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Abstract—This work presents a design methodology and
its experimental validation for the input-admittance pas-
sivity compliance of LCL grid-connected converters. The
designs of the LCL filter parameters and discrete con-
troller are addressed systematically, and suitable design
guidelines are provided. The controller design is devel-
oped in the z-domain, with capacitor voltage based active
damping used as degree of freedom to compensate for
system delay effects. The role of resistive components
in the circuit, which have inherent dissipative properties,
is also discussed. As an outcome of the design, a pas-
sive input admittance shaping is obtained. The theoretical
development is further verified in a low-scale prototype
supplied from a controllable grid simulator. For the sake of
generality, different combinations of resonant to sampling
frequency are tested. Experimental results fully prove the
input-admittance passivity compliance.

Index Terms—Admittance measurement, current control,
pulse width modulation converters, stability criteria.

I. INTRODUCTION

Stability of grid-tied voltage source converters (VSCs) con-

nected to highly variable grid conditions is a challenging issue.

This is the case of traction applications, in which the electric

circuit seen by the locomotive converter (i.e., the plant) is

continuously changing during operation [1], [2]. Looking at

renewable energy applications, high uncertainty in the plant

model is found in large wind farms due to elements such as

long cables, capacitor banks and transformers [3]–[5].

Classical closed-loop control theory approaches face im-

portant difficulties to deal with uncertainties of the plant

(i.e., the electric circuit at which the VSC is connected).

Alternatively, the input-admittance criterion successfully deals

with a limited knowledge of physical environment, since it pro-

vides a sufficient condition for stability [6]. Input-admittance

passivity compliance is a requirement in traction standards [1],

[2], [7]. More recently, the interest on design for passivity

methodologies for grid-connected VSCs has grown owing to
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the drastical increase of power electronics in renewable energy

applications [8]–[11].

Design for passivity methodologies, particularized for grid-

connected VSCs, can be summarized as follows:

i) the closed loop control problem is expressed in terms of

the impedance stability criterion [6], [8].

ii) the environment model is unknown, but it is assumed

to be passive. Defining Zg(ω) as a grid impedance that

defines the environment dynamics, Re{Zg(ω)} > 0, or

equivalently | 6 Zg(ω)| ≤ π/2 rad, define the condition

for passivity.

iii) subsequently, stability is assured if the VSC input-

admittance, defined as Yg(ω), is also passive; i.e., the

VSC control and hardware designs should focus on

a Yg(ω) shaping, such that Re{Yg(ω)} > 0 (i.e.,

| 6 Yg(ω)| ≤ π/2 rad).

Systematic procedures to set control filters and parameters is

provided with the goal of shaping the converter admittance to

be passive [8]–[11]. However, even though a comprehensive

work is identified in the recent state of the art, some open

problems could be still identified:

i) usually, the controller analyses are developed in the

continous domain [9], [11], which may imply some

discrepancies with discrete implementation. Alternative,

a controller in the discrete domain can be employed for

the calculation of the controller gains [10].

ii) The criterion to set a high frequency limit for the

controller design is not clear. In principle, the Nyquist

frequency is considered [8], [9], but the role of alias terms

on the stability have been also discussed recently [12].

However, the VSC control action effectiveness is reduced

to a relatively low frequency range of the spectrum [13],

[14].

iii) Most of the design for passivity efforts are focused on

the controller design, but the role of natural damping of

the system is usually overlooked.

