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Abstract

In this paper, we consider unilateral contact problem without friction between a rigid body
and deformable one in the framework of isogeometric analysis. We present the theoretical
analysis of the mixed problem. For the displacement, we use the pushforward of a NURBS
space of degree p and for the Lagrange multiplier, the pushforward of a B-Spline space of
degree p − 2. These choices of space ensure to prove an inf − sup condition and so on, the
stability of the method. We distinguish between contact and non-contact sets to avoid of
classical geometrical hypothesis of the contact set. An optimal a priori error estimate is
demonstrated without assumption on the unknown contact set. Several numerical examples
in two- and three-dimensions and in small and large deformation demonstrate the accuracy
of the proposed method.

Introduction

In the past few years, the study of contact problems in small and large deformation is increased.
The numerical solution of contact problems presents several difficulties as the computational cost,
the high nonlinearity and the ill-conditioning. Contrary to many other problems in nonlinear
mechanics, these problems can not be solved always at a satisfactory level of robustness and
accuracy [19, 28] with the introduce numerical methods.

One of the reasons that make robustness and accuracy hard to achieve is that the computation
of gap, i.e. the distance between the deformed body and the obstacle is indeed an ill-posed problem
and its numerical approximation often introduce extra discontinuity that breaks the converge of
the iterative schemes; see [1, 19, 28, 18, 23] where a master-slave method is introduced to weaken
this effect.

To this respect, the use of NURBS or spline approximations within the framework of isoge-
ometric analysis [17], holds great promises thanks to the increased regularity in the geometric
description which makes the gap computation intrinsically easier. The IGA-based methods use
a generalization of Bézier’s curves, the B-Splines and non-uniform rational B-Splines (NURBS).
These functions, used to represent the geometry of the domains with CAD, are used as basis func-
tions to approximate a partial differential equations, it is called the isoparametric paradigm. The
smooth IGA basis functions possess a number of signifiant advantages for the analysis, includ-
ing exact geometry and superior approximation. Isogeometric methods for frictionless contact
problems have been introduced in [29, 25, 26, 10, 9, 8], see also with primal and dual elements
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[27, 16, 15, 22, 24]. Both point-to-segment and segment-to-segment (i.e, mortar type) algorithms
have been designed and tested with an engineering perspective, showing that, indeed, the use of
smooth geometric representation helps the design of reliable methods for contact problems.

In this paper, we take a slightly different point of view. Inspired by the recent design and
analysis of isogeometric mortar methods in [6], we consider a formulation of frictionless contact
based on the choice of the Lagrange multiplier space proposed there. Indeed, we associate to
NURBS displacement of degree p, a space of Lagrange multiplier of degree p − 2. The use of
lower order multipliers has several advantages because it makes the evaluation of averaged gap
values at active and inactive control points simpler, accurate and substantially more local. This
choice of multipliers is then coupled with an active-set strategy, as the one proposed and used in
[16, 15].

Moreover, it is supposed classically, for the exact solution u, it existed a finite number of
points where the transition between contact and non-contact occurs. In the article [11], a contact
set and non-contact set for the displacement are defined for Signorini problem. This technic allow
to avoid an additional assumption of the unknown contact set to prove an a priori error estimate.

Finally, we perform a comprehensive set of tests both in small and large scale deformation,
which well show the performance of our method. These tests have been performed with an
in-house code developed upon the public library igatools [21].

The outline of the paper is structured as follows in Section 1, we introduce unilateral contact
problem, some notations. In Section 2, we describes the discrete spaces and their properties. In
Section 3, we present the theoretical analysis of the mixed problem. An optimal a priori error
estimate without assumption on the unknown contact set is presented. In the last section, some
two- and three-dimensional problem in small deformation are presented in order to illustrate
the convergence of the method with active-set strategy. A two-dimensional problem in large
deformation with Neo-Hookean material law is provided to show the robustness of this method.

Remark. The letter C stands for a generic constant, independent of the discretization parameters
and the solution u of the variational problem. For two scalar quantities a and b, the notation
a . b means there exists a constant C, independent of the mesh size parameters, such that a ≤ Cb.
Moreover, a ∼ b means that a . b and b . a.

1 Preliminaries and notations

1.1 Unilateral contact problem

Let Ω ⊂ R
d (d =2 or 3) be a bounded regular domain which represents the reference configuration

of a body submitted to a Dirichlet condition on ΓD (with meas(ΓD) > 0), a Neumann condition
on ΓN and a unilateral contact condition on a potential zone of contact ΓC with a rigid body.
Without loss of generality, it is assumed that the body is subjected to a volume force f , to a
surface traction ℓ on ΓN and clamped at ΓD. Finally, we denote by nΩ the unit outward normal
vector on ∂Ω.

In what follows, we call u the displacement of Ω, ε(u) =
1

2
(∇u + ∇uT ) its linearized strain

tensor and we denote by σ = (σij)1≤i,j≤d the stress tensor. We assume a linear constitutive law
between σ and ε, i.e. σ(u) = Aε(u), where A = (aijkl)1≤i,j,k,l≤d is a fourth order symmetric
tensor verifying the usual bounds:

• aijkl ∈ L∞(Ω), i.e. there exists a constant m such that max
1≤i,j,k,l≤d

|aijkl| ≤ m;
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• there exists a constant M > 0 such that a.e. on Ω,

aijklεijεkl ≥Mεijεij ∀ε ∈ R
d×d with εij = εji.

Let n be the outward unit normal vector at the rigid body. From now on, we assume that n
is an infinitely regular field. For any displacement field u and for any density of surface forces
σ(u)n defined on ∂Ω, we adopt the following notation:

u = unn+ ut and σ(u)n = σn(u)n+ σt(u),

where ut (resp. σt(u)) are the tangential components with respect to n.
The unilateral contact problem between a rigid body and the elastic body Ω consists in finding

the displacement u satisfying:

div σ(u) + f = 0 in Ω,
σ(u) = Aε(u) in Ω,

u = 0 on ΓD,
σ(u)nΩ = ℓ on ΓN .

(1)

and the conditions describing unilateral contact without friction at ΓC are:

un ≥ 0 (i),
σn(u) ≤ 0 (ii),

σn(u)un = 0 (iii),
σt(u) = 0 (iv).

(2)

In order to describe the variational formulation of (1)-(2), we consider the Hilbert spaces:

V := H1
0,ΓD

(Ω)d = {v ∈ H1(Ω)d, v = 0 on ΓD}, W = {vn|ΓC
, v ∈ V },

and their dual spaces V ′, W ′ endowed with their usual norms. We denote by:

‖v‖V =
(

‖v‖2L2(Ω)d + |v|2H1(Ω)d

)1/2
, ∀v ∈ V.

If ΓD ∩ ΓC = ∅ and n is regular enough, it is well known that W = H1/2(ΓC) and we denote W ′

by H−1/2(ΓC). On the other hand, if ΓD ∩ΓC 6= ∅, it will hold that H
1/2
00 (ΓC) ⊂W ⊂ H1/2(ΓC).

In all cases, we will denote by ‖·‖W the norm on W and by 〈·, ·〉W ′,W the duality pairing between
W ′ and W .
For all u and v in V , we set:

a(u, v) =

∫

Ω
σ(u) : ε(v) dΩ and L(v) =

∫

Ω
f · v dΩ +

∫

ΓN

ℓ · v dΓ.

