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Abstract 

Rapid growth of cities, concerns on global warming and depletion of fossil fuel resources call for sustainable energy 

solutions for cities. Distributed energy systems such as energy hubs offer promising solutions in this context. 

Evaluating the energy demand at urban scale is vital to support the design of energy hubs. However, most of the 

recent studies are based on bottom-up models and do not consider the energy demand in detail. More specifically, 

the influence of the urban climate on urban energy demand has not been considered so far in the energy system 

design process. In order to address this research gap, a novel computational platform is developed in the first part of 

this study, combining an urban climate model with a building simulation tool and an energy system optimization 

model. The second part of the manuscript is devoted to quantifying the impact of urban climate on energy system 

design and assessing the consequences of neglecting this specific aspect on energy system performance. Three case 

studies are conducted considering three building densities for the city of Nablus (building density at the periphery, 

center and future center of the city) in Palestine. Three scenarios representing 1) standalone buildings (present 

practice) 2) shadowing and longwave reflection (radiation heat transfer from the walls and the roofs of the buildings 

to the urban climate and to the sky) of neighboring buildings and 3) urban climate are considered for each case study 

when computing the energy demand. Subsequently, the energy system is optimized considering Net Present Value 

(NPV) and system autonomy level as the objective functions (Pareto optimization). The results of the study reveal 

that the urban climate has a notable impact on the energy demand and energy system design. More importantly, it is 

shown that the influence of urban climate results in higher fluctuations in the energy demand, which in turn results 

in a notable increase in the NPV (by up to 40%). This further magnifies the increase in annual or peak demand. The 

study reveals that neglecting the influence of urban climate in the energy system design process can result in a 

performance gap in NPV, grid integration level, and greenhouse gas emissions and can impose reliability issues. The 

design tool introduced in this study can be used for urban planning to mitigate the aforementioned adverse effects.  
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Energy requirements in urban areas are rising at a rapid rate with the increase in urban population [1], [2]. In the 

context of actions against climate change, rapid depletion of fossil fuel resources and health concerns due to the 

emission of noxious gasses, a shift toward sustainable energy solutions in cities is therefore essential. The transition 

from fossil fuel based urban energy systems to 100% renewable energy systems [3], [4] is expected to be achieved 

within a few decades. To reach this goal, it is important to upscale planning from net-zero buildings to energy 

sustainable neighborhoods, districts and cities, since energy optimization of a district or a community is more cost 

effective than optimizing each building separately [5]. The objective is to lead urban planners to consider energy 

efficiency of the urban form and renewable energy integration simultaneously during the planning process [6]. 

Developing a holistic computational platform that bridges urban climate, building simulation and energy systems 

will be immensely helpful in this context.        

Renewable energy integration and energy system design at urban and neighborhood scale have been widely 

discussed in recent studies at individual building, community, district and urban scale [7]–[11]. A comprehensive 

review on this is presented by Kastead et-al [12]. Perera et-al [13] have shown that integrated energy systems such 

as energy hubs can be used to integrate non-dispatchable renewable energy technologies beyond 60% of the annual 

demand. Morgan et-al [14] showed that more than 80% of the demand of a community can be supplied using onsite 

renewable energy technologies. Movraj et-al [15] have evaluated the influence of grid constraints when integrating 

renewable technologies into energy hubs. All these studies portray an optimistic picture of renewable energy 

integration at urban and neighborhood scale. However, simple integration of renewable energy technologies at any 

scale (building, community, urban or even direct grid integration) will result in poor utilization of the generated 

renewable energy [16]. Therefore, optimization tools are needed to reach the optimum energy mix.  

Recently, a number of groups have developed optimization algorithms to implement efficient energy systems at 

urban and community scale while minimizing lifecycle cost, environmental impact, grid dependency etc. Samira et-

al [8], [17], [18] introduced a bi-level optimization algorithm to design distributed energy systems considering the 

dispatch strategy, which was later extended to include thermal networks. Optimum design of distributed energy hubs 

and the electrical and thermal distribution networks is addressed by Moraj et-al [19]. Simultaneous optimization of 

multiple energy hubs considering the interactions and the energy network is performed by Maroufmashat et-al [20]. 

A detailed cross comparison of different optimization algorithms used to design distributed energy systems can be 

found in Ref. [21]–[23]. These studies are solely focused on the generation and distribution aspects of the energy 
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infrastructure where demand is considered as direct input to the optimization model. Therefore, the sensitivity of 

factors such as urban climate, building density and urban form on the demand is not properly considered.  

Improving energy efficiency and sustainability in the urban context depends on four leverages, i.e. urban 

morphology, building form and technology, occupant behavior and energy system [24]. The contribution of all these 

leverages is subject to the urban climate. On the other hand, the building stock itself has a notable impact on the 

urban micro climate. Quantifying the influence of urban climate on the building energy demand considering all the 

aforementioned factors is a challenging task. However, it is essential since the thermal behavior of the collective 

building stock is different from that of a stand-alone building; especially in an urban context [25]. According to 

Moonen et-al [26],  a building in an urban area (compared to a stand-alone building) will more likely experience 1) 

higher air temperature due to urban heat islanding (UHI) effect, 2) lower wind speeds due to the wind shelter effect 

3) reduced energy losses during the night due to the low sky view factor 4) changes in solar heat gain due to 

shadowing 5) changes in radiation balance due to the interactions in neighboring buildings. Neglecting the 

aforementioned factors may lead to significant miscalculation of the demand, beyond 30% according to Bozonnet et-

al [27], which will have a notable impact on energy system design. However, capturing the influence of solar 

radiation, long wave radiation and urban climate is a challenging task for hourly building simulation  to be used for 

energy system sizing [25]. 

A number of groups have investigated effective methods to combine building simulation and energy system 

optimization. Evins [28] optimized the system configuration and building design by coupling energy system 

optimization with building simulation. A bi-level optimization algorithm is used in this context to optimize the 

energy system along with the building envelope, which takes considerably higher computational time (nine days 

without parallel processing). However, a standalone building is considered in this context without considering 

thermal interactions caused by the surrounding buildings. Wu et-al [29] optimized the building renovation level and 

energy system design simultaneously in order to identify the optimum energy system design and the buildings 

requiring renovation in the Swiss village Zernez. A representative set of buildings in which the energy interactions 

among the buildings are not considered, was selected in this study to represent the whole village,.  

