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Abstract

Flows of fluids with free surfaces show complex dynamical behavior. Examples include effects

like capillary surface waves, topological transitions such as droplet breakup and coalescence,

or pattern formation in wetting and de-wetting dynamics. These complex phenomena re-

sult from a highly nonlinear evolution that is driven by the interplay of surface forces and

the changing surface geometry. Droplet-based microfluidics both utilizes the free-surface

dynamics in a wide range of applications in science and engineering, and, due to the precise

control of flows at small scales, allows to study the dynamics experimentally.

An analytical description of the dynamics is made difficult by the high degree of nonlinearity.

Numerical tools complement experiments, as they give access to quantities of interest such

as the pressure fields inside a fluid or local stresses on the interface, and allow for a precise

control of parameters and models of physical effects. We use numerical tools to study the

complex dynamics of free surface flows.

In the first part of this thesis, we develop a fully-resolved 3D boundary element method for

simulating droplet dynamics in complex geometries. The developed numerical tool allows us

to follow the dynamic deformation of droplets with variable viscosity ratio between droplet and

continuous phase, under the effect of Young-Laplace surface tension, gravity, and dielectric

stresses due to electric fields. Free interfaces are represented by a novel smooth surface

representation that gives an accurate description for the surface shape and curvature.

In the second part, we address two practically relevant problems. First, we study the breakup

of droplets as concentrated emulsions are injected into a narrow constriction, and describe

the underlying physical mechanism that drives the breakup. Second, we analyze the efficiency

of droplet sorting with dielectrophoresis, and propose a new sorting device that operates at

lower voltage and reduces stress on the droplets. In careful quantitative comparisons between

numerics and experiments, we find that in-plane surface stresses due to nonequilibrium

surfactant distributions have a major impact on free interface dynamics, and merit further

study.

Keywords: nonlinear physics, free surfaces, multi-phase flow, droplet microfluidics, lab-

on-a-chip, boundary element method, droplet breakup, dielectrophoresis, droplet sorting
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Zusammenfassung
Flüssigkeiten mit freien Grenzflächen zeigen ein komplexes dynamisches Verhalten, wie

kapillare Oberflächenwellen, topologische Übergänge wie etwa Abriss und Verschmelzen

von Tropfen, oder Musterbildung in der Benetzung von Oberflächen. Diese komplexen

Phänomene sind Folge des hoch nichtlinearen Zusammenspiels von Oberflächenkräften

und Veränderungen der Oberflächengeometrie. Tropfenbasierte Mikrofluidik nutzt die Dy-

namik freier Oberflächen in einem großen Anwendungsfeld in Wissenschaft und Technik,

ermöglicht durch eine präzise Kontrolle von kleinskaligen Strömungen aber auch eine Unter-

suchung der Dynamik selbst.

Der hohe Grad an Nichtlinearität erschwert eine analytische Beschreibung der Dynamik.

Numerische Simulationen ergänzen Experimente, indem sie relevante Größen wie die Druck-

verteilung in der Flüssigkeit oder die die Spannungen auf der Oberfläche zugänglich machen

und eine präzise Kontrolle von Parametern und Modellen der physikalischen Effekte erlauben.

Wir untersuchen die komplexe Dynamik von Strömungen mit freien Oberflächen numerisch.

Im ersten Teil dieser Arbeit entwickeln wir eine voll aufgelöste 3D Randelementmethode

zur Simulation von Tropfendynamik in komplexen Geometrien. Die entwickelte Simula-

tion ermöglicht die Untersuchung der dynamische Verformung von Tropfen mit variablem

Viskositätsverhältnis zwischen Tropfen und umgebender Flüssigkeit, unter dem Einfluss von

Young-Laplace-Oberflächenspannungen, Gravitation und dielektrischen Kräften durch elek-

trische Felder. Eine glatte Oberflächendarstellung ermöglicht eine genaue Beschreibung der

Oberflächenform und Krümmung.

Im zweiten Teil behandeln wir zwei praktisch relevante Probleme. Erstens untersuchen wir

das Auseinanderbrechen von Tropfen, wenn dichte Emulsionen in einen verengten Kanal

einströmen, und beschreiben den zugrundeliegenden physikalischen Mechanismus. Zwei-

tens analysieren wir die Effizienz des Sortierens von Tropfen durch Dielektrophorese, und

entwickeln eine neue Geometrie, die mit geringerer elektrischer Spannung arbeitet und so

die mechanische Verformung der Tropfen minimiert. Durch einen gründlichen quantitativen

Vergleich zwischen Numerik und Experimenten erkennen wir, dass Spannungen in den Ober-

flächen, ausgelöst durch eine Nichtgleichgewichtsverteilung von Tensiden, einen signifikanten

Einfluss auf die Oberflächendynamik haben und weiterer Untersuchung bedürfen.

Schlüsselwörter: Nichtlineare Physik, Freie Oberflächen, Mehrphasenströmung, Tropfen-

basierte Mikrofluidik, lab-on-a-chip, Randelementmethode, Tropfenabriss, Dielektropho-

rese, Tropfensortierung
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Fluid dynamics at small length scales is dominated by interfacial effects, which scale with

the second power of the length. At small scales, they dominate over bulk effects that scale

with the third power. Fluid systems at small scales therefore behave differently from those at

larger scales. Free interfaces between immiscible fluids show particularly complex behavior.

They display highly nonlinear phenomena like capillary surface waves, topological transitions

such as droplet breakup and coalescence, and pattern formation in wetting and de-wetting

dynamics.

The field of droplet-based microfluidics uses fluids with free interfaces to control material

transport and mixing. Material is enclosed in fluid droplets and advected by an immiscible

outer phase. With microchannel geometries on the μm-mm-scale, droplet volumes range

from fractions of picoliters to several hundred nanoliters.

Due to the precise control of flows at small scales, microfluidic systems not only lay the

foundation for novel applications, but also allow for detailed experimental studies of the free

surface dynamics. Analytical descriptions of these systems are difficult due to the high degree

of nonlinearity. Numerical tools complement experiments, as they give access to quantities of

interest such as the pressure fields inside a fluid or local stresses on the interface, and allow

for a precise control of parameters and models of physical effects.

This thesis makes two contributions. First, we develop a numerical 3D boundary element

method to study the complex dynamics of free surface flows. This numerical tool allows us

to follow the dynamic deformation of droplets in confined microfluidic systems. Second, we

combine the simulation with experimental results to address two practically relevant problems:

The breakup of droplets in the reinjection of concentrated emulsions, and high-throughput

dielectrophoretic droplet sorting.
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Chapter 1. Introduction

1.1 Droplet Dynamics in Microfluidics

Droplet based microfluidics is a key technology with numerous applications, for example in

crystal synthesis (e.g. Zheng et al. [2003]; Gerdts et al. [2006]), DNA screening (e.g. Agresti

et al. [2010]; Pekin et al. [2011]) or single-cell culture and analysis (e.g. Clausell-Tormos et al.

[2008]; Joensson and Andersson Svahn [2012]). Whitesides [2006] gives a historic overview

of microfluidic technologies. Applications exploit important features of the droplet system:

Droplets have small volume, so that small quantities of proteins or DNA suffice to perform

repeated experiments. In crystal synthesis, which is used to crystallize proteins for analyzing

their structure, the small volume helps to control the rate of nucleation. Screening applications

benefit from the high rate of throughput, facilitating the search for rare mutations. Inside

biocompatible water-in-oil droplets, living cells can be cultivated under a constant supply of

nutrients, which enter the droplets by diffusion through the continuous phase.

Microfluidic devices for lab-on-a-chip applications are often manufactured by soft litho-

graphy: A network of microchannels is imprinted into a silicon-based substrate and covered

with a glass plate, with flexible tubings feeding the device with operating fluids. Transparent

substrates allow for imaging under a microscope. Droplets act as micro-compartments, which

are manipulated via the fluid flow, transported, processed or stored. Seemann et al. [2011]

describe the manufacturing process of a microfluidic device, and typical approaches to droplet

creation and processing. In the following we describe the key droplet manipulation steps and

highlight the free-surface dynamics involved.

Creation of Droplets

The automated creation of monodisperse droplets has laid the foundations for droplet mi-

crofluidics. In static microchannel geometries and controlled purely by fixing the flow rates

of the incoming droplet and continuous phase, droplets of fixed volume are created contin-

uously and at high frequency (Ahn et al. [2006b] create 10 pL droplets at 2 kHz) through a

dripping process [Plateau, 1873; Eggers, 1997]. Joensson and Andersson Svahn [2012] identify

three main strategies for pressure-driven droplet generation: In coflowing droplet generation

a) b) c)

Figure 1.1: Strategies for pressure-driven continuous droplet creation. a) Coflowing droplet
generation, after Umbanhowar et al. [2000]. b) Droplet generation in a T-junction, after
Thorsen et al. [2001]. c) Droplet generation by flow focusing, after Anna et al. [2003].
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(Umbanhowar et al. [2000], Figure 1.1a), droplets pinch off from the narrow tip of a capillary

moving in an external flow, either inside a microfluidic device or in a large bulk volume of the

external phase. A design which is easy to integrate into a microfluidic device is a T-junction

(Thorsen et al. [2001], Figure 1.1b) between two rectangular channels. For higher flow rates,

a flow focusing geometry (Anna et al. [2003], Figure 1.1c) is used. This symmetric setup is

similar to the T-junction, but requires an additional inlet channel for the continuous phase.

Transport

The fluid transport in microfluidic devices is driven by pressure gradients. In typical setups,

the inlet pressure is built up by syringe pumps outside the device, while the outlet is kept at

ambient pressure. Due to the small channel cross-sections and the viscosity of the working

fluids, the inlet pressure can be on the order of hundreds of kPa. The rate of flow is controlled

via the inlet pumps, and flow paths can be modified using pneumatic or magnetic valves

[Xi et al., 2017]. Microchannels of appropriate length and shape can promote mixing inside

droplets [Tice et al., 2003], or leave sufficient time for incubation or chemical reactions (e.g. in

Brosseau et al. [2014]; Zheng et al. [2003]).

Storage and Reinjection

For incubation over extended amounts of time [Pekin et al., 2011] or repeated traversal of the

same microfluidic device [Agresti et al., 2010], droplets are stored outside of the microfluidic

device, and later reinjected into the device. Droplet storage poses two technical challenges:

Both the coalescence of droplets in dense emulsions, and their breakup during the reinjection

process need to be avoided.

In typical flow conditions, droplet coalescence happens naturally when two droplet interfaces

come close. Coalescence reduces the total area of the free interface, thus lowering the free

energy of the droplet system [Shikhmurzaev, 2007]. To suppress the merging of droplets,

the interfaces are loaded with surfactants, surface-active agents that accumulate on the

interface and lower the surface energy. The presence of surfactants has multiple effects:

First, they slow the approach of two interfaces, by suppressing drainage of the continuous

phase through Marangoni stresses (tangential stresses on the interface due to an uneven

surfactant concentration, see Stone and Leal [1990]). Then, as Bibette et al. [1999] summarize,

surfactants cause various chemical and entropic repulsive forces between interfaces. The

precise contribution of different stabilizing effects of surfactants depends strongly on the

fluids and type of surfactant: While widely used in applications, key questions on surfactant

action remain open. The distribution, adsorption and effect of surfactants on interfaces is

subject of ongoing research in surface rheology and physicochemical hydrodynamics (see for

example van Hunsel et al. [1986]; Stone and Leal [1990]; Song et al. [2006]; Riechers et al. [2016]).

The books by Probstein [2003], Shikhmurzaev [2007] and Rosen and Kunjappu [2012] give

insight into surface chemistry and modeling approaches. To coerce coalescence in surfactant-
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stabilized emulsions, one uses appropriate flow configurations (see for example Mazutis and

Griffiths [2012]) or electrocoalescence (for example in Ahn et al. [2006a]).

The breakup of droplets has been studied in various flow situations, such as shear flows

[Stone, 1994], extensional flows [Bentley and Leal, 1986] or junctions [Ménétrier-Deremble

and Tabeling, 2006; Christopher et al., 2009; Leshansky and Pismen, 2009]. Breakup follows

from a competition between viscous stresses and surface tension, quantified by the capillary

number C a. For breakup in droplet reinjection, first experimental studies were performed by

Rosenfeld et al. [2014] and Gai et al. [2016a], describing breakup as a stochastic phenomenon

depending on the capillary number, droplet size and ratio of viscosity between droplet and

continuous phase. We recently made this description more precise, by noting that stochastic

breakup behavior is limited to only a certain range of droplet configurations before entering a

constriction, and deterministic for others [Khor et al., 2017].

Sorting

In specific applications such as protein screening or directed evolution (see for example Agresti

et al. [2010]; Pekin et al. [2011]; Mazutis et al. [2013]; Gielen et al. [2016]), the continuous stream

of droplets needs to be split up, and droplets need to be separated into different channels

based on their contents. Xi et al. [2017] review the various methods that exert a force on

individual droplets and move them across the stream lines of the continuous phase towards

a desired microchannel entrance. One very common method for droplet sorting is the use

of dielectrophoresis [Pohl, 1958], whereby a difference in electric polarizability between the

droplet and continuous phase moves droplets towards regions of high electric field strength.

Since the first dielectrophoretic sorting device by Ahn et al. [2006b], the approach has found

widespread use and many designs have followed (for example by Wang et al. [2007]; Baret et al.

[2009b]; Agresti et al. [2010]; Gielen et al. [2016]; Frenzel and Merten [2017], see also Figure 1.2).

For picoliter-sized droplets, Sciambi and Abate [2015] reached a sorting frequency of 30 kHz,

while Leman et al. [2015] were able to build a functioning sorting device for droplets at the

a) b) c)

Figure 1.2: Devices for droplet sorting, with the microchannel shown in blue and active and
ground electrodes in red and black. a) Seminal design by Ahn et al. [2006b], with electrodes in
a separate layer below the microchannel. b) Design by Agresti et al. [2010], with electrodes and
microchannel on the same level. c) Sorter by Sciambi and Abate [2015] for sorting at 30 kHz
droplet throughput. Here, to avoid shear-induced droplet breakup, the barrier downstream
from the sorter does not span the whole height of the channel.
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femtoliter-scale. Electrodes in sorting devices are manufactured by the same methods as the

microchannels, but filled with a conducting liquid. To avoid displacement and accumulation

of ions in the working fluids, voltage of high-frequency (tens of kHz) alternating polarity is

applied to the electrodes. The change in polarity does not alter the direction of force on the

droplet, as the force depends on gradients in the square of the field strength.

1.2 Numerical Simulation Methods for Multiphase Flow

While the size and setup of microfluidic systems renders them accessible to optical imaging,

experimental methods alone do not always provide the insight to understand droplet dynamics

in sufficient detail, as quantities like the internal pressure fields or stress distributions are

hard to measure. This gap in understanding is filled by numerical methods, which take

mathematical models of the fundamental physical processes, and predict a system behavior

which can then be compared to experimental observations. In this way, numerical methods

help to design and optimize microfluidic systems, and to understand the underlying physics.

Cristini and Tan [2004] give an overview of the most common numerical simulation methods

for droplet flow. A versatile numerical approach to modeling fluid flow is the finite element

method (FEM, described for example by Gresho and Sani [1998]), which solves the flow

equations in a weak form on a volumetric mesh that spans the whole fluid domain. The

interface is tracked by faces of the finite-element mesh, so that the mesh must be changed

at each time step [Tryggvason et al., 2001]. Interface capturing methods, such as the volume

of fluid method [Leshansky and Pismen, 2009; Hoang et al., 2013; Chen and Yang, 2014] or

the level-set method [Bertakis et al., 2010], do not require such a periodic re-meshing: They

define an additional indicator field in the volume, which determines the location and shape of

the interface. Finite-element and interface capturing methods are flexible, as they pose few

constraints on the geometry of the simulation domain or the type of flow equation to solve.

Topological transitions like droplet coalescence or breakup can be treated in a straightforward

way. However, accurately describing the interface as part of a volume mesh requires a high

mesh resolution, which carries a high computational cost that is not always justified by the

typically laminar and large-scale fluid motion in the bulk.

Spectral methods [Peyret, 2000], which are widely used in other areas of computational fluid

dynamics, are less suitable for simulations with free interfaces. They lack flexibility in the

shape and topology of the simulation domain and adapt poorly to jump conditions on the

interface.

Boundary element methods are an example of mesh-free methods. They allow to describe

linear Stokes flow without volume forces by mapping the flow equations onto surfaces and

interfaces of a geometry [Pozrikidis, 1992; Sutradhar et al., 2008; Cristini and Tan, 2004]. Since

the mesh only represents the boundaries of the flow domain, where surface forces act, the

dimensionality of the problem is effectively decreased by one, from 3D bulk description to

2D interfaces. Integral equations relate the flow on one point on the boundary to flows and
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stresses on all boundaries. Evaluating these integral equations at a finite number of points

(collocation method, see for example Pozrikidis [1992]) or in a weak form (Galerkin method,

for example in Sutradhar et al. [2008]) leads to a linear system of equations for the flow and

stresses on the boundary. Since only the boundaries are discretized, the number of degrees

of freedom is typically much smaller than for finite element methods, while the boundary is

described more accurately. However, the reduction of dimensionality comes at a cost: The

nonlocal coupling of the boundary integrals leads to a densely populated linear system. This

contrasts finite element method and related interface capturing methods, where the coupling

is local, yielding a sparse problem that scales more easily to a high number of degrees of

freedom for highly resolved or complex geometries.

Numerous boundary element simulations have been designed for flow that is effectively two-

dimensional, either in systems with rotational symmetry (for example Sherwood [1988]; Stone

and Leal [1989b]) or flows in a shallow fluid layer (for example Dai and Shelley [1993]; Nagel

and Gallaire [2015]). For full three-dimensional flow, certain simple flow geometries allow

the use of special Green’s functions that simplify calculations [Griggs et al., 2007; Pozrikidis,

1992]. In other cases, those simplifications are not possible. Free-surface simulations in three

dimensions (as presented by Zinchenko et al. [1997]; Zinchenko and Davis [2006]; Wang and

Dimitrakopoulos [2012]; Heltai et al. [2014] and many others) require a high computational

effort, with particular challenges arising from determining the curvature of the free interfaces,

and performing surface integrals over the boundary when the integrand is a Green’s function

that may diverge. With boundary element methods, topological transitions such as droplet

breakup need to be explicitly modeled by the simulation scheme, for example by local re-

meshing as described by Cristini et al. [2001].

In our work, we use the collocation boundary element method. In the geometries we want to

describe, droplets are separated from each other and the microchannel walls by thin liquid

films, which the boundary-based description represents well (whereas a volume mesh would

require a high spatial resolution). The method allows us to accurately model surface tension

and the influence of electric fields, which themselves can be calculated by boundary-element

integration. By evaluating the boundary integrals at collocation points, we calculate the

velocity right at the mesh vertices, where we deform the droplet mesh. A coupling between an

electric boundary-element solver and a solver for the flow field has previously been presented

by House [2012] for single-phase flow with solid conducting particles. We however simulate

multi-phase flow, and determine the electric field in both fluid phases.
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1.3 Structure of this Work

After this introduction, we continue with the mathematical description of droplet flow and

electrostatics (Chapter 2), which will lay the basis for our work. This thesis makes two core

contributions, which are the development of a coupled electric/flow solver for 3D flow in

confined geometries, and its application to two relevant applications in droplet flow. The

results are presented in two parts:

In Part I, we describe the implementation and validation of a boundary element method

for 3D Stokes flow. In Chapter 3, we derive the discretized boundary integral equations and

explain their implementation. The validation of correctness and accuracy of the numerical

code is discussed in Chapter 4.

In Part II, we apply the numerical scheme to two research problems in droplet flow. In Chapter

5, we analyze the mechanism for the breakup of droplets in constricting microchannels, which

is relevant in droplet reinjection. Dielectrophoretic droplet sorting and microchannel design

principles for high sorting throughput are discussed in Chapter 6.

The thesis concludes with a summary and outlook in Chapter 7.
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Chapter 2. Theory / Mathematical Model

Having introduced the basic concept of droplet flow in microfluidic applications, we now put

our focus on the mathematical description that will underlie our analysis. We use continuum

models for the fluids that comprise and surround the droplets, as well as the electric fields

that are employed in droplet sorting. In this chapter, we define these models and derive a

formulation that will later prove useful for the numerical implementation.

In Section 2.1, we introduce the analytic description of Stokes flow. From the Stokes equations

in the volume, we derive the boundary integral equations (BIEs) for Stokes flow. Section

2.2 defines the equations for electrostatics and the resulting BIE. In Section 2.3, we present

the surface stress models for the free droplet interface, which couple the Stokes solution to

external forces (like the Maxwell stress from the electric fields). Section 2.4 presents integral

equations for computing geometrical quantities from surface integrals. Finally, in Section

2.5, we present some analytical solutions of the Stokes equation that are used as boundary

conditions for flow in a microchannel, and discuss their accuracy.

2.1 Boundary Integral Formulation for Stokes Flow

The fluids in microfluidic applications are typically incompressible and Newtonian. Due to the

small length scale and low flow velocities, the Reynolds number is small, and the inertial terms

of the Navier-Stokes equation are negligible. Therefore, flow is described by the incompressible

Stokes equations (see e.g. Pozrikidis [1992], p. 2),

∇·u = 0, (2.1a)

b +∇· σ̂ = 0, (2.1b)

for the velocity field u and a pressure field p contained in the stress tensor

σi j := −pδi j +2μεi j . (2.2)

The stress tensor is the constitutive relation between the stress in the fluid and the rate of

strain

εi j := 1

2

(
∂ui

∂x j
+ ∂u j

∂xi

)
(2.3)

for a Newtonian fluid. Here, μ is the dynamic viscosity of the fluid and b some body force

(per unit volume) on the fluid. The Stokes equations are linear, and the absence of a local

time derivative indicates that instantly adapts to its boundary conditions in space. While the

first Stokes equation (2.1a) simply describes the incompressibility of the fluid (and is often

omitted), the second equation (2.1b) describes a local stress balance between the internal

forces of the fluid and the external body force. If we assume that no external body forces are

present but gravity with b := −ρg ez , we can define a modified pressure p ′ := p +ρg z and a
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modified stress tensor σ′
i j :=−p ′δi j +2μεi j . The stress balance (2.1b) then reads

∇· σ̂′ = 0. (2.4)

In the absence of other body forces, we will later replace equation (2.1b) by the more elegant

equation (2.4), keeping in mind that the equations are then based on the modified pressure p ′.

2.1.1 Fundamental Solution of Stokes Flow

The Stokes flow for a singular point force at a point x0 acting in an arbitrary direction g , i.e.

the solution to eq. (2.1) with

b(x) = δ(x −x0)g (2.5)

in an unbounded fluid volume ( lim
|x |→∞

(|u|, p) → (0,0)) is [Pozrikidis, 1992, p. 22ff]

u(x) = 1

8πμ
Ĝ(x −x0) ·g , (2.6a)

p(x) = 1

8π
p(x −x0) ·g . (2.6b)

We call the flow field u (and associated pressure p) the fundamental solution of the 3D Stokes

flow. The tensor

Gi j (r ) := δi j

|r | +
ri r j

|r |3 , (2.7)

a) b)

Figure 2.1: Fundamental solution of Stokes flow around a point force. The blue arrow at x0

marks the direction g of the point force. a) Velocity field of the fundamental solution, eq. (2.6a).
The background color shows the speed |u|. b) Pressure field of the fundamental solution, eq.
(2.6b).
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which describes the linear relationship between the arbitrary point force vector g and the

solution u, is called the Stokeslet or free-space Green’s function for the velocity. Accordingly,

the relation between force and pressure is described by the pressurelet

p(r ) := 2r

|r |3 . (2.8)

The velocity and pressure fields of the fundamental solution are shown in Figure 2.1. Both

have a singularity for x → x0, which goes with 1
|r | for the velocity and 1

|r |2 for the pressure. With

the fundamental solution u(x) as in eq. (2.6a), the stress tensor has the form

σ̂(x) = 1

8π
T̂ (x −x0) ·g (2.9)

with a rank-3 tensor

Ti j k (r ) := −6
ri r j rk

|r |5 . (2.10)

This tensor, called the stresslet, describes the linear relationship between a point force of

strength g at a point x0, and the stress tensor σ̂ at point x .

Any body force distribution b(x0) can be represented by a superposition of point forces of

appropriate strength and direction. Since the Stokes equations are linear, the solution for

u and p can be constructed by superimposing the fundamental solutions via a convolution

integral over x0. In particular, when the interior of some domain Ω⊂R3 is free of volume forces,

the velocity field u in this domain is uniquely defined by the forces on the domain boundaries

∂Ω, such that the 3D convolution reduces to a 2D surface integral. This simplification is

encoded in the Boundary Integral Equation.

2.1.2 Boundary Integral Equation for Stokes Flow

Figure 2.2: Stokes flow in the
domain Ω. For a point force
g at x0 ∈ Ω, a spherical do-
main ΩR is excluded from
the volume integral.

Let u and u′ be two different regular flow fields satisfying the

Stokes equations (2.1) on a domain Ω, with σ̂ and σ̂′ their re-

spective stress tensors. Then,

∇· (u′ · σ̂−u · σ̂′) = 0. (2.11)

This relation is called the Lorentz identity or Lorentz reciprocal

relation (after Lorentz [1907]).1 Choosing u′ to be the funda-

mental solution (2.6a) with an arbitrary point force g at x0, we

get

∇·
[

1

8πμ
Ĝ(x −x0) · σ̂(x)− 1

8π
u(x) · T̂ (x −x0)

]
= 0 (2.12)

1The Lorentz identity also holds for the equations (2.4) with the modified pressure p ′ that accounts for gravity.
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on the domain Ω\ΩR , with ΩR a sphere of radius R around x0 to avoid the singularity of u′ at

x0. Note that eq. (2.12) does not depend on g . We integrate (2.12) over the domain Ω\ΩR and

use the divergence theorem

∫
Ω
∇·F d3x = −

∫
∂Ω

F ·n d2x , (2.13)

(which holds for any continuously differentiable vector field F and smooth surface ∂Ω of a

domain Ω) to get the relation

∫
∂(Ω\ΩR )

[
1

8πμ
Ĝ(x −x0) · σ̂(x)− 1

8π
u(x) · T̂ (x −x0)

]
n(x) d2x = 0,

where n is the surface normal pointing into the volume (as in Figure 2.2). For R → 0 we find

(see also Pozrikidis [1992], p. 20f)

lim
R→0

∫
∂ΩR

1

8πμ
Ĝ(x −x0) · σ̂(x)n(x) d2x = 0

and

lim
R→0

∫
∂ΩR

1

8π
u(x) · T̂ (x −x0)n(x) d2x =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
−u(x0) x0 ∈Ω\∂Ω

−u(x0)
2 x0 ∈ ∂Ω

0 x0 ∉Ω.

(2.14)

Thus, for any point x0 inside the domain Ω, we have

u(x0) = − 1

8πμ

∫
S

Ĝ(x −x0) · f (x) d2x + 1

8π

∫
S

u(x) · T̂ (x −x0) ·n d2x (2.15)

with S := ∂Ω and the surface stress f := σ̂ ·n. This equation, which relates the flow field in

the fluid volume to the flow velocity and stresses on the surface S, is the Boundary Integral

Equation (BIE) for 3D Stokes flow. Note that by using the Lorentz reciprocal relation, the

roles of the source of the flow and the location of observation have been exchanged; now the

sources sit on the boundary described by x , and velocity is observed at x0 in the force-free

interior of the volume.

If x0 is on the boundary S, we get

1

2
u(x0) = − 1

8πμ

∫
S

Ĝ(x −x0) · f (x) d2x + 1

8π

∫PV

S
u(x) · T̂ (x −x0) ·n d2x . (2.16)

With x0 on the boundary, the Green’s functions diverge for x → x0. However, the integrals exist

and are finite if the integral over u is evaluated in a principal-value sense (i.e. excluding a

circle of infinitesimal radius centered at the singularity). The factor 1
2 is the fraction of solid

angle around x0 that is inside Ω, for non-smooth boundaries (like corners or edges) the factor

changes accordingly.
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The BIE (2.16) for x0 on S provides a complete description of the flow in the volume Ω and

is the basis for the Boundary Element Method (BEM). For any combination f and u on the

boundary satisfying (2.16), equation (2.15) is used to determine the flow field anywhere in the

domain.

