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ABSTRACT

In this article we propose a new super-resolution algo-

rithm tailored for light field cameras, which suffer by design

from a limited spatial resolution. To do so, we cast the light

field super-resolution problem into an optimization problem,

where the particular structure of the light field data is captured

by a nonsmooth graph-based regularizer, and all the light field

views are super-resolved jointly. In our experiments, we show

that the proposed method compares favorably to the state-

of-the-art light field super-resolution algorithms in terms of

PSNR and visual quality. In particular, the nonsmooth graph-

based regularizer leads to sharper images while preserving

fine details.

Index Terms— light field, super-resolution, graph

1. INTRODUCTION

A light field camera behaves as a compact camera array,

providing multiple simultaneous images of a 3D scene from

slightly different points of view on a regular grid [1]. The

captured data is referred to as the light field [2] and is poten-

tially suitable for a wide range of applications, such as depth

estimation, view synthesis, and 3D modeling. However, the

light field views exhibit a significantly lower resolution than

images from traditional cameras, and this represents a limit

for many light field applications. It is therefore crucial to

improve the resolution of the light field views through super-

resolution techniques.

It is important to note that the light field data is character-

ized by a particular structure that needs to be preserved when

augmenting the resolution of the single light field views. As

a consequence, off-the-shelf single-frame super-resolution al-

gorithms [3–5], which are completely blind to the light field

structure, and traditional multi-frame super-resolution algo-

rithms [6–8], whose global warping model is too general to

capture the complexity of the light field structure, are not ideal

candidates for light field super-resolution. Motivated by this

observation, in this article we present a new super-resolution

algorithm which explicitly takes the light field structure into

account by modeling the inter view correlation with a graph.

A few super-resolution algorithms developed explicitly

for light field data have already been proposed in the litera-

ture, but they exhibit one or more drawbacks. For example, in

their light field super-resolution framework [9], Wanner and

Goldluecke propose to first compute a disparity map with sub-

pixel precision at each low resolution view of the light field,

and then to use the computed maps to super-resolve sequen-

tially each light field view within a multi-frame alike super-

resolution method. However, disparity estimation is a very

challenging task at low spatial resolution and the disparity er-

rors translate into significant artifacts in the super-resolved

light field views.

In a different framework, Mitra and Veeraraghavan pro-

pose a light field super-resolution algorithm based on a learn-

ing procedure [10]. The low resolution light field is decom-

posed into multiple light fields with small spatial resolution,

light field patches, and each one is assigned a unique dis-

parity value. A Gaussian Mixture Model prior for light field

patches is learnt offline for each disparity value and then em-

ployed, within a MAP estimator, to super-resolve each light

field patch. However, first, the reconstruction quality depends

on the selected light field training data, which is not read-

ily available yet; second, the constant disparity assumption

within each patch leads to severe artifacts at depth disconti-

nuities in the super-resolved light field views.

Building on our previous work [11,12], we propose a new

light field super-resolution algorithm that targets the draw-

backs of the methods in [9,10]. We develop a super-resolution

algorithm that augments the resolution of all the views to-

gether, while relying only on a very rough estimate of the

disparity at each view, and without any offline learning pro-

cedure. In particular, light field super-resolution is casted

into a global optimization problem, whose objective function

comprises three terms. The first one enforces data fidelity, by

constraining each high resolution view to be consistent with

its low resolution counterpart. The second one is a warping

term, which gathers for each view the complementary infor-

mation encoded in the others. The third one is a novel graph-

based prior, which regularizes the high resolution views by

enforcing the geometric structure of the light field. Differ-

ently from our previous work [12], where a quadratic graph-

based regularizer is employed, the new graph-based regular-

izer is nonsmooth. This represents a substantial difference,

as quadratic regularizers are known to induce a low-pass fil-

tered solution, while the adopted nonsmooth regularizer does





Formally, we define the regularizer as follows [14]:

g (u) =
∑

i

√

∑

j∼i

w (i, j) (u (i)− u (j))
2

(4)

where w (i, j) > 0 is an edge weight capturing the similarity

between the pixels u(i) and u(j), with j ∼ i the set of pixels

u(j) directly connected to u(i). The regularizer in Eq. (4)

enforces the directly connected pixels in the graph, i.e. those

which are the projection of the same 3D point in the scene,

to share similar values, thus promoting the light field struc-

ture. The square root in the nonsmooth regularizer of Eq. (4)

is chosen in order not to over penalize those pixels whose in-

tensity differ significantly from that of its directly connected

neighbors in the graph. This prevents the low-pass tendency

of the quadratic regularizer in our work [12].