Fonseca et-al [30] introduced a city energy analysis tool to optimize urban energy systems using a bi-level 

optimization algorithm. A detailed hybrid model combining a physical model with a set of statistically representative 

archetypes is used in this study to obtain the energy demand in the context of energy system sizing [31]. The hybrid 
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mode used in this work provides a better representation of the energy demand in an urban context. However, the 

energy interactions among the buildings are not considered in this study. Morgan et-al [14] developed a 

computational platform combining building simulation and an energy system optimization tool. The platform has the 

capability to assess the impact of shadowing and the long wave radiation at urban scale. However, the impact of the 

micro-climate is not considered in this work. A Swiss village with low building density is considered in this study; 

the sensitivity to shading and long wave radiation is therefore trivial. Furthermore, the impact of the building stock 

on energy system sizing is not considered. In conclusion, it can be stated that none of these studies comprehensively 

assess the impact of adjacent buildings on the thermal and electricity demand (due to lighting) in energy system 

sizing. Effects of shadowing and boundary layer are not considered in most of the instances. An adequate 

representation of buildings and their effects such as drag force, generation of turbulence etc. is crucial in the 

evaluation of local meteorological variables[32], [33] and therefore in the calculation of the building energy demand 

[34], [35] as it can impact the convective heat transfer coefficient [36]. Hence, it is important, with a view of energy 

system sizing, to represent the micro-climate accurately in the building simulation process. 

Following these considerations, the present study focuses on extending the computational platform used to design 

urban energy systems by introducing an urban meteorological model. The computational platform consists of a 

building simulation model and an energy system sizing tool with an urban meteorological model as shown in Fig. 1. 

The introduction of the urban meteorological model facilitates presenting the influence of urban climate on building 

simulation and subsequently on the energy system design process. The influence of the urban climate on the energy 

demand is quantified considering different urban densities to introduce the present and future scenarios of Nablus, a 

city in Palestine. The demand profile notably influences the energy system design. Misrepresentation of the urban 

micro climate can lead to a performance gap in the energy system. This performance gap can be avoided through 

adequate representation (by using the computational platform introduced in this study) of the urban micro climate as 

shown in the final part of the manuscript. A concise overview of the computational platform combining different 

models is presented in Section 2. An extended explanation of the building simulation model and the urban climate 

model is presented in Section 3 followed by a description about the energy system optimization tool in Section 4. 

The influence of long wave radiation, urban climate and occupancy at urban context on the energy system sizing 

problem is taken into discussion in Section 5.  
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Fig. 1 Schematic overview of the computational platform. 

 

2) Overview of the computational platform and the case studies 

This section presents an overview of the computational platform developed in this study and the case study used to 

apply the novel computational platform. The platform combines urban microclimatic conditions, urban design, 

energy demand of building and optimization of energy system modelling. It is an attempt in the direction of creating 

a comprehensive design tool that offers a compromise between energy planning needs and the complexity of the 

urban metabolism. The platform is used to assess a real case study in order to quantify the influence of urban climate 

on the energy system. A brief over-view of the city considered for the case study and the methodology used to 

develop building archetypes that represent the compactness of the city at different levels is presented in Section 2.2.  

  2.1) The computational platform  

Urban energy planning is a lengthy process that involves a considerable number of steps [37]. Energy system 

optimization plays an important role in this context as does evaluating the energy demand of the building stock. The 

coupling of buildings and urban climate is the main challenge to be faced when determining the energy demand of 

buildings using a bottom-up method. Taking into account the influence of urban climate on buildings and vice-versa 

may result in a significant change in the projected heating and cooling demand of the building stock and may lead to 

notable changes in energy system design. Hence, it is important to consider the impact of urban climate at the early 

design stage of the energy system. The main objective of the proposed computational platform is to combine an 

urban climate model with a building simulation model and an energy system optimization model in order to design 

urban energy systems. 



6 

 

2.1.1) Challenges in modeling the urban climate and promising paths 

The interaction between building stock and urban climate should be carefully decoupled when combining the urban 

climate model with building simulation. Developing an urban climate model alone is a challenging task due to the 

geometric complexity and the wide range of spatial and temporal scales required to characterize atmospheric 

phenomena [25]. A computational fluid dynamic (CFD) model is usually required to achieve a very high level of 

accuracy. A CFD model requires excessive computational resources and time when computing a time series data for 

wind distribution and temperature in an urban canyon layer. Therefore, simpler models which reduce the 

computational time and intensity are necessary. According to [25], urban canopy models can be effectively used to 

address the challenge with an acceptable level of accuracy. The multi-layer Canopy Interface Model (CIM) [32], 

[38] is hence used in order to provide the microclimate data for building simulation. 

2.1.2) Work-flow of the computational platform 

The urban energy planning process begins with the acquisition of required spatial and temporal data as inputs to the 

computational model. GIS based tools (e.g. QGIS) are used to collect the building information for the simulation. 

The 3D geometries of the buildings in the urban area are modelled using Rhinoceros, based on the information from 

QGIS. This is done to prepare the DXF data files as input for CitySim Pro[39] and CIM.  