Outside the domain Ω, evaluating the BIE gives

0 = − 1

8πμ

∫
S

Ĝ(x −x0) · f (x) d2x + 1

8π

∫
S

u(x) · T̂ (x −x0) ·n d2x . (2.17)

We will use this property of the Boundary Integral Equation for deriving an expression for the

flow on both sides of an interface between two fluids.

2.1.3 Boundary Conditions

We typically consider four types of boundary conditions on the surface S:

• Dirichlet conditions, where u is specified on S, but the stress f is unknown and de-

termined by solving the BIE. Typical situations are fixed side walls of the geometry,

where u ≡ 0 describes a no-slip boundary, or the inlet of some microchannel, where the

velocity profile u0(x) is prescribed.

• Neumann conditions, where the stress f is prescribed on S, and u unknown.

• Outlet conditions, where the wall-normal stress f ·n and the tangential velocity u ·ti (for

two linearly independent tangent vectors ti ) are each set to zero. This sets the pressure

on the outlet plane to zero, and allows for a flow normal to the outlet plane.

• Interface conditions, where velocity and stress on an interface are coupled to the solu-

tion in another domain. We discuss this situation in Section 2.1.4.

Different boundary conditions can be prescribed on different parts of the boundary. If we

were to set Dirichlet boundary conditions on all boundaries, f would be determined only up

to an arbitrary scalar constant pressure p0 in wall-normal direction. We avoid this situation by

always prescribing the pressure on at least part of the boundary.

2.1.4 Boundary Integral Equations with a Fluid Interface

The Boundary Integral Equation (2.16) provides an elegant description of Stokes flow in

systems where either the flow velocity or stress is known on the domain boundary. However,

when a fluid is bounded by a freely deformable interface with another fluid, neither the total

stress nor the interface velocity is generally known on that interface: The two flows are coupled

by the interface and need to be considered together. In deriving the description for a coupled

flow with a free interface, we follow the description by Pozrikidis [1992].
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2.1. Boundary Integral Formulation for Stokes Flow

Figure 2.3: Stokes flow in the do-
main Ω2, which is enclosed by
another flow domain Ω1.

Consider two Newtonian fluids of viscosity μ1 and μ2 in

domains Ω1 and Ω2 with a common interface S. We as-

sume no-slip boundary conditions, so the flow velocity is

continuous across the interface,

u(1)(x) = u(2)(x) (2.18)

for x ∈ S. The stresses f (i ) := σ̂(i ) ·n, where n is the normal

vector pointing into Ω1, are coupled by the relation

Δ f (x) := f (2)(x)− f (1)(x), (2.19)

where Δ f (x) is the stress of the interface on the fluid. This net stress is due to local effects

like surface tension, which are known. We discuss relevant models for the interface stress in

Section 2.3.

Now let fluid (2) be a droplet fully enclosed by fluid (1) (i.e. ∂Ω2 = S), and fluid (1) a continuous

phase fully enclosed by some fixed external boundary SB (∂Ω1 = S ∪SB , see Figure 2.3). For

x0 ∈Ω1, the flow is described by the BIEs (2.15) and (2.17),

u(1)(x0) =− 1

8πμ1

∫
S∪SB

Ĝ(x −x0) · f (1)(x) d2x + 1

8π

PV∫
S∪SB

u(1)(x) · T̂ (x −x0) ·n d2x , (2.20a)

0 = 1

8πμ2

∫
S

Ĝ(x −x0) · f (2)(x) d2x − 1

8π

PV∫
S

u(2)(x) · T̂ (x −x0) ·n d2x , (2.20b)

where the signs in the second equation are flipped to respect the definition of the normal

vector on S. With λ := μ2

μ1
the viscosity ratio, adding (2.20a)+λ·(2.20b) gives

u(x0) = − 1

8πμ1

∫
SB

Ĝ(x −x0) · f (x) d2x + 1

8π

∫
SB

u(x) · T̂ (x −x0) ·n d2x

+ 1

8πμ1

∫
S

Ĝ(x −x0) ·Δ f (x) d2x + 1−λ

8π

∫
S

u(x) · T̂ (x −x0) ·n d2x (2.21)

for the flow field in the continuous phase, x0 ∈Ω1. Here the markers (1) and (2) have been

dropped, u refers to u(i ) in Ωi , and the boundary stress f on SB is f (1). In the same fashion as

before, the bulk flow inside the droplet, x0 ∈Ω2, is determined by the relation

λu(x0) = − 1

8πμ1

∫
SB

Ĝ(x −x0) · f (x) d2x + 1

8π

∫
SB

u(x) · T̂ (x −x0) ·n d2x

+ 1

8πμ1

∫
S

Ĝ(x −x0) ·Δ f (x) d2x + 1−λ

8π

∫
S

u(x) · T̂ (x −x0) ·n d2x . (2.22)
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Similar relations hold for x0 on the boundaries. For x0 ∈ S, we have

1+λ

2
u(x0) = − 1

8πμ1

∫
SB

Ĝ(x −x0) · f (x) d2x + 1

8π

∫
SB

u(x) · T̂ (x −x0) ·n d2x

+ 1

8πμ1

∫
S

Ĝ(x −x0) ·Δ f (x) d2x + 1−λ

8π

∫
S

u(x) · T̂ (x −x0) ·n d2x . (2.23)

For x0 ∈ SB , we have

1

2
u(x0) = − 1

8πμ1

∫
SB

Ĝ(x −x0) · f (x) d2x + 1

8π

∫
SB

u(x) · T̂ (x −x0) ·n d2x

+ 1

8πμ1

∫
S

Ĝ(x −x0) ·Δ f (x) d2x + 1−λ

8π

∫
S

u(x) · T̂ (x −x0) ·n d2x . (2.24)

Equations (2.21)-(2.24) are the Boundary Integral Equations for Droplet Flow. In the numerical

Boundary Element Method, we use the relations for x0 on the boundary, eq. (2.23) and (2.24),

to find the combination of velocities on S ∪SB and stresses on SB that satisfies the Stokes

equations. From there, we use the bulk equations (2.21) and (2.22) to determine the velocity

at any point inside the domain.

Expressing the flow with just one BIE — instead of two BIEs for the two fluids — means that

the values for the stress f (i ) on S remain unknown (just their difference Δ f is computed). In

the applications considered here, the values have no relevance for the dynamics. If need be,

they could be computed by solving another BIE on domain Ω1.

Boundary Integral Equation for the Bulk Pressure

Besides the velocity field in the domains Ω1 and Ω2, we also want to determine the bulk

pressure p(x0). With the pressurelet p(r ) = 2r
|r |5 (eq. 2.8) and associated stress tensor P̂ := 2∇p

with

Pi j (r ) = 4

(
− δi j

|r |3 +3
ri r j

|r |5
)

, (2.25)

the bulk pressure is described by the BIE [Pozrikidis, 2011, p. 463f]

p(x0) = − 1

8π

∫
SB

p(x −x0) · f (x) d2x + μ1

8π

∫
SB

u(x) · P̂ (x −x0) ·n d2x

+ 1

8π

∫
S

p(x −x0) ·Δ f (x) d2x + (1−λ)μ1

8π

∫
S

u(x) · P̂ (x −x0) ·n d2x (2.26)

both for x0 ∈Ω1 and for x0 ∈Ω2.
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2.2. Boundary Integral Formulation for Electrostatics

2.2 Boundary Integral Formulation for Electrostatics

Figure 2.4: To simulate
droplet sorting, the elec-
tric field around the droplet
must be known.

To calculate the dielectric surface stress in droplet sorting, the

electric field needs to be known on the droplet surface. The elec-

tric field propagates on time scales much faster than the fluid

motion,so that electrostatics provides an accurate description

of the electric effects.

Consider a homogeneous, non-conducting, linear and isotropic

dielectric medium of electric susceptibility χ in an electric field

E . Such a dielectric shows a polarization of [Landau et al., 1984,

p. 34ff]

P = ε0χE , (2.27)

where ε0 = 8.854 ·10−12F/m is the vacuum permittivity. Electric field and polarization add up

to the displacement field

D := ε0E +P = ε0εr E , (2.28)

with the relative permittivity εr := 1+χ. In the dielectric medium, the electric field follows

Gauss’s law

∇·E = ρ

ε0εr
, (2.29)

with ρ the free charge density. In electrostatics, the electric field is irrotational (∇×E = 0) and

can be expressed by the gradient of the electric potential ϕ,

E = −∇ϕ. (2.30)

In the absence of free charges (ρ ≡ 0), the potential ϕ satisfies the Laplace equation

Δϕ = 0. (2.31)

As the fluid volume is charge free, and charges are only present on the droplet interface and

electrodes, the electric field can be described by a boundary integral equation.

2.2.1 Boundary Integral Equation for Electrostatics

The fundamental solution of electrostatics, i.e. the electric field around a point charge ρ0 at

point x0, ρ(x) = δ(x −x0)ρ0, is

ϕ(x) = G(x −x0)
ρ0

ε0εr
, (2.32)
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with the Green’s function

G(r ) := 1

4π|r | . (2.33)

Much like in the case of Stokes flow (Section 2.1.2), any two solutions ϕ, ψ of Laplace’s equation

(2.31) on domain Ω satisfy

∇· (ϕ∇ψ−ψ∇ϕ) = 0. (2.34)

Like in Section 2.1.2, we choose ψ as the fundamental solution (2.32), integrate over domain

Ω\ΩR (with ΩR a sphere of radius R around x0), and use the divergence theorem to write the

volume integral as a surface integral,

0 =
∫
∂(Ω\ΩR )

[
ϕ(x)Tn(x −x0)+En(x)G(x −x0)

]
d2x , (2.35)

with

Tn(r ) := (∇G(r )) ·n = − r ·n

4π|r |3 , (2.36a)

En(x) := −(∇ϕ(x)) ·n, (2.36b)

and n the normal vector at x pointing into the volume. Just like the Stokes flow is described by

the surface velocity u and surface stress f , the electric field is determined by the potential ϕ

on the surfaces, and the wall-normal field En . For x0 ∈Ω\∂Ω, the limit process R → 0 yields

the BIE

ϕ(x0) =
∫

S

[
ϕ(x)Tn(x −x0)+En(x)G(x −x0)

]
d2x , (2.37)

with S := ∂Ω. For x0 ∉Ω, we get

0 =
∫

S

[
ϕ(x)Tn(x −x0)+En(x)G(x −x0)

]
d2x . (2.38)

For x0 on the boundary S, and S smooth, we get

1

2
ϕ(x0) =

∫PV

S

[
ϕ(x)Tn(x −x0)+En(x)G(x −x0)

]
d2x . (2.39)

We use the BIE for x0 ∈ S (eq. 2.39) to find appropriate values for ϕ and En on the boundary

that satisfy the Laplace equation (2.31). From there, we determine the potential in the interior

of the domain via equation (2.37).
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Electric Field in the Volume

From the BIE for the potential ϕ(x0) for x0 ∈ Ω (eq. 2.37), we derive an expression for the

electric field E (x0) by using the relation E = −∇ϕ (eq. 2.30). Pulling the gradient into the

integral, we get

E (x0) = −∇ϕ(x0) =
∫

S

[
ϕ(x)Πn(x −x0)+En(x)T (x −x0)

]
d2x , (2.40)

with functions

T (r ) := ∇G(r ) = − r

4π|r |3 , (2.41a)

Πn(r ) := ∇Tn(r ) = 1

4π|r |3
(

3(r ·n)r

|r |2 −n
)

. (2.41b)

2.2.2 Boundary Integral Equations with a Dielectric Interface

Figure 2.5: Domains Ω1 and
Ω2 have different electric
permittivity. The normal
vector n on the shared inter-
face S points into Ω1.

After deriving an expression for the field in a single domain of

an ideal dielectric medium, we now derive a description for

two dielectrics of different permittivity, which share a common

interface. Consider two homogeneous, non-conducting, linear

and isotropic dielectric media of relative permittivity ε1, ε2 in

domains Ω1, Ω2 with a common interface S. To simplify, let Ω2

be fully enclosed by Ω1 (∂Ω2 = S), with normal vector n on S

pointing into Ω1 (Figure 2.5). On S, the solutions E (1) for the

field in Ω1 and E (2) in Ω2 are coupled by two relations [Landau

et al., 1984, p. 35]: Tangential to the interface, the electric fields

are equal,

E (1) · t = E (2) · t , (2.42)

with tangent vector t . In the normal direction, polarization P and field E are discontinuous,

but we get continuity in the displacement field,

D (1) ·n = D (2) ·n. (2.43)

As for Stokes flow in Section 2.1.4, we now combine the BIEs that describe the fields in Ω1 and

Ω2 to reach a description for the coupled domains. For x0 in Ω1, BIEs (2.37) and (2.38) give

ϕ(1)(x0) =
∫

S∪SE

[
ϕ(1)(x)Tn(x −x0)+E (1)

n (x)G(x −x0)
]

d2x , (2.44a)

0 = −
∫

S

[
ϕ(2)(x)Tn(x −x0)+E (2)

n (x)G(x −x0)
]

d2x , (2.44b)
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with SE := ∂Ω1 \ S some external boundary of Ω1, like an electrode at fixed potential. The sign

in the second equation is flipped to respect the definition of the normal vector on S. The

electric potential ϕ is continuous on the interface, but for the wall-normal field E (i )
n , we write

relation (2.43) as ε1E (1)
n = ε2E (2)

n . With

ε := ε2

ε1
(2.45)

the permittivity ratio between the dielectrics, and dropping the index (1), we add (2.44a) and

(2.44b), which yields

ϕ(x0) =
∫PV

SE

[
ϕ(x)Tn(x −x0)+En(x)G(x −x0)

]
d2x

+
∫

S

(
1− 1

ε

)
En(x)G(x −x0) d2x (2.46)

for x0 ∈Ω1, with En := E (1)
n . The same relation holds for x0 ∈Ω2 and x0 ∈ S. In the same way,

we reach the expression for x0 ∈ SE ,

1

2
ϕ(x0) =

∫PV

SE

[
ϕ(x)Tn(x −x0)+En(x)G(x −x0)

]
d2x

+
∫

S

(
1− 1

ε

)
En(x)G(x −x0) d2x . (2.47)

Electric Field in the Volume with a Dielectric Interface

From the electrical potential ϕ(x0) in the domains Ω1 and Ω2 (eq. 2.46), we calculate the field

E =−∇ϕ as

E (x0) =
∫

SE

[
ϕ(x)Πn(x −x0)+En(x)T (x −x0)

]
d2x

+
∫

S

(
1− 1

ε

)
En(x)T (x −x0) d2x , (2.48)

with functions T (r ), Πn(r ) as defined in eq. (2.41). On the interface S, the field E is not

defined, as there is a jump in the normal field component E (i )
n on either side due to the jump

in polarization.

Boundary Integral Equation for the Electric Field on S

On the interface S, neither the potential ϕ(x0) nor the wall-normal field En(x) are known. A

single BIE, like (2.46), is insufficient to determine both. We want to eliminate the dependence

on ϕ(x0) and describe the field at the interface purely in terms of En .

To eliminate ϕ, we use the BIE (2.48) for the field E in the domains Ω1 and Ω2, away from the
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interface. With n0 the normal to S at x0 pointing into Ω1, and x ′
0 ∈ (Ω1 ∪Ω2), we get

E (x ′
0) ·n0 =

∫
SE

[
ϕ(x)Πn(x −x0) ·n0 +En(x)T (x −x0) ·n0

]
d2x

+
∫

S

(
1− 1

ε

)
En(x)T (x −x0) ·n0 d2x . (2.49)

Calculating the field on S is difficult due to the jump in the normal component, E (2)
n = 1

εE (1)
n .

With En := E (1)
n (as before), the limit process x ′

0 → x0 yields

1

2

(
1+ 1

ε

)
En(x0) =

∫
SE

[
ϕ(x)Πn(x −x0) ·n0 +En(x)T (x −x0) ·n0

]
d2x

+
∫PV

S

(
1− 1

ε

)
En(x)T (x −x0) ·n0 d2x (2.50)

for x0 ∈ S and S smooth.

Having eliminated the potential from the BIE on S, we can now solve an electrostatics problem

as follows: From a given potential on SE , we use equations (2.47) and (2.50) to determine

the field En on all surfaces. From En , we can directly calculate the electric potential in the

bulk with the expression (2.46) and the field with eq. (2.48). To calculate the electric field

E (1)(x0) for x0 ∈ S, we determine the normal component En with eq. (2.50), and the tangential

component Et , which does not jump on the interface, with eq. (2.48).

2.3 Surface Stress Models for Stokes Flow

The solutions for Stokes flow on either side of a free interface are coupled by a surface stress

Δ f , which compensates the difference in the hydrodynamic stress that the two fluids exert on

the interface. We discussed this coupling in Section 2.1.4 and defined Δ f in equation (2.19).

Stresses on the interface are caused by different physical effects, three of which we model in

this section.

2.3.1 Young-Laplace Surface Tension Model

The surface tension γ is the energy per unit area of an interface between two liquids. If the

interface is curved, the surface tension causes a drop in pressure between the two liquids. The

pressure drop is described by the Young-Laplace equation [Probstein, 2003]

Δp = 2γκ, (2.51)

with the pressure drop Δp := p(2) −p(1), the mean curvature

κ := 1

2
(∇·n) = 1

2

(
1

Rx
+ 1

Ry

)
(2.52)
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Figure 2.6: Surface tension
causes a normal stress on the
interface, which acts to re-
duce the curvature.

of the surface with normal n, and Rx , Ry the principal radii of

curvature. The curvature is defined such that a convex droplet

has a positive curvature. For a constant surface tension γ, the

surface stress due to surface tension is [Pozrikidis, 2011, p.

234f]2

Δ fγ = −2γκn. (2.53)

Inhomogeneous Surface Tension

In general, the surface tension γ between two liquids can vary

along the interface. The most common causes are variations

in temperature or in the local density of surfactants. In the

presence of an in-plane gradient of surface tension, the sur-

face stress is [Pozrikidis, 2011, p. 235]

Δ fγ = −2γκn + (n ×∇γ)×n. (2.54)

The in-plane stresses in Δ f are called Marangoni stresses. As briefly mentioned in Section 1.1,

modeling the relation between surfactant kinetics and surface tension is a topic of ongoing

research in the field of surface rheology, and various models exist.

2.3.2 Dielectric Surface Stress

Figure 2.7: Interface between
two dielectrics with ε2 > ε1.
The surface stress is always di-
rected towards the domain of
lower permittivity.

When the two fluids have different electric permittivities, an

electric field causes a normal stress on the interface, directed

into the medium of lower permittivity. This stress is due to a

jump in the Maxwell stress tensor σ̂m with

(σm)i j := ε0εr Ei E j − 1
2ε0εr |E |2δi j (2.55)

for a material of relative permittivity εr in an electric field

E [Landau et al., 1984, p. 29]. On the interface between the

fluids with permittivity ε1 and ε2, the stress is

Δ fMaxwell = σ̂(2)
m n − σ̂(1)

m n, (2.56)

with n pointing into the medium of permittivity ε1. With the tangential fields matching

(E (1) · t = E (2) · t ) and the normal components following the relation ε1E (1)
n = ε2E (2)

n as in

2Pozrikidis [2011] defines Δ f with the opposite sign, which changes the signs in his equation 3.8.10.
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Section 2.2.2, the Maxwell stress on the interface is [Sherwood, 1988]

Δ fMaxwell = −1
2ε0ε1

[(
1− 1

ε

)
E 2

n − (1−ε)E 2
t

]
n, (2.57)

with the normal field En := E (1) ·n, tangential field Et := |E (1) −En ·n| and permittivity ratio

ε := ε2
ε1

. When the electric field is determined from the boundary integral equations in Section

2.2, the normal field component En is directly known on the interface. The tangential field,

however, needs to be computed from another boundary integration, equation (2.48) in Section

2.2.2.

2.3.3 Surface Stress due to Gravity

The effect of gravity is small in most microfluidic applications, and can typically be neglected.

In cases where the two fluids have different densities, ρ(1) �= ρ(2), the modified pressure p ′ :=
p +ρg z defined in Section 2.1 differs between the two fluids. At the interface, the pressure in

fluid (i ) is

p(i ) = p ′(i ) −ρ(i )g z. (2.58)

Gravity thus adds a pressure difference of

Δpg = (
ρ(2) −ρ(1))g z,

which by definition of the stress tensor (2.2) implies a wall-normal surface stress of

Δ fg = −Δρg z ·n, (2.59)

with Δρ := ρ(2)−ρ(1). Note here that the choice of the reference point z = 0 is arbitrary: Adding

or subtracting a constant offset would increase or decrease the modified pressure p ′(2) in the

droplet domain Ω2, but not change the velocity on the interface S or any values on the external

surfaces SB . General volume forces cannot be treated by the boundary element method, since

the pressure term cannot account for an inhomogeneous force distribution.

2.4 Further Relevant Boundary Integrals

With the setup to evaluate boundary integrals in place, we want to use boundary integration

to calculate further quantities of interest. From just the geometrical description of the free

interface S of a droplet, we will calculate its volume (Section 2.4.1), center of mass (Section

2.4.2), and determine whether a given point x0 is inside a droplet (Section 2.4.3).
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2.4.1 Volume of a Domain

Consider the domain Ω with surface S := ∂Ω and normal n pointing outwards. The volume V

of Ω is

V :=
∫
Ω

1 d3x . (2.60)

Using the divergence theorem (eq. 2.13) with function F (x) := x
3 (with ∇·F = 1), we calculate

the volume V as

V =
∫
Ω

(
∇· x

3

)
d3x = 1

3

∫
S

x ·n d2x . (2.61)

In the numerical scheme, we use this calculation to verify that the volume of the droplets in

the system does not change over the course of the forward time integration.

2.4.2 Center of Mass

At constant density, the center of mass xC M of a fluid in the domain Ω (again with surface

S := ∂Ω and outward normal n) is given by

xC M := 1

V

∫
Ω

x d3x . (2.62)

We compute the volume V as in Section 2.4.1 and use the divergence theorem with the identity

x = 1
2∇|x |2 to obtain

xC M = 1

V

∫
S

|x |2
2 n d2x . (2.63)

The center of mass is typically used to track the position of droplets.

2.4.3 Determine if a Point is Inside a Domain

In determining the velocity field in the bulk of a two-phase flow with an interface (Section

2.1.4), the boundary integral equation for the velocity u(x0) in domain Ω2 has a different

prefactor than in Ω1, since the fluid viscosity is different. To write a combined bulk velocity

field, we determine if x0 is in domain Ω2, and rescale the velocity accordingly.

To find out whether x0 is in domain Ω2, we solve the Laplace equation on Ω2 as in Section

2.2.1, with ϕ= 1 and En = 0 on the boundary S. The resulting boundary integral

ϕ(x0) = −
∫

S
Tn(x −x0) d2x (2.64)

(with Tn as in eq. (2.36a), n pointing into Ω1), which is a simplification of equations (2.37) and
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(2.38), takes the values

ϕ(x0) =
⎧⎨
⎩1 x0 ∈Ω2

0 else.
(2.65)

Thresholding this indicator value at 1
2 gives the domain of x0.

2.5 Stokes Flow in a Rectangular Duct

In the simulations, we define a boundary condition for the flow inlet (Section 2.1.3). This

reduces the numerical effort compared to simulating the flow far from regions of interest

and letting it develop until it reaches the region of interest. The closer the prescribed inlet

condition matches the asymptotic profile of the developed flow, the shorter the inlet domain

can be chosen.

Typical ducts in microfluidic devices are either cylindrical or have a rectangular cross-section.

In practice, rectangular ducts are most common, as they are easy to design and manufacture

with soft lithography methods. In this section, we discuss the velocity profile for Stokes

flow in a straight, rectangular duct. Unlike in the case of a cylindrical capillary, no simple

mathematical expression exists for the downstream velocity or pressure gradient. Therefore,

we discuss the accuracy of different approximations.

2.5.1 Series Representation for the Velocity

For the downstream velocity ux (y, z) in a straight rectangular duct of width W and height H ,

Spiga and Morino [1994] give the expression

ux (y, z) = U∗ · 16β2

π4

∑
n odd

∑
m odd

sin
(nπy

W + nπ
2

)
sin
(mπz

H + mπ
2

)
nm(β2n2 +m2)

, (2.66)

with the coordinates y ∈ [−W
2 : W

2

]
and z ∈ [−H

2 : H
2

]
, and aspect ratio β := W

H , which follows

from a finite Fourier transform. The cross-stream velocity is zero (uy ≡ uz ≡ 0), and the

pressure only depends on the downstream coordinate x (p ≡ p(x)). The velocity scale U∗ is

given in terms of the downstream pressure gradient as

U∗ := W 2

μ
·
(
−∂p

∂x

)
, (2.67)

and the mean velocity U := 〈ux〉y,z is

U = U∗ · 64β2

π6

∑
n odd

∑
m odd

1

n2m2(β2n2 +m2)
. (2.68)
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Figure 2.8: Errors of approximating the velocity in a rectangular duct. a) Relative local error εM

of truncating the series expression for flow in a rectangular duct at β= 1 to the first M terms in
both spatial directions. b) Relative mean error εBP of expressing the flow in a rectangular duct
by a biparabolic profile uBP . Since H and W can be exchanged, the errors for 1/β are identical
to those for β.

Convergence of the Series

We estimate the error we incur when truncating the sums in eq. (2.66) and (2.68) to their first

M terms. If we assume the series to be converged at M = 214, the relative local error

εM := |uM (y, z)−u∞(y, z)|
u∞(y, z)

,

here evaluated at (y, z) ≈ (0.1858,0.1858), decays with order O (M−3) (Figure 2.8a). With this

convergence, an error of εM < 10−6 is reached at M = 64, and we extrapolate that the error

decays to machine precision (εM ≤ 10−16) at M = 105.

2.5.2 Approximation by a Biparabolic Profile

A more crude approximation for the downstream flow in a rectangular duct is given by the

relation

uBP(y, z) := 9U

4
·
(

4y2

W 2 −1

)
·
(

4z2

H 2 −1

)
, (2.69)

which is a simple superposition of two parabolas. As can be seen in Figure 2.9a, this profile

matches the analytic solution for a square channel close to the side walls, but significantly

overestimates the velocity close to the center, in particular for ducts of high aspect radio (large

or small β). The relative mean error

εBP :=
√

〈[uBP −u]2〉y,z

U
(2.70)

is large even for aspect ratios near unity, and grows with β (Figure 2.8b).
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Figure 2.9: Accuracy of the paraboloid inlet boundary condition, in an empty, rectangular
channel of height H and width W . a) Velocity profile for the converged series solution, and
approximation, along a line through the channel center. b) In a square duct (β= 1), the center-
line velocity converges towards the exact solution over a distance shorter than the channel
height H . Data from the fully resolved numerical simulation.

Despite the deviation from the analytic solution, a biparabolic flow profile has properties that

make it useful as a boundary condition for the flow into a rectangular duct: By construction,

the mean flow through the system is exact up to numerical precision, and evaluating the

function uBP(y, z) is trivially easy.

With uBP as boundary condition, the downstream flow in an empty rectangular duct quickly

assumes the profile given by the converged analytic series (2.66): We find that the deviation

between biparaboloid approximation and the full analytic solution goes to zero on a length

scale ΔL ≈ H (Figure 2.9b). In ducts with varying width or flows with droplets, where the

profile (2.66) is not the analytic solution, we therefore define an inlet section of length L ≥ H ,

in which the flow can adjust from any chosen inlet condition to an appropriate downstream

profile.

