 has multiplicity 2 and generally 2n — 4k has
multiplicity k£ for 1 <k < 5. From this (ii) follows. Ol

We continue with results in positive characteristic p # 2. The sequence sp(n)
defined above can used to be describe the decomposition of S%(V;,) and A%(V;,)
as seen in [Barl1|".

"Note that Theorem 2 in [Barll] has a typo: case (3) is missing the assumption 2n <
(2b+ 1)p® < p**', and in the decomposition of S*(V;,) the direct sum should run from j = 1 to
j=d.
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Theorem 3.4.5 ([Barll, Corollary 3|). Let 0 <n < q. Then

[n/2] [n/2]
S (Vo) = B Vi, (myen—1y and A’ (V) = EP Vs, (m)(2n)-
k=1 b1

Theorem 3.4.6 ([Barll, Theorem 2]). Let 0 < n < ¢. Now p* < n < pF*! for
some k>0, and n="bp* +d for 1 <b<pand 0 <d < p*. Then

(1) If 2n > p**1, then

k+1
+1
N2 (Vi) = (n— pT)vpkH ® S (Vs _y,)
and
pk’-i-l -1 )
Sz(Vn) = (TL — 7)%1%%1 DA (‘/;)k+1,n)

(2) If2n < p**' and d > kaH, then

(20 + 1)pk +1

N (Vo) = (n— 5 Wiaps1)pk Sz(‘/(Qb—‘rl)pk—n)
and .
20+ 1)p" —1
(V) = (0 — i © A (Vi)

and

S2(Va) = @ Vep(d)(@2i—1)+20p+ @ S (Vapph—n)

Jj=1

(4) If 2n < p**! and d = 0, then

2 Pk —1 2
AN (Vn) = 5 Viab—1ypr © 5™ (Vip—1)pr)
and i
p+1
S*H(Vy) = 5 Ve @ N (Vip—1)pr)

Remark 3.4.7. In Theorem 3.4.6, we have formulated the cases differently than
Barry in [Barll|. However, it is easy to see that (1), (2), (3) and (4) in Theorem
3.4.6 are equivalent to

(1) om > pk+17
(2 1<b<p 0<d<pfand (204 1)pF < 2n < phtl,

(3) 1<b<p, 0<d<pFand 20p* < 2n < (20 + 1)pF < phH!
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(4) n=bp* and 2b < p

respectively. The cases (1)’, (2)’, (3)’, and (4)’ are the cases given in [Barll,
Theorem 2].

Proposition 3.4.8. Suppose that a block size t has multiplicity > 2 in A2(V;,) or
S2(V,,). Then t is a multiple of p.

Proof. Tt is straightforward to prove by induction on n, using Lemma 3.4.1, that
if some value ¢ > 0 occurs twice in the sequence sp(n), then t is a multiple of p.
This is also a consequence of [GPX15, Theorem 4]. In any case, from this fact and
Theorem 3.4.5, the claim follows. O

The following lemma is elementary, see for example [FH91, B.1, pg. 473].

Lemma 3.4.9. Let V and W be KG-modules for any group G. Then we have the
following isomorphisms of KG-modules.

(i) S2(VeWw)=S2(V)e (Ve W)a S2(W),
(i) N2(VaeW)2A2(V)a (Ve W) o A2(W)

Lemma 3.4.10. Let n > 1, let o = vp(n), and let f = max{v,(n—1),v,(n+1)}.
Let m be the smallest block size occurring in A*(V,). Then the following hold:

(i) If « = 0 and n is even, then m = 1. Furthermore, Vi, has multiplicity 1 in
N2(Vy).
(ii) If « =0, n is odd, and 8 = 0, then m = 3. Furthermore, V,, has multiplicity
1 in A2(V,,).
(iii) Ifa =0, n is odd, and B > 0, then. m = p°. Furthermore, V,,, has multiplicity
pﬂ% in A2(V,).

(iv) If a > 0, then m = p®. Furthermore, V,, has multiplicity # in N2(Vy,) if

n is even and multiplicity pa2_1 if n is odd.

Proof. This is a straightforward consequence of Theorem 3.4.5 and Lemma 3.4.3.

O]

Lemma 3.4.11. Let V =V, ®--- & Vy,, wheret > 1 and d; > 1 for all i. Let
o = vp(ged(dy, ..., dy)). If a > 0, then the smallest block size occurring in N2(V)
is p=.

Proof. Suppose that o > 0, and for all i set a; = vp(d;). By Lemma 3.4.9 we have

t

NV =P V) e P Vi oV

i=1 1<i<j<t

as K[u]-modules. Now p® divides d; and d; for all ¢ < j, so by Theorem 3.3.8 we
have the equality

. _ « . 7 d]
min Sp(di7 d])> =p -mn Sp(ﬁv F)>
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which is always > p®.

Therefore by Theorem 3.3.5, in Vg, ® Vy, the smallest Jordan block has size
> p®. By Lemma 3.4.10 the smallest block size occurring in /\Q(Vdi) is p* > p™.
Thus each block size occurring in the K[u]-module A2(V) is > p®. Furthermore,
a block of size p® occurs in A%(V) since o = a; for some i, which proves the
claim. O

Lemma 3.4.12. Let n > 1, let o = vp(n), and let f = max{v,(n—1),v,(n+1)}.
Let m be the smallest block size occurring in S*(V,,). Then the following hold:

(i) If « = 0 and n is odd, then m = 1. Furthermore, Vi, has multiplicity 1 in
S2(Vy,).

(ii) Ifa =0, n is even, and B = 0, then m = 3. Furthermore, V,, has multiplicity
1in S%(V,,).
(iii) If « =0, n is even, and 5 > 0, then m = p?. Furthermore, Vi, has multipli-
. B_1 .
city pTl in S2(V,,).

(iv) If a > 0, then m = p®. Furthermore, V,, has multiplicity pa2—1 in S?(V,,) if

n is even and multiplicity paTH if n is odd.

Proof. This is a straightforward consequence of Theorem 3.4.5 and Lemma 3.4.3.
O

Lemma 3.4.13. Let V =V ®---® Vy,, wheret > 1 and d; > 1 for all i. Let
a = vy(ged(dy,. .., dy)). If a > 0, then the smallest block size occurring in S*(V)
is p=.

Proof. The same proof as in Lemma 3.4.11 works: just replace A? with S? and
apply Lemma 3.4.12 instead of Lemma 3.4.10. L]

3.5 Symmetric and exterior squares with no repeated
blocks (p # 2)

Asin 3.4, we retain the notation from Section 3.3 and make the following assump-
tion.

Assume that p # 2.

In this section we determine all n > 1 such that S%(V;,) or A%(V},) have no
repeated blocks. First, in view of Proposition 3.4.4, we make the following defini-
tions.

Definition 3.5.1. We say that the decomposition of S%(V;,) is as in characteristic
0 if
SQ(Vn) = V2n—1 S¥ ‘/2n—5 ®---D ‘/c

where ¢ = 1 if n is odd and ¢ = 3 if n is even.

Definition 3.5.2. We say that the decomposition of A2(V;,) is as in characteristic
0 if
/\2(Vn) = ‘/2n—3 S V2n—7 DD V;,

where ¢ = 3 if n is odd and ¢ =1 if n is even.
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The main result of this section is the following proposition.

Proposition 3.5.3. Let n > 1, and V = A%(V,,) or V = S?(V,,). The decomposi-
tion of V' has no repeated blocks precisely in the following cases:

(i) p>2n—1 for V= SZ(VH),
(i) p > 2n —3 for V.= A%(V,),
(iii) n=p+ 252 for V= A%(V,),

(iv) n = bpF + p‘}é for some k > 1,0 <b < %, for V.= A%(V,) and V =
S2(Vy).

In all of the cases above, the decomposition of V is as in characteristic 0.
Furthermore, if there are repeated blocks in V', then some block of size > 1 has
multiplicity > 2.

The proof is essentially an application of Theorem 3.4.6. The fact that some
block of size > 1 has multiplicity > 2 when there are repeated blocks follows from
our proof, but also from Proposition 3.4.8. Similarly the fact that the decomposi-
tion is as in characteristic 0 when there are no repeated blocks follows from the
proof, but it is also possible to deduce a priori that this is the case; we omit the
discussion of how this could be done.

We begin by a series of lemmas which will be needed in the proof.

Lemma 3.5.4. Let p > n.

(i) If p > 2n — 1, then the decomposition of S*(V,) is as in characteristic 0. If
n<p<2n-—1, then S*(V,,) has > 2 blocks of size p.

(ii) If p > 2n — 3, then the decomposition of N*(V},) is as in characteristic 0. If
n <p<2n—3, then N2(V,,) has > 2 blocks of size p.

Proof. If p > 2n—1, then it is immediate from Corollary 3.3.7 that s,(n)> = (2n—
2j +1)j_y, so by Theorem 3.4.5 both S%(V,,) and A%(V},) are as in characteristic
0.

If p = 2n—3, then by Lemma 3.3.6 we have s,(n)> = (p,p,p)@(Qn—Zj—H)?:_g.
Now it follows from Theorem 3.4.5 that A%(V},) is as in characteristic 0 and S?(V},)
has 2 blocks of size p.

Suppose then that n < p < 2n — 3. In this case it follows from Lemma 3.3.6
that Vj, ® V}, has > 5 blocks of size p. In particular, the first four terms of s,(n)-
are equal to p, and thus by Theorem 3.4.5 both A%(V;,) and S?(V},) have > 2
blocks of size p.

O

Lemma 3.5.5. Let n = bplC + pk%, where 0 < b < % and k > 1. Then
sp(n) = (2n —2j + 1)?21-

Proof. In the notation of Definition 3.3.12, we have (n,n) € % since (n,n) €
T1\ T, so it follows from Theorem 3.3.13 (ii) that sp(n)> = (2n—2j+1)7_;. Now
the claim follows from Lemma 3.4.2 (iii). O
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Lemma 3.5.6. Let n = p+ 2. Then the decomposition of N2(V,) is as in

5
characteristic 0, but S*(V,,) has > 2 blocks of size p.

Proof. If p = 3, then the result follows from Lemma 3.5.4. Assume then that

p > 3. By Theorem 3.4.6 (3), we get (here d = %)

N (Vo) = BF=1 Vs, (@) 2) 420 P /\2(V#)
= B Van—sj41 © /\Q(Vp%s).

Here the last equality follows since p > 2d—1 and thus s,(d) = (2d—2j + 1)32.11
by Corollary 3.3.7. Now by Lemma 3.5.4 the decomposition of A2(Vpss) is as in
2

characteristic 0, so the decomposition of A%(V;,) is also as in characteristic 0.
For the symmetric square, applying Theorem 3.4.6 (2) gives

§%(Vn) = @51 Vi, () 2i—1)+2p © S* (Vs ).

Now S2(Vp4s) has > 2 blocks of size p by Lemma 3.5.4, as claimed. O]
2

Lemma 3.5.7. Let n = bpk + pk%, where k > 1 and 0 < b < p%l. Then the

decompositions of N*(V,,) and S*(V,,) are as in characteristic 0.

Proof. According to Lemma 3.5.5, we have s,(n) = (2n — 2j + 1)?21. Thus the
claim follows immediately from Theorem 3.4.5. O

We are now ready to prove Proposition 3.5.3.

Proof of Proposition 3.5.3. The fact that in cases (i)-(iv) the decompositions are
as in characteristic 0 follows from lemmas 3.5.4, 3.5.6 and 3.5.7. To prove that they
are the only cases where there are no repeated blocks, we proceed by induction
on n (case n = 1 is obvious).

If p > n, then Proposition 3.5.3 follows from Lemma 3.5.4. Assume then that
p < n. Then there exists & > 1 such that p* < n < p¥*! and n = bp* + d, where
1 <b<pand0<d < p* We go through the different possibilities given in
Theorem 3.4.6.

Case (1): 2n > pFtl.
For the symmetric square, by Theorem 3.4.6 we have

k+1
A

2 )Vpk+1 @ /\2(‘/;7k+1_n),

which means that if S%(V;,) has no repeated blocks, then n — pk+21_1 < 1. Since

2n > pFt1, it follows that 2n = p**1 41, s0 n = pkgi (case (iv) in 3.5.3).
For the exterior square, we see similarly with Theorem 3.4.6 that if A%(V},)
has no repeated blocks, then n — L;—H < 1. Since 2n > pF*1 it folllows that

Y
k+1 LN k1 ot
n = % (case (iv) in 3.5.3) or n = £ 2+3. Ifn—P 2+3

3.4.6 we have

, then by Theorem
/\Q(Vn> - ‘/pk+1 D S2<Vpk+1_3>.
antsd

We are assuming that A?(V},) has no repeated blocks, so the same must be

% is not of the form given in 3.5.3 (iv)

true for S*(V,k41_5) as well. Since
PHlos
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by induction it must be of the form given in 3.5.3 (i). That is, we have p >

2.2 =2 _ 1 = p;Ft!l _ 4 But this is not possible, since p > 3 and k > 1 gives

k+1

In the rest of the cases we have 2n < p*™, and we note that this implies b < pT.

Case (2): 2n < p**! and d > kaH.
For the symmetric square, by Theorem 3.4.6

(20 + 1)pk — 1

SQ(VH) = (n - 9 )‘/(Qb_i_l)pk ¥ A2(W2b+1)pk—n)7

which means that if S2(V;,) has no repeated blocks, then n — % < 1. Since
n = bp* + d, this gives d < pk27+1’ so in fact d = pk27+1. We have b < %, SO we are
in case (iv) of 3.5.3.

For the exterior square, we see similarly with Theorem 3.4.6 that if A2(V;,) has
no repeated blocks, then n— % < 1 Since n = bp*+d, this gives d < kaJrg,
and thus d = pkH ord= pk+3 .If d = B2 then we are in case (iv) of 3.5.3 since
b < p% Suppose then that d =212 +3 In this case (2b 4 1)p¥ —n = n — 3, so
N (Vy) = Van_3® S%(V,_3) by Theorem 3.4.6. Because n — 3 = bp* + pk2—_3 is not
of the form given in 3.5.3 (iv), by applying induction on S?(V;,_3) it follows that
p>2(n—3)—1=2n—7=(2b+ 1)p* — 4. But this is not possible, since p > 3,
k>1,and b > 1 gives (2b+ 1)pF —4>3p—4 > p.

Case (3): 2n <pFtland1<d < pk27—1.
We consider first S(V;,) and A%(V},) in the case where b = 1.
When b = 1, for the symmetric square we have

S?(Vo) = @21 Vs, (ay@j—1) 2t © S*(Vr_g)

by Theorem 3.4.6. Assuming that S?(V;,) has no repeated blocks, by the decom-
position above the same must be true for 5*(V,x_4). Thus by applying induction
on p* — d, one of the following must hold:

e Case (i) of 3.5.3: p > 2(p* —d) — 1.
e Case (iv) of 3.5.3: pF —d = epF~1 + Pl , where 0 < ¢ < 2L and k> 1.

Suppose first that S?(V,._,) is as in case (i) of 3.5.3. If k& > 1, we have
2(pF —d) —1>p¥ > p. Thus k =1 and p > 2(p — d) — 1. This gives d > p1
p—1

so d = 5= and we are in case (iv) of 3.5.3. If SQ(Vk 4) 1s as in case (iv) of

3.5.3, then pF —d = cpk L 5 . where 0 < ¢ < 221 and k > 1. In particular

k
pF—d<?® 2+1 sod> 2L and therefore d= %. In other words, n is as in case
(iv) of 3.5.3.
When b = 1, for the exterior square

N (Vy) = @5,V o(d)(25)+2pF DN *(Vpr—a)

by Theorem 3.4.6. Assuming that /\Q(Vn) has no repeated blocks, by the decom-
position above the same must be true for /\2(Vpk_d), so we can apply induction
on p* — d. Thus one of the following must hold:
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e Case (ii) of 3.5.3: p > 2(pF — d) — 3.
o Case (iii) of 3.5.3: p* —d = p + 25°
e Case (iv) of 3.5.3: p* —d = cp*~1 + pk;ﬁ, where 0 < ¢ < pT and k > 1.

If we are in case (i) of 3.5.3 for A2(V,x_,), then p > 2(p* — d) —3>pF—2
so 2 > p¥ — p. This forces k = 1,50 p > 2(p— d) — 3 and d > P5°. Hence d = p21
or d= 23 so either n = p + % (case (iv) of 3.5.3) or n = —1— b= 3 ((‘aqe (iii) of

3.5.3). If we are in case (iii) of 3.5.3 for A*(V,x_), then p*—d = p+p It is clear
in this situation that & > 1. Furthermore, we must have k = 2 since p* —d > 1027—1—1
and p+ % < p?. Thus d = p? — @ > %, contradicting the fact that d < %. If
we are in case (iv) of 3.5.3 for p* — d, then as in the case of the symmetric square,
we get pF —d < pkz—ﬂ. This implies d < pkz—_l, 80 d = % and n is as in case (iv)
of 3.5.3.

Next we consider the case where b > 1. For the symmetric square, we have

S*(Vn) = @Y1V, (ay2j—1) 20t D S (Viph_a)

by Theorem 3.4.6. Assuming that S?(V},) has no repeated blocks, the same must
be true for 5(Vy._,) as well. Now p < 2(bp* — d) — 1, so by induction it follows
bp* — d must be as in case (iv) of 3.5.3. Since bp¥ —d = (b — 1)p* + (p* — d), this

means that p* — d = 25— i , which gives d = pkgil. Thus n is also as in case (iv) of
3.5.3.

For the exterior square, we have
/\2(Vn) V p(d)(27)+2bp* DA (‘/bpk—d>

by Theorem 3.4.6. Assuming that A%(V},) has no repeated blocks, by induction
the same is true for A*(Vjr_4). Now p < 2(bp* — d) — 3, so by induction it follows
bp* — d must be as in case (iii) or case (iv) of 3.5.3. If N2 (Vypr_q) is as in case (iv),
we see as in the previous paragraph for the symmetric square that n is as in case
(iv) of 3.5.3. If bp* —d = (b — 1)p* + (p* — d) is as in case (iii) of 3.5.3, it follows
that b=2,k=1and p—d= 5= 3. But then d = p;?’, which is in contradiction
with d < ?’Tl.

Case (4): 2n < p**! and d = 0.
For the symmetric square, in this case
PP+l

— Vo1 @ /\2(‘/(1;—1)pk)

SQ(Vn) = 9

by Theorem 3.4.6. Now kaH > 2,50 S%(V,,) has > 2 blocks of size (2b — 1)p*
For the exterior square,
pr—1

N (V) = 5 Visp—1ypr @ S*(Vip—1)pt)

by Theorem 3.4.6. Now if A?(V},) has no repeated blocks, then Z% < 1. Therefore
pk < 3, which forces p =3 and k = 1. Since b < % =1, we have b = 1. Therefore
n = 3 and we are in case (ii) of 3.5.3. O
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3.6 Decomposing tensor products of form modules
Assume that p = 2.

Let u € SL(V) be a unipotent element. Suppose that V; and Vs are Klul-
modules equipped with non-degenerate u-invariant alternating bilinear forms [
and B, respectively. Then there is a product form 5 = (1 ® P2 on the tensor
product V3 @ Va, defined by S(v@w,v' @ w') = B1(v,v")Ba(w,w’) for all v,v" € V}
and w,w’ € V5. The purpose of this section is to give, in some small cases, the
decomposition of V(2m) @ V(21) with respect to the product form into orthogo-
nally indecomposable (Definition 2.4.3) summands. Although methods for finding
the Jordan block sizes of V(2m) ® V(2[) can be found in the literature (see e.g.
Theorem 3.3.5), it seems that in general the decomposition of this K [u]-module
into orthogonally indecomposable summands is not known. As the main result
of this section (Lemmas 3.6.2 - 3.6.4, Table 3.6) we will give the decompositions
for m € {1,2,3}. This will allow us to decide when tensor product subgroups of
classical groups contain distinguished unipotent elements (Proposition 3.6.6).

To begin, we will give an explicit construction of V(2m) and V(2). Let
€1,--.,m,€_m,...,6_1 be a basis for a vector space W over K, and define an
alternating bilinear form on W by (e;,e;) =1 if i = —j, and 0 otherwise. We will
define the action of u on W as follows:

uep = eq
we; =€+ 61 +---+eforall2<i<m
UE_m =€+ Ep+em_1+-+e€1

ue_; = e_j +e_(41) foralll1<i<m-1

Then the form (—, —) is non-degenerate, u-invariant, and W | K[u] = V(2m). For
V(2l), we use the same construction, but with different notation for convenience.
We denote a basis of V(21) by fi,..., fa, with alternating bilinear form defined
by (fi, f;) = 1ifi4+j = 2141 and 0 otherwise. The action of u on V(21) is defined
as above:

ufi = fi
ufi=fi+fioi+---+fiforall2<i<Ii+1
ufi = fi+ ficg forall [+ 1 < <2l

Denote by X the element v — 1 of K[u]. For determining the decomposition
of a K[u]-module with a u-invariant form into orthogonally indecomposable sum-
mands, we will need some knowledge about the action of the powers of X. For the
situations that we are about to consider, we will give the action of X* explicitly.
First, recall that the action of w on the tensor product Vi ® Vs of K[u]-modules
V; is defined by u - (v1 ® v2) = uv; ® uwy for all v; € V;. Therefore if k = 2% and
uFv; = vy, it follows from the identity X* = uF —1 that X% (v; ®vs) = v1 @ XFv,.
In particular, this holds for all v; € V; if 2¢ > dim V4. It follows then that it will
be enough to compute the action of X* for 1 < k < 2%, which will give formulas
for the action of X* on V; ® V5 which depend on & mod 2.

For example, consider the action of u on V(2) ® V(21) as defined above. First
of all, it is easy to see that for all v € V(2l) we have X - (e; ® v) = e; ® Xv and
X-(e_1®v) = (e_1+e1)® Xv+e; ®@v. Furthermore, now u? acts trivially on V(2)
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50 X2 (e; ®v) = ¢; ® X?v for all v € V(21) and i = 1, —1. Tt follows then that we
get the formulae of Table 3.1 which hold for all v € V(2[). In the same way, one
computes formulae for the action of X* on V(4) ® V(2l) and V(6) @ V(21). We
have given these in Table 3.2 and Table 3.3 for later use.

It will also be useful for us to know the action of X* on V/(21) explicitly. This
can be determined using the next lemma.

Lemma 3.6.1. Consider V(21) with basis f1,..., fo and the action of u on V(21)
defined as above. Then we have the following:

i) Xkf: =0 forall j <k.
J

(i) X*f; € (fi, o\ fj—k) for all j > k.

(i) Let 0 < d <. Thende] =0 forall j <d. Ford < j <Il+1, we have
Xy = S ) fr, where p? = (1570).

w) Let k <[+ en - =0jorall ) <20 —Fk. For2l —k <y <2, we

iv) Let k<l+1. Th lekf] 0 forall j <2l —k. For2l —k < j <2l
have X2k f; = Zkﬂ 2 )\ ft, where )\( - (j+kl:§l—t)'

(v) Let k <141 and let « > 1 be such that 2¢ > k. Then the coefficients )\Ej) mn
(iv) are determined by the value of | modulo 2°.

Proof. The claims (i) and (ii) are immediate from the fact that X fi = 0 and
Xfi€{fiyeon, fjm1) forall 1 < j <2l

For (iii), we begin by considering the action of X on the X-invariant sub-
space (f1,..., fir1). The action of X on this subspace with respect to the basis
fi,--+, fir1 is given by following matrix.

0 1 1
0 1
A=
1
0
Now note that in (iii), we have ugj) = /’Ll(f 1 Y. Thus one observes that it is

enough to show that for all 1 < d < [, the matrix A% has zero entries, except in
the (I +1—d) x (I +1 — d) upper right corner which is upper triangular of the
form

ay az - v Ayl-d
a; ap :
as
ay

where a; = (S+d 2) forall 1 < s <1+ 1—d. We proceed to prove this claim by
induction on d. For d = 1 this is clear. Suppose then that the claim holds for some
1 < d < . By multiplying A% with A, one calculates that A% = A . A has zero
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entries, except for the (I —d) x (I —d) upper right corner which is upper triangular
of the form

/ / !
al a/2 « o e o« .. alfd
!
ay ag
/
as
ay

wherea’f:al—l—---—I—afforall1§f§l—d. Now

B £ -5

s=1 s=0

by a standard combinatorial identity (“hockey-stick identity”)®, so it follows that

ay = (f‘;le)_ Hence the claim holds for d+ 1 as well, so (iii) follows by induction.

For claim (iv), the fact that X2=*f; = 0 for all j < 21 — k follows from (i).
Suppose then that 21—k < j < 2[. First, if j < {41, then 2l—k < [—1 which implies
that k =1+1 and j = [. Therefore 2l —k = [ — 1, and the claim is easily verified by
applying (iii) with d = [—1. Consider then j > [-+1. In this case X/~ (4D f; = ..
so X2k f = Xx3—hmitl . xi—(U+) = X?’l’k’jﬂflﬂ Now it is immediate from
(iii) that X3=k=+1f | = Zkﬂ 2 /\ ft with )\( D= =( -t ), proving (iv).

j+k—21—t
Finally for claim (v), note that for )\( ) (]+kl 5,_,) we have )\gj) = )\753_—11)

follows from (iv) that the matrix of X2 =% with respect to the basis fi, ..., fy has
zero entries, except in the k X k upper right corner which has the upper triangular

, 80 it

form
b bpi -+ - by
b br—1 ;
br—1
by,

where b = (]i:i) for all 1 < ¢t < k. To prove (v), it suffices to show for all
1 <t <k that by mod 2 depends only on [ mod 2. In other words, we should
show that if I’ is such that I’ = [ mod 2%, then (k/*f) = (]i:’;) mod 2 for all
1<k<Il+1and 1<t <k. This congruence is a straightforward consequence of

Lucas’ theorem?. O

In Table 3.4 and Table 3.5 we have given the action of X2~* on V(2I) for
1<k<I+1with 1 <k <6. These tables were found by a computer calculation,
using Lemma 3.6.1 (iv) and (v).

®The identity is a common exercise and follows easily from the identity (}) = (”;1) + (Z:}),
see e.g. [Knu97, 1.2.6, (10)].

“Lucas’ theorem [Luc78, Section XXI| states that for two non-negative integers a and b
with expansions a = >, a;p' and b = > iso b;p’ in prime base p, we have the congruence
(4) = ILiso (Z:) mod p. Here we set (') = 0 if m < n. For a short proof, see for example
[Find7].
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e; QU Xk~(ei®"u)

e1 ®v e1 ® Xk

e.1 Qv | em1 ® Xk, if k=0 mod 2
(ec1+e)@Xv+e @ X1y, ifk=1 mod?2

Table 3.1: Action of X* on V(2) ® V(20).

e Qv Xk (e; @)

e1 ®u e1 ® X*v

e @ v 62®ka, if k=0 mod 2
(62+61)®Xk'l)+61 ® Xk o, if k=1 mod 2

e_o®U 62®Xk1) if k=0 mod 4
(e_o+er+e)® X v+ (exa+e)® X1y, if k=1 mod 4
(e— 2+61)®XU+61®Xk2 if k=2 mod 4
(e—a+e)@XFv+(e2+e)® X lote @ X2, if k=3 mod 4

e.1Qu | em1 ® XFo, if k=0 mod 4
(e1+e )@ X v+e o0 XF 1y, if k=1 mod 4
(e_1+ex+er)®X 0+ (ea+e1) @ X2, if k=2 mod 4
(ec1+eote)@X v+ (eate) X"  vtea®@ X" 20+ ifk=3 mod4
e1 ® X

Table 3.2: Action of X% on V(4) ® V(21).

V(2m) ® V(21) V(2m) @ V(21) | Ku]

V(2)e V@D, 1>1 | W(2l), if /=0 mod 2
V(21)?, if =1 mod 2
V(4)@V(2),1>2 | W(2)? if l=0 mod 4
W (2l —2) + W (2l +2), if l=1 mod 4
W(2l) + V(21)?, if =2 mod 4
W2l —2) + W (2l +2), if /=3 mod 4
V(6)® V(20),1>3 | W(20)3, if /=0 mod 4
W (20 —2)? + V(20 + 4)%, if =1 mod 4
W2l —4)+W(2l) + W (2l +4), ifl=2 mod 4
V(20 —4)? + W (2l + 2)?, if | =3 mod 4

Table 3.6: Decomposition of V' (2m) @ V(21) for 1 < m < 3.
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e; Qv Xk-(ei®v)

e1®v e1 ® X*y

es QU 62®Xk1}, if k=0 mod 2
(62+61)®Xk1}+61 ® XF oy, if k=1 mod 2

e3 @v €3®Xk1}, if k=0 mod 4
(es+e2+e1) ® X v+ (e2+e1) ® X* Mo, if k=1 mod 4
(es+e1) @ X v+ e @ XF 20, if k=2 mod 4
(es+e) X v+ (e2+e1) @ X o4 e @ XF 20, if k=3 mod 4

e_s®v | e_3® X", if k=0 mod 4
(673+e3+62+€1)®Xk”U+(63+€2+61)®Xk711), ifk=1 mod4
(673+62)®Xk1}+82®Xk72'U, if k=2 mod 4
(6734-63)®X’%}+(63+62)®Xk711}+(62+61)®Xk72’u+ if k=3 mod 4
e1 @ X3y

e_2®v | e_y ® XFv, if k=0 mod 8
(e_2+e_3)®ka+e_3®Xk_lv, if k=1 mod 8
(eates+eate)@X v+ (ez+es+er)®X 20, if k=2 mod 8
(eates+este) X v+ (e—s+e)@X"  w+H(es+e)® ifk=3 mods8
Xk 2y + s ® Xk73v,
(e,2+61)®ka+el ®X’“74v, if k=4 mod 8
(672+673+€1)®Xk1}+673®Xk711}+61 ®X’“74v, if k=5 mod 8
(672+63+62)®Xk1}+(63+€2+61)®Xk7211+€1 @ X* 4y, ifk=6 mod8
(672+e,3+eg)®ka+(e,3+ez)®Xk71v+(63+e1)® if k=7 mod 8
X2t XF vt ® Xk_4v,

e_1®v 6_1®Xk1), if k=0 mod &
(e,1+e,2)®ka+e,2®Xk71v, ifk=1 mod 8
(e,1+e,3)®ka+e,3®Xk72v, if k=2 mod 8
(e-1+teatestesterte)®X v+(eatesterte)® if k=3 mod8
X" w4 (e—s+esterter)® X" Pv4(es+exte1) X Py,
(e—1 +e2) @ XFv+ex @ XF 0, if k=4 mod 8
(ec14+eaterte)X v+(eate)@X Wt (eate)® ifk=5 mods8
XY te® kasv,
(671+673+62)®ka+673®Xk72'l}+62®Xk74v, if k=6 mod &
(671+672+673+€3)®ka+(672+63+62)®Xk71’l)+(673+ if k=7 mod &
esterte) X" Pvt(esterte)@X v+ (e2t+e1)®
XY te® Xk_Sl),

Table 3.3: Action of X* on V(6) ® V(21).
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x2-1 (1)
(1)
- 11 10
X ( 1 1
(1>1) =0 mod 2 =1 mod 2
1 1 1 1 0 0
X33 10 11
1 1
(1>2) =0 mod4 [=1 mod4

[=2 mod4 [=3 mod4

1 1 1 1 1 0 0 O

20—4 1 0 1 1 1 1
X 1 1 1 0
1 1

(1>3) [ =0 mod 4 =1 mod4
1 1 0 O 1 0 1 0

1 0 0 1 1 0

1 1 1 0

1 1

[=2 mod4 [=3 mod4

Table 3.4: Action of X2=% on V/(2I) for 1 < k < 4. Here the matrices represent
the upper right corner of the matrix X2 =% with respect to the basis fi,..., fo:
the remaining entries in the matrix of X2~* are zero.

Lemma 3.6.2. Let | > 1. Then the decomposition of V(2) @ V(2l) with respect to
the product form is as given in Table 3.6.

Proof. First of all, note that by Lemma 3.3.9 we have Vo ® Vo = Vo & Vo, so
the Jordan block sizes in V(2) ® V(2[) are as claimed. We next determine the
decomposition of V' (2)® V' (2l) into orthogonally indecomposable summands. Note
for the orthogonal decomposition, our claim is that £(2) = 0if I =0 mod 2, and
g(2l) = 1if I =1 mod 2, see Definition 2.4.6. We proceed to prove this using
Lemma 2.4.8.

By Lemma 2.4.8, we have £(21) = 1 if and only if (X% !(e; ® f}),e; ® f;) #
0 for some basis vector e; ® f; of V(2) ® V(2l). We thus proceed to compute
(XQZ_I(ei & fj), e & fJ) for all e; and f;.

Using Table 3.1, we see that, for all v € V(20),

(X%1 . (e; ®0),e1 ®@v) =0, and
(X2 (e ®@v),e 1 ®@v) = (X2 o, v) + (X220, 0).
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1 1 1 1 1 0 0 0 O
1 0 1 0 1 1 1 1
X215 1 1 0 1 0 1
1 0 1 1

1 1

(1>4) =0 mod 8 =1 mod 8
1 1 0 0 O 0 1 0 O
1 0 0 O 1 1 0 0

1 1 1 1 0 0

1 0 1 1

1 1

=2 mod 8 =3 mod 8

1 1 1 1 0 0 0 0 1
1 0 1 0 1 1 1 1

1 1 0 1 0 1

1 0 1 1

1 1

=4 mod 8 =5 mod 8
1 1 0 0 1 0 1 0 1
1 0 0 O 1 1 0 0

1 1 1 1 0 0

1 0 1 1

1 1

=6 mod 8 =7 mod 38
1 1 1 1 1 1 1 0 0 0 0 O
1 0 1 0 1 1 1 1 1 1
20—6 1 1 0 O 1 0 1 0
X 1 0 O 1 1 0
1 1 1 0
1 1

(I1>5) =0 mod 8 [=1 mod 8
1 1 0 0 0 O 1 1 0 0 O
1 0 0 0 O 1 1 0 0 O
1 1 1 1 1 0 0 O
1 0 1 1 1 1
1 1 1 0
1 1

=2 mod38 =3 mod38
1 1 1 1 0 O 1 0 0 0 1 O
1 01 0 O 1 1 1 1 0
1 1 0 O 1 0 1 0
1 0 O 1 1 0
1 1 1 0
1 1

=4 mod 8 =5 mod 8
1 1 0 0 1 1 1 1 0 1 0
1 0 0 0 1 1 1 0 0 1
1 1 1 1 1 0 0 O
1 0 1 1 1 1
1 1 1 0
1 1

=6 mod 8 =7 mod 8

Chapter 3.

Table 3.5: Action of X2=% on V/(21) for 5 < k < 6. Here the matrices represent
the upper right corner of the matrix X2~F with respect to the basis fi,..., fo:
the remaining entries in the matrix of X% are zero.
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Furthermore, with Table 3.4, one finds that

(X215, f5) + (X2, fj) = 0 for all j < 21— 1.
() 0, ifl=0 mod 2.

X2l—1 , + X2l—2 , =
( Jot, far) + ( Fats fau) 1, ifl=1 mod 2.

From (*) we conclude that €(2]) = 0if Il = 0 mod 2, and €(2]) = 1if | =1
mod 2, finishing the proof of the lemma. O

Lemma 3.6.3. Let | > 2. Then the decomposition of V(4) @V (2l) with respect to
the product form is as given in Table 3.6.

Proof. As a consequence of Theorem 3.3.5, Theorem 3.3.8 and Lemma 3.3.9, we
have
4 - Vy ifl=0 mod 2

Vi® Vy = .
2-Vo_o®2- Voo ifl=1 mod 2

so the Jordan block sizes in V(4) ® V(2]) are as claimed.

We prove next that the decomposition of V(4) ® V(2l) into orthogonally in-
decomposable summands is as claimed.

We consider first / =0 mod 2. Note that here the claim is that €(21) = 0if [ =
0 mod 4 and e(2]) = 1ifl =2 mod 4, see Definition 2.4.6. Now V; @ Vo = 4-Vy,
so by Lemma 2.4.8, it will be enough to show that (X2~ (e; ® f;),e; @ f;) = 0
for all 4 and j if and only if / =0 mod 4. Since 2l — 1 =3 mod 4, with Table 3.2
we see that

(X2 (e1®0),e1 @0) =

(X2 (ea®0),ea®0) =
(X1 (e y®v),e 2 @) = (XQZ Lo, v) + (X220, 0)
(X2 (e_1 @), ey @) = (X2, 0) 4+ (X274, 0)

for all v € V(21). Now if | = 2, one computes with Table 3.4 that X?=2fy = fi+ f
and X214 fo; = for, 50 (X271 (621 ® fo),e_1 ® for) = 1 and thus £(20) = 1, as
claimed.

Suppose then that [ > 2. Since [ =0 mod 2, it follows from (*) in the proof of
Lemma 3.6.2 that we have (X2~ 1. (e_o®v), e_a®@v) = (X2 1v,v)+ (X2 20,0v) =
0 for all v € V/(21). Furthermore, with Table 3.4 one computes that (X?*~1.(e_1®
fi)ye—1®@ f;) = (X272f5, ) + (X245, f;) = 0 for all j < 21 — 1. Finally, with
Table 3.4 we see that

(X2l_1 (ec1® fa),e-1 @ fo) = (X21_2f21v far) + (X2l_4f21’f2l)
_Jo, ifl=0 mod 4.
N 1, ifl=2 mod4.

Hence ¢(20) =0if I =0 mod 4 and (2{) = 1 if I =2 mod 4. This completes the
proof of the claim in the case where [ =0 mod 2.

Next we consider [ = 1 mod 2. Here the claim is that (2] + 2) = 0 and
e(2l — 2) = 0 (Definition 2.4.6). To show that (2] + 2) = 0, by Lemma 2.4.8 it
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will be enough to show that (X2 . (e; ® f;),e; ® f;) = 0 for all i and j. Now
2l +1 =3 mod 4, so with Table 3.2 one gets

(X2 (61 ®0),e1 Q) =
(X2 (ea @), e2 @) =
(X2H ey ®@v),e_a @v) = (XH 0, 0) + (X v,0) =0
(X2 (e 1 ®@v),e 1 ®@v) = (X, 0) + (X2 20,0) = (X220, v)

0
0

for all v € V(21). Since [ = 1 mod 2, we have (X%~2f; f;) = 0 for all j (Table
3.4), so it follows that (21 + 2) = 0.

To show that (2l — 2) = 0, by Lemma 2.4.8 it will be enough to demonstrate
that (X273 .+,5) = 0 for all v in a basis for the kernel of X%~2 acting on
V(4) ® V(21). Now 2l — 2 =0 mod 4, so by Table 3.2 we have X?~2. (v ® w) =
v®@ X% 2w for all v € V(4), w € V(21). Hence a basis for the kernel of X2—2
acting on V(4) ® V(21) is given by e; ® fj, where j < 2l — 2. Now 2/ —3 = 3
mod 4, so with Table 3.2 we find that

(X273 (1 ®@0),e1 @) =0

(X273 (e2®0),e2®@0) =0
(X273 (e_a®),e_a @v) = (XH 30, 0) + (X240, 0)
(X273 (e_1@v),e_1 ®v) = (X4, 0) + (X259, 0)

for all v € V/(21).

With Table 3.4, it is straightforward to verify that for [l =1 mod 2, we have
(XH3 (e o® f))ea® f) = (X273 f5, f5) + (X245, f;) = 0 for all j < 20 —2.
Similarly one verifies for all =1 mod 2 with [ > 3 that (X*73.(e_1® f;),e_1®
fi) = (XH4f506) + (X25F,, f) = 0 for all j < 21 — 2. Finally, for [ = 3
a calculation shows that (X274f;, f;) + (X275f;, f;) = 0 for all j < 2 — 2,
completing the proof of the claim. ]

Lemma 3.6.4. Let | > 3. Then the decomposition of V(6) @V (2l) with respect to
the product form is as given in Table 5.6.

Proof. As a consequence of Theorem 3.3.8 and Lemma 3.3.11, we have

6- Vo ifl=0 mod4

4-Vo_o®2-V: ifl=1 mod 4
‘/6®‘/21: 2[—-2 2[+4 .

2 Vo g®2- Vo2 -Voyyy ifl=2 mod4

2-Vog®4-Voyyy ifl=3 mod4

so the Jordan block sizes in V(6) ® V(2[) are as claimed.
We prove next that the decomposition of V(6) ® V(2!) into orthogonally in-

decomposable summands is as claimed. We consider the different possibilities for
I mod 4.

[ =0 mod 4:
Here the claim is that £(2]) = 0 (Definition 2.4.6). By Lemma 2.4.8, it will be
enough to show that (X2 ~1(e; ® f;),e; ® fj) = 0 for all ¢; and f;. Since 21 —1 =7



3.6. Decomposing tensor products of form modules 83

mod 8, with Table 3.3 one gets

(X271 ey ®v),e1 ®@0) =
(X2 (ea®0),e2 @) =
X271 (e300),e300) =
(X713 @v),e3@0) = (XQZ to,0) + (X720, 0)
(X2 (e @), e_o @) = (X220, 0) + (X240, v)
(X2 (e_1 @), e_1 @) = (X230, 0) + (X240, 0)
+ (X250, ) + (X5, 0)

for all v € V(21). Since [ =0 mod 2, it follows from (*) in the proof of Lemma
3.6.2 that we have (XZ~1f;, f;) + (X?72f;, f;) = 0 for all j. Furthermore, one
computes with Table 3.4 and Table 3.5 that for all j we have (XZ72f; f;) +
(XZ=4f5, f3) = 0and (X223 f;, £) + (X4, fi)+(XP0 f, f) (X0 f5, £5) =
0. Hence £(21) = 0, as claimed.

=1 mod 4:
In this case, the claim is that (20 +4) = 1 and €(2/ —2) = 0 (Definition 2.4.6). To
show that (21 4+ 4) = 1, by Lemma 2.4.8 it will suffice to show that (X?3(e; ®
fi).ei ® fj) # 0 for some e; ® f;. Now 2l +3 = 5 mod 8, so with Table 3.3
one finds that (X?*3(e_; @ v),e_1 ®v) = (X% v, v) + (X?~20,v). Now for
v = fy we have X?~1y = f; and X?~2y = f, (Table 3.4), so it follows that
(X2H3(e_1 @ far),e_1 @ for) = 1. Therefore (21 +4) = 1.

To prove that £(21—2) = 0, by Lemma 2.4.8 we should show that (X2 =1y ~) =
0 for all v € V(6)®V(2l) in a basis for the kernel of X?=2 acting on V(6) @V (21).
Now 20—2 =0 mod 8, so by Table 3.3 we have X2 2. (v@w) = v® X2~y for all
v e V(6), w € V(2l). Hence a basis for the kernel of X2 acting on V(6) ® V(2[)
is given by e; ® f;, where j < 2[ — 2. Since 2/ — 3 =7 mod 8, with Table 3.3 one
finds:

(X273 (1 ®0),e1 @ v
(X2l 3 (e2®@0),ea®@v
(X273 (e3®0),e3 @0

)=

)=

) =0
(X%73 (e_300),e_3@v) =

) =

)=

(X230, 0) + (X2, 0)
(X2l 4y, v) + (X2l_6v, v)
(XQZ 51} U) (XQl_G’U, U)

+ (XZI v, v) + (XQZ*SU, v)

(XH73  (e_y®),e_o®@ v
(X273 (e_1 ®@v),e1 @0

Using Table 3.4 and Table 3.5, one verifies for all j < 2] — 2 that we have
(XP73f5, f3) + (X274, f5) = 0 and (X745, f5) + (X270 f5, f;) = 0. We also
claim that for all j < 21 —2 we have (X272 f;, f;) +(X2Cf;, f) + (X277 f, f) +
(X2=8f, f;) = 0. 1f j < I, then this is clear, since we have (X*f;, f;) for any
kE > 0 by Lemma 3.6.1 (i) and (ii). If I < j < 2]l — 2, then we can write
fi = X2%fjio and verify using Table 3.4 and Table 3.5 that (X2=5f;, f;) +
(X205, )+ (X275, )+ (X285, ) = (X272 fia, f5) + (X2 i, ) +
(XH3 firo, fi) + (X276 fi 19, f;) = 0. 1t follows therefore that (21 —2) = 0.

[ =2 mod 4:
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In this case, the claim is that £(21+4) = 0, £(21) = 0, and (2] —4) = 0 (Definition
2.4.6). To show that (20 +4) = 0, by Lemma 2.4.8 it will be enough to show that
(X2H3(e; @ f;),ei @ fj) = 0 for all ¢; and f;. Now 20 + 3 = 7 mod 8, so with
Table 3.3 we get

(X238 (e ®v),e1 ®@v) =
(X2 (ea @), ea @) =
(XHT3 . (e30v),e3 @ 0) =
) =
) =
) =

(X238 (e_3®@v),e_300 (XQH?’U, v) 4+ (X2, 0) =0

(X2H3 (e ®v),e 0 ®v) = (X 20, 0) + (X?v,0) =0

(X2H3 (e 1 ®@v),e 1 @v) = (X0 0) + (X0, 0) + (XH 1o, 0) + (X220, 0)
= (X271, 0) + (X220, v)

for all v € V/(2l). Since [ = 0 mod 2, it follows from (*) in the proof of Lemma
3.6.2 that we have (X2~1f;, f;) + (X#72f;, f;) = 0 for all j. Hence £(2] — 4) = 0.

For showing that €(2l) = 0, by Lemma 2.4.8 it will suffice to show that
(X2=1y,v) = 0 for all v € V(6) ® V(20) in a basis of the kernel of X2 acting
on V(6) ® V(2l). Now 2l =4 mod 8, so with Table 3.3 one verifies that

X% . (e;@v)=0(i=1,2,3,-3)
X2 (e_o@v) =€ @ X2y
X% ey ®@v) =ea® X2y

for all v € V(21). Hence a basis for the kernel of X2 acting on V(6) ® V(21) is
given by the e; ® f; such that 1 < j <2/ —-4ifi= —2o0ri= —1.Since 2l -1 =3
mod 8, with Table 3.3 we get

(XZ1 (e ®0),e1 ®0) =
(X271 (ea®0),ea®0) =
(X271 (e3@0),e3@0) =
(X2 (e_3@v),e_3 @) = (X2l Lo, v) + (X220, v)
(X2 (e @), e_g @) = (X2 2p,0) + (X240, v)
(X2 (e ®@v),e_1 @v) = (XH o, 0) + (X220, 0)
+ (X230, 0) + (X2, v)

for all v € V(2l). Now [ =0 mod 2, so it follows from (*) in the proof of Lemma
3.6.2 that we have (Xgl_lfj,fj) + (XQZ_ij,fj) = 0 for all f;. Furthermore,
using Table 3.4 and Table 3.5, it is straightforward to verify that (X2=2f;, f;) +
(X245, f5) = 0and (XH73 £, f3)+ (X2 fy, f)+ (X225, i) +(X20 5, f) =
0 for all j <20 — 4. Tt follows then that £(21) =0

What remains in this case is to show that (2l —4) = 0. By Lemma 2.4.8,
it will suffice to show that (X?~5v,v) = 0 for all v in a basis of the kernel of
X214 acting on V(6) @ V(21). Now 20 —4 = 0 mod 8, so by Table 3.3 we have
X2t (v w) =v® X2 4w for all v € V(6), w € V(21). Hence a basis for the
kernel of X%~% acting on V(6) ® V/(21) is given by e; ® f;, where j < 2] — 4. Now
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2l —5 =7 mod 8, so with Table 3.3 we get

(X275 (e ®0),e1 @) =0
(X21_5~(€2®U),€2®U =0
(X275 (e3®0),e3 ®v) =0

= (X275, 0) + (X259, v)
— (X250, 0) + (X250, )
— (X2 Ty, 0) + (X250, 0)
+ (X9, v) 4+ (X210 )

(X275 . (e_3®@w),e 300
(XE (e ®@v),e_o®@v
(X2 (e_1 ®@v),e_1 @ v

—_ — — — — —

With Table 3.5, it is easy to verify that (X2 =5f;, f;)+ (X2 f;, f;) = 0 for all
j < 21—4. We claim that (X276 f;, ;) +(X2=8f, f;) =0forall j <20—4.1f j <1,
this is clear, since we have (X*f;, f;) for any k > 0 by Lemma 3.6.1 (i) and (ii).
If | < j <2l —4, then we can write f; = X4fj+4 and use Table 3.4 to verify that
(X205, f3) + (X285, f3) = (X*172 fia, f5) + (X7 fipa, f5) = 0. Similarly,
one checks that (X2~ ;. f;) + (X251, f;) + (X270 f;,0) + (X204, f) = 0
for all j < 2] — 4. Therefore (2] — 4) = 0, as claimed.

=3 mod 4:

In this case, the claim is that €(2/+2) = 0 and (2] —4) = 1 (Definition 2.4.6). To
show that (21 4 2) = 0, by Lemma 2.4.8 it will suffice to show that (X?*!(e; ®
fi).ei® fj)) =0 for all e; and f;. Now 20 +1 =7 mod 8, so with Table 3.3 one
gets

(X2 (e @)1 @v) =0
(X2 (ea ®v),e2 ®@0) =0
X2l+1'(63®’0),63®v =0

= (X2, 0) + (X0, 0) =0
= (Xle, v) + (X2l*2v,v) = (XQZ*QU, v)
— (XQZ_IU, U) + (X2l_2’U, 1))

+ (X 23y, v) + (XQZ_4U, v)

(X2 (e_3®@v),e 300
(X2 ey ®@v),e_o @0
(X2 (e_1 ®@v),e_1 @ v

—_ — — — — —

for all v € V(21). Now using Table 3.4, it is straightforward to verify for all j that

(X*72f5, f3) = Oand (X271 f, f)+ (X725, fi)+(XP 2 f, f) (X4, ) =
0. Thus (20 +2) = 0.

Finally, we show that (2 —4) = 1 by finding a v € V(6) ® V(2[) such that v
is in the kernel of X?~* acting on V(6) ® V(2l), and such that (X?5v,v) =1
(Lemma 2.4.8). To this end, define

Y =e2® fu +e-3@ (fa—2+ fa-a) +e-1® foa.
Now 2] —4 =2 mod 8, so with Table 3.3 and Table 3.4 one computes
X7 (62 ® for) = €2 ® fy

X2 (e 3@ (faatfua)=e3Dfatea®fy
X (e 1 @ fa ) =e 3 fo
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and thus X?=4.~ = 0. If | = 3, a calculation shows that (X% 75.y,v) = (X -7,7) =
1. Suppose then that [ > 3. With Table 3.3 and Table 3.5, one computes that

X205, (62 ® fQZ) = (62 + 61) & (5f1 + fa+ f5)
+e1® (6f2 + fa+ fo)
X770 (63 @ (fa—z + fa—a)) = (e—3 + €3+ €2+ €1) ® (fo + f3)
+(ez3+ex+e1) @ (fo+ fa)
X275 (61 @ fora) = (e—1+e—2) @ fi+ e_2® f

where § =0if [ =3 mod 8 and § = 1if [ =7 mod 8. Now it is straightforward
to verify that (X272 .~ ) = 1. O

We can now apply the decompositions given in 3.6 to determine when maximal
tensor product subgroups contain distinguished unipotent elements.

Lemma 3.6.5. Let 1 < m < n be even. Suppose that in the K[u]-module V,, @V,
all block sizes have multiplicity < 2. Then m < 6.