CitySim is an extension to SUNTool [40], which can consider the shading effect of adjacent buildings and longwave 

radiation due to the interaction among buildings. CitySimPro [39], [41] a software developed at the EPFL Solar 

Energy and Building Physics Laboratory (LESO-PB) is used in this study to simulate the building stock. CitySimPro 

uses a bottom-up approach when evaluating the hourly energy demand taking into account the fine details of the 

building stock. The radiation model inside CitySim, the Simplified Radiosity Algorithm (SRA) [42] can consider the 

shading effect of adjacent buildings and longwave radiation due to the interaction of buildings. Building simulation 

generally considers properties of the thermal shell, visible surface properties, occupancy profile, openings of the 

building through doors and windows etc. However, it is time consuming to collect all details precisely for each 

building forsimulations at building scale. Therefore, basic envelope details are obtained considering the construction 

year of the building. In addition, each building is represented by a single zone instead of multiple zones when 

evaluating the energy flow. Citysim computes the surface temperature of each building, which is subsequently 

imported to CIM. Based on the resulting wind speed, the air temperature is recalculated and fed back to Citysim to 

re-calculate the energy demand.  
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The city of Nablus (32°13’ N, 35°16’ E), located in the northern part of the West Bank, is considered for the case 

study. The city presents a Csa climate (C: temperate; s: dry summer; a: hot summer), characterized by warm 

temperatures, low precipitations and high temperatures during the summer time. Nablus is located at 550 m above 

sea level and presents a particular topography, as it is positioned in a narrow valley, between Mount Ebal (940 

meters) in the North, and Mount Gerizim (870 meters) in the South. In order to perform this study, the Al-Habaleh 

district (circa 130 buildings) is analyzed, within the old city; the district is characterized by dense constructions and 

narrow streets. The average annual temperature corresponds to 17.9°C, with maximum temperatures during the 

summer time equaling to 36.8°C, and the lowest temperature (during the month of December) equaling 1°C 

(extracted from Meteonorm database [44]). The total annual precipitation corresponds to 315 mm, and precipitation 

is completely absent during the summer season (from June to September). The wind blows mostly during the 

summer time, with an average speed of 3.5 m s-1 during the month of July. 

2.2.2) Use of archetypes 

Urban morphology is usually complex. Furthermore, buildings within a city are distributed with different densities 

and usually have diverse thermal characteristics. This makes it difficult to quantify the influence of urban climate on 

energy system design. In order to simplify, we worked with archetypes representing the urban fabric. Urban 

archetypes are amply used to simplify the complexity of the urban morphology in an effective way [24], [45]. The 

urban archetype influences the thermal performance, solar access and the ventilation as shown by Sanaieian et-al 

[46].  In this study, we limit the scope to a single urban archetype focusing more on the urban density. The height 

and the distance between buildings in urban archetypes present an average value of the building stock considered. 

By analyzing the old city center of the city of Nablus as well as the peripheral areas, the density of the two city areas 

was defined. The city center has a volume to site area ratio equal to 2.6. The periphery has a volume to site area ratio 

equal to 1.5. In order to represent these two configurations, we used archetype modelling, using both density 

characteristics, as presented in Figure 3.  
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Fig. 3 Archetype modelling as a function of the density of the site 

 

3) Computational model for urban micro climate and building simulation  

The coupling of a building simulation model (such as CitySim) with meteorological models is essential to represent 

the impact of buildings on climatic variables and to provide enhanced building energy simulation. Phenomena such 

as the Urban Heat Island [47] are not represented in TMY or a Meteonorm dataset, since they are usually collected 

outside of the city. This data then needs to be transformed to take into account the particularities of the urban climate 

and to provide useful data to building energy models. This is why it is proposed here to use the CIM-CitySim 

coupled model and to extend it further. 

CIM is a 1D meteorological model [48] that can work offline as a stand-alone module while using as input data a 

climatic dataset (such as Meteonorm [44]). Alternatively, it can be coupled with a 3D meteorological model (such 

as WRF [49]). For the purpose of this study, since we are addressing the issue of energy systems, a typical 

meteorological year supplied by Meteonorm is used as boundary condition for CIM. The values are averaged over a 

period of 20 years for the irradiation and over 10 years for the wind speed and air temperature. CIM computes high 

resolution vertical profiles of the variables (such as the wind speed, direction and air temperature) considering the 

urban environment (for example considering the presence of buildings and their density). CIM resolves a diffusion 

equation derived from the Navier-Stokes equations but reduced to one direction only.  

The differential equations for the momentum and the potential temperature can be written as Eq. 1 and 1’ 
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= +    (1) 

   = + , (1’) 

where  is the mean horizontal wind component in the x- or y-direction,  and  are the terms representing the 

momentum and heat fluxes exchanged between the flow and “solid” surfaces (ground or buildings here). The 

diffusion coefficients are computed according to a 1.5-order turbulent closure (Eq. 7 and 8) as proposed by Monin 

and Yaglom [50] according to Eq. 2:  

=    and    = Pr , (2) 

where  is a constant,  is the turbulent kinetic energy (TKE), Pr is the Prandtl number that represents the ratio 

between the momentum and heat diffusion coefficients, and hence depends on the stability of the atmosphere [51]. 

Subsequently, differential equations for momentum, potential temperature and TKE are solved using the finite 

volume method. Equations are taken from [48] take into account the obstacles density and height in the canopy. 

The model has been coupled with the CitySim building simulation software (see Fig. 4) in order to determine the 

energy demand of a district [34]. The CIM-CitySim coupling has been tested in multiple cities [35], [52]–[54] and 

the method presented in this study could thus also be applied to other regions. Furthermore, the use of such a 

methodology has also been previously used to evaluate the building energy consumption at the city scale [55], [56]. 

Although the building geometries are simplified in CIM, the simulation of the wind speed is coherent with past 

findings [32], [57], [58]. The coupling of CitySim and CIM provides enhanced boundary conditions for both 

models. As described in Fig. 4 the simulation takes place in three steps. First a simulation with CitySim is performed 

with the Meteonorm data to obtain the surface temperatures. Secondly, CIM is forced with the surface temperature 

from CitySim to simulate the flow in the column module and to recalculate a high resolution vertical profile of 

meteorological variables, such as the air temperature and the wind speed. Finally, CitySim is provided with localized 

meteorological data to simulate the energy demand. The modification of the variables influences two main processes 

that are computed by CitySim: 
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entire coupling process between CIM and CitySim is presented in Fig. 4. A full description of the CIM model as 

well as the equations used to take into account the obstacles density and height in the canopy can be found in 

Mauree et al. [32]. 