2.5.3 Pressure Gradient in a Rectangular Duct

The stress that the side walls exert on a flow in a rectangular duct is compensated by a constant

pressure gradient inside the fluid. From the series expression of the downstream velocity

profile ux (y, z) (eq. 2.66), the relation between downstream pressure gradient and mean flow

velocity is

∂p

∂x
= − π6

64β2 · μU

W H
·
[ ∑

n odd

∑
m odd

1

n2m2(β2n2 +m2)

]−1

. (2.71)

If instead we assume biparabolic flow with profile uBP(y, z) (eq. 2.69), the resulting pressure
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Figure 2.10: Approximations of the downstream pressure gradient in a rectangular duct. a)
Pressure gradient (2.71) and approximations (2.72) and (2.73). b) Relative errors of the two
approximations.

gradient is

∂p

∂x

∣∣∣∣
BP

= −12
μU

W H

(
β+β−1) . (2.72)

As shown in Figure 2.10, this relation underestimates the true pressure gradient. From a

least-squares-fit in the range [0.1 : 10] to the relation (2.71), constrained to match the analytic

expression at β= 1, we get the approximation

∂p

∂z

∣∣∣∣
approx

= −[4.256086+12.099034 · (β+β−1)] μU

W H
. (2.73)

The relative error of this approximation stays below 10−2 for β ∈ [0.6,1.7], below 10−3 for

β ∈ [0.86,1.16] and below 10−4 for β ∈ [0.96,1.04].

2.5.4 Poiseuille Flow

For a cylindrical capillary, Poiseuille’s law gives a closed-form solution for the downstream

velocity and the pressure gradient, which we note here for the sake of completeness. For flow

in a cylindrical capillary of radius R, the downstream velocity is [Pozrikidis, 2011, p. 317]

ux (r ) = 2U

R2 (R2 − r 2) (2.74)

and the pressure gradient is

∂p

∂x
= −8μU

R2 . (2.75)
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2.6 Summary

The equations of Stokes flow (Section 2.1) are linear and have no local time derivative, so

that in the absence of volume forces, the entire solution for the flow field in a 3D domain

can be represented by the velocities and stresses on the boundary. The boundary integral

equations (Section 2.1.2) relate the field at some point x0 in the domain to the flow solution on

the boundary; by moving x0 onto the boundary, we get a closed set of equations that describe

the full Stokes solution. In the presence of free surfaces — such as a droplet interface — the

solutions in the two fluid domains are coupled by the stress jump Δ f at the interface (Section

2.1.4), which is given by surface tension and other physical forces (Section 2.3).

One particular interface force is due to the jump in Maxwell stress, caused by the different

electric polarization of the two fluids that form the interface (Section 2.2). Much like the equa-

tions for Stokes flow, the Laplace equation that describes the electric field can be expressed

as a boundary integral equation (Section 2.2.1), and coupled between two domains (Section

2.2.2).

As an inlet boundary condition for Stokes flow in a rectangular duct, we use an approximation

of the analytic flow profile (Section 2.5). From the analytic flow profile, we can approximate

the streamwise pressure gradient with high accuracy.
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Part IBoundary Element Method
for 3D Stokes Flow
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The Boundary Integral Equations for Stokes flow describe Newtonian incompressible flow at

small Reynolds numbers. We use the numerical Boundary Element Method to find a solution

to these equations.

In computational fluid dynamics, a vast majority of computational resources is spent on

simulating turbulent flows at high Reynolds numbers, dominated by the nonlinear material

derivative (∂t u +u · ∇u) which marks the difference between the nonlinear Navier-Stokes

equations and the linear Stokes equations. In comparison, a set of linear partial differential

equations like the Stokes equations appears almost trivial to solve. However, the presence

of a free interface renders this problem complicated: While the Stokes equations itself are

linear, the resulting flow deforms the free interfaces, which mark the domains on which the

differential equations are defined. This coupling renders the whole problem nonlinear, which

allows for the complex dynamics that make microfluidics such a versatile tool in applications.

In this part of the thesis, we develop the discretized numerical scheme that our Droplet code

implements. The code provides a full 3D simulation for the deformation and interaction of

one or more droplets in complex microchannel geometries. One particular novelty of our

approach lies in the representation of interfaces in 3D (Section 3.4), where a higher-order

interpolation scheme supports our efforts to reduce the total number of mesh vertices in

the large geometry. Another important feature is the coupling between electric fields and

the Stokes solver (Section 3.2), which we use to study droplet deformation and actuation in

electric fields.

The description of the numerical scheme is separated into two chapters: In Chapter 3, we

derive the discretized equations for the scheme and discuss the implemented algorithms. In

Chapter 4, we show the results of the validation and testing that we performed against known

numerical and analytic results.

a) b)

Boundary Element Method and its validation. a) The boundary integrals are evaluated by inte-
grating over shape functions on a quadrilateral mesh (Section 3.3). b) The method determines
the flow field on the droplet surface, here for a droplet in an extensional flow (Section 4.4).
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Chapter 3. Numerical Implementation

In this chapter, we develop the numerical simulation scheme for 3D simulation of droplet

dynamics. In Sections 3.1 and 3.2, we derive the discretized equations for Stokes flow and

electrostatics. The discretized equations form a linear system, which we solve iteratively.

In Section 3.3, we discuss the standard representation of surfaces in our geometry, and the

correspondence between mesh vertices and degrees of freedom of the numerical scheme.

Section 3.4 presents a special representation of smooth surfaces, with better approximation

properties to free droplet interfaces than standard approaches. The quadrature schemes that

we use to solve the surface integrals are discussed in Section 3.5. Section 3.6 discusses the

approach to forward time integration. Details of the implementation are given in Section 3.7.

Physical Units and Nondimensionalization

While the solution of a physical problem is independent of the physical units in which it is ex-

pressed, the accuracy of a numerical implementation in single or double precision arithmetic

increases if it operates on numbers near unity. We choose characteristic physical dimensions

based on the typical flow situation of a droplet moving in a microchannel.

• Lengths and distances are measured in units of H , the height of the microchannel.

Typical microchannel heights are on the order of H ∼ (50−100) μm.

• Velocities are measured in units of U , the mean flow velocity across the channel. In

experiments, flow rates are easy to change, and vary in a range of U ∼ (10−3 −100) m
s .

• Viscosity is measured in units of the viscosity μ of the continuous phase. A typical value

for silicon oil is μ≈ 1.24 ·10−3 kg
m s .

• Electric permittivity is measured in units of the permittivity ε0ε1 of the outer phase.

The vacuum permittivity is ε0 = 8.854 ·10−12 C2s2

kg m3 , and the relative permittivity ε1 for a

non-polar oil is typically around unity.

From these physical base dimensions, we deduce other physical quantities:

• Time T is given in units T∗ := L
U , with a characteristic time scale T∗ ∼ (10−6 −10−3) s.

• Density ρ has the units ρ∗ := μ
U L .

• Electric Potential ϕ is given in units ϕ∗ :=
√

μU L
ε0ε1

.

• Consequently, the Electric Field E is given in units E∗ :=
√

μU
ε0ε1L .

All other physical quantities can then be expressed by dimensionless numbers. We discuss

dynamics in terms of the following dimensionless quantities:
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• The viscosity ratio λ := μd

μ between the droplet viscosity and the viscosity of the contin-

uous phase.

• The permittivity ratio ε := ε2
ε1

between the relative permittivity of the droplet and that

of the material surrounding it.

• The capillary number C a := μU
γ , describing the relative strength of the viscous stresses

compared to the surface tension γ of the droplet interface.

• The Reynolds number Re := U Lρ
μ = ρ

ρ∗
, describing the relative importance of inertial

effects. For the Stokes formulation to hold, we require the Reynolds number to be small.

• The Archimedes number Ar := ρg L3·Δρ
μ2 , with Δρ := ρd −ρ, and ρd and ρ the densities

of the droplet and continuous phase, respectively, describing the relative strength of

buoyancy forces compared to viscous forces. Unless mentioned otherwise, we assume

the Archimedes number to be small and neglect the effect of gravity.

• The electrical Bond number BoE := ε0ε1E 2R
γ , with R the droplet radius, describing the

strength of an electric field relative to the surface tension of a droplet.

3.1 Boundary-Element Simulation of Stokes Flow

To find a solution for the Boundary Integral Equations for Stokes flow (eq. 2.23 and 2.24), we

need to express the equations as a linear system, with the solution expressed through a finite

number of scalar coefficients. The representation of the solution is reminiscent of that in the

Finite-Element Method (FEM) (as described for example by Gresho and Sani [1998]), just on

an embedded manifold: On some smooth manifold M (where M would be some boundary S

or SB of the flow), we define N basis functions ψn(x) with the properties

0 ≤ψn(x) ≤ 1 ∀x ∈M , (3.1a)

N∑
n=1

ψn(x) = 1 ∀x ∈M , (3.1b)

with ψn having a compact support on M . The solution g (x) on M , with gi (x) := ui (x) for

locations x where the velocity component ui is unknown, and gi (x) := fi (x) where the stress

component fi is unknown, is then approximated by the expression

gi (x) ≈
N∑

n=1
g n

i ψ
n(x). (3.2)

In three dimensions, the solution g (x) is represented by the 3N scalar coefficients g n
i , which

we call degrees of freedom. The lower index refers to the spatial direction (i ∈ 1..3), the upper

index to the basis function (n ∈ 1..N ). To account for the various boundary conditions on

the outer boundary SB (see Section 2.1.3), we denote with SB ,i the part of SB where velocity
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component ui is unknown, and with S̃B ,i the part where stress component fi is unknown. On

the droplet interface S, the unknown field is always u.

3.1.1 Discretizing the Boundary Integral Equations

For x0 ∈ (S ∪SB ), we express the BIEs (2.23) and (2.24) of Stokes flow as the combined BIE

α(x0) ·u(x0) = − 1

μ

∫
SB

Ĝ(x −x0) · f (x) d2x +
∫

SB

u(x) · T̂ (x −x0) ·n d2x

+ 1

μ

∫
S

Ĝ(x −x0) ·Δ f (x) d2x + (1−λ)
∫
S

u(x) · T̂ (x −x0) ·n d2x , (3.3)

with factor

α(x0) :=
⎧⎨
⎩4π x0 ∈ SB

4π(1+λ) x0 ∈ S
(3.4)

and viscosity μ≡μ1 (which is unity in the implementation due to our choice of units).

We implement the collocation method [Pozrikidis, 1992, p. 160], i.e. require the BIE (3.3)

to hold at a finite number of collocation points xm (m ∈ 1..N ). In our implementation, the

collocation points are associated to the basis functions ψm and coincide with the vertices of

our mesh. To aid our notation, we define the following integrals:

Am
i := ∑

j

∫
SB , j

Gi j (x −xm) f j (x) d2x (3.5a)

B m
i := ∑

j ,k

∫
S̃B , j

u j (x)Ti j k (x −xm)nk (x) d2x (3.5b)

C m
i := ∑

j

∫
S

Gi j (x −xm)Δ f j (x) d2x (3.5c)

Dmn
i j :=

∫
S̃B , j

Gi j (x −xm)ψn(x) d2x (3.5d)

E mn
i j := ∑

k

∫
SB , j

ψn(x)Ti j k (x −xm)nk (x) d2x (3.5e)

F mn
i j := ∑

k

∫
S

ψn(x)Ti j k (x −xm)nk (x) d2x . (3.5f)

The evaluation of the boundary integrals is discussed in Section 3.5. With f n
j the unknown
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stress coefficients on S̃B ,i as per eq. (3.2), the first integral in eq. (3.3) is approximated as

∑
j

∫
SB

Gi j (x −xm) f j (x) d2x ≈ Am
i +∑

j

∑
n

Dmn
i j · f n

j , (3.6)

for component i , where the basis function ψn has remained inside the integral, but the

coefficient f n
j was pulled out of the integral.1 The sum over n only sums up the terms where the

stress component f j is unknown. The other integrals of the BIE are approximated accordingly.

With un
j the unknown velocity coefficients on SB ,i as per eq. (3.2), identifying um

j = u j (xm),

and defining αm :=α(xm), the full BIE (3.3) is then approximated by the relation

αmum
i = − 1

μ

(
Am

i +∑
j

∑
n

Dmn
i j · f n

i

)
+
(

B m
i +∑

j

∑
n

E mn
i j ·un

i

)

+ 1

μ
C m

i + (1−λ)

(∑
j

∑
n

F mn
i j ·un

i

)
. (3.7)

With i ∈ 1..3 and m ∈ 1..N , equation (3.7) describes a linear system of 3N equations for the 3N

degrees of freedom g n
i (each of which is either un

i or f n
i ); the number of degrees of freedom is

nDoF = 3N . The linear system can be written as

Â ·�g = �R, (3.8)

with �g ∈R3N the vector of all degrees of freedom g n
i , a full matrix Â ∈R3N×3N and a right hand

side �R ∈R3N . To determine all coefficients Am
i , B m

i , C m
i , we require 3N integrations over the

whole boundary, one for each value of i and m. Since the basis functions ψn have compact

support, calculating the values for the coefficients Dmn
i j , E mn

i j and F mn
i j is a O (1)-operation for

each coefficient, such that the effort for calculating the matrix Â is O (N 2).

3.1.2 Solving the Linear System

To solve the linear system (3.7), we can choose from a number of matrix solvers. A direct solver

is not practical for the number of degrees of freedom typically used (nDoF ∼ 105 −106). Since

our matrix Â is not symmetric, but diagonally dominant, we employ the iterative Generalized

Minimal Residual Method (GMRES, developed by Saad and Schultz [1986]) with Jacobi Pre-

conditioning. The O (N 2)-operation of assembling the matrix Â, and the O (N 2 log N )-runtime

of the GMRES-solver, take a similar computational time, which dominates the total solution

time of our method. Both steps can be efficiently parallelized, we discuss this parallelization

in Section 3.7.1.

1So far, the approximation purely lies in writing the solution g as the series (3.2). Approximating the integrals
(3.5a)-(3.5f) will add another layer of approximation.

39



Chapter 3. Numerical Implementation

3.2 Boundary-Element Simulation for Electrostatics

Solving the boundary integral equations of electrostatics uses the same approach as the

solution of the Stokes equations in Section 3.1, but is easier to note down. The (scalar) solution

En(x), which is the normal field on both the outer boundary SE and the free droplet surface S,

is represented by a finite number of N coefficients E n
n ,

En(x) ≈
N∑

n=1
E n

nψ
n(x), (3.9)

with finite-support basis functions ψn as in Section 3.1. We expect the BIEs to hold on a finite

number of N collocation points xm associated to the basis functions ψm . For xm ∈ SE , we use

equation (2.47) with x0 = xm , which reads

1

2
ϕ(xm) =

∫PV

SE

[
ϕ(x)Tn(x −xm)+En(x)G(x −xm)

]
d2x

+
∫

S

(
1− 1

ε

)
En(x)G(x −xm) d2x . (3.10)

For xm ∈ S, we write equation (2.50) as

1

2

(
1+ 1

ε

)
E m =

∫
SE

[
ϕ(x)Πn(x −xm) ·nm +En(x)T (x −xm) ·nm] d2x

+
∫PV

S

(
1− 1

ε

)
En(x)T (x −xm) ·nm d2x , (3.11)

with E m
n := En(xm) and nm := n(xm). As in the previous section, before entering the series

approximation (3.9) into the boundary integral equation, we simplify our notation by defining

the following integrals:

Am :=
∫PV

SE

ϕ(x)Tn(x −xm) d2x (3.12a)

B m :=
∫PV

S
ϕ(x)Πn(x −xm) ·nm d2x (3.12b)

C mn :=
∫PV

SE

ψn(x)G(x −xm) d2x (3.12c)

Dmn :=
∫

S
ψn(x)G(x −xm) d2x (3.12d)

E mn :=
∫

SE

ψn(x)T (x −xm) ·nm d2x (3.12e)

F mn :=
∫PV

S
ψn(x)T (x −xm) ·nm d2x (3.12f)
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3.3. Mesh and Surface Representation

With these integrals, we express equations (3.10) and (3.11) as

1

2
ϕm = Am + ∑

n∈NSE

C mn ·E n
n +

(
1− 1

ε

) ∑
n∈NS

Dmn ·E n
n , (3.13a)

1

2

(
1+ 1

ε

)
E m

n = B m + ∑
n∈NSE

E mn ·E n
n +

(
1− 1

ε

) ∑
n∈NS

F mn ·E n
n , (3.13b)

with ϕm :=ϕ(xm), and NSE and NS the sets of all n with xn ∈ SE and S, respectively. For the N

degrees of freedom E n
n , equations (3.13a) and (3.13b) define N linear equations. Like for the

linear system in Section 3.1.1, we write this system as a matrix-vector-equation and solve it

using the GMRES algorithm.

3.3 Mesh and Surface Representation

The surface of the microchannel geometry SB and droplet S is defined by a set of vertices, and

quadrilateral cells between them. Each mesh cell is defined by its four corner vertices and an

interpolation rule for the surface between those corners. The interpolation is a mapping from

a two-dimensional reference element, (a,b) ∈ [0,1]× [0,1], where the corners map to the four

corner vertices. One such interpolation is the bilinear mapping,

xb(a,b) := (1−a)(1−b)v0 +a(1−b)v1 + (1−a)bv2 +abv3, (3.14)

with vic (ic = 0..3) the corner vertices, locally numbered in the order shown in Figure 3.1a. For

representing the droplet surface, we use a more elaborate, smooth surface representation,

which we discuss in Section 3.4.

The basis functions ψn for the degrees of freedom �g of the Stokes- and electrostatic solution

use the same bilinear interpolation on each cell. With gic the local degree of freedom on cell

a) b)

Figure 3.1: Mesh representation with quadrilateral cells. a) For each cell, there is a mapping
x(a,b) which maps coordinates on the unit element [0,1]× [0,1] to the surface. The corners of
the unit element are mapped to the mesh vertices. b) The bilinear basis function ψn spans all
cells adjacent to a vertex v n . Consequently, a mesh cell hosts four basis functions ψic , one for
each corner.
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corner ic , the interpolated value at x(a,b) on the cell is

g (a,b) = ψ0(a,b)g0 +ψ1(a,b)g1 +ψ2(a,b)g2 +ψ3(a,b)g3, (3.15)

with

ψ0(a,b) := (1−a)(1−b) ψ1(a,b) := a(1−b)

ψ2(a,b) := (1−a)b ψ3(a,b) := ab.

The basis function ψn is constructed from one local basis function ψic on each cell adjacent

to the global vertex v n (Figure 3.1b).

3.3.1 Local Refinement

Figure 3.2: The mesh is refined
locally by splitting cells. Hang-
ing nodes (highlighted) appear
between regions of different re-
finement level and need to be
treated with care.

The accuracy of the numerical solution depends on the

resolution of the mesh, which is inverse to the size of the

mesh cells. With smaller mesh cells, the approximation of

the solution g (x) by a finite number of scalar coefficients �g

(eq. 3.2) is more accurate. To minimize computational cost,

we use a local mesh refinement, which increases the mesh

resolution in places where either the solution or the surface

shape vary quickly. These locations include narrow gaps,

for example between a confined droplet in a microchannel

and the channel wall, where even small variations in the

gap width modify the lubrication flow. Other examples

are interfaces with high curvature, where strong surface

stresses require an accurate representation of surface shape and curvature.

We refine the mesh locally by splitting a parent cell into four daughter cells. This local process

leaves the global mesh topology untouched. Iterative refinement creates a quadtree-like

hierarchical mesh structure, which can be reversed if lower resolution is sufficient. A downside

of the approach is that hanging nodes are created between regions of different refinement

level, which lie on the corner of two neighbor cells, but on the edge of a third (Figure 3.2).

To ensure continuity of the solution g , we constrain the degree(s) of freedom g n (or g n
i ) to a

linear interpolation between the values on the end of the edge.

3.3.2 Treatment of Edges

Microchannels SB and electrodes SE often have edges and corners, on which the boundary

is not smooth. These features can be well represented by the quadrilateral mesh, but pose a

problem to the discretized equations, which require smooth boundaries and a well-defined

normal vector on the mesh nodes.
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3.4. Smooth Surface Representation

Figure 3.3: On edges and corners,
vertices of different faces coin-
cide. The degrees of freedom are
constrained to their respective
neighboring inward nodes’ val-
ues.

In a first step, we establish a well-defined normal vector

by meshing the two faces adjacent to the edge separately,

with coinciding vertices but separate degrees of freedom

for either face (Figure 3.3). Then, we constrain the degrees

of freedom on the edge to a linear extrapolation of corre-

sponding values at two nodes inward from the edge. This

reduces the effective resolution of the mesh close to edges

and corners, but leads to a well-determined system of equa-

tions, with a lower number of degrees of freedom to solve.

3.3.3 Constraining Degrees of Freedom

The constraints on the degrees of freedom on hanging nodes (Section 3.3.1), edges and corners

(Section 3.3.2) are implemented when setting up the linear system of matrix Â and right

hand side �R (eq. 3.8). Each constraint is a linear relation between just two or three degrees

of freedom, which creates a sparse line in the matrix Â. We eliminate the affected line and

corresponding column from the linear system. This reduces the size of the system and speeds

up the solution. After solving the linear system, the constrained degree of freedom is added

again to the solution vector �g .

3.4 Smooth Surface Representation

The bilinear interpolation xb that we use on the outer surfaces of the microchannel SB and

electrodes SE is a poor choice for the droplet surface S: The planar faces of the cells will

usually meet at an angle, such that neither the normal vectors nor the surface curvature are

well-defined at the vertices, which are our collocation points. For this reason, surfaces are

often represented through higher-order interpolation schemes with more degrees of freedom,

more complex surface descriptions like the description with non-uniform rational B-splines

[Heltai et al., 2014], or interpolate curvature and normal vectors from multiple neighboring

cells [Zinchenko et al., 1997].

In this section, we present a novel interpolation scheme that is independent of the chosen

frame of reference, gives a continuous surface that goes through all mesh points, and is

smooth inside the cells and at the vertices (though not on the edges). Unlike with other

traditionally used representations, this allows us to directly evaluate the mean curvature and

normal direction from the representation.

Creating the representation consists of three steps: First, we define normal vectors at the

mesh vertices (Section 3.4.1). Then, in a local coordinate system defined by the normal vector

and two in-plane directions, we fit a paraboloid through the neighbor vertices (Section 3.4.2).

These first two steps are performed before the surface integration. In a third step, we use the

precomputed values on the vertices to interpolate the surface on each cell (Section 3.4.3).
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3.4.1 Approximating the Normal Vector

Figure 3.4: The normal vec-
tor n is constructed from
the normal vectors of all ad-
jacent cells.

We determine an initial guess for the normal vector n at vertex v

from all cells adjacent to v . Consider all cells C j that have vertex

v as a corner (with j = 1..nC , nC the number of such cells). Let

e l ,r
j be the (left and right) edge vectors in the cell C j and d j the

diagonal vector, all starting from vertex v . For cell C j , we define

a local normal vector at the corner vertex v as

n j := e r
j ×e l

j (3.16)

The direction of the normal vector is then calculated as a

weighted average of the cells’ unit normal vectors with weight

w j ,

n := ∑
j

w j n̂ j , (3.17)

with the weight

w j := 1√|n j |
(3.18)

to give larger weight to cells of smaller diameter. The hat (n̂ j ) refers to the normalized vector,

n̂ j := n j

|n| j
. The normalized vector n̂ is then used as an initial guess for the normal vector at v .

Creating the Local Coordinate System

Based on the normal direction n̂, we now create a local coordinate system at v by defining

a1 := e r
1 (a vector not pointing along n),

ex := a1 − (a1 · n̂)n̂ (a vector perpendicular to n), and

e y := n̂ ×ex (a unit vector perpendicular to n and ex ).

The unit vectors (êx , ê y , n̂) span a right-handed coordinate system.

3.4.2 Locally Fitting a Paraboloid

In the local coordinate system (êx , ê y , n̂) centered at v , we fit a paraboloid of the form

z(x, y) = αx2 +βy2 +γx y +δx +εy (3.19)

through the set of neighbor vectors,
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3.4. Smooth Surface Representation

Figure 3.5: At each vertex
v , the surface locally resem-
bles a paraboloid, with the
precomputed normal n and
coefficients that minimize
the surface’s distance to all
neighbor vertices.

N := {e l
1,e r

1 ,d1,e l
2,e r

2 ,d2, ...,dnC
}, (3.20)

which point from vertex v to all its direct and diagonal neigh-

bors. Edge vectors typically appear twice in the list, as they are

parts of two neighbor cells. The local coordinates of neighbor

ak ∈ N are given by (xk , yk , zk ) = (ak · êx , ak · ê y , ak ·n̂). For these

neighbors, we write the paraboloid equation (3.19) as

wk ·
(
x2

k y2
k xk yk xk yk

)
·

⎛
⎜⎜⎜⎜⎜⎜⎝

α

β

γ

δ

ε

⎞
⎟⎟⎟⎟⎟⎟⎠

= wk zk , (3.21)

with wk > 0. With 5 degrees of freedom (α, β, γ, δ, ε), but usually 9-12 equations, the system is

overdetermined. We therefore solve the system in a least-squares sense. The relative weight of

each row is determined by the factor

wk =
⎧⎨
⎩

1
x2

k+y2
k

for edges ak = e l ,r

0.1
(x2

k+y2
k )

for diagonals ak = d ,
(3.22)

which gives a high weight to nearby neighbors. We write (3.21) for all k as a linear system

P̂ ·α= b for the coefficient vector α := (α,β,γ,δ,ε). The least-squares solution to this linear

system is given by [Bronstein et al., 2008, p. 317f]

α = (P̂ T · P̂ )−1 · (P̂ T ·b). (3.23)

We invert the 5× 5-matrix (P̂ T · P̂ ) with a direct method. The position of a point on the

paraboloid, seen in the global coordinate system, is then given by

x = v +xêx + y ê y + (αx2 +βy2 +γx y +δx +εy)n̂. (3.24)

Re-Estimating the Normal Vector

The surface normal of the fitted paraboloid (3.24) does not necessarily coincide with the vector

n̂ of the local coordinate system. We calculate the local surface normal

n∗ := n̂ −δêx −εê y (3.25)

as a new guess for the surface normal at v . Based on this new guess for the normal vector, we

fit the paraboloid surface a second time. By setting the coefficients δ= ε= 0, we ensure that

the surface normal is aligned with the normal of the local coordinate system. The accuracy of

this approach is shown in Section 3.4.4 (Figure 3.6).
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3.4.3 Interpolating Between Corner Vertices of a Cell

From the surface shape at each of the four corner vertices vi (i = 0..3) of a cell, we interpolate

the surface on the cell. This happens in three steps: First we create an initial guess for the

point by bilinear interpolation. Then we project that initial guess onto the paraboloid surfaces

of each corner vertex. From the four projections, we finally interpolate the surface position.

With (a,b) ∈ [0,1]× [0,1] the coordinates on the reference element, we use the bilinear in-

terpolation (3.14) to get the point xb , which is an initial guess for the surface location. We

project this point to the x-y-plane of each of the corner vertices’ local coordinate systems

(êx,i , ê y,i , n̂i ), and calculate the z-position on the local paraboloid. The point’s position xi on

the paraboloid of vi is calculated as

xi := (xb −vi ) · êx,i

yi := (xb −vi ) · ê y,i

⇒ xi := vi +xi êx,i + yi ê y,i + (αi x2
i +βi y2

i +γi xi yi )n̂i (3.26)

To interpolate between the values xi , we use the third-order polynomials

ψ0(a) = 1−3a2 +2a3, (3.27a)

ψ1(a) = 3a2 −2a3, (3.27b)

to get the final expression for the surface location,

x(a,b) := ψ0(a)ψ0(b)x0 +ψ1(a)ψ0(b)x1 +ψ0(a)ψ1(b)x2 +ψ1(a)ψ1(b)x3. (3.28)

3.4.4 Properties of the Representation

The interpolation scheme has several properties that are relevant to its application. The

surface representation is independent of the reference frame, as the local coordinate points

xi are found from the bilinear interpolation (which itself does not depend on the chosen

reference frame) and we have ψ0(a)+ψ1(a) = 1.