Proof. Write m = 2k and n = 2k’. By Theorem 3.3.5 and Theorem 3.3.8, we have
Vm®Vn:2V2k1 69@2‘/2kt7

where V, ®Vk’ =V, @---®Vj,. Thus if in V,,, ® V, all block sizes have multiplicity
< 2, it follows that in Vj ® Vs all block sizes have multiplicity < 1. By Theorem
3.3.14, this implies that k£ < 3, hence m < 6, as claimed. O

Proposition 3.6.6. Let V| and Va be vector spaces equipped with non-degenerate
alternating bilinear forms [1 and Ba, respectively. Assume that 1 < dimV; <
dim Va. Let u; € Sp(V;) be a unipotent element. Then with respect to the product
form 1 ® Bo on Vi ® Vo, the unipotent element u = uy @ uz € Sp(V1) ® Sp(V2) is
a distinguished unipotent element of Sp(V1 ® Va) if and only if the following hold:

o dimVi) =2, and Vi | K[ui] =V (2) (in other words, uy € Sp(V1) is a reqular
unipotent element).

e We have an orthogonal decomposition Va | Klug) = V(2k1) + -+ + V(2ky),
where t > 1, 1 < ky <--- <k, and k; is odd for all 1 <1 < t.

Furthermore, when these two conditions hold, we have V1@ Vs | K[u] = V (2k1)%+
o V(2k)2.

Proof. Suppose that u = u; ® ug is a distinguished unipotent element of Sp(V; ®
V5). First we claim that w; is a distinguished unipotent element in Sp(V;) for
i =1,2. Indeed, now u; @ ug = p(u1,us), where ¢ is the homomorphism Sp(V7) x
Sp(Va) — Sp(Vh @ V) of algebraic groups defined by (g1, g2) — g1 ® g2. It follows
then as in Lemma 2.1.2 (ii) that (u1,u2) cannot be centralized by a nontrivial
torus in Sp(V7) x Sp(V2), hence that w; is a distinguished unipotent element in
Sp(V;) for i =1,2.

We first consider the case where V; are orthogonally indecomposable as K [u;]-
modules. Since u; is distinguished in Sp(V;), by Proposition 2.4.4 we have Vj |
Klu1] = V(2m) and V3 | K[ug] = V(2n), where 1 < m < n.
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Since u1 ®@us is a distinguished unipotent element of Sp(V;®V53), it follows from
Proposition 2.4.4 that all Jordan block sizes in the K|[u]-module V5, ® V5, have
multiplicity < 2. By Lemma 3.6.5, it follows that m < 3. For m = 1, m = 2, and
m = 3, one checks from Table 3.6 that u; ® us is a distinguished unipotent element
(as described in Proposition 2.4.4) if and only if m = 1 and n is odd. In this case,
we have Vi | Ku] = V(2) and Vo | K[u] = V(2n), and V; ® Vo = V(2n)? by
Table 3.6. This proves the claim in the case where V; and Vs are both orthogonally
indecomposable.

Consider then the case where we have orthogonal decompositions V1 = &;_; W;
and Vo = ®§Z1Zj where W; and Z; are orthogonally indecomposable K[u]-modules
for all 4 and j. This gives an orthogonal decomposition V; ® Vo = @i,j(Wi ® Zj) of
K [u]-modules. Since u; ®us is a distinguished unipotent element of Sp(V; ®V3), it
follows that for all ¢ and j, the K[u]-module W;® Z; corresponds to a distinguished
unipotent element of Sp(W; ® Z;). From the indecomposable case we have treated
before, it follows that for all ¢, 7 one of the following holds:

o W; | Klul| =V(2), and Z; | K[u] = V(2k) for some k > 1 odd,;

o W; | K[u| = V(2k) for some k > 1 odd, and Z; | K[u] =V (2).

Note that in both cases we have W; ® Z; | K[u] = V(2k)? by the indecompo-
sable case. We show now that the second possibility cannot occur. Suppose that
for some i, we have W; | Klu] = V(2k) for £ > 1 odd. Then it follows that we
have Z; | Klu] = V(2) for all j. Thus t = 1, as otherwise V; ® V5 | K[u] would
have > 4 Jordan blocks of size 2k. But then dimV; > dimW; > dim Vs, = 2,
contradicting our assumption dimV; < dim Va. Therefore W; | K[u] = V(2) for
all ¢, and for all j we have Z; | K[u] = V(2k;) where k; > 1 is odd. Now we have
s =1, as otherwise (V; ® V3) | K[u] would have > 4 Jordan blocks of size 2k; for
all j.

Thus V1 | Ku] = V(2), and V] @ Vo = @§:1V(2kj)2- Again because each
Jordan block size has multiplicity < 2 in V; ® Va, each k; must be distinct. By
ordering the summands suitably, we have 1 < k; < --- < k¢, so V7 and V5 are as
claimed. This completes the proof of the proposition. ]

3.7 Proof of Theorem 1.1.4

In this section, we put results from previous sections together and prove Theorem
1.1.4. For convenience, we recall the statement of Theorem 1.1.4:

Theorem 1.1.4. Let G = SL(V) (dimV > 2), G = Sp(V) (dimV > 2), or
G = SO(V) (dimV > 5), where V' is a finite-dimensional vector space over K.
Fizx a distinguished unipotent element uw € G. Let X be one of the maximal closed
connected subgroup of G given in (a) - (f) of Theorem 1.1.8. Then the cases where
X contains a G-congugate of u are precisely the following:

(a) G=SL(V), X =Sp(V) (dimV even) or X = SO(V) (p # 2 and dimV odd),

and u is a regular unipotent element.

(b) G=Sp(V), p=2,dimV > 2, X =SO(V), and the number of Jordan blocks
of u 1s even.
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(¢) G=SO(V),p=2,dimV is even, X is the stabilizer of a nonsingular 1-space,
and u has a Jordan block of size 2.

(d) X is a mazimal parabolic subgroup.

() G = Sp(V) or G = SO(V), V. =W @ W where W is a non-degenerate
subspace of V, X = stabg(W)°, and V | Ku] = @'_, Vy, © @jzl Vd;_ for
integers di,d; > 1 such that the following conditions hold:

o dimW = ZEZI d;
e Ifp=2and G=SO(V), then t =0 mod 2.

(f) V =V1 ® Vo with dimV} < dim V, and one of the following holds:

(i) G=S0O(V),p=2,dimV; =2, X = Sp(V1)®@Sp(V2), and the orthogonal
decomposition V | K[u] (Proposition 2.4.4) is equal to V(2d1)? + -+ +
V(Qalt)2 for some 1 < dy < --- <d; such that d; is odd for all 1.

(ii) G =8Sp(V) or G =SO(V), p # 2, X is as in Theorem 1.1.3 (ii), (iii) or
(1v); and for m = dim Vy and n = dim V, one of the following conditions
hold:

e The pair (m,n) is contained in the set ./ of Definition 3.3.12, and
VI K =B, Vintn—2it1- (In this case V | K[u] =V, @ V,, ).

o There exist integers 1 < ny < nog < --- < ny such that Zle n; =n,
n; =ny mod 2 for all1 < i,i' <t,nj—n;_1 >2m forall2 <i<t,
the pair (m,n;) is contained in the set ¥ of Definition 3.3.12 for
all 1 <i<t, and

min(m,ni)

V] Ku = GB Vii+m—2j+1 @ @@ Vaitm—2j+1-

1=2 j=1

(In this case V | K[u] =2V, @ (Vi ® Vi @ -+ @ V) ).

Proof. We begin with cases (a) - (d), and here we will see that claim follows
from results which are more or less well known. For case (a), we know that the
only distinguished unipotent elements of SL(V') are those with only one Jordan
block (Lemma 2.2.2), so the claim follows from Proposition 2.3.3 (ii)-(iii) and
Proposition 2.4.4 (v). Case (b) is a consequence of Proposition 2.4.4 (iii), and
case (c) follows from [LS12, 6.8]. For case (d), recall that every element of G is
contained in some Borel subgroup. Hence any parabolic subgroup of G intersects
every conjugacy class of GG. In particular, a maximal parabolic subgroup of G
intersects every unipotent conjugacy class of G.

For case (e), suppose that G = Sp(V) or G = SO(V). If V.= W @ W+ and
u € stabg(W)°, then it is very obvious that V | Klu] = @'_, Vy, @ D, Vd/
where W | K[u] = @;_, Vg, and Wt | K[u] = @_, Vi : thus dim W = Stod
in this case. If p = 2 and G = SO(V), then stabg(W) = SO(W) x SO(WL)
Since the restriction of u to W is contained in SO(W), it follows from Proposition
2.4.4 (iii) that t =0 mod 2.

Conversely for (), let V | K[u] = @'_, Va, @ Dy Vd/j, and assume that
t =0 mod2if p=2and G=SO(V). By |[LS12, Proposition 3.5| for p # 2 and
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Proposition 2.4.4 for p = 2, it is possible to write the decomposition of V' | KJu]
as an orthogonal direct sum

VIKu=Vi®---aeV,eVe eV,

where V; =2V, and Vj’ = Vd; foralll <i¢<tand1l < j <s. Thenfor Z = @2:1 V;
we have Z+ = @°_, V/, so u € stabg(Z) for V = Z & Z+ with dim Z = Y;_, d;.
In fact, we have u € stabg(Z)°, when p # 2 or G = Sp(V) this is true for
any unipotent element of stabg(Z); when p = 2 and G = SO(V), this follows
from the assumption ¢t = 0 mod 2 and Proposition 2.4.4 (iii). Finally, any other
orthogonal decomposition V = W @ W with dim W = dim Z is conjugate to the
decomposition V = Z @ Z*; i.e. there exists some g € G such that g(Z) = W.
Then gug~! € gstabg(Z)°g~! = stabg(W)°, as desired.

What remains is to deal with the stabilizers of tensor decompositions in The-
orem 1.1.3 (f). In this case, sufficency follows from Proposition 3.6.6 and Lemma
3.3.17. We show that the conditions listed in our claim are necessary. For this,
suppose that V = V3 ® V5, where 1 < dim 17 < dim V5. Let X be one of the
subgroups in Theorem 1.1.3 (f) and suppose that u € X. Now X = X; ® Xo,
where for all i = 1,2 we have X; = SL(V;), X; = Sp(V;), or X; = SO(V;). Since u
is a distinguished unipotent element, it follows as in the beginning of the proof of
Proposition 3.6.6 that u = u; ® ue, where u; is a distinguished unipotent element
of Xz

We now consider different possibilities for the subgroups X in Theorem 1.1.3
(f). First suppose that G = SL(V), so now X; = SL(V;) for i = 1,2. Since u; is
distinguished in X;, we have that u; acts on V; with a single Jordan block (Lemma
2.2.2). Similarly u acts on V with a single Jordan block. This is a contradiction,
since it is well known that the tensor product of any two Jordan blocks of size > 1
has > 2 Jordan blocks (see e.g. Theorem 3.3.5 or [SS97, Lemma 1.5]).

Suppose then that G = Sp(V) or G = SO(V). If p = 2, then the only case in
Theorem 1.1.3 (f) that applies is the one where G = SO(V) and X = Sp(V1) ®
Sp(V3). In this case the claim follows from Proposition 3.6.6. Consider then p # 2,
so for all ¢ = 1,2 we have X; = Sp(V;) or X; = SO(V;). Since u; is distinguished
in X;, it follows from Proposition 2.3.2 that Vi | Ku] = @, Vi, and V5 |
Klug] = @§.:1an, where 1 < m; < --- < mpand 1 < ny < --- < ng are
integers such that m; = my mod 2 and n; = nj mod 2 for all 1 < 4,7 < s
and 1 < 7,5 < t. Since u is distinguished in G, the tensor product Vi ® V5 has
no repeated block sizes. Now the claim is immediate from Lemma 3.3.17. This
completes the proof of the theorem. O






Chapter 4

Some representation theory

The purpose of this chapter is to list some results on the representation theory of
simple algebraic groups for later reference. Most important will be the results on
representations of SLa(K') (Section 4.2 and Section 4.6), which will be key in the
proof of Theorem 1.1.10 for unipotent elements of order p.

4.1 Weyl modules and tilting modules

Recall the notation Lg(\) for the irreducible G-module with highest weight A €
X(T)*, and V() for the Weyl module of G with highest weight \.

Proposition 4.1.1. Let A\, € X(T)" such that p # X. Then if 0 — Lg(pn) —
E — Lg(A\) — 0 is a nonsplit extension of Lg(\) by Lg(p), we have E =
Va(N) /W for some submodule W of Vi (A).

O

Proof. This follows from [Jan03, Lemma I11.2.13, 11.2.14].

Definition 4.1.2. Let V be a G-module. A filtration 0 =1, C 1V, C--- CV; =V
of submodules V; of V is called a Weyl filtration, if for all 1 < ¢ < t we have
Vi/Vie1 2 Ve (N\;) for some \; € X(T)". We say that V is a tilting module, if both
V and V* have a Weyl filtration.

The following facts about tilting modules will be useful in the sequel.

Theorem 4.1.3 ([Jan03, Corollary ILE.2|, [Mat90]|). Let Vi and Va be G-modules.
Then

(i) (Donkin) The direct sum Vi @ Va is a tilting module if and only if both Vy
and Vo are tilting modules.

(il) (Mathieu, Donkin) If Vi and Vy are tilting modules, then the tensor product
Vi @ Vy s tilting.

Theorem 4.1.4 ([Jan03, Lemma II.LE.3, Lemma II.LE.5, Proposition 11.E.6]). Let
A€ X(T)". Then:

(i) (Ringel) Up to isomorphism, there is a unique indecomposable tilting module
Ta(N) with dimTg(A)x = 1 and such that T (M), # 0 implies pp < .

(ii) If Q is a tilting module with Qy # 0 such that X is mazimal among the
weights of Q, then Tg(N) is a direct summand of Q.

91
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(iii) If Q is a tilting module, there exist unique integers n(v) > 0, almost all 0,
such that

0= @ Tuw)®.

veX(T)+

We call Tg(N) the indecomposable tilting module with highest weight \. The
composition factors of Tiz(A) are not known in general. For G of type A;, we have
the following result which gives a recursive description of the indecomposable
tilting modules.

Theorem 4.1.5 ([Sei00, Lemma 2.3|, [Don93, Example 2, pg. 47|). Assume that
G = SLy(K) and let ¢ € Z>¢ be a dominant weight. Then:

(i) If 0 < ¢ < p — 1, the indecomposable tilting module Tg(c) is irreducible, so
Te(c) = La(c).

(il) If p < ¢ < 2p — 2, the indecomposable tilting module Tg(c) is uniserial of
dimension 2p, and Tg(c) = La(2p —2 —¢)/La(e)/La(2p — 2 — ¢).

(iii) (Donkin) If ¢ > 2p — 2, then Tg(c) = Tg(p — 14 1) @ Ta(s)M, where s > 1
and 0 <r <p—1 are such that c=sp+ (p— 1+ 7).

4.2 TIrreducible representations of SLy(K)

In this subsection, we give some basic results about irreducible representations
of SLa(K). Throughout we will identify the weights of SLo(K) with Z, and the
dominant weights with Z>o. We begin with the following lemma which is well
known and follows from Steinberg’s tensor product theorem.

Lemma 4.2.1. Let A\ € Z> be a dominant weight of G = SLa(K). Write A =
> >0 \ip®, where 0 < \; < p — 1. Then the weights occurring in the irreducible
module Lg(N) are precisely the ones of the form

i>0
where 0 < k; < \;. Furthermore, each weight space of Lg(\) is one-dimensional.
For the rest of this section, we will give some technical lemmas about the action

of a unipotent element u of SLa(K) on irreducible representations of SLa(K).
These will be used later in Section 5.13. The first lemma is well known.

Lemma 4.2.2. Let A\ € Z>q be a non-zero weight of G = SLa(K) such that
0 <X <p-—1. Then a non-identity unipotent element u € G acts on Lg(\) with
a single Jordan block of size A + 1.

Lemma 4.2.3. Lel A\ € Z>q be a non-zero weight of G = SLa(K). Then a non-
identity unipotent element u € G acts on Lg(\) with Jordan blocks of distinct sizes
if and only if X = ap® + bp', where 0 <k <1,0<a,b<p—1anda+b<p-—1.
In this case u acts on Lg(X\) with Jordan blocks

[a+b+1l,a+b—1,...,a+b—2d+1]

where d = min{a, b}.
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Proof. Write X\ in base p, say A = ZE:O k', where 0 < k; < p — 1. Now by
Steinberg’s tensor product theorem, we have

Since w acts on Lg(k;) with a single Jordan block of size k; + 1 (Lemma 4.2.2), it
follows that

t
La(N) L Klu) 2= Q) Vi +1.
=0

It is now easy to see that to prove the claim, it is enough to show that the following
facts hold:

(1) If 1 <dy,dy <pand dy +dy >p+1, then Vy, ® Vj, has repeated blocks.
(2) 1 <d; <dy <pandd+dy < p+1, we have Vg, @ Vi, = &PV 1ay2i 1.

(3) If s>2and 1 <d; <dy <--- <ds <p, then the tensor product ®7_,Vy, has
repeated blocks.

The claims (1) and (2) are Corollary 3.3.7 (i) and (ii), respectively. What
remains is to show that ®;_,Vy, has repeated blocks if s > 3 and 1 < d; < dy <
- < ds < p. Clearly it will be enough to do this for s = 3. For the sake of
contradiction, suppose then that Vg, ® Vg, ® Vg, has no repeated blocks for some
1 <dy <dy <ds <p. Then V;, ® Vg, has no repeated blocks, so applying (1) and
(2) to Vg, ® Vg, we get

Vi, ® Vay ® Vg = (Vay1dy—1 © Vag) © (Vi dy—3 @ Vay) © -+

Now Vi, 4+dy—1 ® Vg and Vg, 14,—3 ® Vg, also have no repeated blocks, so again
applying (1) and (2) to these tensor products gives

Vi +dy—1 @ Vag = Vi vdyrds—2 D Vi +dotds—a B -+

and
Vi +dy—3 ® Vg = Vi, rdptds—a @ - -

Therefore the tensor product Vg, ® Vg, ® Vg, has > 2 Jordan blocks of size d; +
ds + d3 — 4, contradiction. O

Lemma 4.2.4. Assume that p > 3. Let r > p. Suppose that a nonidentity unipo-
tent element u of SLo(K) acts on the module Lo (r) ® La(r — 2) with no repeated
blocks. Thenr =p+1,r=p, r=2p orr=p~+p with | > 2.

Proof. By applying Lemma 4.2.3 to the module Lg (), it follows that r = ap®+bp!,
where 0 <a<p—-1,0<k<[,0<b<p—-—1l,anda+b<p—1.1f k> 2 then
r — 2 is written in base p as

r=2=(p-2)+@-Dp+-+@-Dp""+(a—Dp +0p,

so u acts on Lg(r — 2) with repeated blocks, by Lemma 4.2.3. Therefore we must
have k=0 or k = 1.
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Suppose that k = 0, so now r = a + bp', where 0 < a < p—1,1 > 1, and
0<b<p—1.1fa>2 then r —2 = (a—2)+ bp' in base p, and so by Lemma
4.2.3 we have

La(r) |l Klul=[a+b+1,a+b—-1,..]
Lo(r—2) Klul=a+b—1,..]

so u acts on Lg(r)®Lg(r—2) with two Jordan blocks of size a+b—1, contradiction.
Therefore we must have a = 1. Now if [ > 2, then r» — 2 is written in base p as

r—2=@p-1)+@-Dp+-+@-1p" + -1y,

so u acts on Lg(r — 2) with repeated blocks by Lemma 4.2.3. Therefore [ = 1, so
r=1+bpandr—2=(p—1)+(b—1)pin base p. Since u acts on Lg(r —2) with
no repeated blocks, we have b = 1 by Lemma 4.2.3. That is, we have r = p+1, as
claimed.

Next we consider the case where k = 1. Now r = ap+bp!, where 0 < a < p—1,
[ >2 and 0 < b <p-—1. Then r — 2 is written in base pas r —2 = (p — 2) +
(a —1)p + bp. Since u acts on Lg(r — 2) with no repeated blocks, it follows from
Lemma 4.2.3 that either b = 0 and a < 2, or a = 1 and b < 1. In other words,
we have r = p, r = 2p, or r = p + p' for | > 2. This completes the proof of the
claim. O

Lemma 4.2.5. Assume that p > 5. Let r > p. Suppose that a nonidentity unipo-
tent element u of SLo(K) acts on the module Lg(r) @ La(r — 4) with no repeated
blocks. Then one of the following holds:

i) p|r
(i) r=p+1,r=p+2,r=p+3,r=2p+1,r=2p+2, orr=1+3p.

(iii) r:a+plf0r50me4§a§p—2 and [ > 1.

Proof. By applying Lemma 4.2.3 to the module Lg(r), it follows that = ap®+bp',
where 0 <a<p—-1,0<k<,0<b<p—-—1l,anda+b<p—11f k > 0,
then we are in case (i) of the claim. Suppose then that k = 0, so now r = a + bp',
where 0 <a <p—1,1>0,and 0 < b < p— 1. Note that here b > 0 since we are
assuming that r > p.

If a > 4, then r — 4 is written in base p as 7 —4 = (a — 4) + bp'. If b > 1, then
it follows from Lemma 4.2.3 that

Lo(r) L Klul=la+b+1l,a+b—1a+b—3,..]
and
Lo(r—4)l Klul=Jla+b—3,...].

Thus Lg(r)® L (r—4) | K[u] has two Jordan blocks of size a+b—3, contradiction.
Therefore b = 1, so 7 = a + p', where @ > 4. Since a + b < p — 1, we have
4 <a<p-—2,sorisasin case (iii) of the claim.

Consider then a < 4. If [ > 1, then r» — 4 is written in base p as

r—d=@p-4+a)+@-Dp+--+@-1p" + (-1,
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so by Lemma 4.2.3 the element u acts on Lg(r — 4) with repeated blocks, contra-
diction. Therefore [ = 1, so now r = a + bp', where 1 < a < 3. Furthermore, since
r —4 is written in base pas r—4 = (p —4+a)+ (b— 1)p, it follows from Lemma
423 that (p—4+a)+(b—1) <p—1. This gives a+b <4, and since 1 <a <3
and 1 < b < p — 1, the only possibilities for r are those given in case (ii) of the
claim. O

Lemma 4.2.6. Assume that p > 5. Let r > p. Suppose that a nonidentity unipo-
tent element u of SLa(k) acts on the module Lg(r) ® La(r —2) @ La(r — 4) with
no repeated blocks. Then r=p orr=p—+ 1.

Proof. According to Lemma 4.2.4, we must have r = p, r = p+ 1, r = 2p, or
r=p+p with > 2.

If r=2p, thenr —2=(p—2)+pandr—4 = (p—4)+p, so by Lemma
4.2.3 we have Lg(r —2) | K[u] = [p—2,p] and Lg(r —4) | K[u] =[p—4,p —2].
Therefore Lg(r —2) @ Lg(r —4) | K[u] has two blocks of size p — 2. If r = p+ p!
with [ > 2, the same argument shows that Lg(r — 2) @ La(r — 4) | K[u] has two
blocks of size p — 2. Therefore the only possibilities are »r = p and r = p + 1, as
desired. O

4.3 Weyl group and weight orbits

Recall that W denotes the Weyl group of G. Fix a base A = {ay,...,q} for the
root system ® of G, with respect to the maximal torus 7. We will denote the
reflection in W corresponding to a root « € ® by o, € W.

Let V be any G-module. Then we have a decomposition

V= Vi,
neX(T)

where V), denotes the T-weight space for weight u € X(T"). Now W acts on X (T'),
and X (T)* is a fundamental domain for this action [Hum72, Lemma 10.3B|. Thus
we have a decomposition

V= &P b v

peX(T)+ weW

This implies that dimV > |[Wy| if ¢ € X(T)" and V, # 0, and this basic
inequality will often be useful.

To describe the sizes of the orbits, we have the following lemma which follows
from [Hum?72, Lemma 10.3B].

Lemma 4.3.1. Let A € X(T)" and write A = 22:1 a;w;, where a; > 0. Then
Stabyy () is generated by all o, such that a; = 0.

Since the Weyl group is always generated by simple reflections, from Lemma
4.3.1 we see that the W-stabilizer of A = Zizl a;w; is the Weyl group of the
semisimple Lie algebra with Dynkin diagram A’ = {«; : a; = 0}. This makes the
computation of [WA| = |[W|/|Staby ()| easy, since the orders of Weyl groups of
indecomposable root systems are known (see for instance |[Hum72, Table 12.1]).
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4.4 Invariant forms on G-modules

In this section, we list some basic results on the existence of G-invariant bilinear
forms on G-modules. We begin with the following definitions.

Definition 4.4.1. Let V be a G-module. The following notation will be defined.

(i) Bil(V) is the vector space of all bilinear forms on V.
(ii) For 8 € Bil(V) and g € G, define 59 € Bil(V) by 89(v,w) = B(g~ v, g w).

(iii) Bil(V)Y is the vector space of all G-invariant bilinear forms on V| in other
words, the space of all 8 € Bil(V') such that 89 = 3.

Definition 4.4.2. For A € X (T)", we define d(A\) = > (A, ).

As seen in the next lemma and other lemmas below (Lemma 4.4.9, Lemma
4.4.10), the quantity d(\) in Definition 4.4.2 will often be useful for describing
when a G-module has a G-invariant alternating or symmetric bilinear form.

Lemma 4.4.3 ([Ste68, Lemma 78, Lemma 79]|). Let A € X(T)*. Then:

(i) La(N)* = La(—wo), where wy is the longest element in the Weyl group. In
particular, Lg(X) is self-dual if and only if A = —wo.

(ii) Assume that A = —woX and p # 2. Then Lg(\) has a non-degenerate G-
iwariant bilinear form b, unique up to a scalar. Furthermore, the form b is
symmetric if d(A\) =0 mod 2, and alternating if d(\) =1 mod 2.

Corollary 4.4.4. Assume that p # 2. Let G = SLo(K) and fiz a dominant weight
X € Z>o of G. Then Lg(\) is self-dual, and Lg(X\) is symplectic if X is odd and
orthogonal if \ is even.

By Lemma 4.4.3, in characteristic p # 2 deciding whether an irreducible mo-
dule is symplectic or orthogonal is a straightforward computation with roots and
weights. Let A € X(T)" be a dominant weight and write A = 22:1 m;w;, where
m; € Z>o. In Table 4.1, we give the value of d(\) mod 2 (when A = —wg(A)) for
each simple type, in terms of the coefficients m;.

In characteristic 2, it turns out that each nontrivial, irreducible self-dual mo-
dule is symplectic, as shown by the following lemma.

Lemma 4.4.5 (Fong, |[Fon74|). Assume that char K = 2. Let V be a nontrivial,
wrreducible self-dual representation of a group G. Then V' has non-degenerate G-
imwvariant bilinear form b, unique up to a scalar. Furthermore, b is alternating.

Lemma 4.4.5 shows that when p = 2, the image of any irreducible self-dual
representation of G lies in Sp(V'). Note that in the proof of Lemma 4.4.5 nothing
about algebraic groups is needed, so this holds in a much more general setting.
Another lemma which is well known and also works in greater generality is the
following.

Lemma 4.4.6. Let V be a G-module. Then V & V* has a non-degenerate G-
imvariant alternating bilinear form, and a non-degenerate G-invariant symmetric
bilinear form.
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Root system | When is A = —wg(\)? d()\) mod 2 when A = —wp(A)

. ) 0, when [ is even
A (1>1) iff m; = my_;1q for all 4 1+1
2

-muy1, when [ is odd
2

0, when [ = 0,3 mod 4

> g
B (1 >2) always my, when [ = 1,2 mod 4.

C (ZZQ) always mi1+m3+ms+---
[ even: always 0, when [ # 2 mod 4

> )
Dy (2 4) [ odd: iff m; = m;_1 my 4+ my_1, when [ =2 mod 4.
Go always 0
Fy always 0
Eg iff mi =mg and mg=ms | 0
Er always mo + ms + my
FEg always 0

Table 4.1: Values of d(\) modulo 2 for a weight \ = 22:1 miw;

Proof. Define a bilinear form on V@ V* by (v+ f,v'+ f') = f'(v) +¢f(v'), where

¢ € K is some fixed non-zero scalar. It is straightforward to verify that (—, —)
is a non-degenerate G-invariant bilinear form. Furthermore, the form (—,—) is
symmetric if we choose ¢ = 1 and alternating if we choose ¢ = —1. O

The following two lemmas are well known. For proofs, see for example [Boub9,
§1, Définition 12, pg. 30|, [McGO05], and [McGO02].

Lemma 4.4.7. Suppose that a G-module V has a non-degenerate G-invariant
alternating bilinear form (—,—). Then

(i) For all 1 < k < dimV, the exterior power AF(V) admits a non-degenerate
G-invariant bilinear form, which is alternating if k is odd and symmetric if
k 1is even.

(ii) If p=0 or p > k, then the symmetric power Sk(V) admits a non-degenerate
G-invariant bilinear form, which is alternating if k is odd and symmetric if
k is even.

Lemma 4.4.8. Suppose that a G-module V has a non-degenerate G-invariant
symmetric form (—,—). Then

(i) For all 1 < k < dimV, the exterior power N¥(V') admits a non-degenerate
G-invariant symmetric form.

(ii) If p =0 orp > k, then the symmetric power S*(V) admits a non-degenerate
G-invariant symmetric form.

The following lemma describes G-invariant bilinear forms on Weyl modules. It
is most likely well known, see for example [Jan73, Satz 8| for a similar result.
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Lemma 4.4.9. Let A\ € X(T)" and suppose that X\ = —wo\, where wy is the
longest element in the Weyl group. Then:

(i) The Weyl module V(X)) has a non-zero G-invariant bilinear form b, unique
up to a scalar.

(ii) The radical rad b is the unique mazimal submodule of V().

(iii) Assume that p # 2. Then b is symmetric if d(A\) =0 mod 2 and alternating
if d(A\) =1 mod 2.

(iv) Assume that p = 2. Then b is alternating.

Proof. We know that there exists a surjective G-morphism 7 : Vg(A) — Lg(A),
which has the unique maximal submodule of V() as its kernel. It follows from
[GN16, Lemma 4.3] that the map 7 induces an isomorphism Bil(Lg()\))¢ —
Bil(Vg(A))€. Under this isomorphism, a bilinear form b € Bil(Lg()\))® maps to
by € Bil(Vg())C, where by (v,v') = b(m(v), m(v")) for all v,v" € Vg(N\).

Now Lemma 4.4.3 implies that Bil(Lg(\))¢ has dimension 1, so claim (i)
follows. For claim (ii), let b € Bil(Lg()\))Y be non-zero, so that b, € Bil(Vg(\)“
is non-zero. It is clear that the radical rad b, contains the kernel of 7, which is
the unique maximal submodule of Viz(\). Since rad b, is a G-submodule of Viz ()
and since b, is non-zero, it follows that rad b, = ker 7. This proves claim (ii).

Claim (iii) follows from the fact that b, is symmetric if and only if b is symme-
tric, and the fact that b, is alternating if and only if b is alternating. Claim (iv)
follows similarly, using Lemma 4.4.5. O

We consider next G-invariant bilinear forms on tilting modules.

Lemma 4.4.10. Let A\ € X(T)". Then:

(i) Ta(AN)* =2 Ta(—wo), where wq is the longest element in the Weyl group. In
particular, Te(N) is self-dual if and only if A = —wo.

(ii) Assume that X\ = —wo\ and p # 2. Then T (\) admits a non-degenerate G-
imwariant symmetric or alternating bilinear form b. Furthermore, any such
form b is symmetric if d(A\) =0 mod 2 and alternating if d(A) =1 mod 2.

Proof. Claim (i) is [Jan03, Remark 11.E.6].

For claim (ii), assume that A = —woA and p # 2. Now Tg(\) = Te(N)* by
(i). Furthermore, since T (\) is indecomposable, the ring Endg(7¢(\)) is a local
ring. It follows then from [QSSS76, Lemma 2.1] or [Wil76, Satz 2.11 (a)| that
there exists a non-degenerate G-invariant bilinear form b on T (\) such that b is
symmetric or alternating.

For the other part of claim (ii), let W C T(\) be a G-submodule such that
W 2 Viz(N), see [Jan03, I1.E.4|. We show first that W cannot be totally isotropic
with respect to b. For this, note that Wy = 1. Thus if W C W, then by V/W+ =
W* we get dimTg(A)y > 2, contradicting dim T(A)y = 1 (Theorem 4.1.4 (i)).
Therefore the restriction of by of b to W is non-zero. This implies that b is
symmetric if and only if by is symmetric, and b is alternating if and only if by is
alternating. Now the claim follows from Lemma 4.4.9 (iii). O
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Corollary 4.4.11. Assume that p # 2. Let G = SLo(K) and n € Z>q. Then the
indecomposable tilting module Te(n) has a non-degenerate G-invariant bilinear
form, which is symmetric if n is even and alternating if n s odd.

Lemma 4.4.12. Assume that p = 2. Let G = SLa(K) and n € Z~o. Then the
indecomposable tilting module Tg(n) has a non-degenerate G-invariant alternating
bilinear form.

Proof. If n = 1, then Tg(n) = Lg(1) (Theorem 4.1.5 (i)) and the claim follows
from Lemma 4.4.5. For n = 2, we have T(n) = L (0)/La(2)/La(0) uniserial
of dimension 4 by Theorem 4.1.5. The tensor product L (1) ® Lg(1) is a tilting
module (Theorem 4.1.3) with highest weight 2, so it follows that Lg (1) ® La(1) =
T¢:(2) (Theorem 4.1.4). Since Li(1) has a non-degenerate G-invariant alternating
bilinear form, the same is true for the tensor product Lg(1) ® Lg(1) (see for
example [KL90, 4.4, pg. 126-127]).

For n > 2, we will prove the claim by induction on n. Suppose that T;(n') has a
non-degenerate G-invariant alternating bilinear form for all 0 < n’ < n. If n = 2k,
then Te(n) = Tg(2) ® Tg(k — 1M by Theorem 4.1.5 (iii). Applying induction
to Tg(2) and Tg(k — 1), it follows that the tensor product Tg(2) @ Te(k — 1)1
has a non-degenerate G-invariant alternating bilinear form (again, for example by
[KL90, 4.4, pg. 126-127]). If n = 2k+1, the claim follows with the same argument,
since Tg(n) = Tg(1) ® Ta(k — 1)U by Theorem 4.1.5 (iii). O

Lemma 4.4.13. Let A € X(T)" such that A\ = —wo\. Let V be a uniserial
G-module such that V' = Lg(0)/La(X)/La(0), and suppose that V' admits a non-
degenerate G-invariant alternating bilinear form B. Then any non-degenerate G-
mvariant alternating bilinear form on V is a scalar multiple of 5.

Proof. Let ~ be some non-degenerate G-invariant alternating bilinear form on V. It
is straightforward to see (for example [Wil76, Satz 2.3]) that there exists a unique
G-isomorphism ¢ € Endg(V) such that v(v,v") = B(¢(v),v") for all v,v" € V.
By |[GN16, Example 4.5], we have dim Endg (V') = 2, and Endg (V') has a basis
consisting of the identity map 1 : V — V and a map N : V — V such that N
is nilpotent and N (V') is the unique 1-dimensional G-submodule of V. Then by
replacing v with a scalar multiple if necessary, we can assume that p =14+ X+ N
for some A\ € K. Let z € N(V) be a non-zero vector, so N(V) = (z). Since V
is indecomposable, it follows that (z) C (z)* with respect to the bilinear form
. Furthermore, we have Ker N = (2)* since V is uniserial. Thus we can find a
w € V such that w ¢ (z)* and N(w) = z. Since 3 and 7 are both alternating, we
have y(w,w) = B(w,w) + - B(Nw,w) = X- B(z,w) = 0. Since w & (2)*, we have
B(z,w) # 0 and so A = 0. Therefore v = 3, and the lemma follows. O

The following lemmas are useful in some cases for classifying subgroups of
classical groups up to conjugacy. Below for a bilinear form [ on a vector space V/,
we denote by . (V, 3) the group consisting of all g € GL(V') such that 5(gv, gw) =
B(v,w) for all v,w € V (equivalently, 9 = 3, see Definition 4.4.1).

Lemma 4.4.14. Let p: G — GL(V) and ¢ : G — GL(V) be two representations
of G. Set p(G) = X and (G) =Y. Suppose that there exists a non-degenerate
bilinear form [ on V such that X,Y < Z(V,B). Assume that [ is alternating or
symmetric, and assume that p # 2 if B is symmelric. Suppose that up to scalar
multiples, the form B is the unique non-degenerate X -invariant alternating or
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symmetric bilinear form on V. Then if p and ¥ are equivalent, the subgroups X
and Y are conjugate in Z(V,[3).

Proof. Suppose that p and 1 are equivalent. Then there exists a f € GL(V) such
that fY f~! = X. Since the form j is Y-invariant, the form 7/ is invariant under
fYf~! = X. By uniqueness of , it follows that 8/ = A3 for some non-zero
scalar A € K. Now (9 = 8 for g = VAf. Hence g € #(V,3), and it is clear that
gYg '=X. O

Lemma 4.4.15. Assume that p # 2. Let p : G — GL(V) and ¢ : G — GL(V)
be two equivalent representations of G such that the associated G-module V is
indecomposable. Let X = p(G) and Y = (G). Suppose that XY < Z(V, ),
where B is a non-degenerate alternating or symmeltric bilinear form. Then X and
Y are conjugate in Z(V,f3).

Proof. Since the G-modules associated with p and ¢ are isomorphic, this follows
from the general result [Wil76, Satz 3.12| (alternatively, [QSSS76, Korollar 3.5]).
O]

4.5 Weight multiplicities in V;(\) and Lg())

The purpose of this subsection is to list some well known results about weight
multiplicities in Weyl modules and irreducible modules of G.

Let (—,—) be the usual inner product defined on X (7') ®z R, normalized so
that long roots in ® have norm 1. For A\, u € X(T)", we will define

d(A ) = A+ p,A+p) = (+ppu+p)

where p is the half-sum of positive roots. The following useful result is a conse-
quence of the strong linkage principle.

Proposition 4.5.1 (Linkage principle). Assume that p > 2, and that p > 3 if
G is of type Gy. Let \,u € X(T)*. If Lag(p) occurs as a composition factor of
Va(XN), then p divides the integer 2 - d(\, ).

Proof. See [Sei87, 6.2]. O

In Table 4.1 and Table 4.2, we have given the value of d(\, u) for some particu-
lar A > . In the tables we have also included the weight multiplicity my;, (y) () of
win Vg (N), which can be computed with Freudenthal’s formula [Hum72, Theorem
22.3|. This information will be used later in Section 5.13. The following two lem-
mas will also be useful. In the first lemma, recall that we are using the Bourbaki
labeling of the Dynkin diagrams, so in root systems of rank 2 the simple short
root is aj.

Lemma 4.5.2. Suppose that G has rank 2. Let X = cjw; + cows € X (T)F, where
cica £ 0. For p = A\ — ap — ag, we have 0 < mLG(A)(,u) < 2. Furthermore,
mp. (1) = 1 if and only if one of the following holds:

(i) G has type Az and p |1+ c1 + c2,

(il) G has type Co and p | 2+ c1 + 2¢2,
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(iii) G has type G2 and p | 3+ c1 + 3ca.

Proof. This is [Tes88, 1.35]. O
Lemma 4.5.3. Suppose that G is of type A; and N\ = cw1 + quy. Let p =
A—aip —ag — - —ap. Then my, (1) =1, and
() =1 ifplaateag+l—1,
m =
LaO)WH l ifpter+o+1—1.
Proof. This a special case of [Sei87, 8.6]. O

The following basic lemma will be useful occasionally. We omit the proof which
is easy.

Lemma 4.5.4. Let \,u € X(T)". Suppose that for all X = p' = p, the Weyl
module V() does not have La(i') as a composition factor. Then mpn)(n) =

Myg (N (1)

We know that if A € X(T')", then the set of weights in Vg (\) is saturated.
That is, if p is a weight in Viz(\), then p — i« is also a weight for all a € ® and
i between 0 and (u, ). With some mild assumptions on the characteristic, the
same is true for Lg(A) as well if A is p-restricted.

Theorem 4.5.5 (Premet |Pre87|). Suppose that G is simple and (G, p) is not one
of (Bn,2), (Cn,2), (Fy4,2) or (G2,3). Then for any p-restricted X € X(T)", the
set of weights occurring in Vg () and the set of weights occurring in Lg(\) are
equal. In particular, the set of weights in Lg(\) is saturated.

For the rest of this section, we will describe how some weight multiplicities
mp.n (@) can be found by computing within an irreducible representation of
some Levi factor of G. To explain this well known technique, we have to establish
some notation.

For a € ®, let U, be the root subgroup associated with «. Fix some base A
of the root system ® of G. Now for any subset J C A, denote &; = ZJ N ®. Then
the standard parabolic subgroup Pj associated with J is defined as Py = L;Q,
where

Qr={Us:acd"\ @)

and
LJ:<T,Ua20é€(I)J>.

Here @) is the unipotent radical of Py, and Pj is a semidirect product L x Q
of algebraic groups (Levi decomposition).

Let L'; = [Lj, L] be the commutator subgroup of L. Then L/, is a connected
semisimple algebraic group with maximal torus 7y = T N L’;. For a weight \ €
X(T)*, we will denote the restriction of A to Ty by X. Then @, = {o/: v € D}
is a root system of L/, with base A" = {a¢’/ : a € J}. With this base A’ the
fundamental dominant weights are w/ for a; € J.

Now the relation between weight multiplicities in Lg(A) and in Ly, (X) is given
by the corollary of the next proposition. Below we write Lg(A\)%7 for the fixed
point subspace of @y on Lg(\).
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Proposition 4.5.6 (Smith [Smi82|). Let J C A and A\ = Z§:1 ciw; € X(T)*.

Let Py be the parabolic subgroup determined by J with Levi decomposition Py =
LJ X QJ. Then

LeN® = (Vi:p=X= Y kia;, where k; € Zx0)
o, €J

and
LM% L Ly = Ly (\)
where \' =37 ;ciw;.

Corollary 4.5.7. Let J C A and X = Y c;ciw; € X(T)". Let Py be the
parabolic subgroup determined by J with Levi decomposition Py = Ljx Qy. Then

mreo (i) = mLLi](A/)(’u/) forall p=X—=3%" cykici, where k; € Z>.

b IS X<T)+ d(A, p) My (1)
b>1 A— o] — a9 b+1 1
b>3| A—a1 —2a9 2b 1
b>2 | A—2a; — 22 | 2(3b+2) 2

Table 4.1: Type Ga: some weight multiplicities my;,, (n) for A = bws.

b e X(T)+ d(A, p) mV(A)(:“)
bZl )\—041—042 b+1 1
623 /\—a1—2a2 2b 1
b>5| A—a;—3ay | 3(b—1) 1
b>2 | A—2a; —2as | 2(b+1) 2
b>4 | A—2a; —3a2 | 2(b—4) 2
b27 )\*041*4042 6(()*3) 2

Table 4.2: Type Cs: some weight multiplicities my,, () for A = bws.

4.6 Representations of SLy(K)

In this section, let G be the algebraic group SLo(K) with natural module E. Fix
also a nonidentity unipotent element u € G. Throughout we will identify the
weights of a maximal torus of G’ with Z, and the dominant weights with Zx>.

The main purpose of this section is to classify indecomposable G-modules V
where u acts on V with at most one Jordan block of size p. One consequence of
this is a criterion for a representation of G to be semisimple. Specifically, we prove
that a self-dual G-module V' must be semisimple if u acts on V with at most one
Jordan block of size p (Proposition 4.6.10). In Section 5.13, this result will be the
starting point for classifying irreducible representations of simple algebraic groups
in which a unipotent element of order p acts as a distinguished unipotent element.

We begin by considering Jordan block sizes in Weyl modules and tilting mo-
dules of G.
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Lemma 4.6.1. Let m = qp +r, where ¢ > 0 and 0 < r < p. Then u acts on the
Weyl module Vi (m) with Jordan blocks [p,p,...,p,r+ 1], where p occurs q times.

Proof. The Weyl module Viz(m) is isomorphic to S™(E)*, see for example [Jan03,
11.2.16]. Therefore it suffices to compute the Jordan blocks of u acting on the
symmetric power S (E).

Now there exists a basis x,y of F such that ux = z and uy = = + y. Let
2™ 2™ Ly ... y™ be the basis induced on S™(E). Then

k

k .
m—*k, ky _ ,.m—k k _ m—i, i
by =gt =3 (F)amis

=0

so with respect to this basis, the matrix of u acting on S™(FE) is the upper tri-
angular Pascal matrix P = ((;'j))OSiJSW' Here we define (’) =01if i < j. The
Jordan form of the transpose of P is computed for example in [Cal02], and from
this result we find that P has ¢ Jordan blocks of size p and one Jordan block of

size r + 1, as claimed. O

Lemma 4.6.2. Let ¢ > p—1. Then Tg(c) | Ku] = N -V}, where N = %f(c),
In particular, Tg(c) | Klu] =V, @&V, if p<ec<2p—2.

Proof. If ¢ = p — 1, then the claim follows from Theorem 4.1.5 (i) and Lemma
422. If p < ¢ < 2p — 2, the claim follows from [Sei00, Lemma 2.3], see [McN02,
Proposition 5].

Consider then the case where ¢ > 2p — 2. By Theorem 4.1.5 (iii), we have

Ta(e) = Ta(p —1+7) @ Ta(s)Y,

where s > 1 and 0 < r < p — 1 are such that ¢ = sp+ (p — 1 + r). Since
p—1<p—1+7r <2p—2, by the previous paragraph Tg(s)m | K[ul = N"-V,
for N' = %f(s). Therefore Tg(c) | Ku] = N -V, for N = dn%f(c) by Lemma
3.3.6. ]

For studying representations of G which are not semisimple the starting point
is the following result, originally due to Cline [AJL83, Corollary 3.9].

Theorem 4.6.3 (Cline). Let A = > .o N\ip' and pu = > ,~quip’ be weights of
G, where 0 < X,y < p. Then Exté(Lg(A),Lg(u)) + 0 precisely when there
exists a k > vp(A + 1) such that p; = N for all i # k,k+ 1 and pp = p —
2 — Ak, pgr1 = Mer1 £ 1. In the case where Exth(Lg(/\),LG(,u)) # 0, we have
Extg(La(M), La(n) = K.

Note that if there exists a nonsplit extension of Lg(A) by Lg(p), it is unique
up to isomorphism because Ext}(Lg (M), Lg(1t)) = K by Theorem 4.6.3.

We will use the following result of Serre to construct some indecomposable
representations of GG. The result is not specific to algebraic groups, and actually
holds for any group H and finite-dimensional representations V and W of H over
K.

Theorem 4.6.4 ([Ser97|). Let V and W be G-modules. If V@ W is semisimple,
then V' is semisimple if p t dim W.
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Proposition 4.6.5. Let V be a G-module which is a nonsplit extension of La(\)
by Lg(u). Then u acts on 'V with at least one Jordan block of size p. If u acts on
V' with precisely one Jordan block of size p, then there exists p < ¢ < 2p — 2 and
I >0 such that one of the following holds:

i) A=cp', p=2p—2—c)p and V = Vg(c)ll.
(i) A=2p—2—o)pt, p=cp' and V= (Vg(c)*)l.

Moreover, if V., A\, u, and ¢ are as in case (i) or case (i), then V is a nonsplit
extension of Lg(N\) by La(p), and w acts on V' with Jordan blocks [p,c — p + 1].

Proof. We begin by considering the claims about Vg (c)! and (Vg (c)*)¥, where
p<c<2p—2andl > 0. It is well known (and easily seen by considering the
weights in Vi (c)) that Viz(c) is a nonsplit extension

0—Lg(2p—2—c¢) = Vg(c) = Lg(c) — 0.

Since the irreducible representations of G are self-dual, we see that Vg(c)* is a
nonsplit extension

0— Lg(c) = Va(e)* - La(2p—2—¢) — 0.

Let A = ¢p! and u = (2p — 2 — ¢)p!, where [ > 0. By taking a Frobenius twist,
we see that for all I > 0 the module Vg(e)! is a non-split extension of Lg()\)
by Lg(p), and its dual (Vg(c)*)¥ is a non-split extension of Lg (i) by La(N).
Furthermore, by Lemma 4.6.1 the unipotent element u € G acts on Vi(c) with
Jordan blocks [p,c — p + 1]. The Jordan block sizes are not changed by taking
a dual or a Frobenius twist, so for all [ > 0 the element u acts on both Vg(c)!
and (Vg(c)*) with Jordan blocks [p, ¢ — p+1]. This completes the proof that the
properties of Vg (c)! and (Vg (c)*)¥ are as claimed.
Now let A\, u € Z>o be arbitrary weights, and let V' be a nonsplit extension

0— Lg(p) =V = Lg(A) — 0.

Assume that u acts on V with at most one Jordan block of size p. We note first that
to prove the proposition, it will be enough to show that there exist p < ¢ < 2p—2
and | > 0 such that A and p are as in case (i) or (ii) of the claim. Indeed, if
this holds, then since Extl(Lg()\), Lo(i)) = K (Theorem 4.6.3), we must have
V 2= Vg(e)! or V = (Va(e)*)U. Furthermore, as seen in the first paragraph, then
w acts on V' with Jordan blocks [p, ¢ —p-+1], in particular with exactly one Jordan
block of size p.

We proceed to show that X\ and p are as claimed. Write A =% \;ip', where
0 < \; <p—1 for all i. Recall that by the Steinberg tensor product theorem, we
have

La(A) = Q) La(A)!

>0

Consider first the case where \; = p — 1 for some I. Then u acts on Lg ()
with a single Jordan block of size p. Now the tensor product of a Jordan block
of size p with any Jordan block of size ¢ < p consists of ¢ Jordan blocks of size p

(Lemma 3.3.6), so it follows that La()) | K[u] = N - V,, where N = $mLe@),
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Since u acts on V with at most one Jordan block of size p, by Lemma 3.1.4 the
action of u on Lg(A) can have at most one Jordan block of size p. It follows then
that N =1, s0 A = (p — 1)p!. Since V is a nonsplit extension, by Theorem 4.6.3
the weight pu must be (p — 2)p!~! 4+ (p — 2)p' or (p — )p! + (p — 2)p* + pF*!
for some k # [,l — 1. By Lemma 3.1.4 the action of v on Lg(p) has no Jordan
blocks of size p. With Lemma 3.3.6, one finds that this happens only if p = 2 and
p=(p—2)p"' + (p—2)p! =0. Then A and y are as in case (i) of the claim.

Thus we can assume that 0 < A\; < p—2 for all i. Write p =", w;p', where
0 < p; < p—1for all i. According to Theorem 4.6.3, there exists an [ such that
we have p; = A\ for ¢ # L1+ 1, and py = p—2 — A, p+1 = Ap1 £ 1. We can
write A = C+ N\p! + N p! Tt and g = ¢+ p! + 1 p' L By the Steinberg tensor
product theorem, we have

La(N) 22 La(¢) @ La(N + Ngap)
La(n) = La(¢) @ La(p + pirap)!

1

Note that here p does not divide the dimension of Lg((), because we are
assuming that \; < p — 1 for all 4. Furthermore, by Theorem 4.6.3 there exists a
G-module W which is a nonsplit extension

0— Lg()\l + )\H—lp) - W — LG’(MI + Ml+1p) — 0.

Therefore by Theorem 4.6.4, the module Lg({) ® W is a nonsplit extension of
La(M\) by La(p). Hence La(¢) ® WU 22 V| because a nonsplit extension of Lg(\)
by L¢(w) is unique by Theorem 4.6.3.

Consider first the case where ¢ = 0. Here V = W, so without loss of generality
we may assume that [ = 0. Write A =c+dp and p = (p—2—c¢) + (d £ 1)p, where
0<c¢d<p—2andd>0ifu=(p—2—c)+(d—1)p.