LetKC be the closed convex cone of admissible displacement fields satisfying the non-interpenetration
conditions, KC := {v ∈ V, vn ≥ 0 on ΓC}. A weak formulation of Problem (1)-(2) (see [20]), as
a variational inequality, is to find u ∈ KC such as:

a(u, v − u) ≥ L(v − u), ∀v ∈ KC . (3)

We cannot directly use a Newton-Raphson’s method to solve the formulation (3). A classical
solution is to introduce a new variable, the Lagrange multipliers denoted by λ, which represents
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the surface normal force . For all λ in W ′, we denote b(λ, v) = −〈λ, vn〉W ′,W and M is the
classical convex cone of multipliers on ΓC :

M := {µ ∈W ′, 〈µ, ψ〉W ′,W ≤ 0 ∀ψ ∈ H1/2(ΓC), ψ ≥ 0 a.e. on ΓC}.

The complementary conditions with Lagrange multipliers writes as follows:

un ≥ 0 (i),
λ ≤ 0 (ii),

λun = 0 (iii).
(4)

The mixed formulation [4] of the Signorini problem (1) and (4) consists in finding (u, λ) ∈ V ×M
such that:

{

a(u, v)− b(λ, v) = L(v), ∀v ∈ V,
b(µ− λ, u) ≥ 0, ∀µ ∈M.

(5)

Stampacchia’s Theorem ensures that problem (5) admits a unique solution.
The existence and uniqueness of the solution (u, λ) of the mixed formulation has been established
in [12] and it holds λ = σn(u).
To simplify the notation, we denote by ‖·‖3/2+s,Ω the norm on H3/2+s(Ω)d and by ‖·‖s,ΓC

the
norm on Hs(ΓC).
So, the following classical inequality (see [2]) holds:

Theorem 1.1. Given s > 0, if the displacement u verifies u ∈ H3/2+s(Ω)d, then λ ∈ Hs(ΓC)
and it holds:

‖λ‖s,ΓC
≤ ‖u‖3/2+s,Ω . (6)

The aim of this paper is to discretize the problem (5) within the isogeometric paradigm, i.e.
with splines and NURBS. Moreover, in order to properly choose the space of Lagrange multipli-
ers, we will be inspired by [6]. In what follows, we introduce NURBS spaces and assumptions
together with relevant choices of space pairings. In particular, following [6], we concentrate on
the definitions of B-Splines displacements of degree p and multiplier spaces of degree p− 2.

1.2 NURBS discretisation

In this section, we describe briefly an overview on isogeometric analysis providing the notation and
concept needed in the next sections. Firstly, we define B-Splines and NURBS in one-dimension.
Secondly, we extend these definitions to the multi-dimensional case. Finally, we define the primal
and the dual spaces for the contact boundary.

Let us denote by p the degree of univariate B-Splines and by Ξ an open univariate knot vector,
where the first and last entries are repeated (p+ 1)-times, i.e.

Ξ := {0 = ξ1 = · · · = ξp+1 < ξp+2 ≤ . . . ≤ ξη < ξη+1 = · · · = ξη+p+1}.

Let us define Z = {ζ1, . . . , ζE} as vector of breakpoints, i.e. knots taken without repetition,
and mj , the multiplicity of the breakpoint ξj , j = 1, . . . , E. Let Ξ be the open knot vector
associated to Z where each breakpoint is repeated mj-times, i.e. In what follows, we suppose
that m1 = mE = p + 1, while mj ≤ p − 1, ∀j = 2, . . . , E − 1. We define by B̂p

i (ζ), i = 1, . . . , η
the i-th univariable B-Spline based on the univariate knot vector Ξ and the degree p. We denote
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by Sp(Ξ) = Span{B̂p
i (ζ), i = 1, . . . , η}. Moreover, for further use we denote by Ξ̃ the sub-vector

of Ξ obtained by removing the first and the last knots.
Multivariate B-Splines in dimension d are obtained by tensor product of univariate B-Splines.

For any direction δ ∈ {1, . . . , d}, we define by ηδ the number of B-Splines, Ξδ the open knot vector
and Zδ the breakpoint vector. Then, we define the multivariate knot vector by Ξ = (Ξ1×. . .×Ξd)
and the multivariate breakpoint vector by Z = (Z1 × . . . × Zd). We introduce a set of multi-
indices I = {i = (i1, . . . , id) | 1 ≤ iδ ≤ ηδ}. We build the multivariate B-Spline functions for
each multi-index i by tensorization from the univariate B-Splines, let ζ ∈ Z be a parametric
coordinate of the generic point:

B̂p
i
(ζ) = B̂p

i1
(ζ1) . . . B̂

p
id
(ζd).

Let us define the multivariate spline space in the reference domain by (for more details, see [6]):

Sp(Ξ) = Span{B̂p
i
(ζ), i ∈ I}.

We define Np(Ξ) as the NURBS space, spanned by the function N̂p
i
(ζ) with

N̂p
i
(ζ) =

ωiB̂
p
i
(ζ)

Ŵ (ζ)
,

where {ωi}i∈I is a set of positive weights and Ŵ (ζ) =
∑

i∈I

ωiB̂
p
i
(ζ) is the weight function and we

set
Np(Ξ) = Span{N̂p

i
(ζ), i ∈ I}.

In what follows, we will assume that Ω is obtained as image of Ω̂ =]0, 1[d through a NURBS
mapping ϕ0, i.e. Ω = ϕ0(Ω̂). Moreover, in order to simplify our presentation, we assume that

ΓC is the image of a full face f̂ of
¯̂
Ω, i.e. ΓC = ϕ0(f̂). We denote by ϕ0,ΓC

the restriction of ϕ0 to f̂ .

A NURBS surface, in d=2, or solid, in d=3, is parameterised by

C(ζ) =
∑

i∈I

CiN̂
p
i
(ζ),

where Ci∈I ∈ R
d, is a set of control point coordinates. The control points are somewhat analo-

gous to nodal points in finite element analysis. The NURBS geometry is defined as the image of
the reference domain Ω̂ by ϕ, called geometric mapping, Ωt = ϕ(Ω̂).

We remark that the physical domain Ω is split into elements by the image of Z through the
map ϕ0. We denote such a physical mesh Qh and physical elements in this mesh will be called
Q. ΓC inherits a mesh that we denote by Qh

∣

∣

ΓC

. Elements on this mesh will be denoted as QC .

Finally, we introduce some notations and assumptions on the mesh.
Assumption 1. The mapping ϕ0 is considered to be a bi-Lipschitz homeomorphism. Further-

more, for any parametric element Q̂, ϕ0

∣

∣ ¯̂
Q
is in C∞(

¯̂
Q) and for any physical element Q, ϕ−1

0

∣

∣

Q̄
is

in C∞(Q̄).
Let hQ be the size of an physical element Q, it holds hQ = diam(Q). In the same way, we define
the mesh size for any parametric element. In addition, the Assumption 1 ensures that both size
of mesh are equivalent. We denote the maximal mesh size by h = max

Q∈Qh

hQ.
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Assumption 2. The mesh Qh is quasi-uniform, i.e there exists a constant θ such that
hQ
hQ′

≤ θ

with Q and Q′ ∈ Qh.