The representation is continuous from one cell to the next, since the xb are continuous, the

local paraboloid of the vertex vi is shared between neighboring cells, and the position on the

cell’s edge (a = 0,1 or b = 0,1) only depends on the end vertices of that edge because

ψ1(0) = ψ0(1) = 0 and ψ0(0) = ψ1(1) = 1. (3.29)

Note here that the representation is not necessarily continuous for a partially refined mesh,

where the location of hanging nodes can be fixed to lie on the surface of the adjacent larger

cell, but the interpolation along the edge may vary across the cell boundary.
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3.4. Smooth Surface Representation

The representation is smooth in the interior of the cell, and also at the vertices, where the

surface is perpendicular to the vertex normal n̂i , and where we have

ψ′
0(a)

∣∣
a=0,1 = ψ′

1(a)
∣∣

a=0,1 = 0, (3.30)

such that the surface normal of the interpolation (3.28) is that of the local paraboloid. The

representation is not necessarily smooth on the edge of the cells: The normal on the edge is

defined by the tangent vectors. While the tangent vector along the edge will be the same on

both sides, the tangent perpendicular to the edge does depend on the other two vertices of

each cell. At higher refinement, the discontinuity in the normal vector goes to zero.

For the interpolation (3.28), there are direct expressions for the Jacobian of the mapping,

the local surface normal vector, and the mean curvature. These expressions are given in

Appendix A.

Accuracy of the Representation

We estimate the accuracy of the smooth surface representation by representing a sphere of

radius R by a mesh of nv vertices. We quantify the deviation of the surface shape from an ideal

sphere by the relative shape error

εx :=
〈( |x |−R

R

)2〉1/2

S
,

with the average over the sphere surface S defined as 〈...〉S := 1
A

∫
S(...) d2x . From the surface

shape, we calculate the volume of the sphere (Section 2.4.1). The relative error of the volume is

εV := |V −Vsphere|
Vsphere

,
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Figure 3.6: Accuracy of the smooth surface representation, for a sphere of unity radius repre-
sented by a mesh of nv vertices. a) Relative errors for the surface position εx and volume εV .
Dashed lines show the errors for the bilinear surface representation. b) Relative errors for the
surface normals εn and mean curvature εκ.
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with Vsphere := 4π
3 R3. We find that both the shape error εx and the volume error εV converge

quadratically with the number of vertices, which is one convergence order faster than the

bilinear interpolation (Figure 3.6a). Figure 3.7 shows the different surface representations of

the mesh, and the local error of the surface shape.

In the numerical scheme, the surface normals n and surface curvature κ determine the surface

stresses, particularly the Young-Laplace stress due to surface tension. We quantify the relative

error of normal orientation and curvature by

εκ :=
〈(

κ−κsphere

κsphere

)2〉1/2

S

and εn := 〈‖n −er ‖2〉1/2
S ,

with κsphere := 1/R and er a unit vector in radial direction. We find that the errors converge

quickly to zero, with the normal direction having a somewhat smaller error than the curvature

(Figure 3.6b).

Figure 3.7: Representation of a spherical surface, at different stages of refinement. While
the vertices lie on a sphere, the surface between them is constructed locally and with no
assumptions about the global geometric shape. Top: Surfaces constructed from a bilinear
interpolation between the mesh points, with colors denoting surface orientation. Middle:
Surfaces constructed from the smooth surface representation, with colors denoting surface
orientation. Bottom: Surfaces constructed from the smooth surface representation. The color
scheme marks the deviation of the surface shape from an ideal sphere. The maximum error of
the representation (red) ranges from 1.8 ·10−2 (at nv = 6) to 1.1 ·10−11 (at nv = 1538).
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3.5. Numerical Integration

3.5 Numerical Integration

The boundary integrals that appear in the discretized equations cannot be solved analytically.

We use numerical quadrature, which expresses each integral as a sum over a finite number of

points.

Quadrature rules are defined on the reference element [0,1]× [0,1]. A quadrature is given by a

set of nqp quadrature points �qi ∈ [0,1]× [0,1] and associated weights wi ∈ [0,1], with
∑

i wi = 1

[Engels, 1980]. With x(a,b) the mapping from the reference element to cell C , the integral over

the integrand f (x) is approximated by

∫
C

f (x)d2x �
nqp∑
i=1

f (xi ) · Ji ·wi , (3.31)

where xi := x(�qi ) is the surface position of the i th quadrature point, and

Ji :=
∥∥∥∥∂x

∂a
× ∂x

∂b

∥∥∥∥
(a,b)=�qi

(3.32)

is the Jacobian of the mapping from the reference element.

We use Gauss-Legendre quadrature, which defines quadrature points �qi and weights wi such

that expression (3.31) is exact for integrating polynomials up to a certain order. In each

dimension, N quadrature points are sufficient to exactly represent a polynomial of order

2N −1. A quadrature of order N has nqp = N 2 quadrature points.

3.5.1 Nearly Singular Integration

Figure 3.8: Quadrature for-
mula for nearly singular
integration, based on a
Gauss-Legendre formula
with N = 5.

Both the integrand f (x) and the mapping x(a,b) are typically

smooth, so that they can be well approximated by polynomials,

and the Gauss-Legendre quadrature yields accurate results even

at a moderate number of quadrature points. This is not the case

for the singular (or nearly singular) integrals, which appear in the

Boundary Element formulation when the integration variable x

passes a collocation point xm . Here the integrand diverges, and

cannot be described even by high order polynomials.

For singular integrals, we use a quadrature rule that removes one

factor 1/r from the integration by integrating in polar coordinates.

This renders integrals over the Stokeslet (2.7) and electrostatic

Green’s function (2.33) regular. For the stresslet (2.10) and normal

derivative of the electrostatic Green’s function (2.36a), a singu-

larity with 1/r remains, which we evaluate with high-accuracy

Gauss quadrature.
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Figure 3.9: Magnitude of Stokeslet and stresslet in the x-y-plane, for a source at x0 := (0,0, a),
with a = 0.2. The amplitude of the peaks diverges for a → 0, which makes accurate integration
increasingly difficult. a) Magnitude of the Stokeslet component G00. b) Magnitude of the
stresslet component T002.

For nearly singular integrals, which typically appear when two surfaces of the geometry come

close, we subdivide the cell and perform Gauss-Legendre integration on the subdomains

(Figure 3.8). This strongly increases the number of quadrature points, but since nearly singular

quadrature is only required on a small number of cells and for few degrees of freedom, the

overall impact on runtime is small.

3.5.2 Accuracy of the Numerical Quadrature

We investigate the accuracy of the numerical quadrature by comparing the numerical integral

to the analytical result from integrating the Stokeslet and stresslet Green’s functions over a

simple unit cell [0,1]× [0,1]. With the integration domain of unit length scale, the accuracy of

the integration depends on the parameter a, which is the distance between the unit cell and

the Green’s functions’ origin x0. In the boundary integral equations, the Green’s functions are

modulated by shape functions and the mapping from the reference cell onto the boundary, but

the divergence behavior of the Stokeslet and stresslet dominates the quadrature error. Figure

3.9 shows the magnitude of two components of the Stokeslet and stresslet, at parameters at

which they are nearly singular.

Stokeslet

The Stokeslet (defined in Section 2.1, eq. 2.7) has the form

Gi j (r ) = δi j

|r | +
ri r j

|r |3 , (3.33)

with vector r := x − x0 describing the relative distance between a point x and the Stokeslet

source x0. The singularity for |r | → 0 diverges with |r |−1. For x := (x, y,0) on a unit element
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Figure 3.10: Integration accuracy for the Stokeslet. a) Relative error of the numerical quadra-
ture at quadrature order N = 5, against the distance a between Stokeslet and integration
domain. b) Relative error of the Gauss-Legendre quadrature for varying integration order N ,
at fixed distance a. The numerical integration result fluctuates around the analytic value for
the integral, creating spikes in the data when the error vanishes. The iterative refinement of
the nearly singular integration creates a periodic pattern that stays below an error of 10−6.

E := [0,1]× [0,1] in the x-y-plane, we evaluate the Stokeslet relative to the point x0 := (0,0, a).

We perform the quadrature for the integral

IG :=
&

E
G00(x −x0)dx dy, (3.34)

which has the analytical solution

IG =
∫1

0

∫1

0

1

(x2 + y2 +a2)1/2
+ x2

(x2 + y2 +a2)3/2
dx dy

= log

(
1+

�
2+a2

�
1+a2

)
+2sinh−1

(
1�

1+a2

)
−2a · tan−1

(
1

a
�

2+a2

)
.

For a � 1, the integration formulas for Gauss-Legendre and singular quadrature have an

increasingly large error, whereas the error of the nearly singular integration formula stays at

10−8 (Figure 3.10a). This increased accuracy is at the cost of a higher number of quadrature

points, with nqp =O (103) for the nearly singular integration at small a (compared to nqp = 25

for the Gauss-Legendre quadrature). Increasing the order of the regular Gauss-Legendre

quadrature successfully decreases the error at larger a, but fails to do so at small a (Figure

3.10b). Around a = O (10−2), nearly singular quadrature uses less quadrature points than

high-order Gauss-Legendre quadrature to reach the same integration accuracy,
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Figure 3.11: Integration accuracy for the stresslet. a) Relative error of the numerical quadrature
at quadrature order N = 5, against the distance a between stresslet and integration domain.
b) Relative error of the Gauss-Legendre quadrature for varying integration order N , at fixed
distance a.

Stresslet

The stresslet (defined in Section 2.1, eq. 2.10) is

Ti j k (r ) = −6
ri r j rk

|r |5 , (3.35)

with the singularity for |r | → 0 diverging with |r |−2. On the unit element E , we perform the

quadrature for the integral

IT :=
&

E
T002(x −x0)dx dy. (3.36)

This integral has the analytical solution

IT =
∫1

0

∫1

0

6ax2

(x2 + y2 +a2)5/2
dx dy

= 2tan−1
(

1

a
�

2+a2

)
− 2a

(1+a2)
�

2+a2
.

The accuracy of the quadrature rules for small a (Figure 3.11a) and the convergence of Gauss-

Legendre quadrature for large quadrature orders (Figure 3.11b) show the same characteristic

behavior as for the Stokeslet. However, the error is larger by one order of magnitude. At

a < 10−1, the Gauss-Legendre integration typically has a relative error on the order of 10%.

For the stresslet, using an appropriately high quadrature order and switching to the nearly

singular integration formula is therefore even more important.
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3.6 Time Stepping

From solving the boundary integral equations for Stokes flow (Section 3.1), we get the flow

velocity u(x) on the droplet interface S. This flow velocity advects the interface, which deforms

the droplet and leads to the nonlinear dynamics that we want to study. To simulate the

advection and deformation of the droplet interface, we perform a forward time integration

using the explicit Euler method.

At time t , the location of the interface S is defined by the positions of the interface vertices v t
i

and the mesh between them. Solving the boundary integral equations gives the instantaneous

flow velocity u t
i at these vertices. For a time step dt � 1, the location of the interface vertex is

then approximated by

v t+dt
i � v t

i +dt ·u t
i . (3.37)

After each such time step, we redistribute the vertices on the mesh to avoid mesh distortions

(Section 3.6.2) before calculating the flow solution in this updated geometry. The resulting

iterative simulation loop for the forward time integration is sketched in Figure 3.12. If the

electrostatic solver is active, it is evaluated directly before the Stokes solver.

Figure 3.12: Loop for advancing the simulation forward in time: The vertex positions vi ,
together with the mesh between them, describe the system geometry. If an electrode is
present in the system, the electric field solver (Section 3.2) calculates the surface field on the
free interface, which determines the Maxwell stress. Using the mesh geometry and possibly
the Maxwell stresses, the Stokes solver (Section 3.1) calculates the velocity ui at the vertex
positions vi . These vertex velocities determine the deformation of the free interface. The
surface is first deformed, then mesh nodes are redistributed to avoid distorted cells (Section
3.6.2).

3.6.1 Stability of the Time Stepping

The explicit Euler scheme is unstable for large time steps. When the time steps are too large,

small perturbations on the droplet surface grow, causing non-physical mesh distortions

[Dai and Shelley, 1993; Nagel, 2014]. Perturbations grow because the surface tension forces,
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which normally smooth out capillary waves at small wavelength, cause an overshoot and

amplification of surface distortions.

The restoring motion of a perturbed interface is driven by surface tension γ and slowed by

fluid viscosity μ, giving a characteristic velocity scale UC := γ
μ at which the interface returns to

a planar shape. This characteristic velocity defines the ratio between the smallest mesh width

in the geometry, hmin, and the time step dt , at which the time stepping method becomes

unstable. We therefore adapt the time step to

dt := μhmin

γ
. (3.38)

This choice of time step renders the time stepping scheme stable, but requires a high temporal

resolution, particularly at low capillary numbers. Higher order schemes like the Adams-

Bashforth or Runge-Kutta scheme [Bronstein et al., 2008, pp. 975f] could alleviate the stability

problem and allow for larger time steps. However, we found that in geometries with very

narrow gaps, and together with the mesh stabilization and refinement algorithms, these

solution algorithms did not give reliable results. An alternative approach to the stability

problem would be adopting a mesh stabilization scheme like the one suggested by Nagel

and Gallaire [2015]. In situations where the droplet reaches a steady shape, we accelerate the

simulation by calculating the center-of-mass velocity of the droplet. We then translate the

droplet according to this velocity vector, instead of moving each vertex with the local velocity.

3.6.2 Mesh Regularization

Advection of the droplet interface can lead to the distortion of mesh cells and an uneven mesh

resolution. To maintain a regular mesh with an even spacing between adjacent vertices, we

regularize the mesh after each time step. For each mesh vertex, we calculate a weighted average

of its neighbor vertices, taking into account the different refinement levels of the neighbor

cells. We project this mean vertex to the surface expressed by the surface representation. After

finding such new vertex positions for all vertices on the droplet interface, we update the old

vertex positions to these new coordinates, and repeat. The iteration ends if the L2-norm of the

vertex position increments drops below the threshold of 10−4H , with H the channel height

that sets the characteristic length scale.

Since vertices are only moved on the surface, and usually only by small distances, this redis-

tribution does not change the shape of the interface, and leads to a regular mesh. Typical

alternative approaches, like the introduction of new mesh cells or local refinement, are more

difficult to implement for the quadrilateral mesh that we use. After regularizing the mesh, we

ensure that the hanging nodes are relocated to the center of their parent edge, and adjust the

mesh resolution by coarsening or refining cells where necessary (Section 3.3.1). In regions

where two boundaries are very close, we enforce a minimum distance of 10−2H between the

boundaries. This is to avoid singularities in the surface integrals (see Section 3.5.1) and mimics

the effect of steric repulsion due to surfactants.
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3.7 Implementation

The simulation was implemented in the programming language C++. The object-oriented

code comprises 130 classes on 32 036 lines of code. The data structures for the mesh and

its refinement, Gauss-Legendre integration rules and iterative GMRES-solver use the finite-

element library deal.ii in version 8.3.0 by Bangerth et al. [2007, 2016]. The library deal.ii

was originally designed for 2D and 3D finite-element simulations, but was versatile enough to

be repurposed for solving the boundary integral equations on codimension-one manifolds.

For creating the mesh for the droplets and surrounding microchannel, we implemented an

automated mesh generation algorithm. Complex microchannel or electrode geometries are

represented with Bézier curves in the W3C svg standard [Dahlström et al., 2011], which is

supported by common vector graphics editors. Output of the geometries and solutions uses

the vtk file format. Snapshots of the runtime state are stored in binary files, from which a

simulation can be continued.

The implementation uses C++ templates for a possible extension to 2D flow. Besides the explicit

Euler time stepping algorithm that we use in this work (Section 3.6), the Adams-Bashforth

and 2nd order Runge-Kutta schemes are implemented. The two BEM solvers, StokesSolver

and ElectroSolver (Sections 3.1 and 3.2), are encapsulated in separate classes and can be

activated independently of each other (or coupled, as described in Section 3.6). The code is

parallelized with MPI or multithreading, see Section 3.7.1. Correctness of the individual parts

of the code is tested with a suite of unit tests.

3.7.1 Parallelization

Figure 3.13: Calculating the
linear system (3.8) is dis-
tributed between processes:
Each process calculates and
stores part of the matrix Â
and residual �R.

While the computing power of a single processor core has not

seen much speedup in recent years, new processor generations

come with an ever increasing number of cores. For utilizing

these increasing computational resources, we parallelized the

most time-consuming sections of the code. Our paralleliza-

tion based on the Message Passing Interface (MPI), which is

commonly used on computing clusters. As a fallback option

for single-processor machines when MPI is not available, we

implemented pthread-based multithreading for parts of the

code.

The majority of computing time in the simulation is spent in

calculating the matrix Â for the linear system, and solving this

system. This holds both for the solver for electrostatics, and for the solver for Stokes flow.

For each solver, at 104 degrees of freedom, calculating the system matrix (which is an O (N 2)-

operation in the number of degrees of freedom) and solving it iteratively with GMRES (which

is O (N 2 log N )) takes a similar amount of time. We parallelized both of these steps.
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Figure 3.14: Scaling of the parallelization with the number of processor cores p, for a simu-
lation of approximately 50 000 degrees of freedom. a) Speedup of using multiple cores. b)
Efficiency per core when using multiple cores. Green dashed lines mark the linear speedup
and the corresponding efficiency.

Since the boundary integral equations represent the 3D field by values on the 2D boundaries

of the geometry, the memory required for storing the entire system geometry and solution

vector is just on the order of 10 MB even for large systems of 105 degrees of freedom. Every

process can therefore store the full simulation state in memory. In assembling the matrix Â

and residual vector �R for the linear system, every row of the matrix and entry of the solution

vector corresponds to one degree of freedom m. Each process is assigned a fixed range of M

degrees of freedom for which it computes the corresponding rows of the system matrix and

residual entries (Figure 3.13). The M ×N -matrix of process-local rows of Â remains in local

memory only, whereas the residual vector �R is communicated to all processes.

The GMRES algorithm iterates over matrix-vector products with the system matrix Â. In this

iteration, every process computes a part of the matrix-vector product from its local M ×N -

matrix. The result is broadcasted to all processes and the iteration continues. Other parts of

the code, such as the computation of boundary integrals in the volume, are shared between

processes in a similar fashion.

The parallelization requires little overhead work or communication, such that the speedup

scales well with the number of cores (Figure 3.14). In the test we performed, the efficiency

stays around 90% for up to 8 cores, and drops to 60% at 32 cores (where M =O (103) on each

core). The number of cores does not have to be a power of two. With the changing number of

degrees of freedom at each time step, we adapt the distribution of degrees of freedom across

the cores.
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3.8 Summary

We implemented a 3D boundary element scheme to simulate droplet dynamics in microchan-

nels, under the effect of Young-Laplace surface tension, gravity and dielectric stresses on the

interface. A particular focus lies on the representation of surfaces and surface integration:

With an accurate representation of a smooth droplet surface, and a genuine way to determine

the surface curvature needed to calculate the Young-Laplace stress, boundary integrals can

be evaluated at high precision. In integration, we devote special attention to nearly singular

integrals, where the integrand varies quickly an classical quadrature approaches fail. Time

stepping uses an explicit low-order method, which requires a small time step. This limits the

performance of the simulation. The implementation is parallelized, and scales well with the

number of processor cores.
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To verify the correctness and determine the accuracy of our numerical code, we validate it

against known results from analytic calculations and simulations.

The first three validation cases (Sections 4.1-4.3) test the numerical solver in systems with

rigid boundaries. By calculating the flow field around a rigid sphere moving in quiescent flow

(Section 4.1), we test the accuracy of the BEM scheme and the exterior solver for Dirichlet

boundary conditions. Calculating the flow profile in a cuboid duct (Section 4.2) serves to

test the combination of Dirichlet and Neumann boundary conditions, in particular for the

mixed-type channel outlet. The drag force on a sphere that moves past a planar wall (Section

4.3) gives an estimate for the numerical accuracy of the solver in narrow gaps.

The next two validation cases introduce free surfaces, with the simple Young-Laplace surface

tension model. By calculating the deformation of a droplet in an extensional flow (Section

4.4), we validate the surface tension model far from boundaries. Studying the droplet shape

in a cylindrical capillary (Section 4.5) highlights the simulation accuracy for the interaction

between the droplet and the rigid channel walls.
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Even though the effect of gravity can be neglected in most of the applications we consider, we

validate our buoyancy model for the case of a buoyancy-driven spherical droplet (Section 4.6).

The final set of validation cases (Sections 4.7 and 4.8) covers the Laplace-solver for the electric

field. We test the accuracy of the solver by considering a dielectric sphere in a uniform, exterior

field (Section 4.7). In a somewhat similar setting, the deformation of a nearly-spherical

dielectric droplet in an external field validates the coupling between the electric solver and

the Stokes-solver (Section 4.8), which is implemented as an extension to the surface tension

model on the free surface.

4.1 Flow Past a Moving Sphere

The flow field around a sphere moving with constant velocity in otherwise quiescent flow is

a standard application of Stokes flow, and has a simple analytic solution against which we

can compare. This test serves as a validation of the integration over curved surfaces, and the

precision of integration for Dirichlet boundary conditions.

A sphere of radius a is placed at the origin, with the fluid volumeΩ outside the sphere. Dirichlet

boundary conditions are imposed by setting a constant velocity uS at the sphere’s surface.

Implicitly, the flow goes to zero for |x | →∞. Since the sphere is solid and not rotating, the

velocity is constant on the whole surface,

uS = U = const . (4.1)

We use this test case to validate the boundary integration for Dirichlet boundary conditions in

a simple setting, that is without high curvatures in the mesh, without thin gaps and without

time dependence.

Stokes Drag

The Stokes Law gives a result for the hydrodynamic traction force (Stokes drag) on the sphere

(Pozrikidis [2011]). On the sphere of radius a, which has a velocity U relative to the surrounding

fluid (of viscosity μ), the traction force is

FStokes = −6πμaU . (4.2)

We compare this analytic result to the surface integral

FD =
&

S
f dS, (4.3)

which is the hydrodynamic drag on the sphere due to the normal stress f that the boundary

integral method computes. The relative error between these two quantities is shown in Fig.
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Figure 4.1: Relative error of the Stokes drag FD , εF = |FD −FStokes|/|FStokes|, for the smooth
surface representation compared to the bilinear (flat) surface representation and selected
other publications.

4.1. For the smooth surface representation presented in Section 3.4, the error of the drag

converges with O (n−2
DoF). Here, the accuracy benefits from the second-order surface shape

representation, and the fact that the resulting surface stress is constant over the surface and

can therefore be well represented by the linear finite elements and Gaussian quadrature. In

the traditional surface representation with bilinear interpolation, the inaccurately represented

surface location dominates the error.

The Dirichlet boundary conditions presented in this chapter are common for the side walls of

the flow geometry rather than the droplet surface, at which the surface velocity is usually not

known (Neumann boundary conditions).

External Flow Field

From velocity uS and normal stress f on the sphere’s surface, the velocity field for any point

in the fluid volume can be constructed. We can compare this solution to the analytic result

(Pozrikidis [2011]),

ui (x) = 1

4

a

r

(
3+ a2

r 2

)
Ui + 3

4

a

r

(
1− a2

r 2

)
xi x j

r 2 U j , (4.4)

to verify that the calculation of the external flow field in Ω has a desired accuracy. We evaluate

the external velocity field at ∼ 103 points in the vicinity of the sphere, and find that the mean

deviation from the analytic solution converges like the relative error in the Stokes drag, namely

with O (n−2
DoF) (Figure 4.2).
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4.2 Flow in a Cuboid Duct

Figure 4.3: Downstream ve-
locity for flow in a square
duct, at nDoF ≈ 3000.

To simulate droplets in a microchannel, the solver combines

Dirichlet boundary conditions on the microchannel inlet and

side walls with mixed outlet boundary conditions, where the

downstream stress (outlet pressure) and the cross-stream ve-

locity are set to zero (Section 2.1.3). To determine the accuracy

of these mixed boundary conditions, we investigate the flow

solution in a cuboid fluid volume of downstream length Lx = 2

and cross-stream lengths Ly = Lz = 1 (Figure 4.3).

As a measure for the accuracy of the solution, we take the inte-

gral of the wall-normal velocity,

IV =
&

S
(u ·n)dS, (4.5)

and of the stress over the surface,

IS =
&

S
f dS. (4.6)

Since the flow is incompressible and no external forces are present, both should be zero.

These non-local conservation laws follow from the Stokes description, but are not used in the

numerical scheme. The deviations of these two measures from zero comprises the error of

the initial boundary integration, the solution of the linear system, and the surface integration

(4.5) resp. (4.6).
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Two flow conditions are studied: A plane Couette flow with downstream velocities ranging

between 1.5U at the bottom surface and 2.5U at the top surface, and the flow in a square duct,

with a biparabolic inlet boundary condition (defined in Section 2.5.2).

The velocity and stress solution of the simple shear flow can be precisely represented by the

bilinear finite elements, and the fifth-order Gaussian integration scheme accurately performs

the final surface integral. Consequently, the resulting relative error lies below 10−5 for the

stress, and well below 10−6 for the velocity, even with few degrees of freedom (Figure 4.4a).

The tolerance of the GMRES solver was set to 10−8.

Next, we consider flow through a square duct, which is the prototype for any microfluidic

application. The velocity profile on the inlet and outlet, and the stress on the side walls, can

be approximated by parabolas or higher order polynomials. Linear elements are unable to

represent the full analytic solution. For this reason, the relative velocity and stress error is

orders of magnitude larger than in a shear flow (Figure 4.4b), surpassing 1% for less than

∼ 103 degrees of freedom. We estimate the error of the bilinear discretization by evaluating

the biparaboloid inflow profile (Eq. 2.69) on the discrete mesh vertices and integrating over

the bilinear interpolation of these values. The error of this interpolation converges with

O (n−1
DoF ). In the simulation, this error appears to be superimposed with another error of order

O (n−3/2
DoF ), which happens to cancel the discretization error at nDoF ≈ 104, but this cancellation

is coincidental and cannot be exploited to increase the simulation accuracy in the general

case.
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63



Chapter 4. Code Validation

4.3 Sphere Moving Past a Plane Wall

Figure 4.5: Geometry of
a sphere that moves paral-
lel to a plane no-slip wall,
with the refined mesh color-
coded with the wall-normal
stress (bottom).

Particular challenges to the numerical scheme arise when two

surfaces come very close to each other: Flow and stress vary

on very small length scales, and the associated Green’s func-

tions diverge (see also Section 3.5.2). O’Neill [1967] reports an

analytic solution to the drag force and torque on a sphere that

moves parallel and close to a plane wall. Numeric values of that

solution have been calculated by Goldman et al. [1967]. When

the distance δ between the sphere and the wall becomes small,

the stress on sphere and wall diverges in the gap.

We approximate the infinite plane wall by a plane of edge length

104a (where a is the radius of the sphere) and no-slip bound-

aries. We refine the mesh in the gap down to a resolution of

0.07a, creating a mesh of 5000 cells. For distances δ > 10−1a,

the simulation matches the analytic solution closely, with a drag

error on the order of 10−3 (Figure 4.6). For large δ, the torque

approaches zero, so that the relative error in the torque stays

large. For smaller distances, the numerical results start to di-

verge from the expectations, with the relative error of the torque reaching 45% at δ= 0.003202a.

Here, the gap width is much smaller than the mesh spacing, so that the linear elements cannot

represent the solution well.
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Figure 4.6: Drag FD and torque T acting on a sphere of radius a, moving at speed U in distance
δ of a fixed plate. a) Absolute values of drag and torque, from the analytic expression in O’Neill
[1967] and the simulation results. Following Goldman et al. [1967], we give drag in units of the
Stokes drag 6πμaU (Eq. 4.2) and torque in units 8πμa2U . b) Relative error of the numerical
result. We find a strong dependence of the error on the mesh resolution at the narrow gap.
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4.4 Droplet in Extension Flow

Figure 4.7: Steady-state
shape of a droplet in an ex-
tensional flow at λ= 1, C a =
0.1. Droplet surface colored
by the divergence of the in-
plane velocity.