We consider A = ¢+dp and p = (p —2 —¢) + (d — 1)p. Here dimV =
dim Lg(A) + dim Lg(p) = A+ 1 = dim Vig(A). Now V' is a nonsplit extension of
Lg(N) by Lg(p) and A > p, so by Proposition 4.1.1 we must have V' = Vz(A). By
Lemma 4.6.1, the action of u on V' has Jordan blocks [p,p,...,p,c+ 1], where p
occurs d times. Therefore u acts on V with at most one Jordan block of size p if
and only if d = 1, that is, when A =c+p and = (p —2 —¢). Then X and p are
as in case (i) of the claim.

Next consider the case where A = c+dp and pp = (p —2 —¢) + (d + 1)p.
In this case dimV = dim Lg(A) + dim Lg(p) = p+ 1 = dim Vig(p). Because
V* is a nonsplit extension of Lg(u) by Lg(A\) and p = A, by Proposition 4.1.1
we have V* = Vg (u). By Lemma 4.6.1, the action of v on V' has Jordan blocks
D, py...,p,p — (¢ + 1)], where p occurs d + 1 times. In this case u acts with at
most one Jordan block of size p if and only if d = 0, that is, when A = ¢ and
1= (p—2—c)+p. Then X\ and p are as in case (ii) of the claim.

Finally we consider the possibility that ¢ # 0. Since W is a nonsplit extension
of two irreducible modules, it follows from the { = 0 case that u acts on W with
at least one Jordan block of size p. Now the tensor product of a Jordan block of
size p with any Jordan block of size ¢ < p consists of ¢ Jordan blocks of size p
(Lemma 3.3.6). Therefore if { # 0, then u acts on V' with more than one Jordan
block of size p, contradiction. O

Lemma 4.6.6. Let p < c<2p—2. Then for all 1 > 0:
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Furthermore, every nonsplit extension of Lg(2p — 2 — ¢)ll by Vig(e)l s iso-
morphic to Tg(c)l.

Proof. Set ¢ = 2p—2—c. We note first that the last claim of the lemma follows from
(iv), once we show that Tg(c) is a nonsplit extension of Lg (<) by Vg (e)¥. To
this end, by [Sei00, Lemma 2.3 (b)] the tilting module Tz (c) is a nonsplit extension
of Lg(c') by Via(c). The extension stays nonsplit after taking a Frobenius twist,
so Te(e)! is a nonsplit extension of Lo (<)Y by V().

For claims (i) - (iv), we prove them first in the case where [ = 0. In this case,
claims (i) and (ii) follow from the fact Ext{(Va()\), Lo(i)) = 0 for any pu < A
[Jan03, 11.2.14]. For (iii) and (iv), recall that there is an exact sequence

0— Lg(c) — Vg(e) = Lg(e) — 0.
Applying the functor Homg (L (d), —) gives a long exact sequence

0 — Homg(Lg(d), La(c')) — Home(Lg(d), Va(c)) — Homg(La(d), La(c))
— Extg(La(d), La() — Bxtg(La(d), Va(e)) — Extg(La(d), La(c) =

Considering this long exact sequence with d = ¢, we get an exact sequence
0— K - K — Exty(La(c), Vale)) = 0

since Exty(Lg(c), La(d)) = K and Exts(La(c), La(c)) = 0 by Theorem 4.6.3
and |Jan03, 11.2.12], respectively. This proves (iii).
With d =2p — 2 — ¢, we get an exact sequence

0 — Extg(La(d), Vg(c)) — K.

Therefore dim Ext{,(La(c'), Va(e)) < 1. Thus to prove (iv), it will be enough to
show that there exists some nonsplit extension of Lg(c¢’) by Vg (c). For this, we
have already noted in the beginning of the proof that Tiz(c) is such an extension.

We consider then claims (i) - (iv) for [ > 0. If p # 2, then the claims follow
from the case | = 0, since Exts (X, Y1) = ExtL(X,Y) for all G-modules X and
Y [Jan03, 11.10.17]. Suppose then that p = 2. Note that then we must have ¢ = 2,
and ¢ = 0. By [Jan03, Proposition I1.10.16, Remark 12.2|, for any G-modules X
and Y there exists a short exact sequence

0 — Ext5(X,Y) — Exty(x1, vl
— Homg (X, Lg(1) @ Y) — 0.

Thus claims (i) - (iv) will follow from the case [ = 0 once we show that
Homg(X, Lg(1) ® Y) = 0 in the following cases:

() X =Vg(2) and Y = Lg(2),
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(i) X =Vg(2) and Y = Lg(0),
(iii) X = Lg(2) and Y = Vg(2),
(iv)) X = Lg(0) and Y = Viz(2).

In all cases (i)’ - (iv)’, it is straightforward to see that X and L (1)®Y have no
composition factors in common. Thus Homg (X, Lg(1) ® Y) = 0, as claimed. [

Lemma 4.6.7. Let W be a nonsplit extension of two irreducible G-modules, and
let Z be an irreducible G-module. If V is a nonsplit extension of Z by W, then V
is indecomposable.'”

Proof. We can assume that W C V and V/W = Z. Let W' C W be the unique
irreducible submodule of W. If V' is not indecomposable, then there exists an
irreducible submodule Z’ C V such that Z’ # W'. Then Z/NW =0,s0 V =
W & Z'. Therefore V = W @ Z, which is impossible when V is a nonsplit extension
of Z by W. O

Proposition 4.6.8. Let V be an indecomposable G-module. Then one of the fol-
lowing holds:

(i) w acts on V with > 2 Jordan blocks of size p.
(i1) V' is drreducible.

(iii) V is isomorphic to a Frobenius twist of Va(c) or Vg (c)*, wherep < ¢ < 2p—2.
Furthermore, u acts on V with Jordan blocks [p,c — p + 1].

Proof. Let V be a counterexample of minimal dimension to the claim. Then V is
not irreducible and w acts on V with < 1 Jordan block of size p. Note also that by
Lemma 3.1.4, the element u acts on any subquotient of V' with < 1 Jordan block
of size p. Therefore any proper subquotient of V' must be as in (ii) or (iii) of the
claim.

Since V' is not irreducible, there exists a subquotient ) of V' which is a nonsplit
extension of two irreducible G-modules. By Proposition 4.6.5, the subquotient @
is isomorphic to Vg (e) or (Va(e)*)¥ for some I > 0and p < ¢ < 2p—2.

We are assuming that V' is a counterexample, so there must be a subquotient
Q' of V which is a nonsplit extension of @ and some irreducible module Z. By
Lemma 4.6.7, the subquotient @’ is indecomposable, and so by the minimality of
V we actually have Q" = V. By replacing V with V* if necessary, this reduces us
to the situation where V is a nonsplit extension of Vg (c)/! and some irreducible
module Lg(d).

There must be a subquotient of V' which is a nonsplit extension of Lag(d)
with Lg(e) or Lg(2p — 2 — ¢)lU. Therefore by Proposition 4.6.5, it follows that
La(d) = La(e) or Lg(d) = La(2p — 2 — o), respectively. Thus V 2 T (c)l
by Lemma 4.6.6. This gives us a contradiction, because u acts on Tg(c) with two
Jordan blocks of size p by Lemma 4.6.2. O

Corollary 4.6.9. Let V be any representation of G. Suppose that u acts on V
with all Jordan blocks of size < p. Then V is semisimple.

190f course, the statement of the lemma and the proof given here work in a much more general
setting.
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Proof. By Proposition 4.6.8, the only indecomposable G-modules on which u acts
with all Jordan blocks of size < p are the irreducible ones. O

Proposition 4.6.10. Let V be a self-dual representation of G. Suppose that u
acts on V with at most 1 Jordan block of size p. Then V is semisimple.

Proof. Write V=W, & ---® Wy, where W; are indecomposable G-modules. Sup-
pose that W; 2 W;* for some i. Now irreducible G-modules are self-dual, so W;
is not irreducible and thus u acts on W; with exactly 1 Jordan block of size p
(propositions 4.6.5 and 4.6.8). On the other hand, V=V*= W& -.- & W/, so
we have W; = W for some i # j since the indecomposable summands are unique
by the Krull-Schmidt theorem. But then W; @ W/ is a summand of V', which is a
contradiction since u acts on W; @ W;* with two Jordan blocks of size p.

Thus W; = W/ for all 4, and so by Proposition 4.6.8 each W; must be irredu-
cible, since Vi (c) 2 Va(e)* for p < ¢ < 2p—2. O



Chapter 5

Irreducible overgroups of
distinguished unipotent elements

The purpose of this chapter is to prove Theorem 1.1.10 and Theorem 1.1.11. That
is, we classify all pairs (G,u), where v € G is a unipotent element and G is a
simple subgroup of .# (V) = SL(V), #(V) = Sp(V), or £ (V) = SO(V) such that

e V isirreducible and tensor-indecomposable as a G-module,

e u is a distinguished unipotent element of .# (V).

When u has order > p, the basic idea of the proof is to first rule out most
of the irreducible representations of G with an elementary argument described
in Section 5.1-5.2, and then deal with the remaining representations case-by-case
(Section 5.3-5.12). In the case of unipotent elements u order p (Section 5.13), we
first reduce to the case where p is good for GG. Then w is contained in a subgroup
A < G of type A;p such that the labeled diagram of A is that of u (Theorem 2.6.8).
With Proposition 4.6.10, one can then use the representation theory of SLo(K)
and methods from [LST15] to complete the proof.

5.1 Reduction, unipotent elements of order > p (p # 2)
Assume that p # 2.

In this section, we reduce the proof of Theorem 1.1.10 in the case where u
has order > p to a small number of A to consider. The reduction is based on the
following lemma, Premet’s theorem (Theorem 4.5.5), and results of Liibeck given
in |Liib01] and [Liib17].

Lemma 5.1.1. Let ¢ : G — GL(V) a representation of G. For a unipotent
element u € G, let d,, be the size of the largest Jordan block of o(u). Then

(i) If u € G is unipotent with order p®, then d, < p®.

(il) If ' € G is a regular unipotent element, then d, < d, for all unipotent
elements u € G.

(iii) If V. = L(X) is irreducible and uw € G is a unipotent element, then d, <
my(N\) + 1 (Definition 2.7.2).

109
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(iv) If a unipotent element u € G acts on'V as a distinguished unipotent element,
2
then dimV < % if dy is odd and dimV < W if dy 1s even. In

any case if u acts on 'V as a distinguished unipotent element, then dimV <
(du+1)?

S
Proof. Claims (i) and (ii) are given in Lemma 2.7.1, and claim (iii) is Theorem
2.7.8.

For (iv), we know that if u acts on V as a distinguished unipotent element,
then Jordan block sizes of p(u) are distinct and all odd, or distinct and all even.
Therefore for d = d,, we have

dimV < d+ (d—2)+ % if d is even,
1m — e e —
- D2 if dis odd.
so the claim follows since 4(@+2) < M. O

4 4

Remark 5.1.2. Note that Lemma 5.1.1 (iv) holds under the slightly weaker as-
sumption that all Jordan block sizes of u acting on V are distinct and either all
even or all odd.

Remark 5.1.3. This section is concerned with elements of order > p, but note
that Lemma 5.1.1 also makes sense when u has order p. We will occasionally apply
it in this situation as well. However, when u has order > p and G is of classical
type, we can get an upper bound on the order of u which only depends on rank G
and not on p. This will be a key fact that we will use in subsections 5.1.1, 5.1.2
and 5.1.3.

We give the reduction for each simple type in the subsections that follow.

5.1.1 Type 4

In this subsection, assume that G is simple of type A;. The only distinguished
unipotent class in G is the regular unipotent class, which acts with a single Jordan
block of size [+ 1 on the natural module of G (Proposition 2.3.4). Therefore it will
be enough to consider actions of some regular unipotent element v € G (Lemma
1.1.8). In this section we are only considering distinguished unipotent elements of
order > p. Hence for the rest of this subsection, we make the following assumption:

Assume that p <.

Note that our assumption implies that [ > 2. Our reduction for type A; is
given by the results which follow.

Proposition 5.1.4. Assume that 2 < [ < 14. Let u € G be a reqular unipotent
element and let X € X (T)" be a nonzero and p-restricted. If u acts on L(\) as a
distinguished unipotent element, then one of the following holds.

(i) A=wy or A = wy.
(i) A =w1 +w.

(iii) 1 s odd and A\ = wis1 .
2
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(iv) p=3,1=3 and X\ = 2ws.

Proof. Tt L(\) is not self-dual, then we are done by Proposition 1.1.12. Assume
then that L()) is self-dual and suppose that w acts on L(\) as a distinguished
unipotent element.

The regular unipotent element u acts on the natural module of G with a single
Jordan block of size [ + 1 (Proposition 2.3.4). Therefore the order of u is equal to
M, = p*t1, where s > 1 is such that p®* < [+ 1 < p*T!. Therefore

(MLP + 1)2

dim L(\) < 1

by Lemma 5.1.1. For all 2 < [ < 14 and p < [, checking self-dual irreducible
2
representations of dimension < M in the tables given in [Liib17], we end up

with representations given by (ii), (iii) and (iv) in our claim. O

Lemma 5.1.5. If p =3 and | = 3, then a regular unipotent element u € G does
not act as a distinguished unipotent element on L(2w,).

Proof. A computer calculation with MAGMA (Section 2.9) shows that in this case
u acts on L(2ws) with Jordan blocks [52, 9]; hence not as a distinguished unipotent
element!!. 0

Lemma 5.1.6. Assume that | > 15. Let p = 22:1 aw; € X(T)T. If one of the
following statements hold, then |Wp| > W.

(i) a; # 0, where | = 2i — 1.
(i) ajapr1—; # 0 for some 3 < i < Léj

(iil) ajaga;_1a; # 0.

Proof. Write f(l) = M. In what follows the W-orbit sizes are computed as

described in Section 4.3.

(i): Suppose that a; # 0 for [ = 2i — 1. Now |Wu| > |[W(w;)| = (ltl) = (2?'),/

7

so it will be enough to show that (%) > f(I) = f(2i — 1) for all I > 15,
equivalently for all ¢ > 8.

Now for the central binomial coefficient (2;), we have the well known es-
timate (2;) > 2!, This estimate can be seen by induction on i, using the
identity (2;) =2-(2— %)(2(;:11)). One can verify that 2! > f(I) = f(2i — 1)
for all i > 19, so (¥) > f(I) = f(2i — 1) if i > 19. For 8 < i < 18, the
%
7

inequality ( ) > f(2i — 1) is seen by a calculation.

HFor a computer-free proof, one can proceed as follows. It is possible to show that for the
natural module V of G, we have S*(A%(V)) = L(0)/L(2w2)/L(0) (uniserial). Furthermore, it is
easy to compute with Theorem 3.4.5 that for p = 3, we have S*(A%(V4)) = [12,5%,9]. Thus the
action of u on S%(A?(V)) is inadmissible (Definition 3.2.4), so it follows then from Lemma 3.2.6
that u does not act as a distinguished unipotent element on L(2ws).
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(ii): Suppose that a;ai1—; # 0, where 3 < i < |5]. Now [Wpy| > |W(w; +

wir1-i)| = (l;'il) (2;) For ¢ = 3 and i = 4, one can verify that the inequality

(51 (%) > f(1) holds for all 1 > 9.
Consider then ¢ > 5. Note that |[Wu| > |[W(w;)| = (lf.l). Since 5 < i < L%J
we have (H;l) > (ngl). One can verify that the inequality (ngl) > f(1) holds
for all [ > 35, so it follows that |[Wu| > f(I) for all [ > 35. Finally for
15 <1 < 34, the inequality (l;l.l) (2;) > f(1) can be verified by calculation.

(iii): In this case [Wp| > [W(w1 + w2 +wi—1 +wi)| = (I + 1)I(l = 1)(I —2). Thus
the claim follows from the single variable polynomial inequality (I + 1)I(l —
1)(I —2) > f(l), which holds for all [ > 4.

O]

Proposition 5.1.7. Assume thatl > 15. Let u € G be a reqular unipotent element
and let X € X (T)*" be nonzero and p-restricted. If u acts on L(\) as a distinguished
unipotent element, then one of the following holds.

(i) )\:wl or)\:wl.
(i) A =w1 +w.

Proof. If L(A) is not self-dual, then we are done by Proposition 1.1.12. Assume
then that L(\) is self-dual (that is, A = —wgA) and suppose that u acts on L(\)
as a distinguished unipotent element.

The regular unipotent element u acts on the natural module of G with a single
Jordan block of size [ 4+ 1 (Proposition 2.3.4). Therefore the order of u is equal to
p*T1 where s > 1 is such that p* < [+ 1 < p**t!. Now p*t! = p - p® < I? since
p® <[, and thus
(l2 + 1)2

dim L(A) < 1

(*)

by Lemma 5.1.1. Furthermore, we also have

(**)

by Lemma 5.1.1.

Write A = 22:1 a;w;, where 0 < a; < p—1 for all . Since A = —wgA, by Table
4.1 we have a; = a;y1—; for all i. We now consider various possibilities for the
coefficients a; to rule out everything except (i) and (ii) in the claim. In all cases,

this will be done by showing that there exists a weight p = Z£=1 alw; € X(T)*

1

such that u < X and |[Wu| > w or [Wu| > W. Then by Premet’s
theorem (Theorem 4.5.5) we have dim Lg(A) > |Wpl, so this will contradict (*)
or (**). In what follows some specific W-orbit sizes of weights are computed using
4.3.

Case (1): ! odd and a; # 0 for i = HTI:
In this case we can choose A = p, since then |[Wp| > % by Lemma

5.1.6 (i).



5.1. Reduction, unipotent elements of order > p (p # 2) 113

Case (2): a; # 0, where 3 <4 < |L]:
Here we can also choose A = p, since a; = a;11-; and thus [Wpy| >

D by Lemma 5.1.6 (if).

Case (3): ajas # 0:

Now a1 = a; and as = a;_1, so similarly to cases (1) and (2), this follows
from Lemma 5.1.6 (iii).

By the arguments given for cases (1)-(3), we are left to consider A = bw; + bw;
and X\ = bwy + bw;_1 for 1 < b < p — 1. We consider the various possibilities to
conclude that A = wy + w;, which completes the proof.

Case (4): X\ = bwy + bw;_1, where b > 2:
In this case, for u = X\ — ag — oy—1 we have p € X(T)* such that
asa;_o # 0, so [Wp| > % by Lemma 5.1.6 (ii).

Case (5): A =wy + wy_1:

Here my(\) = 4l — 4 by Lemma 2.7.3. For p1 = A, one can verify that

the polynomial inequality |[Wpu| = 2!51@1_);)! > (mu(z)+2)2 holds for all
[>5.

Case (6): X\ = bwy + bwy, where b > 3:
In this case, for 4 = A — a3 — oy we have u € X(T)" such that

dydya) ) # 0, 50 Wyl > EH by Lemma 5.1.6 ().

Case (7): A = 2wy + 2uw;.

Here m,,(A) = 41 by Lemma 2.7.3. Now for p = A — a1 — oy = wo +wj_1
one can easily verify that the polynomial inequality |Wu| = % >

W holds for all [ > 6.

O]

We summarize our reduction for type A in the following proposition, which
is an immediate consequence of Proposition 5.1.4, Lemma 5.1.5 and Proposition
5.1.7.

Proposition 5.1.8. Let u € G be a reqular unipotent element and let A € X (T)"
be nonzero and p-restricted. Assume that u has order > p. If u acts on Lg(\) as
a distinguished unipotent element, then one of the following holds.

(i) A=wy or A = wy.
(ii) A=wi +w.
(iii) 1 4s odd, 3 <1 <13, and A = wis1.
2
Note that in case (i) of Proposition 5.1.8 a regular unipotent element acts as

a distinguished unipotent element. Cases (ii) and (iii) of Proposition 5.1.8 will be
dealt with in sections 5.3 and 5.12, respectively.
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5.1.2 Types B, and (|

Let G be a simple algebraic group of type B; or C;. We know that GG has unipotent
elements of order > p if and only if a regular unipotent element u € G has order
> p. For type B; and type Cj, a regular unipotent element has order > p if and
only if p < 2l + 1 and p < 2l respectively. Now p is odd, so this is equivalent to
p < 2] — 1. Therefore we will make the following assumption for the rest of this
subsection.

Assume that p < 2] — 1.

Note that a regular unipotent of G has order p**t!, where s > 1 is such that
p® < 2l 4+ 1 < p*t1. In particular, we have p*tt =p.p* <2120 = 412

Thus if some unipotent element u € G acts on a representation V as a distin-
guished unipotent element, then

412 (41% + 2)

dimV < I =4t + 212 (*)

by Lemma 5.1.1. If V.= Lg(\) and w € G is a regular unipotent element, then
any unipotent element of G acts on V with largest block of size < m,(\) + 1 by
Lemma 5.1.1. Thus if some unipotent element of G acts on V as a distinguished
unipotent element, then

dimV < W (**)

by Lemma 5.1.1. Similarly to the proof of Proposition 5.1.7, our reduction is based
on applying the bound (*) on V = Lg(A\) when A = 22:1 a;w; with m, () large,
and then applying (**) when m,(\) is small.

Lemma 5.1.9. Assume that 3 <1 <9 and G = B;. Let A\ € X(T)" be nonzero
p-restricted. If some unipotent element of G acts on Lg(\) as a distinguished
unipotent element, then one of the following holds.

(i) A =wj for some 1 <i<I.

(i) \ = 2w;.

(i) A = 3w
)

(iv) p=5,1=3, and A = 2w3, A = wy + w3 or A = wy + ws.

Lemma 5.1.10. Assume that 2 <1 <9 and G = Cy. Let A € X(T)* be nonzero
p-restricted. If some unipotent element of G acts on Lg(\) as a distinguished
unipotent element, then one of the following holds.

()
(i)
(i)
)
)

A =w; for some 1 <1i <|.
A=

A=
(iv) p=3,1=2, and A = 2ws, A = w1 +wa, or A = 2wy + wo.

(v) p=5,1=3, and A = wy + w3 or A = 2ws.
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Proof of Lemma 5.1.9 and Lemma 5.1.10. Suppose that some unipotent element
of G acts on Li(\) as a distinguished unipotent element. Let u € G be a regular
unipotent element. Then it follows from Lemma 5.1.1 that dim Lg(A) < M, where
M = w. For 2 <1 <9, we list the largest possible value of |u| and M in
Table 5.1 (recall the assumption p < 20 — 1).

Now the irreducible representations Lg(A) such that dim Lg(\) < M are
found in [Lib17]. In tables 5.2 - 5.5, we list all A such that A\ # 2wi, 3wy, w; and
dim Lg(A) < M. We have also included the minimal possible value of dim Lg(\).

One can verify that for most A occurring in the tables, we have dim Lg(\) >

W, which contradicts (**). The cases in the tables for which dim Lg(\) <

(mu(N)+2)?

7) is a possibility are:

Case (1): G = Cy, with A € {2ws, w1 + wa, 2w + wa}.
Case (2): G = Cs, with X € {w1 + w2, w1 + w3, ws + w3, 2ws }.

Case (3): G = B3, with A € {2ws3,w; + w3, w1 + wa, wa + wg}.

What remains is to verify the claim of the two lemmas for these cases. For
G = C5 (case (1)), the assumption p < 2] — 1 implies p = 3, so case (1) is case
(iv) of the claim.

For G = C3 (case (2)), we have p = 3 or p = 5. If p = 3, then u has order 32, and

dim Lg(A) > 25 = M for all A occurring in Table 5.2. Thus by Lemma 5.1.1,
no unipotent element of G acts on Lg(\) as a distinguished unipotent element
when p = 3. To verify the claim of Lemma 5.1.10 for p = 5, we should show that
no unipotent element of G acts on Lg(\) as a distinguished unipotent element
when A € {w; + wa,w1 + ws}. Using |Liib01|, one can verify for p = 5 that
dim Lg(wy + w2) = 64 and dim Lg(w; + w3) = 70, so dim Lg(A) > w for
A € {w1 + w2, w1 + ws}. Thus the claim follows from Lemma 5.1.1.

Finally we have to consider G = Bs (case (3)). Now p < 2] — 1 implies that
p=3orp=>5 1If p=3, then u has order 32, and dim Lg(\) > 25 = w
for all A occurring in Table 5.4. Thus by Lemma 5.1.1, no unipotent element of
G acts on Lg(A) as a distinguished unipotent element when p = 3, as desired.
What remains is to show that for p = 5, no unipotent element of G acts as a
distinguished unipotent element on Lg(wy + w2). For this the claim follows again
from Lemma 5.1.1: we have dim Lg(w; + w2) = 105 when p > 3 by [Liib01], so

M (N)+2)2
4

dim Lg (w1 + w2) > ( when p = 5.

O]

Lemma 5.1.11. In the following cases no unipotent element u € G of order > p
acts on Lg(X\) as a distinguished unipotent element:

(i) G=Cq, p=3, and X\ = 2wy + wo.
(i) G=Cs, p=5, and X € {w2 + w3, 2ws}.

(iii) G = Bs, p=5, and A = wy + w3.
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G Largest possible value of |u| | Largest possible value of M
By, Oy 32 25
Bs,C3 52 169
By, Cy 72 625
Bs, Cs 72 625
Bg, Cs 112 3721
B;,C 132 7225
Bg, Cs 132 7225
By, Cy 172 21025

Table 5.1: For G = Bjand G = C; (2 <[ < 9), largest possible order |u| of a regular

2
unipotent element u of order > p, and largest possible value of M = %.

Proof. In all of these cases, the only unipotent elements in G with order > p are
the regular ones. For a regular unipotent element v € G, we have computed the
decompositions Lg(A) | Ku] in cases (i) - (iii) with a computer program imple-
mented in MAGMA (Section 2.9)'2. The claim follows from these decompositions,
which are given in Table 5.6. O

Lemma 5.1.12. Assume that | > 10. Let p = 2221 aw; € X(T)T. If one of the
following statements hold, then |W pu| > 41* + 212.

(i) a; # 0 for some i > 19.
(ii) aja; #0 for some 1 <i < j <l—1 such that j >5.
(iii) aza; # 0 for some 2 <1 <[ —2.

Proof. Write f(I) = 41* + 2I%. In what follows the W-orbit sizes are computed
using 4.3.

(i): Now [Wu| > |W(w;)| = 2¢ (i), so it will be enough to show that 2 (f) > f(1)
for all [ > i > 19. We show first that this inequality holds for i = I,
that is, we show that 2! > f(I) for all I > 19. We do this by induction
on [. For [ = 19 this is a calculation, and for [ > 19 by induction we get
2l = 2.2 > 2. f(1 — 1) > f(I), where the last inequality is an easily
verified single variable polynomial inequality.

We now proceed to prove that 2 (i) > f(l) for all [ > i > 19 by induction
on 1. For ¢ = 19, one can verify the inequality by calculation. Consider then

1 > 19. The case ¢ = [ was dealt with in the previous paragraph, so suppose
that ¢ < [. In this case

) -#((7)+ ()22

by induction. Furthermore, 2+ f(I — 1) > f(I) as mentioned in the previous
paragraph, so 2 (i) > f(l), as claimed.

20ne could also give a computer-free proof for many of the entries in Table 5.6, similarly to
Footnote 11.
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G A Minimal possible value of dim Lg () | my(N)
CQ 2&)2 14 8
w1 + wy 16 7
2w + wo 25 10
03 w1 + wa 50 13
w1 + w3 57 14
wo + w3 62 17
2ws 63 18
2wo 90 16
4w 126 20
Cy | w1 +ws 112 19
w1 + Wy 240 23
2wo 266 24
w1 + w3 279 22
w3 + wy 312 31
2wy 313 32
4w 330 28
w2 + w3 504 27
w2 + Wy 513 28
2w + wo 558 26
Cs w1 + woy 210 25
2wo 615 32
Cs | wi+wy 352 31
2wo 1221 40
4w 1365 44
w1 + w3 1924 38
2w1 + wo 2847 42
w2 + w3 3432 47
w1 + ws 3638 46
w1 + we 3652 47
Cr | wp +ws 546 37
2wo 2184 48
4w 2380 52
w1 + w3 3795 46
2w + wa 5355 50
w2 + w3 7098 57

Table 5.2: For G of type Cj, 2 <1 < 7 and 2 < p < 2[: irreducible p-restricted
representations Lg(\) of dimension < M, where M is as in Table 5.1 and \ #
Wi, 2(«}1, 3w1.
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G A Minimal possible value of dim Lg () | my,(A)
Cg w1 + wa 800 43
2wo 3620 56
4wy 3876 60
w1 + w3 6749 54
Co | wi+wy 1122 49
2ws 5661 64
4wy 5985 68
w1 + w3 11154 62
2wy + w2 14193 66

Table 5.3: For G of type C;, 8 <[ < 9 and 2 < p < 2!: irreducible p-restricted
representations Lg(A) of dimension < M, where M is as in Table 5.1 and A\ #

wi, 2wW1, 3wi .

G A Minimal possible value of dim Lg(A) | my(A)

Bs 2ws 35 12

w1 + w3 48 12

w1 + wy 63 16

wo + w3 64 16

3ws 104 18

2w + ws 120 18

2wo 132 20

w1 + 2ws 168 18

By | w1+ wy 112 18

2wy 126 20

w1 + wy 147 22

wa + wy 304 24

w3 + Wy 336 28

2wa 369 28

4w 450 32

3wy 544 30

w1 + w3 958 26

2w + wy 576 26

wy + w3 579 32

Bs | w4 ws 264 28

w1 + ws 320 25

2ws 462 30

Table 5.4: For G of type B;, 3 < [ < 5 and 2 < p < 2l + 1: irreducible p-
restricted representations Lg(A) of dimension < M, where M is as in Table 5.1
and \ # w;, 2wy, 3w .
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G A Minimal possible value of dim Lg () | my(A)
Bg | w1+ wo 416 34
w1 + we 768 33
2wo 1559 44
2wg 1716 42
4wy 1728 48
w1 + w3 2847 42
wo + Wwe 3392 43
B7 | wi 4 ws 650 40
w1 + wry 1664 42
2wa 2715 52
4w 2940 56
w1 + w3 5250 50
2wy 6435 56
2w + wa 6798 54
Bg | wy 4+ ws 935 46
w1 + ws 4096 52
2wo 4251 60
4wy 4540 64
Bg w1 + wo 1273 52
2wo 6763 68
4w 7124 72
w1 + wy 9216 63
w1 t+ws 14193 66
2w + wo 17424 70

Table 5.5: For G of type B;, 6 <[ < 9and 2 < p < 2l + 1:
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irreducible p-

restricted representations Lg(A) of dimension < M, where M is as in Table 5.1
and \ # w;, 2wy, 3w .

G A La(N) L Klul
Csy (p=23) 2w9 [5,9]
w1 + wo [2, 6, 8]
2wy +wy | [T, 92]

Cs (p=>5) | wetws | [10%12,157]
23 [102,13,157]

B3 (p=15) 2ws [1,5,7,9,13]
wi+ws | [3,5,7,9,11,13]
we +ws | [5,7,102,15,17]

Table 5.6: For G = Cs, G = (3, and G = Bs; actions of a regular unipotent
element u € G on some small irreducible representations Lg()).
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(ii): Now [Wpu| > |W(w;)|, so the claim follows from (i) if j > 19. Consider then
1 <i<j<l—1suchthat 5 <j <18 Since [Wpy| > [W(w; +wj)| =
2J (;) (1), it will be enough to verify that 2/ (;) (1) > f(1) for all I > 10. For
all 1 <i<j<l—1with5 < j < 18 (finitely many cases to check), this
polynomial inequality is straightforward to verify by a calculation.

(iii): As in (ii), the claim follows from (i) if ¢ > 19. Consider then 2 < i < 18,
where ¢ <[ — 2. Similarly to (ii), we have now have finitely many i to check,
so a calculation shows that |Wp| > |W (w; +w;)| = 2! (i) > f(1) holds for all
[ > 10.

O]

Lemma 5.1.13. Assume that | > 10. Let u € G be a distinguished unipotent
element and let A\ € X(T)" be nonzero and p-restricted. If u acts on L(\) as a
distinguished unipotent element, then A = 2wy or A = w; for some 1 < i <.

Proof. Write A = 2221 a;w;, where 0 < a; < p—1. Set n = 20+ 1 if G has type
By and n = 21 if G has type Cj. Suppose that some unipotent element u of G acts
on Lg(A) as a distinguished unipotent element.

Our strategy is to rule out the various possibilities for the coefficients a; case
by case and eventually conclude that either A\ = w; or A = 2w; (cf. Proposition
5.1.7). Most cases will be ruled out by showing that there exists a weight u =

Zé:l alw; € X(T)T such that g < X and [Wy| > 41* + 202 or |[Wp| > w.
Then by Premet’s theorem (Theorem 4.5.5) we have dim Lg(A) > |[Wpl, so this
will contradict (*) or (**). Throughout we apply 4.3 to compute the W-orbit sizes

(W .

Case (1): aa; 0 for 1 <¢ <1 —1:

In this case fori =1—1, we set 4 = A— ;1 —ay s0 we have p € X(T)*
with a;_,a; # 0 if G has type B; and a]_,a;_, # 0 if G has type C;. If
2<i<l—2,weset u=ANIfi=1anda; > 2, weset u =X\—qq
and then we have p € X(T)" with aba] # 0. If ; > 2, then we set
p = X—ay and we have p € X(T')" with aja] | # 0. Now in these cases
we have |Wp| > 41* + 2(? by Lemma 5.1.12 (ii) or (iii).

What remains is the case where a; = 1 and a; = 1. By the previous
cases, we can assume that A = wy + wy. If G is of type Cj, then A = p
for pp = wi +wj_o € X(T)T, and |[Wp| > 41* 4 21? by Lemma 5.1.12 (ii).

If G is of type By, then my(\) = 2l + @ It is easy to verify that for

ju =\, we have [Wp| = 211 > QD o1 a1l > 6,

Case (2): asa; #0for 1 <i<j<l—1with j > 5:
Here |[WA| > 41* + 2[? by Lemma 5.1.12 (ii), so we can pick g = \.

Case (3): a;aq #0 for 1 <i < 3:

In this case if i = 3, we set p = A\—a3—ay and we have p € X (T)* with
abal #0. If i = 2, we set up = X\ — g — g — g and we have p € X(T)*
with aja; # 0. If a; > 2 or ag > 2, then we set p = A—aj—as—az—ay
and we have p € X(T)% with afaf # 0 or ajal # 0. Thus in these cases
|Wp| > 41* + 212 by Lemma 5.1.12 (ii).



5.1. Reduction, unipotent elements of order > p (p # 2) 121

Case (4):

Case (5):

Case (6):

What remains is the case where a; = 1, agy = 1. By the previous cases
treated, we can assume that A\ = w; 4+ w4. In this case we find a weight

p € X(T)* with A > and [Wp| > Q2% 41 Taple 5.7.

asas3 7& 0:

In this case if a; > 1, ap > 2, or ag > 2, then for p = XA — a1 — 2ap —
2a3 — oy we have p € X(T)" and ajal # 0, ahay # 0, or ahal # 0,
respectively. Thus if a; > 1, ag > 2, or ag > 2, then by Lemma 5.1.12
(ii) we have |Wpu| > 41* + 212,

What remains is the possibility that a; =0, as = 1, and a3 = 1. By the
previous cases, we can assume that A = ws + ws. In this case we find a
weight p € X(T)T with X\ = p and |[Wpu| > M in Table 5.7.

aias # 0:

In this case if a; > 3, then for p = A\ — 201 — 2a0 — 23 — a4 'we have
p € X(T)" and ajal # 0. If ag > 2, then for p = X\ — s — 203 —
we have u € X(T)" and ajal # 0. Thus if a; > 3 or ag > 2, then by
Lemma 5.1.12 (i) we have |Wp| > 41* + 212,

Consider then a; < 2 and a3 = 1. By the previous cases, we can assume
that A = ajw; +ws. In this case we find a weight u € X (T)" with A = p

and [Wp| > A2 5n Taple 5.7,

aias # 0:

If a; > 4, then for u = X\ — 3a1 — 3as — 2a3 — ay we have p € X(T)*
with ajaf # 0. If ag > 3, then for = A — 2a; — 4ag — 3a3 — 204 — a5
we have p € X(T)" with ajaf # 0. Thus if a3 > 4 or az > 3, then by
Lemma 5.1.12 (i) we have |Wpu| > 41* + 212,

Consider then a; < 3 and as < 2. By the previous cases, we can assume
that A\ = ajwy + asws. In this case we find a weight p € X (T)* with

A= and Wyl > Q22 5y Taple 5.7

By the arguments given for cases (1)-(6), we are left to consider \ = bw; with
1 <b<p—1. We consider the various possibilities to conclude that if b > 1, then
b =2 and i = 1, which completes the proof.

Case (7):

A = bw;, where b > 2:

In this case if b > 3, then for 4 = X\ — 2a; — o1 we have p € X(T)*.
Furthermore, we have a;_,a; # 0 if G has type B; and a)_,a;_; # 0 if
G has type C;. Thus |Wp| > 41* + 2I? by Lemma 5.1.12 (ii) or (iii).

Consider then b = 2, so now A = 2w;. If G has type Cj, then X > p for
p=w_o+w € X(T)*, and [Wp| > 41* + 21> by Lemma 5.1.12 (iii).
Suppose then that G has type B;. In this situation we need to consider
more than one orbit of weights. First of all, we have m,(\) = 2=~ (l+1) =
[(I +1). Furthermore, it is easy to see that A = 0 and A > w; for all
1 <i<1—1. Now |Wuw;| = 2°(}), so in this situation dim L¢(2w;) >
Zi:o 2! (i) = 3!, One can verify that dim Lg(2w;) > 3¢ > w for
all [ > 6, which contradicts (**).
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Case (8): X\ = bw;, where 1 <i<[—1and b>2:

In this case if 4 < i <[ —1, we set u = A — a; and we have p €
X(T)*" with af_jaj,; # 0. If i = 3, weset 4 = X — g — 23 — oy
and we have p € X(T)" with ajay # 0. If i = 2 and b > 3, we set
p=A—a;—3as — 2a3 — a4 and we have p € X(T)* with ajal # 0.
If i =1and b > 6, then for p = A — 4a; — 3z — 2a3 — oy we have
p € X(T)" with ajal # 0. In these cases we have |[Wu| > 41* + 212.by
Lemma 5.1.12 (i) or (iii).

What remain are the cases A = 3wy and A = bwy with 3 < b < 5. For
A = 3wy and X = bw; with 4 < b <5, we find a weight p € X (T)* with
A= pand [Wy| > W in Table 5.7. Finally for A = 3wy, we note
first that m,(\) = 3n — 3. Furthermore, A > u for yu = ws. Now one
verifies that dim Lg(3wq) > [WA| + [Wu| = 21 + 23 (é) > w for
all [ > 10, which contradicts (**).

O
A p=A | A—p (Wal | mu(N)
w1 + wy ws o]+ a2+ a3+ oy 25(é) 5n — 17
Wy + w3 ws a1 4 200 + 23 + g 25 (é) 5n — 13
2w + ws ws 2a1 + 209 + 23 + oy 25 (é) 5n — 11
w1 + w3 w4 a1 + as + as 24 (fl) 4n — 10
3wy 4+ 2wy | w1 +wg | 3o +4ag + 3as + 204 + a5 | 26 (é) 6 | Tn—11
2w +2ws | w1 +ws | 2aq1 + 3as + 2a3 + ay 25 (é) -5 | 6n—10
w1+ 2wy | ws 2011 + 3az + 203 + oy 25()) | 5n—-9
3wi+wy | ws 30 + 3 + 203 + o 25(L) | -7
2w1 + wy w4 201 + 2a9 + a3 24 (i) 4dn — 6
w1 + wo w3 a1+ as 23 (é) 3n—5
2 wy a1 + 202 + a3 24(Y) | 4n -8
Sw1 ws 4o + 3ag + 200 + 25 (é) S —>5
4w w4 3aq + 2a0 + a3 24 (i) in —4

Table 5.7: Type B; (n = 21+1) and type C; (n = 21): For some specific A € X (T)*,
weights u < A such that € X(T)* and |[Wp| > w for all [ > 10.

We summarize our reduction for type B and C in the following proposition,
which is a corollary of Lemma 5.1.9, Lemma 5.1.10, Lemma 5.1.11, and Lemma

5.1.13.

Proposition 5.1.14. Suppose that G is simple of type B; (I > 3) or type C|
(1 >2). Let A\ € X(T)* be nonzero and p-restricted. If some unipotent element
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u € G of order > p acts on Lg(\) as a distinguished unipotent element, then one
of the following holds.

(i) A =w; for some 1 <i <.
(i) A= 2w
)\:3(,01.

(iv) G = Cy, u is a regular unipotent element, p =3, and \ € {w1 + w2, 2ws}.

)
)
(iif)
)
)

(v) G = Bs, u is a reqular unipotent element, p =5, and A € {2ws3,w; + ws}.

Cases (i), (ii), and (iii) of Proposition 5.1.14 will be dealt with in sections 5.12,
5.7, and 5.9 respectively. Note that by Table 5.6 in cases (iv) and (v) the element
w acts on Lg(A) as a distinguished unipotent element, and that we have recorded
these examples in Table 1.1.

5.1.3 Type D

Let G be a simple algebraic group of type D;. In this subsection, we give the
reduction for G using the same arguments as in section 5.1.2.

Now G has unipotent elements of order > p if and only if a regular unipotent
element of G has order > p. Furthermore, since G has type D;, a regular unipotent
element has order > p if and only if p < 2] — 1. Thus we will make the following
assumption for the rest of this subsection.

Assume that p < 2] — 1.

Then a regular unipotent element of G has order p*!, where s > 1 is such
that p* < 21 — 1 < p*t!. As in 5.1.2, we see that p*t! < 4I2. Therefore if some
unipotent element of G' acts on a representation V' as a distinguished unipotent
element, the inequalities (*) and (**) from subsection 5.1.2 must hold.

The following lemma gives our reduction for small [ (cf. Lemma 5.1.4, Lemma
5.1.9, Lemma 5.1.10).

Lemma 5.1.15. Assume that4 <1 <9. Let \ € X(T)*" be nonzero p-restricted. If
some unipotent element of G acts on Lg(N\) as a distinguished unipotent element,
then one of the following holds.

(i) A =w; for some 1 <i <.
(il) A = 2w;.

Proof. Suppose that some unipotent element of G acts on Lg(\) as a distinguished
unipotent element. Let u € G be a regular unipotent element. Then it follows from

Lemma 5.1.1 that dim Lg(\) < M, where M = (4FD° For 4 <1 <9, we list the
largest possible value of |u| and M in Table 5.8 (recall the assumption p < 21 —1).
Now the irreducible p-restricted representations Lg(A) such that dim Lg(A) <
M are found in the tables of [Liib01|. In Table 5.9, we list (based on |Liib01]) all
A such that A # 2w, w; and dim Lg(A) < M. We have also included the value of
my(A) in the tables, which is easily calculated with the table in Lemma 2.7.3.

In any case, one can verify that for all A occurring in Table 5.9, we have

dim Lg(N) > M: which would contradict (**). This implies the claim. []
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G | Largest possible value of |u| | Largest possible value of M
Dy 5 169
Ds 72 625
Dy 72 625
Dy 112 3721
Dy 132 7225
Dy 132 7225

Table 5.8: For G = D; (4 <1< 9), largest possible order |u| of a regular unipotent

element u of order > p, and largest possible value of M =

(lul+1)?
T

Lemma 5.1.16. Assume that | > 10. Let p = Z§:1 aw; € X(T)T. If one of the
following statements hold, then |Wpu| > 41* + 212.

(1)
(i)
(i)
(iv)

)

(v

a; # 0 for some i > 20.

aja; # 0 for some 1 <1 < j <1 —2 such that j > 5.
a;a; # 0 or a;a;_1 # 0 for some 3 <1i<1[—3.
araa;—1 Z 0 or asaja;_1 # 0.

arasa;_1 # 0 or ayasa; # 0.

Proof. Write f(I) = 41* + 2i?. In what follows the W-orbit sizes are computed
using 4.3.

(i):

If ©+ <1 — 2, then the value of |Ww;| is the same as for type B; and Cj,
so the claim follows Lemma 5.1.12 (ii). For i = [ — 1 and ¢ = [, we have
Wy > |[Ww;| = 271, so it will be enough to show that 2=t > f(I) for
all [ > 20. This follows with the exact same proof as the one given for the
inequality 2/ > f(I) in Lemma 5.1.12 (ii).

: Now the value of |W(w; + wj)| is the same as for type B; and Cj, so the

claim follows from Lemma 5.1.12 (ii).

If [ > 20, the claim follows from (i). For 10 < [ < 19, one can verify by
a computer calculation that [Wpu| > |[W(w; + wy)| = 21_1(2) > f(1) for all
3<i<-3.

: Asin (iii), the claim follows from (i) if I > 20, and is easy to verify manually

for 10 <[ < 19.

O]

Lemma 5.1.17. Assume that | > 10. Let u € G be a distinguished unipotent
element and let X\ € X(T)" be nonzero and p-restricted. If u acts on L()\) as a
distinguished unipotent element, then A = 2wy or A = w; for some 1 < i <.

Proof. Write \ = Zé:l a;w;, where 0 < a; < p — 1. Suppose that some unipotent
element u of G acts on Lg(A) as a distinguished unipotent element. We proceed
to rule out various possibilities for a; as in the proofs of 5.1.7 and 5.1.13 to show
the claim. That is, in most cases we find a contradiction with (*) or (**) by
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G A Minimal possible value of dim Lg(A) | my, ()
Dy | w4+ wy 56 12
3wy 104 18
w1 + wo 104 16
w1 + 2wy 168 18
D5 2(,05 126 20
w1 + ws 128 18
w1 + wo 190 22
3w1 210 24
w4 + ws 210 20
w2 + ws 544 24
3ws 544 30
2wo 559 28
2wy + ws 576 26
4wy 606 32
Dg | wi + wg 320 25
3w1 340 30
w1 + wo 340 28
2wg 462 30
D7 | wy+ wo 532 34
3w 546 36
w1 + wy 768 33
2wy 1716 42
2wo 1975 44
4w 2275 48
we + wr 3003 42
Dg | wy + w9 768 40
3w1 800 42
w1 + wsg 1920 42
2wo 3483 52
4wy 3605 56
2wsg 6435 56
w1 + w3 6900 50
Dg 3w1 1104 48
w1 + wo 1104 46
w1 + wy 4096 52
2wo 5490 60
4wy 5644 64

Table 5.9: For G of type D;, 4 <l < 9and 2 < p < 2] — 1

irreducible p-

restricted representations Lg(A) of dimension < M, where M is as in Table 5.8
and \ # 2w, w;.
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finding a p = Elizl alw; € X(T)T such that p < A, and [Wpu| > 41* + 2I2 or
|W | > w. Throughout we apply 4.3 to compute the W-orbit sizes |W pl.

Note that if aj = 0 and a;_; = 0, then the Weyl orbit size |W | is the same
as for the corresponding weight (one with the same coefficients a)) for type B; or
C;. From this fact, we will see in several cases that the same arguments as those
given in the proof of Lemma 5.1.13 work.

Case (1):

Case (2):

Case (3):

Case (4):

Case (5):

a;a;—1 7 0 or a;a; # 0 for some 3 < i <[ — 3:
Here |WA| > 41 + 2(? by Lemma 5.1.16 (iii), so we can pick p = ).

aj—2a;1 # 0 or a;_sa; # 0:

By applying a graph automorphism on A, it is enough to consider
a;_oa;—1 # 0. In this case for g = A — a;_o — oy_1 we have p € X(T)"
and a]_sa) # 0, so |[Wpu| > 41* + 21? by Lemma 5.1.16 (iii).

aj—1a; # 0:

If aja;_1a; # 0 or asa;_1a; # 0, then |WA| > 4i* + 212 by Lemma
5.1.16 (iv) and we can pick 4 = A. Otherwise by case (1) and (2) we
can assume that A = aq;_jw;—1 + qqw;. If aj_1 > 2 or a; > 2, then for
p=X— a9 — -1 — o we have aj_ja;_5 # 0 or aja;_5 # 0, so
|Wp| > 41* + 212 by Lemma 5.1.16 (iii).

Consider then a;_1 = 1, a; = 1, so now A\ = w;_1 + w;. In this case

my(\) = 1(I — 1) and one can verify that |[WA| = 2711 > w for
all I > 8.

asa;_1 # 0 or asa; # 0:

By applying a graph automorphism on A, it is enough to consider
asa;_1 # 0. If ajaza;_y # 0, then |[WA| > 4i* + 212> by Lemma 5.1.16
(v), so we can pick g = A. Thus we can assume a; = 0, and by cases
(1), (2) and (3) we can assume A = aswa + Gj—1wWj—1.

If aj—1 > 2, then for p = X\ — a;_1 we have p € X(T')" and aba] , # 0,
so |Wpu| > 41* 4 212 by Lemma 5.1.16 (ii). If ag > 2, then for = X\ — s
we have p € X(T)" and aja) | # 0, so [Wpu| > 41* + 212 by Lemma
5.1.16 (iii).

Consider then as = 1, a;_1 = 1, so now A\ = wy + w;_1. In this case

my(A) = 2(20—-3) + l(lgl) and one can verify that |WWA| = 2!721(1 - 1) >

Q2% forall 1> 6.,

ara;_1 # 0 or aja; # 0:

By applying a graph automorphism on A, it is enough to consider
ara;—1 # 0. By cases (1), (2), (3) and (4) we may assume that \ =
ajwi +a;_1wi_1. If a; > 3, then for g = A\—2a1 — o we have p € X(T)"
and aya, | # 0, so [Wpu| > 41* + 212 by Lemma 5.1.16 (iii). If a—1 > 2,
then for p = X — oy—1 we have p € X(T)" and dfa]_, # 0, so
|Wp| > 41* + 212 by Lemma 5.1.16 (ii).

Consider then a1 < 2 and a;_1 = 1, so now A\ = w1 +w;_1 or A =

2w1 +wp—1. In this situation my, () < my, (2w +w;—1) = 2<21_2)+@



5.1. Reduction, unipotent elements of order > p (p # 2) 127

Cases (6)-(10):

and one verifies that [WA| = 21711 > (m'“(2w1+4wl‘1)+2)2 > (mu(2\1)+2)2 for
all [ > 8.

a;aj # 0 for some 1 <7 < j <1 —2 with j > 5; a;as # 0 for 1 < ¢ < 3;
azas # 0; aras # 0; or ajas # 0:

In these cases, the exact same arguments as those given in cases (2)-(6)
in the proof of Lemma 5.1.13 work.

By the arguments given for cases (1)-(10), we are left to consider A = bw; with
1 <b<p—1. We consider the various possibilities to conclude that if b > 1, then
b =2 and ¢ = 1, which completes the proof.

Case (11):

Case (12):

A =bw;_1 or A = bw;, where b > 2:

By applying a graph automorphism on A, it is enough to consider \ =
bw;_1. If b > 3, then for = A\ — 20;_1 — oy_5 we have u € X(T)" and
aj_sa) # 0, s0 |Wu| > 41" + 212 by Lemma 5.1.16 (iii).

Consider then b = 2, so A = 2w;_1. If [ is even, then X\ = p for all
p=w; € X(T)" with 1 <4 <[ — 2 even. Furthermore, a standard
binomial identity gives

Z \Wwi\: Z 2i(i>:3l;-1_21.

1<i<i—2 1<i<i—2
i even i even

Similarly, if [ is odd, then A\ = p for all u = w; € X(T)" with 1 <4 <
[ — 2 odd. Again a standard binomial identity gives

Z (Ww,| = Z 2i<i>:31;1_2l.