 

4) Energy System design tool  

The main objective of the energy hub model is to optimize the energy system design. A multi energy hub (MEH) 

catering the energy demand for cooling, heating and power (CCHP) is considered in this study. The energy hub 

model introduced by Geidl et-al [59], which has been amply used to design and assess poly-generation systems [60], 

is used.. This model integrates energy technologies with different characteristics. Solar PV panels (SPV) and wind 

turbines are used as the non-dispatchable energy technologies in the energy hub (Fig. 5). An internal combustion 

generator or a gas turbine is used as the dispatchable source. A battery bank is used as the energy storage device. A 

ground source heat pump and a vapor compression air conditioner are used to cater the heating and cooling demands 

respectively. The MEH is expected to operate in connection to the Medium Voltage Grid (MVG). A time series of 

grid electricity prices is considered to represent the real time price in the MVG. Grid curtailments are introduced 

when selling and purchasing electricity to and from the MVG. Both system design and the operation strategy of the 

energy hub are optimized using the optimization algorithm. A concise description of the energy flow and cash flow 

models is presented in this section along with the formulation of objective functions. A bi-level dispatch strategy 

used for the energy flow management and the optimization algorithm used for the Pareto optimization are presented 

in the last part of this section.  

4.1) Energy and cash flow model  

The inputs to the computational model that computes the power generation using SPV panels and wind turbines are 

the hourly global solar irradiation on the tilted solar PV panel surface and wind speed at the wind turbine hub level. 

It is challenging to consider the impact of the urban context when sizing the energy systems. This requires prior 

selection of appropriate roofs and facades to install SPV panels, which constitutes another optimization problem 

within the energy system optimization problem already addressed. In order to simplify the procedure, a shading 

factor is introduced in this work. Wind turbines are expected to be installed in close proximity to the city in which 

the wind speed is adjusted to match the urban context according to Ref. [61].  





14 

 

In Eq. 8,  )(v t

~
W

tE  denotes the wind power generation from a single wind turbine, which depends on the wind speed 

at the hub level and the characteristics of the power curve. wN  and losses-W denote the number of wind turbines in the 

system (which is obtained using the optimization algorithm) and the power losses. Renewable power generation of 

the system ( RE

tE ) is computed adding the power generation of SPV panels and wind turbines. Similarly, power 

generation from the dispatchable source and the energy conversion through the battery bank are computed. An 

extended explanation of the energy system model can be found in Ref. [16], [63], [64]. Power generation from 

dispatchable sources and charging and discharging processes of the battery bank are determined using the dispatch 

algorithm explained in Section 4.2.   

4.1.1) Grid Integration Level 

The energy system interacts with the MVG when catering to multi-energy demand. The dispatch strategy evaluates 

the level of grid interaction based on demand, renewable energy generation, state of charge of the battery bank and 

price of grid electricity. Maintaining minimum interactions with the grid is always encouraged from the perspective 

of grid stability (which will result in a higher autonomy level). However, maintaining a higher autonomy level result 

in poor utilization of renewable power and higher investment into energy storage and dispatchable sources. Hence it 

is important to achieve a proper balance between cost and autonomy level, which can be assessed using the Pareto 

front considering NPV and Grid Integration (GI) level. GI is defined in this study according to Eq. 7 following the 

previous work of the authors in Ref. [13]. 

Tt

D

t

Tt

IG

t EEGI /  (7)  

In this equation, 
IG

tE  and 
D

tE denote respectively the energy imported from the grid and the demand of the energy 

hub.   

4.1.2) Net Present Value (NPV) 

The net present value of the system is computed considering the initial capital cost and operation and maintenance 

cost (O&M) of the system. Initial capital costs of the system include the acquisition expenditure for purchasing wind 

turbines, SPV panels, dispatchable energy source (internal combustion generator (ICG)), battery bank and the 
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installation cost. O&M consists of two components; i.e. fixed operation and maintenance cost (FOM) and variable 

operational and maintenance cost (VOM). FOM includes the annual maintenance cost for the system components, 

fuel cost and net expenditure for grid interactions. VOM includes the replacement cost for the dispatchable energy 

source and battery bank depending upon the usage. 

4.2) Dispatch strategy  

A dispatch strategy is used to manage the energy interactions with the grid, energy storage and dispatchable source. 

A bi-level dispatch strategy based on fuzzy logic and finite automata theory is used in this study. A fuzzy logic 

controller is used to determine the operating load factor of the dispatchable energy source. The difference between 

hourly demand and renewable power generation, state of charge of the battery bank and the price of electricity in the 

grid are considered as inputs to the fuzzy logic controller when determining the operating load factor of the 

dispatchable source. After determining this parameter, the net power generation within the system is computed. 

Energy interactions with the grid and the battery bank are determined subsequently based on a finite state space. 

State transition rules and fuzzy rules are optimized using the optimization algorithm. An extended explanation of the 

dispatch strategy can be found in Ref. [13].    

4.3) Optimization algorithm 

The design and the operation strategy of the energy system are closely coupled and therefore need to be optimized 

simultaneously. This study limits its scope to the design and operation of the energy system. Design optimization of 

the distribution network is not considered, but will be focused on in future studies. The decision space of the 

optimization problem includes variables related to both system design and operation strategy. Decision space 

variables are mapped into the objective space through an hourly time series simulation. The objective functions, 

constraints and different cases considered in this work are presented in Table 1. Subsequently, a heuristic algorithm 

is used to conduct a Pareto optimization. Heuristic algorithms have been amply used to optimize the system design 

of distributed energy systems. The steady state epsilon dominance method is used conduct Pareto optimization. A 

polynomial-mutation operator and simulated binary crossover operator [87] are used along with differential 

evolutionary operators [77]–[79] in the reproduction of the population. The constraint tournament method [65] is 

used to handle constraints in the optimization algorithm. An extended explanation of the optimization algorithm is 

presented in Ref. [13], [66] 
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Table 1 Objective functions and the constraints considered for Pareto optimization. 

   

5) Results and discussion  

The influence of the urban climate is an important factor to be considered when designing urban energy systems. 

