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Abstract 12 

Pressurized fresh-water fluid-distribution networks are key strategic infrastructure elements. 13 

On average, 20% of water is lost by way of leaks around the world. This illustrates the need for 14 

more efficient management of pressurized fluid-distribution networks. This paper presents a 15 

system identification methodology known as error-domain model falsification adapted for 16 

performance assessment of water distribution networks and more specifically, to detect leak 17 

regions in these networks. In addition, a methodology to approximate the demand at nodes in 18 

water-supply networks is presented and a methodology for estimating uncertainties through 19 

experimentation is described. The use of error-domain model falsification for practical use in 20 

water distribution networks shows great potential. Finally, two case studies are presented. The 21 

first case study is from the water-distribution network of the city of Lausanne. An experimental 22 

campaign was carried out on this network to simulate leaks by opening hydrants. The second 23 

case study is from a water-distribution network of the commune of Bagnes, and a leak scenario 24 

was evaluated. These two case studies illustrate, using full-scale measurements, the potential 25 

of error-domain model falsification for the performance assessment of water-distribution 26 

networks. 27 

28 

29 



Introduction 30 

Annually, 184 billion USD are spent on clean water supply worldwide. However, collectively, 31 

water utilities lose an estimated 9.6 billion USD each year due to water leakage (Sensus 2012). 32 

Water supply networks lose an average of 20% of their water supply (Figure 1). The Sensus 33 

report also includes an estimate that if leaks were reduced by 5% and pipe bursts by 10%, 34 

utilities could save up to 4.6 billion USD.  35 

Currently, most utilities react to leakage on an ad-hoc basis, responding to leaks and bursts and 36 

repairing infrastructure only as required by leakage events. There is a need for more rational 37 

and systematic strategies for managing infrastructure. Monitoring of water-supply networks 38 

could support this need and sensor-based diagnostic methodologies have the potential to 39 

provide enhanced management support.  40 

Detecting leaks in water distribution networks is not a new challenge. Several studies over the 41 

past century have involved leak detection in fresh-water supply-networks. Hope (1892) studied 42 

water losses, and Babbitt et al. (1920) described examples of leak-detection methods such as 43 

visual observation and sounding through the soil with a steel rod. Water-hammer techniques 44 

and acoustic measurements, considered to be more advanced leak detection techniques, have 45 

also been developed. In addition, water loss and related costs have been highlighted for many 46 

decades (Niemeyer 1940; Johnson 1947). 47 

Studies involving various leak-detection methodologies have continued into this century. Leak-48 

noise correlation (Grunwell and Ratcliffe 1981; Gao et al. 2006; 2009), pig-mounted acoustic 49 

sensing (Mergelas and Henrich 2005) (a “pig” is a device used for cleaning and inspecting 50 

pipelines) and ground penetrating radar (Demirci et al. 2012) have all been studied. These 51 

techniques are not appropriate for monitoring large networks due to high costs. However, these 52 

methods are useful as complements to other methods in order to, for example, locate leaks in 53 

network segments that have already been identified to contain leaks. 54 

An additional method, termed water balance, where the network is audited in order to examine 55 

the equality between water placed into the distribution system and water taken out was 56 

developed by Lambert and Hirner (2000). Morrison created the night flow district metered area 57 

(DMA) method (2004). In this method, the network is separated into segments and the water 58 

that flows in and out of these segments is metered. Water loss is estimated by taking these 59 

measurements when the demand is minimal, usually at night. 60 



In addition, there are several transient-based techniques which use pressure measurements to 61 

detect leaks in water supply networks by measuring transient signals. Colombo et al. (2009) 62 

reviewed these types of methods and established three sub-categories: inverse-transient analysis 63 

(Vitkovsky et al. 2000; 2007), direct transient analysis (Whittle et al. 2010; 2013; Srirangarajan 64 

et al. 2010) and frequency-domain techniques. The accuracy of the results is affected by the 65 

uncertainties associated with these systems. Thus, many of these techniques are used on single, 66 

underground pipelines (Puust et al. 2010) rather than complex water distribution networks. An 67 

exception is the study presented by Whittle et al. (2013). However, in this case, slow leak 68 

development requires the use of other detection methods.  69 

Another class of techniques are those based on comparisons of measurements with predictions 70 

obtained from hydraulic models. This challenge is often framed as an optimization task. The 71 

goal is to minimize the differences between predicted values from flow models and network 72 

measurements. Such techniques are often based on minimization of least-squares (Pudar and 73 

Liggett 1992; Andersen and Powell 2000). Mounce et al. (2009; 2011) used machine learning 74 

and fuzzy inference to detect leaks. 75 

Poulakis et al. (2003) proposed a Bayesian system-identification methodology for leakage 76 

detection. Rougier (2005), Puust et al. (2006) and Barandouzi et al. (2012) also proposed Bayes-77 

based leak detection methodologies. Romano et al. (2012; 2013; 2014) implemented Bayesian 78 

inference in a pipe burst detection framework. Hypotheses made when using traditional residual 79 

minimization or Bayesian inference techniques are usually impossible to meet due to the 80 

presence of systematic modelling errors and unknown values of induced correlations (Goulet 81 

and Smith 2013). 82 

Leak detection is not uniquely carried out in fresh-water-distribution networks. Other 83 

pressurized fluid-distribution systems such as oil and gas pipelines may also be subject to leaks. 84 

In such cases, the consequences of a leak may be dangerous with a risk of environmental 85 

pollution. The Alaska Department of Environmental Conservation (ADEC 1999) presented a 86 

review of leak-detection technologies for crude oil-transmission pipelines. For gas pipelines, 87 