2 Discrete spaces and their properties

We concentrate now on the definition of spaces on the domain Ω.
For displacements, we denote by V h ⊂ V the space of mapped NURBS of degree p with appro-
priate homogeneous Dirichlet boundary condition:

V h := {vh = v̂h ◦ ϕ−1
0 , v̂h ∈ Np(Ξ)d} ∩ V.

We denote the space of traces normal to the rigid body as:

W h := {ψh, ∃vh ∈ V h : vh · n = ψh on ΓC}.

For multipliers, following the ideas of [6], we define the space of B-Splines of degree p− 2 on the
potential contact zone ΓC = ϕ0,ΓC

(f̂). We denote by Ξf̂ the knot vector defined on f̂ and by Ξ̃f̂
the knot vector obtained by removing the first and last value in each knot vector. We define:

Λh := {λh = λ̂h ◦ ϕ−1
0,ΓC

, λ̂h ∈ Sp−2(Ξ̃f̂ )}.

The scalar space Λh is spanned by mapped B-Splines of the type B̂p−2
i

(ζ) ◦ϕ−1
0,ΓC

for i belonging
to a suitable set of indices. In order to reduce our notation, we call K the unrolling of the
multi-index i, K = 0 . . .K and remove super-indices: for K corresponding a given i, we set
B̂K(ζ) = B̂p−2

i
(ζ), BK = B̂K ◦ ϕ−1

0,ΓC
and:

Λh := Span{BK(x), K = 0 . . .K}. (7)

For further use, for v ∈ L2(ΓC) and for each K = 0 . . .K, we denote by (Πhλ·)K the following
weighted average of v:

(Πhλv)K =

∫

ΓC

vBK dΓ

∫

ΓC

BK dΓ

, (8)

and by Πhλ the global operator such as:

Πhλv =
K
∑

K=0

(Πhλv)KBK . (9)

We denote by Lh the subset of W h on which the non-negativity holds only at the control points:

Lh = {ϕh ∈W h, (Πhλϕ
h)K ≥ 0 ∀K}.

We note that Lh is a convex subset of W h.
Next, we define the discrete space of the Lagrange multipliers as the negative cones of Lh by

Mh := Lh,∗ = {µh ∈ Λh,

∫

ΓC

µhϕh dΓ ≤ 0 ∀ϕh ∈ Lh}.
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For any QC ∈ Qh

∣

∣

ΓC

, Q̃C denotes the support extension of QC (see [2, 3]) defined as the image

of supports of B-Splines that are not zero on Q̂C = ϕ−1
0,ΓC

(QC).
We notice that the operator verifies the following estimate error:

Lemma 2.1. Let ψ ∈ Hs(ΓC) with 0 ≤ s ≤ 1, the estimate for the local interpolation error reads:

∥

∥

∥
ψ −Πhλ(ψ)

∥

∥

∥

0,QC

. hs ‖ψ‖s,Q̃C
, ∀QC ∈ Qh

∣

∣

ΓC

. (10)

Proof: First, Let c be a constant. It holds:

Πhλc =
K
∑

K=0

(Πhλc)KBK =
K
∑

K=0

∫

ΓC
cBK dΓ

∫

ΓC
BK dΓ

BK =
K
∑

K=0

c

∫

ΓC
BK dΓ

∫

ΓC
BK dΓ

BK = c
K
∑

K=0

BK .

Using that B-Splines are a partition of the unity, we obtain Πhλc = c.
Let ψ ∈ Hs(ΓC), it holds:

∥

∥

∥
ψ −Πhλ(ψ)

∥

∥

∥

0,QC

=
∥

∥

∥
ψ − c−Πhλ(ψ − c)

∥

∥

∥

0,QC

≤ ‖ψ − c‖0,QC
+
∥

∥

∥
Πhλ(ψ − c)

∥

∥

∥

0,QC

(11)

We need now to bound the operator Πhλ. We obtain:

∥

∥

∥
Πhλ(ψ − c)

∥

∥

∥

0,QC

=

∥

∥

∥

∥

∥

K
∑

K=0

∫

ΓC
(ψ − c)BK dΓ
∫

ΓC
BK dΓ

BK

∥

∥

∥

∥

∥

0,QC

≤
K
∑

K: suppBK∩QC 6=∅

∣

∣

∣

∣

∣

∫

ΓC
(ψ − c)BK dΓ
∫

ΓC
BK dΓ

∣

∣

∣

∣

∣

‖BK‖0,QC

≤
K
∑

K: suppBK∩QC 6=∅

‖(ψ − c)‖0,Q̃C

‖BK‖0,Q̃C
∫

ΓC
BK dΓ

‖BK‖0,QC
.

Using ‖BK‖0,Q̃C
∼

∣

∣

∣
Q̃C

∣

∣

∣

1/2
, ‖BK‖0,QC

∼ |QC |
1/2,

∫

ΓC

BK dΓ ∼
∣

∣

∣
Q̃C

∣

∣

∣
and Assumption 1, it holds:

∥

∥

∥
Πhλ(ψ − c)

∥

∥

∥

0,QC

. ‖(ψ − c)‖0,Q̃C
. (12)

Using the previous inequalities (11) and (12), for 0 ≤ s ≤ 1, we obtain:

∥

∥

∥
ψ −Πhλ(ψ)

∥

∥

∥

0,QC

. ‖ψ − c‖0,Q̃C
. hs

Q̃C

|ψ|s,Q̃C

�

Proposition 2.2. For h sufficiently small, there exists a β > 0 such that:

inf
µh∈Mh

sup
ψh∈Wh

−
∫

ΓC
ψhµh dΓ

‖ψh‖0,ΓC
‖µh‖0,ΓC

≥ β. (13)
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Proof: In the article [6], the authors prove that, if h is sufficiently small, there exists a constant
β independent of h such that:

∀φh ∈ (Λh)d, ∃uh ∈ V h
∣

∣

∣

ΓC

, s.t.
−
∫

ΓC
φh · uh dΓ

‖uh‖0,ΓC

≥ β
∥

∥

∥
φh

∥

∥

∥

0,ΓC

. (14)

Given now a λh ∈ Λh and ψh ∈ W h, we should like to choose φh = λhn and ψh = uh · n in
(14), but, unfortunately, it is clear that φh 6∈ (Λh)d. Indeed, (13) can obtained from (14) via a
superconvergence argument that we discuss in the next lines.
Let Π(Λh)d : L2(ΓC)

d → (Λh)d be a quasi-interpolant defined and studied in e.g. see [3].

If n ∈W p−1,∞(ΓC), by the same super-convergence argument used in [6], we obtain that:

∥

∥

∥
φh −Π(Λh)d(φ

h)
∥

∥

∥

0,ΓC

≤ αh
∥

∥

∥
φh

∥

∥

∥

0,ΓC

. (15)

Note that:

b(λh, uh) = −

∫

ΓC

λh(uh · n) dΓ = −

∫

ΓC

φh · uh dΓ

= −

∫

ΓC

Π(Λh)d(φ
h) · uh dΓ−

∫

ΓC

(

φh −Π(Λh)d(φ
h)
)

· uh dΓ.