In relation to the last two points, the LCL interface filter

has been suggested as a convenient structure to provide input-

admittance passivity compliance [10], which in principle may

seem contradictory: LCL filters are placed in order to attenuate

switching harmonics, but, as a side effect, they introduce a

resonance into the plant, which may compromise the VSC

stability [15]–[20]. An intuitive physical explanation for the

good stability properties given by the LCL filter is the fact

that the capacitor branch, which is in parallel to the VSC one,

absorbs most of the high frequency components from the grid;



0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2835374, IEEE

Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Eg
Zg Rg

Lg Rc
Lcig ic

ic

U

Ec

Rd

C

Vdc

Outer loops kp +kiTs
1−cos(ω1Ts)z

−1

1−2cos(ω1Ts)z−1+z−2

K(z)

kad
1−z−1

Ts

SVM/PWM

Ec

Vdc

Q∗

V ∗

dc

i∗c + −

+

Ec1
Vdc

Ec

+

ic

−

U∗

YcYg

Fig. 1. LCL grid-connected converter with current control including a capacitor voltage based active damping.

therefore, the closed-loop control action is hardly affected by

high order harmonics perturbations in the grid side.

This work deepens on the input-admittance passivity com-

pliance considering the beneficial impact of the LCL filter.

With regard to the previous study in [10], two major contri-

butions are provided, say i) systematic guidelines for control

and hardware design are provided; ii) a comprehensive set

of experimental tests based on the EN50388 standard [7] is

provided, which fully prove the main theoretical hypotheses.

The rest of the paper is organized as follows. Section II

shows an overall description of a LCL grid-connected con-

verter and its discrete current controller. Section III presents

the core hypotheses and design guidelines to achieve an input-

admittance passivity compliant system. Section IV details the

experimental verification test-bed and includes figures of merit

to prove the input-admittance compliance. Finally, the main

conclusions of this work are summarized.

II. SYSTEM DESCRIPTION AND PROBLEM FORMULATION

Fig. 1 represents a LCL grid-connected VSC working in

current control mode. The voltages Eg , Ec and U repre-

sent the stiff grid, point of connection and VSC voltages,

respectively. The LCL output filter is formed by the converter

side inductance, a capacitive branch and grid side inductance,

presumably a transformer leakage model [4], [19], [20]. The

converter side inductive filter is defined by series inductance

Lc and resistance Rc. The capacitance is given by a parallel

capacitance C in series with a damping resistor Rd; Rd can

be considered a degree of freedom to physically increase the

damping of the LCL filter [16]. The secondary inductance is

given by Lg with Rg in series. The grid model is represented

by the grid impedance Zg . It depends on power system circuit

and grid conditions [3], [5], but for input-admittance passivity

compliance is assumed to be a passive environment.

A. Controller

Fig. 1 includes the current loop. K(z) represents the main

controller. A proportional resonant (PR) controller imple-

mented in αβ-frame is considered in this work:

K(z) = (kp + kiTs

1− cos(ω1Ts)z
−1

1− 2cos(ω1Ts)z−1 + z−2
)I (1)

with kp and ki being the proportional and resonant gains, ω1

the fundamental frequency and Ts = 2π/ωs the controller

sampling period, respectively. The resonant filter transfer func-

tion corresponds to the impulse-invariant method [21]. I is a

2x2 unity matrix, that means that K(z) is diagonal [20].

The control action calculation also includes an Ec voltage

feedforward double path, with the following objectives: i)

provide a filtered value of the main grid component to improve

the initial transient [8] and ii) an active damping action based

on capacitor voltage derivative term [9], [15]. The active

damping action using a backward-Euler discretization is

F(z) = (kad
1− z−1

Ts

)I. (2)

with kad being the active damping gain [15]. F(z) is also a

diagonal matrix defined in the αβ-frame.

A matrix notation has been employed until now in order to

differentiate three-phase signals and scalar variables. Subse-

quently, for the sake of generality scalar notation is used, as

no couplings between phases are considered. This assumption

is accurate for αβ-frame, as both the controller and physical

signal are defined diagonal [20], [22].