1<i<i—2 1<i<i—2
i odd i odd

Therefore it follows that dim Lg(A) > % — 2L Now my(\) =1(1 — 1)
and one verifies that % — o> w for all [ > 6.

A =bw;, where 1 <i<l[—2and b > 2:

In this case, the exact same arguments as those given in case (8) in the
proof of Lemma 5.1.13 work.

0

We summarize our reduction for type D in the following proposition, which is
immediate from Lemma 5.1.17 and Lemma 5.1.15.

Proposition 5.1.18. Let G = D;, where | > 4. Let X € X(T)" be nonzero p-
restricted. If some unipotent element w € G of order > p acts on Lg(\) as a
distinguished unipotent element, then one of the following holds.

(i) A =w; for some 1 <i <I.

(il) A = 2w;.

Cases (i) and (ii) of Proposition 5.1.18 will be dealt with in sections 5.12 and
5.7, respectively.
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5.1.4 Type G,

We will prove the following proposition, which gives the claim of Theorem 1.1.10
for G = G2 in the case where u has order > p (see Table 1.2).

Proposition 5.1.19. Let G = Go and A € X(T)% be nonzero p-restricted. A
unipotent element w € G of order > p acts on Lg(N\) as a distinguished unipotent
element if and only if u is reqular and one of the following holds:

(i) A=w1 or A = ws.
(ii) p=15 and X\ = 2w;.

(iii) p=>5 and A = wy + 2ws.

Proof. In G = (9, there are unipotent elements of order > p if and only if p <5
(see Appendix A). Furthermore, when 2 < p < 5, only the regular unipotent ele-
ment has order > p. Therefore it will be enough to only consider regular unipotent
elements of G.

Let u € G be a regular unipotent element and let A € X (T)" be p-restricted.
If p = 3, then u has order 32. Thus if u acts on Lg()\) as a distinguished unipotent
clement, then dim Lo (\) < G4 = 95 by Lemma 5.1.1. By [Liib01], this implies
that A = w; or A = wy. In both cases u acts on Lg(A) with a single Jordan block
of size 7 (Proposition 1.1.12).

Suppose then that p = 5. Now u has order 5%, so if u acts on Lg()\) as a
distinguished unipotent element, then dim Lg(\) < w = 169 by Lemma
5.1.1. It follows from the results in [Liib01] that A occurs in Table 5.10, where we
have also given the decomposition of Lg(A) | K[u]. This data was obtained by
a calculation with MAGMA (Section 2.9). We see that u acts as a distinguished
unipotent element precisely in the cases A = wi, A = wo, A = 2w, and \ =

w1 + 2ws. OJ

P dim Lg(A\) | La(\) | Ku]
w1 7 [7]
Wy 14 3,11]
2w 27 (5,9,13]

w1 + wo 64 [5,7,10%,15, 17]
3wy 77 [52,102, 13,15, 19]
29 77 [1,5,10%,152,21]

wi + 2ws 97 [13,15,21, 23, 25]

Table 5.10: Action of a regular unipotent element v of G = (G on some small
irreducible representations for p = 5.

5.1.5 Types F4, E6a E7, and Eg

Suppose that G is simple of type Fy, Fg, E7, or Eg. In this situation our reduction
is essentially an application of Lemma 5.1.1 and results due to Liibeck, cf. Lemma
5.1.9, Lemma 5.1.10, and Lemma 5.1.15.
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Lemma 5.1.20. Suppose that G is simple of type Fy, Fg, E7, or Eg. Let \ €
X(T)* be p-restricted. If some unipotent element of G with order > p acts on
La(N) as a distinguished unipotent element, then \ = w;.

Proof. Let u € G be a regular unipotent element. If some unipotent element v € G
acts on Lg(\) as a distinguished unipotent element, then by Lemma 5.1.1 we have
dim Lg(A) < M, where M = W. We give the maximal possible value of |u]
and M (when wu has order > p) for G of type Fy, Eg, E7, and Eg in Table 5.11.

We have listed the A\ # w; such that dim Lg(A\) < M in tables 5.12 - 5.15,
based on |Liib17]. We have also included the value of m,(\), which was computed
using Lemma 2.7.3. One can verify that

(mu(A) +2)?

dim Lg(A) > 1
for all A in tables 5.12 - 5.15, so by Lemma 5.1.1 for these A no unipotent element
of G acts on Lg(\) as a distinguished unipotent element, as desired. O
G | Largest possible value of |u| | Largest possible value of M
Fy 112 3721
Es 112 3721
E; 172 21025
Eg 29° 177241
Table 5.11: For G = F, and G = Ej, largest possible order |u| of a regular unipotent
2
element u of order > p, and largest possible value of M = %.

A Minimal possible value of dim Lg(A) | my(A)
24 298 32
2wy 755 44

w1 + wy 1053 38
w3 + wyq 2404 46
3wa 2651 48

Table 5.12: Type Fy, irreducible representations L (\) of dimension < 3721, with
A#w;and 2 < p <11,

A Minimal possible value of dim Lg(A) | my ()
2w1 324 32
w1 + we 572 32
w1 + wo 1377 38
w1 + w3 2404 46
2w9 2430 44
3wy 3002 48

Table 5.13: Type Eg, irreducible representations Lg(A) of dimension < 3721 up
to graph automorphism, with A # w; and 2 < p < 11.
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A Minimal possible value of dim Lg(A) | my ()
w7 1330 o4
w1 +wr 5568 61
2wy 5832 68
3wy 18752 81

Table 5.14: Type E7, irreducible representations Lg(A) of dimension < 21025,
with A #w; and 2 < p < 17.

A | Minimal possible value of dim Lg(A) | my, ()
2wsg 23125 116

Table 5.15: Type Ejg, irreducible representations Lg(\) of dimension < 177241,
with A # w; and 2 < p < 29.

5.2 Reduction (p = 2)

Assume that p = 2.

In this section, we reduce the proof of Theorem 1.1.11 to a small number of A
to consider. The reduction is based on the following elementary observation and
the results of Liibeck [Liib01] on small-dimensional irreducible representations of

G.

Lemma 5.2.1. Let uw € G be a unipotent element and ¢ : G — GL(V') a repre-
sentation of G. Let d be the size of the largest Jordan block of p(u). If u acts on
d(d+2)

V' as a distinguished unipotent element, then dimV < =5=.

Proof. We know that if v acts on V' as a distinguished unipotent element, then
either p(u) is a single Jordan block, or all Jordan block sizes of p(u) are even
with multiplicity < 2 (Lemma 2.4.4 (ii)). If ¢(u) is a single Jordan block, then

dimV =d < @. If all Jordan blocks of ¢(u) are even with multiplicity < 2,

then o
dimvgd+d+(d—2)+(d_2)+...+2+2:(2+)

as desired. O

We give the reduction for each simple type in the subsections that follow.

5.2.1 Type A

In this subsection, assume that G is simple of type A;, [ > 1.

Proposition 5.2.2. Let u € G be regular and let X\ € X(T)" be nonzero 2-
restricted. If u acts on L(X\) as a distinguished unipotent element, then one of the
following holds.

(i) A=wy or A =uwy.
(i) 1>2 and A = w1 + w;.

(iii) I =5 and \ = ws.
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(iv) 1 =3 and A = wo.

Proof. If | = 1, there is nothing to do, so we will assume that [ > 2. By Proposition
1.1.12 we can assume that L()\) is self-dual, that is, A = —wgA. Suppose that u
acts on L()) as a distinguished unipotent element.

Now u acts on the natural module of G with a single Jordan block of size
[ 4+ 1. Therefore the order of u is equal to M; := 25F! where 2% < [ +1 < 251,
Then in any representation of G, the action of u has largest Jordan block of size
< 2%1 — 2.95 < 2] Thus by Lemma 5.2.1 we have dim L()\) < 201+2) <
AE2) _ 912 4 9y,

Now 212 + 21 < g if [ > 17, so by |Liib01, Theorem 5.1] we have A = w; + w;
if [ > 17. In the cases where 2 < [ < 16, checking irreducible representations of
dimension < w in the tables given in [Liib01], we find that the only self-
dual ones besides L(w; + w;) are L(ws) in the case | = 5, and L(ws) in the case
l=3. O

Lemma 5.2.3. Let u € G be regular. Then

(i) Forl =5, we have the orthogonal decomposition Lg(ws) | Ku] = V(2)? +
W(8) (Proposition 2.4.4) with respect to any non-degenerate G-invariant
alternating bilinear form on Lg(ws). In particular, the element u does not
act as a distinguished unipotent element on Lg(ws).

(ii) For | = 3, we have the orthogonal decomposition Lg(ws) | Klu] = V(2) +
V' (4) (Proposition 2.4.4) with respect to any non-degenerate G-invariant al-
ternating bilinear form on Lg(we). In particular, the element u acts as a
distinguished unipotent element on Lg(wa).

Proof. Both (i) and (ii) can be verified by a computation with MAGMA (Section
2.9). Claim (ii) also follows from the fact that the image of the representation p :
SL4(K) — GL(Lg(w2)) is equal to SO4(K), and that a regular unipotent element
of SO4(K) has decomposition V(2) + V(4) on the natural module (Proposition
2.4.4 (vi)). O

Therefore for type A;, the claim of Theorem 1.1.11 is reduced to the case
A = w1 + w;, which will be considered in Section 5.4.
5.2.2 Types B, C; and D,

In this subsection, assume that G is of type B; (I > 2), type C; (I > 2), or of type
Dy (1> 4).

Proposition 5.2.4. Let u € G be distinguished and let X € X(T)T be 2-restricted.
If w acts on L(X\) as a distinguished unipotent element, then one of the following
holds.

(i) A=w1 or A = wa.

(iii

)

(il) G=B; or G=Cy, and A\ = w; where 3 <1<7, orl=9.
) G=Dyand A=w; or A =w;_1, where [=4,1=06,1=38, orl=10.
)

(iv) 1 =5 and \ = ws.
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Proof. Now u acts on the natural representation of G with largest Jordan block of
size < 21. So if 2% < 2] < 2571 the element u must have order < 25T1 =2.2% < 4.
Therefore by Lemma 5.2.1, we have dim L(\) < QSH(Q;HH) < 4l(4é+2) = 812 +4l.

Now 812 +41 < I3 if I > 9, so by [Liib01, Theorem 5.1] we have A = w; or
A = wy if [ > 12. In the cases where 2 < [ < 11, checking irreducible, self-dual
representations of dimension < 242 given in [Liib01], we find that the the
only ones besides wy and we are those in (ii), (iii) and (iv) of the claim. O

Lemma 5.2.5. Suppose that G is of type Cs and let u € G be a distinguished
unipotent element. Then u does not act as a distinguished unipotent element on

L({.U3).

Proof. We have dim L(ws) = 100 for example by |Liib01]. Thus if u has order
< 23, then by Lemma 5.2.1 the action of u is not distinguished on L(ws3) (because
w = 40 < 100). The only distinguished unipotent element of G with order
> 23 is the regular unipotent element. A computation with MAGMA (Section 2.9)
shows that the regular unipotent acts on L(ws) with Jordan blocks [62, 10, 14, 164],
and thus the action is not distinguished. O

Therefore for types By, C; and Dy, the claim of Theorem 1.1.11 is reduced to
the cases A = wy and A\ = w; (I < 10), which will be dealt with in Section 5.6 and
Section 5.11, respectively.

5.2.3 Exceptional types

In this subsection we assume that G is of exceptional type.

Proposition 5.2.6. Let u € G be distinguished and let X € X(T)T be 2-restricted.

If w acts on L(X\) as a distinguished unipotent element, then one of the following
holds.

(i) G =Gy and A = wy or A = we.
(i) G =Fy and A = w1 or A = wy.
(iii) G = Eg and A = wo.

(iv) G =FE7 and A = wy or A\ = wr.

(v) G = Eg and X\ = ws.

Proof. As in the proof of Proposition 5.2.2, we can assume that L(\) is self-dual.

When G is of type Ga, Fy, Fg, E7 or Eg, then all distinguished unipotent
elements of G’ have order at most 23, 24, 24, 2% and 2° respectively (see tables in
Appendix A). Then by Lemma 5.2.1, the dimension of L(\) is at most 40, 144,
144, 544, and 544 respectively. Going through the tables given in [Liib01], one
finds that the irreducible self-dual 2-restricted modules of dimension at most the
bound are those in (i), (ii), (iii), (iv), and (v) respectively. O

For groups of exceptional type, Proposition 5.2.6 reduces the claim of Theorem
1.1.11 to a small number of A to consider. These representations are treated in
Appendix B.
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5.3 Representation Lg(w; + w;) for G of type A; (p # 2)

Assume that p # 2 and that G is of type A; (1 > 2).
Let V' be the natural module of G and setn=1+1=dimV.

The purpose of this section is to determine when a unipotent element u € G acts
as a distinguished unipotent element on L(w; + w;).

It is well known that we can find L(w; + w;) as a subquotient of V @ V*, as
shown by the following lemma which also holds when p = 2. For a proof, one can
apply |Sei87, Lemma 8.6] as in [McN98, Proposition 4.6.10 (a)|.

Lemma 5.3.1. As G-modules, we have

V®V*2{L(W1+W)@L(0) o dfeln
L(0)/L(w1 + w;)/L(0) (uniserial) if ptn

We will now determine when a regular unipotent v € G acts as a distinguished
unipotent element on L(w; + wy).

Proposition 5.3.2. Let u € G be regular. Then u acts on L(wy +wy) as a distin-
quished unipotent element if and only if one of the following holds:

(ii) n:bpk—l—pk%forsomek‘Zlandogbg%.

In all of these cases, u acts on L(wy + wy) with Jordan blocks [2n — 1,2n —
3,....3].

Proof. Recall the notation for K[u]-modules from Section 1.4. As a K[u]-module,
we have V=2V, andso VR V*=V,®V,.

Suppose first that p | n, so now Ve V* = L(0)/L(wi +w;)/L(0) as a G-module.
By Theorem 3.3.5 and Lemma 3.4.3, the unipotent element u acts on V ® V* with
p® Jordan blocks of size p®, where a = v,(n). Thus the action of w on V ® V* is
inadmissible (Definition 3.2.4), so by Lemma 3.2.6 the unipotent element u does
not act on L(w; 4+ w;) as a distinguished unipotent element.

Therefore it will be enough to consider the case where p f n. Now V ® V* =
L(wi + wy) & L(0) as a G-module. Since in V,, ® V,, block size 1 occurs with
multiplicity 1 (Lemma 3.4.3), it follows that u acts on L(w;+w;) as a distinguished
unipotent element if and only if V,, ® V,, has no repeated blocks. Since p # 2, we
have V,, @ V,, = A%(V,,) @ S?(V,,) as a K[u]-module, so the claim follows from
Proposition 3.5.3 and Proposition 3.4.4. OJ

5.4 Representation Lg(w; + w;) for G of type A; (p = 2)

Assume that p = 2 and that G is of type Ay (1> 2).

Let V' be the natural module of G.
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The purpose of this section is to determine when a unipotent element v € G
acts as a distinguished unipotent element on L(w; + wy). The answer is given by
Proposition 5.4.4; we have also recorded this in Table 1.3.

As a special case of Lemma 5.3.1, we have the following.

Lemma 5.4.1. As G-modules, we have

Vert e L(wi +wp) @ L(0) if dimV is odd
| L(0)/L(wy + w;)/L(0) (uniserial) if dimV is even

We will also be applying the following theorem, which tells how a tensor square
Vi, ® V,, splits into a sum of indecomposables. It could be easily deduced with the
main result of [Barl1] (Theorem 3.3.5), but it is also given in [GL06, Corollary 3|.

Theorem 5.4.2. Let n =2+ s, where k >0 and 0 < s < 2F. Then
(i) If s=0, then V,, @ V;, =n - V,.
(il) If s >0, then V,, @ V;; = (Vyi—2s @ Vi—25) @ 25 - Vaorya.

Lemma 5.4.3. All Jordan blocks in V,, @ V,, have multiplicity < 3 if and only if
n=12,3o0rn=>5.

Proof. If n <5, we can easily decompose V,, ® V,, using Theorem 5.4.2 and verify
the claim. We have given these decompositions in Table 5.1 for convenience.

Suppose then that n > 5 and write n = 2¥ + s, where k > 2 and 0 < s < 2*.
If s =0, then by Theorem 5.4.2 (i) the tensor square V,, ® V,, has n > 4 blocks of
size n. Consider then 0 < s < 2%, so now

V.V, = (Vn_gs &® Vn_gs) ® 2s - V2k+1

by Theorem 5.4.2 (ii). Therefore if s > 2, then V,, ® V}, has > 4 blocks of size 2F+1.
What remains is the case where s = 1. In this case, we have n —2s = 2F — 1 =
2F=1 4 (2k=1 — 1) and thus by theorem 5.4.2 (ii) the tensor square V;,_os ® Vj,_os
has 2(2F~1 —1) = 2¥ —2 > 4 blocks of size 2¥ (we have k > 3 since we are assuming
n > 5). O

Proposition 5.4.4. Suppose that G = A;, | > 2 and let uw € G be a regular
unipotent element. Then u acts on L(wi+w;) as a distinguished unipotent element

if and only if | =2 or | = 4.

Proof. We know from lemma 5.4.1 that as a G-module, V@V* = L(w;+w;)® L(0)
if 241+ 1and Ve V*=L(0)/L(w +w;)/L0)if 2|+ 1.

Now w acts on V with a single Jordan block of size [ + 1. Thus if [ = 3 or if
[ > 5, then by Lemma 5.4.3 the action of v on V ® V* has some Jordan block
with multiplicity > 4. Hence the action of w on V ® V* is inadmissible (Definition
3.2.5), so it follows from Lemma 3.2.7 and Lemma 3.2.8 that u does not act on
L(wy + w;) as a distinguished unipotent element in this case.

What remains is to consider [ = 2 and [ = 4. For these cases, a computation
with MAGMA (Section 2.9) shows the following.

e If | = 2, then we have the orthogonal decomposition (Proposition 2.4.4)
L(w1 -+ (,UQ) d K[u] = V(4)2.
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e If | = 4, then we have the orthogonal decomposition (Proposition 2.4.4)
L(wi +wi) | K[u] = V(4)? + V(8)%

Therefore in both of these cases u acts on L(w; + wy) as a distinguished uni-
potent element (Proposition 2.4.4), as claimed. O

V,®V,
[1]

[2%]
[1,47]
[4%]
1,42 82]
Table 5.1: Decomposition of V,, ® V,, for 1 < n <5.

U W S

5.5 Representation Ls(w;) for G of classical type
(» #2)

Assume that p # 2.

Suppose that G is of type By, C; or D; with natural module V. In this section,
we will determine when a unipotent element u € G acts on L(w2) as a distinguished
unipotent element. We will show that this can happen only when w is a regular
unipotent element. Furthermore, with the unique exception of type Cs with p = 3,
we will see that u acts on L(ws) as a distinguished unipotent element only if it
acts on A?(V) with no repeated blocks.

5.5.1 Construction of Lg(ws)

In this subsection, we will describe the well known construction of Lg(ws) for
G = Sp(V) (type C}) and G = SO(V) (type B or D;). For types B; and Dj this

is easy, as seen in the following lemma.
Lemma 5.5.1. Let G = SO(V). Then N2(V) = Lg(ws).

Proof. This is a consequence of [Sei87, 8.1 (a), 8.1 (b)], see for example [McN98,
Proposition 4.2.2]. O

For the rest of this subsection, let G = Sp(V'), where dim' V' = 2 (I > 2). Let
(—, —) be a G-invariant alternating bilinear form on V. The following lemma shows
that the exterior square A%(V) is not irreducible, but we can find the representation
Lg(ws) as a subquotient of A2(V).

Lemma 5.5.2. As G-modules, we have

M@qg{LWﬁ@Lm) R S0
L(0)/L(w2)/L(0) (uniserial) if p|l.

Proof. See for example [McN98, Lemma 4.8.2]. Ol
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We now proceed to describe the submodule structure of A%(V) explicitly. Fix
a symplectic basis eq, ..., ey of V such that

(er.e)) = (1) ifi+j=201+1,
R 0 otherwise.

Define v € A2(V) by
l
V= Z(_l)iei N €21 41—-
i=1
Then « spans the unique one-dimensional G-submodule of A%(V), as seen by the
following lemma.

Lemma 5.5.3. The element v is fized by the action of G on AN*(V).

Proof. The form (—,—) induces a G-module isomorphism V' — V* defined by
v +— (v,—). This in turn induces an isomorphism ¢ : A%(V) — A2(V*) of G-
modules.

Let Alt(V) be the space of alternating bilinear forms on V. Then Alt(V) is a G-
module with the action defined by (g-8) (v, w) = B(g~ v, g~ tw) for all B € Alt(V),
g € G, and v,w € V. Now there is an isomorphism x : A2(V*) — Alt(V) of G-
modules, defined by x(f A f/)(v,w) = f(v)f (w)— f(w)f'(v) for all f, f" € V* and
v,we V.

Therefore it is enough to show that the alternating bilinear form xu(v) =
is fixed by the action of G. That is, we should show that £ is a G-invariant
alternating bilinear form on V. To this end, a straightforward calculation on the
basis elements e; shows that (v, w) = (v, w) for all v,w € V. O

We define the linear map ¢ : A2(V) — K by p(vAw) = (v,w) for all v,w € V;
it is easily seen that ¢ is a surjective morphism of G-modules.

Now we can use the G-submodules ker ¢ and () to describe the submodule
structure of A2(V). Note that we have () = [. Therefore if p {1, then v & ker ¢
and so A2(V) = ker p @ () as a G-module. In this case ker ¢ = L(wy) by Lemma
5.5.2. If p | [, then 7 € ker ¢, and thus ker ¢/(y) = L(ws2) by Lemma 5.5.2.

5.5.2 Types B; and D,

Lemma 5.5.4. Let G = SO(V) and let u € G be a unipotent. Suppose that u is
a distinguished unipotent element of G, so as a Ku]-module V = Vg, & --- & Vg,
where the d; are distinct and odd (Proposition 2.3.4). Assume thatt > 1. Then u
acts on A2(V') with no repeated blocks if and only if t = 2, and V = Vy® Vi, where
A2(Vy) has no repeated blocks and d =1 mod 4.

Proof. Suppose that u acts on A?(V) with no repeated blocks. Now as a K[u]-
module, A2(V) has A2(Vy,) @ -+ @ A%(Vy,) as a direct summand by Lemma 3.4.9.
Therefore u acts on A?(Vy,) with no repeated blocks for all 4, and by Proposition
3.5.3, each A?(V,) decomposes as in characteristic 0. In particular, since all d; are
odd, for all d; > 1 we have a block of size 3 in A?(V;,) (Proposition 3.4.4). Thus
d; > 1 for at most one ¢, which implies t = 2 and V = V;® Vj for some odd d > 1.
By Lemma 3.4.9, we have

/\2(V) = /\2(Vd) o Vy
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as a K[u]-module. Since A?(V}) has no repeated blocks, it decomposes as in charac-
teristic 0 (Proposition 3.5.3). In particular, by Proposition 3.4.4, the K [u]-module
A%(Vy) has V; as a summand if and only if 2d — 3 = d mod 4, which happens if
and only if d = 3 mod 4. Therefore u acts on A?(V) with no repeated blocks if
and only if d =1 mod 4. O

Proposition 5.5.5 (Type B;). Let G be the orthogonal group SO(V'), where
dimV =2l+1 (1 >2). Then

(a) A non-regular unipotent element of G does not act as a distinguished unipotent
element in the representation L(ws).

(b) A regular unipotent element of G acts as a distinguished unipotent element in
L(wo) if and only if one of the following holds:

i) p>4l—1,
(ii) 2[+1:bpk+l>k2é’ wherek:ZlandOSbSE,
(iii) 2[+1:p+¥;

Proof. Recall that A2(V) = L(wsy) (Lemma 5.5.1). Let u € G be a distinguished
unipotent element.

If w is not regular, then the fact that dimV is odd implies that the action
of w on V has > 3 Jordan blocks (Proposition 2.3.2). Then by Lemma 5.5.4 the
action of u on A%(V) has repeated blocks, and thus the action is not distinguished,
proving (a).

Suppose that w is regular, so now V' | K[u] = Vy;41. Then u acts on L(ws) as
a distinguished unipotent element if and only if v acts on A%(V) with no repeated
blocks, so the claim follows from Proposition 3.5.3. O

Proposition 5.5.6 (Type D;). Let G be the orthogonal group SO(V'), where
dimV =21 (1 >4). Then

(a) A non-regular unipotent element of G does not act as a distinguished unipotent
element in the representation L(w2).

(b) A regular unipotent element of G acts as a distinguished unipotent element in
L(ws) if and only if | is odd and one of the following holds:

(i) p>4l -5,
(i1) 2l—1:bpk+pk2$, wherekZlandogbg%,

_3
(iii) 20 —1=p+ 5=,

Proof. Recall that A%2(V) = L(ws) (Lemma 5.5.1). Let u € G be a distinguished
unipotent element. If v is not regular, then u acts on V with > 2 Jordan blocks
of size > 1 (Proposition 2.3.3). Then by Lemma 5.5.4, the action of v on A%(V)
has repeated blocks and so the action is not distinguished, which proves (a).
Suppose next that u is regular, so V' | K[u] = Vo;—1 @ V1 (Proposition 2.3.3).
In this case the claim follows from Lemma 5.5.4 and Proposition 3.5.3, since u
acts on L(ws) as a distinguished unipotent element if and only if u acts on A2(V)
with no repeated blocks. ]
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5.5.3 Type

Lemma 5.5.7. Let G = Sp(V) and let uw € G be a unipotent. Suppose that u is
a distinguished unipotent element of G, so as a K[u]-module V =V, &--- & Vg,
where 0 < dy < --- < dy are even (Proposition 2.3.4). If t > 1, then u acts on
AN2(V) with some block of size > 1 having multiplicity > 2.

Proof. Tt follows from Lemma 3.4.9 that A%(V) | K[u] has A2(Vy, @ Vg,) as a
direct summand. Thus it will be enough to prove the claim in the case where
t =2 say V =V, ®V, with 0 < m < n even. Suppose that u acts on A%(V)
such that all blocks of size > 1 have multiplicity < 1. Now A%(V) | Ku] =
N2 (Vi) @ (Vi @ Vi) @ A%(V4,), so by Proposition 3.5.3 the action of u on A?(V,,)
and A?(V},) is as in characteristic 0.

Note that since m and n are both even, we have 2m —3=2n—-3 =1 mod 4,
so every block in A%(V},,) must occur in A?(V,,) by Proposition 3.4.4. In particular
if m > 4, then both A%(V},,) and A%(V},) have a block of size 5. Thus A%(V) has
> 2 blocks of size 5, contradiction.

If m = 2, then we have A2(V) = A%(V,,) @ (Vi, @ Va) @ V4. Now by Lemma
339 wehave V, @ Vo =V, 1 @ Vyppif ptnand V, @ Vo =V, @V, if p | n.
We have n > 4, so n +1 < 2n — 3 and therefore either V,,_1 or V,,41 occurs in
A%(V,,). Thus either a block of size n — 1, n or n + 1 has multiplicity 2 in A%(V),
contradiction. O

Lemma 5.5.8. Let G = Sp(V) and let w € G unipotent. Suppose that u is a
distinguished unipotent element of G, so as a K[u]-module V. = Vg, @ --- @ Vg,
where the d; are distinct and even (Proposition 2.3.4). Assume that p | dimV, so
A2(V) = L(0)/L(w2)/L(0) as a G-module (Lemma 5.5.2). Let ug be the image of
u in SL(A2(V)) and uf the image of u in SL(L(ws)). Let o = vp(ged(dy, ..., dyp)).
Then for the Jordan block sizes ry,(u) (Definition 3.1.1) the following hold.:

(a) If a« =0, then r1(uf) = r1(uo) — 2 and rp(ul) = rm(ug) for all m > 1.

(b) If a > 0, then one of the following holds:

(i) rpa(ug) = rpe(ug) — 1, rpe_a(ug) = 1, and rp(uf) = rm(ug) for all
m # p*,p* — 2.

(i1) rpa(ug) = rpa(ug) — 2, rpa_1(uy) = 2, and rp(uy) = rm(ug) for all
m # p®,p* — 1.

Proof. We begin by constructing w as in Section 2.5. Let V. =W, & --- & Wy, an
orthogonal direct sum, with dim W; = d;. For each 1, let egl), . ,e&?

for W; such that

be a basis

i) (i) = {(—1)”” ifz+y=d+1,
0 otherwise.
Set e; = 0 for all < 0. Now define a linear map v : V. — V by (u — 1)65,,?) =
(u+ 1)69(21 forall 1 <i<tand 1<z <d;. Then u € Sp(V) (see Section 2.5)
and V\LK[U] = le @-"@th with W, = Vdi-
Let o : A%(V) — K and v € A%(V) be as in subsection 5.5.1, so now
ker ¢/(y) = L(wg) as G-modules.
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Without loss of generality, assume that oo = vp(dy1). Set d = d; and e, = eg;l)

for all 1 < x < d. Denote the restriction of ug to ker ¢ by u6. We can and will
consider u( to be the map induced by ug on ker ¢/ (7).
We consider first the case where o = 0. Now

d/2

n=>> (-1)ejneajn
j=1

is a fixed point for up by Lemma 5.5.3. Furthermore, we have ¢(v1) = d/2, so
v € ker ¢ since p does not divide d. Thus ker(ug — 1) Z ker ¢, so by Lemma 3.2.1
we have r1(u)) = r1(up) — 1 and ry, (u)) = rm(ug) for all m > 1.

Since A%(V) admits a non-degenerate G-invariant symmetric form (Lemma
4.4.7), it follows from Proposition 2.3.2 (ii) that 7y, (ug) = rm (u() is even if m > 0
is even. On the other hand, we also have a non-degenerate G-invariant symmetric
form on ker ¢/(y) = L(w2) (see Table 4.1), so rp,(u) is even if m > 0 is even,
as well. Thus when we look at the Jordan blocks of u( in terms of those of wu
using Lemma 3.2.2, we see that the situation in Lemma 3.2.2 (b) cannot occur.
Indeed, otherwise 7y, (uj) would be odd for some even m > 0. Thus we have
ri(uy) = ri(uf) — 1 =ri(ug) — 2 and ry, (uf) = rm(ugy) = rm(ug) for all m > 1, as
desired.

Consider then the case where o > 0. Write d = p®k, where p does not divide
k. Note that in this case the smallest Jordan block size of u acting on A2(V) is p®
by Lemma 3.4.11.

We will show next that ker(ug — 1)P" & ker ¢. Since (up — 1)P" = uga — 1, this
is equivalent to finding a fixed point for uga outside of ker .

Since (u — 1)ey = (u+ 1)e,—1, it follows that (u — 1)"e, = (u+ 1)™ey—p, for
all m > 1. In particular, (u — 1)P"e; = (u + 1)P" ez—pe, 50

@

(WP — ey = (P + 1)eg_po

for all x.
Therefore, the subspace W of V' with symplectic basis

€1, Cl4ps - -+ E(k—1)pa415 Ep>) €2p>, - - - s Chper

is a non-degenerate uP”-invariant subspace. Then by Lemma 5.5.3, the element
7' € A2(V) defined by

Ea
—_

V=) (=1 erpe Aegjpe

<.
Il
=)

is a fixed point for uga. Furthermore, now o(v') = k so 7' & ker .

We have seen that ker(up — 1)P” € ker ¢ and that the smallest Jordan block
of uy has size p®, so it follows from Lemma 3.2.1 that rpe(uj) = rpe(ug) — 1,
rpo—1(uy) = 1 and rp(uy) = rm(uo) for all m # p®, p® — 1. Because ker /() =
L(ws) has a G-invariant symmetric form, it follows that rpe_1(ug) must be even.
Thus when we look at the Jordan blocks of wu( in terms of those of u( using
Lemma 3.2.2, we see that we must have m = p®* — 1 or m = p® — 2 in Lemma
3.2.2 for rpa_1(ug) to be even. This proves the claim, since these two possibilities

correspond to the situations (i) and (ii) given in case (b) of our claim. O
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Remark 5.5.9. In case (b) of Lemma 5.5.8, both cases (i) and (ii) can occur. For
example, consider the case where p = 3 and G = Sp(V) with dimV' = 18 (type
Cy). Here we have A2(V) = L(0)/L(w2)/L(0).

For v € G with V' | K[u] = Vig (regular unipotent), one computes that

A2(V) | Ku] = [9°,277]
L(ws) 4 K[u] = [7,9% 274

so the blocks are given as in Lemma 5.5.8 (b) (i). For u € G with V' | K[u] =
Vs @ Vio, one computes that

N(V) L K] = [3%,9°,15%,21]
L(ws) | K[u] = [2%,3%,95,155, 21]

so here the blocks are given as in Lemma 5.5.8 (b) (ii).

Although it is not necessary for the solution of our main problem, it would be
interesting to find a way to determine which of the cases (i) or (ii) occur in Lemma
5.5.8 (b). One could also try to generalize Lemma 5.5.8 for non-distinguished
unipotent elements. For example, in our proof of Lemma 5.5.8 we never used the
fact that the block sizes d; are distinct, and indeed Lemma 5.5.8 holds for all
u € Sp(V') which have all Jordan block sizes even.

Proposition 5.5.10 (Type Cj). Let G be the symplectic group Sp(V), where
dimV =20 (1 >2). Then

(a) A non-regular unipotent element of G does not act as a distinguished unipotent
element in the representation L(w2).

(b) A regular unipotent element of G acts as a distinguished unipotent element in

L(ws) if and only if one of the following holds:

(i) p>4l -3,

(ii) QZ:bpk+pk%, where k> 1 and 0 < b < E=L,
. -3

(iii) 20 =p+ 5=,

(iv) p=3,1=3

Proof. We consider the claims (a) and (b) first in the case where p 1 [. In this
case A2(V) = L(wg) ® L(0) (Lemma 5.5.2), so by Lemma 5.5.7 a non-regular
unipotent u € G acts on A?(V), thus on L(ws) with some block of size > 1 having
multiplicity > 2. This proves (a). If u € G is regular, then V | K[u] = Vo and it
follows from Proposition 3.5.3 that u acts on L(wq) as a distinguished unipotent
element if and only if it acts on A?(V') with no repeated blocks. Thus (b) follows
from Proposition 3.5.3.

Consider then p | I, so now A%(V) = L(0)/L(ws)/L(0) as a G-module. Let
u € G be a distinguished unipotent element, say V' | K[u] = Vg, & --- @&V, where
d; are distinct and even. Set a = vp(ged(dy, ..., dp)).

Suppose first that u is not regular, i.e. that ¢ > 1. If « = 0, then it follows
from Lemma 5.5.7 and Lemma 5.5.8 that u acts on L(wy) with some Jordan block
of size > 1 having multiplicity > 2. Consider then the case where a > 0. For all ¢,
set o = vp(d;). It follows from Lemma 3.4.10 that u acts on A?(Vy,) with smallest
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Jordan block size p®, which occurs with multiplicity L;l > 2. Since A%2(V) has
N2 (Vgy) @ -+ @ A%(Vy,) as a direct summand by Lemma 3.4.9, and since t > 1, it
follows that the action of u on A%(V) is inadmissible (Definition 3.2.4). By Lemma
3.2.6, the action of u on L(ws) is not distinguished. This proves (a).

For (b), suppose that u is regular, say V | K[u] = V; where d = dim V. It
follows from Lemma 3.4.10 that u acts on A?(V') with smallest Jordan block size
p%, which occurs with multiplicity Z%. Therefore if p > 3 or a > 1, the action
of u on A?(V) is inadmissible and thus by Lemma 3.2.6, the action of u on L(ws)
is not distinguished.

Suppose then that p = 3 and a = 1, say d = 3k where 3 does not divide k.
Now by Theorem 3.3.8, we have s,(d)> = (3A1,3A1,3A1, ..., 3\, 3A;, 3A,) where
sp(k)> = (A1,...,Ag). Note that Ay = 1 and A\ > 1 for all ¥/ < k by Lemma
3.4.3.

Since k is even, it follows from Theorem 3.4.5 that if & > 2, then u acts on
A%(V) with > 2 blocks of size 3\; and > 2 blocks of size 3\;_5. Once again the
action of u on A?(V) is inadmissible, so the action of v on L(ws) is not distinguished
by Lemma 3.2.6.

Therefore the only possibility left is that & = 2, and this is precisely the case
(b) (iv) in our claim. One can compute, either directly or e.g. with MAGMA
(Section 2.9), that in this case we have

N (V) | K[u] = [3,3,9]
L(ws) | K[u] =[1,3,9]

so the action of u on L(wsg) is distinguished. This completes the proof of the
proposition. L]

Remark 5.5.11. Let G = Sp(V). In Proposition 5.5.10 (b) (i)-(iii), it is clear
that p 1, and thus V(ws) = L(ws) and A%(V) = L(wy) ® L(0) by Lemma 5.5.2.
Therefore it follows from Proposition 5.5.10 that if some unipotent element v € G
acts on L(wg) as a distinguished unipotent element, then V(ws) = L(wg) unless
p = 3,1 = 3, and v is a regular unipotent element of G. This reflects a more
general phenomenon that is seen in Theorem 1.1.10. Looking at the p-restricted
highest weights A that occur in the statement of Theorem 1.1.10, one can observe

that there are very few cases where V() is not irreducible.

5.6 Representation Lg(w:) for G of type C; (p = 2)

Assume thal p = 2.

Suppose that G is of type C; (I > 2) and let V' be the natural module of G. In
this section, we determine when a unipotent element u € GG acts as a distinguished
unipotent element on L(ws). The answer is given in Proposition 5.6.7 below and
is also recorded in Table 1.3.

As in subsection 5.5.1, we can find the representation L(ws) as a subquotient
of the exterior square A?(V). Lemma 5.5.2 also holds in characteristic two (e.g.
by [McN98, Lemma 4.8.2]) and becomes the following.

Lemma 5.6.1. As G-modules, we have

T {L(wg) & L(0) if 1 is odd
L(0)/L(w2)/L(0) (uniserial) ifl is even
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Let u € G be a distinguished unipotent element and suppose that u has order
201 We retain the notation for K[u]-modules from Section 5.3. We will apply
the following result, which tells us how the exterior square of an indecomposable
K[u]-module splits into a sum of indecomposables. It was proven by Gow and
Laffey in [GLO06] and it is a special case of a more general result due to Himstedt
and Symonds [HS14, Theorem 1.1].

Theorem 5.6.2. Let 0 < s < 2" 1 and n > 1. Then
N2 (Vs ) = A2 (Vo) @ Van_y & (5 — 1) Van

Remark 5.6.3. In Theorem 5.6.2, we interpret Vj = 0, so s = 2" ! gives
A2(Vgn) = (2771 = 1) Van @ Von-1.

Lemma 5.6.4. Suppose that all blocks in A*(V,.) have multiplicity < 3. Then
r < 20.

Proof. Write r = 2" + 5, where n > 1 and 0 < s < 2”1, Now
/\2(‘/2"71—"-8) - /\2(V2n71_5) @ VQ’!L,S @ (S - 1)‘/2n

so s —1 < 3and so s < 4. On the other hand, 2" ! — s =22 4+ 272 — 5 50
applying "2 _ g1 <3and so 2" 2 < s+ 4 < 8. Therefore n < 5 and thus
r=2""14 5 <24 44 =20. O

Using Theorem 5.6.2, we can easily decompose A%(V,) for 1 < r < 20 (see
Table 5.2) and get the following corollary.

Corollary 5.6.5. Suppose that all blocks in A2(V,.) have multiplicity < 3, and
that at most one block has multiplicity 3. Then r < 12.

In the proof of the next lemma, we will make use of Table 5.3, which gives the
decomposition of V. ® V; for 2 < r < s < 12 where r and s are even. The data in
table 5.3 can be computed with a computer program (for example MAGMA), or
by hand using recursive formulae as described for example in [Barll, Theorem 1]
or |[GL06, Corollary 3].

Lemma 5.6.6. Let V =V, @ ---®V,, be a K[u]-module, where 2 < r; <ry <
-+« < ry are even. Then the action of u on N2(V) is inadmissible (Definition 3.2.5),
unless one of the following holds.

(i) t=1and V =V,, where r < 12.
() t=2andV =Vo@® Vo or V="Va@ Vyg.

Proof. If V.=V, and the action of u on A%(V) is admissible, then by Corollary
5.6.5 we have r < 12.

Consider then V = V,, @ V,,, where 2 < r; < ry are even and suppose
that the action of u on A?(V) is admissible (Definition 3.2.5). Now A2(V) &
N2 (V) ® (Viy @ Vi) ® A2(Viy), 50 by (i) we must have r1, 79 < 12. Furthermore,
now the action of u on V,, ® V,,, is admissible, so by Table 5.3 the pair (r1,72)
is one of the following: (2,2), (2,4), (2,6), (2,8), (2,10), (2,12), (4,6), (4,10),
(6,12). Computing A%(V,, @ V;,) in these cases using Table 5.2 and Table 5.3, one
gets the following decompositions.
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NV V)  =[12,27

NVa@Vy)  =[1,2,4%

N(Va® V) =[12,6%8]

N(Va@Vg)  =[1,4,8

N (Vo @ Vig) = [1%,6,8,102,14, 16]

N (Vo @ Vig) =11,2,4,123,167]
N(Vio V) =11,2,43,6,8°

N(Vi@ Vi) =11,2,4,6,8%,122, 14, 16]
N (Ve @ Vig) =11,2,4,6,8% 123 16°]

Therefore (ri,r2) must be (2,2) or (2,10).

Finally, suppose that V =V, ® V., ®--- ®V,, where 2 <r; <ry < .- <1y
are even and t > 3. Note that A?(V) has A2(V,, @ Vi) and A%(V,, ® Vi,) as a
direct summand. Thus if the action of u on A%(V) is admissible, then the action
of u on each of A2(V,, @ V,,) and A%(V,, ® V;,) is also admissible. By (ii), this
implies that V,, ®V,., @V, = Vo @ Vo ® Vig or Vo ® Vo @ Vo, A computation shows
that

NVao VoV, =132
N (Va® V@ Vig) = [1%,2%6,8,10%,14,16]

and then since A%(V,, ® V., ® V,,,) is a direct summand of A%(V), it follows that
the action of u on A?(V) is inadmissible. O

Proposition 5.6.7. The action of u on L(ws) is distinguished if and only if | and
w occur in Table 5.1.

Proof. Suppose that the action of w on L(ws) is distinguished. Now by lemmas
5.6.1, 5.6.6, 3.2.7 and 3.2.8 one of the following holds:

e 2 <[ <6 and u is regular.
e [ =2and uis in class (23).

e [ =6 and w is in class (2, 10;).

If | = 4 and wu is regular, then a computer calculation shows that the action of
u on L(wsy) has Jordan blocks [2,83], so the action is not distinguished. If | = 6
and u is regular, then the action of u on L(ws) has Jordan blocks [4, 12,163, so
here too the action is not distinguished.

The remaining cases are those in Table 5.1. In these cases, one can verify by
a computation with MAGMA (Section 2.9) that the Jordan blocks are as in the
claim, and that u acts as a distinguished unipotent element on L(ws). O
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[ | Class of u | Jordan blocks of u acting on L(ws)
2 | regular [4]

2| (2D) [27]

3 | regular 6, 8]

5 | regular [6,8,14, 16]

6 | (21,101) | [6,8,102, 14,16]

Table 5.1: Cases where a unipotent element u of G = Cj acts on L(wy) as a
distinguished unipotent element.

r | A2(V,) r | A2(V;)

110 11| [3,7,13,16%

2 | [1] 12 | [2,4,12,16°]

3 | 13] 13 | [3,11,16]

4 | [2,4] 14 | [1,10,16°]

51 [3,7] 15 | [9,169]

6 | [1,6,8] 16 | [8,167]

7 | [5,8? 17 | 9,169, 31]

8 | [4,8% 18 | [1,10,16°, 30, 32]
9 | [5,8%,15] 19 | [3,11,16%,29, 322]
10 | [1,6,8,14,16] || 20 | [2,4,12,163,28,323]

. lo |4 |6 8 |10 12
2 2%] | [4%] | [6%] [8%] | [107] [127]
4 [44] | [4%2,8%] | [8Y] | [8%,127] [124]
6 (22,84 | [89] | [8%,142] (82,122, 162]
8 8%] | [8%,162] (8%, 16%]
10 [22,8%,16%] | [42,82,169)
12 [44, 168

Table 5.3: Decomposition of V,. ® Vi for 2 < r, s < 12 even.

5.7 Representation Lg(2w) for G of classical type
(p #2)

Assume that p # 2.

Suppose that G is of type By, C; or D; with natural module V. In this section,
we will determine when a unipotent element u € G acts on L(2w;) as a distin-
guished unipotent element. We will show that this can happen only when w is a
regular unipotent element. Furthermore, we will also see that u acts on L(2w)
as a distinguished unipotent element only if it acts on S?(V) with no repeated
blocks. The results and proofs given are very similar to those found in Section 5.5.
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5.7.1 Construction of L (2w;)

In this subsection, we will describe a construction of Lg(2w;) for G = Sp(V)
(type C}) and G = SO(V) (type By or D;). For type C] this is easy, as seen in the
following lemma.

Lemma 5.7.1. Let G = Sp(V). Then S*(V) = Lg(2w1).
Proof. See for example [McN98, Proposition 4.2.2]. O

For the rest of this subsection, let G = SO(V') with dim V' = n, and denote the
symmetric form on V by (—, —). In this situation the following lemma shows that

the symmetric square S?(V) is not irreducible, but we can find the representation
L(2w1) as a subquotient of S%(V) (cf. Lemma 5.5.2).

Lemma 5.7.2. As G-modules, we have

| L(0)/L(2wy) /L(0) (uniserial) if p | n.
Proof. See for example [McN98, Lemma 4.7.3]. Ol

We will now consider the submodule structure of S?(V) more explicitly, simi-
larly to the description of A2(V) in 5.5.1.

Fix a basis eq, ..., e, of V such that
(—1)ymindidl if g4 j=n41,
(ed ej) = .
0 otherwise.

Note that this form is exactly the same as the one given in Section 2.5 if n is
odd.
If n =20+ 1 (type B;), we define v € S?(V) to be the vector

I
. 1
(Z(_l)leien—kl—i) + 5(—1)l+1612+1-

i=1
Similarly if n = 2[ (type D;), we define v € S?(V) to be the vector
l

V= Z(_l)ieienﬁ-l—i'
i—1

The following lemma shows that v is fixed by the action of G.
Lemma 5.7.3. The element v is fized by the action of G on S*(V).

Proof. (cf. Lemma 5.5.3) The form (—, —) on V induces a G-module isomorphism
V — V* defined by v + (v, —). This in turn induces an isomorphism 1) : S?(V) —
S2(V*) of G-modules.

Let Quad(V) be the vector space of quadratic forms on V. Then Quad(V) i
a G-module with the action defined by (g-Q)(v) = Q(g~'v) for all Q € Quad(V),
g € G and v € V. Now there is an isomorphism y : S?(V*) — Quad(V) of
G-modules, defined by x(ff")(v) = f(v)f'(v) for all f, f' € V* and v e V.

Therefore it is enough to show that xi(v) = @ is fixed by the action of G.
That is, we should show that @ is a G-invariant quadratic form. To this end, a
straightforward calculation on the basis elements e; shows that Q(v) = $(v,v) for
allv e V. L

S
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Define a linear map ¢ : S%(V) — K by ¢(vw) = (v,w) for all v,w € V. Then
© is a surjective morphism of G-modules. As in 5.5.1, we will use ker ¢ and v to
describe the submodule structure of S?(V).

Note that we have ¢(v) = n/2. Therefore if p t n, then 7 ¢ kery and so
S%2(V) = ker ¢ @ (7). In this case ker ¢ = L(2w;) by Lemma 5.7.2. If p | n, then
v € ker ¢, and thus ker ¢/(y) = L(2w;) by Lemma 5.7.2.

5.7.2 Types B; and D,

Lemma 5.7.4. Let G = SO(V) and let u € G be a unipotent. Suppose that u is
a distinguished unipotent element of G, so as a Ku]-module V = Vg, & --- & Vg,
where 0 < dy < --- < d; are odd (Proposition 2.3.4). If t > 1, then one of the
following holds:

(i) The element u acts on S%(V') with some block of size > 1 having multiplicity

(ii) As a K[u]-module V = Vi ® V,,, where n = 3 mod 4 and S*(V,,) has no
repeated blocks.

Proof. (cf. Lemma 5.5.7) Tt follows from Lemma 3.4.9 that S*(V) | K[u] has
S2(Vy, @ Va,) as a direct summand for any i # j. Therefore it will be enough to
prove the lemma in the case where t = 2, say V =V, & V,, with 0 <m < n odd.

Suppose that u acts on S?(V) such that all blocks of size > 1 have multiplicity
< 1. Now S?2(V) | K[u] = S?(Vin) ® (Vi @ Vi) @ S?(V,,), so by Proposition 3.5.3
the action of u on S%(V;,) and S%(V,,) is as in characteristic 0. Since m and n are
both odd, we have 2m — 1 = 2n — 1 mod 4, so every block in S?(V},) must occur
in S2(V,,) by Proposition 3.4.4. Therefore m = 1, as otherwise both S?(V;,,) and
S%(V,,) would have a block of size 5.

Now S%(V) | K[u] = Vi ® V,, ® S%(V,,). Furthermore, a block of size n occurs
in S%(V;,) if and only if n = 2n — 1 mod 4, which happens if and only if n = 1
mod 4. Hence we must have n =3 mod 4, and so (ii) of the lemma holds. O

Lemma 5.7.5. Let G = SO(V) and let uw € G unipotent. Suppose that u is a
distinguished unipotent element of G, so as a K[u]-module V = Vg, @ -+ @ Vg,
where 0 < dy < --- < dy are odd (Proposition 2.3.4). Assume that p | dimV, so
S2(V) = L(0)/L(2w1)/L(0) as a G-module. Let ug be the image of u in SL(S%(V))
and u(y the image of u in SL(L(2w1)). Let oo = vp(ged(dy, ..., d:)). Then for the
Jordan block sizes ryy,(u) (Definition 3.1.1) the following hold:

(a) If a =0, then r1(uf) = r1(uo) — 2 and rp(ul) = rm(ug) for all m > 1.
(b) If a > 0, then one of the following holds:

(i) rpa(“f)/) = 1pa(uo) — 1, rp‘*—2(uf)/) = 1, and ri(ug) = rm(uo) for all
m # p*,p* — 2.

(i1) rpa(ug) = rpa(ug) — 2, rpa_1(ug) = 2, and rp(uy) = rm(ug) for all
m 7 p%, p* — 1.
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Proof. (cf. Lemma 5.5.8) We begin by constructing u as in Section 2.5. Let V =
W1 SO W, as an orthogonal direct sum, with dim W, = d;. For all 7, let
e&l), e e((;i) be a basis for W; such that

0 otherwise.

Set e; = 0 for all z < 0. Now define a linear map v : V. — V by (u — 1)63(3) =

(u+ 1)6(;11. Then u € SO(V) (see Section 2.5) and V' | K[u] 2 Vg, @ --- @ Vg,

Let ¢ : S%(V) — K be as in 5.5.1. Let v € S?(V) be a generator for the
one-dimensional G-submodule of S?(V'), which exists by Lemma 5.7.2. We have
ker o/ (1) & L(2w1).

Without loss of generality, assume that o = vp(dy1). Set d = d; and e, = eg;l)
for all 1 < x < d. Denote the restriction of ug to ker ¢ by uf). We can and will
consider u( to be the map induced by ug on ker ¢/ (7).