However, the impact of urban climate on the energy system is not direct. It expresses itself in the heating and 

cooling demand of the building stock, which makes it more complex. A comprehensive assessment of the impact of 

urban climate on the energy demand and its importance on the energy system design is discussed in this section. 

5.1) Influence of urban climate on the energy demand  

The heating and cooling demand, as quantified by means of archetype modelling, presents an interesting information 

on the influence of urban climate on the energy demand. In order to reach a better understanding of the impact of 

meteorological data and urban compactness, a comprehensive assessment is performed for the archetype building 

stock in the city of Nablus, focusing on the variation of the heating and cooling demand. In order to support the 

analysis, three scenarios are considered i.e. standalone, Meteonorm and CIM. The standalone scenario neglects the 

thermal interactions with the neighboring buildings when computing the energy demand for the archetype. This is 

the method often practiced when computing energy demand for a stock of buildings. Meteonorm considers the 

shading effect and long wave radiation due to the adjacent buildings. Finally, CIM considers the microclimate in 

addition to the Meteonorm model. The influence of building density on energy demand in different urban densities 

is subsequently analyzed for each scenario. This is then used to understand the changes required in energy system 

design in Section 5.3.      

 

 

Location Objective Function 1-  

Objective Function 2  

(F1-F2) 

Scenario Constraints 

Nablus city 

center 
NPV-Grid Interactions  Standalone, Meteonorm, CIM  

Power supply 

reliability 
Nablus Periphery NPV -Grid Interactions  Standalone, Meteonorm, CIM 

Nablus future 

city center 
NPV -Grid Interactions  Standalone, Meteonorm, CIM 
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5.1.1) Influence of the urban density on energy demand 

Urban compactness notably influences building energy demand, which needs to be taken into account in energy 

system sizing. Three cases (represented by three different archetypes of building stock) are considered in this work 

in order to assess its impact. Case 1 corresponds to the building density it the center of the city of Nablus. Case 2 

considers the building density at the periphery, which is less compact compared to the center. Case 3 considers a 

future expansion scenario for Case 1, in which the building density of Case 1 is expected to grow further. Case 3 has 

the highest building density, followed by Cases 1 and 2. The peak and annual demand for each case are presented in 

Table 2. Furthermore, the percentage increase in annual demand and peak demand is presented in Table 2.  

Peak and annual demand for the standalone scenario of Cases 1 and 3 are the same; they are different from Case 2. 

The height of the building archetypes is considered to be same even after expansion, which makes the set of 

buildings look the same in the standalone scenario. The heights of the buildings are reduced when moving into the 

periphery, which results in a reduction of the energy demand (when considering the standalone scenario for Case 2). 

The percentage increase in annual and peak demand is trivial for Cases 1 and 2 when moving from the standalone to 

the Meteonorm scenario. This shows that the influence of shadowing and longwave radiation is negligible when 

considering Cases 1 and 2. However, a noticeable increase in both peak and annual demand is observed when 

moving from the standalone scenario to the Meteonorm scenario in Case 3. This reveals that the influence of 

shadowing and longwave radiation is observed at very high urban densities. A noticeable increase in annual and 

peak demand is observed when moving from the standalone to the CIM scenario. This suggests that the wind speed 

and air temperature at the urban canyon layer have a noticeable impact. When moving to Case 3, this increases the 

annual and peak demand by 13% and 10% respectively. These results make it interesting to further analyze the 

influence of the wind speed and ambient temperature on energy demand. To achieve this, wind speed and ambient 

temperature values at higher temporal resolution are taken. 

   

 

 

 

 

 



18 

 

Table 2 Influence of the urban compactness on the energy demand   

     

5.1.2) Influence of wind speed and ambient temperature 

In order to assess the influence of the urban climate, the heating and cooling demand of buildings in the city center 

are taken into consideration. For these buildings, the annual heating demand obtained from Meteonorm is close to 

the value obtained from CIM, although the cooling demand shows a significant difference. The average cooling 

demand in the city center increases from 9.68 to 17.83 kWhm-2 when changing the climatic data from Meteonorm to 

CIM. In order to assess this further, hourly demand profiles for three summer days (21st-23rd June) obtained using 

both CIM and Meteonorm are plotted in Fig. 6. The two demand profiles reveal that the increase in the demand for 

CIM is not uniform throughout the time line. Hence, moving from one to another creates a shift in the entire demand 

profile. A notable increase in the cooling demand is observed towards the peak, while it gradually decreases when 

moving away from the peak. For example, the peak demand is approximately doubled with the CIM meteorological 

data during a sunny day (average octas equals to 0), passing from 43 GWh to 20 GWh at 13:00 hours. A detailed 

explanation of this observation is presented in Section 5.2. Such extreme increases in hourly demand profile can 

have a notable impact on the energy system which is not reflected in the annual average demand discussed in detail 

in Section 5.2.   

Case  

 

Standalone Meteonorm CIM 

3 

Annual Demand (GWh/year) 1.16 1.21 1.41 

Peak heating/cooling demand (kWh) 536.6 557.1 619.3 

Increase in annual demand compared to 

Standalone (%)  4.13 17.73 

Increase in Peak Demand compared to 

Standalone    (%) 3.69 13.36 

2 

Annual Demand (GWh/year) 0.73 0.73 0.82 

Peak heating/cooling demand (kWh) 334.4 334.8 363.8 

Increase in annual demand compared to 

Standalone (%)                                0.27 10.95 

Increase in Peak Demand compared to 

Standalone (%)                               0.11 8.07 

1 

Annual Demand (GWh/year) 1.16 1.15 1.33 

Peak heating/cooling demand (kWh) 536.6 537.5 582.3 

Increase in annual demand compared to 

Standalone (%)                              -0.26 13.22 

Increase in Peak Demand compared to 

Standalone (%)                               0.17 7.85 
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Meteonorm (simple meteorological data which do not consider the presence of buildings) can provide a better 

justification of the changes observed in heating and cooling demands in Section 5.1. 