Murvay and Silea (2012) surveyed leak detection and localization techniques. The techniques 88 

presented in these references are comparable to those developed for fresh-water networks. The 89 

main difference is the presence of closely-coupled segments in the water network compared 90 

with pipelines.  91 



Robert-Nicoud et al. (2005) developed a methodology for sequential sensor placement in water 92 

supply networks using entropy. Similarly, Goulet and Smith (2012) developed a model 93 

falsification method called error domain model falsification for bridge diagnosis. In addition, 94 

they carried out a preliminary study using this method for leak detection on a water supply 95 

network (Goulet et al. 2013). This study showed good results for leaks of 100 l/min which is 96 

not adequate for full-scale applications; practitioners are interested in detecting much smaller 97 

leaks. Moser and Smith (2015) presented a methodology for reduction of water supply networks 98 

when paired with error-domain model falsification for leak detection. The reduction process 99 

translates the network model into a simpler equivalent model (reducing the number of nodes 100 

and connections, and in turn, calculations). Further, Moser et al. (2016a,b) extended this work 101 

to electrical networks in order to provide additional case studies for leak detection in water 102 

supply networks as the two network types are analogous. In short, previous work has focused 103 

on the development of individual technical aspects of the leak detection methodology. What 104 

remains is a need to evaluate the performance of these individual aspects as a combined 105 

methodology in real-world scenarios. This paper presents the complete scheme with practical 106 

case studies that involve real measurements at various leak intensities.                      107 

Measurements are not useful unless the data that is generated can be interpreted appropriately. 108 

This paper presents a methodology that accommodates systematic uncertainties and is robust in 109 

the presence of unrecognized correlations. The objective is to provide a general diagnostic 110 

methodology – for water distribution networks, and more generally, for pressurized fluid 111 

distribution networks – that is able to locate leak regions. The methodology results in a 112 

designated area, or areas, where a leak is known to be present. The size of the region, as well 113 

as the number of regions, depends on the number of sensors that are used and the available prior 114 

knowledge of the system.  115 

In the following section, the diagnosis methodology is described in more detail. It is then 116 

described how this methodology has been modified to support leak detection in water supply 117 

networks. The usefulness of the methodology through an application to a part of the city of 118 

Lausanne water distribution network is illustrated. In this application, fire hydrants have been 119 

opened to simulate leaks. Leak region detection, as well as an estimation of the demand and 120 

associated uncertainties is presented. Finally, a discussion of the more general impact of this 121 

work is presented.  122 



Methodology 123 

Over nearly twenty years, several researchers have contributed to a methodology for diagnosis 124 

called error-domain model falsification (Smith 2016). This methodology is most useful in cases 125 

where little information is available to describe the relationships between uncertainties at 126 

locations where measurements and predictions are compared. The methodology uses explicit 127 

representations of modelling and measurement uncertainty distributions at each location 128 

(Goulet and Smith 2012; Pasquier and Smith 2015). Prior knowledge is used to define bounds 129 

for the parameter values and to build sets of possible scenarios. A scenario corresponds to a set 130 

of parameter values describing the state of the system (e.g. a leak location). Scenarios are 131 

generated in order to cover the range of all possible states of the system.  132 

As shown in Equation 1, when comparing predictions   from a numerical model with a 133 

measurement, , modelling uncertainty ( ) and the measurement uncertainty 134 

( ) have to be included (Goulet and Smith 2013). 135 

 + = = +  (1) 

Equation 1 can be rearranged to obtain Equation 2 in which both uncertainties are combined. 136 

 ( ) = =   (2) 

Using this combined uncertainty ( ), threshold bounds ( ,  ) are computed 137 

(by taking the 95 % interval of the probability density function). The threshold bounds are used 138 

in Equation 3 to determine if the predictions are close enough to the measurements at each 139 

measurement location. 140 

   (3) 

where gi i1, ik) 141 

Figure 2 shows the steps of error-domain model falsification. The first step is to define 142 

scenarios. The scenarios, si are defined by the parameters ik that need to be identified. For 143 

example, in the case of leak detection, the parameters are leak locations and leak intensity. The 144 

scenarios are generated by sampling to cover all the possible behaviors of the system. Some 145 

expert input can also be useful to reduce the sampling size. They are then simulated through a 146 

numerical model of the system in order to obtain a population of model predictions (termed the 147 



initial model set). These predictions are used for the identification by comparing them with 148 

measurements.  149 

The distinction has to be made between physical and simulated measurements. Simulated 150 

measurements are necessary in order to estimate the performance of sensor configurations prior 151 

to physical measurement. Simulated measurements are obtained by randomly taking a model 152 

instance in the initial model set and adding the combined uncertainties (modelling and 153 

measurement) to predictions. Measurements are obtained from the sensors on the real/physical 154 

network. 155 

For real and simulated cases, measurements are compared with predictions for each model 156 

instance. Threshold bounds, see Equation 3, are used to identify model instances that are 157 

compatible with the measurements (candidate models). If the difference between the predictions 158 

and the measurements (real or simulated) is within the bounds defined by the thresholds, then 159 

the model instance is accepted to be part of the candidate model set. Otherwise, the model 160 

instance is falsified and removed from the candidate model set.  161 

Expected identifiability is a cumulative distribution function (CDF) that represents the 162 

probabilities associated with obtaining a specific number of candidate models. This CDF is 163 

built by testing a large number of simulated leaks on the network. For each scenario, the number 164 

of candidate scenarios is computed using the error-domain model falsification procedure 165 

presented above. This measure indicates the performance of the diagnosis and is used 166 

throughout the work presented here. 167 

Uncertainties 168 

The task of estimating correct values for uncertainties is challenging. Sometimes, the 169 

information can be determined experimentally (for example, for the sensors). Indications of 170 

other uncertainties can be found in the literature. Model simplification uncertainty values are 171 

more difficult to estimate. In the case of water distribution networks, estimation of the 172 

uncertainty of the demand is challenging, particularly when it is modelled using a statistical 173 

distribution and when there is limited data to justify assumptions. The performance of 174 

identification using error-domain model falsification is dependent on the estimation of 175 

uncertainties. An overestimation of uncertainties will lead to poor identification performance. 176 