When a free droplet interface is present, our Stokes solver cou-

ples the flow solutions on both sides of the interface. We test

this coupling by comparing the equilibrium shape of a droplet

in an extensional flow to known analytical and numerical re-

sults. Stone and Leal [1989b] present numerical results for the

deformation of a spherical droplet of radius R in an extensional

flow field of the form

u(x) = U

2R

⎛
⎜⎝

2 0 0

0 −1 0

0 0 −1

⎞
⎟⎠x , (4.7)

with U a characteristic velocity scale that defines the capillary

number C a := μU
γ . Assuming radial symmetry around the ex -

axis, Stone and Leal use a 2D boundary element method to
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Figure 4.8: Deformation of a droplet in an extensional flow, compared to the second-order
analytic approximation by Barthès-Biesel and Acrivos [1973] and the 2D-BEM-solution by
Stone and Leal [1989b], at a viscosity ratio of a) λ = 0.1, b) λ = 1 and b) λ = 10. d): Droplet
cross-section at λ= 1 and C a = 0.01, 0.05, 0.1, 0.119.
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retrieve the equilibrium droplet shape, and describe this shape by the deformation

D := lx − lz

lx + lz
, (4.8)

where lx and lz are the maximum lengths in the axial x- and radial z-direction, respectively.

Analytic results on the droplet shape have been derived by Barthès-Biesel and Acrivos [1973]

in an approximation that is second-order in the capillary number C a.

Unlike Stone and Leal, who prescribed the unperturbed background flow field (4.7) directly on

the droplet interface, we test the coupling of exterior and interior flow solver by prescribing the

flow as Dirichlet boundary conditions on a sphere of radius 10R around the radius-R-droplet.

The resulting mesh (Figure 4.7) has ∼ 2300 degrees of freedom, evenly distributed between

droplet and outer boundary, and is integrated forward in time until a steady droplet shape has

been reached.

The resulting droplet deformation (Figure 4.8) is in good agreement with the results by Stone

and Leal, for viscosity ratios between droplet and exterior viscosity of λ= 0.1,1,10. For large

capillary numbers (C a ≥ 0.1) and correspondingly high deformations (D ≥ 0.25), we see a

deviation from the expected result.

4.5 Droplet in a Cylindrical Capillary

Figure 4.9: Refined mesh for
the steady-state droplet in a
cylindrical capillary, at C a =
0.05, a = 1.2R. Droplet sur-
face colored by the down-
stream velocity.

A droplet moving in a cylindrical capillary generally takes on

a rotationally symmetric shape. When rotational symmetry is

assumed, the free-surface Stokes problem is reduced to a 2D

problem in the axial and radial plane. This reduces the complex-

ity of the problem to an extent that both analytical solutions (for

example the asymptotic shape of an inviscid bubble by Brether-

ton [1961]) and reliable numerical results can be found.

Lac and Sherwood [2009] present numerical results for the equi-

librium shape of viscous droplets in a rotationally symmetric

capillary, which they achieved with a highly resolved 2D bound-

ary element solver. We compare the results of our 3D simulation

to these results. The 3D solver faces two particular challenges in

representing the mesh of the capillary: First, since we represent

the outer surface of the capillary with bilinear elements, the

normal vector on the cell differs from the interpolated normal at a vertex, where the degrees

of freedom are defined. Thus, the wall-normal component of the stress tensor, which enters

the boundary integral equation, is inaccurately represented by the interpolation between its

values at the vertices. Second, since we dynamically adjust the refinement of the channel

boundary and move hanging nodes to the cylindrical surface, small gaps exist between the in-

let and outlet plane and the cylindrical outer surface. We find that, even in an empty capillary,
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Figure 4.10: Equilibrium shape of droplets in a round capillary, compared to the results of Lac
and Sherwood [2009]. Left: Shape of droplets in a capillary, at C a = 0.05, varying viscosity ratio
λ, and size a/R = 0.6,0.8, [0.1],1.3. The contours in red (top half) are from our simulation, in
blue (bottom half) from Lac and Sherwood. Droplets are aligned at x = 0 for better readability.
Differences in the total droplet length are due to deviations in the numerical flow rates, as
discussed in the text. Right: Droplet deformation D at the respective viscosity ratios λ, dashed
from Lac and Sherwood.

the center-line velocity does not maintain the expected value of uc = 2U . A typical mesh with

∼ 105 degrees of freedom has a center-line velocity of uc = 1.88U at the midpoint between

inlet and outlet, and velocity and stress errors (see Section 4.2) of 7% and 10%, respectively. In

all other simulations that we perform, microchannels have rectangular cross-sections, and do

not suffer from the aforementioned error. However, to validate our simulation against known

reliable results from 2D calculations, we accept this error in the flow rates, and compensate

for it in the data analysis.

In a capillary of radius R and length 10R , we create a droplet of volume 4π
3 a3, with a the droplet

size. For a < 0.45R, the initial droplet shape is spherical, whereas for larger a, the droplet is

created as a prolate spheroid, such as to maintain a spacing of 0.05R between droplet and

67



Chapter 4. Code Validation

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

0.6 0.7 0.8 0.9 1 1.1 1.2 1.3

V
el

oc
it
y
V

[U
∗ ]

a [R]

λ = 0.1
λ = 1

λ = 10

a)

0

20

40

60

80

100

120

-5 -4 -3 -2 -1 0 1

P
re

ss
ur

e
p

[μ
U R

]

x [R]

Droplet Code (Wall)
Lac 2009 (Wall)

Droplet Code (Center)

b)

Figure 4.11: a) Downstream advection velocity at C a = 0.05, for different droplet sizes a and
viscosity ratios λ. For better readability, the advection velocity V for our results is scaled by
U∗ := uc /2, using the center-line velocity uc = 1.88U we found in an empty channel. Dashed
lines show the results by Lac and Sherwood [2009], with uc = 2U . b) Fluid pressure in the
channel, at the wall and in the channel center, for C a = 0.05, λ= 10, a = 1.1R. The pressure in
the channel center shows the Young-Laplace pressure jump at the droplet interface, which
depends on the interface curvature.

side wall. From the initial droplet shape, we find the equilibrium shape by simulating forward

in time, resetting the droplet center to the center of the capillary after every time step. We

terminate the simulation when the droplet stops deforming. Following Lac and Sherwood, we

consider a capillary number C a = 0.05, viscosity ratios of λ= 0.1,1 and 10 and droplet sizes

of 0.6R ≤ a ≤ 1.3R, and describe the droplet shape in terms of the deformation D := lx−lz
lx+lz

as

defined in Section 4.4 (eq. 4.8).

For small droplets, the simulation reproduces the deformations found by Lac and Sherwood

(Figure 4.10). For large droplets (a > R), the droplets deform less than expected. One reason

is the advection velocity V of the droplets (Figure 4.11a): Due to the simulation error in

total velocity, the effective capillary number is smaller, which reduces the size of the liquid

layer between droplet and side wall. The advection velocity uc in the channel center is 6%

too small in an empty channel, and for small droplets, we find the same 6% decrease in

advection velocity. The velocity error in the cylindrical capillary is larger than in the square

duct (Section 4.2), because we represent the curved outer surface with flat, bilinear elements.

A vastly improved accuracy can be achieved by using the smooth surface description (Section

3.4) both on the deforming droplet and on the curved capillary wall. With some changes

in the implementation, the sharp edges for the inlet and outlet plane of the channel can be

accommodated.

Despite the errors in advection velocity, the code correctly reproduces the pressure in the

system, which is the dominant component of the wall-normal stress. Between the wall-normal

stress reported by Lac and Sherwood and our simulation (Figure 4.11b), we find only small

deviations, notably in the region of fast variation towards the rear of the droplet, where also

the droplet shapes deviate from each other. Besides the wall-normal stress, which is a direct
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part of the solution of the boundary element method, we can also calculate the pressure at any

point inside the domain (Section 2.1.4). As expected, the center line pressure equals the wall

pressure away from the droplet, and jumps at the droplet interface to a higher value inside the

droplet. The height of the pressure jump scales with the local curvature and surface tension

(Section 2.3.1).

4.6 Rising Droplet under Gravity

Figure 4.12: Flow in a
droplet rising under gravity,
at λ = 10−2, in a comoving
frame of reference.

When the fluid density inside a droplet is smaller than the den-

sity of the surrounding medium, a droplet rises up in a grav-

itational field. For spherical droplets in an infinite medium,

the relation between upward velocity Ud and buoyancy force

is described by the Hadamard-Rybczynski equation (Clift et al.

[1978])

Ud = 2

9

Δρg R2

μ

λ+1

λ+2/3
, (4.9)

with λ := μd /μ the viscosity ratio, R the droplet radius, Δρ :=
ρd−ρ the density mismatch and g the gravitational acceleration.

Since there is no intrinsic velocity scale, we measure velocities

in terms of the viscous velocity scale U := μ
ρR . In the limits of

very large (λ→∞) and very small (λ→ 0) inner viscosity, this

relation represents the advection speed of a rigid sphere with no-slip and free-slip boundary

conditions, respectively.1

For a rising deformable droplet to be spherical, the surface tension must be large against the

buoyancy forces that deform the droplet, which holds if the Eötvös number

Eo := Δρg L2

γ
. (4.10)

is small. We find that at Eo = 1, droplet deformation is negligible (D < 10−4). For a spherical

mesh of ∼ 103 degrees of freedom at C a = 1, Eo = 1, the advection velocity (Figure 4.13) closely

matches the expected analytical values over the relevant range of viscosity ratios λ, with a

small deviation at a small viscosity ratio.

1With the drag force given by buoyancy, Fd = 4π
3 R3Δρg , Stokes’ law yields a velocity of Ud = 2

9
Δρg R2

μ for a

no-slip sphere, whereas the velocity for a free-slip sphere is Ud = 1
3
Δρg R2

μ .
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Figure 4.13: Velocity Ud of a nearly-spherical droplet rising in a gravitational field, compared
to the analytical Hadamard-Rybczynski result (Clift et al. [1978]) for spherical droplets.

4.7 Dielectric Sphere in a Uniform Electric Field

Figure 4.14: Electric field
lines around a sphere in a
uniform field, at ε= 80. The
droplet is colored by the ra-
dial field component, the
background by the electric
potential ϕ.

To test the accuracy of the BEM-solver for dielectrics, we con-

sider the case of a dielectric sphere placed at the origin in an

infinitely extended medium with a uniform field E0 = E0ex . The

electric potential ϕ has the form (Landau et al. [1984])

ϕ(x) =

⎧⎪⎨
⎪⎩
− 3

2+ε E0 · x |x | ≤ R

−
[

1+ 1−ε
2+ε

(
R
|x |
)3
]

E0 · x |x | > R,
(4.11)

with ε := εi /εo the permittivity ratio between the material inside

and outside the sphere, and R the sphere radius. This electric

potential creates an electric field E (x) with

E (x) =

⎧⎪⎨
⎪⎩

3
2+ε E0 |x | ≤ R[
1+ 1−ε

2+ε
(

R
|x |
)3
]

E0 −3 1−ε
2+ε

R3(E0·x)
|x |5 x |x | > R.

(4.12)

We create the external field by prescribing the potential ϕ0(x) =−E0x on the surfaces of a cube

of edge length 200R, and place the dielectric sphere of radius R with a permittivity ratio of

ε= 80 (which is typical in experiments) near the center of the cube. Even at a relatively low

mesh resolution of ∼ 870 degrees of freedom, the numerical solution for the exterior electric

field is accurate (Figure 4.15a). In particular, the jump in the electric field at the surface of the

sphere is reproduced well.
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4.8. Droplet in a Uniform Electric Field

One quantity of particular interest is the electric field on the surface, which determines the

Maxwell surface stress. Since the tangential field components are determined by a surface

integral (see Section 2.3.2), we can expect a significant error in these components. We quantify

the error of the surface field as

εE :=
√

1

Nv

∑
i

||Ei −E (xi )||2
||E (xi )||2 , (4.13)

with Nv the vertex count, xi the vertex positions, Ei the calculated field at vertex i , and the

analytic solution E (x) as in eq. (4.12). Due to the error in the tangential components, the total

error in the surface field (Figure 4.15b) stays in the percent regime even at high resolutions.

The error in the normal component of the field, which dominates the surface stress at high

permittivity ratios (Section 2.3.2), is several orders of magnitude smaller.
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Figure 4.15: Field around a dielectric sphere in a uniform electric field. a) Field strength along
the x-axis through the sphere center. b) Error εE of the electric field determined on the surface
of the sphere.

4.8 Droplet in a Uniform Electric Field

Figure 4.16: Deformed
droplet in an electric field,
at ε= 10, BoE = 0.7, colored
by the normal component
of the electric field.

Due to the Maxwell stress on the surface, dielectric droplets in

a quiescent flow deform from their initial spherical shape when

an electric field is present. The deformation grows with the field

strength, but is countered by the surface tension. We therefore

describe the field strength by the dimensionless electrical Bond

number

BoE := ε0εc E 2R

γ
, (4.14)

with εc the relative permittivity of the outer phase, E the elec-

tric field strength, R = 3
√

3V
4π the mean droplet radius and γ the

surface tension.
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Figure 4.17: Deformation of a dielectric droplet in a uniform field, depending on the field
strength E 2

0. Solid lines are analytical results for spheroidal droplets from Sherwood [1988],
dotted lines the small-deformation approximation by O’Konski and Thacher Jr. [1953]. Points
are fully resolved results from our code, at ∼ 105 degrees of freedom.

For a uniform field E0 as in Section 4.7 and small BoE , the droplet assumes the shape of a

prolate spheroid of length l and width b. O’Konski and Thacher Jr. [1953] describe the droplet

shape by its eccentricity e :=
√

1− b2

l 2 and use energy minimization to arrive at a relation

e = 3

2

ε−1

ε+2

√
BoE (4.15)

between field strength and droplet shape, which is valid for small deformations (e2 � 1). The

aspect ratio l
b of the droplet is then

l

b
= 1√

1− (3
2
ε−1
ε+2

)2
BoE

. (4.16)

With the same energy approach, Sherwood [1988] (and later Shchukin and Grigor’ev [1999])

found that ellipsoidal droplets at high permittivity ratios (ε> 20.8) are bistable, in other words

have several energy minima for a range of field strengths E 2
0 .

We create a highly resolved droplet mesh of ∼ 104 degrees of freedom2 at the center of a cube

of edge length 100R , on which we prescribe the external potential for field E0 as in Section 4.7.

Starting from a sphere of radius R , we advance forward in time until a steady state solution has

been found. The deformation matches the analytical predictions by O’Konski and Sherwood

(Figure 4.17). The droplet shape is spheroidal for small deformations. For large deformations,

2nDoF ≈ 8000 for the electrostatic solver, nDoF ≈ 24000 for the Stokes solver.
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the droplets deviate from a purely spheroidal shape in that they develop more pointed tips

at both ends. This observation goes beyond the assumption of a spheroidal shape that the

analytic approximations are based on.

Stability of a Water Droplet

One permittivity ratio that we are particularly interested in is the value ε= 80, which is the

contrast in electric permittivity between a water droplet and a non-polar outer phase (Lide

[2004]). Using the approach of Sherwood [1988], we add up the surface energy

US = 2πγR2
[
α−2/3 +α1/3 arcsin(e)

e

]
, (4.17)

where α := l
b = 1�

1−e2
describes the droplet deformation, and the electrostatic energy (Landau

et al. [1984]; Sherwood [1988])

UE = −1

3

2πε0εc E 2
0 R3(ε−1)

1+ 1
2 (ε−1) · A1(e)

(4.18)

with A1(e) =− 1
α2e3

[
2e − ln

(1+e
1−e

)]
. Normalizing the total energy by the factor 2πγR2 gives

U∗
Σ := US +UE

2πγR2 = α−2/3 +α1/3 arcsin(e)
e − 1

3

BoE (ε−1)

1+ 1
2 (ε−1) · A1(e)

. (4.19)

We then numerically find the energy saddle points

∂U∗
Σ

∂e
= ∂2U∗

Σ

∂e2 = 0, (4.20)

i.e. the values of BoE where a stable droplet shape becomes unstable. At ε= 80, we find the

lower equilibrium shape of the droplet to become unstable at a Bond number of BoE = 0.23342

and a deformation of l
b = 1.94. In the simulation, which does not assume a spheroidal droplet,

the droplet with small deformation is stable at BoE = 0.23, whereas at BoE = 0.24 we don’t find

an equilibrium shape (Figure 4.17).

When the outer phase is slightly polarizable (for polydimethylsiloxanes, the relative permittiv-

ity is 2.5 to 2.8 depending on the molecular length [Moretto et al., 2000, p. 684]), the permittivity

ratio is on the order of ε≈ 30. In this case, Sherwood’s calculations suggest the critical Bond

number where the droplet shape becomes unstable to be in the range 0.25 ≤ BoE ≤ 0.3.
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4.9 Summary

We validated our numerical code, and quantified the errors of the numerical discretization.

Due to the smooth interpolation of the surface, the flow around a solid sphere (Section 4.1)

can be calculated at high precision, with a relative error of 10−6 at a moderate 103 degrees of

freedom. The stress on a solid sphere moving in quiescent flow is constant on the surface, and

can therefore be represented with linear basis functions. The surface interpolation, numerical

quadrature and the solver for the linear system, which we converge to an accuracy of 10−8,

have a combined error below 10−6 in this situation.

Couette flow in a cuboid fluid volume (Section 4.2) can be represented with bilinear elements,

and errors are on the order of 10−6. However, when flow and stress on the boundary do not

change linearly, as in the case of flow through a rectangular duct, errors are three orders of

magnitude higher: The order of the finite-support basis functions is too low to represent

Stokes solutions accurately, and high mesh resolution is needed to compensate this error.

High mesh resolution is particularly important in narrow gaps, where the mesh spacing should

be at least on the order of the gap width (Section 4.3).

The validation of the droplet shape in different flow situations (Sections 4.4-4.6) confirm

the correctness of the implementation. In a cylindrical capillary (Section 4.5), we observe

an error in the mean flow on the order of 6%, which is due to the bilinear representation of

the parabolic flow profile in the inlet and outlet, but also the curvature in the walls of the

channel geometry, which we represented with a flat interpolation between mesh vertices. In

the simulations we will show later, microchannels have rectangular cross-section, so that a

flat surface representation is adequate for the channel surface.

The electric field on a droplet surface is calculated with two steps of boundary integration (see

Section 2.2.2): In a first step, the flux through the surface is determined, from which the field

is calculated via a nearly singular boundary integral in the second step. The total error of this

procedure lies at 10−2 to 10−1, depending on the mesh resolution (Section 4.7). The coupling

to the Stokes solver produces results with similar accuracy (Section 4.8).

From our validation, we find that the linear order of shape functions dominates the error in

our simulations. To increase the accuracy, quadratic elements can be used. Implementing

them in the numerical code is tedious, but well supported by the numerical framework, and

will improve the accuracy of the scheme.
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Droplets in microfluidic applications display complex interactions with each other and the

surrounding microchannels. We combine numerical simulations with experimental results to

understand the droplet behavior in two specific environments.

Microfluidic experiments are typically observed under a microscope, showing a 2D image

of the droplet motion. System properties like the fluid viscosities or surface tensions are

determined outside the device, before the experiment, and flow fields in the device can be

measured by adding tracer particles to the flow. However, the resolution of experimental mea-

surement techniques in the microfluidic system is limited, and quantities such as the pressure

distribution or local interfacial stresses cannot be measured at all. Numerical simulations

give us access to these important quantities. By comparing experimental observations to

numerical simulations of the same system, we unveil the local physical effects that drive the

behavior.

In this part of the thesis, we use the numerical boundary-element method to understand

droplet dynamics. In Chapter 5, we investigate the interaction of two droplets as they meet

in a Y-junction. We explore the process of droplet breakup, which is the limiting factor

when reinjecting a dense emulsion into a microfluidic device. In Chapter 6, we analyze the

efficiency of dielectrophoretic droplet sorters, which are an important component in many

microchannel designs. Based on insights gained from numerical simulations, we design new

electrode geometries for sorters, and show their superior performance in experiments.

The work leading to the results in this part of the thesis has been carried out in collaboration

with other researchers, and is being prepared for publication in scientific journals. A preamble

in each chapter explains the contributions of the respective collaborators, and the status of

submission.

a) b)

Droplet dynamics in microfluidic applications. a) Interaction of two droplets in a Y-junction
(Chapter 5). b) Droplet sorting with dielectrophoresis (Chapter 6).
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Chapter 5. Droplet Breakup in Constrictions

When droplets that form a concentrated emulsion are funneled into a constriction, droplet

interaction will lead to the disintegration of droplets under flow parameters where single

droplets would keep their integrity. This jamming phenomenon limits the throughput for

droplet reinjection, and for on-chip applications that store droplets in a densely packed

configuration before processing. Rosenfeld et al. [2014] investigated the system and reported

the probability of droplet breakup in its dependence on the capillary number C a, which scales

with the flow rate for a given droplet system. Gai et al. [2016b] described the rearrangement

process of droplets before entering a constriction. For the dependence on system parameters

like the capillary number (C a := μU /γ), geometry of the constriction (including droplet

confinement a := R/RH , with R the characteristic droplet radius and RH a characteristic

channel diameter) and viscosity ratio λ, Gai et al. [2016a] found a scaling of the probability of

droplet breakup at the constriction with the product C a ·λ ·a. The breakup of droplets was

generally attributed to the interaction of droplet pairs at the constriction [Rosenfeld et al.,

2014], but no detailed description of this interaction or the underlying physical process was

available.

5.1 Time-varying Droplet Configuration Determines Break-up Pro-

bability of Drops within a Concentrated Emulsion

In Khor et al. [2017], we correlated the probability for droplet breakup in concentrated emul-

sion with the offset in the leading edge between two respective droplet pairs upon entering the

constriction. With Δx the leading-edge offset between two droplets, and D the characteristic

droplet diameter, the fate of the more advanced droplet of the pair is determined by the

capillary number C a and the relative leading-edge offset Δx/D. At large capillary numbers

(C a ≥ 10−2) and small offsets (Δx/D ≤ 0.2), there is a region where droplets always break

up (Figure 5.1a). Small capillary numbers and/or large offsets do not lead to breakup, as

Figure 5.1: Droplet breakup in a concentrated emulsion. a) The occurrence of breakup
depends on the leading-edge offsetΔx between subsequent droplets, and the capillary number
C a. b) In the bistable region, the arrangement of additional droplet influences the breakup. c)
The distribution of leading-edge offsets between droplets changes with the capillary number.
– Figure reproduced from Khor et al. [2017] with permission from the other authors and the publisher.
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5.2. Interaction and Breakup of Droplet Pairs in a Microchannel Y-Junction

the droplets rearrange and enter the constriction one after the other. In between these two

regions, there is a bistable regime where offset and capillary number alone do not predict

whether a droplet will break up: In the bistable region, the arrangement of additional droplets

determines whether the leading droplet breaks (Figure 5.1b). The distribution of leading-edge

offsets is a result of the droplet self-organization upstream from the constriction. At low flow

rates (C a ∼ 10−3), the distribution is peaked around Δx/D ≈ 0.5, whereas higher flow rates

(C a ∼ 10−2) lead to a more homogeneous offset distribution with a higher maximum offset

(Figure 5.1c). The distribution of offsets measured in the constriction and the relation between

offset and breakup are sufficient to determine the fraction of droplets that break up.

Since the break-up probability of droplets is determined to a large extent by the configuration

of just two droplets as they enter the constriction, we now investigate the interaction of two

droplets that meet in a microchannel Y-junction.

5.2 Interaction and Breakup of Droplet Pairs in a Microchannel

Y-Junction
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Lausanne (EPFL), Station 9, 1015 Lausanne, Switzerland
2 Department of Mechanical Engineering, Stanford University, Stanford, CA 94305, USA

Abstract
We combine theory, numerics and experiments to investigate the breakup of two identical

droplets entering a Y-junction with controlled spatial offset by which the second droplet

trails the first. Based on fully resolved 3D simulations, we describe the flow physics leading

to breakup. Scaling arguments, numerical simulation and experiments consistently show

that for small initial offset breakup will occur with the fragment volume depending linearly

on the offset. Above a critical offset, which increases with the capillary number, there is no

breakup but both droplets subsequently enter the constriction without disintegration.

For capillary numbers up to C a � 10−2, the two-droplet Y-junction results are consistent

with breakup observations in dense emulsions flowing through a constricted microchannel,

where droplet breakup limits the maximal throughput for sequential droplet processing. The

deterministic relation between initial offset and resulting breakup in Y-junctions suggests

that the stochasticity that is observed in emulsion breakup is caused by droplet interactions

in the emulsion before the constriction, rather than in the microchannel constriction itself.

The numerical value of the prefactor in the linear relation between initial offset and droplet

fragment volume determined from precision experiments slightly differs from the one ex-

tracted from fully resolved numerical simulations. This discrepancy suggests that even at

very high bulk surfactant concentrations, the rate-limiting surfactant adsorption kinetics

allows for Marangoni stresses to develop and modify the droplet dynamics.
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5.2.1 Introduction

In recent years, droplet microfluidics has become a standard tool for high-throughput bio-

chemical assays, such as polymerase chain reaction (PCR) [Kiss et al., 2008], in vitro enzyme

evolution, and drug screening [Brouzes et al., 2009; Agresti et al., 2010; Baret et al., 2009b]. One

of the strengths of droplet microfluidics is the high rate at which droplets can be processed.

However, this rate is limited due to the occurrence of droplet breakup at high flow velocities, in

particular when droplets are stored as a concentrated or dense emulsion and then reinjected

into the microfluidic system. Here, we investigate the physical mechanism driving the breakup

within the emulsion that results primarily from the interaction of two droplets as they enter a

narrow constriction simultaneously.

Past research on the breakup of droplets has focused on single droplets, either in the shear

of an external flow [Stone and Leal, 1989b,a] or in interaction with microchannel walls in

junctions [Link et al., 2004; Ménétrier-Deremble and Tabeling, 2006; Leshansky and Pismen,

2009]. Here, droplet breakup occurs when the exterior flow stretches the droplet, forming a

neck that undergoes an autonomous pinch-off process [Hoang et al., 2013]. A similar process

of induced neck formation and pinch-off has been observed experimentally for the interaction

of two droplets in a T-junction [Christopher et al., 2009].

In emulsions that enter a constricted microchannel, the situation is more complicated. There,

the occurrence of breakup appears to be stochastic, and the occurrence of breakup and size

distribution of breakup fragments follows a probabilistic description. First results on the

statistics of droplet breakup in dense emulsions were reported by Rosenfeld et al. [2014],

who gave the probability of droplet breakup in terms of the capillary number C a, which is

the ratio of viscous and surface tension forces. Gai et al. [2016a] reported on the change of

breakup probability when varying the droplet size and the viscosity ratio between droplet and

continuous phase. Recently, we observed that for capillary numbers in an intermediate range

(C a ∼ 10−3), droplet breakup depends on the initial offset between the leading edges or the

fronts of two droplets entering the constriction [Khor et al., 2017]. This observation suggests

that droplet breakup in dense emulsions is controlled by the deterministic interaction of two

droplets in the constriction, with stochasticity resulting from the irregular arrangement of

droplet pairs in the dense emulsion.

Droplet breakup is controlled by a competition between viscous stresses that scale with

fvisc = μdU
H and promote elongation and breakup of the droplet, and the surface tension stress

that scales with fsurf = γ
R that counteracts deformation. μd , U , H , γ, and R are the droplet

viscosity, characteristic droplet speed, channel height, interfacial tension, and droplet radius,

respectively. The ratio between viscous stress and surface tension,

fvisc

fsurf
= μdU R

γH
= C a ·λ ·a (5.1)

(with viscosity ratio λ = μd

μ , capillary number C a = μU
γ , and relative droplet size a = R/H),
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a)

170 μs

383 μs

595 μs

b)

170 μs

383 μs

595 μs

50 μm
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Figure 5.2: a), b) Interaction of droplet pairs (from the experiment at C a = 0.021). Depending
on their initial offset, droplet D1 either breaks up (a), or not (b). The arrow in the last frame
of (b) points out the shedding of a thin sheet of fluid from droplet D1. c) Three-dimensional,
fully resolved droplet shape (from the simulation at α= 30◦, C a = 0.06). The surface mesh
has approximately 7,000 vertices, corresponding to 21,000 degrees of freedom. Droplets are
colored by the streamwise velocity. At mid-height in the channel, we determine the pressure
field (colors) and velocity field (arrows).

gives an approximate scaling of the onset of droplet breakup [Gai et al., 2016a].