We consider first the case where a = 0. Write d = 2f 4+ 1. Now

f
; 1
M= ;(_1)Jejed—j+1 + 5(—1)f+1€30+1

is a fixed point for uy by Lemma 5.7.3. Furthermore, we have ¢(v1) = d/2, so
7 ¢ ker ¢ since p does not divide d. Thus ker(ug — 1) € ker ¢, so by Lemma 3.2.1
we have 71 (ugy) = r1(ug) — 1 and 7y, (uf) = rm(ug) for all m > 1. Since we have a
G-invariant symmetric form on S?(V) (Lemma 4.4.8) and Lg(2wy) (Table 4.1), it
follows as in the proof of Lemma 5.5.8 (fifth paragraph) that r(ug) = 71 (ug) — 2
and 7y, (ug) = rm(ug) for all m > 1, as desired.

Consider then the case where o > 0. Write d = p®k, where p does not divide
k. Note that in this case the smallest Jordan block size of u acting on S?(V) is p®
by Lemma 3.4.13.

We will show next that ker(ug — 1)P" € ker ¢. Since (ug — 1)P" = uga — 1, this
is equivalent to finding a fixed point for uga outside of ker ¢.

Since (u— 1)e, = (u+ 1)ey_1, it follows that (v — 1)"e, = (u + 1)"e,_y for
all m > 1. In particular, (u — 1)P"e; = (u + 1)P" ez—pe, 50

(WP —1)ey = (P 4 1)ep_po

for all x.
Therefore the subspace W of V' with basis

€1,€C14py .-+, e(k—l)p“—i—l? Epa, Eopory .. . Cfper

is a non-degenerate u””-invariant subspace. By Lemma 5.7.3, the element 4/ €
S%(V) defined by
k—1
i+1
Y =) (=1 ergpe e

Jj=0

is a fixed point for uga. Now p(7') =k, so v & ker ¢ since p does not divide k.
We have shown that ker(ug — 1)P* ¢ ker and that the smallest Jordan
block size of ug is p®. Since we have a G-invariant symmetric form on S?(V)
and Lg(2wq), the claim follows by arguing as in the end of the proof of Lemma
5.5.8. O
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Remark 5.7.6. (cf. Remark 5.5.9) In case (b) of Lemma 5.7.5, both cases (i) and
(ii) can occur. For example, consider the case where p = 5 and G = SO(V) with
dimV =5 (type Bs). Here we have S?(V) = L(0)/L(2w;)/L(0).

For w € G with V' | K[u] = V5 (regular unipotent), one computes that

S*(V) | K[u] = [5°]
L(2w1) | K[u] = [3,5%]
so the blocks are given as in Lemma 5.5.8 (b) (i).
For an example of Lemma 5.5.8 (b) (ii), consider the case where p = 3 and
G = SO(V) with dimV = 18 (type Dg). Once again SZ(V) = L(0)/L(2w1)/L(0).
For a distinguished unipotent v € G with V' | K[u] = V3 @ Vi35, one computes
that
S2(V) | K[u] = [3%,9,15°, 21,27
L(2w) | Ku] = [22,32,9,15, 21,277

so the blocks are given as in Lemma 5.5.8 (b) (ii).

The following two propositions determine when for G = SO(V') a unipotent
element u € G acts on Lg(2w;) as a distinguished unipotent element. They will
be proven simultaneously.

Proposition 5.7.7 (Type B;). Let G be the orthogonal group SO(V'), where
dimV =2l+1 (1 >2). Then

(a) A non-reqular unipotent element of G does not act as a distinguished element
in the representation L(2w).

(b) A regular unipotent element of G acts as a distinguished unipotent element in
L(2w1) if and only if one of the following holds:
(i) p>4l+1,
(ii) 2l+1:bpk+pk2$, where k > 1 andOgbg%,

Proposition 5.7.8 (Type D;). Let G be the orthogonal group SO(V'), where
dimV =20 (I > 4). Then

(a) A non-regular unipotent element of G does not act as a distinguished element
in the representation L(2w;).

(b) A regular unipotent element of G acts as a distinguished unipotent element in
L(2w1) if and only if | is even and one of the following holds:

(ii) 2l—1:bpk—|—pk2é, where k>1 and 0 < b < %.

Proof of Proposition 5.7.7 and Proposition 5.7.8. (cf. Proposition 5.5.10) Consi-
der first the case where p { dimV, so S?(V) = L(2w;) ® L(0) (Lemma 5.7.2).
Note that a nonregular distinguished unipotent element of G acts on V with > 2
blocks of size > 1 (Proposition 2.3.4). Therefore by Lemma 5.7.4, a non-regular
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unipotent u € G acts on S%(V), hence on L(2w;) with some block of size > 1
having multiplicity > 2. This proves (a).

For (b), still assuming p f dim V', let u € G be a regular unipotent element.
Suppose first that dimV = 2l + 1, so V' | K[u] = Vg1 (Proposition 2.3.3). Tt
follows from Proposition 3.5.3 that w acts on L(2w;) as a distinguished unipotent
element if and only if it acts on S?(V') with no repeated blocks, and thus (b) follows
from Proposition 3.5.3. Consider then dimV = 2, so V | K[u] = Vo1 & W}
(Proposition 2.3.3). In this case, by Lemma 5.7.4 the action of u on L(2w;) is
distinguished if and only if u acts on S?(Vy_1) with no repeated blocks and
2 —1 = 3 mod 4. That is, if and only if u acts on S?(Vy_1) with no repeated
blocks and [ is even. Once again (b) follows from Proposition 3.5.3.

Consider then the case where p | dimV, so S*(V) = L(0)/L(2w1)/L(0)
(Lemma 5.7.2). Note that in the proposition being proven, we have p { dim V'
in (i)-(ii) of (b); therefore we prove next that no unipotent element of G acts as a
distinguished unipotent element on L(2w). Let u € G be a distinguished unipo-
tent element, say V | K[u] = Vg, & --- & Vg, where d; are distinct and odd. Set
a = vp(ged(dy, ..., d)).

Suppose first that a = 0. Note that in this case t > 1. We will show that
u acts on S?(V) with some Jordan block of size > 1 having multiplicity > 2.
Then it follows from Lemma 5.7.5 that u acts on L(2w;) with some Jordan block
of size > 1 having multiplicity > 2. Hence by Lemma 5.7.4 we can assume that
dimV =2, V | K[u] = Vo_1 @ V4, and S%(Va_1) has no repeated blocks. Since
p divides dim V' = 2[, it follows from Proposition 3.5.3 that
pFE1

2 Y

for some k> 1 and 0 < b < %. If21—1:bpk+p%1,then21:bpk—|—ka+1.
But then the fact that p | 2/ implies that p | p* + 1, contradiction. Therefore
21 — 1 = bp* + 5L and so 21 = bpk + 242, Since p | 21, it follows that p | p* + 3
and hence p = 3. Because b = 0 or b = 1 in this case, we can assume that
20— 1 = ?’kTH for some k£ > 1. Therefore 2] = L;?’ and so 3* +3 =0 mod 4,
which means that & must be even. But then 3* +3 =4 mod 8, so it follows that
l= ?’IiT*?’ is odd. Thus 2l —1 =1 mod 4, and by Lemma 5.7.4 the element u acts
on S%(V) with some Jordan block of size > 1 having multiplicity > 2 (namely,
block size 21 — 1 occurs with multiplicity two).

Finally consider the case where o > 0. Suppose first that t > 1. Set o; = 1,(d;).
It follows from Lemma 3.4.12 that u acts on S?(Vy,) with smallest Jordan block
size p®, which occurs with multiplicity % > 2. Since S?(V) has S?(Vy,) @
- @ 8%(Vy,) as a direct summand by Lemma 3.4.9, and since ¢t > 1, it follows
that the action of u on S?(V') is inadmissible (Definition 3.2.4). By Lemma 3.2.6,
the action of u on L(2w1) is not distinguished.

What remains is the case where o > 0 and ¢ = 1. In this case dimV = 2[+1 =
d, where v,(d) = a, and V' | K[u] = Vj. It follows from Lemma 3.4.12 that u acts
on S%(V) with smallest Jordan block size p®, which occurs with multiplicity %.
Therefore if p > 3 or a > 1, the action of v on S?(V) is inadmissible and thus by
Lemma 3.2.6, the action of v on L(2w;) is not distinguished.

Suppose then that p = 3 and a = 1, say d = 3k where 3 does not divide k.
Now by Theorem 3.3.8, we have s,(d)> = (3A1,3A1,3A1, ..., 3\, 3A;, 3A,) where
sp(k)> = (A1,...,Ag). Note that Ay = 1 and A\ > 1 for all £’ < k by Lemma
3.4.3.

2l —1=bp* +
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Since d is odd, and [ > 2, we have k > 3. It follows from Theorem 3.4.5 that
u acts on S%(V) with > 2 blocks of size 3\ and > 2 blocks of size 3\,_o. Once
again the action of u on S?(V) is inadmissible, so the action of u on L(2w1) is not
distinguished by Lemma 3.2.6. This completes the proof of the proposition. O

Remark 5.7.9. (cf. Remark 5.5.11) Let G = SO(V). It is clear in (b) (i) - (ii) of
Proposition 5.7.7 and Proposition 5.7.8 that we have p { I. Thus it follows from
Proposition 5.7.7 and Proposition 5.7.8 that if some unipotent element u € G

acts on L(wz) as a distinguished unipotent element, then V(w2) = L(w2) and
S2(V) =2 L(wq) @ L(0).

5.7.3 Type (;

Lemma 5.7.10. Let G = Sp(V') and let u € G be unipotent. Suppose that u is a
distinguished unipotent element of G, so as a K[u]-module V. = Vg, & --- & Vg,
where 0 < di < -+ < dy are even (Proposition 2.3.4). If t > 1, then u acts on
S%(V') with repeated blocks.

Proof. Suppose that ¢ > 1 and that u acts on S?(V) with no repeated blocks.
Now as a K[u]-module, S?(V) has S?(Vy, )@@ S%(Vy,) as a direct summand by
Lemma 3.4.9. Therefore u acts on S?(Vj,) with no repeated blocks for all 4, and
by Proposition 3.5.3, each S?(V;,) decomposes as in characteristic 0. In particular,
since all d; are even, for all i we have a block of size 3 in S%(V;,) (Proposition 3.4.4).
Therefore u acts on S?(V) with > 2 Jordan blocks of size 3, contradiction. 0

Proposition 5.7.11 (Type Cj). Let G be the symplectic group Sp(V), where
dimV =21 (1 >2). Then

(a) A non-regqular unipotent element of G does not act as a distinguished element
in the representation L(2wy).

(b) A regular unipotent element of G acts as a distinguished unipotent element in
L(2w1) if and only if one of the following holds:

(i) p=4l—1,

(i1) 2l:bpk+pk%, where k > 1 andOSbgp%l.
Proof. Recall that S?(V) = L(2w;) (Lemma 5.7.1). If u € G is a distinguished
unipotent element that is not regular, then u acts on S%(V) with repeated blocks
by Lemma 5.7.10, and thus the action of u on L(2wy) is not distinguished. This
proves (a).

For (b), let u € G be a regular unipotent element, so V' | K[u] = V4 (Propo-
sition 2.3.3). Then u acts on L(2w;) as a distinguished unipotent element if and
only if u acts on S?(V') with no repeated blocks. Thus (b) follows from Proposition
3.5.3. 0

5.8 Representation Lg(w;3) for G of classical type
(» # 2)

Assume that p # 2.
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Suppose that G is of classical type with rank G > 3. In this section, we will
determine when a unipotent element u € G acts on L(ws) as a distinguished uni-
potent element. The answer is given by the following proposition. In the statement
we have excluded G = Dy, since in this case L(ws) is a twist of L(w;) by triality
(Proposition 2.10.2 (ii)).

Proposition 5.8.1. Suppose that G is simple of type Ay (1 > 3), B; (I > 3),
Cy (1 >3)or Dy (I >5). A unipotent element u € G acts on the irreducible
representation L(ws) as a distinguished unipotent element if and only if u is a
reqular unipotent element and G, p are in Table 5.1.

G | uof order > p | u of order p
As p=3 p>5
As pP=29 p=>11
Cs p=3,5 p>11
Cy none p>17
Cs none p>23
Bs pP=5 p>13

Table 5.1: u € G regular and acts on L(ws) as a distinguished unipotent element

For the proof, we will use the construction of L(ws) as a subquotient of A3(V),
where V' is the natural module for G. Thus in some cases we will then have to
compute the decomposition of the K|[u]-mdoule A3(Vy). These computations were
done with MAGMA and they are contained in tables at the end of this section.

5.8.1 Types Ala Bl, and Dl

For G of type A;, B; and Dy, the claim in Proposition 5.8.1 is really a claim about
the exterior cube of a unipotent matrix, as seen from the next proposition.

Proposition 5.8.2. Let G = SL(V) or G = SO(V) with rankG > 3. Then
L{ws) = A*(V).

Proof. This is a consequence of [Sei87, 8.1], as noted in [McN98, Proposition 4.2.2].
O

Now let u € GL(V') be a unipotent element of order ¢ and recall the notation
Vi, Va, ..., V, from Section 1.4 for indecomposable K [u]-modules.

Lemma 5.8.3. Suppose that u acts on \3(Vy) such that all Jordan block sizes are
distinct and all even or all odd. Then d < 8.

Proof. We can consider u as a regular unipotent element of G = A4_1, such that
V' = Vy is the natural module of G. By Proposition 5.8.2 and Lemma 5.1.1 (iii), we
know that the largest Jordan block size of u acting on A3(Vy) is < my(w3) +1 =
3d—8 (Lemma 2.7.3). One can verify that the polynomial inequality dim A3 (V) =
(&) > (muleat2® 40145 for all d > 12. Thus by Lemma 5.1.1 (iv), if u acts on
A3(Vy) such that all Jordan block sizes are distinct and all even or all odd, then
d < 12.

For 9 < d < 11, the claim is immediately seen from the decompositions given
in Table 5.2. L
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Note that when G is of type A;, the irreducible module L(ws) is self-dual if
and only if [ =5 (Table 4.1). Therefore for type A; the claim of Proposition 5.8.1
follows from Theorem 1.1.12, Lemma 5.8.3 and Table 5.2. In particular, we find
that a regular unipotent element of G = A; acts on L(ws) as a distinguished
unipotent element if and only if [ = 3, or [ = 5 and p > 5; these examples have
also been recorded in Table 1.1.

For G of type B; or Dy, the claim of Proposition 5.8.1 follows from Proposition
5.8.2 and the following lemma.

Lemma 5.8.4. Let G = SO(V), where dimV > 3. Let uw € G be a distinguished
unipotent element, so as a Klu|-module V.= Vg, & --- & Vy,, where the d; are
distinct and odd (Proposition 2.3.4). Then u acts on N3(V) as a distinguished
unipotent element if and only if one of the following holds:

(i) V="V, orV=Vi® Vs, for any p;
(ii) V=V, forp=30orp=>7;
(iii) V. =Vz, forp=5 or p > 13.

Proof. If t = 1, then the claim follows immediately from Lemma 5.8.3 and the
data in Table 5.2. Suppose then that ¢ > 1.
For any K[u]-modules W and W’ we have an isomorphism

ANWaW)ZAB3W)e (NBPW)e W) e (W e A2(W) e A3(W) (%)

of K[u]-modules (this is an elementary fact, see for example [FH91, B.1, pg. 473]).
It follows from (*) that A?(Vy, @ Vy,) is a direct summand of A(V) for all i # j.
Therefore it is enough to prove the lemma in the case wheret = 2, say V =V, &V,
with 0 < m < n odd.

Suppose that u acts on A3(V) as a distinguished unipotent element. We will
show that V' = V; & V3, which will prove the “only if” part of the lemma. Now
A3(V) has no repeated blocks, so it follows from (*) that A3(V;) and A2(Vj)
have no repeated blocks for all s € {m,n}. Therefore by Lemma 5.8.3, we have
m,n € {1,3,5,7}. By Table 5.2 and Proposition 3.5.3, if A3(V},) or A%(V},) has no
repeated blocks for n € {1,3,5,7}, then their decomposition is as in the following
table.

n | A2(Vn) | A2(Vp)
1]0 0

3] 3] [1]

5| [3,7] 3,7]

7| [3,7,11] | [1,5,7,9,13]

Consider first 1 < m < n. If (m,n) # (3,5), we see from the table above that
A3(V,) and A3(V,,) have block sizes in common, so it follows from (*) that u acts
on A3(V) with repeated blocks, contradiction. For (m,n) = (3,5), we have by (*)
and the table above that

NVa V)2V (Ve Vs)d(Vze (Vad Vi) d (Vsa Vr).

However, then V3 ® V5 has no repeated block sizes, so by Lemma 3.3.10 we have
Va® Vs = V3@ Vs @ Vi But then A3(V3 @ Vi) has at least two blocks of size 3,
contradiction.
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Thus we must have m = 1, and then A3(V) = A3(V,) @ A2(V,,) by (%). If
n € {5,7}, then it follows from the table above that A3(V},) and A%(V,,) have
block sizes in common. Hence we must have n = 3, so V = V] & V3, as claimed.

Finally for the other direction of the lemma, for V' = V; @ V3, we have A3(V) =2
A3(V3) @ A2(V3) by (*). Tt is clear that A3(V3) = V; for all p, and A%(V3) = V3
for all p (e.g. by Proposition 3.5.3). Hence A3(V3 @ Vi) = V3 @ V; for all p. This
completes the proof of the lemma. O

5.8.2 Type (

In this subsection, let G = Sp(V'), where dim V' = 2! for some [ > 3. We can find
L(ws) as a subquotient of A3(V), as seen by the following lemma.

Lemma 5.8.5. As a G-module, we have

AN(V) = {L(W?)) @ L(wr) o Zfl % 1 mod p,
L(w1)/L(w3)/L(w1) (uniserial) ifl=1 mod p.

In particular, we have dim L(ws) > (%l) —41.

Proof. This is well known, see for example [McN98, Lemma 4.8.2]. O]

Lemma 5.8.6. Suppose that u € G acts on L(ws) as a distinguished unipotent
element. Then u 1s reqular and 3 <1 <'5.

Proof. Now for a regular unipotent element u € G we have m,(w3) = 3(2l —3) =
6/ — 9 by Lemma 2.7.3, and thus by Lemma 5.8.5 we have

dim L(wy) > (2;) YTES W

if I > 7. Therefore by Lemma 5.1.1, no unipotent element of G acts on L(ws) as a
distinguished unipotent element if [ > 7.

Consider then 3 <[ < 6. In these cases for all non-regular distinguished u € G,
one can easily compute their labeled Dynkin diagram using Proposition 2.6.5, and
then compute m,(ws) using the fact that

3
w;g:a1—|—2042—|—3043+"'+3Oq_1—|—§oq.

For convenience we have listed this information in Table 5.3. One verifies that

(mu(ws) +2)?

4
in all cases, so it follows from Lemma 5.1.1 that a non-regular v does not act on
L(ws3) as a distinguished unipotent element.

Finally consider case where w is regular and [ = 6, so now V' | K|[u| = V2. By
Lemma 5.8.5, in this case dim L(ws) = 208 if p # 5, and dim L(w3) = 196 if p = 5.
If p = 5, then u has order 52. But then dim L(w3) = 196 and W = 169, so
by Lemma 5.1.1 the element v does not act as a distinguished unipotent element
on L(ws). Suppose then that p # 5. According to Lemma 5.8.5, we have A3(V) =
L(ws) @ V. Now computing the action of u on L(ws) is a matter of computing
A3(Vig), and this is given in Table 5.2. One sees immediately from the table that
in all cases some block of size # 12 has multiplicity > 2 in A3(Vi2), and thus u
does not act as a distinguished unipotent element on L(ws3). O

dim L(ws3) <
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We can now prove Proposition 5.8.1 for G of type Cj. Suppose that u € G
is a distinguished unipotent element and that u acts on L(ws) as a distinguished
unipotent element. By Lemma 5.8.6, the element w is a regular unipotent element
and 3 <1 <5,80V | Ku] =Vy.

If ] =1 mod p, then we have | = 4, p = 3, and dim L(w3) = 40 by Lemma
5.8.5. In this case u has order 3% and w = 25 < 40, so by Lemma 5.1.1 the
action of u on L(ws) is not distinguished.

If ] #1 mod p, then A3(V) = L(w3) @ V by Lemma 5.8.5. Now taking the
decomposition of A3(Vy) for 3 < 1 < 5 found in Table 5.2, removing a block of
size 21 gives the decomposition of L(ws) | Ku|. The result of Proposition 5.8.1 is
then easily verified.

5.8.3 Computations

Let G = SL(V'), where dimV = d > 4. Fix a regular unipotent element u € G,
so now V | Klu] = V4. In Table 5.2, we have given the decomposition of the
K[u]-module A3(V}) into indecomposable summands. This table was generated
by a computer calculation, as follows.

We know that A3(V) 2 L(ws), and by Lemma 2.7.3 we have m,, (w3) = 3d—9. It
follows then from Lemma 2.7.9 that for all p > 3d—9, the decomposition of A%(Vy)
is the same. Thus for any given d, we can find all the possible decompositions of
A3(Vy) with a finite computation: first we compute A3(Vy) for all 2 < p < 3d — 9,
and then for a single prime p > 3d — 9. For all of the entries in Table 5.2, these
computations can be quickly done with the aid of a computer program.

d [ A(Va) p d [ A3 (Va) P
41 4] p>3 10 | [2,95,10,187] p=3
[10%,207] p=
51 [3,7] p=3 [4,7%,10%,12, 14, 16, 18, 22] p="T
[52] p=5 [10,1110] p=11
[3,7] p>7 (6,10, 138] p=13
[4,6,8,102, 14, 174] p=17
6 | [62,8] p=3 [4,6,8,10%,12,14,18,19?] p=19
[4,6,10] p=5 [4,6,8,102,12, 14, 16, 18, 22] p > 23
(6, 7%] p=7
[4,6,10] p>11 11 | [1,7,9% 122,184, 25] p=3
[1,5,9,10%, 153,19, 21, 25] p=5
7 [1,7,9% p=3 [1,73,9,11,13,142,17,19, 21, 25] p=
[1,5,7,9,13] p=5 [1115] p=11
[7°] p= [9,1312] p=13
[1,5,7,117%] p=11 [1,5,7,9,11,13,177] p=17
[1,5,7,9,13] p>13 [1,5,7,9%,11,13,15,197] p=19
(1,5,7,92,11,132,15,17,19,232] p =23
8 | [2,99] p=3 (1,5,7,92,11,132,15,17,19, 21, 25 p>29
[52,8, 10,12, 16] p=>5
[6,72,8,142] p= 12 | [62,8,125,183,242, 26] p=3
[4,8,114] p=11 [4,6,8,10%,122 152,16, 18, 20, 24, 252] p=>5
[4,6,8,12,132] p=13 [74,12,14%, 16,212, 24, 28] p=
[4,6,8,10,12,16] p>17 (10,1110, 12, 224] p=11
[12,1316] p=13
9 | 3,99 p= [4,8,10,12,16, 1710] p=17
[52,10%,15,19] p=5 [4,6,8,10, 122,16, 19%] p=19
[3,72,9,11,142,19) p="7 [4,6,8,102,122, 14,162, 20, 234] p =23
[7,117] p=11 [4,6,8,102,122,14,162,18,20,22,24,28] | p > 29
[3,7,9,13%] p=13
[3,7%,9,11,13,17?] p=17
[3,72,9,11,13,15,19] | p > 19

Table 5.2: Decomposition of A3(Vy) for 4 < d < 12.
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G |u Dynkin diagram of u | my(ws) | dim L(ws)

Cs | [2,10] | 222202 21 208 (p #5), 196 (p = 5)
Cs | [4,8] | 220202 15 208 (p # 5), 196 (p = 5)
Cs | [2,4,6] | 202002 11 208 (p #5), 196 (p = 5)
Cs | [2,8] | 22202 15 110

Cs | [4,6] | 20202 11 110

Cy | 2,6] | 2202 9 48 (p # 3), 40 (p = 3)
Cs | [2,4] | 202 5 14

Table 5.3: Values of m,(ws) for non-regular distinguished unipotent elements u in
C}, where 3 <[ < 6.

5.9 Representation Ls(3w) for G of classical type
(p #2,3)

Assume that p # 2, 3.

Suppose that G is simple of classical type. In this section, we will determine
when a unipotent element u € G acts on L(3w;) as a distinguished unipotent
element. The method used will be similar to that found in previous sections, in
particular Section 5.8.

The answer is given by the following proposition. Note that for type A; the
representation L(3wi) is not self-dual if [ > 2, so by Theorem 1.1.12 we only need
to consider G of type By, C; or Dy.

Proposition 5.9.1. Suppose that G is a simple algebraic group of type By (I >
2), Cy (1 > 2) or Dy (I > 4). A unipotent element u acts on the irreducible
representation L(3w1) as a distinguished unipotent element if and only if u is a
reqular unipotent element and G, p are as in Table 5.1.

G | uof order > p | u of order p
Cy none p>11
Cs none p>17
By none p>13
Bsg none p>19

Table 5.1: u € G regular and acts on L(3w;) as a distinguished unipotent element

The proof of Proposition 5.9.1 will be given in the next two subsections.

5.9.1 Types B, and D,

In this subsection, let G = SO(V), where dimV = 2[4+ 1 (I > 2) or dimV =
21 (I > 4). We can find the irreducible module L(3w;) as a subquotient of the
symmetric cube S3(V), as seen in the following lemma which is well known.

Lemma 5.9.2. As a G-module, we have

L(3wi) & L(w1) if p|dimV +2,

SB(V)%{L o
(w1)/L(3w1)/L(w1) (uniserial) if pfdimV + 2.
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In particular, we have dim L(3wy) > (d1111;/+2) —2dim V.
Proof. See [McN98, Proposition 4.7.4]. O

Lemma 5.9.3. Let u € G be a distinguished unipotent element. If u acts on
L(3w1) as a distinguished unipotent element, then u is reqular and dimV = 5,

dimV =7 or dimV = 9.

Proof. Write n = dim V. Let v € G be a regular unipotent element. By Lemma
2.7.3 we have

3(n—1) ifnisodd
My, (3wy) = 3my(wy) = (n—1) 1 " ?q 0
3(n—2) if nis even.
Furthermore, by Lemma 5.9.2, we have dim L(3w;) > ("?2) — 2n. Now

dim L(3w,) > <n ; 2> _on s (mU(Swi) +2)? (*)

if n =8 or n > 10, so it follows from Lemma 5.1.1 that no unipotent element of
G acts on L(3w1) as a distinguished unipotent element if n = 8 or n > 10.

If n < 7, then all distinguished unipotent elements of G are regular by Proposi-
tion 2.3.3. Note that we are assuming n > 8 if n is odd, so we are done in this case.
What remains is to consider the case where n = 9. If u € G is a distinguished uni-
potent element that is not regular, then by Proposition 2.3.3 the element u lies in
the unipotent class labeled by [1, 3, 5]. In this case m,,(3w1) = 3my(w1) = 12, and
dim L(3wy) > 147 by Lemma 5.9.2; hence inequality (*) holds. By Lemma 5.1.1,
the element u does not act on L(3w;) as a distinguished unipotent element.  [J

By Lemma 5.9.3, what remains is to verify Proposition 5.9.1 in the cases where
u € G is a regular unipotent element and dimV =5, dimV = 7 or dimV = 9.
If ptdimV + 2, then S3(V) = L(3w;) @ V by Lemma 5.9.2 and then the claim
follows from the data in Table 5.2. Suppose then that p | dim V' + 2. Then either
dimV =5and p =7, or dimV =9 and p = 11. In both cases u has order p and

dim L(3w;) > (pzl)Q, so u does not act as a distinguished unipotent element on
L(3wy) by Lemma 5.1.1. This completes the proof of Proposition 5.9.1 for G of

type B; and Dj.

5.9.2 Type (

In this subsection, let G = Sp(V'), where dim V' = 2[ (I > 2). In this case we have
L(3wy) = S3(V) (see e.g. [Sei87, 1.14 and 8.1 (c)] or [McN98, Proposition 4.2.2

(h)]), so dim L(3w1) = (*77?).

Lemma 5.9.4. Let u € G be a unipotent. If u acts on L(3w1) as a distinguished
unipotent element, then u is reqular and [ < 4.

Proof. Let uw € G be a regular unipotent element. Then m,,(3wi) = 3my(w1) =
3(2l — 1) = 6] — 3 by Lemma 2.7.3. Thus we have

dim D(3wy) <2z + 2) o (mu(Bwr) +2)°

5 1 (*)
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for all [ > 5. It follows then from Lemma 5.1.1 that no unipotent element of G
acts on L(3w;) as a distinguished unipotent element if [ > 5.

Suppose then that [ < 4 and let v € G be a distinguished unipotent element.
In this case, it is straightforward to verify that the inequality (*) holds if u €
G is not a regular unipotent element. Indeed, if | = 2 then there are no non-
regular distinguished unipotent elements. If [ = 3, then w is in class labeled by
[2,4] and dim L(3w1) = 56, my(3wi) = 9. If | = 4, then w is in class labeled
by [2,6] and dim L(3w;) = 120, m,(3w1) = 15. Therefore by Lemma 5.1.1, a
non-regular unipotent element of G does not act on L(3w;) as a distinguished
unipotent element. O

The claim of Proposition 5.9.1 for GG of type C; follows now from Lemma 5.9.4
and the information given in Table 5.2.

5.9.3 Computations

Let G = SL(V), where dim V' = d > 4. Fix a regular unipotent element u € G, so
now V | Klu] = V4. In Table 5.2, we have given the decomposition of the Kul-
module S3(Vj) into indecomposable summands. This table was generated by a
computer calculation, similarly to Table 5.2. Here we use the fact that S3(V) =
L(3wy) for p > 3, and m,(3w;) = 3d — 3. It follows as in subsection 5.8.3 that
it will suffice to compute S3(Vy) for all 2 < p < 3d — 3, and for a single prime
p > 3d— 3.

d | 53(Vy) p d [ S3(Va) P

d
4 [2737679] p=3 8 [3,913] p:3
[54] p= [4,6,8,102,12, 152,20 p=
6,72 p="T (78,143, 22] p="7
[4,6,10] p>11 [10,1110] p=11
[6,10,13%] p=13
5| [3,5,9% p=3 [4,6,8,102, 14, 174] p=17
[57] p=5 [4,6,8,102,12,14, 18,192 p=19
[75] p= [4,6,8,102,12,14, 16, 18,22] p > 23
[1,5,7,112] p=11
[175>77 9713] P 2 13 9 [3,918] p= 3
[1,5,9,10%, 152,204 p=5
6| [3,8,99] p=3 [75,9,14%, 19, 21, 25] p=
[54,102,16] p= [1115} p=11
[7%] p=T7 [9,131] p=13
[4,8,11%] p=11 [1,5,7,9,11,13,177] p=17
[4,6,8,12,137] p=13 [1,5,7,9%,11,13, 15,19°] p=19
[4,6,8,10,12,16] p> 17 [1,5,7,9%,11,132,15,17, 19, 232] p=23
[1,5,7,9%,11,132,15,17,19, 21, 25] p > 29
71 3,99 p=
[52,7,10%,13,15,19] | p=5 10 | [4,9'3,18%,27] p=3
[712] p="1 [108,207] p=5
[7,117] p=11 [6,72,8,10,12, 143,16, 18,212, 24, 28] p="1
[3,7,9,13%] p=13 [1129) p=11
[3,7%2,9,11,13,17% p=17 (12, 1319] p=13
[3,7%2,9,11,13,15,19] | p>19 [4,8,10,12,16,1719] p=17
[4,6,8,10,122,16, 193] p=19
[4,6,8,102,122,14, 162,20, 234 p =23

[4,6,8,102,122,14,162,18,20,22,24,28] | p > 29

Table 5.2: Decomposition of S3(Vy) for 4 < d < 10.
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5.10 Spin representations (p # 2)

Assume that p # 2.

Let G be simple of type B; (I > 3) or type D; (I > 4). In this section, we
determine when a unipotent element u of G acts as a distinguished unipotent
element on the irreducible representation Lg(wp).

In fact, we do a bit more: we determine when a distinguished unipotent element
u of G acts on Lg(wp) such that all Jordan block sizes are distinct and all even or
all odd (recall that Lp,(w;) is not self-dual if [ is odd). The precise result is the
following proposition.

Proposition 5.10.1. Suppose that G is simple of type By (1 > 3) or D; (1 > 4).
A distinguished unipotent element u € G acts on the irreducible representation
L (wy) such that all Jordan block sizes are distinct and all even or all odd if and
only if G and p are as in Table 5.1.

G | Class of u | u of order > p | u of order p
Dy regular p=3,5 p>T
Dy [5’ 3] p=3 pP=9
Dy regular p=3,5"7 p>11
D5 [7,3] p=23,5 p>11
Dg regular p=3,57 p>17
D¢ [9’ 3] p=7 p>13
D regular p=3,9 p > 23
Dy [11, 3] p=7 p>17
Dg regular p=11 p>29
Dy regular none p > 37
Bs regular p=3,5 p>T
By regular p=3,5,7 p>11
Bs regular p=3,57 p>17
Bg regular p=3,5 p>23
By regular p=11 p>29
Bsg regular none p>37

Table 5.1: For G = B; and G = Dy: all cases where a distinguished unipotent
element u € G acts on Lg(w;) such that all Jordan block sizes are distinct and all
even or all odd.

Lemma 5.10.2. Let G = D;, | > 5 and let u € G be a distinguished unipotent
element. If u acts on Lg(w;) such that all Jordan block sizes are distinct and all
even or all odd, then one of the following holds.

(i) The element u is a reqular unipotent element and | < 10.

(ii) The element u lies in the class [2l — 3,3] of G and | < 8.

Proof. Let u € G be a regular unipotent element. Then my,,(w;) = -1 by Lemma

2
2.7.3. From this one can verify that

(M (wr) +2)°

dim Lg(w;) = 271 > i

()
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for all [ > 11. Thus if some unipotent element of G acts on L(w;) such that all
Jordan block sizes are distinct and all even or all odd, we have [ < 10 by Lemma
5.1.1 (see Remark 5.1.2).

Suppose then that [ < 10 and let u € G be a distinguished unipotent element.
In this situation, it is straightforward to verify from Table 5.2 that the inequality
(*) holds, except when we are in case (i) or (ii) of the claim. Thus the claim follows
again from Lemma 5.1.1. O

With Lemma 5.10.2, the claim of Proposition 5.10.1 for G of type D;, | > 5,
follows from the data given in Table 5.5 and Table 5.4. The Jordan block sizes
given in these tables were computed with MAGMA (Section 2.9). In the case where
[ = 4, Proposition 5.10.1 for G = D; follows from Proposition 2.10.2 (i) since
Li(wa) is a twist of the natural representation by a triality graph automorphism.

For G of type B;, we can reduce our computations to the case of type D; with
the following lemma.

Lemma 5.10.3 ([Sei87, Table 1, IV4]). Let | > 4 and consider By < D; natu-
rally embedded. Then Lp,(w;) | Bi—1 = Lp, ,(wi—1).

Note that B;_1 naturally embedded in D; contains a regular unipotent element
of D;. Thus Proposition 5.10.1 for G of type B; follows from the next lemma,
combined with Lemma 5.10.3, and Proposition 5.10.1 for type Dj.

Lemma 5.10.4. Let G = By, | > 3 and let u € G be a distinguished unipotent
element. If u acts on Lg(w;) such that all Jordan block sizes are distinct and all
even or all odd, then w is a reqular unipotent element and [ < 9.

Proof. We proceed as in Lemma 5.10.2. For a regular unipotent element v € G,

we have my, (w;) = @ by Lemma 2.7.3. From this we see that

(e (wr) + 2)2

dim Lo (w;) = 28 > i

(*)
for all I > 10. Thus if some unipotent element of G acts on L(w;) such that all
Jordan block sizes are distinct and all even or all odd, we have [ < 9 by Lemma
5.1.1.

Suppose then that [ < 9 and let v € G be a distinguished unipotent element.
As in Lemma 5.10.2, one verifies from Table 5.3 that the inequality (*) holds for
all non-regular distinguished unipotent elements of G. Thus the claim follows from
Lemma 5.1.1. O
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G |u Labeled diagram of u | my(w;) | dim Lg(wy)
Dyo | [19,1] 2222222222 45 512
[17, 3] 2222222022 37 512
[15, 5] 2222202022 31 512
[13,7] 2220202022 27 512
[11,9] 2020202022 25 512
[11,5,3,1] | 2220200200 19 512
[9,7,3,1] | 2020200200 17 512
Dy | [17,1] 222222222 36 256
[15, 3] 222222022 29 256
[13, 5] 222202022 24 256
[11,7] 220202022 21 256
[9,5,3,1] | 220200200 14 256
Dg | [15,1] 22222222 28 128
[13, 3] 22222022 22 128
[11,5] 22202022 18 128
[9, 7] 20202022 16 128
[7,5,3,1] | 20200200 10 128
D7 | [13,1] 2222222 21 64
[11, 3] 2222022 16 64
9, 5] 2202022 13 64
Dg | [11,1] 222222 15 32
[9, 3] 222022 11 32
[7,5] 202022 9 32
Ds | ]9,1] 22222 10 16
[7,3] 22022 7 16

Table 5.2: Values of my(w;) for distinguished unipotent elements w in D;, where
5 <1 <10.
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G |u Labeled diagram of u | my(w;) | dim Lg(w;)
By | [19] 222222222 45 512
[15,3,1] | 222222020 29 512
[13,5,1] | 222202020 24 512
[11,7,1] | 220202020 21 512
[11,5,3] | 222020020 19 512
[9,7,3] | 202020020 17 512
Bg | [17] 22222222 36 256
[13,3,1] | 22222020 22 256
[11,5,1] | 22202020 18 256
[9,7,1] | 20202020 16 256
[9,5,3] | 22020020 14 256
By | [15] 2222222 28 128
[11,3,1] | 2222020 16 128
[9,5,1] | 2202020 13 128
[7,5,3] | 2020020 10 128
Bg | [13] 222222 21 64
[9,3,1] | 222020 11 64
[7,5,1] | 202020 9 64
Bs | [11] 22222 15 32
[7,3,1] | 22020 7 32
By | [9] 2222 10 16
[5,3,1] | 2020 4 16
Bs | [7] 222 6 8
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Table 5.3: Values of m,,(w;) for distinguished unipotent elements u in Bj, where

3<1<9.
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G | Lg(w) | K[u] P

Do | [4,97%,18%,22,27M] p=
[102,12,152,2518) p=5
[6,72,145,16, 214,22, 284,32, 352, 40, 46] p=
[10,116,14, 228,28, 33%, 40, 46] p=11
[4,6,10, 134,16, 182, 20,222, 263, 28, 30, 32, 34, 36, 40, 46] p=13
[10,1714, 26, 347] p=17
[18,19%6] p=19
[4,10, 16, 22,2320] p =23
[4,6,102, 14,162, 18,20, 22, 28, 29'?] p =29
[4,6,102,12, 14, 16, 182,20, 22, 24, 28, 3119) p =31
[4,6,10%,12,14,162, 182,20, 222, 24, 26, 28, 30, 32, 36, 37| p =237
[4,6,102,12,14, 162,182, 20, 222, 24, 26, 282, 30, 32, 34, 40, 412 p =41
[4,6,102,12, 14,162,182, 20, 222, 24, 26, 282, 30, 32, 34, 36, 432 p =43
[4,6,10%,12,14,162,182,20,222, 24, 26, 282,30, 32, 34, 36,40,46] | p > 47

Do | [9%,13,18%,27°] p=3
[1,7,102,15,17,21,257] p=>5
[1,7,9,11,142,17,19,21, 23, 25,27, 31, 37 p=
[1,7,113,15,17, 19,222, 25,27, 31, 37 p=11
[1,7,9,133,17,19, 21,23, 262, 31, 37] p=13
[1,17%9] p=17
[97 1913] P = 19
[1,7,11,13,17,237] p=23
[1,7,9,11,13,15,17, 19,23, 25, 29%] p =29
[1,7,9,11,13,15,17,19, 21, 23,27, 313] p=231
[1,7,9,11,13,15,17,19, 21,23, 25,27, 31, 37] p > 37

Ds | [7,9,122,182,25,27] p=3
[10%, 202, 23, 25] p=5
[72,142,15,212,29] p=T
[5,9,11,15,17, 19, 23,29) p=11
[5,134,19,262] p=13
[97 177] p = 17
[5,11,17,195] p=19
[5,9,11,15,19, 233 p=23
[5,9,11,15,17, 19, 23,29] p > 29

D7 | [4,10,12,16,22] p=3
[4,10, 12,16, 22] p=5
[72,142,22] p=
[4,112,16,22] p=11
[12,134] p=13
[4,10,16,177] p=17
[47 107 127 192] p= 19
[4,10, 12,16, 22] p > 23

Dg [6, 10, 16] p=3
[6,10, 16] p=5
[6, 10, 16] p="7
[10,11%] p=11
[67 132] p= 13
6,10, 16] p>17

Ds | [7,9] p=3
[5,11] p=
[5,11] p=T
[5,11] p>11

Table 5.4: Action of a regular unipotent element u of G = D; on Lg(w;), where
5 <1l <10.
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G | Lo(w) | Ku] p G | KluJlLg(w) | p
Ds | [3,5,9,11,122,15,17, 21, 23] p=23 Ds | [6,8,97] p=3
[3,5,10%,11,13,15,17,21,23] | p=5 [52,10,12] p=>5
[74,144, 21, 23] p=7 [4,6,10,12] p=7
[3,5,11%4,15,17, 222) p=11 [4,6,112] p=11
[11,139] p=13 [4,6,10,12] p>13
[3,5,9,11,15,175] p=17
[3,5,9,112,13,19%] p=19 || D5 | [2,6,8] p=3
[3,5,9,112,13, 15, 17,21, 23] p> 23 [2,6,8] p=>5
2,7%] p="7
D7 | [62,9,11,15,17] p=3 [2,6,8] p>11
[5,7,102,15,17] p=>5
[5,7,9,11,15,17] p=
[9,115] p=11
[5,7,134] p=13
[5,7,9,11,15,17] p>17
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Table 5.5: Action of a unipotent element u in conjugacy class [2] — 3, 3] of G = D,
on La(wy), where 5 <[ < 8.
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5.11 Spin representations (p = 2)
Assume that p = 2.

In this section we will determine for G of type C; (I > 3) and D; (I > 4)
when a unipotent element u € G acts as a distinguished unipotent element on
the irreducible representation Lg(w;) (and also Lg(w;—1) if G has type D;). The
answer is given by Proposition 5.11.3 and Proposition 5.11.4 below; it is also
recorded in Table 1.3.

Since we are in characteristic two, we can and we will consider D; < C) as the
subsystem subgroup generated by the short root subgroups. The following lemma
allows us to reduce our computations to the case where G is of type Cj.

Lemma 5.11.1. L¢,(w;) | D; = Lp,(w;) & Lp, (wi—1).
Proof. This is a consequence of [For96, Theorem 3.3, U in Table II]. O

Corollary 5.11.2. Letl > 4 be even. Let u € Dy < Cj be a distinguished unipotent

element. Suppose that the image of u lies in the conjugacy class labeled by
(UD)(ayy M)y -+ 4O

of Sp(L¢,(wy)) (Corollary 2.4.7). Then the image of u in Sp(Lp,(w;)), and the

image of w in Sp(Lp,(wi—1)) lies in the conjugacy class labeled by

(A1) @20 - d)00).

Proof. By Lemma 5.11.1, the module L¢, (w;) has a Dj-submodule W isomorphic
to Lp,(w;). Note that W = W* because [ is even (see Table 4.1). We claim that
W is a non-degenerate subspace with respect to any non-degenerate Cj-invariant
form on L¢, (w;). If not, then WX NW # 0,50 WNWL =W and W C W+ since
W is irreducible as a Dj-module. But then V/W, = W* =2 W and so W occurs
twice as a Dj-composition factor of L¢,(w;), contradicting Lemma 5.11.1.

Let 7 : D; — D; be the usual automorphism of D; induced by the graph
automorphism swapping the two end nodes of the Dynkin diagram of type Dj.
Now Lp,(wj—1)" = Lp,(w;), so it follows from Proposition 2.10.2 (ii) that the
conjugacy class of the image of u in Sp(Lp,(w;)) and Sp(Lp,(w;—1)) is the same.
Thus by Lemma 5.11.1 each n; is even, and the image of w in Sp(Lp,(w;)) and
Sp(Lp,(wi—1)) lies in the conjugacy class labeled by

d)™72 d2)m2, . d)m?)

€1 €2 €¢

for some ¢; € {0,1}.

Finally, what we did in the first paragraph shows that L¢, (w;) J D; = Lp, (w;)®
Lp,(w—1) as an orthogonal direct sum. Therefore we can conclude that as a
K[u]-module, L¢, (wy) has V(d(i)) as an orthogonal direct summand if and only if
Lp,(w;) has V(d(7)) as an orthogonal direct summand. By Lemma 2.4.5, we have
€; = e(d(7)) for all 7.

L

Proposition 5.11.3. Suppose that G is of type C; (I > 3) and let u € G be a
distinguished unipotent element. Then u acts on L(w;) as a distinguished unipotent
element if and only if u occurs as one of the boldface entries in Table 5.1.
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Proof. Suppose that u acts on L(w;) as a distinguished unipotent element. By
Proposition 5.2.4, we have 3 < [ < 7 or [ = 9. For these cases, the orthogonal
decomposition of L(w;) | K[u] can be computed with MAGMA (Section 2.9), and
the decompositions are given in Table 5.1 and Table 5.2 (using the labeling given
in Corollary 2.4.7); one can easily verify the claim from the tables. O

Proposition 5.11.4. Suppose that G is of type Dy (I > 4) and let u € G be a
distinguished unipotent element. Then u acts on L(w;) (or L(w;—1)) as a distin-
guished unipotent element if and only if | = 4 and u is in class (21,61) or (42), or
[ =6 and u is in class (21,107).

Proof. Suppose that u acts on L(w;) or L(w;—1) as a distinguished unipotent ele-
ment. Now [ € {4,6,8,10} by Proposition 5.2.4. With Corollary 5.11.2 and Table
5.1 - 5.3, one can verify that the proposition holds. We illustrate this with an
example and leave the rest to the reader. Consider a regular unipotent element
u of G when [ = 10. Now w lies in the unipotent conjugacy class of Cg labeled
by (21,18;), so we find in Table 5.3 that its image in Sp(Lc¢,,(wi0)) lies in the

unipotent class labeled by
(21,67,107, 147, 163", 187, 227, 267, 307, 324%).

Then by Corollary 5.11.2, the image of u in Sp(Lg(w10)) lies in the unipotent class
labeled by
(21,61,101, 141,164, 18;,22;,261,301, 325).

In particular, we find that u does not act as a distinguished unipotent element on
L(w1o)- O

Remark 5.11.5. In our proofs we have relied on tables 5.1 - 5.3, which were
computed with MAGMA (Section 2.9). We note that most of the entries are not
necessary for our proof, but we have included them for completeness. For example,
when G = Cy, a non-regular distinguished unipotent element u € G has order at
most 2%: therefore W < 29 = dim Lg(wy) and so u does not act on Lg(wg) as
a distinguished unipotent element by Lemma 5.2.1. Hence for G = Cy, we actually
only have to compute the action of a regular unipotent element u € G on Lg(wy).
For G = C) with 3 <[ < 7, similar arguments can rule out most distinguished
unipotent classes without computing their action on Lg(w;). Similar remarks also
apply in the case where G = D.

Furthermore, when G = (j, the computations given in tables 5.1 - 5.3 can be
reduced to the case where u € G a regular unipotent element. For this, suppose
that G = Sp(V). If u € G is a distinguished unipotent element which is not
regular, then there is an orthogonal decomposition V =V} & --- &V, such that u
is contained in Sp(V7) x - - - x Sp(V;) and acts on each V; with a single Jordan block.
Set dim V; = 2d;, so now Sp(V;) is simple of type Cgz,. We can write u = ug - - - uy,
where u; € Sp(V;) is a regular unipotent element of Sp(V;). It follows from [Sei87,
Theorem 4.1] that the restriction of Lg(w;) to Sp(Vh) x -+ x Sp(V;) is irreducible,
and isomorphic to the outer tensor product

LCd1 (Wa,) @+ ® LCdt (wa,)-

Thus if we know the orthogonal decompositions L, (wg,) 4 Ku;| forall 1 <i <t,
by computing the orthogonal decomposition of their tensor product (see Section
3.6) we can find the orthogonal decomposition of Lg(w;) | Kul.
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Table 5.1: For G = () with 3 <[ <7, actions of distinguished unipotent elements

u € G on Lg(wy).

[ | Class of w | Action of u on L(wy)
3 | regular 21,671

3 (21,41) 42

4 | regular 82

4| (21,67) 22 62

4 (4? 411

4| (22,4y) 43

5 | regular 21,61,104,144
5 (21,81) 84

5| (41,61) 43,82

5 (2%761) 211’ 6%

5| (2,43 |4

6 | regular 42,122,163

6 | (21,107) | 22 6% 102 142
6 | (41,81) 88

6 (2%’81) 88

6| (67) 21,61, 8§

6 | (21,41,61) | 45,84

6| (23.43) |40

7 | regular 21,617,101, 14,4, 168
71 (21,121) 43,123,163

71 (41,101) | 48,858,128, 163
71 (22,101) | 2,6%,107,141
7 | (61,81) 836

7| (21,41,81) | 88

7] (2,67) | 27,678

7 (4%761) 4(1)67 88

7| (22,44,61) | 445,85

Chapter 5.
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[ | Conjugacy class | Action of u on Lg(w;)
8 | (167) 1616

8 | (21,144) 22,672,107, 143,162

8 | (41,121) 48,128, 16§

8 | (23,121) 45,125, 16§

8 | (61,107) 21, 61,85, 107, 141, 165
8 (21,41,101) 48,858,128 163

8| (8%) 82

8 | (21,61,81) 832

8 | (42,81) 832

81 (2 1741781) 882

8 | (41,6%) 446,824

8 | (22, 62) 216 616, 816

8 | (21,42,61) 432 846

9 | (18;) 21,671,101, 141, 1652, 181, 221,261, 301, 32§
9 | (21,167) 1632

9 | (41,144) 43, 8%,124,163°

9 | (22,149) 21,617,107, 147,163

9 | (61,127) 45,85, 128 1620

9| (21,41,121) 445,124,166

9 | (81,101) 83%,164°

9 | (21,61,107) 28, 67,856,108, 149, 168
9 | (43,104) 436,836,125, 168

9 | (22,44,101) 445,856, 1216 16§

9| (21,8} 85"

9 | (41,61,81) 854

9 | (22,61,81) 85¢

9 | (21,4%,81) 851

9 | (21,41,62) 432 838

9 | (27,41,61) 48, 832

167

Table 5.2: For G = C; with [ € {8,9}, actions of distinguished unipotent elements

u € G on Lg(wy).
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Conjugacy class

Action of u on Lg(wig)

41,121, 163, 207, 287, 322°

22,627,107, 147, 1624, 182,222,262, 307, 322

16§i

16§

24, 61,85, 107, 141, 163>
45, 85,125, 165

842, 16°

459,85, 1285, 164°
4921292 1632
43212321637
2§i6§,§§6,10§,14§,1630
80*, 163

459,805, 124°, 163

219,61°,83%,101°, 1415, 164°

432, 832, 1282, 16"
8(1)28

8%]28

8(1)28

8128

8128

464 886

484,836

Table 5.3: For G = (g, actions of distinguished unipotent elements u € G on

LG (wlo).
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5.12 Fundamental irreducible representations (p # 2)
Assume that p # 2.