In extreme cases, either all model instances are accepted because they are all within the range 177 

of the thresholds or all model instances are rejected. An incorrect estimation of the uncertainty 178 



(or a wrong hypothesis in the modelling) can lead to an incorrect diagnosis. The methodology 179 

created here uses experimental data to obtain an estimation of the threshold values, and, thus 180 

the combined uncertainties. 181 

The threshold bounds used in error-domain model falsification to falsify model instances are 182 

computed by combining uncertainties that are representative of modelling and measurement 183 

errors. Measurement errors are mainly due to sensor resolution since noise and sensor bias can 184 

be considered to be negligible. Modelling errors are due to model simplifications and to errors 185 

associated with model parameters. Model parameters are often not exactly known. They are 186 

based on the network-design plans and estimations. Sometimes, parameters are estimated based 187 

on hypotheses made using engineering experience.  188 

Model parameters are categorized into two groups. The first group contains the primary 189 

parameters which characterize leak scenarios. For leak detection, these are the leak position and 190 

leak intensity, as described above. The other parameters, called secondary parameters, do not 191 

explicitly characterize the scenarios. The uncertainties associated with these parameters are 192 

included in the combined uncertainty that is used to estimate the threshold bounds.  193 

Secondary parameters include: pipe diameter, pipe roughness, pipe length, nodal demand, node 194 

elevation, and the water level in the tank. The propagation of uncertainties of secondary 195 

parameters through the model is computed using the Monte-Carlo method. Thousands (10,000) 196 

of simulations are carried out by varying the parameters following the uncertainty distributions. 197 

An example of a choice of uncertainties is given in Table 1. Three distributions, exponential 198 

(Exp), normal (N) and uniform (U) are used. The arguments of these distributions contain 199 

defining parameters. 200 

The demand at each node is estimated using an exponential law. The mean of the exponential 201 

law (3.13 l/min) represents the minimal demand ratio. Minimal demand ratio is the minimal 202 

consumption divided by the number of nodes. By making this hypothesis, the assumption is 203 

made that each node has the same “weight”. There is no distinction between large and small 204 

consumers; it is the simplest way of modelling the demand without any prior knowledge. For 205 

the node elevation and pipe diameter, the uncertainties are represented by a zero-mean normal 206 

distributions with standard deviations of 15 cm and 0.75 mm, respectively. These values have 207 

been estimated using engineering judgement. Pipe length uncertainty is described by a uniform 208 

distribution with minimum and maximum values taken from an ISO norm (ISO 2531 2009). 209 



The values for the pipe roughness and the tank level have been estimated by a review of 210 

statistical variation of these data. 211 

Using these uncertainty values, a sensitivity study has been carried out. The relative importance 212 

of each parameter is estimated using the surface response technique (Fang et al. 2005; Box and 213 

Draper 1959). The technique involves approximating the numerical model by a linear model 214 

 where Y is the vector of predicted values and M the model matrix built from the 215 

standardized parameters. The vector is the least-square estimator of the parameter vector. 216 

Each element of this vector represented the relative importance of the associated parameter.  217 

Results are given in Table 2. This table gives the relative importance of the uncertainties in the 218 

computation of the flow predictions and pressure predictions for each parameter. One 219 

uncertainty has a much larger impact than the others—the uncertainty on the nodal demand, 220 

with more than 99% relative importance. These results show that when the demand is not well 221 

known and an exponential law is used to model it, the uncertainty of the demand dominates the 222 

uncertainties of the other parameters. In such situations, the uncertainty of the nodal demand 223 

can be considered alone to represent the uncertainty of the secondary parameters.  224 

Estimation of threshold values 225 

The overall concept of this methodology is to infer threshold values using measurements that 226 

represent known events. Instead of searching unknown leaks, the goal is to start with created 227 

leaks. Such experiments can be carried out on a network by opening hydrants and controlling 228 

the outcome (flow).  229 

When the leak intensity and its location is known with certainty, remaining sources of 230 

uncertainty can be quantified.  The difference between predictions of this scenario and the 231 

measurements is computed. This difference is then taken to be the combined uncertainty of 232 

modelling and measurement errors. By repeating these operations for a range of measurements 233 

and various scenarios, knowledge of uncertainties is increased. This process is illustrated in 234 

Figure 3. 235 

This methodology has been adapted for two desired quantities in water-supply management: 236 