In this paper, we report an experimental, numerical and theoretical investigation of the

two-droplet interaction that leads to droplet breakup. We study an isolated system of two

identical droplets meeting in a Y-junction (Figure 5.2), where droplet breakup depends on

the precisely controlled symmetry-breaking offset between the droplets. Based on fully-

resolved 3D numerical simulation data, we quantitatively describe the physical processes that

lead to the breakup process. A scaling analysis, fully resolved 3D simulations and precision

experiments consistently show that (1) droplet breakup occurs when their fronts are below a

critical offset, (2) the volume of the leading fragment depends linearly on the offset and (3) the

value of the critical offset itself grows with the capillary number so that at higher C a, a wider

range of initial offsets leads to droplet breakup.

Precise quantitative comparison of prefactors between experiment and numerical simulation

suggests that even at very high bulk surfactant concentrations, non-equilibrium surfactant

distributions result in Marangoni stresses that modify the droplet dynamics.

5.2.2 Problem Formulation and Methods

Problem Formulation

In a continuous phase of viscosity μ, two identical droplets of volume V = 50pL and viscosity

μd enter a Y-junction between two symmetric inlet channels of height H = 25μm and width
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W = 30μm, and one outlet channel of the same size. The angle of the channel junction is

α = 15◦ or α = 30◦. The flow rate in the two inlets is equal, and the total flow Q is varied

between 0.4mL/h and 2mL/h. One droplet enters the constriction ahead of the other by a

leading-edge offset δ0 of up to 35μm.

We choose the system height H as our characteristic length scale and the mean outlet velocity

U :=Q/(W H) as characteristic velocity scale, which defines a characteristic time scale τ :=
H/U in a range between 30μs and 170μs. For a fixed channel geometry, the system is described

by three dimensionless parameters, which are the droplet confinement factor a := 3
√

3V
4π /H ,

the viscosity ratio λ := μd

μ , and the capillary number C a := μU
γ , where γ is the surface tension

between the droplet and continuous phase. In our system, confinement factor and viscosity

ratio are fixed to a = 0.914 and λ= 0.8. At the considered length scales, the effect of inertia

can be neglected. For fixed channel geometry, droplet size and fluids, we have one control

parameter, the capillary number (controlled by the flow rate), which we vary between C a =
0.007 and C a = 0.1. The dynamics of droplet breakup depend on the capillary number C a,

and the initial droplet configuration, measured by the offset δ0.

Numerical Simulation

Numerical simulations are performed with a Boundary Element Method (BEM) numerical

code based on the DEAL.II numerical framework [Bangerth et al., 2007]. The MPI-parallel C++

code solves the Stokes equations for incompressible Newtonian flow,

μ∇2�u −∇p =�0, (5.2)

∇·�u = 0, (5.3)

both in the continuous phase and inside the droplets (with μ the dynamic viscosity inside the

respective domain), under no-slip boundary conditions on the channel side walls, a prescribed

velocity profile at the channel inlet, a constant reference pressure at the channel outlet, and a

Young-Laplace surface stress of the form

Δ�f =−2γκ�n (5.4)

at the droplet interfaces, where γ is the surface tension, κ the mean curvature and �n the

interface normal. Surfaces are represented by a dynamically refined quad mesh with a second-

order (paraboloid) surface shape interpolation. Time stepping uses a first-order explicit

scheme. The linear system of approximately 21,000 degrees of freedom (for velocity and stress

at all interfaces) is solved with the iterative GMRES algorithm. The mesh is modified after each

time step to fix the droplet volumes to the desired value, ensure a minimum gap width between

all interfaces of 10−2H , and suppress distortions of the mesh cells. Simulations are performed

for 0.03 ≤ C a ≤ 0.1 in increments of 0.01, for initial droplet offsets 0.05H ≤ δ0 ≤ 1.5H . No
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breakup is observed for C a < 0.05. The viscosity ratio is λ= 0.8 and the confinement factor is

a = 0.914. The BEM-scheme does not capture the topological transition of droplet breakup.

Instead, we detect the formation of a neck, and terminate the simulation when the neck width

is below 10% of the channel width. Each simulation run requires between 600 and 2,700 CPU

core-hours on a state-of-the-art x86 processor, with simulations at lower C a demanding more

computational effort. In total, we perform 122 simulations for the different values of C a and

δ0 mentioned above.

Laboratory Experiments

Laboratory experiments use microchannels fabricated in poly(dimethylsiloxane) (PDMS) by

soft lithography (Figure 5.3a). The microchannels are bonded to a glass substrate using oxygen

plasma and then treated with Aquapel (Pittsburgh, PA) to make the walls of the channel

hydrophobic. The height H of the channels is 25μm and the width W of the constriction

channel is 30μm. The entrance angle α to the constriction is 15◦ respectively 30◦ (Figure

5.3b,c). The exit angle from the constriction is 5◦ to prevent droplet coalescence.

We use a flow-focusing nozzle to generate monodisperse droplets. The disperse phase con-

sists of deionized water and the continuous phase consists of HFE-7500 (3M) containing an

ammonium salt of Krytox (2% w/w) as a droplet stabilizer. The interfacial tension between the

two liquids is measured to be 26.25 mN/m using a pendant drop goniometer. The viscosity of

the continuous phase is 1.24 mPa s. The mean size of the droplets is 50 pL and the coefficient

of variation of droplets is about 3% in volume. The generated droplets are collected and stored

in a 3-mL syringe for 4 hours at room temperature. During this time, the drops cream to the

top of the syringe to form a concentrated or dense emulsion, as the drops are less dense than

the continuous phase. The volume fraction of the emulsion obtained is about 85%. The size of

the droplets remains unchanged after their concentration.

For the break-up experiments, the dense emulsion is split into two syringes. The two syringes

a)

Concentrated
Emulsion Inlet

HFE 7500 Inlet

Outlet

Y-Junction

1 mm  

b) c)

Figure 5.3: a) Design of the experimental microfluidic device. Microchannels have a height
of H = 25μm and a width of W = 30μm, flow rates vary from 0.4 mL/h to 2.0 mL/h. b), c)
Y-junction geometry: Two rectangular channels of height H and width W meet at different
angles α= 15◦ (b), α= 30◦ (c). The junction leads into a constriction of width W . Two identical
droplets D1, D2 arrive at the junction with an offset δ0 in the streamwise direction.
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of emulsions are injected into a new device via two separate inlets. Immediately downstream

from the inlets for the emulsion, extra continuous phase is introduced at 90◦ to both of the

branches to lower the volume fraction of the emulsion. The flow rate ratio between the dense

emulsion and the continuous phase is fixed at 0.2 to obtain a final droplet volume fraction

of about 14%. At this volume fraction, the drops are spaced by a sufficiently large distance

from each other to avoid droplet interactions within the same branch prior to entering the

constriction. The diluted drops from the two branches then travel downstream and meet at

the Y-junction leading to the constriction, where break-up events are recorded. The height of

the channel is smaller than the diameter of the droplets when spherical, and the drops always

span the whole height of the channel. The total flow rates for our experiment varies from 0.4

mL/h to 2.0 mL/h, and are controlled by three syringe pumps (Kent Scientific), two for the

dense emulsions, and one for the extra continuous phase to dilute the emulsions.

An inverted microscope mounted with a high-speed camera is used to acquire images of

droplet pairs flowing through the constriction at a frame rate of 45,000 frames per second.

This frame rate is sufficiently fast to resolve the leading edges or the fronts of the droplet pairs

at the flow rates tested. A custom Matlab code is used to track the location, area, and shape

of all droplet pairs (n > 1,000) as well as their broken fragments, and also to measure the

offset between the droplet pairs in each frame. Details of the Matlab droplet pair detection

algorithm are described by Gai et al. [2016a] and Khor et al. [2017].

5.2.3 Results and Discussion

Droplet interaction in the Y-junction proceeds as follows: As the two droplets enter the space

of the junction, their interfaces form a vertical double interface. The front of the first droplet

moves into the constriction more quickly, whereas the front of the second droplet slows down.

When the front of the second droplet approaches the constriction, a neck forms in the first

droplet. In situations where the initial leading-edge offset is small, this neck gets progressively

thinner and finally pinches off – the first droplet breaks into two fragments (Figure 5.2a).

Breakup is avoided when the initial offset is larger (Figure 5.2b): Like in the case of small offset,

the droplets form a double interface, and the front of the first droplet moves faster while that of

the second slows down. However, the rear of the first droplet clears the constriction entrance

before a neck can pinch off – both droplets stay intact.

Physical Description of the Breakup Process

To gain a quantitative understanding of the breakup process, we perform a full 3D simulation

of the flow and the droplet interaction in a 30◦-junction at C a = 0.06 and offset δ0 = 0.1H .

The droplet interface shape is resolved on a sub-μm scale with a dynamic mesh of approxi-

mately 7,000 vertices (Figure 5.2c). The simulation gives access to the time-dependent full 3D

geometry, velocity fields and the pressure.
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Figure 5.4: Interaction of two droplets with offset δ0 = 0.1H at junction angle α = 30◦ and
capillary number C a = 0.06 (simulation). a) Midplane pressure field and contours. b) Flow
velocity at the constriction (vertical solid line in a) in units of the mean flow rate U . The
dotted line marks the position of the droplet double interface. c) Streamwise pressure profile
(horizontal full and dashed lines in (a)) inside droplets D1 and D2. Due to the different front
curvatures at points A and B, the pressure jump ΔpA is smaller than ΔpB, inducing a pressure
gradient that drives a relative flow.

As the droplets move into the common space of the junction and form a common interface,

the front cap of the first droplet D1 maintains a larger radius than the front of droplet D2 due

to the initial offset. Across our simulations, we find that for small but finite offsets (δ0 < 0.3H)

the difference in front radius ΔR scales approximately with ΔR ≈ 0.25δ0.

The difference in front radius is the driving force behind the subsequent dynamics. For an

interface under surface tension, a curvature of the interface leads to a pressure jump between

the two sides, described by the Young-Laplace equation [Batchelor, 1967]

Δp = γ

(
1

R1
+ 1

R2

)
, (5.5)

where R1 and R2 are the principal radii of curvature. The resulting pressure field across both

droplets is shown in Figure 5.4: When the droplets reach the constriction, the horizontal front

radius of D1 (point A) is larger than that of D2 (point B), so that the pressure jump ΔpA is

smaller than the pressure jump ΔpB. As the pressures are similar towards the back of the

droplets, the pressure gradient within the bulk of D1 (C → A) is larger than inside D2 (C →
B). The difference in pressure gradient drives a relative flow between the droplets (Figure
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a)

t = 6.5 τ

b)

t = 7.5 τ

c)

t = 8.5 τ

Figure 5.5: Interaction of two droplets with offset δ0 = 0.1H at junction angle α = 30◦ and
capillary number C a = 0.06, at different times t after droplets enter the junction. Images
from the simulation. A neck forms in the leading droplet, first only in the horizontal direction
(a), then also vertically (b). After the neck starts forming in the vertical direction, pinch-off
happens quickly (c).

5.4c). The relative flow increases the offset δ and thus the front radius of D1, the process is

self-reinforcing and leads to drainage of D1 ahead of D2. The drainage rate is proportional to

the surface tension γ and inversely proportional to the shear stress μdU that counteracts the

flow. A quantitative estimate of the drainage rate is given in Appendix 5.2.5.

The formation of a neck and subsequent pinch-off interrupt the drainage process: Along the

double interface behind the front caps, the pressure in droplet D2 is higher than in droplet

D1. This pressure difference is not fully compensated by the curvature of the double interface

between the droplets, and leads to a cross-stream motion of the double interface towards

droplet D1, so that droplet D1 elongates and a neck forms. As the neck enters the constriction,

it gets so narrow that curvature in the vertical z-direction becomes larger (Figure 5.5). Driven

by the large curvature in the vertical direction, the interface of D1 separates from the top and

bottom channel walls. From the point where the neck starts to cave in vertically, the process is

self-reinforcing and resembles the Rayleigh-Plateau instability [Plateau, 1873; Eggers, 1997].

For a similar case of single-droplet breakup, Leshansky and Pismen [2009] and Hoang et al.

[2013] found the transition to this autonomous pinch-off to lie at a neck width of 0.5H in

channels with near-unity aspect ratio.

The time scale ΔT for the breakup process is dominated by the advection time between the

formation of the double interface in the junction, and the arrival of the droplet caps in the

constriction. This time scale is independent of the capillary number but only depends on

geometry, and the characteristic time scale τ≡ H/U . Compared to this time, the formation of

the vertical neck and pinch-off happen quickly. Breakup is avoided when the entire volume of

D1 can drain ahead of the forming neck during the time ΔT .

In summary, droplet interaction in a Y-junction is dominated by a drainage flow driven by

surface tension. The drainage, by which one droplet moves ahead of the other, is interrupted

by the formation of a neck due to a difference in internal pressure between the droplets. In the

constriction, the neck formation becomes self-reinforcing, and leads to pinch-off.
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Dependence of the Fragment Volume on the Initial Offset

We now use our understanding of the physical processes that drive droplet breakup to model

the dependence on capillary number and initial droplet offset. In particular, we describe

the effect of these parameters on the volume of the breakup fragments, which we can quan-

titatively determine in both simulation and experiment. With V1 the volume of droplet D1

before entering the junction, we consider the volume V1a of the first fragment of this droplet

after passing the constriction. If V1a =V1, no breakup has occurred. If V1a <V1, breakup has

occurred, and at least two fragments have been created.

Neck formation takes place behind the front cap of droplet D2, and only after some time

ΔT , during which the fluid in D1 drains ahead of the neck. The volume V1a is then made

up of three distinct parts. These parts, as illustrated in Figure 5.6, are the volume Vcap of the

front cap of D1, the volume Vδ0 by which the first droplet was ahead of the second as they

entered the junction, and the volume Vdrain that drains ahead of the neck during the neck

formation. We approximate the shape of the front cap D1 by a half-ellipsoid of radius W /4

in the horizontal plane and half-height H/2, with a volume of Vcap ≈ π
24W 2H . The volume

Vδ0 depends on the initial offset δ0 and the cross-sectional area of the inlet channel, and is

approximated as Vδ0 ≈ W Hδ0
cosα .

Since the relation between the offset and the front radius difference ΔR is unknown, an

estimation of the drained volume Vdrain proves difficult. However, we know that the drained

volume will grow with the initial offset δ0 (which determines the initial curvature difference)

and the factor γ
μdU ≡ 1

λC a (which drives the drainage flow based on that curvature difference).

This suggests a draining volume of Vdrain ≈C1 · δ0
λC a , where C1 is an unknown constant. The

sum of the three volume components gives the estimate

V1a = Vcap +Vδ0 +Vdrain ≈ π

12
W 2H + W H

cosα
·δ0 +C1 · δ0

λC a
. (5.6)

From this relation, we get several predictions for the scaling of the first fragment volume: We

a) b)

Figure 5.6: The final volume V1a of the first fragment of D1 after pinch-off comprises three
parts: The volumes Vδ0 and Vcap, which are ahead of the neck before the start of necking (a),
and the volume Vdrain that drains through the neck before it pinches off completely (b). The
neck forms behind the front cap of droplet D2 (arrow).
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expect the fragment volume to grow linearly with the offset, and with a steeper slope in the

case of smaller capillary numbers. We define the critical offset δcrit as the value of δ0 at which

the fragment volume reaches the full droplet volume. No breakup occurs for δ0 ≥ δcrit. If the

linear relation between initial offset and fragment volume is steeper at lower C a, we expect

δcrit to be small at low C a, and increase as C a gets larger.

Scaling of the Fragment Volumes: Simulations

We test the analytical prediction using extensive numerical simulations with adaptively refined,

highly resolved surface meshes (21,000 degrees of freedom) and at high temporal resolution

(adaptive time steps around 10−3τ) for 122 different combinations of capillary number and

initial offset. The junction angles are α = 15◦ and α = 30◦, the capillary number range is

0.05 ≤C a ≤ 0.1 and initial offsets are in the range 0 < δ0 < 1.4H . For the entire range of offsets,

the fragment volume V1a displays the linear dependence on the initial offset that we predicted

from the model (Figure 5.7a). In accordance with our expectations, the linear relation between

initial offset and fragment volume is much steeper for small C a than for large values of the

control parameter. The critical offset δcrit grows with the capillary number (Figure 5.7b). At

small C a, breakup only occurs for highly symmetric droplet configurations, whereas at large

C a (C a = 0.1), we observe breakup even in situations where one droplet is ahead of the other

by half of its length.

A higher junction angle decreases the range of offsets where breakup is observed. For junction

angle α= 30◦, the values for the critical offset are smaller than for α= 15◦, since our Y-junction

geometry leaves more space for droplet rearrangement and drainage at higher angles.

In addition to the behavior predicted by the analytic approximation, we find that for very small

initial offsets, V1a is not C a-independent, but decreases with increasing C a. Experiments
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Figure 5.7: Simulation results for the relation between initial droplet offset and the resulting
droplet breakup. a), b) Relative volume of the first droplet fragment after breakup, at a junction
angle of α= 15◦ (a) and α= 30◦ (b). As the relative volume reaches one, no breakup occurs.
Dashed lines show the piecewise linear trend. c) Critical offset at which no breakup occurs,
as function of capillary number. The critical offset δcr i t is the offset δ0 at which the linear
extrapolation reaches 1.
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confirm this behavior. The dependence on C a for infinitesimal initial offsets, which the model

for finite offsets does not capture, is likely a consequence of the fact that at higher capillary

numbers, the droplet tip is more pointed and has a larger liquid film to its sides [Lac and

Sherwood, 2009].

Scaling of the Fragment Volumes: Experiments

Experimental measurements complement the simulations. We perform experiments for the

same Y-junction geometry as in the simulations, with the same junction angles and droplet

size. By varying the flow rate, we measure capillary numbers in the range 0.007 ≤C a ≤ 0.035.

We do not actively control the offset between the two droplets coming in from the two branches

prior to the Y-junction, but take advantage of the random variation in the spacing of droplets.

By examining a large number of droplet pairs, this random variation in spacing conveniently

allows us to obtain a large number of initial offset values δ0 without the need for complicated

active flow control. As the optical setup only allows imaging of the droplets in the horizontal

plane, we measure the area of the droplets in this image plane as a measure for their volume.

As seen in Figure 5.8, while there is a larger variation in the experimental data, they display

the same behavior as the simulation results: The relative size of the first fragment grows

linearly with the initial offset, and at a steeper slope for lower capillary numbers (Figure

5.8a,b). Consequently, the critical offset for droplet breakup grows with the capillary number,

so that for larger capillary numbers, breakup is a common phenomenon, which occurs even

for offsets on the scale of the droplet length (Figure 5.8c). As in the simulations, a larger

junction angle results in a smaller critical offset.

Both the data from the simulation and from the experiments show the behavior that we expect

from the theoretical scaling analysis. They explain how droplet breakup is more frequently

observed at higher capillary numbers: The drainage flow, which prevents breakup, is driven by

surface tension and scales with the inverse capillary number. For small capillary numbers, the
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Figure 5.8: Experimental results for the relation between initial droplet offset and the resulting
droplet breakup. a), b) Relative area of the first droplet fragment after breakup. As the relative
area reaches one, no breakup occurs. Dashed lines show the piecewise linear trend. c) Critical
offset at which no breakup occurs, as function of capillary number.
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critical offset for breakup is small, so that it is statistically unlikely for a droplet pair to have an

even smaller offset and break up. At larger capillary numbers, there is a wider range in offsets

for which breakup is possible, so that droplet breakup becomes more and more frequent.

While we find great qualitative agreement between the fragment size data from the simulation

and experiment, the experiments reveal an apparent quantitative discrepancy in the capillary

number at which breakup is observed: Droplets break up at capillary numbers that are lower

than the numerical predictions by a factor of 2−5. This prefactor is only of order unity, but

cannot be attributed to experimental uncertainties or numerical error alone. The potential

influence of finite Reynolds number effects, which the simulation neglects, cannot account for

this difference either: At the highest flow rate, Q = 2 mL/h (C a = 0.035), the local acceleration

of the droplet front is U /τ2 ≈ 2·104 m/s2 for a fluid volume of roughly H 3 ≈ 15pL. The resulting

inertial force of 43μN is small compared to the 2.9mN of the Laplace pressure acting on the

droplet cap. Rather, we can show that the reason for the discrepancy is a nonequilibrium

distribution of surfactants on the droplet interfaces, which is not part of the simulation.

For the surfactant used in the experiment (Krytox), the adsorption time to the interface

is known to be on the scale of tens of milliseconds, and determined by the kinetics of the

adsorption process rather than the bulk concentration [Riechers et al., 2016; Baret et al., 2009a].

The time scale of droplets passing the constriction, ΔT ≈ 60−340 μs, is two orders of magnitude

smaller than that, so that we can assume that almost no additional surfactant is adsorbed

during the process. This has two important consequences: First, since the total droplet area

changes during the deformation process, the area concentration of surfactant and thus the

surface tension changes accordingly. Second, the local expansion and contraction of the

surface creates Marangoni stresses, which act along surface tension gradients in the interface

plane. These Marangoni stresses counteract the deformation and thus prevent drainage,

which promotes droplet breakup even at lower capillary numbers than those encountered in

the simulation.

Quantitatively, the surfactant typically decreases surface tension by roughly a factor of two

[Riechers et al., 2016], so that depletion of surfactants could effectively double the Laplace

pressure in the droplet front cap. From the simulation, we extract the in-plane flow on the

droplet surface, which redistributes surfactants and moves them to the rear of the droplets.

The resulting flow field is shown in Figure 5.9, together with a color-coding for regions where

the interface expands (red) or get compressed (blue). The total interfacial area of Droplet

1 expands by 32% during the droplet breakup (Droplet 2: 12%), with a much higher local

expansion in the front cap (red areas in Figure 5.9). Even though the exact relation between

surfactant density and surface tension is not known in detail, variations in surface tension are

strong enough to effectively suppress the drainage mechanism that prevents droplet breakup.

The effect of the nonequilibrium surfactant distribution can be directly observed in the video

material from the experiment: If the droplet gets too close to one side wall (as in the last panel

of Figure 5.2b), a narrow sheet or finger of the droplet surface is swept away, breaking up
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Figure 5.9: In-plane velocity divergence on the droplet surface, at C a = 0.06 and δ0 = 0.1H .
Images from the simulation. Colors show the in-plane divergence of the velocity on the droplet
surface, in the range between −3τ−1 (blue) and 3τ−1 (red). Vectors show the surface velocity
relative to the mean velocity of D1. The flow sweeps surfactants towards the back of the
droplet, causing strong variations in the surfactant density.

into tiny droplets. This is not observed in simulations of droplets with Young-Laplace surface

tension. If this effect of tip streaming [Stone, 1994], by which surfactant is removed from the

droplet surface, occurs also in the upper parts of the channel, it is likely that the surfactant

concentration is below the equilibrium concentration even before entering the junction.

Implications for Dense Emulsions

The two-droplet interactions are of practical interest when droplets in a dense emulsion enter

a constriction. In dense emulsions, droplet breakup primarily results from the interaction of

droplet pairs at the constriction entrance [Khor et al., 2017]. The droplet interaction in the

Y-junction is a deterministic process, where the droplet configuration beforce the junction

can be given purely in terms of the leading-edge offset. In contrast, droplet configurations in

emulsions show a high variability and depend not only on initial droplet shapes in a droplet

pair, but also on the configuration of more droplets upstream. This variability adds a stochastic

component to the droplet interaction and breakup, which manifests itself as a bistable region

in the relation between initial leading-edge offset and resulting breakup.

The impact of droplet interaction upstream of the constriction is two-fold: On one hand,

the presence of additional droplets leads to an effectively lower angle at which droplet pairs

approach the constriction, when one side of the microchannel is blocked by other droplets.

We observe that this lower entrance angle promotes droplet breakup. On the other hand,

droplets in a dense emulsion often reach the constriction in a staggered fashion [Gai et al.,

2016b]. This staggering reduces the occurrence of highly symmetric droplet configurations

that cause breakup.

Even though the flow situation upstream of the droplet pair differs, experimental results for
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the dependence of droplet breakup agree between the dense emulsion and the two-droplet

interaction: The critical offset in the two-droplet interaction lies in the range between the

maximum and minimum critical offsets observed in the dense emulsion at identical flow

parameters. The experiments in this current paper give us the relation between initial offset,

and the occurrence of breakup. Combining our knowledge of the critical breakup threshold

from the two-droplet interaction δcrit(C a) (Figure 5.8c), and probability density ρ(δ0) of initial

offsets in the dense emulsion, we predict the breakup probability of droplets in a dense

emulsion with the relation pbreak-up :=∫δcr i t
0 ρ(δ0) dδ0. For capillary numbers C a ≤ 0.01, the

predicted breakup probability matches the experimental values from the emulsion within a

5% error. At higher capillary numbers (C a > 0.01), the breakup probability in the emulsion

experiment is higher than the prediction. Here the interaction of three or more droplets plays

a significant role.

5.2.4 Conclusion

Combining an experimental study with numerical simulations and a theoretical analysis, we

describe the breakup process of droplets entering a Y-junction. The droplet interaction follows

a two-step process. In a first step, one droplet moves ahead of the other droplet, driven by an

internal pressure gradient due to surface tension. In a second step, a neck forms in the first

droplet, which breaks it up in an autonomous pinch-off process. When the drainage completes

before the neck pinches off, breakup is avoided. The strength of the drainage process, and thus

the occurrence of breakup, is determined by the offset between the droplets prior to entering

the constriction.

A scaling analysis for the volume of the breakup fragments reveals a linear dependence be-

tween the volume of the first breakup fragment and the initial leading-edge offset between the

droplets, which is found in both simulations and experiments. The linear relation determines

the range of initial droplet offsets that result in droplet breakup. We report this range as a

function of the capillary number C a and for two different junction angles α.

Due to the timescale of the attachment kinetics of surfactants vastly exceeding the time scale

of droplet advection and breakup, the surfactant concentration on the droplet surfaces is not

in equilibrium, even at surfactant concentrations far above the critical micelle concentration

(CMC). This induces both an overall change of the surface tension, and in-plane Marangoni

stresses, which inhibit drainage and promote breakup. The nonequilibrium surfactant distri-

bution results in a quantitative difference in the capillary number at which droplet breakup is

observed. Experiments show droplet breakup at a smaller capillary number than the simula-

tions, which do not model the surfactant dynamics. These findings stress the importance of

gaining insights into the adsorption and redistribution processes of surfactants, which are an

open field of ongoing research [van Hunsel et al., 1986; Stone and Leal, 1990; Song et al., 2006;

Baret et al., 2009a; Riechers et al., 2016; Ponce-Torres et al., 2017].

Using our experimental data on the critical offset for droplet breakup in a Y-junction, we
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predict the probability of droplet breakup in dense emulsions at capillary numbers up to

C a � 10−2 within a 5% error. This quantitative agreement supports the description of emulsion

droplet breakup as a deterministic process resulting from two-droplet interaction, where the

primary source of stochasticity is the multi-droplet interaction upstream of the constriction

that sets the leading-edge offset between droplets.

5.2.5 Appendix

Magnitude of the Relative Flow due to the Difference in Front Radius

For rectangular channels of aspect ratios H/W near unity, the relation between streamwise

pressure gradient ∂x p and approximate mean flow velocity U is

U = −0.035
W H

μ
·∂x p (5.7)

where μ is the dynamic viscosity of the fluid inside the channel. This result can be reached by

numerically evaluating the series representation of the analytic flow profile in the duct [Spiga

and Morino, 1994].