In this section we determine when a unipotent element u € G of a simple
algebraic group G acts as a distinguished unipotent element on a irreducible re-
presentation of fundamental highest weight w;. The result is given by the following
proposition.

Proposition 5.12.1. Assume that p # 2. Let G be a simple algebraic group of
rank | > 2 and let u € G be a distinguished unipotent element. Then u acts on
L(w;) (1 <i <) as a distinguished unipotent element if and only if G, u, p and
w; are as in Table 5.1 or Table 5.2, where X is given up to graph automorphism of

G.

Remark 5.12.2. Let u € G be a distinguished unipotent element of order p and
let A = w;. Then Proposition 5.12.1 implies the following statement. The unipotent
element u acts on Lg(\) as a distinguished unipotent element if and only if G, u,
and A\ occur in Table 5.1 or Table 5.2 (up to a graph automorphism applied to \)
and p > my(A). In Section 5.13, we will generalize this fact (Proposition 5.13.1).

3

We will prove Proposition 5.12.1 for each simple type in the subsections that
follow.

5.12.1 Type A;, B, and D,

Suppose that G is of type A;, B; or D;. For the representation L(w;) of B; and
Dy, the claim of Proposition 5.12.1 follows from Proposition 5.10.1. Then since the
half-spin representation L(w;_1) of Dy is a twist of L(w;) by a graph automorphism,
by Proposition 2.10.2 (ii) the claim follows also for the representation L(w;—1) of
D;. Suppose then that Lg(w;) is not a spin or a half-spin representation. Then
it is well known (see for example [Sei87, 8.1] or [McN98, Proposition 4.2.2]) that
Lg(w;) = Vg(w;) =2 AYV), where V is the natural representation of G. For Lg(w1)
the claim of Proposition 5.12.1 is clear. For L(ws) and L(ws), Proposition 5.12.1
follows from 5.5.5, 5.5.6 and 5.8.1.

We proceed next to show that when ¢ > 4, no unipotent element of G acts
on AY(V) as a distinguished unipotent element. Let n = dim V. Since we are

interested in self-dual representations, for type A; we can assume ¢ = HTI, so [ is
odd. Since we are assuming that Lg(w;) is not a spin representation, for type B;
wehaveigl—lzan?’ and for type D; we have i <[ —2 = 5 — 2. In any case,

we have n > 21.

Let v € G be a regular unipotent element. According to Lemma 5.1.1 and
Lemma 2.7.3, the unipotent element u acts on A*(V) with largest Jordan block of
size < my/(w;) +1 <i(n —1i)+ 1. One can show that

amr= (1) > B

ifn>2iandi>5orifi=4and n > 8§, so by Lemma 5.1.1 we are done in these
cases.

What remains is to consider the case where i = 4 and n = 8. Since we are
assuming that w; is not a spin representation for D;, we have that G = A7. In this
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A G wof order > p | wof order p | my(A)
w1 Aly Bl7 Cla Dl any any

w3 As p=5 p>11 9
w2 B, 1>3 prop. 5.5.5 prop. 5.5.5 | 4l —2
w | B,3<1<8 prop. 5.10.1 prop. 5.10.1 | W+
wo C prop. 5.5.10 prop. 5.5.10 | 4l —4
w3 Cs p=3,5 p>11 9
w3 Cy none p>17 15
w3 Cs none p>23 21
w4 Cy none p>17 16
ws Cs none p>29 25
w9 Dy prop. 5.5.6 prop. 5.5.6 | 41— 6
W, Dg.,Ds prop. 5.10.1 prop. 5.10.1 | {1
w1 G2 p=3,5 p>T 6
[0%5) G2 P = 3, ) P > 11 10
w1 Fy p=25,7,11 p > 23 22
Wy Fy p=3,57,11 p>17 16
ws Es p=5"711 p>23 22
w1 by p=11 p>37 34
wr joi p=3,511,13,17 | p>29 927
ws FEg p=11,13,17,23 p>959 58

Table 5.1: p # 2: Cases where a regular unipotent element u € G acts on Lg(w;)
as a distinguished unipotent element.

A G Conjugacy class of u | u of order > p | u of order p | my(\)
wy | By, C, Dy any distinguished any any

w6 Dy 9, 3] p=7 p>13 11
W4 F4 F4(a1) p:5,7 pZ 11 10
wr Er E;(ay) p=>5,13 p>23 21
wr E7 E7(a2) p= 5, 7, 11 p >19 17
wg Ey Eg(ay) p=11 p > 47 46

Table 5.2: p # 2: Cases where a non-regular distinguished unipotent element u € G
acts on Lg(w;) as a distinguished unipotent element.
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case the only distinguished unipotent elements u € GG are the regular ones, which
act on V with a single Jordan block of size 8. A computation with MAGMA shows
that u does not act on A*(V) as a distinguished unipotent element; for convenience
we have listed the decomposition of A*(V) | K[u] for p > 3 in Table 5.3.

Decomposition of A*(Vg)
[7,97]

[1,52,9,10%,13,17]
[1,74,13,142]
[
[
[

|

Il
~N ot w

1,5,9,11°]
1,52,9,11,133%]
1,52,9%,11,13,17]

VR s
I

AVARI
I

Table 5.3: Decomposition of A*(Vg) as a K [u]-module.

5.12.2 Type (|

Suppose that G is a simple algebraic group of type Cj. To prove Proposition 5.12.1,
without loss of generality we can assume that G = Sp(V'), where dim V' = 2I. Here
V = L(w1) = V(w1), so for wy the claim is obvious. For L(ws) and L(ws), the
claim of Proposition 5.12.1 follows from Proposition 5.5.10 and Proposition 5.8.1,
respectively.

For w;, i > 4 we will apply results due to Premet and Suprunenko, which give a
recursive formula for the dimension of L(w;). To state their results, we need to first
make some definitions. Let a,b € Z> and write a = >, ga;p’ and b =Y, bip’
for the expansions of a and b in base p. We say that a contains b to base p if for
all i > 0 we have b; = a; or b; = 0. 13

For r > 1, we define J,(r) to be the set of integers 0 < j < r such that j =r
mod 2 and [ — j 4+ 1 contains % to base p. Furthermore, set

fo=1

and

fk = dim L(wk)
for all £ > 1. Now |[PS83, Theorem 2| implies the following.

Theorem 5.12.3. Let 1 <r <. Then in the Weyl module V (w,), each composi-
tion factor has multiplicity 1, and the sel of composition factors is

{L(wj) : j € Jp(r)}-
Furthermore, the integers f, (r > 2) satisfy the following recurrence relation.
21 21
(%) 5 s
J€dp(r)—{r}

Note that the recursive formula above makes computing the values of f, very
easy. As a corollary (see Corollary 2 in [PS83]), we have the following which can
also be deduced from the results of Gow in [Gow98].

3Note that in [PS83] there is a typo, the definition on pg. 1313, line 9 should say “for every
i=0,1,...,n.7
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Corollary 5.12.4. Ifp > [, then f. = (21) — (ilQ) forall 1 <r <.

T

With the recursive formula we also get a lower bound for f;.

Corollary 5.12.5. Let r > 4. Then f, > (%}) — 2(7,2_l2) + 1.

Proof. Note that we have dimV(wj) = (le) — (j2_l2) [Bou75, Ch. VIII, 13.3, pg.

203], so f; < (QJZ) - (]2_12). Since Jp(r) is a subset of the nonnegative integers

r,r—2,r—4,..., the recursive formula of Theorem 5.12.3 gives

fr = <il> - <T2_l2> — oo — frg—
TG EAR(RARES) R(EARAN =
()7

where C'= fo =1if ris even and C = f; = 2] if r is odd. In any case, we get the
desired inequality. O

For ¢ = 4 and ¢ = 5, the claim of Proposition 5.12.1 for G will be proven in
the next two lemmas.

Lemma 5.12.6. Proposition 5.12.1 holds for G = Cy, | > 4, and i = 4.

Proof. Let w € G be a regular unipotent element, so now my(ws) = 4(21 — 4) =

8] —16 by Lemma 2.7.3. By Corollary 5.12.5 we have dim Lg(w4) > (24l) —2(221) +1.

One can verify that the polynomial inequality (il) — 2(22l) +1> M holds
or all [ > 6. Thus by Lemma 5.1.1, no unipotent element of G acts on Lg(wyg) as
a distinguished unipotent element if [ > 6.

For { =4 and [ = 5, one can compute m,, (w4) for all non-regular distinguished
unipotent elements v’ € G. This is a straightforward application of Proposition
2.6.5, and the expression of wy as a sum of simple roots [Hum72, 13, Table 1]. We
have listed this information, along with dim Lg(ws) (computed using Theorem
5.12.3) in Table 5.4. One verifies that

(M (wa) +2)°

dim L (W4) > 1

in all cases, so it follows from Lemma 5.1.1 that a non-regular unipotent element
u’ € G does not act on Lg(wy) as a distinguished unipotent element.

Now we still need to consider the action of a regular unipotent element on
L (wy) in the cases where | = 4 and [ = 5. Using MAGMA (Section 2.9), we have
computed these actions for all p > 3 and listed them in Table 5.6. One sees that
for I = 4, a regular unipotent element acts on Lg(wy) as a distinguished unipotent
element if and only if p > 17. Furthermore, for [ = 5, the regular unipotent does
not act on Lg(ws) as a distinguished unipotent element, as claimed. 0

Lemma 5.12.7. Proposition 5.12.1 holds for G = C; and i = 5.

Proof. We proceed as in the proof of Lemma 5.12.6. Let u € G be a regular
unipotent element, so now my(ws) = 5(20 — 5) = 10l — 25 by Lemma 2.7.3. By
Corollary 5.12.5 we have dim Lg(ws) > (25l) — 2(23l) + 1, and one verifies that
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the polynomial inequality (25l) — 2(231) +1> w holds or all [ > 6. Thus
by Lemma 5.1.1, no unipotent element of G acts on Lg(ws) as a distinguished
unipotent element if [ > 6.

What remains is to consider the case where [ = 5. As in the second paragraph
of the proof of Lemma 5.12.6, one verifies that

(M (ws) + 2)2

dim Lg ((,ug,) > 1

for all non-regular distinguished unipotent elements v’ € G; for convenience we
have listed the values of m,/(ws) and Lg(ws) in Table 5.5. Thus no non-regular
unipotent element of G acts on Lg(ws) as a distinguished unipotent element.
Using MAGMA (Section 2.9) we have computed the action of a regular unipotent
on Lg(ws) for G = C5. The Jordan block sizes are given in Table 5.7, and the
claim of Proposition 5.12.1 follows from this. L]

To finish the proof of Proposition 5.12.1 for GG, what remains is to consider the
case where i > 6 and to show that in this case no unipotent element of G acts on
L (w;) as a distinguished unipotent element. We proceed to do this.

Let u € G be a regular unipotent element, so now my,(w;) = (2l —1i) by Lemma
2.7.3.

We start by considering 6 < ¢ < 18. First, if ¢ <[ — 3, by calculation one can
verify the polynomial inequality (211) — 2(Z.3l2) +1> w for all 6 <14 < 18.
Therefore by Corollary 5.12.5 and Lemma 5.1.1, no unipotent element of G acts on
Lg(w;) as a distinguished unipotent element. For 6 < i <18 and i =1, i =1—1,
i = | — 2 with the formula of Theorem 5.12.3 one can compute f; = dim Lg(w;)

and check that f; > w, so we are again done by Lemma 5.1.1.
What remains is to consider ¢ > 19. If p > [, then f; = (2.l) — (1312) by Corollary

(2

5.12.4. One can verify that (211) - (1312) > w for [ > ¢ > 6, so by Lemma
5.1.1 no unipotent element of G acts on L(w;) as a distinguished unipotent element
in this case. Suppose then that p <[. By the argument given in the beginning of
Section 5.1.2, we see that it will be enough to show that dim L(w;) > 41* + 212
Now dim L(w;) > |Ww;| where W is the Weyl group, so dim L(w;) > 41* + 2i?
follows from Lemma 5.1.12 (i). This completes the proof of Proposition 5.12.1 for
G =C.

G |u Dynkin diagram of u | my(wy) | dim L(wy)

Cs | [2,8] | 22202 16 121 (p = 3), 165 (p > 3)
Cs | [4,6] | 20202 12 121 (p = 3), 165 (p > 3)
Cy | [2,6] | 2202 10 A1 (p=3),42 (p > 3)

Table 5.4: Values of m,,(w4) for non-regular distinguished unipotent elements u in
Cy4 and Cj.

5.12.3 Type G-

In this subsection we prove Proposition 5.12.1 for GG simple of type G.
Since p # 2, we have Vg (w1) = Lg(w1). Now the computations given in [Law95,
Table 1| prove the claim of Proposition 5.12.1 for Lg(wi).
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G |u Dynkin diagram of u | my(ws) | dim L(ws)
Cs | [2,8] | 22202 16 122 (p=3), 132 (p > 3)
Cs | [4,6] | 20202 12 122 (p = 3), 132 (p > 3)

Table 5.5: Values of m,(ws) for non-regular distinguished unipotent elements w in
Cs.

G P La(ws) | Klu]
Cy| p=3 1159
p=>5 | [5,102,17]
p="7 | [7% 142
p=111[9,11°]
p=13 | [5,11,13?]
p>17 | [5,9,11,17
Cs | p=3 |1[9% 13,184
p=5 | [5, 157 , 25
p="7 |[1,73,9,11,13,14%,17,19, 21, 25]
p=11 [1115]
p=13 19,132
p=17 | [1,5,7,9,11,13,177]
p=19 [15792 11,13,15,19°]
p=23|[1,57,9% 11,132 15,17,19, 23?]
p>29 [15792 11,13%,15,17,19, 21, 25]

Table 5.6: Action of a regular unipotent u € G on Lg(wy), for G = Cy, G = Cs.

P | Lo(ws) L K[ul

p=23 | [9% 14,18

p=>5 | [107,202,22]

p="T |[2,7%10,143, 18,20, 26]
p=11 [11'?]

p=13 | [2,131]
p=171[2,6,10,12,17°]

p=19 | [2,6,8,10,14,16,19%]
p=231[2,6,8,10,12,14,16, 18,23
p>29 | [2,6,8,10,12,14,16, 18,20, 26]

Table 5.7: Action of a regular unipotent u € G on Lg(ws), for G = Cs.
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For Lg(w2) and p # 3, we have Lg(wz) = Z(G) and the claim follows from
[Law95, Table 2|. If p = 3, then a computation with MAGMA (Section 2.9) proves
that the only distinguished action on Lg(w2) occurs for the regular unipotent
element of G, which acts on Lg(wg) with a single Jordan block of size 7. For a
different argument, one could also argue by using the exceptional isogeny G — G
which exists when p = 3.

5.12.4 Type F}

Let G be simple of type Fy. We proceed to prove Proposition 5.12.1 for G.

Since p # 2, we have that Vg(w1) = Lg(wi) = Z(G). Now the computations
given in |Law95, Table 4] prove the claim of Proposition 5.12.1 for Lg(w).

For the fundamental weight wo, consider first p = 3. In this case the regular
unipotent element of G has order 3% (see Appendix A), and dim Lg(wp) = 1222
by [Liib01]. Since 1222 > M, it follows from Lemma 5.1.1 that no unipotent
element of G acts on Lg(we) as a distinguished unipotent element. Suppose then

that p > 3. By Lemma 2.7.3, we have m,,(w2) = 42 for a regular unipotent element

u € G. Now dim Lg(wz) = 1274 by [Liib01] and 1222 > “U242° 6 by Lemma 5.1.1
no unipotent element of G acts on Lg(w2) as a distinguished unipotent element.

Consider next the fundamental weight ws. If p > 3, then dim Lg(ws) = 273
by |Liib01] and m,(w3) = 30 for a regular unipotent u by Lemma 2.7.3. Since

273 > 272 = W, by Lemma 5.1.1 no unipotent element of G acts on L¢g(ws)
as a distinguished unipotent element. If p = 3, then dim L(ws) = 196. The non-
regular unipotent elements of G have order 32 in this case (Appendix A), and

196 > w, so by Lemma 5.1.1 it is enough to consider a regular unipotent
element u. A computation with MAGMA (Section 2.9) shows that when p = 3, a
regular unipotent element acts on Lg(ws) with Jordan blocks [3,95, 184,19, 21, 27]
hence not as a distinguished unipotent element.

For Lg(ws), the claim of Proposition 5.12.1 follows from |[Law95, Table 3] if
p > 3since Vg (ws) = Li(wa) in this case. For p = 3, a computation with MAGMA
(Section 2.9) shows that the distinguished unipotent classes Fy, Fy(ai), Fi(az),
and Fy(a3) act on Lg(ws) with Jordan blocks [1,9,15], [7,9%], [1,3,62,9], and
[12,33, 53] respectively. Note that here the only distinguished action occurs for the
regular unipotent class Fjy.

5.12.5 Type Eg, F; and Eg

Let G be simple of type Eg, E7 or Eg and let A = w;. Set m = my,(w;) for a regular
unipotent v € G, and d = dim L(w;). Then with Lemma 2.7.3 and the results of
Liibeck in [Liib01|, we can compute values of m and a lower bound for d, which
we list in Table 5.8.
By Lemma 5.1.1, we know that no unipotent element of G acts on L(w;) as
(m+2)?

a distinguished unipotent element if d > “—=-. By calculating with the values

in Table 5.8, we find that d > % except when (G,w;) is (Fs,w1), (Es,w2),
(Es,ws), (E7,w1), (F7,wr) or (Eg,ws). Since it is enough to consider self-dual
representations by Theorem 1.1.12; it will be enough to consider (Fg,ws), (F7,w1),
(E7,wr) and (Eg,ws). Now except for the case G = Eg, p = 3, A = wy, in these
cases the claim of Proposition 5.12.1 follows from the computations of Lawther in
|Law95|.



176 Chapter 5.

A Eg Er Eg

wp | d=27,m=16 d=133, m=34 d = 3875, m = 92
wy | d>T7, m =22 d > 856, m = 49 d > 100000, m = 136
w3 | d=352, m=230 d > 8512, m =66 | d> 100000, m = 182
wq | d>2771, m =42 | d > 100000, m = 96 | d > 100000, m = 270
ws | d=352,m=30 | d>25896, m=7T75 | d> 100000, m = 220
wg | d=27, m=16 d > 1538, m =52 | d > 100000, m = 168
w7 d =56, m =27 d> 30132, m =114
ws d =248, m = 58

Table 5.8: Values of m = my(w;) and d = dim Lg(w;) for u a regular unipotent
element of G = E,.

What remains is to consider the case where G = Fg, p = 3, and A = ws. In
this case, a computation with MAGMA (Section 2.9) shows that the distinguished
unipotent classes Fg, Eg(a1) and Fg(as) act on Lg(wz) with Jordan block sizes
[1,93,152,19], [5,98], and [1, 33,64, 7, 9%] respectively. Therefore no unipotent class
of Fg acts on Lg(we) as a distinguished unipotent element when p = 3.

5.13 Unipotent elements of order p (p # 2)
Assume that p # 2.

In this section we prove Theorem 1.1.10 in the case where u has order p.
Specifically, the result proven in this section is the following.

Theorem 5.13.1. Let u € G be a distinguished unipotent element of order p, and
let \ € X(T)" be a nonzero, p-restricted highest weight. Then u acts on Lg(\) as
a distinguished unipotent element if and only if p > my(\) and G, X\ and u are
as in the Table 5.1 or Table 5.2, with \ given up to graph automorphism of A, or
D,.

Remark 5.13.2. Note that the X occurring in Table 5.1 and Table 5.2 are precisely
the ones that occur in the main result of [LST15]. Furthermore, the condition
p > my(A) implies that the action of u on Vg (A) is the same as the corresponding
action in characteristic 0 (Lemma 2.7.9). Therefore when u has order p, the result
of Theorem 1.1.10 is similar to the characteristic 0 result of [LST15].

As seen in the previous sections, the situation is less uniform when u has order
> p. In this setting things are unpredictable, and it is more difficult to determine
when exactly the examples in |[LST15| work in characteristic p. For unipotent
elements of order > p, we also have a unique example of a A that corresponds to a
distinguished action of unipotent element, but does not occur in the main result
of [LST15] (see Theorem 1.1.10 (iii)).

Remark 5.13.3. In [Sup03, IIpemnoxenue 4] and [Sup05, [Tpesgmnoxenne 2|, Su-
prunenko has announced results which have the consequence that if u € G is a
unipotent element of order p, A € X(T)", and 2 < p < my()), then u acts on
L (M) with > 2 Jordan blocks of size p. Assuming this result, Theorem 5.13.1 for
the case where u is a regular unipotent element becomes an immediate consequence
of Corollary 2.7.6, Lemma 2.7.9, and the main result of [LST15].
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G A Conjugacy class of u | my ()
A, w1 regular n
Apn>2 w1 + wp, regular 2n
Ay any 0<c<p-1 regular c
Ag w3 regular 9
By, w1 any
B3 w1 + w3 regular 12
Bs 2ws regular 12
B3 3w1 regular 18
By,n>3 2w regular dn
B,,n>3 w9 regular 4n — 2
B,,3<n<8 Wn regular w
Ch w1 any
(s bwy for 1 <b <5 regular 3b
Cy bwy for 1 < b <5 regular 4b
Cy w1 + wo regular 7
(s w1 + 2wy regular 11
(s 2w + wo regular 10
Cs 3w1 regular 15
Cs w3 regular 9
Cy w3 regular 15
Cs w3 regular 21
Cy w4 regular 16
C ws regular 25
Cn,n>3 2w1 regular 4n — 2
Cp,m>3 w9 regular 4n —4
D, w1 any
Dg we regular 15
D6 we [9, 3] 11
Dg wsg regular 28
D,,n >4 even 2w1 regular 4n — 4
D,,n >4 odd w9 regular 4n — 6

Table 5.1: G of classical type

177
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G A Conjugacy class of u | my ()
Go w1 regular 6
Gy w9 regular 10
Gy | w1+ ws regular 16
Go 2w1 regular 12
Go 2wo regular 20
Go 3wy regular 18
Fy w1 regular 22
Fy w4 regular 16
F4 w4 F4(CL1) 10
FEg ) regular 22
E; w1 regular 34
Ey wy regular 27
E; wr Er(ay) 21
E7 Wy E7(a2) 17
Eg ws regular o8
Eg ws Eg(al) 46

Table 5.2: G of exceptional type

However, since the full proof of Suprunenko’s results remain unpublished after
her 2003 and 2005 announcements [Sup03] and [Sup05], we have decided to give a
proof of Theorem 5.13.1 that does not rely on these results. Our proof of Theorem
5.13.1 is based on applying Proposition 4.6.10, which allows us to use the methods
of Liebeck, Seitz and Testerman from [LST15]. In some cases we have to give
different proofs, but the general steps of the proof follow [LST15].

The proof of Theorem 5.13.1 will be given in what follows. We begin by taking
care of some special cases.

Lemma 5.13.4. Theorem 5.13.1 holds if A # —wo(\).

Proof. If X # —wp(A), then Lg(\) is not self-dual, and so u acts on Lg(A) as
a distinguished unipotent element if and only if w acts on Lg(\) with a single
Jordan block. Thus the claim follows from Proposition 1.1.12. O

Lemma 5.13.5. Theorem 5.15.1 holds if A = w;.
Proof. This follows from Proposition 5.12.1, see Remark 5.12.2. L]
Lemma 5.13.6. Theorem 5.153.1 holds if G is of type A;.

Proof. This follows from the fact that for all 0 < ¢ < p—1, a nonidentity unipotent
element u € G acts on Lg(c) with a single Jordan block of size ¢ + 1 (Lemma
1.2.9). O

Lemma 5.13.7. Theorem 5.15.1 holds iof p = 3.
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Proof. Let p = 3, let u € G be a distinguished unipotent element of order 3 and let
V = Lg(A) be a nontrivial, p-restricted irreducible representation of G. Looking
at the cases where 3 > m, () in Table 5.1 and Table 5.2, we see that the claim
of Theorem 5.13.1 is that u acts on V as a distinguished unipotent element if and
only if u is a regular unipotent element and (G, \) is (A1, ¢), (Aa,w1), or (A2, ws).
Sufficiency follows from Lemma 5.13.6 and Lemma 5.13.5. Suppose then that
u acts on V as a distinguished unipotent element. Since u has order 3, we have
dimV < 4 by Lemma 5.1.1. If G is of exceptional type, then by [Liib01] any
nontrivial irreducible representation has dimension > 7. Thus G must be of clas-
sical type. Because u is distinguished of order 3, the largest Jordan block of u in
the natural representation has size < 3. Therefore G is either of type A; or Ao
and u is a regular unipotent element. For type A; the claim follows from Lemma
5.13.6. For type Ag, by [Liib01] the only nontrivial, p-restricted irreducible repre-
sentations of dimension < 4 are the natural representation Lg(wi) and its dual
Lg(ws). This proves the claim.
O

Lemma 5.13.8. Theorem 5.15.1 holds if p=5.

Proof. Let p =15, let u € G be a distinguished unipotent element of order 5 and let
V = Lg(\) be a nontrivial, p-restricted irreducible representation of G. If A = w;,
the result of Theorem 5.13.1 follows by Lemma 5.13.5. Assume then that A # w;.
Now looking at the cases where 5 > m,(A) and A # w; in Table 5.1 and Table 5.2,
we see that the claim of Theorem 5.13.1 is that u acts on V as a distinguished
unipotent element if and only if (G, ) is (41, ¢) or (A2, w1 + wa).

Sufficency follows from Lemma 5.13.6 and Proposition 5.3.2. For the other
direction, suppose that v acts on V' as a distinguished unipotent element. Since
u has order 5, we have dimV < 9 by Lemma 5.1.1. If G is of exceptional type,
then by [Liib01] any nontrivial, p-restricted irreducible representation # Lg(w;)
has dimension > 9. Therefore G must be of classical type. Because u has order 5,
the largest Jordan block of w in the natural representation has size < 5. Therefore
it follows that G is of type A; (I < 4), type Co, type Cs, type By or type Dy. Since
we are assuming A # wj;, by [Liib01] the only case where we have a nontrivial,
p-restricted representation of dimension < 9 is when G = A; or G = Ay and
A = w1y + wo. This completes the proof of the claim. O

It follows from the lemmas above that for the rest of this section, we can and
will make the following assumptions.

e p>7 (by Lemma 5.13.7 and Lemma 5.13.8)
e rank G > 2 (by Lemma 5.13.6)
o Lc(A) is self-dual, ie. A = —wo(\) (by Lemma 5.13.4)

These assumptions will have some implications which we will apply throughout
the proof. The first assumption implies that the characteristic p is good for G, so
we can apply facts from Section 2.6 here. Thus we can assume that v is contained
in a subgroup A < G of type Ay, such that a maximal torus T4 < A is contained
in the fixed maximal torus 7" of GG. Furthermore, we can assume that T4 gives us
the labeled Dynkin diagram associated with w (Theorem 2.6.8). Therefore we can
use the labeled diagram associated with u to determine how T-weights restrict to
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T s-weights. Indeed, write A € X(T) as A = Zﬁ:l q;;, where a; are the simple
roots and ¢; € QT for all 4. Identifying the T4-weights with integers in the usual
way, we see that A restricts to the T4-weight  2¢; € Z, where the sum runs over
the ¢ such that «a; has label 2 in the labeled Dynkin diagram associated with wu.

For the rest of this section we will denote V' = Lg(\). According to Proposition
4.6.10, under our assumptions we also have the following.

e If u acts on V as a distinguished unipotent element, then V' | A is semisim-
ple.

Throughout we shall also denote r = my, (), which is the T4-weight given by
the restriction of the T-weight A (Definition 2.7.2). Now r is the highest weight
of V| A, since all T-weights of V' are of the form A — ) k;cy, where k; € Z>o.
Furthermore, the labeled Dynkin diagram of u has all labels equal to 0 or 2, so it
follows that all T4-weights of V' | A are of the form r — 2¢ for some ¢ € Z>.

In this section, we will often write T-weights of the form A—kja1 —ksao—- -+ as
A—1k19k2 ... For example, we write A\—a; = A—1 and A—2ap —a3 = A—223. For
a T-weight p, we will write p* for its image under the reflection s; corresponding
to the simple root «;.

Note also that since we are working in good characteristic, Premet’s theorem
(Theorem 4.5.5) applies and so the set of weights in Lg(\) is saturated. We will
often use this fact in this section without mentioning it explicitly.

Now under our assumptions we will be able to prove the following lemma from
[LST15] in our setting (positive characteristic), and essentially the rest of proof of
Theorem 5.13.1 is based on applying it. The proof of the lemma is essentially the
same as the one given in [LST15].

Lemma 5.13.9 ([LST15, Lemma 2.2]). Write A = )_ c;w;. Suppose that u acts
on'V as a distinguished unipotent element. Then

(i) If ¢; is nonzero, then o has label 2.
(ii) At most two values of ¢; can be nonzero.
(iii) For ¢ >0, the weight r — 2¢ occurs with multiplicity at most ¢ + 1.

(iv) If r —2 has multiplicity 1, then for all ¢ > 1 the weight r — 2c¢ has multiplicity
at most c.

Proof. As noted before, under our assumptions the fact that u acts on V as a
distinguished unipotent implies that V' | A is semisimple. Then it follows that
each composition factor of V' | A occurs with multiplicity one. Furthermore, the
simple summands that occur in V' | A are determined by the weights of A that
occur in V' | A. Recall also (Lemma 4.2.1) that all weights of a simple module
L(c) have multiplicity 1 and that they are contained in {¢,c—2,--- ,—(c—2), —c}.
We now proceed to use these facts to prove the claims (i) - (iv).

(i) If ¢; # 0 and «; has label 0, then the weight r of V' | A is afforded by weights
Aand A — i of V. But since r is the highest weight in V' | A, it follows that
L(r) must occur at least twice as a composition factor of V' | A, which is a
contradiction.
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(i) Suppose that i, j, k are distinct indices such that ¢;, ¢, ¢, # 0. Now (i) implies
that the nodes oy, aj and «ay, have label 2. Thus the weight r — 2 is afforded
by A —i, A —j and A\ — k. Since all the weights of V' | A are < r, this can
only happen if either L(r) or L(r — 2) occurs twice as a composition factor
of V'] A. As in (i), this is a contradiction.

(iii) Suppose that the weight r — 2¢ occurs with multiplicity > ¢+ 2in V | A.
Since r — 2¢ can only occur in L(s) for s > r —2¢, it follows that one of L(r),
L(r —2), ..., L(r — 2c) must occur at least twice as a summand of V' | A,
which is a contradiction.

(iv) We may assume that ¢ > 2. Suppose that the weight r — 2¢ occurs with
multiplicity > ¢+ 1 in V | A. Since each simple summand of V' | A has
multiplicity one, it follows that each of L(r), L(r — 2), ..., L(r — 2¢) must
occur as a summand of V | A. Furthermore, r — 2¢ occurs as a weight in
each of the modules L(r), L(r—2), ..., L(r —2c). In particular, r — 2¢ occurs
as a weight in L(r).

Now because we are assuming that » — 2 has multiplicity 1, it follows that
r — 2 does not occur as a weight of L(r), and therefore » > p. Since L(r) &
L(r—2)@® L(r—4) occurs as a direct summand of V' | A, it follows by Lemma
4.2.6 that r = p or r = p+ 1. But then r — 2¢ does not occur as a weight of
L(r), contradiction.

O]

Remark 5.13.10. Lemma 5.13.9 (iv) corresponds to |[LST15, Lemma 2.2 (iii)],
but note that a somewhat different proof is needed in positive characteristic. This

is also true for many other lemmas in this section that are analogous to lemmas
in [LST15]. For example, compare Lemma 5.13.23 and [LST15, Lemma 4.5 (i)].

Now according to Lemma 5.13.9 (ii) and Lemma 5.13.5, it will be enough to
prove Theorem 5.13.1 in the the following cases.

Case (I): A = cjw; + cjw;, where i # j and ¢;,¢; > 1.
Case (IT): \ = bw;, where b > 2.

When w is a regular unipotent (that is, when all nodes a; have label 2), we will
prove Theorem 5.13.1 in case (I) in this subsection (Proposition 5.13.16). Case (II)
for a regular unipotent element will be treated in subsection 5.13.1. The proofs
for a distinguished, non-regular unipotent element u will be given in subsection
5.13.2. We will now proceed to prove some general facts about the two cases (I)
and (II).

Lemma 5.13.11. Let A\ = bw;, where b > 1. Assume that u acts on V as a
distinguished unipotent element. Then if all nodes adjacent to «; have label 2, the
weight r — 2 of A occurs with multiplicity 1.

Proof. Note that a; has label 2 by Lemma 5.13.9 (i), so A —i affords r — 2. If r — 2
does not have multiplicity 1 in V' | A, then it would have to be afforded by some

A—1ij, where o is a node adjacent to «;. In this situation the node a; would have
to have label 0. O
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Lemma 5.13.12 (|LST15, Lemma 2.3|). Let A = bw;, where b > 2. Suppose that
u acts on 'V as a distinguished unipotent element. Then

(i) The node o is an end node with label 2.
(ii) The node adjacent to «; has label 2.

(iii) The weight r — 2 of V' | A has multiplicity 1.

Proof. (i) We know that a; has label 2 by Lemma 5.13.9 (i). The fact that «;
is an end node follows with the same proof as in [LST15, Lemma 2.3 (i)].

(ii) If G has rank 2, then we know from the description of the labeled Dynkin
diagrams (Section 2.6) that all nodes have label 2, unless G = G5 and u lies
in class Ga(az). In this case ay has label 0 and ay has label 2, so we must
have A\ = bwy. But then r — 2 is afforded by A — 2, A — 12 and \ — 122,
contradicting Lemma 5.13.9 (iii). If G has rank at least 3, then the claim
follows with the same proof as in [LST15, Lemma 2.3 (ii)].

(iii) This follows immediately from (i), (ii) and Lemma 5.13.11.
O

Lemma 5.13.13. Let A\ = bw;, where b > 2 and assume that u s a regular
unipotent element. Suppose u acts on V as a distinguished unipotent element.
Thenr =2+p, r=3+p, r=242porr=a+p° with4<a<p—2andk > 1.

Proof. Now by Lemma 5.13.12, the node «; is an end node, the node «; adjacent
to «; has label 2, and the weight » — 2 of V' | A occurs with multiplicity 1. Thus
the weight  —4 has multiplicity 2, being afforded by the weights A —i2 and A —ij.

Since u is a regular unipotent element and A is p-restricted, it follows from
Lemma 2.7.4 that p {r. Therefore the weight r — 2 occurs in L(r). Thus L(r — 2)
does not occur as a summand of V' | A, so L(r) & L(r — 4) must occur as a
summand of V' | A. Furthermore, r — 4 must occur as a weight of L(r). Now the
claim follows from Lemma 4.2.5. OJ

Lemma 5.13.14 ([LST15, Lemma 2.6]). Let A = cw; + cjw;, where i # j and
ci,cj > 1. Suppose that u acts on V as a distinguished unipotent element. Then

(i) Nodes adjoining oy and o have label 2.
(ii) If ¢; > 1 or ¢j > 1, then oy and o are adjacent.
(iii) Either oy or «j is an end node.

(iv) If all nodes have label 2 and o; and o are not adjacent, then o; and o are
both end nodes.

Proof. (i) This follows as in |[LST15, Lemma 2.6 (ii)].

(ii) This follows with the argument given in the beginning of the proof of [LST15,
Lemma 2.6 (iii)].
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(iii) We give a proof following |[LST15, Lemma 2.6 (iv)|. Suppose that a; and «;
are not end nodes, so now rank G > 3. Then there exists a node a; # «;
adjacent to oy and a node o # «; adjacent to a;. By (i), these nodes must
have label 2, so A —ij, A — it and X\ — js afford the weight » — 4. Now
¢; = ¢; = 1, as otherwise A — i? or A — j2 would also afford the weight r — 4,
contradicting Lemma 5.13.9 (iii). Similarly a; and a; must be adjacent, as
otherwise there exists a node a, # oy adjacent to a;, and then A —iu affords
the weight r — 4.

We will show next that A — 5 has multiplicity 2, which contradicts Lemma
5.13.9 (iii) and finishes the proof. Now for a Levi factor L = Az, L = B»
and L = (5, in the representation L (wi 4+ wsy) the weight wy + wy — a1 — g
has multiplicity 2 by Lemma 4.5.2, since we are assuming p > 7. Thus by
Corollary 4.5.7 the weight A — 5 has multiplicity 2 in V.

(iv) This follows with the same argument as [LST15, Lemma 2.6 (vi)].
O

Lemma 5.13.15. Let A = cjw; + cjw;, where i # j and c¢;,c; > 1. If u acts on 'V
as a distinguished unipotent element, then p > r.

Proof. Suppose that » > p and that u acts on V as a distinguished unipotent
element. Now the weight r — 2 has multiplicity 2 in V' | A since it is afforded by
A — i and A — j. Therefore L(r — 2) & L(r) occurs as a summand of V' | A, so by
Lemma 4.2.4 we have r = p, r = p+1, r = 2p, or r = p+p! for some [ > 2. On the
other hand, now r — 2 must occur as a weight of L(r), so it follows that r = p+ 1.
In this case r — 4 does not occur as a weight of L(r). Therefore the weight r — 4
has multiplicity < 2in V | A, as otherwise L(r —2) or L(r —4) would occur twice
as a summand. The rest of our proof is based on exploiting this fact.

Recall that by Lemma 5.13.14 (i) any node adjacent to o; and a; must have
label 2. We claim that «; and «; are adjacent. If this is not the case, then there
exists a node a; # «a; adjacent to «; and a node a; # o; adjacent to o;. Then
A —it, A —ij and A — js afford r — 4, which is a contradiction since r — 4 has
multiplicity < 2in V' | A.

Thus o; and «; must be adjacent, and by Lemma 5.13.14 (iii) either o; or «;
is an end node. Suppose first that G has rank at least 3. Without loss of generality
assume that «; is an end node. Then there exists a node oy, # «; adjacent to o,
and then A —ij and A — jk afford the weight r —4. Thus we must have ¢; = ¢; = 1,
as otherwise A — 2 or A\ — j2 would also afford the weight » — 4. As in the proof
of Lemma 5.13.14 (iii), we can use Corollary 4.5.7 to conclude that A\ — ij has
multiplicity 2 in V| giving a contradiction.

Suppose then that G has rank 2, so A = cywi + cowo. We will show that A — 12
has multiplicity 2, which will show that ¢; = ¢y = 1 as otherwise A — 12 or A\ — 22
would also afford the weight » — 4. If G is of type G9, then r = 6¢1 + 10co by
Lemma 2.7.3. Since r = p + 1, this implies p > ¢; 4+ 3¢2 + 3, so by Lemma 4.5.2
the weight A — 12 has multiplicity 2. The same argument works also for G = A,
and G = (5 to show that A — 12 has multiplicity 2.

Finally, what remains is the case where G has rank 2 and A = w; + wo. If G
has type As, then r =4, so p = 3, but we are assuming that p > 7. For G of type
Cs or Go, we have r = 7 and r = 16, respectively. In these cases r = p + 1 is not
a possibility. O
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Using Lemma 5.13.15 and the main result of [LST15|, we can now prove The-
orem 5.13.1 in the case where u is a regular unipotent element and A = c¢;w; +c;w;
with i # j and ¢;,¢; > 1.

Proposition 5.13.16. Theorem 5.13.1 holds when w is a regular unipotent ele-
ment and X\ = c,w; + cjwj, where i # j and ¢;,c; > 1.

Proof. Let u € G be a regular unipotent element and let A = c;w;+cjw;, where i #
jand ¢;,¢; > 1. Suppose that u acts on Lg(A) as distinguished unipotent element.
By Lemma 5.13.15, we have p > r, so by Corollary 2.7.6 we have V() = La()).
Furthermore, by Lemma 2.7.9 the action of u on Viz(\) has the same Jordan block
sizes as the corresponding action in characteristic 0. Thus the claim of Theorem
5.13.1 follows from |[LST15, Theorem 1]. O

Lemma 5.13.17 ([LST15, Lemma 2.6]). Let A\ = cw; + cjw;, where i # j and
ci,cj > 1. Suppose that u acts on V as a distinguished unipotent element. Then

(i) If oy and a; are adjacent, then X\ —ij has multiplicity 2.
(ii) FEither c¢; =1 orc; = 1.
(iii) If ¢; > 1 or ¢; > 1, then G has rank 2.

Proof. (i) According to Lemma 5.13.15, we have p > my,(\) = 6¢1 + 10co. Thus
if G has type Ga, then it follows from Lemma 4.5.2 that the weight A —ij has
multiplicity 2. Suppose then that G does not have type Go. We always have
may(w;) > 2, so it follows that m, (A) > 14 ¢ +¢;, 1 +2¢; +¢j, 1 + ¢ + 2¢;.
Then for L = Ay, L = By and L = Cy, in the representation Ly, (ciwi+cowa),
the weight wy + we2 — a1 — ao has multiplicity 2 by Lemma 4.5.2. Thus by
Corollary 4.5.7, the weight A — 45 has multiplicity 2 in V.

(ii) Using (i), the claim follows with the argument given in the end of the proof
of [LST15, Lemma 2.6 (iii)].

(iii) Again with (i), this follows with the same proof as [LST15, Lemma 2.6 (v)].
O

5.13.1 Case where u is regular and A\ = bw;, b > 2

In this section we will handle the case where A = bw;, b > 2. The result in this
case is the following proposition (cf. [LST15, Proposition 4.1]), which we will prove
using lemmas given later in this section. This then finishes the proof of Theorem
5.13.1 in the case where v is a regular unipotent element.

Proposition 5.13.18. Suppose that A\ = bw;, where b > 2. Then a regular uni-
potent element u € G acts on 'V as a distinguished unipotent element if and only
if p > my(A\) and G and X are as in the table below, with X given up to graph
automorphism of Dy.

For the proof, recall that we can assume that «; is an end node (Lemma 5.13.12
(i)). Note also that now if u acts on V as a distinguished unipotent element, by
Lemma 5.13.12 (iii) the weight » — 2 of V' | A has multiplicity 1. Then by Lemma
5.13.9 (iv), for all ¢ > 1 the weight r—2c of V' | A must occur with multiplicity < c.
We will use these facts in the proofs of the lemmas that follow. In this subsection
u will always be a regular unipotent element of G.
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A G
2001 B, Cy, D, (n even), Gy
3001 CQ, Cg, Bg, G2
bwl, b S 5) CQ
bCUQ, b S 5 02
2w3 B3
2w2 G2

Lemma 5.13.19. Suppose that G = B,, (n >3), G =C,, (n >3) or G = D,
(n>4) and A\ = bwy, where b > 3. If u acts on 'V as a distinguished unipotent
element, then b = 3.

Proof. We proceed as in the end of the proof of [LST15, Lemma 4.4]. Suppose that
b > 4. We show that the weight r — 8 of A occurs with multiplicity > 5, which
will give a contradiction by Lemma 5.13.9 (iv). If n > 4, then r — 8 is afforded by
A— 14 N =132, A — 1222 X\ — 1223 and A — 1234. If n = 3, replacing the last of
these weights by A — 1232 (type B3) or A — 1223 (type C3) gives us again a list of
5 weights affording r — 8. O

Lemma 5.13.20. Suppose that G = B, with n > 3 and A\ = bw,, with b > 2. If u
acts on 'V as a distinguished unipotent element, then n =3 and b = 2.

Proof. We proceed similarly to [LST15, Lemma 4.3]. Now we have Lp,(bws) =
Vg, (bwa) = S®(Vp, (ws)) (see e.g. [Sei87, 1.14 and 8.1 (c)] or [McN98, Proposition
4.2.2.(h)]). Hence in Lp,(bws) the weight bws — a — 2ap occurs with multiplicity
2, 50 by using 4.5.7 we see that the weight A — n?(n — 1) has multiplicity 2 in
V | A. So if b > 3, the weight r — 6 has then multiplicity at least 4, since it is
afforded by A —n?(n — 1), A —n? and A — n(n — 1)(n — 2), contradicting Lemma
5.13.9 (iv). Therefore b = 2.

If n > 4, then r — 8 has multiplicity at least 5, since it is afforded by A —n?(n—
Dn—2),\—=n?(n—-12% X—n(n—1)(n—2)(n—3) and A — n3(n — 1). This is
again a contradiction by Lemma 5.13.9 (iv). Therefore we must have b = 2 and
n=3J. 0

Lemma 5.13.21. If G = C,, with n > 3 and A = bw, with b > 2, then u does not
act on 'V as a distinguished unipotent element.

Proof. We proceed again similarly to [LST15, Lemma 4.3]. Suppose that u acts
on V as a distinguished unipotent element. If b > 3, then the weight » — 6 of
Ais afforded by A — (n — 2)(n — )n, A — (n — 1)n?%, A —n3 and A — (n — 1)?n,
contradicting Lemma 5.13.9 (iv).

Suppose then that b = 2. In this case if n > 5, the weight r—12 has multiplicity
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at least 7, since it is afforded by the following weights:

A —n?(n—1)*
A—n?(n—1)>3n—-2)

A —n*(n—1)%(n —2)
A—n?(n—1)%(n—-2)(n—3)

A =n2(n—1)(n—2)(n—3)(n—4)
A —n(n—1)*(n—2)%(n - 3)

A —n(n—1)%(n—2)(n—3)(n—4)

This again contradicts 5.13.9 (iv).

Consider n = 4 and A = 2wy, in which case m,(\) = 32 by Lemma 2.7.3. Since
w is regular of order p we have p > 2n = 8, so p > 7. Then according to [Liib01],
we have dim V' = 594 > 289 = (321_2)2, so Lemma 5.1.1 gives a contradiction.

In the case n = 3 a computation with MAGMA (Section 2.9), given in Table
5.3, shows that a regular unipotent element does not act on V' = Lg(2ws) as a

distinguished unipotent element. O
p | Lg(2ws) | Ku]
p=3 | [3,9]
p=>5 | [102,13,152]
p="7|[7
p=111[7,117]
p=13|1[3,7,9,13°]
p=17 | [3,7%,9,11,13,17?]
p>19 | [3,72,9,11,13,15,19)

Table 5.3: Action of a regular unipotent v € G on Lg(2ws), for G = Cs.

Lemma 5.13.22. If G = C5 and A = bwy with b > 6, then u does not act on V
as a distinguished unipotent element.

Proof. In this case we have V = Lg()\) = Vg()\) = SP(E) (see e.g. [Sei87, 1.14 and
8.1 (¢)] or [McN98, Proposition 4.2.2.(h)]), where E is the natural module for G.
Suppose that u acts on V' | A as a distinguished unipotent element. The weights
that occur in F are m, m — 2, m — 4 and m — 6, where m = 3. Now the weight
r — 12 has multiplicity at least 7, because it is afforded by symmetric powers of
vectors with weights as follows (each tuple below has length b):

3

yeeymym,mym,m,m — 6, m — 6)

E

coomem,mymy,m —2,m —4,m — 6)

3

oomomy,mym—2,m—2,m—2,m—06)

oomem,mymy,m —4,m —4,m — 4)

3

coomomy,mom—2m—2,m—4,m—4)

3

oomomom—2m—2m—2m—2m—4)

e e e e e s

m,...,mm—2,m—2m-—2m-—2,m—2,m—2)

This is a contradiction by Lemma 5.13.9 (iv). O
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Lemma 5.13.23. If G = C5 and A = bwy with b > 6, then u does not act on V
as a distinguished unipotent element.

Proof. Suppose that u acts on V as a distinguished unipotent element. The results
of Liibeck [Liib01] imply that dim L (bw2) > 85 for b > 6, so we can assume that
p > 17 by Lemma 5.1.1.

If b = 6, then a computation with MAGMA (Section 2.9), given in Table
5.4, shows that u acts on V' with repeated blocks. Assume then that b > 7. Let
r = my(A), so here r = 4b by Lemma 2.7.3.

Now the weight 7 —8 is afforded by the weights A—2*, A—123 and p = A —1222.
One can verify that all weights A »= p/ > p have multiplicity 1 in Vig(A) (see Table
4.2). Hence by Lemma 4.5.4, the weight p occurs with multiplicity 2 in V' unless
L (p) is a composition factor of Vi (A).

Consider first the case where Lo (1) is a composition factor of V(). Now by
Proposition 4.5.1 and Table 4.2, we have that p divides b+1. Since A is p-restricted,
we have b=p — 1. Then r = 4b=4p — 4 = 3p+ (p — 4), which is a contradiction
by Lemma 5.13.13.

Thus La(p) does not occur as a composition factor of Viz(A), and so u occurs
with multiplicity 2 in Lg(\). We proceed to show next that » — 10 has multiplicity
at least 6 in V' | A, which will contradict Lemma 5.13.9 (iv). First of all, the
weights v, = A — 12% and 15 = X\ — 1223 afford the weight  — 10. Furthermore,
by Table 4.2, the weights 11 and v have multiplicity 2 in Viz(\). One can verify
that all weights A = /' = v; except for g/ = p have multiplicity 1 in Vg (A) (see
Table 4.2). Then because Lg(p) does not occur as a composition factor of Vi (\),
it follows from Lemma 4.5.4 that v; has multiplicity 2 in Lg(\) if Lg(v;) does not
occur as a composition factor of Viz(\). Now by Proposition 4.5.1 and Table 4.2,
if Lg(v1) (respectively La(r2)) occurs as a composition factor of Vi (A), then p
divides b — 3 (respectively b — 4). Because b < p — 1, it follows that p does not
divide b — 3 nor b — 4, so we can conclude that 11 and v5 both have multiplicity 2
in Lg(\). Hence r — 10 occurs in V' | A with multiplicity at least 6, being afforded

by A — 2% XA — 1322, vy, and vs. ]
D L (6we) | Kul
p="1 | [T
p=11|[1,3,5,7,1119]
p=13|11,3,7,9,139
p=17 | [1,7,13,177]
p=19 | [1,7,9,13,15,197]
p=23|[1,7,9,13%,15,17,19,23%
p>29 | [1,7,9,13215,17,19, 21, 25]

Table 5.4: Action of a regular unipotent v € G on Lg(6ws), for G = Cs.

Lemma 5.13.24. Suppose that G = D,, and A = bw,, or A = bw,_1, where b > 2.
If uw acts on 'V as a distinguished unipotent element, then n =4 and b = 2.

Proof. This follows exactly as in the end of the proof of [LST15, Lemma 4.3]. [

Lemma 5.13.25. If G = Go and \ = bwy with b > 4, then u does not act on V
as a distinguished unipotent element.
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Proof. (JLST15, Lemma 4.5 (ii)|) The representation Lg(wi) gives an embedding
G < Bz, and now we have Lp,(bwi) | G = V by [Sei87, Table 1, II1;]. Since under
this embedding G2 contains a regular unipotent element of Bz (Theorem 1.1.12),

the claim follows from Lemma 5.13.19. L]

Lemma 5.13.26. If G = Gy and \ = bws with b > 3, then u does not act on 'V
as o distinguished unipotent element.

Proof. Here r = 10b by Lemma 2.7.3.

Suppose that u acts on V as a distinguished unipotent element. Note first
that by looking at the results of Liibeck in [Liib01|, we have dim V' > 148 under
our assumptio;ls. It follows then from Lemma 5.1.1 that p > 23, as otherwise
dimV > EEU%

Consider first b = 3. In this case p > 23 and |Liib01] imply that dimV =

273 > 256 = (ny, which is a contradiction by Lemma 5.1.1. Therefore b > 4.