(1) leak region detection; and (2) demand estimation. The two EDMF-based methodologies are 237 

described in further detail in the following sections, followed by a discussion of two case studies 238 



in these approaches using sections of real water supply networks in the city of Lausanne and 239 

commune of Bagnes. 240 

Leak-region detection 241 

For leak region detection, numerical simulations are performed using the water distribution 242 

network simulation software EPANET (Rossman 2000). The goal is to develop a methodology 243 

that is capable of identifying and defining areas where a leak is located. The size of leak regions, 244 

is dependent on the number of sensors used for identification and the prior knowledge of the 245 

system.  246 

Leak scenarios 247 

In order to detect a leak, a set of candidate model instances is built using leak scenarios. For 248 

this study, scenarios are constructed following two hypotheses: (1) one leak occurs at a time; 249 

and, (2) leaks occur at a node in the network model. The configurations are obtained by varying 250 

leak position (the node where the leak occurs) and leak intensity (the flow going out through 251 

the node), see Figure 4. The number of scenarios is equal to the number of nodes multiplied by 252 

the number of intensities that are considered. It is not necessary to model leaks that occur at 253 

intermediate points of pipes since the presence of uncertainties means that only leak regions, 254 

which are bounded by nodes, are identified. Intermediate points do not influence the size of the 255 

leak region. 256 

The leak scenarios are simulated using EPANET to obtain a population of model instances. The 257 

simulations are steady-state only (not transient). For each model instance, predicted values are 258 

computed for the physical quantities (flow or pressure) that are measured by sensors on the 259 

network. These predictions are then compared with measurements in the error-domain model-260 

falsification process. 261 

Comparison with simulated measurements 262 

This section presents results that have been obtained through a study carried out on part of the 263 

fresh-water distribution network in Lausanne, Switzerland. This network contains 263 nodes 264 

and 295 pipes. For illustration, in this part of the study, simulated measurements are used (a 265 

later section includes two case studies where full-scale measurements are employed). 266 

Simulations of measurements and leak scenarios are performed based on the minimum water 267 

demand. Analysis of water distribution networks is generally conducted during minimum 268 



demand hours because uncertainties related to the consumption is minimal in this time period. 269 

In this case, this minimal demand is 830 l/min. This value was then divided by the number of 270 

nodes to obtain the mean consumption for each node. For simulations, the nodal demand is 271 

described by an exponential distribution. The exponential distribution is utilized as a logical 272 

way to represent this water demand where there is a high probability to have a low consumption 273 

and a low probability to have a high consumption. 274 

For this illustration, the number of sensors is chosen to be three, and they were placed using a 275 

greedy algorithm (Moser et al. 2016a). Figure 5 shows the results obtained for four leak 276 

scenarios. White circles indicate the demand nodes. The links between these nodes are the 277 

pipes. Squares are sensor locations on the network. The cross gives the position of the simulated 278 

leak. In each of these four examples, the leak intensity used is 100 l/min. The nodes in dark 279 

grey indicate the candidate leak scenarios, i.e. those possibilities that have not been falsified. 280 

The four examples in Figure 5 illustrate two situations. First, in Cases (1) and (2), the number 281 

of candidate scenarios is important. The size of the regions that are defined by the candidate 282 

leak scenarios is too large to be able to satisfactorily identify the leak-region. These results 283 

show that the methodology may be useful only to falsify one side of the network. In Case (1) 284 

all candidate leak scenarios on the right side have been eliminated, and in Case (2) the entire 285 

left side is falsified. These results may be useful in practice if the methodology is combined 286 

with local leak detection techniques, such as acoustic methods. Discarding half of the leak 287 

locations divides the necessary time for searching with a local technique in half. Nevertheless, 288 

more accuracy is desirable. In Cases (3) and (4) the number of candidate leak scenarios is lower 289 

than in Cases (1) and (2). In such situations, the region defined by the candidate leak scenarios 290 

is small enough to obtain information related to the leak location. 291 

To illustrate the utility of the expected identifiability, a first example is shown in Figure 6. In 292 

this figure, the CDF of the expected identifiability is given for two values of the global demand 293 

(the demand on the entire network): 830 l/min and 415 l/min. These results are for a leak 294 

intensity of 100 l/min and the same sensor configuration shown previously. This graph shows 295 

that there is a 95% probability to identify less than 120 candidate leak scenarios (or to falsify 296 

more than 145 leak scenarios), for the demand of 415 l/min. This means that in 95% of cases it 297 

is possible to reduce the population of candidate leak scenarios by half for a leak intensity of 298 

100 l/min. With a 50% probability, it is possible to reduce the initial model set to less than 69 299 

candidate leak scenarios. In comparison, for a global demand of 830 l/min, a 95% probability 300 



results in 216 candidate models and 136 for a probability of 50%. This graph shows that the 301 

identification performance is two times better for the flow rate of 415 l/min because the 302 

expected population of candidate models is approximately equal to half when compared to that 303 

for the 830 l/min flow rate.   304 

The second example shows the expected identifiability when using pressure sensors rather than 305 

flow sensors (Figure 7). The model and the parameters are exactly the same as before, with the 306 

same associated uncertainties (the global demand is 830 l/min). The only difference is that the 307 

pressure at the nodes are predicted instead of the flow in the pipes. In this graph the performance 308 

is given for three sensor configurations. They were obtained with a greedy algorithm that 309 

optimized the expected identifiability for the 95% probability (Moser et al. 2016a). The 310 

configurations are composed of three, five and 15 sensors to show the evolution of performance 311 

when increasing the number of sensors. For comparison, the curves of the three flow-sensor 312 

configurations are also given.  313 

These results show that the increase of the performance when increasing the number of sensors 314 

is not very pronounced. This is especially true around the 95% probability where the increase 315 

is almost null. By comparing these results with the CDF of the three-sensor configuration, the 316 

conclusion can be made that in this specific case, measuring flow is more appropriate than 317 

measuring pressure. For three flow sensors, the performance is significantly greater than for 15 318 

pressure sensors. The reason is that variations observed in the pressures predictions for leak 319 

scenarios are too small in comparison with values for the threshold bounds. Therefore, scenarios 320 

cannot be differentiated by pressure predictions. In another situation having lower uncertainty, 321 

pressure sensors might be used efficiently. Pressure measurements are more often used with 322 

transient models (Whittle et al. 2013). 323 

Demand estimation 324 

In most networks, knowledge regarding the distribution of demand is low. Nevertheless, the 325 