By inf − sup condition (14), we get:

sup
uh∈V h

−
∫

ΓC
Π(Λh)d(φ

h) · uh dΓ

‖uh‖0,ΓC

≥ β
∥

∥

∥
Π(Λh)d(φ

h)
∥

∥

∥

0,ΓC

,

By (15), it holds:

∫

ΓC

(

φh −Π(Λh)d(φ
h)
)

· uh dΓ ≤ αh
∥

∥

∥
φh

∥

∥

∥

0,ΓC

∥

∥

∥
uh

∥

∥

∥

0,ΓC

.

Thus:

b(λh, uh)

‖uh‖0,ΓC

≥ β
∥

∥

∥
Π(Λh)d(φ

h)
∥

∥

∥

0,ΓC

− αh
∥

∥

∥
φh

∥

∥

∥

0,ΓC

.

Noting that
∥

∥

∥
Π(Λh)d(φ

h)
∥

∥

∥

0,ΓC

≥
∥

∥φh
∥

∥

0,ΓC

− αh
∥

∥φh
∥

∥

0,ΓC

,
∥

∥φh
∥

∥

0,ΓC

∼
∥

∥λh
∥

∥

0,ΓC

and
∥

∥uh
∥

∥

0,ΓC

∼
∥

∥ψh
∥

∥

0,ΓC

. Finally, we obtain:

sup
uh∈V h

−
∫

ΓC
ψhλh dΓ

‖ψh‖0,ΓC

≥ β
∥

∥

∥
λh

∥

∥

∥

0,ΓC

− αh
∥

∥

∥
λh

∥

∥

∥

0,ΓC

.

For h is sufficiently small, this implies that there exists a constant β′ independent of h such
that:

sup
uh∈V h

−
∫

ΓC
ψhλh dΓ

‖ψh‖0,ΓC

≥ β′
∥

∥

∥
λh

∥

∥

∥

0,ΓC

. (16)

�
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Lemma 2.3. For h is sufficiently small, Mh can be characterised as follow:

Mh ≡ {µh ∈ Λh, µh =
∑

K

µhKBK , µhK ≤ 0}.

Proof: Let µh ∈Mh. For all ϕh ∈W h, we have :
∫

ΓC

µhϕh dΓ =
∑

K

∫

ΓC

µhKBKϕ
h dΓ =

∑

K

µhK(Πhλϕ
h)K

∫

ΓC

BK dΓ.

Let us remind that (Πhλϕ
h)K =

∫

ΓC

ϕhBK dΓ/

∫

ΓC

BK dΓ where BK are the basis functions of

the multipliers on ΓC .
For each K,K ′, we wish to construct a ϕhK such that

(Πhλϕ
h
K)K′ = δK,K′ . (17)

Clearly such ϕhK , if it exists, belongs to Lh by construction. Moreover, as µh ∈Mh,
∫

ΓC

µhϕhK dΓ = µhK

∫

ΓC

BK dΓ ≤ 0, i.e. µhK ≤ 0.

Now, it remains to construct ϕhK verifying (17).
By definition of (Πhλ·)K , such a ϕhK has to verify

∫

ΓC

ϕhKBK′ dΓ = δK,K′

∫

ΓC

BK′ dΓ, (18)

and the existence of such ϕhK is guaranteed by the inf − sup condition. Indeed, it guaranties that
the rectangular system (18) is solvable as the matrix is full rank.

�

Then a discretized mixed formulation of the problem (5) consists in finding (uh, λh) ∈ V h×Mh

such that:
{

a(uh, vh)− b(λh, vh) = L(vh), ∀vh ∈ V h,

b(µh − λh, uh) ≥ 0, ∀µh ∈Mh.
(19)

According to Lemma 2.3, we get:

{µh ∈Mh : b(µh, vh) = 0 ∀vh ∈ V h)} = {0},

and using the ellipticity of the bilinear form a(·, ·) on V h, then the problem (19) admits a unique
solution (uh, λh) ∈ V h ×Mh.

Before addressing the analysis of (19), let us recall that the following inequalities (see [2]) are
true for the primal and the dual space.

Theorem 2.4. Let a given quasi-uniform mesh and let r, s be such that 0 ≤ r ≤ s ≤ p+1. Then,
there exists a constant depending only on p, θ, ϕ0 and Ŵ such that for any v ∈ Hs(Ω) there exists
an approximation vh ∈ V h such that

∥

∥

∥
v − vh

∥

∥

∥

r,Ω
. hs−r ‖v‖s,Ω . (20)
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We will also make use of the local approximation estimates for splines quasi-interpolants that can
be found e.g. in [2, 3].

Lemma 2.5. Let λ ∈ Hs(ΓC) with 0 ≤ s ≤ p− 1, then there exists a constant depending only on
p, ϕ0 and θ, there exists an approximation λh ∈ Λh such that:

h−1/2
∥

∥

∥
λ− λh

∥

∥

∥

−1/2,QC

+
∥

∥

∥
λ− λh

∥

∥

∥

0,QC

. hs ‖λ‖s,Q̃C
, ∀QC ∈ Qh

∣

∣

ΓC

. (21)

It is well known [5] that the stability for the mixed problem (5) is linked to the inf − sup condition.

Theorem 2.6. For h sufficiently small, n sufficiently regular and for any µh ∈ Λh, it holds:

sup
vh∈V h

b(µh, vh)

‖vh‖V
≥ β

∥

∥

∥
µh

∥

∥

∥

W ′
, (22)

where β is independent of h.

Proof: By Proposition 2.2, there exists a Fortin’s operator Π : L2(ΓC) → V h
∣

∣

ΓC

∩H1
0 (ΓC) such

that

b(λ,Π(u)) = b(λ, u), ∀λ ∈M and ‖Π(u)‖0,ΓC
≤ ‖u‖0,ΓC

.

Let Ih be a L2 and H1 stable quasi-interpolant onto V h
∣

∣

ΓC

(for example, the Schumaker’s quasi-

interpolant, see for more details [3]). It is important to notice that Ih preserves the homogeneous
Dirichlet boundary condition.
We set ΠF = Π(I − Ih) + Ih. It is classical to see that:

b(λ,ΠF (u)) = b(λ, u), ∀λ ∈M, (23)

and it is easy to see that:

ΠF (u
h) = uh, ∀uh ∈ V h

∣

∣

∣

ΓC

. (24)

Moreover, by stability of Π and Ih, it holds:

‖ΠF (u)‖0,ΓC
. ‖u‖0,ΓC

, ∀u ∈ L2(ΓC). (25)

and also

‖ΠF (u)‖1,ΓC
. ‖(u)‖1,ΓC

, ∀u ∈ H1(ΓC). (26)

To conclude, we distinguish between two cases :

• If ΓD ∩ ΓC = ∅, it is well know that W = H1/2(ΓC). By interpolation of Sobolev Spaces,
using (25) and (26), we obtain:

b(λ,ΠF (u)) = b(λ, u), ∀λ ∈M and ‖ΠF (u)‖W . ‖u‖W .

Then inf − sup condition (22) holds thanks to Proposition 5.4.2 of [5].