Now the weight r — 8 is afforded by A — 2%, A — 123 A =132 and = \ — 1222,
Note that p occurs with multiplicity 2 in Vg (A) (Table 4.1). Furthermore, one can
verify that all weights A = u/ > p have multiplicity 1 in V() (see Table 4.1).
Thus if Lg(p) does not occur as a composition factor of Viz(A), it follows from
Lemma 4.5.4 that p occurs with multiplicity 2 in V, contradicting Lemma 5.13.9
(iv).

Hence Lg(p) must occur as a composition factor of Vi (A). By Proposition
4.5.1 and Table 4.1, this implies that p divides 3b+2. Now b <p—1,503b+2=1p
or 3b+ 2 =2p. Thus r = 10b = % or r = 20”73_20, which is a contradiction by
Lemma 5.13.13. O

Lemma 5.13.27. If G = Fy and A = bw; with b > 2, then u does not act on V
as a distinguished unipotent element.

Proof. Suppose that v acts on V' | A as a distinguished unipotent element. As in
the results above, recall that by Lemma 5.13.12 the node «; is an end node, and
that the weight r — 2 of A has multiplicity 1. If b > 3, then as in the proof of
[LST15, Lemma 4.7], we see that the weight r—8 of V' || A occurs with multiplicity
at least 5, contradicting Lemma 5.13.9 (iv).

Consider then the cases where b = 2. If A = 2wy, then r = 44 by Lemma 2.7.3.

By |Liib01], we have dimV > 755 > 529 = %, which is a contradiction by

Lemma 5.1.1. Finally if A\ = 2wy, then r = 32 by Lemma 2.7.3. Again by [Liib01],

we have dim V' > 298 > 289 = %, which is again a contradiction by Lemma
5.1.1. O

Lemma 5.13.28. If G = Fg, G = E7 or G = Eg and A\ = bw; with b > 2, then u
does not act on'V as a distinguished unipotent element.

Proof. Suppose that v acts on V' | A as a distinguished unipotent element. Recall
that by Lemma 5.13.12 the node «; is an end node, and that the weight r — 2 of
A has multiplicity 1.

Consider first the case where ¢ = 1. If b = 2, then by Lemma 2.7.3 we have
r =232, r =68 and r = 184 when G = FEg, G = E7, or G = FEg respecti-
vely. Furthermore, it follows from [Lib01] that dim V' = 351, dim V' > 7370, and

dim V' > 100000 respectively. In any case, we see that dim V' > (7'22)2, which is a
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contradiction by Lemma 5.1.1. If b > 3, then the weight r — 8 of V' | A is afforded
by A — 1232, A — 1234, A — 1234 and X — 1345, contradicting Lemma 5.13.9 (iv).

Thus we must have i > 1. If i = 2, then the weight r — 8 is afforded by A — 2242,
A — 2243, A — 2245, A\ — 2431 and A — 2435, which again contradicts Lemma 5.13.9
(iv).

Therefore o; must be the last node in the Dynkin diagram of G, say A = bw,
where G = E,. In this situation if b = 2, then by Lemma 2.7.3 we have r = 32,
r =54 and r = 118 when G = Fg, G = E7, and G = Eg respectively. Furthermore,
it follows from [Liib01]| that dimV = 351, dim V' = 1463, and dim V' > 100000
respectively. As earlier in the proof, we see that dimV > %, which is a con-
tradiction by Lemma 5.1.1.

Hence b > 3. In this case the weight » — 12 has multiplicity at least 7, being
afforded by A —n?(n — 1)3, A = n3(n — 1)%(n — 2), A = n3(n — 1)(n — 2)(n — 3),
A—n?(n—1)2(n—2)%, A\=n?(n—1)?>(n—2)(n—3), A—n?(n—1)(n—2)(n—3)(n—4),
and A —n(n —1)(n —2)(n — 3)(n — 4)(n — 5). This is a contradiction by Lemma
5.13.9 (iv). O

We now summarize the lemmas above and give the proof of Proposition 5.13.18.

Proof of Proposition 5.13.18. Suppose that A = bw;, where b > 2. Assume that a
regular unipotent element u € G acts on V' = Lg(\) as a distinguished unipotent
element. It follows from Lemma 5.13.12 (i) that «; is an end node. Therefore if
G = A, then the claim of Proposition 5.13.18 follows from Lemma 5.13.4.

If G = B,, with n > 3, then it follows from Lemma 5.13.19 and Lemma 5.13.20
that A = 2wy, A = 3wy, or n = 3 and A\ = 2ws. Furthermore, for these cases the
claim of Proposition 5.13.18 follows from Proposition 5.7.7 (b) (ii), Proposition
5.9.1, and Table 5.5, respectively. Here the decompositions given in Table 5.5 were
computed with MAGMA (Section 2.9).

If G = By = (5, then it follows from Lemma 5.13.22 and Lemma 5.13.23
that A = bw; with b < 5. For b < 3 the claim of Proposition 5.13.18 follows from
Proposition 5.7.11 (b) (ii) (for i = 1, b = 2), Proposition 5.7.7 (b) (ii) (for i = 2,
b = 2), and Proposition 5.9.1 (for b = 3). For b = 4 and b = 5, the claim of
Proposition 5.13.18 follows from Table 5.6, which was computed with MAGMA
(Section 2.9).

If G = C), with n > 3, then it follows from Lemma 5.13.19 and Lemma 5.13.21
that A = 2wy or A = 3w;. For these cases the claim of Proposition 5.13.18 follows
from Proposition 5.7.11 (b) (ii) and Proposition 5.9.1, respectively.

If G = D, with n > 4, then it follows from Lemma 5.13.19 and Lemma 5.13.24
that A = 2w, A = 3wy, or n =4 and X € {2ws, 2w, }. For these cases the claim of
Proposition 5.13.18 follows from Proposition 5.7.8 (b) (ii), Proposition 5.9.1, and
Proposition 2.10.2 (ii), respectively.

If G = (o, then it follows from Lemma 5.13.25 and Lemma 5.13.26 that
A € {2w1,3w1, 2wy }. In these cases the claim is a consequence of Table 5.7, which
was computed with MAGMA (Section 2.9).

Finally if G = Fy, G = Eg, G = F7, and G = Eg, we have a contradiction by
Lemma 5.13.27 or Lemma 5.13.28. L]
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P La(2ws) | K[u]
p=3 | [1,7,9
p=>5|1,5,7,9,13]
p=7 |[T]
p=11[1,5,7,11?]
p>131[1,5,7,9,13]

Table 5.5: Action of a regular unipotent v € G on Lg(2ws), for G = Bs.

N p [LeN K[
dwy | p=5 | 5]
p="7|[7]
p=111[1,57,11?
p>13 | [1,5,7,9,13]
Swi | p= [78]
p=11|[4,8,11%
p=13 | [4,6,8,12,13?]
p>17 [468101216]
dwo | p=5 [511]
p=7T [57 ]
p=111 [11°]
p=13 | [5,11,13%]
p>171[5,9,11,13,17]
Swo | p= [713]
p=111[3,59,11%
p=13| [137]
p=17[5,9,11,15,17°]
=19 | [5,9,11,13,15,19?]
p>23 | [59,11,13,15,17,21]

Table 5.6: For G = Cy and v € G a regular unipotent element, action of u on
La(XN) for A = bw; with @ € {1,2} and b € {4,5}.

5.13.2 Case where u is not regular

In this section, we keep our setup as before, but assume throughout that u is a
distinguished unipotent element that is not regular. The result in this case is the
following proposition, which completes the proof of Theorem 5.13.1.

Proposition 5.13.29. A non-regular unipotent element u of order p acts as a
distinguished unipotent element on V' if and only if p > my(\) and G and X\ are
as in the table below, with A given up to graph automorphism of D,,.
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N » [LeV 1KY
2w | p=3 |97
p=5|[5,9,13]
p=7T [57 73]
p=111 [5,117]
p>13 | [5,9,13]
3wy | p=5 | [5%,10%,13,15,19)
p="1 | [T"]
p=11 | [117]
p=13|3,9,13°]
p=17 | [3,7,9,11,13,17?]
p>19|[3,7,9,11,13,15,19]
2wy | p=3 | [93]
p=>5 | [1,5,10% 152 21]
p=7 | [T]
p=11| [117]
p=13 | [1,11,13%]
p=17 | [1,5,9,11,173
p=19 | [1,5,9,11,13,19?]
p>23|[1,59,11,13,17,21]

Table 5.7: For G = G2 and u € G a regular unipotent element, action of u on
Lg(A) for A = 2w, A = 3w;, and A = 2ws.

A G class of u
wy | Bp, Cn, Dy, any

W6 Dﬁ [3, 9]

Wy Fy F4(CL1)

wr Er Er(a1), E7(as2)
ws Eg Eg(ay)

To prove Proposition 5.13.29, it will be enough to show in each case that u
does not act as a distinguished unipotent element on V when A # w;. After that
is done, the result follows from Lemma 5.13.5.

We begin by considering the case where G is of classical type. Because we
are assuming that u is a non-regular distinguished unipotent element, we have
rank G > 3 and G is not of type A,.

Lemma 5.13.30. Suppose that G = By, G = C,, or G = D,, and assume that u
acts on V' as a distinguished unipotent element. Then

(i) A\ = bw; for some i.
(il) If A = bw; with b > 2, then i = 1.
Proof.  (i): We argue as in [LST15, Lemma 6.2 (iii)]. Suppose that A # bw;. Then

by Lemma 5.13.9 (i) we have A\ = cjw; + cjw; where i # j and ¢;,¢; > 1.
According to 5.13.14 (i), nodes adjoining «; and «; have label 2, so according
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to Proposition 2.6.5 the nodes a; and «; occur in the initial string of 2’s.
Now since rank G > 3, by Lemma 5.13.17 (iii) we have ¢; = ¢; = 1, and
Lemma 5.13.14 (iii) shows that either a; or «; is an end node. Because o
and a; occur in the initial string, without loss of generality we can assume
i =150 A=wp+w; for some j > 1.

If j > 2, then there exists a node a3, # «o; adjacent to «;. Since a; and «;
occur in the initial string and not all labels are 2, the node «; is not an end
node. Therefore there exist distinct nodes ag, oy # a; which are adjacent
to ;. Then the weight r —4 of V' | A is afforded by A — 12, A — 15, A —tj
and A — sj, which is a contradiction by Lemma 5.13.9 (iv).

Thus A = wy + w9, and so the labeled Dynkin diagram has at least three 2’s
in the initial string. If the labeling starts with 2220. .., then r —4 is afforded
by the weights A — 12, A — 23 and A — 234. Here A — 12 has multiplicity 2
by Lemma 5.13.17 (i), so this contradicts Lemma 5.13.9 (iv). On the other
hand, if the labeling starts with 2222 ..., then r — 6 is afforded by A — 123,
A —234, A — 122 and A — 122, Here A\ — 123 = (A — 12)*¢ has multiplicity 2
by Lemma 5.13.17 (i), again a contradiction by Lemma 5.13.9 (iv).

(ii): This follows with the same argument as [LST15, Lemma 6.2 (iv)].
O

Lemma 5.13.31. Suppose that G = B,,, G = C,, or G = D,,. If A\ = bwy with
b > 2, then u does not act on 'V as a distinguished unipotent element.

Proof. If b = 2, the claim follows from Proposition 5.5.10 (a), Proposition 5.5.5
(a) and Proposition 5.5.6 (a). If b = 3, then the claim follows from Proposition
5.9.1.

Suppose then that b > 4 and assume that u acts on V | A as a distinguished
unipotent element. According to Lemma 5.13.12, the nodes aq and as have label
2, so n > 3. Furthermore, by Lemma 5.13.12 (iii) the weight » — 2 of A has
multiplicity 1. Suppose that a3 has label 0. In this case 7 — 4 is afforded by A — 12,
A—12 and A\ — 123, contradicting Lemma 5.13.9 (v). Therefore a3 has label 2, and
so n > 4. Suppose that ay has label 0. Then 7 — 6 is afforded by A — 13, A — 122,
A—123 and A —1234, again a contradiction by Lemma 5.13.9 (v). Therefore a4 has
label 2. Now r — 8 is afforded by A — 1%, A — 132, A — 1222, A\ — 1?23 and \ — 1234,
once again contradicting Lemma 5.13.9 (v) and completing our proof. O

This completes the proof of Proposition 5.13.29 for G of classical type. If G
is of type By, Cy, or D,, and u acts on V = Lg(A) as a distinguished unipotent
element, then A\ = w; by Lemma 5.13.30 and Lemma 5.13.31.

We now move on to consider the exceptional groups.

Lemma 5.13.32. Let G = Gs. If u acts on 'V as a distinguished unipotent ele-
ment, then A = w;.

Proof. Suppose that A # w;. Since u is not regular, it cannot act on V as a
distinguished unipotent element in view of Lemma 5.13.9 (i) and Lemma 5.13.12

(ii). O

Lemma 5.13.33. Let G = Fy. Then if u acts on V as a distinguished unipotent
element, we have A = w;.
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Proof. We proceed similarly to [LST15, Lemma 6.7]. Suppose that v actson V' | A
as a distinguished unipotent element. Consider first the possibility that A = c;w; +
cjwj, where i # j and ¢;,¢; > 1. Then by Lemma 5.13.14, the nodes «; and «o;
and nodes adjacent to them have label 2. But by looking at the possible labelings
given in Proposition 2.6.7, this means that all labels of the Dynkin diagram are
2, contrary to our assumption that u is not regular.

Therefore A = bw; for some 4. If b > 2, then by Lemma 5.13.12 the node «; is an
end node. Furthermore, ; and the node adjacent to it have label 2. By Proposition
2.6.7, this means that ¢ = 1 and the labeled Dynkin diagram of u is 2202. Now
the weight r — 4 is afforded by A — 12, A\ — 12 and A — 123, contradicting Lemma
5.13.9 (v), since r — 2 has multiplicity 1 by Lemma 5.13.12. Thus \ = w;. Ol

Lemma 5.13.34. Let G = Eg, G = E7 or G = Eg. If u acts on V as a distin-
guished unipotent element, then \ = w;.

Proof. Assume that G = E,, and that u actson V' | A as a distinguished unipotent
element.

Suppose first that ¢;,c¢; > 1 for some ¢ # j. Then A\ = cw; + ¢jw; by Lemma
5.13.9 (ii). Now the arguments given in the beginning of the proof of [LST15,
Lemma 6.8 show that we must have A = w,_1 +w,. Since we are assuming p > 7,
by 4.5.7 and 4.5.3 the weight A — n(n — 1) occurs with multiplicity 2. Then the
argument given in [LST15, Proof of Lemma 6.8, paragraph 2| shows that we have
a contradiction with Lemma 5.13.9 (iii).

Now consider A\ = bw;. According to Lemma 5.13.12, the node «; is an end node
with label 2, the node adjacent to «; has label 2, and the weight r —2 of V | A
occurs with multiplicity 1. Now the arguments given in the proof of [LST15, Proof
of Lemma 6.8, paragraphs 3-4| show that we have a contradiction with Lemma
5.13.9 (iv) if b > 1. Therefore A = w;.

O

With Lemma 5.13.32, Lemma 5.13.33, and Lemma 5.13.34, the claim of Pro-
position 5.13.29 for G of exceptional type follows. This also completes the proof
of Theorem 5.13.1.

5.14 Proof of Theorem 1.1.10 and Theorem 1.1.11

In this section we will put results from previous sections together and prove The-
orem 1.1.10 and Theorem 1.1.11.

Let u € G be a unipotent element, and let A € X(7)" be a non-zero p-
restricted dominant weight.

We assume first that p # 2 and prove Theorem 1.1.10. Suppose that u acts
on Lg(A) as a distinguished unipotent element. It follows from Lemma 1.1.8 that
u is a distinguished unipotent element. If u has order p, then Theorem 1.1.10 is
given by Theorem 5.13.1. Suppose then that u has order > p. In this case, for the
different types, Theorem 1.1.10 is a consequence of the following results:

e G = A; (I > 1): Here the only distinguished unipotent class is the regular
one (Lemma 2.2.2), so u is a regular unipotent element. It follows from
Proposition 5.1.4 and Lemma 5.1.5 that A\ = w; or A = wq +wj. In these cases
the claim of Theorem 1.1.10 follows from Proposition 5.12.1 and Proposition
5.3.2, respectively.
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G = By or G = () (I > 2): In this case, it follows from Proposition 5.1.14
that either A = w;, A = 2w;, A = 3wy, Proposition 5.1.14 (iv) holds, or
Proposition 5.1.14 (v) holds. Now the claim of Theorem 1.1.10 follows from
Proposition 5.12.1, Proposition 5.7.7, Proposition 5.7.11, Proposition 5.9.1,
and Table 5.6.

G = D; (I > 4): Here it follows from Proposition 5.1.18 that A = w; or
A = 2wi. In these cases the claim of Theorem 1.1.10 follows from Proposition
5.12.1 and Proposition 5.7.8, respectively.

e (G = (Go: In this case, the claim of Theorem 1.1.10 is given by Proposition
5.1.19.

G =Fy, G=FEg, G=FE; or G= Eg: In this case, Theorem 1.1.10 follows
from Lemma 5.1.20 and Proposition 5.12.1.

This completes the proof of Theorem 1.1.10.

We assume next that p = 2 and proceed to prove Theorem 1.1.11. Suppose
that u acts on Lg(A) as a distinguished unipotent element. It follows from Lemma
1.1.8 that u is a distinguished unipotent element. For each of the different types,
Theorem 1.1.11 is given by the following results:

e G =A; (Il >1): Here u must be a regular unipotent element (Lemma 2.2.2).
It follows from Proposition 5.2.2 and Lemma 5.2.2 (i) that A = wy, A = wy,
A=wi+w,orl=3and A\ = wy. In these cases, the claim follows from
Theorem 1.1.12, Proposition 5.4.4, and Lemma 5.2.2 (ii).

e G = C) (I > 2): Tt follows from Proposition 5.2.4 that A\ = wy, A = we,
A =wy, orl =5and A\ = ws. For A = w; the claim is obvious since Lg(w1) is
the natural representation, and for rest of the cases the claim follows from
Proposition 5.6.7, Proposition 5.11.3, and Lemma 5.2.5.

e G = By (I > 2): Tt follows from Proposition 5.2.4 that A = w;. There exists
an exceptional isogeny ¢ : B; — () [Ste68, Theorem 28|, and we have
Loy (wi)? 2 Lp,(wi) if 1 <i <1—1,and L¢, (wi)? = Lp,(w;)Y. Thus in this
case, the claim of Theorem 1.1.11 follows from the result for type Cj, which
we have already proven.

e G = D; (I > 4): It follows from Proposition 5.2.4 that A = w;. In the case
where A = w;_1 or A = wy, the result is given by Proposition 5.11.4. Suppose
then that 1 < i <[ —2. Note that for a simple group H of type C}, we have
G < H as the subsystem subgroup generated by short root subgroups, and
Lo, (wi) | G = Lg(w;) for 1 <4 < 1—2[Sei87, Theorem 4.1]. Thus the claim
follows from the result for type Cj.

e G simple of exceptional type: In this case, the claim is given by Proposition
5.2.6 and the tables in Appendix B.
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Non-G-completely reducible
overgroups

Let G be a simple linear algebraic group and let u € G be a distinguished uni-
potent element. In this section, we study connected reductive subgroups X of G
containing u such that X is contained in some proper parabolic subgroup of G.
Testerman and Zalesski |[TZ13] have shown that no such X exist if u is a regular
unipotent element. We will find that their result does not generalize to distinguis-
hed unipotent elements and we will give several counterexamples in this section.
However, we are able to give a complete list of X contained in a proper parabolic
subgroup in the case where u has order p (Theorem 6.2.12). In the case where u
has order > p, we have partial results. Furthermore, the general impression from
the examples and results we have is that such subgroups X are quite rare and
finding a complete list of them should eventually be possible.

6.1 Preliminaries on G-complete reducibility

We begin by making a basic useful observation. Let X be a connected reductive
subgroup of G containing u, and assume that X is contained in a proper parabolic
subgroup P of G. Since every Levi factor of P is a centralizer of some non-trivial
torus, and since u is a distinguished unipotent element, it follows that X cannot
be contained in any Levi factor of P. In the terminology of the next definition due
to Serre, we say that X is a non-G-completely reducible subgroup of G.

Definition 6.1.1 (Serre, [Ser03]). Let H be a closed subgroup of G. We say that
H is G-completely reducible (G-cr), if whenever H is contained in a parabolic
subgroup P of G, it is contained in a Levi factor of P. Otherwise we say that
H is non-G-completely reducible (non-G-cr). If H is not contained in any proper
parabolic subgroup of G, we say that H is G-irreducible (G-ir).

We record the observation made above in the next lemma.

Lemma 6.1.2. Let X < G be a reductive subgroup of G. Suppose that X contains
a distinguished unipotent element of G. Then X is G-ir or X is non-G-cr.

Below we will list some well known properties of G-cr and G-ir subgroups
that will be needed in the sequel. As seen from the next theorem, for classical
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groups the concept of G-cr (G-ir) subgroups can be seen as a generalization of
semisimplicity (irreducibility) in representation theory'?.

Theorem 6.1.3 (|Ser05, 3.2.2]). Let G = SL(V), G = Sp(V), or G = SO(V).
Assume that p > 2 if G = Sp(V) or G = SO(V). Then a closed subgroup H < G
1s G-cr if and only +«f V | H is semisimple.

The following two results describe parabolic subgroups and G-ir subgroups in
simple classical groups.

Theorem 6.1.4. Let G = SL(V), G = Sp(V), or G = SO(V). Any parabolic
subgroup of G is of the form Stabg(Wy C --- C Wy), where Wy, C --- C Wy is a
flag of subspaces such that for all 1 < i <t, the subspace W; is totally isotropic if
G = Sp(V), and totally singular if G = SO(V).

Proof. This is well known, for a proof, see for example [MT11, Proposition 12.13].
O

Theorem 6.1.5 ([LS96, pg. 32-33]). Let G = SL(V), G = Sp(V), or G = SO(V).
Let X < G be a connected reductive subgroup. Then X is G-ir if and only if one
of the following holds:

(i) G=SL(V) and V | X s irreducible;

(i) G=Sp(V) or G=SO(V), and V | X =V L --- L V; (orthogonal direct

sum,), where:

o foralll <i <t, the V; are non-degenerate subspaces and irreducible
X -modules,

o Forall 1 <i,j <t withi# j, we have V; 2V, as X-modules.

(ii) G = SO(V), p = 2, dimV s even, and V | X =V; L Vo L -+ LV
(orthgonal direct sum), where:

o V1 | X is non-degenerate, the subgroup X stabilizes a nonsingular 1-
space R of Vi, and the image of the representation X — SO(R') is
SO(R*Y)-ir.

o For all 2 < i <t, the V; are non-degenerate subspaces and irreducible
X-modules,

o Forall2 <i,j <t withi# j, we have V; 2 V; as X-modules.

6.2 Unipotent elements of order p

In this subsection, we consider unipotent elements of order p that are contained in
a non-G-cr subgroup. As an application of results in Section 4.6 and recent work
of Litterick and Thomas in [LT|, we describe all unipotent elements that can be
contained in some non-G-cr subgroup of type Ay when p is good for G. We will also
show that except for two known examples which occur in the case (G, p) = (Co,2)

MFor exceptional groups, reductive non-G-completely reducible subgroups only occur in small
characteristic [LS96, Theorem 1].
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any connected reductive subgroup containing a distinguished unipotent element
of order p must be G-ir (Theorem 6.2.12).

We begin by considering the situation where p is good for G. Let G¢ be a simple
algebraic group over C with the same root system ® as GG. In good characteristic,
recall (Definition 2.7.7) that for any unipotent element u € G, we can define a
unipotent element uc € G¢ which has the same labeled diagram as u.

Definition 6.2.1. Assume that p is good for G. Let u € G be a unipotent element.
For uc € G, we define N(uc) to be the largest Jordan block size of uc acting on
the adjoint representation of G¢.

With the “order formula” proven by Testerman in [Tes95|, Lawther has shown
the following result.

Theorem 6.2.2 ([Law95, Theorem 1|). Assume that p is good for G. Let u € G
be a unipotent element. Then u has order p if and only if N(uc) < 2p— 1.

We now proceed to describe for each simple type when equality N (uc) = 2p—1
holds. Tt turns out that with one exception (regular unipotent elements in G of
type Ap—1), equality holds if and only if the unipotent element is contained in
some non-G-cr subgroup of type Aj.

Lemma 6.2.3 (Type A;, | > 2). Let G = SL(V) and assume that dimV > 3. Let
u € G be a unipotent element with V | K[u] = Vg, & --- & Vy,, where di > dy >
<o >dy > 0. Then

(i) N(uc)=2d; — 1.
(ii) N(uc) =2p—1 if and only if d1 = p.

(iii) w is contained in a non-G-cr subgroup X < G of type Ay if and only if dy = p
and t > 1.

Proof. Using the fact that the highest root in type A; is equal to w; +wy, claim (i)
can be seen from [Sup09, Proposition 1.5, Algorithm 1.6]. Claim (ii) is immediate
from (i).

We consider claim (iii). For the “only if” part, suppose that u is contained in
a non-G-cr subgroup X < G of type A;. Then u must have order p, so d; < p. If
di < p, then by Corollary 4.6.9 the restriction V' | X is semisimple. By Theorem
6.1.3 the subgroup X is G-cr, contradiction. Therefore dy = p. Now if ¢t = 1, then
V has dimension p and thus V' | X must be semisimple by [Jan97, (A)], again a
contradiction by Theorem 6.1.3. Thus ¢ > 1, giving the claim.

For the “if” part of claim (iii), suppose that d; = p and ¢t > 1. Let X = SLo(K)
and fix a non-identity unipotent element v € X. Consider first the case where
dy = p. By Lemma 4.6.2, for the indecomposable tilting X-module T'x (p) we have
Tx(p) I+ K[v] =V, @ V,. Furthermore, by Lemma 4.2.2 we have Lx(d; — 1) |
K[u] = Vg, for all i. Thus we can identify V' with the X-module

t

Tx(p) & P Lx(di — 1),
i=3

which gives an embedding X < SL(V') such that V' | K[v] = Vg, & --- & Vy,. Now
v and v are conjugate in G (Lemma 2.2.1), so by replacing X with a conjugate, we



198 Chapter 6.

can assume that v = v. Now V' | X is not semisimple since T'x (p) is not semisimple
(Theorem 4.1.5 (ii)), so by Theorem 6.1.3 the subgroup X is a non-G-cr subgroup
of type Ay containing wu.

Consider next the case where dy < p. It follows from Lemma 4.6.1 that Vx (p+
do—1) | K[u] = V,®Vy,. As before, by Lemma 4.2.2 we have Ly (d; —1) | K[u] =
Vg, for all i. We can identify V' with the X-module

t
Vx(p+dy— 1) ® P Lx(di — 1),
i=3

which gives an embedding X < SL(V') such that V' | K[v] = V4, & --- & Vg,. As
in the previous paragraph, we can assume that v = wu. It follows from Theorem
6.1.3 that X is a non-G-cr subgroup of type A; containing u since Vx(p+ds — 1)
is not semisimple (Proposition 4.6.5). O

Lemma 6.2.4 (Type Cj, | > 2). Let G = Sp(V) and assume that p > 2 and
dimV > 4. Let uw € G be a unipotent element with V. | K[u] = Vg, & --- & Vy,,
where dy > dy > --- > dy > 0. Then

(i) N(uc)=2d; — 1.
(ii) N(uc) =2p—1 if and only if di = p.

(iii) w is contained in a non-G-cr subgroup X < G of type Ay if and only if
dl =D.

Proof. Claim (i), claim (ii), and the “only if” part of claim (iii) follow exactly as
in the proof of Lemma 6.2.3.

For the “if” part of claim (iii), suppose that d; = p. Let X = SLy(K) and fix
a non-identity unipotent element v € X. Now for unipotent elements in Sp(V),
odd Jordan block sizes must have even multiplicity (Proposition 2.3.2), so dy = p.
Furthermore, we can write

V| Klu :%@%@@2"/2%—&-1@@‘/2%
=1 j=1

where a; > 0 for all 7, where b; > 1 for all j, and 2 4 2r + s = . We proceed next
to realize each of these summands as X-modules with non-degenerate X-invariant
alternating bilinear forms.

It follows from Corollary 4.4.11 that the tilting X-module Tx(p) has a non-
degenerate X-invariant alternating bilinear form, and from Lemma 4.6.2 that
Tx(p) 4 K[v] =V, ®V,. For all 1 < i < r, it follows from Lemma 4.4.6 that
the X-module Lx(2a;) ® Lx(2a;)* has a non-degenerate X-invariant alternating
bilinear form, and from Lemma 4.2.2 that Lx (2a;)® Lx (2a;)* | K[v] =2 Vag,41.
For all 1 < j <s, it follows from Corollary 4.4.4 that the X-module Lx(2b; — 1)
has a non-degenerate X-invariant alternating bilinear form, and from Lemma 4.2.2
that Lx(2b; — 1) | K[v] = Vap,. Hence the X-module

W =Tx(p) ® P(Lx (2a:) & Lx (2a:)*) & @D Lx (2b; — 1)
i=1 j=1
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has a non-degenerate X-invariant alternating bilinear form and W | K[v] = Vg, @
.-+ @ Vy,. Thus by identifying V with W, we get an embedding X < Sp(V') such
that V | K[v] = Vg, @& --- @ Vy,. By Proposition 2.3.1, the elements u and v are
conjugate in GG, so by replacing X with a conjugate we may assume that u = v.
Now V' | X is not semisimple since Tx (p) is not semisimple (Theorem 4.1.5 (ii)),
80 by Theorem 6.1.3 the subgroup X is a non-G-cr subgroup of type A; containing
U. OJ

Lemma 6.2.5 (Type B; (I > 3) and type D; (I > 4)). Let G = SO(V) and
assume that p > 2 and dimV > 7. Let u € G be a unipotent element with V' |
Kul=Vy, @ - -® Vg, where dy >dg > --->dy > 0. Then

2dy — 1, if dy = do.
(1) N(U(C) = 2d1 - 2, 7f d2 = d1 — 1.
2dy — 3, ifdy < dy —2.

(ii) N(uc) =2p—1 if and only if di = d2 = p.

(iii) w is contained in a non-G-cr subgroup X < G of type Ay if and only if
dy = dy = p.

Proof. Using the fact that the highest root in type B; (I > 3) and type D; (I > 4)
is equal to wo, claim (i) follows with [Sup09, Proposition 1.5, Algorithm 1.6]. For
claim (ii), it is immediate from (i) that d; = da = p implies N(uc) = 2p — 1. For
the other direction of (ii), suppose that N(uc) = 2p — 1. If dy = d; — 1, then by
(i) we have N(uc) = 2d; — 2, contradiction since 2p — 1 is odd. If dy < dy — 2,
then by (i) we have N(uc) = 2d; —3 =2p—1, so d; = p+ 1. But then d; is even,
which is a contradiction since even Jordan block sizes must have even multiplicity
by Proposition 2.3.2. Therefore we must have d; = ds. Now it is immediate from
(i) and N(uc) = 2p — 1 that d; = da = p.

For the “only if” part of claim (iii), suppose that u is contained in a non-G-cr
subgroup X < G of type Aj. If di < p or do < p, it follows that u acts on V with
< 1 Jordan block of size p. Since X < SO(V), the restriction V | X is self-dual,
and thus V' | X is semisimple by Proposition 4.6.10. Then by Theorem 6.1.3 the
subgroup X is G-cr, contradiction.

For the “if” part of claim (iii), suppose that d; = d2 = p. Let X = SLa(K)
and fix a non-identity unipotent element v € X. By Proposition 2.3.2, the even
Jordan block sizes of u have even multiplicity, so we can write

V| Klu] :V},@V};@@?-Vmi@@vzbjﬂ
i=1 j=1

where a; > 1 for all 7 and b; > 0 for all j, and 2+2r 4 s = ¢. Similarly to the proof
of Lemma 6.2.4, we proceed to construct these summands as suitable X-modules
with non-degenerate symmetric bilinear forms.

It follows from Corollary 4.4.11 that the tilting X-module Tx(p + 1) has a
non-degenerate X-invariant symmetric bilinear form, and from Lemma 4.6.2 that
Tx(p+1) L K[v] =V,®V,. For all 1 <i <r,it follows from Lemma 4.4.6 that the
X-module Lx(2a;—1)® Lx(2a;—1)* has a non-degenerate X-invariant symmetric
bilinear form, and from Lemma 4.2.2 that Lx(2a; — 1) ® Lx(2a; — 1)* | K[v] =
2-Va,. Forall 1 < j < s, it follows from Corollary 4.4.4 that the X-module L x (2b;)
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has a non-degenerate X-invariant symmetric bilinear form, and from Lemma 4.2.2
that Lx(2b;) | K[v] = Vo, 1. Hence the X-module

W =Tx(p+1) ® P(Lx(2a:) & Lx(2a:)*) & @ Lx (2b; — 1)
j=1

i=1

has a non-degenerate X-invariant symmetric bilinear form, and W | K[v] =
Va, ® -+ @ Vy,. By identifying V' with W, and replacing X with PGLa(K) if
the representation p : X — GL(W) has nontrivial kernel, we get an embedding
X < SO(V) such that V' | K[v] = Vg, @ --- @ Vy,. By Proposition 2.3.1, the
unipotent elements u and v are conjugate in the full orthogonal group O(V'), so
by replacing X with a conjugate we can assume that v = v. Now V | X is not
semisimple since T'x (p+ 1) is not semisimple (Theorem 4.1.5 (ii)), so by Theorem
6.1.3 the subgroup X is a non-G-cr subgroup of type A; containing wu. Ol

Lemma 6.2.6. Let G be a simple algebraic group of exceptional type and assume
that p is good for G. Let u € G be a unipotent element of order p. Then u is
contained in a non-G-cr subgroup X < G of type Ay precisely in the following
cases:

(i) G = Eg, p=>5, and u is in unipotent class Ay or A4A;.
(ii) G = E7, p=>5, and u is in unipotent class Ay, AgA1, or A4A,.
(i) G = E;7, p="7, and u is in unipotent class Ag.

(iv) G = Eg, p=17, and u is in unipotent class Ag or AgA;.

Proof. Here we will rely heavily on the work of Litterick and Thomas in [LT|. The
main result of [LT] gives a complete list of non-G-cr subgroups X < G of type
A1, up to G-conjugacy. Thus to prove our claim, it will be enough to check for
each X which conjugacy class of unipotent elements of order p it intersects. Note
that there is only one such conjugacy class, since in X all non-identity unipotent
elements are conjugate.

For each non-G-cr subgroup X, Litterick and Thomas give the X-module struc-
ture of the restriction of the adjoint representation of G, see [LT, Table 11 - Table
16]. Using results on the action of a non-identity unipotent element v € X on
X-modules (example given below), this allows us to compute the Jordan block
sizes of a non-identity unipotent element v € X on the adjoint representation.
Then by |Law95, Theorem 2|, we can use the tables in [Law95] to identify the pre-
cise conjugacy class of u in G. Doing this straightforward'® computation for each
non-G-cr subgroup of type A; given in [LT], one finds that they can only contain
unipotent elements listed in (i) - (iv), and that all of the unipotent elements in (i)
- (iv) are contained in some non-G-cr subgroup of type Aj.

We give one example of how the computation is done, all the other compu-
tations use similar methods. Let p = 5 and G = Eg. Fix non-negative integers r
and s such that rs = 0. We consider an A1 subgroup X of G, which is embedded
into a maximal rank subgroup of type A; A5 via the representations Ly (1) (for
A; factor) and Vyx(5)l¥) (for As factor). According to [LT], the subgroup X is

"5But perhaps tedious, since there are 26 entries in the tables of [LT] to check.
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non-G-cr, and by [LT, Table 11| restriction of the adjoint representation of G to
X decomposes into a direct sum

Lx(WMoLx (9 +Lx WMoy (5)+ Lx ) +1x (10)M + 1 (6)1 + Lx (4)l).

Let u € X be a non-identity unipotent element of X. For any X-module V',
the Jordan block sizes of u acting on V' and any Frobenius twist of V' are equal.
Thus it will suffice to compute the Jordan block sizes of u on acting the X-module

Lx(l) ® Lx(9) + Lx(1> X Tx(5) + Lx(z) + Tx(lo) + Tx(6) + Lx(4).
We proceed to find the K [u]-module decomposition for each of the summands.

e Lx(1)® Lx(9): By Steinberg’s tensor product theorem, we have Lx(9)
Lx (1) @ Lx(4). Then by Lemma 4.2.2, we have Ly (1) ® Lx(9) | K[u]
Vo ® Vo ® Vi, which decomposes to 4 - V5 by Lemma 3.3.6. Thus Lx(1)
Lx(9) | K[u] =4-Vs.

& 1R

e Lx(1) ® Tx(5): Now Lx(1) | K[u] = Vo by Lemma 4.2.2, and Tx(6) |
Klu] = 2 - V5 by Lemma 4.6.2. Hence Lx(1) ® Tx(5) | K[u] = 4- V5 by
Lemma 3.3.6.

e Lx(2): Here Lx(2) | K[u] = V3 by Lemma 4.2.2.

e T'x(10): With Theorem 4.1.5, one computes that T'x(10) has dimension 20,
so by Lemma 4.6.2 we have Tx (10) | K[u] =4 - V5.

e Tx(6): Here Tx(6) | K[u] =2 - V5 by Lemma 4.6.2.
e Lx(4): Here Lx(4) | K[u] = V5 by Lemma 4.2.2.

It follows then that £ (G) | K[u] = [3,5']. By [Law95, Theorem 2, Table 6],
the unipotent element v lies in the conjugacy class A4 A1 of G. O

If pis good for G, then using lemmas 6.2.3 - 6.2.6 we can now describe unipotent
elements that are contained in a non-G-cr subgroup of order p in terms of N (uc).

Proposition 6.2.7. Let G be a simple algebraic group and assume that p is good
for G. Let u € G be a unipotent element. Then N(uc) = 2p — 1 if and only if one
of the following holds:

(i) G is of type Ap,—1 and v € G is a reqular unipotent element,
(ii) w s contained in a non-G-cr subgroup X < G of type A;.

Proof. Suppose that N(uc) = 2p — 1. If G is simple of classical type, the claim
follows from (ii) and (iii) of lemmas 6.2.3 - 6.2.5. If G is simple of exceptional type,
it follows from [Law95, pg. 4128] that the conjugacy class of w is given in one of
(i) - (iv) of Lemma 6.2.6.

For the other direction, if (i) holds, then we have N(uc) = 2p — 1 by Lemma
6.2.3 (i). Suppose then that (ii) holds. If G is simple of classical type, we have
N(uc) = 2p—1 by (ii) and (iii) of lemmas 6.2.3 - 6.2.5. If G is simple of exceptional
type, we have N(uc) = 2p — 1 by Lemma 6.2.6 and [Law95, pg. 4128]. O

As an immediate corollary, we have the following.
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Corollary 6.2.8. Let G be a simple algebraic group and assume that p is very
good for G. Let u € G be a unipotent element. Then u is contained in a non-G-cr
subgroup X < G of type Ay if and only if N(uc) =2p — 1.

Our proof of Proposition 6.2.7 and Corollary 6.2.8 is heavily based on case-by-
case checking. It would be interesting to see if there is a general way to prove the
result.

We now move on to consider non-G-cr subgroups containing distinguished
unipotent elements of order p. The following result shows that no such subgroups
exist if p is good for G.

Theorem 6.2.9. Let G be a simple algebraic group and assume that p is good
for G. Let u € G be a distinguished unipotent element of order p. If X < G is a
connected reductive subgroup of G containing u, then X is G-ir.

Proof. Let X be a connected reductive subgroup of G containing u. We consider
first the case where X is simple of type A;. By Lemma 6.1.2, it will be enough
to show that X is G-cr. If G is simple of exceptional type, it is immediate from
Lemma 6.2.6 that X is G-cr. If G is simple of classical type, one can easily see that
X is G-cr by using (iii) in lemmas 6.2.3 - 6.2.5, and the description of distinguished
unipotent classes of G in terms of Jordan block sizes (Proposition 2.3.4).

Consider then the general case where X is a connected reductive subgroup of
G containing w. Since wu is not centralized by a nontrivial torus, the same must
be true for X, so it follows that X is semisimple. Write X = X --- X}, where
the X; are simple and commute pairwise. If p £ 3 or if no X, is of type G, it
follows from [Tes95, Theorem 0.1] and [PST00, Theorem 5.1] that there exists a
connected simple subgroup X’ < X of type Ay such that v € X’. It follows from
the previous paragraph that X’ is G-ir, so X must be G-ir as well.

Suppose then that p = 3 and that some X; is of type G2. Since p is good for
G, it follows that G is simple of classical type. Let V' be the natural module for G.
Now wu is distinguished of order 3, so it follows from Lemma 5.1.1 that dim V' < 4.
Since every non-trivial representation of a simple algebraic group of type Gy has
dimension > 4 (see e.g. [Liib01]), it follows that no X; can be simple of type Ga,
contradiction. O

What remains then is to consider distinguished unipotent elements of order p
in bad characteristic. There are only two cases where such elements exist (type
Cy for p = 2, and type Go for p = 3, see proof of Theorem 6.2.12). The next two
lemmas will deal with type Cs for p = 2.

Lemma 6.2.10. Assume that p = 2 and let G = SLy(K). Let V' be a G-module
such that V' | K[u] = [2,2] for a non-identity unipotent element v € G. Then one
of the following holds:

(i) V is irreducible and isomorphic to Lg(1)" @ LoD, where 0 < n < m.
(i) V = Lo()M @ La(1)™, where 0 < n < m.
(i) V = Te2)M = Lo(1)M © La(1), where n > 0.

Proof. 1If V' is irreducible, then the fact that V has dimension 4 implies that
V = Lo(1)M @ Lg (1) for some 0 < n < m, so V is as in (i). Suppose then that
V' is not irreducible. Then the possibilities for the composition factors of V' are
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(1) Two composition factors: Lg (1) and Lg (1) for some 0 < n < m.

(2) Three composition factors: Lg(0) (twice), and Lg(1)" for some n > 0.

Tn case (1), we have V = Lg(1)" @ L (1) since Exté (Lg(1)M, Lg(1)M) =
0 = Exts(Lg(1)!™, L (1)) by Theorem 4.6.3. Thus V is as in (ii).

Consider then case (2), where V' has composition factors Lg(0), Le(0), and
La(1)P for some n > 0. If n = 0, then V = Lg(0) @ Lg(0) @ Lg(1), since
Ext(La(0), Le(0)) = 0 and Extl(La(1), Lg(0) = 0 = Exts(Lg(0), La(1)) by
Theorem 4.6.3. In this case V | K[u] = [1,1,2], contradicting the assumption
that V' | K[u] = [2,2]. Therefore V has composition factors Lg(0), Lg(0), and
LoD = Lg(2)[" for some n > 0. We show next that V must be indecompo-
sable. Suppose that V = W @& W' where W, W' are proper non-zero G-submodules
of V. Since Ext}(Lg(0), Lg(0)) = 0, it follows that either W or W’ has Lg(0) as
a direct summand. But then u acts on V with at least one Jordan block of size 1,
contradicting the assumption that V' | K[u| = [2,2]. Therefore V is indecompo-
sable.

Since V is indecomposable and not irreducible, there must be a subquotient @
of V' which is a non-split extension between two irreducible G-modules. Now @ is a
proper subquotient of V', so u acts on @ with exactly one Jordan block of size 2, and
thus the subquotient @ must be isomorphic to Vg (2)" or (Vg(2)*)!" (Proposition
4.6.8). By replacing V' with V* if necessary, we may assume that @ is isomorphic
to Vg(2)["). Since V is indecomposable, it follows that V is a nonsplit extension
of Vg(2)[" and Lg(0). By Lemma 4.6.6, it follows that V 22 Tg(2)[. Finally, as
noted in the proof of Lemma 4.4.12, we have Lg(1) ® Lg(1) = T¢(2). Therefore
L))" @ Lg(1)M = T (2)["). This completes the proof of the lemma. O

Lemma 6.2.11. Assume that p = 2. Let G = Sp(V), where dimV = 4, so G
is simple of type Co. Fix a distinguished unipotent element uw € G of order p,
so V | Klu] = V(2)? (Proposition 2.4.4). If X < G is connected reductive and
u € X, then X is G-ir unless one of the following holds:

(i) X is simple of type Ay, embedded into G wvia Lx(1) L Lx(1) (orthogonal
direct sum).

(il) X is simple of type Ay, embedded into G via Lx (1) ® Lx(1) = Tx(2).

Furthermore, subgroups X < G in (i) and (ii) exist, contain a conjugate of
u, are contained in a proper parabolic subgroup, and the conditions (i) and (ii)
determine X up to conjugacy in G.

Proof. Suppose that X < G is connected reductive and v € X. We show that
either X is G-ir, or one of (i) or (ii) holds.

If X is normalized by a maximal torus of G, then X is G-cr by [BMRO5,
Proposition 3.20]. Since u is distinguished, it follows from Lemma 6.1.2 that X is
G-ir.

Suppose then that X is not normalized by any maximal torus of G. Since G
has rank 2, it follows that X is simple of type A;. Now there exists a rational
representation p : SLa(K) — SL(V') such that p(SLa(K)) = X. If V is an irre-
ducible X-module, then by Theorem 6.1.5 the subgroup X is G-ir. Thus we may
assume that V' is non-irreducible. Then by Lemma 6.2.10, as an SLo(K)-module
V must be isomorphic to either
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(1) LSLZ(K)(l)[”] ® LSLQ(K)(l)[m], where 0 < n < m; or
(2) Tspy(x) ()M 22 Ly, 56y (1) @ Ly, a6y (D!, where n > 0.

In case (1) we have p = p'o F™, where F is the usual Frobenius endomorphism
and p’ : SLo(K) — SL(V) is a rational representation such that the corresponding
SLy(K)-module V is isomorphic to Lsp,x)(1) & Lsp,x)(1)™ ", Similarly in
case (2), we have p = p/ o F™ where F is the usual Frobenius endomorphism and
p' : SLo(K) — SL(V) is a rational representation such that the corresponding
SLa(K)-module V' is isomorphic to Ty, (x)(2). Since applying a Frobenius twist
does not change the image of the representation p/, it follows that we may assume
that as an SLy(K)-module, V' is isomorphic to either

(1) Lsr, (k) (1) @ Lsp, sy (D), where n > 0; or

(2)" Tspyr)(2)-

/ /

In case (2)" we have X as in case (ii) of the claim. Consider then case (1)’
Here if n > 0, it follows from Theorem 6.1.5 (ii) that X is G-ir. Suppose then
that n = 0, so V' = Lgp,x)(1) © Lgr,(k)(1)- Let W be a X-submodule of V'
such that W = Lgp,x)(1). If W is totally singular, then X is a Levi factor of
type A1 and a non-identity unipotent element u € X satisfies V' | K[u] = W(2)
[LS12, 6.1]. This contradicts the assumption V' | K[u] = V(2)2. Therefore W is
not totally singular, and thus it must be non-degenerate, since W is irreducible
as an X-module. Thus V = W @& W’ as an orthogonal direct sum of X-modules,
where W = Lgp,, k(1) = W'. Thus X is as in case (i) of the claim.

We consider the existence and uniqueness claims for the subgroups X in (i)
and (ii). We begin by considering subgroups X in (i). Now the SLo(K)-module
Lsi, (k) (1) has a non-degenerate SLo(K )-invariant alternating bilinear form by
Lemma 4.4.5. Therefore it is clear that we can find a representation p : SLo(K) —
G with V' =V; L V5 (orthogonal direct sum) such that V3 = Lgy, (k) (1) = Va2, s0
we can choose X = p(SLa(K)).

We show next that such an X is the unique such subgroup up to G-conjugacy.
For this, let Y = p/(SLa(K)) for some representation p’ : SLo(K) — G such that
V = W1 L Wy, where Wy and Wy are Y-modules such that W; = LSLQ(K)(l) =
Wo. It is well known that the orthogonal direct sum decompositions V; L Vs and
W1 L Wy are conjugate under the action of G, in other words, there exists f € G
such that f(Wy) = V; and f(W3) = Vo. Then fY f~! stabilizes V1 and V3, so by
replacing Y with fY f~!, we may assume that W; = V; and Wy = V5. Now for
i = 1,2, the restrictions of p and p’ to V; are both isomorphic to Lgp,x)(1) as
SLa(K)-modules, so there exists ; € SL(V;) such that x;p'(g)z; " = p(g) for all
g € SLy(K). Since dimV; = 2, we have SL(V;) = Sp(V;), so for & = z1 @ x2 we
have z € G and 2Y2~! = X. Thus X is unique up to G-conjugacy.

Next, note that since a non-identity unipotent element u € X acts on the
module Lgy,, k) (1) with a single Jordan block of size 2, it is clear that V' | K[u] =
V(2)2. Then for subgroups X in (i), what still remains is to show that X is
contained in a proper parabolic subgroup of G. To this end, let W, W’ be X-
submodules of V such that V. =W L W' with W = L(1) = W'. Let (—,—) be
the non-degenerate alternating bilinear form used to define G. There exists an X-
equivariant isometry f: W — W' in other words, an isomorphism of X-modules
such that (f(w1), f(wz)) = (w1, w2) for all w; € W. Then it is straightforward to
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check that Z = {w+ f(w) : w € W} is a totally singular X-submodule of V' with
Z = Lgi,(k)(1). By Theorem 6.1.4, the subgroup X lies in a proper parabolic
subgroup of G. This completes the proof of the claims for (i).

For the subgroup X in (ii), note that by Lemma 4.4.12 the tilting SLa(K)-
module Tgr,(k)(2) has a non-degenerate SLp(K)-invariant alternating bilinear
form. Therefore there exists a representation p : SLy(K) — G, with V' | X =
Ts1, (k) (2) for X = p(SLa(K)). Now by Lemma 4.4.13, a non-degenerate SLa(K)-
invariant alternating bilinear form on Tgy,, (k) (2) is unique up to scalar multiples;
thus it follows that a subgroup X < G of type Ay with V' | X = Tgp,x)(2)
is unique up to G-conjugacy (Lemma 4.4.14). Next note that Lgr,x)(1) has a
non-degenerate SLo(K)-invariant alternating bilinear form by Lemma 4.4.5, so
by uniqueness of the non-degenerate SLy(K )-invariant alternating bilinear form
on Ty, (k)(2), we may choose the form on Tgy,(x)(2) to be the product form on
L, (1) (1)® Lsr, (k) (1) = Tsp,(k)(2). Now it follows from Table 3.6 that for a non-
identity unipotent element u € X, we have Tgr,x)(2) | K[u] = V(2) @ V(2) =
V(2)2. Finally to show that X is contained in a parabolic subgroup, note that
V= Tg1,(k)(2) has a 1-dimensional X-submodule W (Theorem 4.1.5 (ii)). This
submodule is totally isotropic since any 1-dimensional subspace of V is, so X is
contained in a proper parabolic subgroup of G (Theorem 6.1.4). This completes
the proof of the claims for (ii). O

We are now ready to prove the main result of this section.

Theorem 6.2.12. Let G be a simple algebraic group and let u € G be a distinguis-
hed unipotent element of order p. Let X < G be a connected reductive subgroup of
G containing u. If X is contained in a proper parabolic subgroup of G, then p = 2,
G is simple of type Cs, and X is as in Lemma 6.2.11.

Proof. Suppose that X is contained in a proper parabolic subgroup of G. Since u
is a distinguished unipotent element, X must be non-G-cr (Lemma 6.1.2). Then
by Theorem 6.2.9 we have that p is bad for G.