B. LCL filter

In most grid-connected applications, the hardware design

is imposed by the transformer leakage inductance, which sets

Lg [19], [23]. Typical values for the secondary inductance are
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combination of kad and kp produces a double zero-pole

cancellation and reduces Yc(z) to a first order expression, i.e.,

Yc(z) =
(az + b)

z
✘
✘
✘

✘
✘
✘

✘
✘
✘

✘
✘
✘

(Lc/Tsz
2 − Lcs/Tsz + kp)

(Lc/Tsz2 − Lc/Tsz + kp)
. (8)

This order reduction is obtained with

kad =
2Ts

3
and kp =

2Lc

3Ts

(9)

giving rise to

Yc(z) =
1

2Lcfs

z + 2

z
=

π

Lcωs

z + 2

z
. (10)

The order reduction enhances the passivity as it reduces the

phase variations in the Yc(z) frequency response [i.e., phase

variations associated to poles and zeros at the region of

interest]. However, this expression is a non-minimum phase

that has a zero at −2. This zero is modeling the effect

of delay and introduces more and more phase-delay as the

frequency increases [26], [27]. The frequency domain response

is analytically obtained by Yc(ω) ≡ Yc(z = ejωTs). It can be

observed that, despite being a first order expression, the phase

delay reaches −180 deg at the Nyquist frequency. The critical

frequency at which Yc(ω) turns to be not passive is ωs/3.

2) Calculation of ki: In principle, a fast transient response

of the system is achieved with a relative high ki [8], [21], [24].

However, as previously discussed, the resonant gain should be

small enough so it does re-shape Yc(ω) at frequencies very

different from ω1. In order to find a good trade-off, a flexible

design rule is reported in [8], from which

0.1 ≤
√
kiLc

kp
≤ 0.5 (11)

is a reasonable range for ki. In principle, this rule provides

enough flexibility in order to find a good trade-off between

transient response and passivity compliance, as shown in the

experimental results.

B. A Conservative Criterion for Rd Selection

Addition of Rd is a standard passive damping method,

which aims to attenuate the peak of the LCL filter resonance

[16]–[18]. The main drawback of this approach is due to the

Rd dissipation losses, which eventually reduce the overall

converter efficiency [16]–[18]. From the point of view of

design, the effect of Rd in the stability of the system can

be studied by the frequency response of the input-admittance.

Clearly, the overall objective is to fulfill with the passivity

criteria with a minimum value of Rd.

The input-admittance Yg(ω), defined as in (4), can be also

evaluated in the frequency domain [Yc(ω) = Yc(z = ejωTs).]
A conservative design to keep Yg(ω) passive is given by

Re{Yp(ω)} > −Re{Yc(ω)} in the high frequency range

(cf. Fig. 4 ). Since Re{Yp(ω)} is monotonically increasing,

and −Re{Yc(ω)} reaches its maximum at ωs/2, a sufficient

condition is obtained by Re{Yp(ωs/3)} = −Re{Yc(ωs/2)},

giving rise to the design rule

Rd ≥ 9π

LcC2ω3
s

. (12)
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Fig. 4. Rd influence in Yg(ω) passivity at the high-frequency region.

Fig. 5. A voltage harmonics signature programmed for admittance
measurement: phase-A line-to-neutral voltage (yellow, source of pertur-
bation) and phase-A grid current (red, response to the perturbation).

1) Effect of Natural Damping: It should be pointed out

that the use of (12) as a design rule is provided for a relative

high power industrial equipment working at rated conditions,

where non-linear dissipation effects (e.g., copper and iron

losses in magnetics due to switching harmonics [15], [28])

are negligible. However, an experimental verification in a

low-scale experimental set-up would be meaningless since,

as already reported in previous works such as [15], [20],

[29], [30], there is a significant dissipation reflected as a

high apparent Rc value [28]–[30]. E.g., taking representative

values from [30], which analyzes a similar test-bench as the

one employed in this work, Rc would be in the order of

a few Ω; however, using the values of our test-bench, (12)

gives a value lower than 1Ω as a conservative one for Rd.

Clearly, the lab-scale system already has a high natural passive

damping, which drastically improves the closed loop dynamics

without needing much further action. For example, the effect

of adding/removing an external Rd resistor in our experiment

has been found negligible in practice.