• If ΓD ∩ ΓC 6= ∅, it is enough to remind that for all u ∈ H1
0,ΓD∩ΓC

(ΓC), we have ΠF (u) ∈

H1
0,ΓD∩ΓC

(ΓC) and (26) is valid on the subspace H1
0,ΓD∩ΓC

(ΓC). Again by interpolation
argument between (25) and (26), it holds ‖ΠF (u)‖W ≤ C ‖u‖W which ends the proof.

�
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3 A priori error analysis

In this section, we present an optimal a priori error estimate for the Signorini mixed problem.
Our estimates follows the ones for finite elements, provided in [7, 14], and refined in [11]. In
particular, in [11] the authors overcome a technical assumption on the geometric structure of the
contact set and we are able to avoid such as assumptions also in our case.

Indeed, for any p, we prove our method to be optimal for solutions with regularity up to
5/2. Thus, optimality for the displacement is obtained for any p ≥ 2. The cheapest and more
convenient method proved optimal corresponds to the choice p = 2. Larger values of p may
be of interest because they produce continuous pressures, but, on the other hand, the error
bounds remain limited by the regularity of the solution, i.e. , up to Ch3/2. Clearly, to enhance
approximation suitable local refinement may be used, [10], but this choice outside the scope of
this paper.

In order to prove Theorem 3.3 which follows, we need a few preparatory Lemmas.
First, we introduce some notation and some basic estimates. Let us define the active-set strategy
for the variational problem. Given an element QC ∈ Qh

∣

∣

ΓC

of the undeformed mesh, we denote

by ZC(QC) the contact set and by ZNC(QC) the non-contact set in QC , as follows:

ZC(QC) = {x ∈ QC , un(x) = 0} and ZNC(QC) = {x ∈ QC , un(x) > 0}.

|ZC(QC)| and |ZNC(QC)| stand for their measures and |ZC(QC)|+ |ZNC(QC)| = |QC | = Chd−1
QC

.

Remark 3.1. Since un belongs to H1+ν(Ω)2 for 0 < ν < 1, if d = 2 the Sobolev embeddings ensure
that un ∈ C0(∂Ω). It implies that ZC(QC) and ZNC(QC) are measurable as inverse images of a
set by a continuous function.

The following estimates are the generalization to the mixed problem of Lemma 2 of Appendix
of the article [11]. We recall that if (u, λ) is a solution of the mixed problem (5) then σn(u) = λ.
So, the following lemma can be proven exactly in the same way.

Lemma 3.2. Let d = 2 or 3. Let (u, λ) be the solution of the mixed formulation (5) and let
u ∈ H3/2+ν(Ω)d with 0 < ν < 1. Let hQ the be the diameter of the trace element QC and the set
of contact ZC(QC) and non-contact ZNC(QC) defined previously in QC .
We assume that |ZNC(QC)| > 0, the following L2-estimate holds for λ:

‖λ‖0,QC
≤

1

|ZNC(QC)|1/2
h
d/2+ν−1/2
QC

|λ|ν,QC
. (27)

We assume that |ZC(QC)| > 0, the following L2-estimates hold for ∇un:

‖∇un‖0,QC
≤

1

|ZC(QC)|1/2
h
d/2+ν−1/2
QC

|∇un|ν,QC
. (28)

Theorem 3.3. Let (u, λ) and (uh, λh) be respectively the solution of the mixed problem (5) and
the discrete mixed problem (19). Assume that u ∈ H3/2+ν(Ω)d with 0 < ν < 1. Then, the
following error estimate is satisfied:

∥

∥

∥
u− uh

∥

∥

∥

2

V
+
∥

∥

∥
λ− λh

∥

∥

∥

2

W ′
. h1+2ν ‖u‖23/2+ν,Ω . (29)
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Proof: In the article [14] Proposition 4.1, it is proved that if (u, λ) is the solution of the mixed
problem (5) and (uh, λh) is the solution of the discrete mixed problem (19), it holds :

∥

∥

∥
u− uh

∥

∥

∥

2

V
+
∥

∥

∥
λ− λh

∥

∥

∥

2

W ′
.

∥

∥

∥
u− vh

∥

∥

∥

2

V
+
∥

∥

∥
λ− µh

∥

∥

∥

2

W ′

+max(−b(λ, uh), 0) + max(−b(λh, u), 0).

It remains to estimate on the previous inequality the last two terms to obtain the estimate (29).

Step 1: estimate of −b(λ, uh) =

∫

ΓC

λuh

n
dΓ.

Using the operator Πhλ defined in (9), it holds:

−b(λ, uh) =

∫

ΓC

λuhn dΓ =

∫

ΓC

λ
(

uhn −Πhλ(u
h
n)
)

dΓ +

∫

ΓC

λΠhλ(u
h
n) dΓ

=

∫

ΓC

(

λ−Πhλ(λ)
)(

uhn −Πhλ(u
h
n)
)

dΓ +

∫

ΓC

Πhλ(λ)
(

uhn −Πhλ(u
h
n)
)

dΓ

+

∫

ΓC

λΠhλ(u
h
n) dΓ.

Since λ is a solution of (5), it holds Πhλ(λ) ≤ 0. Furthermore, uh is a solution of (19), thus
∫

ΓC

Πhλ(λ)
(

uhn −Πhλ(u
h
n)
)

dΓ ≤ 0 and

∫

ΓC

λΠhλ(u
h
n) dΓ ≤ 0.

We obtain:

−b(λ, uh) ≤

∫

ΓC

(

λ−Πhλ(λ)
)(

uhn −Πhλ(u
h
n)
)

dΓ

≤

∫

ΓC

(

λ−Πhλ(λ)
)(

uhn − un −Πhλ(u
h
n − un)

)

dΓ

+

∫

ΓC

(

λ−Πhλ(λ)
)(

un −Πhλ(un)
)

dΓ.

(30)

The first term of (30) is bounded in an optimal way by using (10), the summation on each physical
element, Theorem 1.1 and the trace theorem:

∫

ΓC

(

λ−Πhλ(λ)
)(

uhn − un −Πhλ(u
h
n − un)

)

dΓ ≤
∥

∥

∥
λ−Πhλ(λ)

∥

∥

∥

0,ΓC

∥

∥

∥
uhn − un −Πhλ(u

h
n − un)

∥

∥

∥

0,ΓC

≤ Ch1/2+ν ‖λ‖ν,ΓC

∥

∥

∥
un − uhn

∥

∥

∥

W

≤ Ch1/2+ν ‖u‖3/2+ν,Ω

∥

∥

∥
u− uh

∥

∥

∥

V
.

We need now to bound the second term in (30). Let QC be an element of Qh

∣

∣

ΓC

. If either

|ZC(QC)| or |ZNC(QC)| are null, the integral on QC vanishes. So we suppose that either |ZC(QC)|
or |ZNC(QC)| are greater than |QC |/2 = Chd−1

QC
and we consider the two cases, separately.

Similarly to the article [14], we can prove that if:

12



• |ZC(QC)| ≥ |QC |/2. Using the estimate (10), the estimate (28) of Lemma 3.2 and the
Young’s inequality, it holds:

∫

QC

(λ−Πhλ(λ))(un −Πhλ(un)) dΓ . h1+2ν(‖λ‖2ν,QC
+ ‖un‖

2
1+ν,Q̃C

).