When analyzing the annual average wind speed and temperature, a difference in 1.5 ms-1 and 0.5°  is observed 

between CIM and Meteonorm respectively. However, this difference is trivial when compared to the changes 

observed for the building energy demand of the building stock at the center of Nablus (which can no longer explain 

the changes in energy demand). Hence, it is important to move into a higher temporal resolution. When moving into 

a monthly resolution, a difference of up to 1.5°C in temperature and of 2.2 ms-1 in wind speed is observed. However, 

when moving further up to an hourly scale, the temperature difference can reach up to 14°C as observed in Fig. 7. 

By contrast, the wind speed difference is quite constant throughout the year (at the hourly temporal scale when 

compared to temperature) as shown in Fig. 8. The reason for this is that the drag force calculation does not change 

throughout the year since the density of obstacles remains the same and the reduction in the wind speed will 

consequently be more or less the same as well. CIM is using 1-D Navier-Stokes equations in this process, which can 

be improved by increasing the dimensions considered. This will result in introducing more fluctuations into the wind 

speed. However, it is noteworthy that there is a significant increase in the temperature during the summer time as 

opposed to the winter time for the Nablus case. In general, it can be concluded that CIM provides a better 

representation of the urban climate, which will help to get a better understanding of the meteorological variables. 

More importantly, the impact of urban climate is not linear, which will induce a direct shift in the energy demand.  

It is interesting to assess the direct influence of urban microclimate on the cooling and heating demand at an hourly 

time resolution. To achieve this objective, air temperature values obtained from both CIM and Meteonorm are 

plotted along with the energy demand for a single day (in Fig. 9) in February. The peak demand is higher with the 

CIM weather profile during the daytime, and lower during the nighttime. This behavior is directly related to the air 

temperature, which is lower during the night time (by 2°C) and higher during the daytime (by 5°C). The 

temperatures of the surfaces within the urban environment are heated by the sunlight during the daytime, 

consequently increasing the temperature. Naturally, this behavior is evident during sunny days and limited for 

cloudy days. Additionally, the studied day is characterized by a moderate breeze during the daytime, according to 

the Meteonorm climatic data (5.5 ms-1 ), which is reduced to a gentle breeze according to the CIM meteorological 

data (3.7 ms-1 ). This can be explained using the concepts of urban heat islanding and cold air pools, which are 
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however not the main focus of this study (interested readers are referred to Ref. [34] for a detailed description). As a 

result, the demand profile obtained using CIM has a peak demand higher than the one obtained using Meteonorm. 

At the same time, the lowest demand is also obtained for CIM, which will result in a higher fluctuation in the 

demand profile. Higher peak demand will result in requiring a larger system capacity while higher fluctuation in the 

demand profile will make the design and operation of the energy system more challenging. Hence, taking into 

account the urban climate will introduce more fluctuations and higher peak demands on a seasonal basis which will 

influence the energy system design. These issues are discussed in detail in the following section. 
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Fig. 8: Air temperature (° ) obtained from Meteonorm (grey) and computed with CIM (black) for the dense scenario 

in Nablus  

 

Fig. 9: Air temperature and energy demand for the city of Nablus on 2nd of February. 
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5.3) Influence of the urban climate on the energy system 

The notable influence of the urban climate on building energy demand is clearly reflected in Section 5.2 especially 

considering the dense areas. The effect of urban climate on the energy demand can have a notable impact on the 

performance of the energy system. Hence, it is interesting to conduct a comprehensive analysis on the impact of the 

microclimate on the energy system based on a set of performance indicators commonly used to assess the energy 

system. This is conducted in two steps in line with Section 5.1; the impact of shadowing and long-wave radiation at 

the building scale will be evaluated initially, followed by an assessment of the impact of the micro-climate. Building 

archetypes are used in this context to provide a normalized overview.  

Energy systems are optimized considering NPV and GI as the objective functions taking the urban archetype of the 

center of Nablus. A detailed analysis of the impact of system autonomy on lifecycle cost and system configuration is 

given in Ref. [13].  Pareto fronts are obtained considering three scenarios i.e. neglecting the shadowing effect (both 

shadowing and long wave radiation) and adjusted wind speed (both wind speed and surface temperature) (Scenario 

“stand-alone”), considering the shadowing effect but neglecting the adjusted wind speed (Scenario Meteonorm) and 

considering both shadowing and adjusted wind speed (Scenario CIM) (Fig. 10). A clear Pareto front is observed for 

all three scenarios, which suggests that the NPV and GI level are conflicting objectives, for which it is difficult to 

reach to a single optimum solution considering both objectives. Pareto fronts obtained for Standalone and 

Meteonorm scenarios have objective function values quite close to each other except in a part of Region B (Fig. 10), 

where, Meteonorm presents marginally higher NPV compared to the Standalone scenario. However, a significant 

increase in objective function values is observed when moving to Scenario CIM which is due to the increase in 

energy demand as discussed in Section 5.2.  The NPV increases by 20% in Region B, which decreases by 7-10 % 

when moving into Region C while increasing the grid interactions. When moving into autonomous operation of the 

system, the Pareto fronts appear to be close to each other since the magnitude of the gradient is higher in this region. 

A closer look at the Pareto fronts shows that the difference in objective function values observed in Region B is 

maintained in Region A (in certain instances the difference increases as well). In conclusion, it can be stated that the 

increase in demand observed in building simulation is reflected and often magnified in the energy system design.  

It is interesting to assess the impact of urban density on energy system design. To achieve this objective, energy 

system optimization is performed for the urban archetype representing the building density of the periphery of 
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Nablus as the second case study. A third case study is introduced considering the future expansion of the city, in 

which the building density is expected to increase further. Both these case studies align with the case studies 

introduced in Section 5.1 (to quantify the effect of urban climate on the energy demand). A Pareto optimization is 

conducted considering NPV and GI and the objective functions for three scenarios illustrated before (i.e. Standalone, 

Meteonorm and CIM). Subsequently, the objective function values for each case study are normalized considering 

the three Pareto fronts obtained for each case study in order to make it easy for the readers to understand the 

deviation due to the building density (Fig. 11).  
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Fig. 10: Pareto front obtained considering NPV and GI as the objective functions. Values of the objective functions 

are normalized considering minimum and maximum objective function values obtained for the three Pareto fronts in 

order to simplify the analysis. 
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separation of these two Pareto fronts is observed when moving into the future center of Nablus, which takes into 

account an increase in the objective function values of up to 10% (future center of Nablus-CIM). These results show 

that neglecting the influence of shadowing and long wave radiation may lead to a deviation in NPV of up to 10%. 