global demand is often known. It is computed by measuring the water that goes in and out of 326 

the network. Although there are counters for each paying consumer, these counters only record 327 

the yearly cumulate consumption; there is no information about how this distribution varies, for 328 

example, throughout a day.  329 

The behavior of water distribution networks is governed by the demand of the consumer. For 330 

this reason, it is important to increase knowledge regarding demand parameters. This can be 331 



achieved using error-domain model falsification. The methodology developed for this purpose 332 

is illustrated using simulated measurements which are retrieved in the manner described in the 333 

methodology section. 334 

The methodology is essentially the same as that used for leak detection. The difference is in the 335 

identification objectives. The model instances that are used to compute the predictions are 336 

different. Instead of leak scenarios, they are built from demand scenarios. 337 

Demand scenarios 338 

In order to estimate the demand, the model instances are built using the nodal demand as the 339 

primary parameter. For this reason, the scenarios are referenced as demand scenarios. Each 340 

demand scenario represents a specific demand configuration of the system. In the same way as 341 

for the leak scenarios, assumptions have to be made in order to limit the sampling size. It is not 342 

possible to sample the demand at each node and then to build all the permutations such that all 343 

possible behaviors are explicitly considered. The number of scenarios is equal to the number of 344 

nodes as based with an exponent of the number of samples for each node. For example, if three 345 

sampling values are tested at each node, then, for a total of 265 nodes, the number of scenarios 346 

is greater than 18 million (2653).  347 

In order to achieve consistent sampling, the number of nodes where the demand is estimated 348 

needs to be reduced. This is achieved by using a network reduction technique (Moser et al. 349 

2015). The reduction is shown in Figure 8. Only nodes at the three monitored pipes and the 350 

nodes connected to the tank and reservoir are included in the reduced network. By performing 351 

the sampling only at the nodes connected to the monitored pipes, the task of estimating the 352 

demand is reduced to six nodes. This is the upper limit for sampling. For eight sampling values 353 

at each node, the number of scenarios is greater than 1 million. 354 

Generally, the global demand is known or can be estimated. That information can be used for 355 

the sampling by adding a constraint that fixes the sum of the six nodal demands to be equal to 356 

the global demand. If the global demand is not precisely known, then sampling can be repeated 357 

for various global-demand values in the same way that it has been done for leak intensity. For 358 

this reason, this parameter is termed demand intensity. In order to build scenarios, the demand 359 

intensity is divided by the number of nodes in the non-reduced network. Then, the subdivided 360 

demands equivalent to the mean nodal demand, are distributed randomly to each of the six 361 

nodes in the reduced network. By doing this, the sum will always remain equal to the demand 362 



intensity. In the next section, results using simulated measurements (retrieved in manner 363 

presented in the methodology section) to estimate the number of scenarios that need to be built 364 

following this procedure in order to have a consistent sampling are presented. 365 

Comparison with simulated measurements 366 

The EPANET model is run with varying demand. The demand of each node is varied following 367 

a time pattern that was built randomly. Figure 9 shows the pattern for Node 1. The horizontal 368 

axis gives the time in hours, and the vertical axis gives the nodal demand in l/min. The time 369 

step for the pattern is five minutes. The black curve represents the demand for Node 1, and the 370 

grey curve represents the total demand (i.e., the sum of the six nodal demands). The demand 371 

pattern for the other nodes is not shown. 372 

The model of the network is then simulated with these patterns and according to Equation 4.  373 

= , … , +   (4) 

Simulated measurements are obtained by taking the flow value prediction. In the same way that 374 

it has been done for leak detection (and described at the end of the methodology section), the 375 

combined uncertainty is added to the predictions to obtain simulated measurements. Simulated 376 

measurements are used to test demand estimation through error-domain model falsification. 377 

The uncertainties used are the same as in the leak detection. The only difference is that the 378 

uncertainty of the demand is removed, because the demand is the parameter which needs to be 379 

identified.  380 

Each measurement is compared to the predictions obtained by simulating a population of 381 

demand scenarios. Then, after the model falsification process, measurements are associated 382 

with a population of candidate demand scenarios. The flowchart in Figure 10 illustrates the 383 

process for demand estimation and how to ensure the quality of the sample. 384 

Figure 11 shows results obtained when testing the number of samples necessary for the demand 385 

estimation. For each sample size tested, the number of times the correct value is included in the 386 

candidate models is computed (the percentage of correct identification). The sample sizes tested 387 

are 10,000, 20,000, 40,000 and 80,000. The results show that at 40,000 samples, the increase 388 

in the six nodes is over 90% and the increase after that slows. The cost of using more than 389 

40,000 in terms of computation is drastically larger than the amount of increase in performance 390 

which would be achieved. 391 



Figure 12 shows the results obtained for the estimation of the demand for the six nodes with 392 

40,000 samples. The solid lines (versus the individual points) represent the 95% confidence 393 

intervals of the estimation, and the points are the exact demand values to identify. In accordance 394 

with previous results, the real value is inside the confidence interval in most cases.  395 

Case studies 396 

In this section, two case studies involving existing water distribution networks are presented. 397 

The first case study is part of the water-distribution network of the city of Lausanne. An 398 

experimental campaign was carried out to simulate leaks by opening hydrants. The second case 399 

study is from a water distribution network of the commune of Bagnes. With this network, a 400 

sensor placement study was carried out. These case studies show the potential of error-domain 401 

model falsification for the performance assessment of water distribution networks. The aspects 402 

covered by each case study are summarized in Table 3. 403 

Lausanne water distribution network 404 

This case study is based on a section of the water distribution network in Lausanne, Switzerland. 405 