• |ZNC(QC)| ≥ |QC |/2. Using the estimate (10), the estimate (27) of Lemma 3.2 and the
Young’s inequality, it holds:

∫

QC

(λ−Πhλ(λ))(un −Πhλ(un)) dΓ . h1+2ν(‖λ‖2
ν,Q̃C

+ ‖un‖
2
1+ν,Q̃C

).

Summing over all the contact elements and distinguishing the two cases ZC(QC) ≥ |QC |/2 and
ZNC(QC) ≥ |QC |/2, it holds:

∫

ΓC

(λ−Πhλ(λ))(un −Πhλ(un)) dΓ =
∑

QC∈Qh

∣

∣

∣

ΓC

∫

QC

(λ−Πhλ(λ))(un −Πhλ(un)) dΓ

≤ Ch1+2ν
∑

QC∈Qh

∣

∣

∣

ΓC

‖λ‖2ν,QC
+ ‖λ‖2

ν,Q̃C

+ ‖un‖
2
1+ν,Q̃C

≤ Ch1+2ν
∑

QC∈Qh

∣

∣

∣

ΓC

‖λ‖2ν,QC
+

∑

Q′
C
∈Q̃C

‖λ‖2ν,Q′
C

+ ‖un‖
2
1+ν,Q′

C

≤ Ch1+2ν
(

‖λ‖2ν,ΓC
+

∑

Q∈Qh

∣

∣

∣

ΓC

∑

Q′
C
∈Q̃C

‖λ‖2ν,Q′
C

+ ‖un‖
2
1+ν,Q′

C

)

.

Due to the compact supports of the B-Splines basis functions, there exists a constant C depending
only on the degree p and the dimension d of the undeformed domain such that:

∑

Q∈Qh

∣

∣

∣

ΓC

∑

Q′
C
∈Q̃C

‖λ‖2ν,Q′
C

+ ‖un‖
2
1+ν,Q′

C

≤ C ‖λ‖2ν,ΓC
+ C ‖un‖

2
1+ν,ΓC

.

So we have:
∫

ΓC

(λ−Πhλ(λ))(un −Πhλ(un)) dΓ ≤ Ch1+2ν
(

‖λ‖2ν,ΓC
+ ‖un‖

2
1+ν,ΓC

)

,

i.e.
∫

ΓC

(λ−Πhλ(λ))(un −Πhλ(un)) dΓ ≤ Ch1+2ν ‖u‖23/2+ν,Ω .

We conclude that:

−b(λ, uh) . h1/2+ν ‖u‖3/2+ν,Ω

∥

∥

∥
u− uh

∥

∥

∥

V
+ h1+2ν ‖u‖23/2+ν,Ω .

Using Young’s inequality, we obtain:

−b(λ, uh) . h1+2ν ‖u‖23/2+ν,Ω +
∥

∥u− uh
∥

∥

2

V
. (31)
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Step 2: estimate of −b(λh, u) =

∫

ΓC

λhun dΓ.

Let us denote by jh the Lagrange interpolation operator of order one on Qh

∣

∣

ΓC

.

−b(λh, u) =

∫

ΓC

λhun dΓ =

∫

ΓC

λh(un − jh(un)) dΓ +

∫

ΓC

λhjh(un) dΓ.

Note that by remark 3.1, un is continuous and jh(un) is well define.

Since u is a solution of (5), it holds jh(un) ≥ 0. Thus,

∫

ΓC

λhjh(un) dΓ ≤ 0, λh ∈Mh.

As previously, we obtain:

−b(λh, u) ≤

∫

ΓC

λhun dΓ ≤

∫

ΓC

λh(un − jh(un)) dΓ

≤

∫

ΓC

(λh − λ)(un − jh(un)) dΓ +

∫

ΓC

λ(un − jh(un)) dΓ

≤

∫

ΓC

λ(un − jh(un)) dΓ +
∥

∥

∥
λ− λh

∥

∥

∥

W ′

∥

∥

∥
un − jh(un)

∥

∥

∥

W

≤

∫

ΓC

λ(un − jh(un)) dΓ + h1/2+ν ‖un‖1+ν,ΓC

∥

∥

∥
λ− λh

∥

∥

∥

W ′

≤

∫

ΓC

λ(un − jh(un)) dΓ + h1/2+ν ‖u‖3/2+ν,Ω

∥

∥

∥
λ− λh

∥

∥

∥

W ′
.

Now, we need to show that:

∫

ΓC

λ(un − jh(un)) dΓ ≤ Ch1+2ν ‖u‖23/2+ν,Ω . (32)

The proof of this inequality is done in the paper [11] for both linear and quadratic finite elements,
and can be repeated here verbatim. In this proof, two cases are considered:

1. either |ZC(QC)| or |ZNC(QC)| is null and thus the inequality is trivial;

2. where either |ZC(QC)| or |ZNC(QC)| is greater than |QC |/2 = Chd−1
QC

.

As previously, choosing either |ZC(QC)| or |ZNC(QC)|, using the previous Lemma 3.2 and by
summation on all element of mesh, we conclude that:

−b(λh, u) ≤

∫

ΓC

λ(un − jh(un)) dΓ + h1/2+ν ‖u‖3/2+ν,Ω

∥

∥

∥
λ− λh

∥

∥

∥

W ′

. h1+2ν ‖u‖23/2+ν,Ω + h1/2+ν ‖u‖3/2+ν,Ω

∥

∥

∥
λ− λh

∥

∥

∥

W ′
.

Using Young’s inequality, we obtain:

−b(λh, u) . h1+2ν ‖u‖23/2+ν,Ω +
∥

∥

∥
λ− λh

∥

∥

∥

2

W ′
. (33)

Finally, we can conclude using (33) and (31).
�
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4 Numerical Study

In this section, we perform a numerical validation for the method we propose d in small as well
as in large deformation frameworks, i.e., also beyond the theory developed in previous Sections.
Due to the intrinsic lack of regularity of contact solutions, we restrict ourselves to the case p = 2,
for which the N2/S0 method is tested.

The suite of benchmarks reproduces the classical Hertz contact problem [13]: Sections 4.1
and 4.1 analyse the two and three-dimensional cases for a small deformation setting, whereas
Section 4.3 considers the large deformation problem in 2D. The examples were performed using
an in-house code based on the igatools library (see [21] for further details).

In the following example, to prevent that the contact zone is empty, we considered, only for
the initial gap, that there exists contact if the gn ≤ 10−9.

4.1 Two-dimensional Hertz problem

The example included in this section analyses the two-dimensional frictionless Hertz contact
problem considering small elastic deformations. It consists in an infinitely long half cylinder
body with radius R = 1, that it is deformable and whose material is linear elastic, with Young’s
modulus E = 1 and Poisson’s ratio ν = 0.3. A uniform pressure P = 0.003 is applied on the top
face of the cylinder while the curved surface contacts against a horizontal rigid plane (see Figure
1(a)). Taking into account the test symmetry and the ideally infinite length of the cylinder, the
problem is modelled as 2D quarter of disc with proper boundary conditions.