The deviation observed can be further increased in cities that have skyscrapers and much higher building densities. 

The influence of building density on energy system sizing can be clearly understood when comparing standalone 

and CIM scenarios for future center of Nablus. The differences in the objective function values (stand alone and 

CIM) increase by up to 40% when considering the future center of Nablus which is on average a 20% increase when 

compared to buildings in the periphery of Nablus. These results show that the urban climate can have a notable 

influence on the energy system design process, especially in highly dense cities.      

    

5.4) Consequences of neglecting urban climate in energy system sizing 

A quantitative analysis is conducted in this section to understand the influence of urban climate (extending the 

qualitative analysis conducted in Section 5.3) and the consequences of neglecting it during the energy system design 

process. Pareto solutions are taken for further assessment from the three Pareto fronts of the future center of Nablus 

which presented the highest deviation in objective function values. 

Four sets of design solutions (with similar grid purchase values) are taken from the three Pareto fronts and tabulated 

in Table 3. When considering each set, it is clear that the NPV has increased by 3-6% when moving from the 

Standalone to the Meteonorm scenario while it increases by more than 20% when moving from the standalone 

scenario to CIM. For example, NPV has increased by 4.8% when moving from 1-SA to 1-MET while it has 

increased by 20.3% when moving from 1-SA to 1-CIM. These quantitative values align with the qualitative 

explanation provided in Section 5.3. The increase in NPV is well beyond the increase in the demand. It can be 

concluded that increase in demand as well as the fluctuations introduced to the demand profile due to the urban 

climate result in a notable increase in NPV. 

When analyzing Table 3 further, it is clear that both the ICG contribution and capacity follows the pattern of NPV 

when moving from the standalone to the CIM scenario. The percentage contribution of the ICG increases by 3-10% 

when moving from the standalone to the CIM scenario. For example, ICG generation increases by 3.2% when 
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moving from 4-CIM to 4-SA while it increases by 10% when moving from 1-SA to 1-CIM. A clear pattern is not 

observed for system configuration except for the ICG capacity when moving from the standalone to the CIM 

scenario. As discussed in Section 5.1, the increase in demand is not uniform throughout the year when moving from 

the standalone to the CIM scenario. As a result, a uniform increase in renewable energy components, energy storage 

and dispatchable source is not observed. A notable increase in daily peaks is observed in the demand curve which 

results in introducing more fluctuations into the demand profile calling for support from the dispatchable source 

whenever the grid is not catering the mismatch. This results in higher ICG capacity and contribution when moving 

from the standalone scenario to CIM. In general, the changes brought to the demand pattern due to the urban climate 

result in changes in the energy system configuration. 

The effect of urban climate is considered in CIM and neglected in the standalone scenario. Where urban climate is 

not considered, the system will be designed based on the demand profile obtained for the standalone scenario. The 

system designed for the standalone scenario will have to cater the demand profile of CIM due to the effect of urban 

climate which is not considered at the design point. This will result in a performance gap. The performance gap 

clearly presents the consequences of not considering the urban climate at an early point of energy system design. To 

assess the impact further, performances of the four energy systems obtained for the standalone scenario (already 

presented in Table 3) are evaluated considering the demand profile of the CIM scenario (for the future center of 

Nablus). When analyzing the results, a notable performance gap can be observed for all the performance indicators 

(Table 4). NPV increase by 5-8% while grid dependency increases by up to 57%. More importantly, all the design 

solutions violate the constraint on power supply reliability set at the formulation of the optimization problem. A 

significant increase in ICG contribution is observed due to the increase in the peak demand as discussed before. In 

general, it can be concluded that neglecting the urban climate may lead to a notable performance gap. More 

importantly, energy systems fail to maintain the reliability of the power supply which is considered as an important 

constraint in design optimization.      

5.5) Overall computational time required  

Computational time required for the overall process and the additional computational burden due to the 

consideration of urban climate is an important aspect which needs to be evaluated. Simulations are run on a single 

processor (1.2GHz) for each scenario and for each city for one full year (8760 time step) for both CIM and CitySim. 
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The energy hub model is implemented in Intel(R) Core(TM) i7-6700-3.40 GHz CPU. CIM simulations are more 

computationally extensive compared to the CitySim ones (Table 5). Since CIM is dependent on the number of 

vertical levels, it takes significantly more time to run for a domain with higher buildings. Higher buildings imply 

that there are additional cells so that a surface layer can be developed above the displacement height. It is clear that 

CIM adds an additional computational load to energy system sizing, extending the computational time by 

approximately four times. However, the extension of the computational time can be easily justified when 

considering the improvements obtained in the energy system design. 

Table 5: Computational time in seconds for each simulation for CIM, CitySim and energy hub model 

 

6. Conclusions and future perspectives   

Providing sustainable energy solutions to rapidly growing cities is a challenging task. Urban energy systems play a 

major role in this context. Computational platforms combining different fields of expertise will help the energy 

engineers to face this challenge. This study highlights the importance of filling the research gap by combining 

energy system optimization with building simulation and urban climate modeling. The complexity of modeling the 

urban climate and subsequent coupling with a bottom up building simulation tool and an energy system designing 

tool make it difficult to develop a computational platform that can bridge all these elements. This study presents an 

effective way to address the problem by combining CIM, CitySim and an energy hub model as a computational 

platform to address the aforementioned research gap. 

Results of the study reveal that the response of a cluster of buildings is different from that of a single building. 