The water distribution network in the city of Lausanne is separated into six independent 406 

subnetworks. This case study is based on an experimental campaign where leaks are created 407 

throughout the network at different locations by opening hydrants. 408 

The model of this network is shown in Figure 13. It consists of 265 demand-nodes and 295 409 

pipes. The pipes are represented by black lines and the nodes, white circles. This network is 410 

equipped with three flowmeters. Their positions are given by the black crosses.  411 

The goal of this part of the study is to test the error-domain model-falsification methodology 412 

through various leak scenarios. These scenarios have been created by opening nine hydrants at 413 

four flow rates in order to simulate leaks at each position. The positions of the hydrants have 414 

been chosen such that the main regions of the sub-network are covered. They are given by the 415 

numbers in circles in the network representation displayed in Figure 13. 416 

The flowmeter locations have been chosen using a sensor placement methodology based on the 417 

greedy algorithm and expected identifiability (Moser et al. 2016a). All three flowmeters are 418 

electromagnetic insertion flowmeters: the HydrINS 2 from hydreka (Figure 14). They have 419 

been programmed to take measurements every 15 minutes. 420 



The behavior of a water distribution network is often governed by consumer demand. 421 

Generally, this data is not readily available. For this study case, the only available information 422 

is the global demand of the network. There is no information regarding the distribution of the 423 

demand throughout the network. In order to reduce the uncertainty resulting from such a lack 424 

of information, measurements are recorded only during the period of the day when consumption 425 

is the lowest. This is between 1:00 am and 4:30 am. Figure 15 shows the flow that is measured 426 

for one week (9th March to 15th March 2015) during the lowest consumption period. 427 

Demand estimation 428 

The demand of each node in the network is unknown. In order to bring the model behavior 429 

closer to the real behavior, error-domain model falsification is used to estimate the demand in 430 

the network. This is done by comparing demand scenarios with measurements. It is assumed 431 

that there is no leak in the network at the time of this measurement.  432 

The only information available to model demand scenarios is the global demand of the network. 433 

It is not possible to use a normal sampling strategy to cover all possible behaviors of the system 434 

because the demand of each of the nodes can vary. The result is that the number of scenarios is 435 

equal to the number of nodes as a base with an exponent equal to the number of samples for the 436 

demand. For three sampling values and 265 nodes there are more than 18 million scenarios.  437 

To overcome this challenge, a two-part solution is proposed. The first part of this solution is to 438 

obtain a reduced network keeping only the pipes that are monitored (Moser et al. 2015). Then, 439 

the demand is modelled only on the nodes connected to the monitored pipes (six nodes for the 440 

City of Lausanne network).  441 

This leads to the second part of the solution—modelling the demand at the nodes randomly in 442 

order to build a number of demand scenarios. This is accomplished by using the only 443 

information available: the global demand. The condition is fixed such that the sum of the nodal 444 

demands at each node equals the global demand. The demand is allocated to each node by 445 

following a discrete uniform distribution varying from zero to the global demand.  For this case 446 

study, 40,000 samples are used. The results in Figure 11 illustrate that this amount of samples 447 

is sufficient. This figure shows that above 40,000 samples, the increase of performance slows 448 

down significantly.  449 



Figure 16 shows results for the estimation of the demand for the six nodes of the reduced 450 

network. In each graph, the horizontal axis represents the time. For this example, the time period 451 

is the same used previously to present the measurements. The vertical axis represents the 452 

demand for the node, given in l/min. The black curves are the 95% confidence intervals on the 453 

demand estimation. This means that, in each plot, 95% of the candidate models are between the 454 

two black curves. The dashed black curves display the median of the estimation and the grey 455 

curves, the average. The median and the average show that for all nodes except Node 3, the 456 

majority of candidate models are concentrated in the lower half of the confidence interval. This 457 

means that the estimation of the demand is higher for Node 3.  458 

The results also show that the demand varies at each measurement time. In the following 459 

section, the demand used for leak detection is the average of the estimation performed the hour 460 

before the experiment, assuming that the demand does not vary significantly throughout the 461 

experiment. The graphs show that there are periods where the intensity is stable. 462 

Leak-region detection 463 

As explained previously, in order to test the leak detection methodology, an experimental 464 

campaign was carried out. Leaks were simulated on the network by opening hydrants. For each 465 

hydrant, four leak intensities were tested: 25 l/min, 50 l/min, 75 l/min and 100 l/min. The 466 

procedure was the following. Each night during the campaign, a hydrant was opened. The flow 467 

coming out of the hydrant was measured using a flowmeter. Figure 17 shows the setup used for 468 

the experiment.  469 

The procedure was to open the hydrant to the first intensity (25 l/min) and then increase the 470 

flow each 30 minutes. An illustration of the procedure is given in Figure 18. The blue box that 471 

is connected to the hydrant is the flowmeter. Two reasons for waiting 30 minutes are that the 472 

perturbation needs time to reach the sensors and a minimum of two measurements are needed 473 

for each leak intensity (measurements have been taken every 15 minutes, this frequency was 474 

chosen to limit the amount of data and has no effect on the accuracy of the estimation). The 475 

positions of the nine hydrants used during the experimental campaign are illustrated on the 476 

network in Figure 13. Each hydrant is represented by a circle and a number. The hydrants have 477 

been chosen to cover all the regions of the sub-network. 478 

At first, the results obtained when applying error-domain model falsification with the retrieved 479 

measurements show that all models were falsified. While initially alarming, this demonstrates 480 



a strength of error-domain model falsification. This provides a warning that there are wrong 481 

assumptions associated with the modelling, sampling and uncertainties. Various reasons can 482 