In practice, as shown in Figure 1, the projection of a pixel

Uk(x, y) in a neighboring view Uk′ does not lie at integer

spatial coordinates. Therefore, in our graph we aim at con-

necting the pixel Uk(x, y) to those pixels of Uk′ that enclose

its projection, i.e., the green pixels in Figure 1. To detect

these pixels, we define a search window centered at the pixel

Uk′(x, y), and we compute the following weight between the

pixel Uk(x, y) = u(i) and each pixel Uk′(x′, y′) = u(j) in

the considered window:

w (i, j) = exp

(

−
‖Pk(x, y)− Pk′(x′, y′)‖2F

σ2

)

, (5)

where Pk(x, y) is a square patch centered at Uk(x, y), ‖ · ‖F
is the Frobenius norm, and σ is a tunable constant. The proce-

dure is repeated for each one of the eight surrounding views.

The shape of the search window varies from view to view: a

1D search window is sufficient for the horizontally and ver-

tically adjacent views, while a 2D window is preferred for

the diagonally adjacent ones, as shown in Figure 1. Finally,

among the weights computed for the adjacent view Uk′ , we

keep only the n highest ones, with n equal to 2 and 4 for the

views equipped with a 1D and 2D windows, respectively, as

represented in Figure 1.

4. SUPER-RESOLUTION ALGORITHM

We now have all the ingredients to solve our problem in

Eq. (1), whose objective function is the sum of a smooth

function f = f1 + λ2 f2 and a nonsmooth one λg g. In par-

ticular, the nonsmooth function g can be expressed as the

ℓ1,2-norm composed with a discrete difference operator:

g (u) = ‖Tu‖1,2 (6)

where

Tu =











[

√

w(1, j)(u(1)− u(j))
]

j∼1
...

[

√

w((NM)2, j)(u((NM)2)− u(j))
]

j∼(NM)2











and the i-th row in the above formula is a vector in R
|j∼i|,

with | · | the set cardinality. As a consequence, the solution of

the problem in Eq. (1) requires an algorithm to deal with con-

vex problems involving nonsmooth functions and linear oper-

ators. For this reason, we resort here to Primal-Dual Proximal

Methods [13, 15–19]. In the convex setting, the key tool of

these methods is the proximity operator [20] of a lower semi-

continuous convex function ϕ : RK 7→ ]−∞; +∞], defined

as proxϕ(z̄) = argmin
z
ϕ(z) + (1/2)‖z − z̄‖2, ∀z̄ ∈ R

K .

Proximal methods provide a unifying framework that allows

one to address a wide class of convex optimization problems

involving nonsmooth penalizations and hard constraints.

We solve the problem in Eq. (1) using the Forward-

Backward Primal-Dual FBPD method [13], due to its straight-

forward implementation. In the FBPD method, detailed in

Algorithm 1, each iteration evaluates the gradient ∇f of the

function f = f1 + λ2 f2 and the proximity operator of the

ℓ1,2-norm. The gradient ∇f is defined as follows:

∇f (u) = 2
∑

k

(SB)
⊤
(SBuk − vk)

+ 2
∑

k

∑

k′∈ Nk

λ2

(

SBF
k
k′

)⊤ (

SBF
k
k′uk′ − vk

)

.

The ℓ1,2-norm proximity operator is listed in [21, Eq. (16)].

Algorithm 1 FBPD [13]

Initialization


Choose u
[0] ∈ R

(NM)2
and set z

[0] = Tu
[0]
,

set τ > 0 and ω > 0 such that

τ
(
β/2 + ωλg‖T ‖2

)
< 1

For l = 0, 1, . . .


û
[l] = ∇f(u[l]) + T

⊤
z
[l]

u
[l+1] = u

[l] − τ û[l]

ẑ
[l] = T

(
2u[l+1] − u

[l])

z
[l+1] =

(
z
[l] + ω ẑ

[l]) − ω prox λg
ω

‖·‖1,2

(
z
[l] + ω ẑ

[l]

ω

)

5. EXPERIMENTS

We test the proposed super-resolution algorithm with graph-

based nonsmooth prior, GB-NS hereafter, on the HCI light

field dataset [22], and we compare it to two state-of-the-art

light field super-resolution algorithms: [10] and our previous

algorithm GB-SQ [12]. The latter relies on a graph model of

the light field as well, but binds it to a quadratic regularizer.