Under the hypothesis that the contact area is small compared to the cylinder dimensions,
the Hertz’s analytical solution (see [13]) predicts that the contact region is an infinitely long
band whose width is 2a, being a =

√

8R2P (1− ν2)/πE . Thus, the normal pressure, that
follows an elliptical distribution along the width direction r, is p(r) = p0

√

1− r2/a2 , where the
maximum pressure, at the central line of the band (r = 0), is p0 = 4RP/πa. For the geometrical,
material and load data chosen in this numerical test, the characteristic values of the solution are
a = 0.083378 and p0 = 0.045812. Notice that, as required by Hertz’s theory hypotheses, a is
sufficiently small compared to R.

It is important to remark that, despite the fact that Hertz’s theory provides a full description
of the contact area and the normal contact pressure in the region, it does not describe analytically
the deformation of the whole elastic domain. Therefore, for all the test cases hereinafter, the L2

error norm and H1 error semi-norm of the displacement obtained numerically are computed
taking a more refined solution as a reference. For this bidimensional test case, the mesh size of
the refined solution href is such that, for all the discretizations, 4href ≤ h, where h is the size of
the mesh considered. Additionally, as it is shown in Figure 1(a), the mesh is finer in the vicinity
of the potential contact zone. The knot vector values are defined such that 80% of the knot spans
are located within 10% of the total length of the knot vector.

In particular, the analysis of this example focuses on the effect of the interpolation order on
the quality of contact stress distribution. Thus, in Figure 1(b) we compare the pressure reference
solution. with the Lagrange multiplier values computed at the control points, i.e. its constant
values, and a post-processing which consists in a P1 re-interpolation. The dimensionless contact
pressure p/p0 is plotted respect to the normalized coordinate r/a. The results are very good:
the maximum pressure computed and the pressure distribution, even across the boundary of the
contact region (on the contact and non contact zones), are close to the analytical solution.
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(a) Stress magnitude distribution for the undeformed mesh.
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(b) Analytical and numerical contact pressure.

Figure 1: 2D Hertz contact problem with N2/S0 method for an applied pressure P = 0.003.

In Figure 2(a), absolute errors in L2-norm and H1-semi-norm for the N2/S0 choice are shown.
As expected, optimal convergence is obtained for the displacement error in theH1-semi-norm: the
convergence rate is close to the expected 3/2 value. Nevertheless, the L2-norm of the displacement
error presents suboptimal convergence (close to 2), but according to Aubin-Nitsche’s lemma in
the linear case, the expected convergence rate is lower than 5/2. On the other hand, in Figure
2(b) the L2-norm of the Lagrange multipliers error is presented, the expected convergence rate is
1. Whereas a convergence rate close to 0.6 is achieved when we compare the numerical solution
and the Hertz’s analytical solution, and close to 0.8 is achieved when we compare the numerical
solution and the refined numerical solution.
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(a) Displacement error.
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Figure 2: 2D Hertz contact problem with N2/S0 method for an applied pressure P = 0.003.
Absolute displacement errors in L2-norm and H1-semi-norm and Lagrange multipliers error in
L2-norm, respect to analytical and refined numerical solutions.
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4.2 Three-dimensional Hertz problem

In this section, the three-dimensional frictionless Hertz problem is studied. It consists in a
hemispherical elastic body with radius R that contacts against a horizontal rigid plane as a
consequence of an uniform pressure P applied on the top face (see Figure 3(a)). Hertz’s theory
predicts that the contact region is a circle of radius a = (3R3P (1 − ν2)/4E)1/3 and the contact
pressure follows a hemispherical distribution p(r) = p0

√

1− r2/a2 , with p0 = 3R2P/2a2, being
r the distance to the centre of the circle (see[13]). In this case, for the chosen values R = 1,
E = 1, ν = 0.3 and P = 10−4, the contact radius is a = 0.059853 and the maximum pressure
p0 = 0.041872. As in the two-dimensional case, Hertz’s theory relies on the hypothesis that a is
small compared to R and the deformations are small.

Considering the problem axial symmetry, the test is reproduced using an octant of sphere
with proper boundary conditions. Figure 3(a) shows the problem setup and the magnitude of the
computed stresses. As in the 2D case, in order to achieve more accurate results in the contact
region, the mesh is refined in the vicinity of the potential contact zone. The knot vectors are
defined such as 75% of the elements are located within 10% of the total length of the knot vector.

(a) magnitude for the undeformed mesh.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

r/a

p
/p

0

theo.

approx.

post-proc.

(b) Analytical and numerical contact pressure for
h = 0.1.

Figure 3: 3D Hertz contact problem with N2/S0 method for an applied pressure P = 10−4.

In Figure 3(b), we compare the Hertz’s solution with the computed contact pressure at control
points and a P1 re-interpolation of those values, for a mesh with size h = 0.1. On the other hand,
in Figure 4 the contact pressure is shown at control points for mesh sizes h = 0.4 and h = 0.2. As
it can be appreciated, good agreement between the analytical and computed pressure is obtained
in all cases.

As in the previous test, the displacement of the deformed elastic body is not fully described by
the Hertz’s theory. Therefore, the L2 error norm and H1 error semi-norm of the displacement are
evaluated by comparing the obtained solution with a finer refined case. Nonetheless, Lagrange
multipliers computed solutions are compared with the analytical contact pressure. In this test
case, the size of the refined mesh is href = 0.1175 (0.0025 in the contact region), and it is such
as 2href ≤ h.

In Figure 5(a) the displacement error norms are reported. As it can be seen, they present
suboptimal convergence rates both in the L2-norm and H1-semi-norm. Convergence rates are
close to 1.26 and 0.5, respectively. The large mesh size of the numerical reference solution href ,
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(a) h = 0.4.
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(b) h = 0.2.

Figure 4: 3D Hertz contact problem with N2/S0 method for an applied pressure P = 10−4.
Contact pressure solution at control points.

limited by our computational resources, seems to be the cause of these suboptimal results. Due
to the coarse reference mesh, the presented rates are only pre-asymptotic. Better behaviour is
observed for the Lagrange multipliers error (Figure 5(b)).
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Figure 5: 3D Hertz contact problem with N2/S0 method for an applied pressure P = 10−4.
Absolute displacement errors in L2-norm and H1-semi-norm and Lagrange multipliers error in
L2-norm, respect to analytical and refined numerical solutions.

4.3 Two-dimensional Hertz problem with large deformations

Finally, in this section the two-dimensional frictionless Hertz problem is studied considering large
deformations and strains. For that purpose, a Neo-Hookean material constitutive law (an hyper-
elastic law that considers finite strains) with Young’s modulus E = 1 and Poisson’s ratio ν = 0.3,
has been used for the deformable body.

As in Section 4.1, the performance of the N2/S0 method is analysed and the problem is mod-
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elled as an elastic quarter of disc with proper boundary conditions. The considerations made
about the mesh size in Section 4.1 are also valid for the present case. The radius of the cylin-
der is R = 1 but modifying its boundary conditions: instead of pressure, a uniform downward
displacement uy = −0.4 is applied on the top surface of the cylinder. In this large deformation
framework the exact solution is unknown: the error of the computed displacement and Lagrange
multipliers are studied taking a refined numerical solution as reference. The large deformation of
the body and computed contact pressure are presented in Figure 6. In Figure 7, the displacement

(a) Stress magnitude distribution for the deformed mesh.
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Figure 6: 2D large deformation Hertz contact problem with N2/S0 method with a uniform down-
ward displacement uy = −0.4.

and multiplier errors are reported. It can be seen that the obtained displacement presents op-
timal convergence both in L2-norm and H1-semi-norm; analogously, optimal convergence is also
achieved for the computed Lagrange multipliers.
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Figure 7: 2D large deformation Hertz contact problem with N2/S0 method with a uniform down-
ward displacement uy = −0.4. Absolute displacement errors in L2-norm and H1-semi-norm and
Lagrange multipliers error in L2-norm.