IV. EXPERIMENTAL VERIFICATION

The system described in Fig. 1 is replicated in a low scale

lab prototype. The converter hardware is based on a low power

industrial drive by Danfoss. The control is implemented in

a rapid prototype target dSpace D1006. The grid is given

by a Chroma 61845 grid-simulator, which allows to program

harmonics up to the 50th component (cf. Fig. 5). The physical

parameters of the test-bed are shown in Table I. For the sake

of generality, two different sampling frequencies have been

considered; i.e., different resonance over sampling frequency

ratios. For the given power ratings, the LCL filter resonance
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TABLE I
PHYSICAL SYSTEM PARAMETERS

Circuit Parameters

Rated Power S = 2.5 kVA
Rated Voltage (Line to line RMS) V = 230V

Converter inductance Lc = 8.6mH
Converter equivalent resistance Rc ≈ 2Ω (cf. [30])

Capacitor C = 27uF
Passive damping (ESR from C) Rd = 3mΩ

Grid Side Inductance Lg = 8.6mH
Grid Side Resistor Rg = 0.27Ω

Resonance frequency fres = 467Hz
Test-bench scenario 1

Switching/Sampling frequency fsw = fs = 4kHz
Proportional gain kp = 22.93Ω

Resonant gain ki = 2800Ω/s
Active damping gain kad = 167e−6 s

Test-bench scenario 2

Switching/Sampling frequency fsw = fs = 3kHz
Proportional gain kp = 17.20Ω

Resonant gain ki = 2400Ω/s
Active damping gain kad = 222e−6 s

frequency and the sampling/switching frequencies have been

selected low in order to take advantage of the grid simulator

harmonic injection capability, which, for the selected sam-

pling/switching frequencies, allows the admittances measure-

ment beyond ωs/2.

Before representation and discussion of frequency domain

curves, basic operation tests obtained with the converter design

provided in section III-A are depicted in Figs. 6 and 7. For

both test-cases, the current step (from 0 to 100% nominal

current) responses and the responses to grid faults (40%

voltage sag) are quick and damped, which are in a good

agreement with the expected responses form the theoretical

analysis, and overall proves the robustness of the system. As

expected, the test-case with higher switching frequency, shows

a slightly better current step response, and lower current peak

for the grid faults test. The grid fault tests are a good method

to evaluate the converter admittance, since by definition,

the converter admittance is the converter current response

against voltage variations [i.e., Yc(z) = ic(z)/Ec(z)]. The

lower current peaks obtained in Fig. 6(a) in comparison with

Fig. 7(a) is expected by the higher kp, since the disturbance

rejection capability at low frequencies, mostly depends on kp
[|Yc(jω)| ≈ 1/kp, ∀ω < ωc, being ωc the controller closed

loop bandwidth] [20]. This can be appreciated in Figs. 8(a)

and 8(c), where |Yc(jω ≈ 0)| is -27.23 dB and -24.75 dB for

values of kp of 22.93 and 17.20, respectively.

Subsequently, Yc(ω) and Yg(ω) measurements in the fre-

quency domain are provided. The procedure to measure Yc(ω)
and Yg(ω) are inspired in the EN-50388 normative [7]: i) for

each point, the voltage harmonic components are programmed

at Ec(t) or Eg(t) and their Fast Fourier Transform (FFT) are

performed (magnitude and phase); ii) the converter control is

activated with ic(t) = 0 and its steady state is reached quickly;

then the FFT for ic(t) or ig(t) (magnitude and phase) is also

performed; iii) Yc(ω) and Yg(ω) are calculated as

Yc,g(ω) =
|ic,g(ω)|FFT

|Ec,g(ω)|FFT
[ 6 φFFT

ic,g(ω) − 6 φFFT

Ec,g(ω)] (13)

with the FFT superscript referring to data obtained by spectral

analysis. As an example of the procedure, Fig. 5 shows

time domain responses of the input phase voltage waveform

with the programmed harmonic components, more specifically

with the 5-7-8-10-11-13-16-19-22-26-30-35-41-50th harmonic

components, and the resultant ig(ω) phase current.

