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Abstract. The paper presents the modelling, simulation and analysis of the transient behaviour 

of a 340 MW pump-turbine in case of emergency shutdown in turbine mode with focus on 

possible draft tube water column separation. The model of a pumped storage power plant with 

simplified layout is presented. This model includes a penstock feeding one 340MW pump-

turbine with the related rotating inertia and a tailrace tunnel. The model of the tailrace tunnel 

allowing for water column separation simulation is introduced. The simulation results of the 

transient behaviour of the pump-turbine in case of emergency shutdown in generating mode, 

with and without downstream water column separation model are presented for different 

degree of severity triggered by the submergence and the tailrace tunnel length. The amplitudes 

of the pressure peaks induced by the cavity collapse are analysed with respect to the pressure 

drop magnitude and tailrace dimensions. The maximum and minimum pressure amplitudes 

obtained along the tailrace tunnel are analysed for different test case conditions. 

1.  Introduction 

Pumped storage power plants are subjected to transient operation resulting from units start-up, normal 

shutdown, emergency shutdown, power failure etc. Transient analysis is carried out at an early stage of 

the project to define the hydraulic layout of the power plant and to check the compatibility of the 

hydraulic machines transients with the foreseen adduction system. Special care has to be paid to high 

head projects, usually involving long penstock, high rotational speed, low inertia and short mechanical 

time constant, and low specific speed pump-turbines [1], [2]. The case of a pump-turbine emergency 

shutdown in generation mode is usually one of the most critical cases with respect to the maximum 

and minimum pressure induced in the piping system. Indeed, the pump-turbine reaches transient 

runaway and faces unstable behaviour related to the so-called S-shape of the pump-turbine 

characteristic [3], [4], [5], [6]. During runaway and guide vane closure, the transient operating point of 

the pump-turbine goes from the normal turbine operation in the first quadrant, to turbine brake and 

then to reverse pumping in the fourth quadrant. The excursion from normal turbine operation to 

reverse pumping being achieved in very short time, it leads to large and fast variation of discharge and 

thus generate high positive pressure wave in the penstock and negative pressure wave in the draft tube. 

If the penstock can be designed to withstand extreme value of the pressure, the minimum pressure in 
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the draft tube has to be addressed with a particular attention to ensure sufficient safety margin to 

prevent from water column separation [7]. 

The paper presents the modelling, simulation and analysis of the transient behaviour of a 340 MW 

pump-turbine in case of emergency shutdown in generation mode with particular attention to the 

possible draft tube water column separation. First, the model of a pumped storage power plant with 

simplified layout is setup with the EPFL software SIMSEN. This model includes a penstock feeding 

one 340 MW pump-turbine with the related rotating inertia and a tailrace tunnel. The model of the 

tailrace tunnel allows for water column separation simulation. Thus, the related SIMSEN model is 

introduced.  Finally, the simulation results of the transient behaviour of the pump-turbine with and 

without downstream water column separation are presented for different degree of severity triggered 

by the submergence and the tailrace tunnel dimensions taken as parameters. 

2.  Modelling 

2.1.  Hydraulic components 

By assuming uniform pressure and velocity distributions in the cross section and neglecting the 

convective terms, the one-dimensional momentum and continuity balances for an elementary pipe 

filled with water of length dx, cross section A and wave speed a, see Fig. 1, yields to the following set 

of hyperbolic partial differential equations [8]: 
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The system (1), where Q is the discharge and h is the piezometric head, is solved using the Finite 

Difference Method with a 1
st
 order centered scheme discretization in space and a scheme of Lax for 

the discharge variable. This approach leads to a system of ordinary differential equations that can be 

represented as a T-shaped equivalent scheme [9], [10], [11] as presented in Fig. 2. The RLC 

parameters of this equivalent scheme are given by: 
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where λ is the local loss coefficient. The hydraulic resistance R, the hydraulic inductance L, and the 

hydraulic capacitance C correspond respectively to energy losses, inertia and storage effects.  The 

model of a pipe of length L is made of a series of nb elements based on the equivalent scheme of 

Figure 2. The system of equations relative to this model is set-up using Kirchoff laws. The model of 

the pipe, as well as the models of valve, surge tank, Francis turbine, etc, are implemented into the 

EPFL software SIMSEN, developed for the simulation of the dynamic behavior of hydroelectric 

power plants, [11], [12]. The time domain integration of the full system is achieved in SIMSEN by a 

Runge-Kutta 4
th
 order procedure. The modelling approach based on equivalent schemes of hydraulic 

components is extended to all the standard hydraulic components such as valve, surge tanks, air 

vessels, cavitation development, Francis pump-turbines, Pelton turbines, Kaplan turbines, pump, etc, 

see [10].  