Consider now the case of the two front caps of the droplets lying next to each other with

difference in horizontal front radius ΔR ≡ R1 −R2 � 1, each occupying about half of the width

of the channel (R1 ≈ R2 ≈W /2). With the ambient pressure the same between the droplets,

the internal pressure will be higher in D2 than D1 by

Δp21 = γ

(
1

R2
+ 1

H/2

)
−γ

(
1

R1
+ 1

H/2

)
≈ γΔR

(W /2)2 , (5.8)

according to the Young-Laplace equation (5.5), with Δpi j ≡ pi −p j .

This pressure difference exists at the front cap of the droplets, where it is supported by the

local curvature of the interface, but not further back, where the common double interface

between the droplets runs straight. This is the case at about a distance W from the droplet

fronts, such that each droplet has an internal pressure gradient of

∂x pr el = ∓Δp21

2W
= ∓2γΔR

W 3 (5.9)

relative to the common mean internal pressure (with negative sign for D1 and positive sign for

D2).

The pressure gradient drives a flow ur el in x-direction, relative to the common mean flow U ,

with

ur el = −0.035
W H

2μd
·∂x pr el = ±0.029 · 1

λC a

ΔR

W
·U , (5.10)
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(with positive sign for D1 and negative sign for D2) with the velocity-pressure-relation (5.7),

the channel aspect ratio W /H = 1.2. Only small deviations from this relation are expected due

to the opening angle, aspect ratio of the channels and additional effects. The velocity profile

in Figure 5.4c shows the relative flow in each half of the channel superimposed with the mean

flow of strength U .

5.3 Summary

We investigated the breakup of droplets that occurs when droplets enter a constricted channel.

From experiments in concentrated emulsions (Section 5.1), we found that the breakup is

determined primarily by the leading-edge offset in droplet pairs, and therefore depends largely

on the interaction of two droplets. We then studied the isolated system of two droplets (Section

5.2). By simulating the droplet interaction numerically, we retrieved the pressure field in the

system, which unveiled the physical mechanism behind droplet breakup. The scaling with

capillary number and droplet offset is supported by simulation and experiments. Quantitative

comparison between simulation and experiment suggests that surfactant-induced Marangoni

stresses interfere with the breakup process and promote droplet breakup.
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Sorting by dielectrophoresis [Pohl, 1958] has become a standard tool in droplet-based microflu-

idic applications. Dielectric droplets are actuated by strong electric fields, which generate

Maxwell stresses on the droplet interface.

In Section 6.1, we explore the limits of droplet actuation by electric fields. Based on simulations

of droplet stability in strong electric fields (see Section 4.8) and analytical calculations, we

analyze droplet actuation in sorting geometries, and develop design principles for more gentle

droplet actuation. This work is aimed at extending the range of droplet sorting to low surface

tension applications, and increasing throughput and reliability of sorting.

In Section 6.2, we describe multiplexed sorting with multiple sorting electrodes and outlet

channels. We show how the voltage applied to the sorting electrodes can be adjusted to reliably

sort droplets of different radii.

6.1 Rational Design of a High-Throughput Droplet Sorter

Simon S Schütz1, Thomas Beneyton2, Jean-Christophe Baret2 and Tobias M Schneider1

1 Emergent Complexity in Physical Systems Laboratory (ECPS), École Polytechnique Fédérale de Lau-

sanne (EPFL), Station 9, 1015 Lausanne, Switzerland
2 Soft Microsystems, Centre de Recherche Paul Pascal, Unité de Recherche 5031, CNRS, University of

Bordeaux, 33600 Pessac, France

Abstract
The high-throughput selection of individual droplets is an essential function in droplet-

based microfluidics. Fluorescence-activated droplet sorting is achieved using electric fields

triggered at rates up to 30 kHz, providing the ultra-high throughput relevant in applications

where large libraries of compounds or cells must be analyzed. To achieve such sorting

frequencies, electrodes have to create an electric field distribution that generates maximal

actuating forces on the droplet while limiting the induced droplet deformation and avoiding

disintegration.

We propose a metric characterizing the performance of an electrode design relative to the

theoretical optimum and analyze existing devices using full 3D simulations of the electric

fields. By combining parameter optimization with numerical simulation we derive design

guidelines and propose optimized electrode configurations. When tested experimentally,

the optimized design show significantly better performance than the standard designs.

Droplet-based microfluidics is a powerful technology for the miniaturization and automation

of biochemical assays at a high throughput [Theberge et al., 2010]. The technology is key in a

wide range of applications, for example for protein engineering [Agresti et al., 2010; Obexer

et al., 2016; Romero et al., 2015], cell and microorganism screening [Brouzes et al., 2009;

Eyer et al., 2017; Beneyton et al., 2016], sequencing [Klein et al., 2015; Zilionis et al., 2017]

or molecular diagnostics [Pekin et al., 2011]. Sorting is achieved by addressing individual

droplets and actuating them into different microchannels [Baret et al., 2009b; Agresti et al.,
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2010; Romero et al., 2015; Xi et al., 2017]. The fastest sorting speeds to date are achieved by

actuating droplets using electric fields [Ahn et al., 2006b; Baret et al., 2009b; Romero et al.,

2015]. The principle of sorting is based on dielectrophoresis (DEP): For droplets that have

a dielectric contrast with the continuous phase, a non-uniform electric field leads to a net

force on the droplet. This force then allows steering droplets across the streamlines of the

background flow and into the desired outlet channel.

Two effects control the performance of a droplet sorting device: First, the electrical actuation

moves droplets across streamlines of the flow. The deflection of the droplet is a function of the

magnitude of the field and of duration the droplet is exposed to the field while being advected

downstream. Second, the geometry of the microchannel ensures that the droplets deflected to

different streamlines are actuated into the right outlet. Based on these considerations, many

different droplet sorters have been designed [Ahn et al., 2006b; Baret et al., 2009b; Agresti et al.,

2010; Sciambi and Abate, 2015; Gielen et al., 2016; Obexer et al., 2016; Frenzel and Merten,

2017; Girault et al., 2017], reaching sorting throughputs of up to 30kHz [Sciambi and Abate,

2015]. A part of the rich genealogy of sorter designs is presented in Figure 6.1. Over the past

years, these devices were adapted and used to match the constraints of the biological assays

ITO electrodes

Fluorescence activated

Electrocoalescence based

Ahn et al. 2006
Appl. Phys. Lett.
V ~ 0.03 - 15 pL

Kintses et al. 2012
Chem. Biol.
V ~ 20 pL 

Fidalgo et al. 2008
Angew. Chemie
V ~ 50 pL

Fallah-Araghi et al. 2012
Lab Chip
V ~ 20 pL

Mazutis et al. 2013
Nature Prot.
V ~ 50 pL

Wang et al. 2014
Nature Biotech.
V ~ 4-8 nL

Agresti et al. 2010
PNAS
V ~ 6 pL

Sjostrom et al. 2014
Lab Chip
V ~ 20 pL

Baret et al. 2009
Lab Chip
V ~ 12 - 20 pL

El Debs et al. 2012
PNAS
V ~ 600 pL

Zang et al. 2013
Lab Chip
V ~ 140 pL

Image processing activated

Sciambi et al. 2015
Lab Chip
V ~ 8 pL

Gielen et al. 2016
PNAS
V ~ 180 pL

Obexer et al. 2016
Prot. Eng. Des. Sel.
V ~ 10-20 pL

Frenzel et al. 2017
Lab Chip
V ~ 110-900 pL

Platinum electrodes

Figure 6.1: Following the seminal designs by Ahn et al. [2006b] and Baret et al. [2009b], many
different sorters have been developed over the past decade. Electrode geometries have been
guided by experimental trial and error, but none is based on rationally optimizing the field
distribution in order to maximize droplet actuation. We analyze the highlighted sorter designs,
and propose new, improved designs based on our findings.
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performed in the droplet format. However, to the best of our knowledge, these devices were

optimized by experimental trial and error, and none of the existing sorting devices are based

on rationally optimizing the electrode geometry.

A seemingly straightforward way to make sorting systems more effective is to increase the

strength of the electric fields, inducing a larger net force acting on the droplet. Thereby,

the necessary deflection is achieved in shorter time, and higher sorting frequencies become

accessible. However, this solution is not reliable: while the net force in dielectrophoresis is

given by the field gradients, the field itself deforms the droplet without displacing the center of

mass. When the field gets too strong, droplets disintegrate [Taylor, 1964]. An effective sorting

geometry therefore needs to exert a strong actuation force on the droplet, without exceeding

limits in the absolute field strength.

Here, we focus on the impact of the electrode design on the actuation of droplets in sorting

devices. We first discuss physical limitations for high-throughput sorting, develop a metric

characterizing the performance of an electrode design relative to the theoretical optimum

and analyze existing devices. Based on fully resolved 3D simulations of the electric field

together with parameter optimization, we then suggest rational design principles and propose

optimized electrode designs that reduce the Maxwell stress on droplets during sorting. Ex-

perimental tests demonstrate the superior performance of the novel electrode designs. The

proposed electrodes can easily be integrated and do not complicate the device fabrication

compared to alternative inferior designs. Because the deformation of droplets in electric fields

is counteracted by interfacial tension, optimized electrode designs that generate more gentle

actuation forces are particularly important for applications that require the sorting of droplets

with low surface tension [Kintses et al., 2012; Eastburn et al., 2014; Colin et al., 2015; Romero

et al., 2015; Obexer et al., 2016].

a) b)

Figure 6.2: Mechanism of dielectrophoretic sorting. a) In the sorting region, the dielec-
trophoretic force �F moves a droplet perpendicular to the streamlines, so that it exits through a
different output channel. b) We determine the electric potential and field from a 3D boundary-
element simulation. Visualized is the field at half-height in the channel.
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6.1.1 Results and Discussion

The functioning principle of DEP droplet sorting is illustrated in Figure 6.2: In a flow region

upstream from a microchannel junction, a dielectrophoretic force �F is applied to a droplet

when the electric field is activated. This force causes the droplet to drift across stream lines,

and be guided into one outlet channel. The asymmetric design of the channel ensures that

without an electric field the droplet is guided into the other channel. Selectively applying a

voltage between the active and the ground electrode thereby allows to sort droplets.

The dielectric force emerges from the interaction of the electric field with dipoles induced in

the droplet phase. The force �F thus grows with the gradient ∇|�E |2 of the square of the electric

field �E , and is independent of the field polarity. For small, sperical droplets, the force is given

by [Pohl, 1958]

�F = 2πε0εc K R3∇|�E |2 (6.1)

with K ≡ εd−εc
εd+2εc

. Here, ε0, εc , εd , and R are the vacuum permittivity, the relative permittivity of

the continuous and droplet phase, and the droplet radius, respectively. Corrections to this

small-droplet approximation are discussed in Appendix 6.1.4.

In response to the force, the droplet drifts across the stream lines. At near-unity viscosity

ratio between droplet and continuous phase, the drift velocity is Udrift ≈ F /(5πμR), with F the

cross-stream component of the dielectric force, and μ the viscosity of the outer fluid [Guyon

et al., 2001]. For reliable sorting, the droplet needs to be displaced by approximately one

droplet diameter, which takes a time T = 2R/Udrift. The maximum sorting frequency therefore

scales as

fmax ≈ 1

T
= F

10πμR2 . (6.2)

The sorting frequency is proportional to the dielectrophoretic force on the droplet, and in-

versely proportional to the viscosity of the continuous phase. If the actuation force varies

along the path of the droplet, the time-averaged force determines the sorting frequency.

The force on the droplet may be increased by increasing the field gradient ∇|�E |2. However,

there is a critical upper limit for the field strength: The dielectric force moving the droplet is

caused by electric Maxwell stresses at the interface. In a field gradient the Maxwell stresses

vary over the droplet surface resulting in the dielectrophoretic net force. The stress everywhere

points outward of the droplet and deforms the initially round droplet. Surface tension coun-

teracts the deforming Maxwell stresses, but when the field strength surpasses a critical value

Ecrit, surface tension becomes insufficient to maintain the round droplet shape, the droplet

deforms and eventually disintegrates in the surrounding shear flow [Taylor, 1964; Sherwood,

1988].

Quantitatively, the relative strength of the Maxwell stress compared to surface tension is given
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by the electrical Bond number BoE := ε0εc |�E |2R
γ , with γ the surface tension coefficient. The

Maxwell stress surpasses the surface tension at a BoE near unity, so that the critical field

strength scales with Ecrit ∝
√

γ
ε0εc R . Consequently, the critical field strength is particularly

small for low surface tensions and large droplet radii.

The largest possible field gradient is achieved for a field increasing from zero to the critical

strength Ecrit across the droplet diameter 2R. With eq. (6.1) this yields an upper bound

Fmax = 2πε0εc K R3 E 2
crit

2R for the force on a droplet. If one could generate arbitrary electric fields,

droplets could be actuated with this maximum force. However, the field distribution is not

arbitrary as the field has to satisfy Maxwell’s equations and is generated by electrodes of fixed

geometry. Consequently, the aim is to design electrodes such that the actuating force given

by the gradient ∇|�E |2 is maximized along the path while the field strength remains below a

maximum value Emax.

To quantify the efficiency of an electrode design, we normalize the spanwise force component

|Fy | acting acting on the droplet at each location, by the maximum force Fmax This yields the

non-dimensional DEP force

ξ := |Fy |
Fmax

= 2R|∂y E 2|
E 2

max
, (6.3)

which quantifies how closely the actual force on a droplet at a given location approaches the

maximum force. ξ can be written in terms of the field strength with Emax the maximum field

in the microchannel. For a given electrode geometry the electric field grows proportionally

with the voltage applied to the electrodes. The metric ξ is thus independent of the absolute

field strength but characterizes the efficiency of the field geometry. In practice the voltage can

be increased until Emax reaches the critical value Ecrit for the specific droplet surface tension,

size and material properties.

An efficient sorter will apply the maximum possible force over the entire length of the sorting

segment to move the droplet across the stream lines. Outside this segment, forces should

be minimized, so that subsequent droplets and other parts of the setup are not affected and

droplets can be addressed individually. To quantify the overall performance of the sorter, we

thus define the DEP efficiency

Ξ := 1

|S|
∫

S
ξds, (6.4)

which measures the average DEP force along the sorting segment S ranging from the location

where ξ exceeds a threshold value of 1%, to the bifurcation between the two outlet microchan-

nels. The DEP efficiency is a dimensionless measure between zero and one, which describes

the overall actuation of a droplet relative to the maximum possible actuation for this droplet.

Both the location-dependent DEP force ξ and the integrated efficiency Ξ are independent of

the absolute size of the system and material properties of the liquids. They are performance

metrics characterizing the efficiency of the electrode and sorter geometry and will thus be
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used for optimizing electrode designs.

To determine the DEP force and efficiency for a given system, we perform a 3D boundary-

element simulation of the electric field around the sorting electrodes. The boundary-element

method solves the electrostatic Laplace equation by finding the electric potential and flux on

the surface of the sorting electrodes, and then extends the field into the volume. Details of the

method are given in the Materials and Methods section. As we will discuss later, 3D features of

the electric field play a vital role in the sorting process, so that a fully resolved 3D computation

is indispensable. From the 3D simulation, we calculate the electric field and its gradients in a

2D plane at half-height in the channel (Figure 6.2b).

We analyze the efficiency of several electrode designs (highlighted in Figure 6.1) that have

been developed in the past years. Figure 6.3 presents the DEP force ξ in the channel midplane,

which we extract from a 3D simulation of the field. The normalization ensures that the DEP

force never exceeds 1 inside the microchannel (gray). The force ξ along the approximate

path of a droplet (red dashed line) is shown in the upper panel together with the integrated

performance metric Ξ.

The design by Ahn et al. [2006b] (Figure 6.3a) was the first design to demonstrate DEP droplet

sorting, and uses two different layers in the design for the microchannels and the electrodes.

The subsequent sorters have electrodes on the same level as the microchannels. The sorter

by Agresti et al. [2010] (b) places an active electrode parallel to the sorting segment, and

slows droplets during sorting by widening the channel. Sciambi and Abate [2015] (c) focus on

reducing the shear on droplets, which allows them to increase the flow rate. Their electrode is

close to the microchannel, but rounded, which is less efficient. The recent designs used by

Gielen et al. [2016] (d), Obexer et al. [2016] (e) and Frenzel and Merten [2017] (f) have long

active electrodes, which are very effective. The efficiency of the design by Obexer et al. is low

because a strong and constant actuation force on droplets is reached only after the sorting

junction. These sorter designs have been developed over a time period of roughly a decade

(2006-2017) and show a trend of increasing efficiency, with Gielen et al. reaching the highest

efficiency at Ξ= 0.161.

The performance metricΞ allows to quantitatively compare the efficiency of different electrode

geometries and design better electrodes that substantially outperform previous sorter designs.

Well performing existing sorters have an extended flat electrode parallel to the channel as well

as shielding electrodes. We will first consider the optimal shape of a single active electrode

and then discuss further benefits of increasing the device complexity by additional shielding

electrodes. This rational design procedure yields efficiency improvements of almost 100% over

the latest design by Gielen et al., and optimized electrodes significantly outperform classical

designs in experimental tests.
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Figure 6.3: Relative DEP force ξ around the electrode designs of a) Ahn et al. [2006b], b) Agresti
et al. [2010], c) Sciambi and Abate [2015], d) Gielen et al. [2016], e) Obexer et al. [2016] and f)
Frenzel and Merten [2017]. The thick contour line is ξ= 10−2. The dashed line in the channel
center estimates the dividing streamline between the outlets, along which we average the DEP
force ξ to get the total DEP efficiency Ξ. The top panel shows the DEP force ξ along the droplet
path and the total DEP efficiency Ξ. The electrodes in Ahn’s design are coated on a plane
below the microchannel; all other designs have electrodes next to the channel and of equal
height H . The channel height is a) H = 25μm, b) H = 25μm, c) H = 30μm, d) H = 80μm, e)
H = 21μm, f ) H = 75μm.
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6.1. Rational Design of a High-Throughput Droplet Sorter

For a straight, rectangular microchannel of constant cross-section and aspect ratio 2, we

consider one active electrode parallel to the channel with grounded counter-electrodes at

infinity, as shown in Figure 6.4a. The straight electrode causes a strong deflection force along

its whole length (Figure 6.4b), with an efficiency Ξ= 0.212 that is 32% higher than what the

existing designs achieve. The side view on the electrode (Figure 6.4c) reveals the reason for

the large force along the whole electrode: The field lines spread in the out-of-plane direction,

which leads to the high field gradients that attract droplets. When designing a sorting device in

a 2D top view, one easily overlooks this 3D effect of the electric field, which cannot be captured

by any 2D analysis of the device. Free parameters in the design of this simple bar electrode

are the electrode length L, and its distance DE from the channel center line. We optimize the

two geometric parameters L and DE to maximize the efficiency Ξ (Figure 6.4d). The distance
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Figure 6.4: Sorting with a simple bar electrode. a) 3D geometry of an electrode of height H
and length L = 8H , next to a microchannel of height H and width 2H . The droplet radius is
R = H/2. b) Deflection force ξ on a droplet traveling through the microchannel shown in a).
Contours and DEP force ξ as in Figure 6.3. c) Side view of electrode and microchannel. The
deflection force is dominated by the spread of field lines in the z-direction (top). With the
distance from the main electrode, the force ξ decays faster than the field |E |2 (bottom). d) The
sorting efficiency changes with the electrode length L and distance DE between electrode and
channel center. Longer electrodes are more efficient, and DE ≈ 2H gives the highest sorting
efficiency for long electrodes.
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between electrode and channel center has a clear optimum at DE ≈ 2H : The field decays with

the distance from the electrode, so that the actuation force is stronger when the droplet is

close to the electrode. However, in very close proximity to the electrode, the field shape is set

by the electrode height, and the actuation force gets weaker. The optimum distance DE is

thus on the scale of the electrode height. Long electrodes perform better because they offer

a longer region of strong droplet actuation, relative to regions of stray field where droplet

actuation is suboptimal. In practice, to maintain a high sorting frequency, a sorter with a long

electrode must be operated at a high flow rate that poses other challenges. We therefore limit

the electrode length to 8H , where further efficiency gains due to longer electrodes become

marginal.

An appropriately dimensioned active electrode with ground at infinity alone provides a 32%

performance increase. However, far reaching stray fields are created, that may have unwanted

side-effects on parts of the microfluidic chip not associated with the droplet sorter. To integrate

many sorters in a chip and address individual sorters while minimizing crosstalk, shielding

electrodes are necessary. Such additional electrodes at ground potential not only help isolate

the sorter from the remainder of the microchip, but can also further increase the sorting

efficiency.

For a main electrode of length L = 8H , ground electrodes as shown in Figure 6.5a reduce the

length of the sorting segment by 30% and increase efficiency by roughly the same amount,

to Ξ= 0.270. This correponds a 68% improvement over the reference design by Gielen et al.,

where half of the improvement is due to the added shielding electrodes. By reducing stray

fields, the shielding causes a step-like transition from zero to the full actuation force of the

straight electrode. This effect is enhanced by sharp corners of the electrodes (Figure 6.5b).

In the design of the shielding, it is critical to leave a gap right across the main sorting electrode:
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Figure 6.5: Sorting with a shielded electrode. a) Deflection force ξ of a simple electrode of
height H and L = 8H , DE = 2.25H . Contours and DEP force ξ as in Figure 6.3. b) The field is
particularly strong at the corners of the electrode. Sharp corners increase the force on the
droplet locally, and lead to an overall higher efficiency.
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Here, some space is required so that the field emanating from the main electrode can spread

freely.

The combination of one active electrode and appropriately design shielding electrodes allows

for significant efficiency improvements. Further efficiency increases are possible when in-

creasing the complexity of the design and adding a second active electrode. An active electrode

of the same polarity as the main sorting electrode, but on the opposite side of the channel

(Figure 6.6a) creates an electric field in the channel that partially cancels the field of the main

electrode. This reduces the field strength in the channel, whereas the field gradient remains

strong. The highest sorting efficiency (Ξ= 0.290) is reached when the voltage of the second
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Figure 6.6: Sorting with two active electrodes. a) Deflection force of a pair of two active
electrodes at a voltage ratio V2/V1 = 0.4, at L = 8H , DE = 2.5H . Contours and DEP force ξ as
in Figure 6.3. b) The overall efficiency depends on the voltage ratio. The highest efficiency
is reached at V2/V1 ≈ 0.4; for higher or lower voltages on the second electrode, the efficiency
decays quickly and is often lower than in the complete absence of the second active electrode.
c) Side view of electrode and microchannel at V2/V1 = 0.7. The field lines spread in the vertical
z-direction, creating a region where the field almost vanishes (top). The field gradient remains
high, so that a high deflection force can be reached (bottom). d) Side view of electrode and
microchannel at V2 = 0. When the second electrode is present, but not active, the field gradient
is weaker, so that the efficiency of the sorter decreases.
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electrode is roughly ∼ 40% of the main electrode’s voltage (Figure 6.6b,c). If the secondary

voltage is higher, the field minimum moves into the channel, so that the force on the droplet

decreases. If the secondary voltage is too low (or zero, as for the shielding electrodes), field

lines do not spread in the vertical direction (Figure 6.6d) and the field gradient is reduced.

Choosing the optimal voltage for a second active electrode further improves the sorter effi-

ciency, but the increase is less dramatic than the increase due to suitably optimizing a single

active electrode or introducing shielding electrodes. Furthermore, a second electrode at a

different potential increases the complexity of the device so that a single active electrode

might be the best choice in most applications. However, a second active electrode may be very

beneficial if not only the electrodes but also the channel design is adapted. If the channel and

electrodes are chosen to be symmetric, droplets in the channel center only need to be moved

by half the distance for reliable sorting, which effectively doubles the sorting frequency. Such

a symmetric design also underlies the multiplexed sorter discussed by Girault et al. [2017].

Based on performance metrics for the efficiency of dielectrophoretic sorters, we have opti-

mized electrode designs and shown that efficiency improvements of 32% relative to the best

existing designs can be achieved by a single active electrode, that the improvement increases

to 68% when appropriate shielding is added, and that a 77% improvement can be achieved

using a second active electrode, which complicates the device significantly. Relative to the

common electrode design by Obexer et al., multifold efficiency improvements are achieved.

We experimentally compare the performance of the optimized electrode designs to the com-

mon setup. Table 6.1 presents parameters of the tested electrodes including efficiency, sorting

segment length and required electrode voltage.

To characterize the performance of the electrode shape independent of flow-related parame-

ters, we perform experiments for fixed microchannel geometry, flow rates, droplet volume and

sorting frequency. Electrode and microchannel designs are taken from Obexer et al. [2016]

(Figure 6.3e) and compared to the bar electrode of length L = 8H = 196μm without and with

local shielding (Figures 6.4a and 6.5a). Width and height of the microchannel and droplet

diameter are 50μm, 24μm, and 25μm, respectively. We apply a 20kHz AC field at a voltage

between 0 and 1kV. As experiments for a second active electrode (Figure 6.6a) did not show

a clear advantage over the single electrode with shielding, we do not present experimental

Design Efficiency Ξ Length |S| [H ] Voltage V1 [Ecr i t H ]
Reference design (Fig. 6.3e) 0.064 11.4 6.4

Optimized bar electrode (Fig. 6.4a) 0.212 17.5 6.0
Electrode with shielding (Fig. 6.5a) 0.270 12.5 5.0

Two active electrodes (Fig. 6.6a) 0.290 13.0 6.6

Table 6.1: Efficiency, length of the sorting segment, and electrode voltage for the reference
design by Obexer et al. [2016], and the improved electrode designs with an electrode length
of L = 8H . At a similar sorting segment length and electrode voltage, the new designs show a
vastly higher efficiency.
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Figure 6.7: Droplet sorting at different electrode voltages, for the reference sorter by Obexer
et al. [2016] (Sorter Ref), and our new designs without (Sorter 1) and with (Sorter 2) local
shielding. a) Typical droplet trajectories at the different electrode voltages. b) Success rate of
sorting for the different designs. The new designs sort droplets at a low voltage, making them
easy to integrate and to operate at high throughput.

results on this very complex design.

By varying the voltage applied to the sorting electrode, we determine the voltage at which all

droplets are correctly sorted into the sorting outlet. The existing sorter requires a voltage of

450V for reliable sorting, whereas the new designs without and with shielding perform the

same task at the much lower voltage of 350V and 200V, respectively (Figure 6.7).

A lower sorting voltage reduces stray fields and thus simplifies the integration of a sorter with

complex microchannel designs. Reduction of the sorting voltage alone does however not

imply an increase of the highest achievable sorting frequencies. The limitation is the induced

deformation of droplets which will eventually lead to droplet disintegration and limit the

sorting frequency. Improved electrode designs will induce much less droplet deformation

while still reliably actuating droplets.

At the minimum voltage where reliable sorting is possible, we compare the deformation of

droplets between the existing and the (shielded) new design (Figure 6.8). In the reference

design, droplets deform significantly, up to a deformation of 22% (where deformation is the

deviation of the aspect ratio from unity, δ := lz /lx −1). The droplet deformation is consid-

erably weaker in the new design, with a maximum deformation of just 11%. With the new

design, fields are weaker, and thus move droplets gently across the stream lines. To achieve

higher sorting frequencies the actuating force and thus voltage needs to be increased. Critical

droplet deformations are reached much later for the optimized electrode design so that higher

frequencies are possible.
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a) b)

c)

d)

Figure 6.8: Deformation of droplets in a) the reference geometry and b) the new electrode
design with shielding. Electrode voltages were 450 V in the reference geometry and 200 V in
the new design, which were the respective thresholds for reliable sorting. c) and d) show the
droplet shape in detail.

6.1.2 Conclusions

We investigate the physical limits of throughput in droplet sorting. With the aid of a 3D

boundary-element simulation, we characterize the efficiency of the electrode shape for com-

mon sorting devices. Our analysis reveals that 3D effects render long, straight electrodes

along the microchannel much more effective than the 2D picture would suggest, and that

well-placed ground electrodes increase the sorting efficiency further.