(a) (b)

(c) (d)

Fig. 6. Reference tracking and disturbance rejection tests for the test-bench scenario 1. The yellow curve shows Ec(t) in all the cases; ic(t) or
ig(t) are shown depending on the test as described next. (a) ic(t) current command step; (b) ic(t) response to a voltage step (i.e., a grid fault) with
i∗c(t) = 0 ; (d) ig(t) for a current command step; (d) ig(t) response to a voltage step (i.e., a grid fault) with i∗c(t) = 0.
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(a) (b)

(c) (d)

Fig. 7. Reference tracking and disturbance rejection tests for the test-bench scenario 2. The yellow curve shows Ec(t) in all the cases; ic(t) or
ig(t) are shown depending on the test as described next. (a) ic(t) current command step; (b) ic(t) response to a voltage step (i.e., a grid fault) with
i∗c(t) = 0 ; (d) ig(t) for a current command step; (d) ig(t) response to a voltage step (i.e., a grid fault) with i∗c(t) = 0.

Fig. 8(a) shows Yc(ω) measurements over the theoretical

curve for the test-bench scenario 1 (cf. Table I). In the

low frequency range (up to ωs/6 region), the measurements

well match the theoretical expression given by (10). Passivity

compliance in the ωs/6 region is achieved thanks to the

effective active damping action [9]. At the high frequency

range (well beyond ωs/6), Yc(ω) also tends to comply with the

passivity requirement, conversely to the theoretical expression.

An explanation to this behaviour can be regarded to the

high inherent passive damping of typical low-power lab-scale

test-benches [15], [20], [29], [30] in combination with a

negligible effectiveness of the control action as the frequencies

approach the Nyquist limit [10], [13], [14]. Fig. 8(b) shows

Yg(ω) measurements for the test-bench scenario 1: passivity

compliance is fully achieved in all the spectrum. Fig. 8(c) and

Fig. 8(d) show the measurements for the test-bench scenario 2.

Similar observations as in the test-bench scenario 1 are found:

high parasitic damping and loss of effective control action are

reflected in Yc(ω); Yg(ω) passivity compliance is achieved.

Overall, the results shown in Figs. 8 prove the validity of

the approach, but it is also clear that the beneficial effect

of damping that may ease to obtain passivity compliance.

Presumably, a real scale system rated for a higher order of

magnitude in power, the natural dissipation of the circuit is

significantly smaller [30]. In order to evaluate the approach in

more demanding scenarios, the current controller is artificially

driven near unstable implementations; to do so, an extra delay

is added as method to artificially impair1 the Yc(ω) shaping

(cf. appendix). An accurate extra delay is added using all pass

1Other methods to artificially impair the dynamics of damped LCL
systems (e.g., for assessment of the kad tuning) are reported [15], [20].

filters of the form

A(z) =
−z0 + z−1

1− z0z−1
I. (14)

in series with the control action; by defining Ted as the

artificially added extra delay, the all pass-filter parameter is

given by z0 = (1− Ted/Ts)/(1 + Ted/Ts).
Fig. 9(a) shows Yc(ω) curves detailed in a high-frequency

region to show two main effects. For enough timed delay non-

passive regions are obtained, first in the highest frequency

region (as imposed by the grid-simulator), and for even bigger

delay also in the ωs/6 region. Fig. 9(b) shows Yg(ω) measure-

ments for the cases in which the LCL system is stable, which

also correspond to a Yg(ω) passivity compliant. However, the

whole LCL system was found unable to work when Yc(ω) is

not passive around the ωs/6 region (the grid-simulator issues

an over-current alarm in such scenarios). The same behaviour

is observed for the second tests case, for which figures of merit

are depicted in Figs. 9(c) and 9(b).

Overall, the experimental verification clearly proves the

main hypothesis of the work: the LCL filter naturally provides

passivity in the high frequency region, where the control action

naturally becomes ineffective. It can be also mentioned that,

at the ωs/6 region, shaping Yc(ω) for passivity is needed to

effectively damp the LCL resonance.