Therefore, it is difficult to make predictions based on the performance of a single standalone building due to the 

interaction among the buildings and the micro-climate. The study shows that more fluctuations in demand profile 

(heating and cooling) are observed when moving from standalone buildings to dense urban areas. This makes it 

more challenging to design urban energy systems. Furthermore, both peak and annual energy demand can increase 

respectively by 13% to 18% when considering urban climate. All these results emphasize that the urban climate 

plays a major role in energy demand. Therefore, it is important to look at the energy efficiency of an entire building 

 CIM (s) CitySim(s) Energy hub model (s) 

Center of city 39752 252 7160 

Periphery of city 39759 237 7320 
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stock at neighborhood or urban scale considering the interactions among buildings and the micro-climate and not to 

limit the efforts to energy efficiency at building scale. 

The influence of urban climate on energy demand has a significant impact on the energy system. The increase 

observed in peak and annual demand results in an increase in NPV of the energy system. NPV of the energy system 

increases up to 40% when considering the effect of urban climate in highly dense urban scenarios. Therefore, 

neglecting the influence of urban climate can result in a significant performance gap for all the performance 

indicators of the energy system, which can reach up to 50% in certain scenarios. This highlights the importance of 

developing a computational platform combining urban climate, building simulation and energy system optimization. 

Furthermore, both active and passive strategies should be introduced to minimize the adverse impacts due to urban 

climate. Introducing green areas and water bodies into the cities, building renovation and green roofs and facades 

would be promising remedies [67]. The computational platform introduced in this study should be extended further 

to accommodate the influence of the aforementioned factors. In addition, it is important to evaluate the effectiveness 

of different urban configurations in order to minimize the the adverse impact of increasing urban densities. In 

conclusion, the impact of the urban morphology on the energy systems should be carefully considered during the 

urban planning process. A computational platform introduced in this study can be immensely helpful in this context. 

However, it is important to extend the boundaries of the computational platform to consider other aspects such as 

transportation, outdoor comfort etc. which will help the urban planners to produce better designs.  
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Table 3: Comparison of the three scenarios by taking Pareto solutions that are having grid purchase values close to each other  

 

 Table 4: Performance gap due to neglecting the urban climate in energy system optimization 

Scenario1 Name 

NPV 

(x106 

Euro) 

Grid 

Purchase 

(MWh) 

Export 

to the 

grid (%) 

ICG 

generation 

(%) 

PV panel 

capacity 

(kVA) 

Wind 

turbine 

capacity 

(kVA) 

Total 

renewable 

capacity 

(kVA) 

PV 

capacity 

(%) 

Battery bank 

capacity 

(kWh) 

ICG 

capacity 

(kVA) 

SA 1-SA 4.80 5.74 53.05 26.33 210 680 890 23.60 20 100 

MET 1-MET 5.03 5.27 45.32 32.77 155 560 715 21.68 19 120 

CIM 1-CIM 5.77 5.68 42.18 36.42 150 600 750 20.00 19 140 

SA 2-SA 4.41 23.84 43.77 28.79 140 560 700 20.00 15 100 

MET 2-MET 4.54 22.11 48.16 30.02 170 560 730 23.29 19 100 

CIM 2-CIM 5.44 22.89 47.03 37.03 175 580 755 23.18 4 140 

SA 3-SA 4.21 55.59 46.97 25.17 140 580 720 19.44 15 100 

MET 3-MET 4.35 58.74 42.83 27.16 130 560 690 18.84 19 100 

CIM 3-CIM 5.22 66.12 47.26 31.41 170 580 750 22.67 4 140 

SA 4-SA 3.90 117.09 47.18 17.08 155 540 695 22.30 19 80 

MET 4-MET 4.14 113.93 51.06 18.08 210 540 750 28.00 20 80 

CIM 4-CIM 4.84 111.82 52.60 21.33 255 540 795 32.08 20 100 
1) SA, MET and CIM denote Standalone, Meteonorm and CIM scenarios  

 

Name Demand 
NPV 

(x106 Euro) 

Increase in 

NPV(%) 

Grid Purchase 

(MWh) 

Increase in 

Grid purchase 

Export to the 

grid (%) 

ICG generation 

(%) 

Increase in ICG 

Generation (%) 

Constraint 

violation 

1-SA SA 4.80 
5.34 

5.74 
57.67 -11.50 

26.33 
15.19 

no 

1-SA-R FCN-CIM 5.07 13.57 31.04 yes 

2-SA SA 4.41 
6.87 

23.84 
35.65 -17.46 

28.79 
14.74 

no 

2-SA-R FCN-CIM 4.73 37.05 33.77 yes 

3-SA SA 4.21 
7.61 

55.59 
20.37 -19.34 

25.17 
16.15 

no 

3-SA-R FCN-CIM 4.56 69.81 30.01 yes 

4-SA SA 3.90 
7.48 

117.09 
15.95 -17.25 

17.08 
17.8 

no 

4-SA-R FCN-CIM 4.22 22.89 37.03 yes 
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Nomenclature 

SPV

xSPVA  Area of SPV panel 

CFD computational fluid dynamic  

CIM Canopy Interface Model  

D

tE  demand of the energy system 

IG

tE  energy imported from the grid 

 )(v t

~
W

tE  wind power generation from a single wind 

turbine 

FOM fixed operation and maintenance cost  

 momentum fluxes 

 heat fluxes  

tG , global solar irradiation on the tilted PV panel 

ic

th
,

 convective heat transfer coefficient  

ICG internal combustion generator 

NPV Net Present Value 

SPVN  number of PV panels 

wN  number of wind turbines in the system 

MEH multi energy hub  

MVG Medium Voltage Grid  

OM operation and maintenance cost  

Pr Prandtl number 

ilw

tQ
,

 longwave flux  

SPV Solar PV panels 

SRA Simplified Radiosity Algorithm  

t  time step  

TKE turbulent kinetic energy  

UHI urban heat islanding  

  mean horizontal wind component 

VOM variable operational and maintenance cost  

spvx  Type of SPV panel 

is

t

,
 surface temperature  

air

t is the air temperature 

 shading factor 

SPV

xt SPV,
 efficiency of the SPV panel 

losses-W

  power losses in wind turbines 
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