Consider first the case where G is simple of exceptional type. Looking at the
Tables in Appendix A, the fact that p is bad for G and the fact that u is a
distinguished unipotent element of order p implies that G = G2, p = 3, and u is
in unipotent class Go(ay) or (A;)s. However, in this case it follows from [Stel0]
that every connected reductive subgroup G is G-cr, contradicting the fact that X
is non-G-cr.

Suppose then that G is simple of classical type. Since p is bad for G, we have
p =2 and G is simple of type B; (I >3), C; (1 >2),0or D; (I > 4). Let V = L(wy)
be the natural irreducible representation of G. Now w is a distinguished unipotent
element of order p, so u acts on V with all Jordan block sizes even of size < 2
(Proposition 2.4.4). Therefore dim V' < 4, so | < 2. Therefore G is simple of type
C5, and in this case the claim follows from Lemma 6.2.11. O

6.3 Unipotent elements of order > p
In this subsection, we consider distinguished unipotent elements of order > p that

are contained in a non-G-cr subgroup. Unlike in the previous subsection where we
considered unipotent elements of order p, we only have partial results.
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Exceptional types

We begin by considering the case of simple groups of exceptional type. Relying on
the results of Litterick and Thomas in [LT], we get the following.

Theorem 6.3.1. Let G be a simple algebraic group of exceptional type and assume
that p is good for G. Let u € G be a distinguished unipotent element. If X < G is
a connected reductive subgroup of G containing u, then X is G-ir.

Proof. Let X be a connected reductive subgroup of G containing u. Suppose that
X is not G-ir. Since u is a distinguished unipotent element, it follows that X is
non-G-cr (Lemma 6.1.2). Now according to LT, Theorem 1-4|, one of the following
must hold:

e p =75, and X is semisimple of type Ay, A1 A1, or A1As.
e p=7, and X is semisimple of type Ay, Ga, A1A1, or A1G,.

We can see that in all of the cases above, unipotent elements of X have order
p. Indeed, this is true for simple algebraic groups of type A; for all p, for type As
for all p > 3, and for type G2 for all p > 7 (Appendix A). It follows then from
Theorem 6.2.9 that X is G-ir. O]

For type G, we can give the following result as an easy corollary of [Stel0)].

Theorem 6.3.2. Let G be a simple algebraic group of type Go. Let u € G be a
distinguished unipotent element. If X < G is a connected reductive subgroup of G
containing u, then X is G-ir.

Proof. Let X < G be a connected reductive subgroup of G containing u. If X
is not G-ir, then the fact that u is distinguished implies that X is non-G-cr. It
follows from [Stel0] that p = 2 and X is simple of type A;. This is a contradiction,
since now every distinguished unipotent element of G has order > 2 (Appendix
A), and every non-identity unipotent element of X has order 2. O

Let G be a simple algebraic group of exceptional type. By the two theorems
above, for classifying connected reductive non-G-cr overgroups of distinguished
unipotent elements of G, what still remains is the case where G is simple of type
F,, Eg, E7, or Eg in bad characteristic. In this case the connected reductive non-
G-cr subgroups of GG are not known in general, so more work is still needed.

Classical types

We finish by discussing the situation for simple algebraic groups G of classical
type. Here our work is still in progress, so we will mostly just give some examples
of simple non-G-cr subgroups containing a distinguished unipotent element.

For this problem, the basic reductions such as Lemma 5.2.1 and Lemma 5.1.1
used in the irreducible case still work. With them, one can try to reduce to a small
number of possible composition factors that can occur, and then study extensions
between them to find a solution. In many cases we have a solution, and at least in
the case where X is simple, a complete solution should be doable in future work.
When we have a connected semisimple algebraic group X = X --- X, one should
try to limit the number and the types of simple factors X; that can occur. This is
again something which will be studied in future work.
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Example 6.3.3. Assume that p = 3. We will show the following:

(i) For G = SO(V') with dim V' = 27, up to G-conjugacy there exists a unique
X < G simple of type Fy such that V | X = Tx(wy);

(ii) Such an X is non-G-cr;

(iii) A regular unipotent element u € X lies in the distinguished unipotent class
(3,9, 15] of G.

Let X be a simple algebraic group of type Fjy. We begin by showing that
Tx(w4) = LX(O)/L)((W4)/LX(O) and that Tx(LU4) is uniserial.

We use the usual embedding of X into a simply connected group Y of type FEg.
That is, we consider X as the centralizer of the involutory graph automorphism
of Y induced by the nontrivial automorphism of the Dynkin diagram of Y.

Since in type Fg the fundamental highest weight w; is minuscule, we have
Ly(wi) = Ty (w1). According to [vdK01, Theorem 20|, the restriction of every
tilting module of Y to X is a tilting module for X. In particular, the restriction
Ly (wy) | X is tilting for X. For the character of this restriction, we have

ch Ly (w1) X = chVx(w4) + ch Vx(0)

by [LS96, Table 8.7|. Thus Ly (w1) J X has T'x(w4) as a direct summand (Theorem
4.1.4 (ii)). Furthermore, since p = 3, we have Vx(w4) = Lx(w4)/Lx(0) (see e.g.
[Liib17]). Now since T'x (w4) must have Vx(w4) as a submodule and Vx (ws)* as a
homomorphic image [Jan03, I1.E.4], we conclude that

Ly (w1) } X =Tx(ws) = Lx(0)/Lx(wa)/Lx(0)

and that Ty (w4) is uniserial.

By Lemma 4.4.10, we have a non-degenerate X-invariant symmetric bilinear
form on Tx(wy). Now (i) follows from Lemma 4.4.15. For claim (ii), note that
Tx(wy) is an indecomposable and non-irreducible X-module, so it follows that
X is non-G-cr in G = SO(T'x(wy)). For (iii), let u € X be a regular unipotent
element. From the way X is constructed as the stabilizer of a graph automorphism
of Y, it is clear that the subgroup X contains a regular unipotent element of Y.
Hence it follows that u is also a regular unipotent element of Y, see e.g. [TZ13,
Lemma 2.1]. According to [Law95, Table 5], we have Ly (w1) | K[u] = [3,9,15],
hence T'x (w4) | Ku] = [3,9,15].

We will omit the proof, but for simple algebraic groups of exceptional type, it
turns out that Example 6.3.3 is the only example in odd characteristic'®.

Theorem 6.3.4. Assume that p > 2. Let X be a simple algebraic group of excep-
tional type. Suppose that X < G, where G s a simple algebraic group of classical
type with natural module V. If X contains a distinguished unipotent element of G,
then X is G-ir, unless p =3, X = Fy, and V | X = Tx(wy).

We will now give some further examples in characteristic p = 2.

1For X simple of classical type, so far we have not found any examples in odd characteristic,
and based on partial results and examples we conjecture that there are none. In other words, we
conjecture that Theorem 6.3.4 holds for any simple algebraic group X, not just X of exceptional

type.
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Example 6.3.5. (cf. Example 6.3.3) Assume that p = 2. We will show that the
following hold:

(i) For G = Sp(V') with dim V' = 8, up to G-conjugacy we have a unique X < G
simple of type Gy such that V' | X = Tx(w);

(ii) Such an X is non-G-cr.

(iii) A regular unipotent element u € X lies in the distinguished unipotent class

V(2) + V(6) of G.

Let X be a simple algebraic group of type Ga. It is well known that we have an
embedding of X into a simply connected group Y of type Dy, by considering X as
the centralizer of a suitable triality automorphism. Let V' be the natural module for
Y. We have that V' | X is tilting by [Bru98, Proposition 3.3 (vi)], so as in Example
6.3.3, one finds that V' | X = T'x(w;) and that Tx(w;) = Lx(0)/Lx(w1)/Lx(0)
is uniserial.

Since V has a non-degenerate Y-invariant alternating bilinear form, we get
an embedding X < G for G = Sp(V). By Lemma 4.4.13 and Lemma 4.4.14, a
subgroup X < G of type Go with V' | X = Tx(w) is uniquely determined up to
G-conjugacy, proving (i).

Claim (ii) follows from the fact that V' is an indecomposable, non-irreducible
X-module. For (iii), let u € X be a regular unipotent element. Now u is also a
regular unipotent element of Y, so we have the orthogonal decomposition V' |
K[u] =V (2)4+V(6) (Proposition 2.4.4 (vi)), and so u is a distinguished unipotent
element of G' (Proposition 2.4.4 (ii)).

Example 6.3.6. We give two other examples similar to Example 6.3.3 and Ex-
ample 6.3.5, without giving all the details. Let p = 2. Then one can show that the
following hold'":

(i) For G simply connected of type C; (I > 2) with natural module V, up
to G-conjugacy we have a unique X < G simple of type B;_; such that
VIiX=ZTx(w).

(ii) For G simply connected of type Cgry with natural module V, up to G-
conjugacy we have a unique X < G simple of type F7 such that V' | X =
Tx(wl).

Furthermore, in both (i) and (ii) one finds that X is non-G-cr and a regular
unipotent element of X is distinguished in G. In case (i) a regular unipotent
element of X is in the unipotent conjugacy class V' (2) + V(20 — 2) of G, and in
case (ii) in the unipotent conjugacy class V' (2) +V (8) 4+ V' (10) + V(16) + V (18) +
V(22) + V(26) + V(32) of G.

We finish with the following more involved example for X = Ga.

"We omit the full details, but to see this, it is enough to show that in both (i) and (ii), we
have that Tx(w1) = Lx(0)/Lx(w1)/Lx(0) is uniserial and has a non-degenerate X-invariant
alternating bilinear form. Then (i) and (ii) follow from Lemma 4.4.13 and Lemma 4.4.14.
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Example 6.3.7. Assume that p = 2. For G = Spy,(K), we will describe a family
of non-G-cr simple subgroups of type G2, parametrized by Z>o and K \ {0,1},
such that the subgroups are pairwise non-conjugate and each of them contain a
distinguished unipotent element of G.

Let X be a simple algebraic group of type Ga and let v € X be a regular
unipotent element. Let n > 1 be an integer.

It is well known (and straightforward to compute) that the Weyl module V' (wy)
for X is a nonsplit extension

0= K—V(w)— L(w) — 0. *)
Applying the functor Homy (L(w;)!™, =) to (¥) gives an exact sequence
0 — Extl (L(w)™, K) = Exty (L(w)!™, V(1)) = Extl (L(w)™, L(w)).

It follows from the main result of [Sin92] that H'(X, L(wi) ® L(w;)™) = 0, so
ExtX (L(w)™, L(wy)) = 0. Similarly Ext’ (L(w)™, K) =2 HY(X, L(w)™) = K
by [Sin92]. Plugging this into the exact sequence above, we get the isomorphism
Ext} (L(w)™, V(w;)) = K. Thus up to isomorphism, there is a unique X-module
W which is a nonsplit extension

0— V(w) = W = L(w)M = 0.
This short exact sequence gives the long exact sequence in cohomology

0— HY (X,V(w)) = H (X, W) = H' (X, L(w))™)
— H*(X,V(wy)) = -~ (**)

We will show next using (**) that H'(X,W) = K?2. For this, first note that
on the short exact sequence (*) the long exact sequence in cohomology gives
HY (X, L(wy)) 2 HY(X,V(w)) for all § > 1, since H(X,K) = 0 for all i > 1 by
[Jan03, 11.4.13]. Therefore we have H'(X,V (w1)) & K, since HY(X, L(w1)) & K
by the main result of [Sin92]. Furthermore, we have H'(X, L(w)") = K as
noted in the previous paragraph. Plugging this into (**), we see that to show
HY(X,W) = K2, it will be enough to show that H?(X,V(wy)) = 0. To this end,

for the short exact sequence
0— L(wy) = V()" — K —0,

the long exact sequence in cohomology gives H*(X, L(wy)) = 0 for all i > 2, since
HY(X,K) =0 and H(X,V(w)*) = 0 for all i > 1 by [Jan03, 11.4.13]. Thus in
fact HY(X,V(wy)) = 0 for all i > 2.

For ¢ € HY(X, W) = ExtLY (K, W), denote by V. a representative

O—-W-—=V.—-—K—=0

of the equivalence class of extensions corresponding to c¢. We omit the proof,
but with explicit computations one can show that as a K-vector space, the first
cohomology group H'(X, W) has a basis {a, b} with the following properties:

(i) Each nonsplit extension 0 - W — V — K — 0 is isomorphic to exactly one
of the modules in the set {V,} U{Voiap: A € K}



210 Chapter 6.

(ii) V, and V} are not self-dual.

(iii) For all A € K'\ {0}, the module V1 is self-dual, and has a non-degenerate
X-invariant alternating bilinear form which is unique up to a scalar.

(iv) Vo ) Klu] = [2,6% and V} | K[u] = [2,6].

(v) For all A € K \ {0}, with respect to any non-degenerate X-invariant al-
ternating bilinear form on V, 4, we have the orthogonal decomposition
(Proposition 2.4.4)

9 .
Vons d Kl = {V(Q) +V(6)2, it A e K\ {0,1}.
W(1)+V(6) , if =1

Now let G = Sp(V') be a simple algebraic group of type C7, so dimV = 14.
By (iii) above, for all A\ € K \ {0} there exists a subgroup X,, » < G such that
Xy,» is simple of type G and V' | X, = V4. Note that by (iii) and Lemma
4.4.14, such an X, ) is uniquely determined up to G-conjugacy. Since V4 is
indecomposable and not irreducible as an X, »-module, it follows that X, ) is
non-G-cr. If A € K\ {0, 1}, it follows from (v) that the regular unipotent element
of X, is contained in the distinguished unipotent class V(2) + V(6)? of G.

In conclusion, what we have is that

{Xn,)\ n e ZZL)‘ eK \ {O, 1}}

is an infinite family of pairwise non-conjugate, non-G-cr subgroups of G, each of
which is simple of type G2, and each of which intersects the distinguished unipotent
conjugacy class V(2) + V(6)? of G.



Appendix A

Orders of distinguished unipotent
elements

Here we list the orders of distinguished unipotent elements in exceptional groups
in characteristic p > 0. All of them have order p, except the ones listed in the
tables below. In the following, an empty entry means that the element has order
p. The orders can be found by using the results of Lawther in |[Law95] and |[Law98].

Unipotent class | 2 | 3 | 5
Go 23 | 3% | 5

G2 (al) 22
(A1)3 -3 -

Table A.1: Type Go

Unipotentclass | 2 | 3 | 5 | 7 | 11
Fy 24 133 |52 | 72 [ 112
Fy(a1) 23 | 32 | 52 | 72
Fy(as) 23 [ 32 | 52
Fy(as3) 22 | 32
(C3(a1))2 22 - - |- -
(A3A1)s 220 - | - - | -

Table A.2: Type F}

Unipotent class | 2 | 3 | 5 | 7 | 11
Eg 24 133 |52 | 72 [ 112
Fg(a1) 24 132 | 52 | 72
Eg(as) 23 | 32 | 5°

Table A.3: Type Fg
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Unipotent class | 2 | 3 | 5 | 7 | 11 | 13 | 17
Er 25 [ 33 [ 52| 72| 112 | 132 | 172
FEr(ay) 24 133 [ 52 | 72 | 112 | 132
FEr(as) 24 133 [ 52 | 72 | 112
Fr(as3) 24 1 33 [ 52 | 72
Fr(ay) 23 | 32 | 52 | 7°
Er(as) 23 | 32 | 52

Table A.4: Type Ex

Unipotent class | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29
Ex 22 [ 3453 | 72| 112 | 132 | 172 | 192 | 232 | 292

FEs(a1) 25 133 |52 | 72 [ 112 | 132 | 172 | 192 | 232
Fs(az) 25 133 |52 | 72112 | 132 | 172 | 192
FEs(a3) 201 33| 52 | 72| 112 | 132 | 172

Fs(ayq) 24 133 | 52 | 72 | 112 | 132

Eg(by) 24 [ 33 [ 52 | 72| 112 | 132

FEs(as) 21 [ 33 [ 52 | 72 | 112

FEs(bs) 21 [ 33 [ 52 | 72 | 112

Fg(ag) 24 133 | 52 | 77

Fg(b) 24 132 | 52 | 77

Fg(ar) 23 | 32 | 52

(A7)3 - 13- -] - - - - - -

Table A.5: Type Eg
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Actions in some irreducible
representations (p = 2)

Assume that p = 2.

Let G be a simple algebraic group of exceptional type and let ¢ : G — GL(V)
be a self-dual irreducible representation of G. Then V' has a non-degenerate, G-
invariant symplectic form (Lemma 4.4.5), and thus ¢(G) lies in Sp(V). In the
tables below, we give for each unipotent u € G the conjugacy class of ¢(u) in
Sp(V) for some small self-dual irreducible representations of G. Specifically, we
give the conjugacy classes in the cases where

e G=Goand V = L(w), V = L(wy)
e G=Fiand V = L(wy), V = L(wy)
e G=Fsand V = L(wo).
e G=FE;and V = L(w), V = L(wy)
e G=FEgand V = L(wg).

For these representations, the Jordan blocks of ¢(u) were already given in
arbitrary characteristic by Lawther in [Law95] [Law98].

Note that when G = Fy, there exists an exceptional isogeny 7 : G — G [Ste68,
Theorem 28|. Then any irreducible rational G-module induces another irreducible
G-module V7 by twisting with 7, and in particular Lg(w1)” = Lg(wy). Thus the
entries in tables B.3 and B.4 are almost the same, except some of the classes are
swapped by 7.

In the tables below, we label the conjugacy classes in Sp(V') as in corollary
2.4.7 (i). The computations were done with MAGMA (Section 2.9). In the tables
we have bolded the cases where the action is distinguished. Note that there are a
few cases where all Jordan block sizes are even and occur with multiplicity < 2,
but where the action is not distinguished (classes Ev(a1), Er(az) and E7(a3) for
G=E;, V= L(wr))
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Class of u | action on L, (w1)
Ga 61

Ga(a1) 35

A 23

Ay 12,22

Table B.1: G = G and V = L(wy)

Class of u | action on Lg, (w2)
G2 61,81
Ga(ar) | 3%, 4%
A 13,29
A 13,28

Appendix B.

Table B.2: G = G2 and V = L(wo)

Class of u | action on Lp,(ws) || Class of u | action on Lg, (w4)
Fu4 104,16, As Ay 29,32,42
Fy(ay) 21,83 (Ba)2 13,21, 43
Fy(as) 53, 8% By 15,21, 43
Fy(as) 12,49 Ay 35,42
Cs 67,8, Ay 15,38
B 15,27, 63 A4 12,212
(Cs(a1))2 | 21,47 (A1)g 16,210
Cs(a1) 23,4 Ay 16,210
(A2A1)2 | 25,358,471 A 144,28
Az A4 22,33, 41

Table B.3: G = Fy and V = L(wy)
Class of u | action on Lp,(wy) || Class of w | action on Lp,(w)
Fy4 104,164 AgAy 23,33, 41
Fy(ay) 21,8} (Ba)2 23,43
Fy(as) 52, 8% By 13,21,43
Fi(az) | 15,4} Ay 15, 30
CS 1(2)7 2%7 6? AQ 367 4%
B3 6{7 81 A1/I1 1(2), 2%2
(Cs(ar))2 | 27,43 (A1)2 16,210
C%(al) 137 21, 4? Al 1(1)4, 28
(A2A1)2 | 25,35, 41 Ay 15,210
Az A4 20,33, 42

Table B4: G = F4 and V = L(wl)




Class of u | action on Lg,(w2) || Class of u | action on Lg,(w2)
FEs 61,81, 167 Ay 13,35, 47,53, 75,87
FEg(a1) 42,82 112,162 AzAy 12,26,416
FEg(a3) 33,43, 8% Ag A2 216,323,410
Ds 61, 87 A3 134,416
D5(CL1) 4?,61,8? A3 18,23,4%6
As 12,29 8% A Ay 15,219, 36 4%
AgAy 21,41, 5¢, 63, 81 A} 15,27
AlA, 12,29, 446 Ay 156,388, 43
Dy 28, 67,81 A? 154, 272
Dy(ay) 33,418 Ay 134,292
Table B.5: G = Eg and V = L(wo)
Class of u | action on Lg,(w7) || Class of u | action on Lg, (wr)
E7 21,101,181,261 || D44 219,69
Eq(ay) 101,144, 163 AgAy 12,23,33,42,52,63, 72
Fr(a2) 22,102,163 AzAs 22,33, 430
Er(a3) 67,823,142 (A3Az)2 | 28,452
Fr(a4) 43,85 Az A2 28, 48°
E7(as) 2% 43? 6(2)> 83 A%Al 1%? 2é> 33’ 4(%
Es 13,103, 163 Ay A3 215,48
Eg(a1) 12,52,93,132 Dy 18,28,68
FEg(as3) 13,54, 83 Dy(ay) 18,442
D 23,617,103, 14, Ay 15,33,55,73
Dﬁ (al) 4(2), 88 (A3A1)/ 1%, 28, 4(1)0
Dg(az) 27, 69,85 (AsAr)” | 2%, 4¢°
Ag 58,75, 8% A3 15, 352,45
Ds Ay 2117 88 A2A1 167 2%)27 367 43
Ds(ar)A; | 23,485,637, 82 At 228
As Ay 22.65,83 A 142,223,440
Ay Ay 36,48, 78 Ax A4 15,28,35, 42
A3Ag Ay | 21,482 (A3Y 18,224
Dy 14,2, 84 (A |2
Ds(ay) 15,45, 62,82 Ay 120,342
(As) | 13,6585 A 140,20
(A5)” 2% 687 8(2) Ay 1%27 2(1)2
Dy(ar)A; | 23,44?

Table B.6: G = E7 and V = L(wr)
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Class of u | action on Lg, (w1) Class of u | action on Lg, (w1)
E~7 81,101,161,181,221,261,32; || DiA; 18,215,617, 8,
E7(a1) 61,141,16I A4A1 2?733,4?,53,63,73,8411
E7(az) 21,61, 81,102,165 Az Ao 12,22, 32,430
Er(as) 21,87,107, 141,167 (AsA2)2 | 15,27,35, 4%
E7(a4) 21,41, 61,81° As A3 13,21°,43°

FEr(as) 21,32, 41,632,812 A3A, 13,219, 33, 434

Eg 12,61,81,103, 16§ As A3 229 36 414

Es(a1) 4% 52 8% 92 112,132,162 Dy 15,28, 61°, 8,
FEs(as) 12,32,42 53,812 Dy(a1) 18,332,430

Ds 12,23 6%,8,,10%, 143, 16, Ay 15,35, 42 55 75,82
Da(a1) 1%,41,6178%5 (A3A1), 1372%2,4%6

Dg(az) 13,27,6%,8;° (AsAr)" | 154,27, 4°

As 35,75, 81" A3 15°,367,47°

DsA; 27,61, 81° A2 A7 15,27°, 35, 41"
Ds(a1)Ar | 21,41%,6%,8] Af 15, 29°

As Ay 12,27, 65,810 As 136,28, 436

Ay Ay 12,412 58, 72,89 As Ay 134, 218 314 410
A3A2A1 2?7 3%7 4§O (A?)/ 187 2(132

Ds 12,22 6,,81° (AD)” 126 232

Ds(aq) 12,43 63,87 As 134,330, 42

(As) 15, 2%, 6, 81° A7 13%,27°

(As)” 144,241,668, 810 Ay 154, 934

Da(ar)A; | 1§,21,33,43°

Table B.7: G = E7 and V = L(wy)



Class of u | action on L, (ws)

241,327

121,163, 28;,32%

144, 167,264,323

8%, 144,163,222 242 30,1, 32,
122 1634

67,8%,147,161°
78,814,133, 165
35,412, 75, 83°

13,21,64,107, 143, 16{*
32,42,6,,83,102,122,161°
48,72 89 113,123,153, 162
12,23,81,103, 164, 183,22, 263, 32,
12,24,61,103, 143, 161
12,29,64,81,108,161°
12,2%,653,810,10%, 143, 163
137 21a4?a 617 8%7

13,29, 35, 4%, 65, 87°
28,49,129, 167 ,
12,22 671,810,107, 143, 163
42,6%é8{,103,123,141,16§
61781

43,83
12,25,61,8;,108,161°
24,44, 52,62,81,92,103, 112,123, 132,142, 162
15,25, 33, 4%, 55, 63, 81°
2232 42 63,72,824

2?74’?7 61a 8%7

2%7‘?’%’4411’ 617 8%7
35,43%,67,87°

107 21’41 ,50,60, 707 81
14%,61,81,108,161°

18,42, 55,82,95 113,135, 167

Table B.8: G = Eg and V = L(ws)
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Class of u

action on Lg, (ws)

Eg(a3)

19%, 33,47, 5¢%, 87°
15,21°,679,81,101°, 147,16,
15,21,49,61, 877
15,21°,61%, 8;*
15,33, 56, 70, 83
15,212,641, 87
13,29,439,67, 81"
15,212, 64°, 81
13,29,43%, 67, 81"
241,36, 414,618
38,436
19,35, 43%, 55, 707, 89
2%, 5,412, 5,087, 7. 8
071
1§,2}2,33,4§4
13,238, 35,41

15%, 25,61, 87
151,410, 67,8}!
158,29,64°, 8
1§,23%,677,8,
15,210, 33,434
15,210, 36, 410, 55, 63, 73, 81
18,21°, 32, 474
16,26, 33, 47°
13,230, 416
1(1)6’2%8)3(1)2744110
13,282, 35, 43¢
1,280, 617.8,

156, 33, 43

10 ’21 )41
138,356,438
191,282,342
13,21

13472(1)0744116
154,234,330, 434
1%8’2%10
L

[V

1%3272?8

Table B.9: G = Eg and V = L(ws) (continued)
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Appendix C

Ordering of the positive roots

Let @ be an indecomposable root system with base A = {a1,...,q;} and set of
positive roots ®*. We assume that the simple roots are ordered as in the standard
Bourbaki labeling of the Dynkin diagram, see for example [Hum?72, 11.4, pg. 58].

In this appendix we give, for ® of exceptional type, the total ordering < on
O+t that was defined in Section 2.8 (following [Car72, 2.1]). We recall that for
a,3 € &, we set a < 3 if and only if one of the following holds:

«a=3

e There exists an integer 1 < k <[ such that §—a = Zle c;ay, where ¢; € 7,
forall 1 <i<kandc¢, > 0.

Set N = |®T|. Writing &+ = {81,...,8n}, where 81 < B2 < -+ < Bx with
respect to the total order <, we give the expression of 5; for all 1 < i < N as
a sum of the simple roots a; in the tables that follow. In the tables we use the

notation 3; = (k1, ko, ..., kl), for 8; = Zé’:l kjoj.

pr = (1, 0)
B2 = (0,1)
Bz = (L1)
By = (27 1)
Bs = (3,1)
B = (37 2)

Table C.1: Ordering of the positive roots of the root system Gs.
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07 17 07 07 1’ 170’17 17 17 1./ 17
—H O OO A0S HS S

Table C.2: Ordering of the positive roots of the root system Fj.

e R R T R R R T S N N N N T R N N2

17 1./ 1? 1./ 17 17 17 17 17 17 1) 17 2) 1? 2./ 27 27 27
S L N o T R R N e BN S BN N IS B~
17 O./ 17 17 17 17 17 1’ 1’ 17 2’ 17 1./ 27 17 27 27 27
1./ 17 O./ 17 O./ 17 17 17 1’ 17 17 1./ 17 1./ 17 1./ 17 2./

o
T S oA oSS S —H —

M T N e T T T e

Table C.3: Ordering of the positive roots of the root system Fg.
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Table C.4: Ordering of the positive roots of the root system FEr.
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Table C.5: Ordering of the positive roots of the root system Fsg.
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Ber = (0,1,1,2,2,2,1,0) || Bor = (1,2,2,3,2,2,2,1)
ﬁﬁ? = (071717272717171) 692 = (1,1,2,3,3,2,2 1)
Bes = (1,1,2,3,2,1,0,0) || Bos = (1,2,3,4,3,2,1,0)
/864 = (171727272717170) 594 = (1,2,2,4,3,2,1,1)
Bes = (1,1,2,2,1,1,1,1) || Bos = (1,2,2,3,3,2,2,1)
Bes = (171717272727170) Bo6 = (1,1,2,3,3,3,2,1)
Ber = (1,1,1,2,2,1,1,1) Bor = (2,2,3,4,3,2,1,0)
Bes = (0,1,1,2,2,2,1,1) || Bos = (1,2,3,4,3,2,1,1)
569 = (1727273727170’0) 699 - (1 2,2,4,3,2,2,1)
Bro = (1,1,2,3,2,1,1,0) || froo = (1,2,2,3,3,3,2,1)
P = (1717272727271’0) Bror = (2 2,3,4,3,2,1,1)
Bre = (1,1,2,2,2,1,1,1) || Bro2 = (1,2,3,4,3,2,2,1)
ﬁ73 = (171717272727171) 6103 = (1 2,2,4,3,3,2 1)
Bra = (0,1,1,2,2,2,2,1) || froa = (2,2,3,4,3,2,2,1)
/875 = (172727372717170) ﬁlOB = (1 2,3,4,3,3,2, 1)
Bre = (1,1,2,3,2,2,1,0) || fros = (1,2,2,4,4,3,2,1)
Brr = (1,1,2,3,2,1,1,1) || Bior = (2,2,3,4,3,3,2,1)
Brs = (1,1,2,2,2,2,1,1) || frs = (1,2,3,4,4,3,2,1)
Brg = (1,1,1,2,2,2,2,1) || fios = (2,2,3,4,4,3,2,1)
Bso = (1,2,2,3,2,2,1,0) || B0 = (1,2,3,5,4,3,2,1)
fg1 = (17223,2,1 LD || i1 = (2,2,3,5,4,3,2,1)
Bs2 = (1,1,2,3,3,2,1,0) || Buiz = (1,3,3,5,4,3,2,1)
Bz = (1,1,2,3,2,2,1,1) || Bus = (2,3,3,5,4,3,2,1)
Bga = (1,1,2,2,2,2,2,1) || Bua = (2,2,4,5,4,3,2,1)
Bss = (1,2,2,3,3,2,1,0) || f115 = (2,3,4,5,4,3,2,1)
/886 = (172727322171) ﬁllG = ( 346432,1)
Bsr = (1,1,2,3,3,2,1,1) || Bur = (2,3,4,6,5,3,2,1)
/888 = (17172322271) 5118 - ( 346542 )
Bso = (1,2,2,4,3,2,1,0) || B9 = (2,3,4,6,5,4,3,1)
Boo = (1,2,2,3,3,2,1,1) || f1a0 = (2,3,4,6,5,4,3,2)

Table C.6: Ordering of the positive roots of the root system FEg (continued).






Bibliography

[AJL83]

[BC76a]

[BC76D)

[Barll]

[Barl15]

H. H. Andersen, .J. Jorgensen, and P. Landrock. The projective indecom-
posable modules of SL(2, p™). Proc. London Math. Soc. (3),46(1):38 52,
1983.

P. Bala and R. W. Carter. Classes of unipotent elements in simple
algebraic groups. I. Math. Proc. Cambridge Philos. Soc., 79(3):401-425,
1976.

P. Bala and R. W. Carter. Classes of unipotent elements in simple
algebraic groups. II. Math. Proc. Cambridge Philos. Soc., 80(1):1-17,
1976.

M. J. J. Barry. Decomposing tensor products and exterior and symmetric
squares. J. Group Theory, 14(1):59-82, 2011.

M. J. J. Barry. On a question of Glasby, Praeger, and Xia. Comm.
Algebra, 43(10):4231 4246, 2015.

[BMRO5| M. Bate, B. Martin, and G. Réhrle. A geometric approach to complete

[Bou59|

[Bou75]

[Bru9g|

[Cal02]

[Car72]

[Car85]

reducibility. Invent. Math., 161(1):177-218, 2005.

N. Bourbaki. Eléments de mathématique. Premiére partie: Les structures

fondamentales de 'analyse. Livre I1: Algébre. Chapitre 9: Formes sesqui-

linéaires et formes quadratiques. Actualités Sci. Ind. no. 1272. Hermann,
Paris, 1959.

N. Bourbaki. Eléments de mathématique. Fasc. XXXVIII: Groupes et
algébres de Lie. Chapitre VII: Sous-algébres de Cartan, éléments régu-
liers. Chapitre VIII: Algébres de Lie semi-simples déployées. Actualités
Scientifiques et Industrielles, No. 1364. Hermann, Paris, 1975.

J. Brundan. Dense orbits and double cosets. In Algebraic groups and their
representations (Cambridge, 1997), Volume 517 of NATO Adv. Sci. Inst.
Ser. C Math. Phys. Sci., pages 259-274. Kluwer Acad. Publ., Dordrecht,
1998.

D. Callan. Jordan and Smith forms of Pascal-related matrices. ArXiv
Mathematics e-prints, September 2002.

R. W. Carter. Simple groups of Lie type. John Wiley & Sons, London-
New York-Sydney, 1972. Pure and Applied Mathematics, Vol. 28.

R. W. Carter. Finite groups of Lie type. Pure and Applied Mathematics
(New York). John Wiley & Sons, Inc., New York, 1985. Conjugacy classes
and complex characters, A Wiley-Interscience Publication.

225



226 Bibliography

[CT17] M. Cavallin and D. M. Testerman. A new family of irreducible subgroups
of the orthogonal algebraic groups. preprint, 2017.

[CMTO04] A. M. Cohen, S. H. Murray, and D. E. Taylor. Computing in groups of
Lie type. Math. Comp., 73(247):1477-1498, 2004.

[Don93| S. Donkin. On tilting modules for algebraic groups. Math. Z., 212(1):39-
60, 1993.

[Dye79] R. H. Dye. Interrelations of symplectic and orthogonal groups in cha-
racteristic two. J. Algebra, 59(1):202 221, 1979.

[Dyn52a] E.B. Dynkin. Maximal subgroups of the classical groups. Trudy Moskov.
Mat. Obsc., 1:39-166, 1952.

[Dyn52b] E. B. Dynkin. Semisimple subalgebras of semisimple Lie algebras. Mat.
Sbornik N.S., 30(72):349-462 (3 plates), 1952.

[Fei82] W. Feit. The representation theory of finite groups, Volume 25 of
North-Holland Mathematical Library. North-Holland Publishing Co.,
Amsterdam-New York, 1982.

[Find47] N. J. Fine. Binomial coefficients modulo a prime. Amer. Math. Monthly,
54:589-592, 1947.

[Fon74] P. Fong. On decomposition numbers of J; and R(q). In Symposia Mathe-
matica, Vol. XIII (Convegno di Gruppi e loro Rappresentazioni, INDAM,
Rome, 1972), pages 415 422. Academic Press, London, 1974.

[For96] B. Ford. Overgroups of irreducible linear groups. I. J. Algebra, 181(1):26—
69, 1996.

[FH91] W. Fulton and J. Harris. Representation theory, Volume 129 of Graduate
Texts in Mathematics. Springer-Verlag, New York, 1991. A first course,
Readings in Mathematics.

[GAP16] The GAP Group. GAP — Groups, Algorithms, and Programming, Ver-
ston 4.8.6, 2016.

[GN16] S. Garibaldi and D. K. Nakano. Bilinear and quadratic forms on rational
modules of split reductive groups. Canad. J. Math., 68(2):395-421, 2016.

[GPX15| S. P. Glasby, C. E. Praeger, and B. Xia. Decomposing modular tensor
products: ‘Jordan partitions’, their parts and p-parts. Israel J. Math.,
209(1):215 233, 2015.

[GPX16] S. P. Glasby, C. E. Praeger, and B. Xia. Decomposing modular tensor
products, and periodicity of ‘Jordan partitions’. J. Algebra, 450:570 587,
2016.

[Gow97] R. Gow. Contraction of exterior powers in characteristic 2 and the spin
module. Geom. Dedicata, 64(3):283-295, 1997.

[Gow98] R. Gow. Construction of p — 1 irreducible modules with fundamental
highest weight for the symplectic group in characteristic p. J. London
Math. Soc. (2), 58(3):619-632, 1998.



Bibliography 227

[GLO6|

[GW95]

|GM14]

[Hées4]

[Hes79|

[HS14]

[Hou03]

[Hum72|

[Jan73]

[Jan97]

[Jan03]

[Jan04]

[KL9O]

[Knu97]

[Korl7]

R. Gow and T. J. Laffey. On the decomposition of the exterior square
of an indecomposable module of a cyclic p-group. J. Group Theory,
9(5):659 672, 2006.

R. Gow and W. Willems. Methods to decide if simple self-dual mo-
dules over fields of characteristic 2 are of quadratic type. J. Algebra,
175(3):1067-1081, 1995.

R. Guralnick and G. Malle. Rational rigidity for Es(p). Compos. Math.,
150(10):1679-1702, 2014.

J.-Y. Hée. Groupes de Chevalley et groupes classiques. In Seminar on

finite groups, Vol. II, Volume 17 of Publ. Math. Univ. Paris VII, pages

1-54. Univ. Paris VII, Paris, 1984.

W. H. Hesselink. Nilpotency in classical groups over a field of characte-
ristic 2. Math. Z., 166(2):165-181, 1979.

F. Himstedt and P. Symonds. Exterior and symmetric powers of modules
for cyclic 2-groups. J. Algebra, 410:393 420, 2014.

X. D. Hou. Elementary divisors of tensor products and p-ranks of bino-
mial matrices. Linear Algebra Appl., 374:255 274, 2003.

J. E. Humphreys. Introduction to Lie algebras and representation theory.
Springer-Verlag, New York-Berlin, 1972. Graduate Texts in Mathema-
tics, Vol. 9.

J. C. Jantzen. Darstellungen halbeinfacher algebraischer Gruppen und
zugeordnete kontravariante Formen. Bonn. Math. Schr., (67):v+124,
1973.

J. C. Jantzen. Low-dimensional representations of reductive groups are
semisimple. In Algebraic groups and Lie groups, Volume 9 of Austral.
Math. Soc. Lect. Ser., pages 255 266. Cambridge Univ. Press, Cam-
bridge, 1997.

J. C. Jantzen. Representations of algebraic groups, Volume 107 of Mat-
hematical Surveys and Monographs. American Mathematical Society,
Providence, RI, second edition, 2003.

J. C. Jantzen. Nilpotent orbits in representation theory. In Lie theory,
Volume 228 of Progr. Math., pages 1-211. Birkh&duser Boston, Boston,
MA, 2004.

P. Kleidman and M. Liebeck. The subgroup structure of the finite clas-
sical groups, Volume 129 of London Mathematical Society Lecture Note
Series. Cambridge University Press, Cambridge, 1990.

D. E. Knuth. The art of computer programming. Vol. 1. Addison-
Wesley, Reading, MA, 1997. Fundamental algorithms, Third edition
[of MR0286317].

M. Korhonen. Invariant forms on irreducible modules of simple algebraic
groups. J. Algebra, 480:385-422, 2017.



228

[Law95]

|Law98|

[Law09)

[LLS14|

[LT99]

[LS94]

[LS96]

[LS04]

ILS12]

[LST15]

[T

[Liib01]

[Liib17]

[Luc7s§]

[MT11]

[Mat90]

Bibliography

R. Lawther. Jordan block sizes of unipotent elements in exceptional
algebraic groups. Comm. Algebra, 23(11):4125-4156, 1995.

R. Lawther. Correction to: “Jordan block sizes of unipotent elements in
exceptional algebraic groups” [Comm. Algebra 23 (1995), no. 11, 4125~
4156; MR1351124 (96h:20084)]. Comm. Algebra, 26(8):2709, 1998.

R. Lawther. Unipotent classes in maximal subgroups of exceptional
algebraic groups. J. Algebra, 322(1):270-293, 2009.

R. Lawther, M. W. Liebeck, and G. M. Seitz. Outer unipotent classes
in automorphism groups of simple algebraic groups. Proc. Lond. Math.

Soc. (3), 109(3):553-595, 2014.

R. Lawther and D. M. Testerman. A; subgroups of exceptional algebraic
groups. Mem. Amer. Math. Soc., 141(674):viii+131, 1999.

M. W. Liebeck and G. M. Seitz. Subgroups generated by root elements
in groups of Lie type. Ann. of Math. (2), 139(2):293 361, 1994.

M. W. Liebeck and G. M. Seitz. Reductive subgroups of exceptional
algebraic groups. Mem. Amer. Math. Soc., 121(580):vi+111, 1996.

M. W. Liebeck and G. M. Seitz. The maximal subgroups of positive
dimension in exceptional algebraic groups. Mem. Amer. Math. Soc.,
169(802):vi+227, 2004.

M. W. Liebeck and G. M. Seitz. Unipotent and nilpotent classes in simple
algebraic groups and Lie algebras, Volume 180 of Mathematical Surveys
and Monographs. American Mathematical Society, Providence, RI, 2012.

M. W. Liebeck, G. M. Seitz, and D. M. Testerman. Distinguished unipo-
tent elements and multiplicity-free subgroups of simple algebraic groups.
Pacific J. Math., 279(1-2):357-382, 2015.

A J. Litterick and A. R. Thomas. Complete Reducibility in Good Cha-
racteristic. To appear in Trans. Amer. Math. Soc.

F. Libeck. Small degree representations of finite Chevalley groups in
defining characteristic. LMS J. Comput. Math., 4:135-169 (electronic)
2001.

F. Libeck.  Tables of weight multiplicities.  http://www.math.
rwth-aachen.de/ Frank.Luebeck/chev/WMSmall/index.html, 2017.

E. Lucas. Theorie des Fonctions Numeriques Simplement Periodiques.
[Continued|. Amer. J. Math., 1(3):197-240, 1878.

G. Malle and D. M. Testerman. Linear algebraic groups and finite groups
of Lie type, Volume 133 of Cambridge Studies in Advanced Mathematics.
Cambridge University Press, Cambridge, 2011.

O. Mathieu. Filtrations of G-modules. Ann. Sci. Ecole Norm. Sup. (4),
23(4):625-644, 1990.



Bibliography 229

[McF79)

[McGO2]

[McGO5|

[McN9S|

[McNO2]

[Mos56]

INP92|

[Nor95|

[Pom77|

[Pom80]

[Pre87]

[Pre03|

[PS83]

[PST00]

J. D. McFall. How to compute the elementary divisors of the tensor
product of two matrices. Linear and Multilinear Algebra, 7(3):193-201,
1979.

S. McGarraghy. Exterior powers of symmetric bilinear forms. Algebra
Collog., 9(2):197-218, 2002.

S. McGarraghy. Symmetric powers of symmetric bilinear forms. Algebra
Collog., 12(1):41-57, 2005.

G. J. McNinch. Dimensional criteria for semisimplicity of representati-
ons. Proc. London Math. Soc. (38), 76(1):95 149, 1998.

G. J. McNinch. Adjoint Jordan Blocks. ArXiv Mathematics e-prints,
June 2002.

G. D. Mostow. Fully reducible subgroups of algebraic groups. Amer. J.
Math., 78:200-221, 1956.

P. M. Neumann and C. E. Praeger. A recognition algorithm for special
linear groups. Proc. London Math. Soc. (3), 65(3):555-603, 1992.

C. W. Norman. On the Jordan form of the tensor product over fields
of prime characteristic. Linear and Multilinear Algebra, 38(4):351-371,
1995.

K. Pommerening. Uber die unipotenten Klassen reduktiver Gruppen. J.
Algebra, 49(2):525 536, 1977.

K. Pommerening. Uber die unipotenten Klassen reduktiver Gruppen. II.
J. Algebra, 65(2):373-398, 1980.

A. A, Premet. Weights of infinitesimally irreducible representations of
Chevalley groups over a field of prime characteristic. Mat. Sb. (N.S.),
133(175)(2):167 183, 271, 1987.

A. A. Premet. Nilpotent orbits in good characteristic and the Kempf-
Rousseau theory. J. Algebra, 260(1):338-366, 2003. Special issue cele-
brating the 80th birthday of Robert Steinberg.

A. A. Premet and I. D. Suprunenko. The Weyl modules and the irre-
ducible representations of the symplectic group with the fundamental
highest weights. Comm. Algebra, 11(12):1309-1342, 1983.

R. Proud, J. Saxl, and D. M. Testerman. Subgroups of type A; con-
taining a fixed unipotent element in an algebraic group. J. Algebra,
231(1):53-66, 2000.

[QSSS76] H. G. Quebbemann, R. Scharlau, W. Scharlau, and M. Schulte. Quadra-

[Ral66]

tische Formen in additiven Kategorien. Bull. Soc. Math. France Suppl.
Mem., (48):93 101, 1976.

T. Ralley. Decomposition of products of modular representations. Bull.
Amer. Math. Soc., 72:1012-1013, 1966.



230

[Reeb7|

[RenT9]

[Sax98|

1S597]

[Sei87]

[Sei00]

[Ser94|

[Ser97]

[Ser03]

[Ser05]

[Sim13]

[Sin92]

[Smi82]

[Spa82]

[SS70]

[Sri64]

Bibliography

R. Ree. On some simple groups defined by C. Chevalley. Trans. Amer.
Math. Soc., 84:392-400, 1957.

J.-C. Renaud. The decomposition of products in the modular represen-
tation ring of a cyclic group of prime power order. J. Algebra, 58(1):1-11,
1979.

J. Saxl. Overgroups of special elements in simple algebraic groups and
finite groups of Lie type. In Algebraic groups and their representations
(Cambridge, 1997), Volume 517 of NATO Adv. Sci. Inst. Ser. C' Math.
Phys. Sci., pages 291-300. Kluwer Acad. Publ., Dordrecht, 1998.

J. Saxl and G. M. Seitz. Subgroups of algebraic groups containing regular
unipotent elements. J. London Math. Soc. (2), 55(2):370-386, 1997.

G. M. Seitz. The maximal subgroups of classical algebraic groups. Mem.
Amer. Math. Soc., 67(365):iv+286, 1987.

G. M. Seitz. Unipotent elements, tilting modules, and saturation. Invent.
Math., 141(3):467-502, 2000.

J.-P. Serre. Sur la semi-simplicité des produits tensoriels de représenta-
tions de groupes. Invent. Math., 116(1-3):513-530, 1994.

J.-P. Serre. Semisimplicity and tensor products of group representations:
converse theorems. J. Algebra, 194(2):496 520, 1997. With an appendix
by Walter Feit.

J.-P. Serre. 1998 Moursund Lectures at the University of Oregon. ArXiv
Mathematics e-prints, May 2003.

J.-P. Serre. Compléte réductibilité. Astérisque, (299):Exp. No. 932, viii,
195-217, 2005. Séminaire Bourbaki. Vol. 2003/2004.

I. 1. Simion. Centers of Centralizers of Unipotent Elements in Exceptio-
nal Algebraic Groups. PhD thesis, SB, Lausanne, 2013.

P. Sin. On the 1-cohomology of the groups G2(2"). Comm. Algebra,
20(9):2653-2662, 1992.

S. D. Smith. Irreducible modules and parabolic subgroups. J. Algebra,
75(1):286 289, 1982.

N. Spaltenstein. Classes unipotentes et sous-groupes de Borel, Volume
946 of Lecture Notes in Mathematics. Springer-Verlag, Berlin-New York,
1982.

T. A. Springer and R. Steinberg. Conjugacy classes. In Seminar on
Algebraic Groups and Related Finite Groups (The Institute for Advanced
Study, Princeton, N.J., 1968/69), Lecture Notes in Mathematics, Vol.
131, pages 167 266. Springer, Berlin, 1970.

B. Srinivasan. The modular representation ring of a cyclic p-group. Proc.
London Math. Soc. (3), 14:677-688, 1964.



Bibliography 231

[Ste65|

[Ste68]

[Stel0]

[Sup95|

[Sup01]

[Sup03]

[Sup05]

[Sup09]

[Tes88|

| Tes89|

[Tes95]

[TZ13)]

[Tsu08|

[vdKO01]

[Wey39]

[Wil76]

[WonT72]

R. Steinberg. Regular elements of semisimple algebraic groups. Inst.
Hautes Etudes Sci. Publ. Math., (25):49-80, 1965.

R. Steinberg. Lectures on Chevalley groups. Yale University, New Haven,
Conn., 1968. Notes prepared by John Faulkner and Robert Wilson.

D. I. Stewart. The reductive subgroups of Gs. J. Group Theory,
13(1):117 130, 2010.

I. D. Suprunenko. Irreducible representations of simple algebraic groups
containing matrices with big Jordan blocks. Proc. London Math. Soc.
(8), 71(2):281-332, 1995.

I. D. Suprunenko. On an asymptotic behavior of elements of order p in
irreducible representations of the classical algebraic groups with large
enough highest weights. Proc. Amer. Math. Soc., 129(9):2581-2589,
2001.

I. D. Suprunenko. The second Jordan block and the recognition of re-
presentations. Dokl. Nats. Akad. Nauk Belarusi, 47(1):48-52, 125, 2003.

I. D. Suprunenko. Unipotent elements of prime order in representations
of exceptional algebraic groups: the second Jordan block. Dokl. Nats.
Akad. Nauk Belarusi, 49(4):5-9, 124, 2005.

I. D. Suprunenko. The minimal polynomials of unipotent elements in
irreducible representations of the classical groups in odd characteristic.
Mem. Amer. Math. Soc., 200(939):vi+154, 2009.

D. M. Testerman. Irreducible subgroups of exceptional algebraic groups.
Mem. Amer. Math. Soc., 75(390):iv+190, 1988.

D. M. Testerman. A construction of certain maximal subgroups of the
algebraic groups Fg and Fy. J. Algebra, 122(2):299-322, 1989.

D. M. Testerman. Aj-type overgroups of elements of order p in se-
misimple algebraic groups and the associated finite groups. J. Algebra,
177(1):34-76, 1995.

D. M. Testerman and A. Zalesski. Irreducibility in algebraic groups and
regular unipotent elements. Proc. Amer. Math. Soc., 141(1):13-28, 2013.

T. Tsujii. A simple proof of Pommerening’s theorem. J. Algebra,
320(5):2196-2208, 2008.

W. van der Kallen. Steinberg modules and Donkin pairs. Transform.
Groups, 6(1):87 98, 2001.

H. Weyl. The Classical Groups. Their Invariants and Representations.
Princeton University Press, Princeton, N.J., 1939.

W. Willems. Metrische Moduln iber Gruppenringen. PhD thesis, Johan-
nes Gutenberg-Universitit, Mainz, 1976.

W. J. Wong. Irreducible modular representations of finite Chevalley
groups. J. Algebra, 20:355-367, 1972.






Curriculum vitae

Name Mikko Korhonen
Nationality Finland

Contact details mikko.korhonen@epfl.ch
korhonen mikko@hotmail.com
+41 21 693 03 98 (EPFL)

Education Ph.D. in Mathematics, 2014 - 2018
Ecole Polytechnique Fédérale de Lausanne
Thesis supervisor: Donna Testerman

M.Sc. in Mathematics, 2012 - 2014
University of Oulu
Thesis supervisor: Markku Niemenmaa

B.Sc. in Mathematics, 2008 - 2012
University of Oulu
Minor in Information Processing Science

Research interests | Linear algebraic groups: representation theory, sub-
group structure, properties of unipotent elements.

Publications Invariant forms on irreducible modules of simple alge-
braic groups. J. Algebra, 480:385-422, 2017.

Unipotent elements forcing irreducibility in linear al-
gebraic groups. J. Group Theory, to appear.

Language skills Finnish (native), English (fluent), French (intermedi-
ate)

233




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /CMYK
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /ARA <>
    /BGR <>
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /CZE <>
    /DAN <>
    /DEU <>
    /ESP <>
    /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
    /FRA <>
    /GRE <>

    /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke.  Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
    /HUN <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /LTH <>
    /LVI <>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /POL <>
    /PTB <>
    /RUM <>
    /RUS <>
    /SKY <>
    /SLV <>
    /SUO <>
    /SVE <>
    /TUR <>
    /UKR <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