19



Conclusions

In this work, we present an optimal a priori error estimate of unilateral contact problem friction-
less between deformable body and rigid one.

For the numerical point of view, we observe an optimality of this method for both variables,
the displacement and the Lagrange multipliers. In our experiments, we use a NURBS of degree
2 for the primal space and B-Spline of degree 0 for the dual space. Thanks to this choice of
approximation spaces, we observe a stability of the Lagrange multipliers and a well approximation
of the pressure in two-dimensional case and we observe a sub-optimality as a pre-asymptotic
convergence in three-dimensional case. The sub-optimality observed in three-dimensional case
may be due to the coarse mesh used. This NURBS based contact formulation seems to provide
a robust description of large deformation.
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Appendix 1.

In this appendix, we provide the ingredients needed to fully discretise the problem (19) as well
as its large deformation version that we have used in Section 4. First we introduce the contact
status, an active-set strategy for the discrete problem, and then the fully discrete problem. For
the purpose of this appendix, we take notations suitable to large deformation and denote by gn the
distance between the rigid and the deformable body. In small deformation, it holds gn(u) = u ·n.

Contact status

Let us first deal with the contact status. The active-set strategy is defined in [16, 15] and is
updated at each iteration of Newton. Due to the deformation, parts of the workpiece may come
into contact or conversely may loose contact. This change of contact status changes the loading
that is applied on the boundary of the mesh. This method is used to track the location of contact
during the change in boundary conditions.
Let K be a control point of the B-Spline space (7), let (Πhλ·)K be the local projection defined in
(8) and let P{λK , (Π

h
λgn)K} be he operator defined component wise by:

• λK = 0,

(1) if (Πhλgn)K ≥ 0, then P{λK , (Π
h
λgn)K} = 0,

(2) if (Πhλgn)K < 0, then P{λK , (Π
h
λgn)K} = (Πhλgn)K ,

• λK < 0,

(3) P{λK , (Π
h
λgn)K} = (Πhλgn)K .

The optimality conditions are then written as P{λK , (Π
h
λgn)K} = 0. So in the case (1), the

constraints are inactive and in the case (2) and (3), the constraints are active.

Discrete problem

The space V h is spanned by mapped NURBS of type N̂p
i
(ζ) ◦ ϕ−1

0,ΓC
for i belonging to a suitable

set of indices. In order to simplify and reduce our notation, we call A as the running index, of
control points associated with the surface ΓC , A = 0 . . .A on this basis and set:

V h = Span{NA(x), A = 0 . . .A} ∩ V. (34)

Now, we express quantities on the contact interface ΓC as follows:

u|ΓC
=

A
∑

A=1

uANA, δu|ΓC
=

A
∑

A=1

δuANA and x =
A
∑

A=1

xANA,

where CA, uA, δuA and xA = ϕ(XA) are the related reference coordinate, displacement, displace-
ment variation and current coordinate vectors.

By substituting the interpolations, the normal gap becomes:

gn =

[

A
∑

A=1

CANA(ζ) +

A
∑

A=1

uANA(ζ)

]

· n.
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In the previous equation, ζ are the parametric coordinates of the generic point on ΓC . To simplify,
we denote for the next of the purpose Dgn[δu] = δgn. The virtual variation follows as

δgn =

[

A
∑

A=1

δuANA(ζ)

]

· n.

In order to formulate the problem in matrix form, the following vectors are introduced:

δu =







δu1
...

δuA






, ∆u =







∆u1
...

∆uA






, N =







N1(ζ)n
...

NA(ζ)n






.

With the above notations, the virtual variation and the linearized increments can be written in
matrix form as follow:

δgn = δuTN , ∆gn = NT∆u.

The contact contribution of the virtual work is expressed as follows:

δWc =

∫

ΓC

λδgn dΓ +

∫

ΓC

δλgn dΓ.

The discretized contact contribution can be expressed as follows:

δWc =

∫

ΓC

K
∑

K=1

λKBKδgn dΓ +

∫

ΓC

K
∑

K=1

δλKBKgn dΓ,

=
∑

K

λK

∫

ΓC

BKδgn dΓ + δλK

∫

ΓC

BKgn dΓ,

=
∑

K

λK

∫

ΓC

BKδgn dΓ + δλK

∫

ΓC

BKgn dΓ,

=
∑

K

(

λK(Πhλδgn)K + δλK(Πhλgn)K

)

KK ,

where KK =

∫

ΓC

BK dΓ.

Indeed, we need to resolve a variational inequality. Using the contact status, we distinguish be-
tween the constraints on the control point K are actives, i.e. when the contact occurs, and the
constraints on the control point K are inactives, i.e. when we loose the contact.

Using active-set strategy on the local gap (Πhλgn)K and λK , it holds:

δWc =
∑

K,act

(

λK(Πhλδgn)K + δλK(Πhλδgn)K

)

KK .

At the discrete level we proceed as follows:

• We have
∑

K,inact

δλK(Πhλgn)K ≤ 0, ∀δλK , i.e. (Πhλgn)K ≥ 0 a.e. on inactive part.

• On the active part, it holds
∑

K,act

δλK(Πhλgn)K = 0, ∀δλK , i.e. (Πhλgn)K = 0 a.e..
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• We impose too,
∑

K,inact

λK(Πhλδgn)K = 0, ∀(Πhλδgn)K , i.e. λK = 0 a.e. on inactive boundary.

For the further developments it is convenient to define the vector of the virtual variations and
linearizations for the Lagrange multipliers:

δλ =







δλ1
...

δλK






, ∆λ =







∆λ1
...

∆λK






, Nλ,g =







(Πhλgn)1,actK1,act
...

(Πhλgn)K,actKA,act






, Bλ =







B1(ζ)
...

BK(ζ)






.

In the matrix form, it holds:

δWc = δuT
∫

ΓC

(

∑

K,act

BKλK

)

N dΓ + δλTNλ,g,

and the residual for Newton-Raphson iterative scheme is obtained as:

R =

[

Ru
Rλ

]

=

[

∫

ΓC

(

∑

K,actBKλK

)

N dΓ

Nλ,g

]

.

The linearization yields:

∆δWc =

∫

ΓC

∆λδgn dΓ +

∫

ΓC

δλ∆gn dΓ.

The active-set strategy and the discretised of contact contribution can be expressed as follows:

∆δWc =
∑

K,act

∑

A

∫

ΓC

∆λKBKNAδuA · n dΓ +

∫

ΓC

δλKBKNA∆uA · n dΓ,

= δuT
∫

ΓC ,act
NBT

λ dΓ∆λ+ δλT
∫

ΓC ,act
BλN

T dΓ∆u.
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