Based on our analysis, we suggest technically feasible designs improving the sorting perfor-

mance. We demonstrate this superior performance experimentally, by showing that under

identical conditions, droplets in the new designs are sorted at much smaller deformations

and 50% lower electrode voltages. One consequence is that the sorting rate can be pushed

much higher before droplets start to disintegrate. Our analysis suggests that a secondary

active electrode can increase the efficiency of a sorting device further, but at the cost of a much

higher technical complexity.

The gentle actuation of droplets is particularly relevant for low surface tension applications

and systems with large droplets, which are particularly susceptible to breaking up in strong

fields. The significant increase in efficiency in both simulation and experiment highlight

the power of the rational approach to designing microfluidic systems. Numerically, the

efficiency of a particular microfluidic design can be evaluated in seconds, allowing for a fast

multidimensional parameter optimization that vastly outperforms traditional trial-and-error

methods.
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6.1.3 Materials and Methods

Numerical Simulation

The electric field around the electrodes was calculated using a Boundary Element Method

(BEM) numerical code written in C++, which is based on the Finite-Element framework deal.ii

[Bangerth et al., 2007]. We solved the Laplace equation for the electrostatic potential ϕ (with
�E =−∇ϕ),

Δϕ = 0, (6.5)

with the potential ϕ fixed to the voltages V1 (V2) and zero on the active sorting electrode(s) and

the ground electrode, respectively. For simulations with a finite-size droplet, the boundary

condition for the interface was εc�Ec = εd�Ed . Depending on the mesh complexity, the electrode

surfaces were represented by 103 −104 bilinear quadrangular elements. Numerical solution of

the discretized boundary integral equation with the GMRES method yielded the field strength

on the electrode surfaces, from which we constructed (via integration with appropriate Green’s

functions) the field and field gradient at discrete points in the volume. The simulation code is

parallelized with MPI. Each simulation took 3 minutes on a standard desktop computer. We

analyzed 8 existing sorter geometries and performed 800 simulations with different parameter

combinations (electrode length, spacing between electrode and channel center, corner radius,

voltage of the secondary electrode) for the new electrode designs.

Laboratory Experiments

Poly-(dimethylsiloxane) (PDMS, Sylgard 184) microfluidic devices were fabricated from SU-

8 3025 negative photoresists molds as described by Beneyton et al. [2014]. Aquapel (PPG

Industries) was used to hydrophobize the channels. Nemesys syringe pumps (Cetoni) were

used to control the flows in the microfluidic channels and syringes were connected to the

devices with PTFE tubing (ID 0.3 mm, OD 0.76mm; Fisher Scientific). 8 pL w/o droplets were

produced (3500 Hz) using a 20x15 μm nozzle dropmaking device in fluorinated oil (Novec7500,

3M) and were stabilized against coalescence by a perfluoropolyether-polyethyleneglycol block-

copolymer surfactant (3% w/w) [Beneyton et al., 2016]. Droplets were collected off-chip and

stored in a glass vial. Droplets were then co-flown with fluorinated oil in sorting devices with

a 50 μm (width) x 24 μm (height) main channel. Sorting efficiency was investigated with

constant hydrodynamics conditions (Femulsion = 20 μL.h−1 and Foil = 700 μL.h−1) by applying

a 20 kHz AC field form 0 to 1 kV (Agilent 33210A function generator connected to a Trek

623B high voltage amplifier). Droplets were imaged at 13 000 fps using a high-speed camera

(Phantom v210) and movies were analyzed using the Phantom Camera Control software (PCC

2.1.4).
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6.1.4 Appendix

Accuracy of the Approximation Formula for Small Radii

To estimate the deflection force �F on the droplets, we use relation (6.1) by Pohl [1958], which is

valid for spherical droplets whose radius R is small compared to the characteristic length scale

of the electric field. Since the actual droplet radius is similar to the size of the electrodes that

create the field, Pohl’s equation is only an approximation. Here, we investigate its accuracy for

large droplets.

We use a single electrode of length L = 8H and a spherical droplet of radius R with a trajectory

on the microchannel centerline. We calculate the electric field around the electrodes in the

presence of the droplet (Figure 6.9), using a mesh of approximately 2,200 degrees of freedom.

From the field at the droplet surface, we determine the cross-stream deflection force FR along

the droplet path, which we compare to the approximated force F0 from equation (6.1). The

approximation error is quantified by the integrated force difference along the droplet path,

εR := 〈|FR −F0|〉
〈FR〉

, (6.6)

where 〈...〉 denotes the spatial average along the droplet path.

We find that the approximation accurately describes the force for small R , but underestimates

the force for larger R, as shown in Figure 6.9b,c. The approximation error εR is on the order of

few percent and increases for R > 0.1H . At R = 0.5H , when the droplet diameter equals the

channel height, the relative error is εR = 4.6%: For typical droplet sizes and channel layouts,

the approximation conservatively underestimates the sorting efficiency, with a relative error

on the order of 5%.
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Figure 6.9: Deflection force on a droplet with finite radius. a) Droplet (R = 0.5H) in a mi-
crochannel next to an active electrode. Equipotential contour lines around the sorting elec-
trode show the distortion of the field due to the finite-size droplet. b) Deflection force of the
approximation formula, and the full 3D simulation, for different droplet radii R. c) Relative
error of the approximation formula against droplet radius R. The error εR for R → 0 does not
converge to zero due to the limited numerical precision of the simulation.
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6.2 High Throughput Multiplexed Fluorescence Activated Droplet

Sorting

Figure 6.10: Multiplexed sort-
ing geometry in the experi-
ment. – Image by Ouriel Caën

2017, used with permission.

In Caen et al. [2018], we propose a multiplexed dielec-

trophoretic droplet sorter for applications where more than

just two distinct species of droplets need to be sorted. In a

symmetric sorting chamber with five outlet channels, we use

two active electrodes to actuate droplets. The electrode volt-

age and length of the pulse select the outlet channel. The

variation of the electrode voltage allows us to operate with a

higher number of outlet channels per electrode, compared to

other approaches such as the design by Frenzel and Merten

[2017], which sorts multiple droplet species by concatenating

a large number of two-way sorters in quick succession (with

two active electrodes per two-way sorter), or the three-way

sorter by Girault et al. [2017] with two active electrodes for

three outlet channels.

We accompany the design of the experimental system by numerical simulations with the

coupled electro/Stokes solver. The droplet trajectories that we find numerically match the

experimental observations (Figure 6.11). To operate the sorting geometry with droplets of

different size, we estimate how the droplet voltages need to be scaled to allow reliable sorting.

If the droplet radius R is not much smaller than the channel height H , work by Keh and Chen

[2001] suggests that the drag force Fdrag scales as

Fdrag ∝ R2Udrift, (6.7)

where Udrift is the drift velocity of the droplet relative to the viscous background flow. The drag

on the droplet compensates the dielectrophoretic actuation force FDEP, which by eq. (6.1)

[Pohl, 1958] scales with

FDEP ∝ R3V 2
pp , (6.8)

with Vpp the peak-to-peak voltage of the sorting electrodes that create the electric field. Con-

sequently, the drift velocity Udrift ∝ RV 2
pp is constant if the electrode voltage is chosen as

Vpp ∝ 1/
�

R. The scaling is supported by our numerical simulations (Figure 6.12). Experi-

mentally, choosing an appropriate electrode voltage is important in our sorter design, as the

strength of the electric field selects the outlet channel.
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Figure 6.11: Numerically predicted and experimentally observed droplet trajectories in the
multiplexed sorting geometry. The scale bar is 200μm. – Figure reproduced from Caen et al.

[2018] with permission from the other authors.

115



Chapter 6. Dielectrophoretic Sorting of Droplets

-200

-100

0

100

200

0 100 200 300 400

P
os

it
io

n
y

[μ
m

]

Position x [μm]

R = 7.5 μm

-200

-100

0

100

200

0 100 200 300 400

P
os

it
io

n
y

[μ
m

]

Position x [μm]

R = 11.25 μm

-200

-100

0

100

200

0 100 200 300 400

P
os

it
io

n
y

[μ
m

]

Position x [μm]

R = 15 μm

-200

-100

0

100

200

0 100 200 300 400

P
os

it
io

n
y

[μ
m

]

Position x [μm]

R = 22.5 μm

Vpp = 0 V
Vpp = 1600 V
Vpp = 2200 V

Vpp = 0 V
Vpp = 1300 V
Vpp = 1800 V

Vpp = 0 V
Vpp = 1100 V
Vpp = 1500 V

Vpp = 0 V
Vpp = 900 V

Vpp = 1200 V

1000

1250

1500

1750

2000

2250

7.5 11.25 15 22.5

V
ol

ta
ge

V
p
p

[V
]

Droplet Radius R [μm]

Top Exit
Second Exit

Figure 6.12: Electrode voltages for sorting of droplets with different characteristic radius R
in the multiplexed sorting geometry. – Figure reproduced from Caen et al. [2018] with permission

from the other authors.
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6.3 Summary

Fast actuation of droplets with electric fields requires high field strengths, which can cause

droplet disintegration. To achieve high throughput in dielectrophoretic droplet sorting, we

apply a gentle force for a longer amount of time, which achieves the same droplet displacement

relative to the background flow but reduces the short-term stress on the droplet. The required

gradient in the electric field is created with long, straight electrodes. By combining the straight

electrodes with shielding, we can operate a droplet sorting device at lower voltages and causes

less droplet deformation (Section 6.1).

For sorting a droplet population of five different types, we use a multiplexed droplet sorter

(Section 6.2), which is compact and requires just two active electrodes. In this design, larger

droplets require a lower sorting voltage . Since large droplets are also more susceptible to

breakup in strong fields (see Section 6.1), fast and efficient sorting works best if the droplet

size matches the height of the channel geometry.
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This thesis studies the dynamics of droplets in microfluidic applications. It comprises two

parts: The design and implementation of a 3D boundary element scheme to simulate droplet

motion in complex microchannel geometries, and a study on droplet dynamics and interaction

in two specific flow situations. For each of the parts, we summarize our findings, and give an

outlook for future research.

7.1 3D Boundary Element Simulation of Droplets

The design and implementation of the 3D boundary element scheme is reported in Part I.

While the general concept for simulating multi-phase flow and electric fields with the boundary

element method is well established, there exists no publically available framework to solve

the coupled system in arbitrary geometries. We therefore implemented the boundary integral

equations in C++, building upon the flexible finite-element library deal.ii.

Solving the boundary integral equations in the complex geometry poses several challenges,

which we addressed in our implementation. First, the discretized mesh for the complex mi-

crochannel geometries must be created. For this, we implemented automatic mesh generation

routines for a number of different flow configurations, including a description for microchan-

nel shapes via Bezier curves. Second, as the boundary element algorithm scales with the

square of the number of degrees of freedom, we developed a surface representation that

describes smoothly curved surfaces with a small number of mesh vertices (where degrees of

freedom are defined), which also allows for a fast computation of the surface curvature. A local
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mesh refinement based on geometrical criteria increases resolution where large variations

in the surface velocity or stress fields are expected. Special quadrature rules and singularity

subtraction techniques mitigate the errors in numerical quadrature when evaluating boundary

integrals that exist only in a principal-value sense. Forward integration in time uses an explicit

time stepping scheme, and respects the one-way coupling between electric and Stokes solver.

In an extensive validation phase, we found that our simulation reproduces known results

from simulation and theory, outperforming other simulation approaches in some of the

applications. The boundary element method has been parallelized, and scales well with the

number of processors.

Outlook

Numerical Approximation

While the validation confirmed the numerical code to be correct, there are numerical errors

that depend on the mesh resolution, the type of finite-element basis functions, and numerical

quadrature. From Section 4.2, we see that bilinear interpolation dominates the error for typical

stress and velocity fields on the boundary. Even for a simple flow in a duct, the convergence

order is only linear in the number of degrees of freedom, and relative errors on the order

of 10−3 for N = 104 degrees of freedom are common. Extending the simulation to a second-

order (quadratic) scheme for the boundary fields is possible in the framework of the current

implementation, and increases the convergence order of the solution. The original scheme

avoids this higher order representation to reduce the number of degrees of freedom (especially

since only the velocities on the cell’s corner vertices are needed to advance in time), but

quadratic elements are a good compromise between number of degrees of freedom and

accuracy of the description, given that the Stokes equations are second-order in space.

In a second-order scheme, quadratic interpolation can also be used for the mesh surface, with

the intermediate vertices between the cell corners adjusted to minimize curvature jumps on

the edge. This simplifies the description of surface shape, but might have lower accuracy than

our custom implementation of a second-order paraboloid fitting.

Scaling of Runtime with System Size

When discussing the advantages of the boundary-element scheme, it is often argued that

the method is more efficient than comparable finite-element methods, because a mesh of

resolution Δx is described with N ∝ 1/(Δx)2 degrees of freedom when describing the 2D

boundary in the BEM scheme, whereas the FEM scheme represents the 3D volume and thus

requires N ∝ 1/(Δx)3 degrees of freedom. While it is true that the BEM scheme describes

the surface fields with better accuracy, we want to explicitly point out here that for solving

the linear system of the discretized boundary integral equations, the BEM scheme is at a
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disadvantage, because there is global coupling between the degrees of freedom, and the work

for setting up the linear system is of order O (1/(Δx)4). In the finite element method, coupling

is local and the linear system sparse. Nevertheless, the boundary element method is suitable

for complex geometries: Setting up and solving the linear system is trivial to parallelize, and

only the degrees of freedom (which are fewer than in the finite element method) need to

be shared between the nodes. As computer systems become more and more parallel, their

performance is increasingly limited by data communication, rather than pure computing

effort. This development favors the boundary element method even in large or highly resolved

systems.

Time Stepping

An increase in mesh resolution or representation order will have to be accompanied by more

elaborate time stepping schemes. In the explicit Euler scheme that we currently employ, the

time step has to be small in order to avoid instabilities in the interface shape. While implicit

schemes will be difficult to combine with the boundary-element approach, explicit higher-

order time integration schemes like the second-order Runge-Kutta scheme or the Adams-

Bashforth scheme are comparatively easy to implement and increase stability, if the difficulties

we met when combining them with our mesh stabilization and refinement algorithms are

overcome. In addition, the formation of small-scale spatial oscillations in the shape of the free

interface can be suppressed with interface stabilization techniques (such as the one presented

by Nagel and Gallaire [2015]). Here, the change in Young-Laplace stress on the interface during

a time step is anticipated, and the local surface stress adjusted accordingly.

Topological Transitions

Changes in mesh topology due to droplet coalescence or break-up are computationally expen-

sive in our simulation, as the hierarchical quadrilateral mesh structure requires a complete

re-meshing at every topological transition. Triangular meshes are more flexible in this re-

spect. They are easier to refine and coarsen locally, and can be broken up and reconnected

without consequences for the global structure (as for example shown by Cristini et al. [2001]).

However, quadrilateral meshes provide an easier mapping and integration for the reference

element, and thus better approximation quality for a given number of degrees of freedom. For

simulations without topological transitions, we prefer quadrilateral meshes.

Handling of Narrow Gaps

In narrow gaps, either between two droplet interfaces or between a droplet and the microchan-

nel wall, flow is typically very regular, and can be described by a 2D lubrication approximation

(as in Bretherton [1961]; Goldman et al. [1967]). If an appropriate matching to the bulk BEM

solution at the boundaries of the thin-film region can be found, simulating lubrication flow
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could be an alternative to solving the Stokes equations in narrow gaps, where the close dis-

tance between boundaries leads to strong hydrodynamic interaction and thus nearly-singular

integrals over the Greens’ functions.

7.2 Droplet Dynamics in Microchannels

In Part II of this thesis, we investigated droplet interaction in narrow constrictions and droplet

sorting by dielectrophoresis. We combined results from the numerical simulation with analytic

calculations and experiments.

From experiments on the reinjection of concentrated emulsions into narrow channels, we

found that the breakup of droplets is mostly controlled by two-droplet interaction at the

constriction. With our numerical tools, we could then study two-droplet interaction in a

junction. The physical mechanism behind droplet breakup turned out to be an autonomous

pinch-off process similar to the Rayleigh-Plateau instability, driven by a pressure difference

between the two droplets caused by differences in the front radius. Careful comparison

between simulation and experiments revealed a quantitative difference in the critical Capillary

numbers for droplet breakup. From an analysis of the time scales and relative strengths of

different physical processes in the system, we determined that surfactants on the droplet

interface would not be in equilibrium during the fast process of droplet deformation and

breakup, so that Marangoni stresses would inhibit droplet deformation and breakup in the

experiment.

For dielectric droplet sorting, we derived a quantitative measure of the efficiency of a droplet

sorting device. Analyzing existing sorter designs, we isolated the features that would lead to

gentle sorting at low voltages, avoiding strong droplet deformations and breakup. Experiments

show the superior performance of a sorting design with long, straight electrodes and shielding.

In a study on multiplexed droplet sorting, we used the full capabilities of our numerical

code to simulate droplet motion in electric fields. We find quantitative agreement with the

experiments, and contribute results on the dependence of the electrode voltage on the droplet

size.

Outlook

Droplet Breakup in Concentrated Emulsions

At lot remains to be understood about collective effects such as local jamming, which appears

to affect the breakup of densely packed droplets in microchannel constrictions. While some

predictions for the scaling and reliability of droplet reinjection exist (notably the study by Gai

et al. [2016a]), the physical basis of the scaling is not addressed. Here, the analytical model that

we derived from two-droplet interaction could be extended to include the effects of different

droplet sizes, opening angles of the constriction, or even the influence of a third and more

droplets.
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Effects of Marangoni Stresses

The effect of surfactants on droplet dynamics and breakup is a current field of study, but

simple models could be implemented in the numerical code. Besides a comparison with the

experimental data for two-droplet interaction, one observation that a surfactant model for

complex droplet interaction might help explain is the complex internal flow pattern inside

droplets in densely packed emulsions. Leong et al. [2016] measure an internal flow in a packed

emulsion, which is qualitatively different from flows we find in simulations that assume no

Marangoni stresses. Marangoni stresses oppose any surface stretching and thus explain the

observed flow (Figure 7.1).

a) b) c)

Figure 7.1: Internal flow in closely packed droplets. Flow vectors in the inertial frame of the
droplet. Blue arrows indicate the direction of downstream motion. a) Sketch of the midplane
flow that we estimate from preliminary simulations for a compressible interface. Backward
flow on the top and bottom boundaries (not shown) is compensated by a forward flow in the
center. b) Flow pattern observed in experiments by Leong et al. [2016]. The flow in the center
is backwards. c) Flow pattern of an incompressible interface that drives the flow as observed
in the experiments. Backwards advection of the top and bottom droplet interface relative to
the mean droplet motion is compensated by a forward motion on the sides, which explains
the internal circulation that experiments show.

Droplet Sorting

Our study on droplet sorting is focused on the electrode designs, while the geometry of

microchannels has not been addressed. Experiments show that strong shear, in particular at

the dividing channel wall at the bifurcation, can lead to droplet disintegration at high flow rates

[Sciambi and Abate, 2015]. Combining a microchannel design that reduces shear on droplets

with the here presented optimized electrode layout that minimizes droplet deformation due

to dielectric forces would be the next step in high-throughput sorting applications. By varying

the channel cross-section, the advection speed of droplets can be modified, so that droplets

spend more time in the zone of high field strength. If droplets are actuated strong enough to

avoid collisions with the channel bifurcation, shear forces are reduced.
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Understanding of Droplet Pinch-Off

In addition to these application-related points, some open questions remain for a more funda-

mental understanding of droplet behavior. In particular, droplet pinch-off is an interesting

process that merits closer study. Eggers [1997] discusses the self-similar pinch-off scaling of

a liquid thread in a gas of negligible viscosity; but a viscous outer fluid will likely change the

scaling qualitatively. The study of droplet break-up in constrictions brought up the question

whether the equilibrium shape of two liquid threads (or extended droplets) in a rectangular

channel could be derived from simple geometrical considerations, and how the breakup

transition from threads to droplets might progress in time (Figure 7.2).

a) b) c)

Figure 7.2: Breakup of liquid threads in a long, straight channel. a), b) Configurations of long
droplets in a rectangular channel, cross-section view. Different stable droplet configurations
could exist depending on the channel aspect ratio and degree of confinement. c) Depending
on the geometry, small droplets might have lower surface energy than two long liquid threads
lying side by side. A breakup cascade into small droplets would then be possible.

7.3 Final Remarks

With the ever increasing availability of computational power, complex flow problems can be

studied in unprecedented detail. We have shown how numerical tools, combined with experi-

mental observations, deepen our understanding of highly nonlinear physical phenomena. Of

course, confronting the theoretical models with physical reality carries the risk of discovering

that rotationally symmetric droplets, flows without inertia or surfactant-free interfaces do

not exist in nature. But equipped with the tools to compare model and reality in practically

relevant flows, we are ready to test assumptions, uncover effects that have previously been

overlooked or ignored, and refine the models that describe the flow physics.
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A Jacobian, Normal and Curvature of
the Smooth Surface Representation

In Section 3.4, we present a smooth representation of the surface on droplet interfaces. The

representation is defined by the mapping (3.28) from a reference element (a,b) ∈ [0,1]× [0,1]

onto a cell of the boundary mesh. Here, we note the expressions to calculate the Jacobian

of this mapping, the local normal of the surface, and the curvature κ that drives the Young-

Laplace stress (Section 2.3.1).

A.1 Jacobian and Normal Vector

Both the Jacobian of the mapping and the unit normal vector of the surface are calculated from

the derivatives of x with respect to the reference cell coordinates (a,b). For the paraboloid

xi (a,b) of corner vertex vi , the derivatives are

∂xi

∂a
= (∂a xi ) · êx,i + (∂a yi ) · ê y,i +

[
2αi xi (∂a xi )+2βi yi (∂a yi )+γi (xi (∂a yi )+ (∂a xi )yi )

] · n̂i

∂xi

∂b
= (∂b xi ) · êx,i + (∂b yi ) · ê y,i +

[
2αi xi (∂b xi )+2βi yi (∂b yi )+γi (xi (∂b yi )+ (∂b xi )yi )

] · n̂i

with the derivatives of the bilinear interpolation xb(a,b) given by

∂a xb = (1−b)(v1 −v0)+b(v3 −v2) ∂b xb = (1−a)(v2 −v0)+a(v3 −v1)

∂a xi = [∂a xb] · êx,i ∂b xi = [∂b xb] · êx,i

∂a yi = [∂a xb] · ê y,i ∂b yi = [∂b xb] · ê y,i .

For the interpolation (3.28), we then get the tangent vectors at (a,b),

ta := ∂x

∂a
= ψ′

0(a)ψ0(b)x0 +ψ′
1(a)ψ0(b)x1 +ψ′

0(a)ψ1(b)x2 +ψ′
1(a)ψ1(b)x3

+ ψ0(a)ψ0(b)
∂x0

∂a
+ψ1(a)ψ0(b)

∂x1

∂a
+ψ0(a)ψ1(b)

∂x2

∂a
+ψ1(a)ψ1(b)

∂x3

∂a
,
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tb := ∂x

∂b
= ψ0(a)ψ′

0(b)x0 +ψ1(a)ψ′
0(b)x1 +ψ0(a)ψ′

1(b)x2 +ψ1(a)ψ′
1(b)x3

+ ψ0(a)ψ0(b)
∂x0

∂b
+ψ1(a)ψ0(b)

∂x1

∂b
+ψ0(a)ψ1(b)

∂x2

∂b
+ψ1(a)ψ1(b)

∂x3

∂b
.

From the tangent vectors we determine the surface normal vector [Bronstein et al., 2008, p.

267]

N = ta × tb

|ta × tb |
, (A.1)

and the Jacobian of the mapping from the reference cell

J = |ta × tb |. (A.2)

A.2 Curvature

To determine the mean curvature κ at (a,b), we calculate the second derivatives of the

paraboloid xi as

∂2xi

∂a2 = [2αi (∂a xi )2 +2βi (∂a yi )2 +2γi (∂a xi )(∂a yi )] · n̂i ,

∂2xi

∂b2 = [2αi (∂b xi )2 +2βi (∂b yi )2 +2γi (∂b xi )(∂b yi )] · n̂i ,

∂2xi

∂a∂b
= (∂ab xi ) · êx,i + (∂ab yi ) · ê y,i

+ [2αi (∂a xi )(∂b xi )+2βi (∂a yi )(∂b yi )+γi ((∂b xi )(∂a yi )+ (∂a xi )(∂b yi ))] · n̂i

+ [2αi xi (∂ab xi )+2βi yi (∂ab yi )+γi (xi (∂ab yi )+ (∂ab xi )yi )] · n̂i ,

using first derivatives of the bilinear interpolation as in Section A.1 and second derivatives

∂ab xb = (v0 +v3)− (v1 +v2),

∂ab xi = [∂ab xb] · êx,i ,

∂ab yi = [∂ab xb] · ê y,i .

Together with the first derivatives noted in Section A.1, the second derivatives of xi are needed

to calculate derivatives of the mapping (3.28),

∂2x

∂a2 = ψ′′
0(a)ψ0(b)x0 +ψ′′

1(a)ψ0(b)x1 +ψ′′
0(a)ψ1(b)x2 +ψ′′

1(a)ψ1(b)x3

+ 2ψ′
0(a)ψ0(b)

∂x0

∂a
+2ψ′

1(a)ψ0(b)
∂x1

∂a
+2ψ′

0(a)ψ1(b)
∂x2

∂a
+2ψ′

1(a)ψ1(b)
∂x3

∂a

+ ψ0(a)ψ0(b)
∂2x0

∂a2 +ψ1(a)ψ0(b)
∂2x1

∂a2 +ψ0(a)ψ1(b)
∂2x2

∂a2 +ψ1(a)ψ1(b)
∂2x3

∂a2 ,
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∂2x

∂b2 = ψ0(a)ψ′′
0(b)x0 +ψ1(a)ψ′′

0(b)x1 +ψ0(a)ψ′′
1(b)x2 +ψ1(a)ψ′′

1(b)x3

+ 2ψ′
0(a)ψ0(b)

∂x0

∂b
+2ψ′

1(a)ψ0(b)
∂x1

∂b
+2ψ′

0(a)ψ1(b)
∂x2

∂b
+2ψ′

1(a)ψ1(b)
∂x3

∂b

+ ψ0(a)ψ0(b)
∂2x0

∂b2 +ψ1(a)ψ0(b)
∂2x1

∂b2 +ψ0(a)ψ1(b)
∂2x2

∂b2 +ψ1(a)ψ1(b)
∂2x3

∂b2 ,

∂2x

∂a∂b
= ψ′

0(a)ψ′
0(b)x0 +ψ′

1(a)ψ′
0(b)x1 +ψ′

0(a)ψ′
1(b)x2 +ψ′

1(a)ψ′
1(b)x3

+ ψ′
0(a)ψ0(b)

∂x0

∂b
+ψ′

1(a)ψ0(b)
∂x1

∂b
+ψ′

0(a)ψ1(b)
∂x2

∂b
+ψ′

1(a)ψ1(b)
∂x3

∂b

+ ψ0(a)ψ′
0(b)

∂x0

∂a
+ψ1(a)ψ′

0(b)
∂x1

∂a
+ψ0(a)ψ′

1(b)
∂x2

∂a
+ψ1(a)ψ′

1(b)
∂x3

∂a

+ ψ0(a)ψ0(b)
∂2x0

∂a∂b
+ψ1(a)ψ0(b)

∂2x1

∂a∂b
+ψ0(a)ψ1(b)

∂2x2

∂a∂b
+ψ1(a)ψ1(b)

∂2x3

∂a∂b
.

We now define the coefficients of the first and second fundamental form [Bronstein et al., 2008,

p. 270f],

E := ta · ta F := ta · tb G := tb · tb

L := ∂2x

∂a2 ·n M := ∂2x

∂a∂b
·n N := ∂2x

∂b2 ·n,

and write the mean curvature κ as

κ = E N −2F M +GL

2(EG −F 2)
. (A.3)
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