explain such behavior. For example the sampling choice might be inappropriate for the primary 483 

parameters.  484 

In this case, the main reason for the falsification of all the models is the way in which the 485 

demand of the network has been modeled. Since the distribution of the demand at each node is 486 

unknown, it has been modeled as an uncertainty using an exponential distribution as described 487 

previously. The results show that this model is too far from reality. For this reason, an estimation 488 

of the demand has been carried out using error-domain model falsification. The idea is to use 489 

the measurements retrieved before the experiment to estimate the demand during the 490 

experiment.  491 

More specifically, the hydrant is opened at 2:15 am with a flow of 25 l/min. The period of time 492 

used for the demand estimation is between 1:00 am and 2:15 am. At each measurement time 493 

step (every 15 minutes), error-domain model falsification is used to obtain the population of 494 

demand scenarios. Each time step is computed separately without considering the transient 495 

phenomena. For this reason, only steady-state simulations have been used. Building scenarios 496 

considering the time parameters would increase the number of scenarios an exorbitant amount. 497 

Then, for each node, the average of the demand is computed for the time period and used as an 498 

estimation of the demand for the leak detection. Figure 18 illustrates this procedure.  499 

Threshold estimation 500 

A good estimation of the uncertainty is important for error-domain model falsification. The 501 

thresholds used in the methodology are built using uncertainty values. In this case study, the 502 

estimation of the modelling uncertainties is difficult because parameters that govern the system 503 

behavior, such as the demand, are not well-known.  504 

However, in this case study, the target of the identification is fixed. The leak intensity and 505 

location are known. For this reason, the problem is inverted in order to estimate the 506 

uncertainties. This is achieved by comparing each measurement to the corresponding 507 

prediction. Variations between these values give information about the combined uncertainty 508 

of the system.  509 



Figure 19 shows the value of measurements and predictions at each step time for two sensors. 510 

Measured values are represented by black lines. Predicted values are represented by the short 511 

dashed lines for the predictions obtained with demand estimation and long dashed lines for 512 

predictions obtained without demand estimation. These graphs show that when the demand is 513 

modeled with an exponential law instead of estimating it through model falsification, there is a 514 

significant bias for the flow in sensor 1. The results for sensor three shows that the curve of 515 

predicted values with demand estimations follows the measured values even when there is a 516 

jump in the measured values such as between the two tests presented in Figure 19. 517 

In order to estimate the combined uncertainty, the differences between each measurement and 518 

corresponding predictions are computed. Figure 20 shows these results for the three sensors and 519 

for the cases when the demand is estimated and when it is not. The results are provided for the 520 

nine hydrant tests, listed on the horizontal axes. The vertical axes give the difference between 521 

the measured and predicted flows (in l/min). For each hydrant test, this difference is computed 522 

for eight measurements, two per leak intensity. The corresponding points are represented by the 523 

black squares on the graphs. The variation of the points across one hydrant test is due to 524 

modelling and measurement errors. Maximum and minimum values define an interval that can 525 

be considered as an estimation of the uncertainty. The evolution of this interval is illustrated on 526 

the graphs by the two grey curves. 527 

The results in Figure 20 illustrate that the combined uncertainties are biased. Comparing the 528 

results obtained with and without demand estimation shows that estimation of the demand 529 

reduces the bias, especially for the first sensor. This demonstrates that estimating the demand 530 

will increase the quality of the flow predictions. 531 

As explained previously, the demand is estimated before each hydrant test. The evolution of 532 

the bias with the hydrant tests shows that the quality of the demand estimation changes from 533 

one test to another. This is due to the fact that in some cases the demand changes faster than the 534 

estimated value. 535 

The results in Figure 20 give the estimation of the uncertainties for each hydrant test separately. 536 

Each uncertainty estimation is related to a given demand estimation. Instead of considering 537 

each hydrant test individually, the difference between measurements and predictions can be 538 

considered together. This results in an estimation of uncertainties that include the uncertainty 539 

of the demand estimation process. Figure 21 shows these results in the form of histograms. The 540 

horizontal axes represent the difference between predictions and measurements. The vertical 541 



axes display the probability. The width of the base of the histogram is a consequence of the 542 

variations values, including biases observed in Figure 20. 543 

Estimations of uncertainties obtained in this way could be used directly to build thresholds for 544 

error-domain model falsification. However, in this case study knowledge of the demand must 545 

be enhanced in order to reduce the width of global combined uncertainties.  546 

Figure 22 shows the results obtained for a simulated leak (simulated in the model) of 100 l/min 547 

when using threshold bounds estimated using all the hydrant tests. These results show that when 548 

demand estimation is used with threshold bound determination it is possible to identify the leak 549 

region.  550 

Bagnes water distribution network 551 

This case study is based on one of the water distribution networks of Bagnes. Bagnes is a 552 

commune in Valais State (Switzerland), situated in the mountains. Bagnes is made up of many 553 

villages, the most famous being Verbier. The water distribution networks of Bagnes are 554 

monitored in order to help with management of the networks. Each network in Bagnes is 555 

connected to one or more tanks that supply the water. The water going in and out of each tank 556 

is monitored continuously in order to directly gain knowledge of the consumption of each 557 

network.  558 

This data can be used to detect leaks by observing abnormal variations in the measurements. 559 

However, the information is not sufficient to locate the leak-region, especially for networks 560 

connected to only one tank. This case study will initiate with a leak that has been observed and 561 

show the gain that can be obtained by installing sensors throughout the network.  562 