V. CONCLUSIONS

This work addresses the input-admittance passivity compli-

ance of LCL grid-connected VSCs. Design guidelines for the

controller design are developed in the z-domain, with capacitor

voltage based active damping used as degree of freedom.

The role of passive resistors is also discussed. As a main







0278-0046 (c) 2018 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TIE.2018.2835374, IEEE

Transactions on Industrial Electronics

IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS

Applications, vol. 41, no. 5, pp. 1281–1291, sept.-oct. 2005.
[19] G. Gohil, L. Bede, R. Teodorescu, T. Kerekes, and F. Blaabjerg, “Line

filter design of parallel interleaved vscs for high-power wind energy
conversion systems,” IEEE Trans. Power Electron., vol. 30, no. 12, pp.
6775–6790, 2015.

[20] F. D. Freijedo et al., “A Root-Locus Design Methodology Derived from
the Impedance/Admittance Stability Formulation and Its Application
for LCL Grid-Connected Converters in Wind Turbines,” IEEE Trans.

Power Electron., vol. 32, no.10, pp. 8218 – 8228, 2017.
[21] A. Vidal et al., “Transient response evaluation of stationary-frame

resonant current controllers for grid-connected applications,” IET Power

Electronics, vol. 7, no. 7, pp. 1714–1724, 2014.
[22] G. C. Goodwin, S. F. Graebe, and M. E. Salgado, Control System Design.

Prentice Hall, 2000.
[23] IEC 61400-21 Ed.2, Wind turbines – Part 21: Measurement and assess-

ment of power quality characteristics of grid connected wind turbines,
IEC Std., Aug. 2008.

[24] A. Vidal et al. “Assessment and optimization of the transient response of
proportional-resonant current controllers for distributed power genera-
tion systems,” IEEE Trans. Ind. Electron., vol. 60, no. 4, pp. 1367–1383,
Apr. 2013.

[25] G. F. Franklin, J. D. Powell, and M. L. Workman., Digital Control of

Dynamic Systems (3rd Edition), ., Ed. Addison-Wesley, 1997.
[26] K. J. Astrom, P. Hagander, and J. Sternby, “Zeros of sampled systems,”

in Proc. 19th IEEE Conf. Decision and Control including the Symp.

Adaptive Processes, pp. 1077–1081, Dec. 1980.
[27] J. Hoagg and D. Bernstein, “Nonminimum-phase zeros - much to do

about nothing - classical control - revisited part II,” IEEE Control Syst.

Mag., vol. 27, no. 3, pp. 45–57, Jun. 2007.
[28] P. W. Lehn, “Exact modeling of the voltage source converter,” IEEE

Trans. Power Del., vol. 17, no. 1, pp. 217–222, Jan. 2002.
[29] A. Vidal et al. “A technique to estimate the equivalent loss resistance

of grid-tied converters for current control analysis and design,” IEEE

Trans. Power Electron., vol. 30, no. 3, pp. 1747–1761, 2015.
[30] A. Vidal et al. “A method for identification of the equivalent

inductance and resistance in the plant model of current-controlled
grid-tied converters,” IEEE Trans. Power Electron., vol. 30, no. 12, pp.
7245–7261, 2015.

Enrique Rodriguez-Diaz (S’15-M’18) received
the B.Sc. and Msc degrees in Electronics En-
gineering at the University of Oviedo, Oviedo,
Spain, in 2012 and 2014,respectively. He ob-
tained his PhD degree in Power Electronics from
Aalborg Universitet, Denmark, in 2018, where
currently is a Postdoctoral Researcher. In 2017,
he was a guest researcher at the Power Elec-
tronic Laboratory at EPFL. He is a member of
the International Electrotechnical Commission
System Evaluation Group SEG4 on Low Voltage

DC Applications, Distribution, and Safety for Use in Developed and
Developing Economies. His research interests include DC distribution
systems, control of power converters and microgrids.