We also provide the results of a simple bilinear interpolation

of the single views as a baseline. Similarly to [10], we crop

each light field to a 5× 5 array of views, i.e., M = 5.

The matrices B and S implement a α× α box filter and a

regular sampler, respectively. For a fair comparison between



Bilinear [10] GB-SQ GB-NS

buddha 35.22 39.12 39.00 39.09

buddha2 30.97 33.63 34.41 34.54

couple 25.52 31.83 33.51 33.43

cube 26.06 30.99 33.28 33.11

horses 26.37 33.13 32.62 33.59

maria 32.84 37.03 37.25 37.02

medieval 30.07 33.34 33.45 33.50

mona 35.11 38.32 39.37 40.05

papillon 36.19 40.59 40.70 41.56

pyramide 26.49 33.35 35.41 35.09

statue 26.32 32.95 35.61 35.43

stillLife 25.28 28.84 30.98 30.96

Table 1. Mean PSNR on the HCI dataset [22], for α = 2.

the methods GB-SQ and GB-NS, which rely on the same con-

struction procedures for the warping matrices and the graph,

we select the same parameter values: we set the size of the

patch P to 7× 7 pixels and σ = 0.7229. Finally, we empiri-

cally set λ2 = 0.15 and λg = 0.0055 in the problem in Eq. (1)
and solve it twice: at the first round, the warping matrices and

the graph are built on a bilinearly interpolated version of the

light field views, then, the obtained high resolution light field

is used to build the warping matrices and the graph for the

second round. Finally, for our experiments on the algorithm

in [10] we use the code provided by the authors.

Due to space constraints, we report only the results of

our experiment for the super-resolution factor α = 2. For

each light field in the HCI dataset, Table 1 reports the av-

erage PSNR (dB) of the M2 reconstructed views. The pro-

posed method GB-NS achieves the higher PSNR on five out

of twelve light fields, and in the light fields buddha and

stillLife is only 0.02 dB away from the highest PSNR

values, achieved by [10] and GB-SQ, respectively. Concern-

ing the remaining five light fields couple, cube, maria,

pyramide and statue, here the PSNR happens to be a

misleading index, as in these light fields GB-NS achieves bet-

ter visual results than its competitors [10] and GB-SQ. These

five light fields share a particular structure: the foreground

hosts an object that changes from light field to light field,

while the background consists of the same panel with a fined

detailed tree motif. At low resolution, the panel details are

completely lost, and building a meaningful graph is really

challenging, both for GB-NS and GB-SQ. In fact, no sig-

nificant visual difference can be perceived between the pan-

els reconstructed by GB-NS and GB-SQ. However, thanks

to the smooth nature of its regularizer, GB-SQ reconstructs

a smoother panel texture where the error is spread over the

whole surface, and this biases the PSNR measure. On the

other hand, in each one of the five considered light fields, the

object in the foreground exhibits significantly sharper edges

in the reconstruction by GB-NS than in those by GB-SQ and

[10], where the same edges appear blurred and pixelated. An
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Fig. 2. Super-resolved details from the bottom right-most

views of the light fields pyramide (left) and statue

(right), for α = 2. From the top to the bottom, the original

High Resolution light field and the reconstructions of GB-

NS, GB-SQ and [10], respectively. GB-NS provides sharper

edges than its competitors GB-SQ and [10] in both the light

fields.

example is reported in Figure 5, which represents two details

from the light fields pyramide and statue, where both

the background and the foreground are visible.

6. CONCLUSIONS

We presented a new light field super-resolution algorithm that

super-resolves all the light field views jointly, thanks to a

graph-based regularizer that captures their correlation. In par-

ticular, we showed that coupling a graph model of the light

field with a non smooth regularization permits to reconstruct

high resolution views characterized by a higher visual quality,

often supported by the value of the PSNR. The proposed al-

gorithm could further benefit from a non quadratic penalty in

the warping term, as this could better handle the outlier pixels

due the roughly estimated warping matrices.
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