Figure 23 shows the model of the water distribution network of Bagnes. It is made up of 900 563 

nodes and 904 pipes. In comparison with the water distribution network of Lausanne shown 564 

previously, the number of pipes and nodes seems high. It is not because this network is bigger; 565 

in terms of size, it is a smaller network. The reason for the higher number of pipes and nodes is 566 

that the representation is more refined for the model of Bagnes. In the case of the Lausanne 567 

network, the network is already simplified.  568 

The advantage of working on a smaller network is that the lowest consumption value is smaller. 569 

Since Lausanne is a city, even during nights, there are activities that take water from the 570 

network. For the Lausanne network the lowest consumption is around 830 l/min. For this 571 



network, the lowest consumption is approximately 100 l/min. This data is displayed on Figure 572 

24 which shows the mean hourly consumption for the month of August. The challenge is not 573 

the same in winter because this network is in the village of Verbier, one of the more prominent 574 

ski resorts in Switzerland. In winter, the population of Verbier increases to 50,000 inhabitants 575 

although it counts only 3,000 official inhabitants. This means that in winter the consumption, 576 

as well as the related uncertainty, is higher.  577 

During the summer of 2013, a jump was observed in the flow measurement that records the 578 

water coming into the network from the tank. This jump is illustrated in Figure 25. This graph 579 

compares the daily measurements taken between the 21st of July and the 24th of September in 580 

2012 and 2013. The jump measured in 2013 is due to a leak. Using this measurement, the leak 581 

intensity is estimated to be 200 l/min. These measurements also show that the leak was active 582 

for approximately 15 days. That means that it took more than 10 days to detect, locate and repair 583 

the leak. That time could be significantly reduced by using a monitoring system for leak 584 

detection. This amount of time with such a leak represents a loss of more than 4 million liters 585 

of fresh water. This study will show that by using error-domain model falsification, the leak-586 

region can be located.  587 

Leak-region detection 588 

In this section, the leak detection methodology is tested for the leak that occurred in 2013. In 589 

order to achieve this, the same leak is simulated. The simulation of the leak is used to build 590 

simulated measurements. These measurements are then treated with error-domain model 591 

falsification for three sensor configurations: one with two sensors (Figure 26), one with six 592 

sensors (Figure 27, top) and one with ten sensors (Figure 27, bottom). The locations of the 593 

sensors are given by the black crosses. The nodes in dark represent the candidate leak scenarios. 594 

The position of the leak is shown by the four arrows.  595 

The graph in Figure 28 shows the predicted value for the sensor in the middle of the branch 596 

where the leak is located (the sensor is represented above the graph). The horizontal axis gives 597 

the leak scenarios and the vertical axis, the predicted flow. The predictions are represented by 598 

the black points. The dashed horizontal lines are the threshold bounds and the continuous line, 599 

the value of the simulated measurement. All the points that are not between the thresholds are 600 

falsified. This figure clearly shows that in this case this sensor configuration is sufficient to 601 

identify the leak region.  602 



Conclusions and discussion 603 

An error-domain model-falsification methodology that is uniquely adapted for leak-region 604 

detection demonstrates potential for practical use. 605 

Error-domain-model falsification is useful for estimating the demand at a small number of 606 

nodes. The strategy to estimate combined uncertainty helps aggregate uncertainty sources. 607 

The study of the Lausanne network revealed that demand estimations decrease the uncertainty 608 

of the system and lead to better performance for leak detection. The estimation of uncertainties 609 

shows that significant bias is present. This supports the use of error-domain model falsification 610 

for data interpretation. Demand estimation removes part of the systematic uncertainty. 611 

Reducing systematic uncertainty lowers interdependence of measurement locations, and this 612 

improves predictions. 613 

The results of the Bagnes case study further show that error-domain model falsification can 614 

help locate leak regions within a water supply network. This is demonstrated through the 615 

example of a leak that has occurred on the Bagnes network. This example shows that even high 616 

intensity leaks take time to be located without such support for the leak detection, and this 617 

results in significant water loss.  618 

In addition, this case study shows that a smaller network, situated in a village rather than a city, 619 

could have a smaller minimum demand ratio, and thus reduced uncertainty.  620 

In all of the case studies presented in this paper, the networks were dependent on a single reservoir or 621 

tank. In reality, networks can be designed in various ways, including, for example, with intermediate 622 

reservoirs. The methodology presented is capable of accommodating such networks. The manner in 623 

which the network is modelled would need to include these new parameters.   624 
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  725 



Table 1. Uncertainties related to secondary parameters (Exp is an exponential distribution, N is Gaussian and U 726 

is uniform). The arguments of the distribution contain defining parameters. 727 

Parameter Uncertainty distribution 

Nodal demand 

[l/min] 
~ 1

3.13  

Node elevation [m] ~ (0,0.015) 

Pipe diameter [mm] ~ (0,0.75) 

Pipe length [m] ~ ( 0.03,0.07) 

Pipe roughness ~ (0,0.015) 

Tank level [m] ~ 0(0,0.32) 

 728 

Table 2. Relative importance of secondary-parameter uncertainties 729 

Parameter 
Relative importance for 

flow predictions [%] 

Relative importance for 

pressure predictions [%] 

Nodal demand [l/min] 99.77 97.81 

Node elevation [m] 5.45E-04 9.06E-02 

Pipe diameter [mm] 2.25E-01 5.14E-01 

Pipe length [m] 3.11E-03 3.34E-02 

Pipe roughness 5.34E-05 1.49 

Tank level [m] 2.80E-04 6.38E-02 

 730 

Table 3. Overview of aspects covered by each case study 731 

Case study Aspect illustrated 

 Leak 

detection 

Demand 

estimation 

Uncertainty 

estimation 

Network 

reduction 

Sensor 

placement 

Lausanne network      

Bagnes network      

 732 
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