 

 

 

 

Figure 1. Elementary hydraulic pipe of length 

dx. 

Figure 2. Equivalent circuit of an elementary pipe. 

2.2.  Water column separation 

The free gas content of water significantly reduces the wave speed in pressurized pipelines, see [13], 

[14] and [15]. Wylie  [14] derived wave speed in homogenous liquid free gas mixture characterized by 

an initial void fraction αo defined for a reference absolute pressure po and leads to the following 

equation: 
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where : 

ao [m/s] Wave speed in liquid g [m/s
2
] Gravitational acceleration 

po [Pa] Reference absolute pressure h [m] Piezometric head 

αo [-] Initial void fraction Z [m] Pipe elevation 

 [kg/m
3
] Liquid density Hv [m] Vapour pressure head 

Thus, the wave speed in liquid gas mixture is function of the local piezometric head. Figure 3 

shows the wave speed evolution as function of the absolute gas partial pressure (h-Z-Hv) and of the 

initial void fraction αo. The non-linear equation (3) is introduced in the equation set (1) for time 

domain simulation so that the wave speed is local piezometric head dependant a=a(hi), similar to [16]. 

During water column separation the local piezometric head drops to very low values, and if the local 

pressure becomes negative due to numerical inaccuracy, the equation (3) leads to an increase of the 

wave speed, see [17]. Therefore, the wave speed is bounded to a minimum value defined as “amin” to 

avoid numerical instability. 

 

Figure 3. Wave speed ratio as function of the initial void fraction αo and of the absolute gas partial 

pressure (h-Z-Hv)  (adapted from Liou, [15]). 

During water column separation, the bubbly liquid vapour mixture is subjected to dissipation 

resulting from phase changes. This dissipation is modeled by a thermodynamic damping μ’’ also 

Absolute gas partial pressure [mWC] 



known as the bulk viscosity or fluid second viscosity, see [18]. This thermodynamic damping is 

introduced in the numerical scheme by means of an additional thermodynamic resistance Rth in series 

with the capacitance, see [19], and defined as follows: 
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The modified equivalent scheme of an elementary pipe with water column separation is presented 

in Figure 4 where the capacitance is pressure dependant. This water column separation model is 

implemented into SIMSEN and was validated with experimental data and also compared with Method 

of Characteristic, MOC, with Discret Gas Cavity Model, DGCM, results, see [17]. The test case, see 

[20], is a 37.23 meters long pipe of diameter 0.0221 meters with fast downstream valve closure 

inducing water column separation.  The comparison between SIMSEN simulation results, MOC-

DGCM simulation results and experimental results have shown good agreement confirming the ability 

of the model to simulate water column separation if appropriate set of parameters is selected, see [17]. 

 

Figure 4. Equivalent scheme of an elementary pipe with water column separation including pressure  

dependency of the wave speed and thermodynamic damping. 

3.  Case study 

The case study is a hydroelectric power plant with a simplified layout as illustrated in Figure 5 made 

of an upstream reservoir with constant water level, a penstock of about 1100 meters long and 6.4 to 

3.6 meters of diameter, a pump-turbine of 340 MW which nominal parameters are given in Table 1, 

and a tailrace tunnel of 150 meters long and 4.7 meters of diameter. The pump-turbine is modelled by 

the 4 quadrant characteristics given by the guide vane opening y, the speed factor N11, the discharge 

factor Q11 and the torque factor T11, and the inertia of the total rotating masses J. 

 

Figure 5. SIMSEN model of the pump-turbine case study with simplified layout. 

Table 1. Rated values of the pump-turbine of Figure 5. 

parameter value 

HR [m] 440 

QR [m3/s] 86 

NR [rpm] 428.6 

PR [MW] 340 

ν [-] 0.26 

J [kgm2] 1.5.106 

Rth C=C(a(hi+1/2(t)) 



4.  Francis Pump-turbine transient and possible draft tube water column separation 

4.1.  Pump-turbine transient in case of emergency shutdown in generating mode 

Figure 6 presents the simulation results obtained with SIMSEN for the transient behaviour of the 

pump-turbine of the system shown in Figure 5 in case of emergency shutdown in generating mode 

occurring at t = 1 s and with guide vane closure in Tc = 25 s.  Figure 7 shows the transient operating 

point experienced by the pump-turbine during the emergency shutdown in the [N11-Q11] plane with 

the guide vane opening as parameter. One can notice that after disconnection from the grid, the pump 

turbine experiences rotational speed rise inducing an increase of N11 and thus a fast discharge 

reduction leading to a negative discharge due to the so-called S-shape of the pump-turbine 

characteristic [1], {2]. The fast discharge reduction produces positive water hammer pressure wave in 

the penstock and negative pressure wave in the tailrace tunnel resulting in a net head increase. During 

the guide vane closure, the pump-turbine experiences two times unstable behaviour with excursions in 

the fourth quadrant corresponding to reverse pumping with negative discharge and positive rotational 

speed. 