Francisco D. Freijedo (M’07-SM’16) received
the M.Sc. degree in physics from the University
of Santiago de Compostela, Santiago de Com-
postela, Spain, in 2002 and the Ph.D. degree
in Electrical Engineering from the University of
Vigo, Vigo, Spain, in 2009. From 2005 to 2011,
he was a Lecturer in the Department of Electron-
ics Technology, University of Vigo. From 2011
to 2014, he worked in Gamesa Innovation and
Technology as a Power Electronics Control En-
gineer, where he was involved in Wind Energy

projects. From 2014 to 2016, he was a Postdoctoral Researcher in the
Department of Energy Technology, Aalborg University. Since 2016, he
is a Scientific Collaborator of the Power Electronics Laboratory, Ecole
Polytechnique Federale de Lausanne. His research interests include
many power conversion technologies and challenging control problems.

Josep M. Guerrero (S’01-M’04-SM’08-F’15) re-
ceived the B.S. degree in telecommunications
engineering, the M.S. degree in electronics engi-
neering, and the Ph.D. degree in power electron-
ics from the Technical University of Catalonia,
Barcelona, in 1997, 2000 and 2003, respectively.
Since 2011, he has been a Full Professor with
the Department of Energy Technology, Aalborg
University, Denmark, where he is responsible for
the Microgrid Research Program. From 2012 he
is a guest Professor at the Chinese Academy of

Science and the Nanjing University of Aeronautics and Astronautics;
and from 2014 he is chair Professor in Shandong University. His
research interests is oriented to different microgrid aspects, including
power electronics, distributed energy-storage systems, hierarchical and
cooperative control, energy management systems, and optimization of
microgrids and islanded minigrids. In 2014 he was awarded by Thomson
Reuters as ISI Highly Cited Researcher, and in 2015 same year he was
elevated as IEEE Fellow for contributions to ”distributed power systems
and microgrids”.

Juan-Alberto Marrero-Sosa received the B.S.
and M.Sc. degrees in Electrical Engineering,
and in Control and Electronics Engineering from
the University Carlos III of Madrid, Madrid, Spain
in 2002, 2005 and 2005 respectively. Since then
he has worked as development engineer of
power electronics converters for several interna-
tional companies, mainly in the sectors of renew-
able energy and railways. Since 2012 he has
been working for ABB in the Development De-
partment for Medium Voltage Drives and Trac-

tion Converters in Turgi, Switzerland. His research interests include
power electronics, renewable energy and advanced control techniques.

Drazen Dujic (S’03-M’09-SM’12) received the
Dipl.-Ing. and M.Sc. degrees from the University
of Novi Sad, Novi Sad, Serbia, in 2002 and 2005,
respectively, and the Ph.D. degree from Liver-
pool John Moores University, Liverpool, U.K., in
2008, all in Electrical Engineering. From 2002
to 2006, he was a Research Assistant with
the Department of Electrical Engineering, Uni-
versity of Novi Sad. From 2006 to 2009, he
was a Research Associate with Liverpool John
Moores University. From 2009 to 2013, he was

with the ABB Corporate Research Center, Switzerland, as a Principal
Scientist working on Power Electronics Projects. During 2010-2011,
he was involved in the development of the Power Electronic Traction
Transformer (PETT). From 2013 to 2014, he was with ABB Medium
Voltage Drives, Turgi, Switzerland, as an R&D Platform Manager.
He is currently an Assistant Professor with the Ecole Polytechnique
Federale de Lausanne, Lausanne, Switzerland, where he is also the
Director of the Power Electronics Laboratory. He has authored more
than 100 scientific publications and has filed 11 patents. His current
research interests include design of advanced high-power electronics
systems and high-performance drives. Dr. Dujic is an Associate Editor
for the IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, IEEE
TRANSACTIONS ON POWER ELECTRONICS, and IET Electric Power
Applications. He received the First Prize Paper Award from the Electrical
Machines Committee of the IEEE IES at IECON 2007. In 2014, he
received the Isao Takahashi Power Electronics Award for outstanding
achievement in Power Electronics.