  

Figure 6. Pump-turbine transient behaviour in case of 

emergency shutdown in generating mode with h the net head, 

q the discharge, t the torque, n the rotational speed and y the 

guide vane opening all related to rated values. 

Figure 7. Pump-turbine transient operating 

point in case of emergency shutdown in 

generating mode in the N11-Q11 plain. 

4.2.  Draft tube water column separation 

The transient behaviour of the system with the pump-turbine of Figure 5 is simulated with the model 

of water column separation for the tailrace tunnel in case of emergency shutdown, ESD, in generating 

mode. The water column separation is induced by modifying the submergence and the tailrace tunnel 

length as follows: 

 Case A) the tailrace water level is reduced by 15 m to obtain a minimum negative pressure in 

the draft tube 5 mWC below the vapour pressure during ESD, when using the classical water 

hammer model without column separation; 

 Case B) the tailrace water level is reduced by 20 m to obtain a minimum negative pressure in 

the draft tube 10 mWC below the vapour pressure during ESD, ditto; 

 Case C) the tailrace water level is reduced by 25 m to obtain a minimum negative pressure in 

the draft tube 15 mWC below the vapour pressure during ESD, ditto; 

 Case D) the tailrace water level is reduced by 20 m and the tailrace water tunnel length is 

doubled to obtain a minimum negative pressure 28 mWC below the vapour pressure during 

ESD, ditto. 

The simulation results obtained for the cases A) to D) with and without the water column separation 

model are presented in Table 2. As expected, for the four cases, water column separation occurs and 

then leads to vapour cavity collapse resulting in sudden pressure rise which maximum amplitudes are 



reported in Figure 8. The maximum pressure amplitudes obtained for cases A) to D) shows monotonic 

increase when the minimum pressure value obtained without water column separation decreases. For 

the case D), the maximum pressure obtained in the draft tube, reaches 366 mWC and corresponds to 

82 % of the nominal head, and thus would considerably jeopardize the power plant integrity. 

Comparison of cases B) and D) shows the detrimental influence of increasing the tailrace tunnel length, 

leading to a lower minimum pressure and thus a higher maximum pressure value resulting from cavity 

collapse, see also [21]. The envelops of extreme pressure values obtained along the tailrace tunnel are 

presented in  

Figure 9. For each test case, the water column separation occurs in 95% of whole tailrace tunnel and 

the related collapses induce high pressure values extending over 80 to 90% of the tunnel even for 

locations close to the downstream reservoir where high pressure values are usually not expected. 

Figure 10 and Figure 11 shows the transient behaviour of the pump-turbine obtained for the case D) 

with water column separation. Due to water column separation and related net head changes, the 

pump-turbine experiences several S-shape back and forth excursions that would represent an increase 

of the machine components loading. 

Table 2. Time evolution of the pressure at the inlet of the draft tube obtained with the pump-turbine in case 

of emergency shutdown in generating mode with and without water column separation model for cases A) to 

D). 

 
Case A) 

 
Case B) 

 
Case C) 

 
Case D) 
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Figure 8. Evolution of the maximum overpressure above atmospheric pressure as function of the 

negative pressure obtained in tailrace tunnel without water column separation model. 

 

Figure 9. Envelops of maximum and minimum pressure values obtained in the tailrace tunnel  

for the cases A) to D) (x/L=0: pump-turbine draft tube ; x/L=1: downstream reservoir). 

 
 

Figure 10. Comparison of pump-turbine transient behaviour 

in case of emergency shutdown in generating mode with and 

without water column separation (WCS) for case D). 

Figure 11. Pump-turbine transient operating 

point in the N11-Q11 plain for the case D) 

with water column separation. 

5.  Conclusions 

This paper presents the modelling, simulation and analysis of possible water column separation in 

pump-turbine draft tube which could occur during emergency shutdown in generating mode using the 

simulation software SIMSEN. It is shown for cases with water column separation, that the pressure 

rise resulting from the vapour cavity collapse may reach high maximum pressure values extending 

over almost the entire tunnel, and thus jeopardize the power plant integrity. The detrimental effect of 

increasing the length of tailrace tunnel on minimum pressure in draft tube, and thus, on the risk of 

water column separation, is also pointed out. The water column separation model implemented into 

SIMSEN, combined with the already existing hydraulic machines and components models allows 

estimating the severity of such unwanted event. However, the influence of the cavitation development 

in the draft tube on the pump-turbine characteristic has not been considered so far. 
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