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INTRODUCTION
Why more modular converters are needed?
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MOTIVATION

SwissGrid infrastructure
▶ Existing infrastructure (220 − 380kV, 50 Hz) is ageing (2/3 built ∼ 1960)
▶ Large PHSPs commissioned⇒ sufficient capacity required
▶ Lengthy procedures for new overhead lines construction (low social

acceptance, impact on landscape)
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MVDC grids
▶ Might be a good candidate w/ underground cable
▶ Suited for medium-scale energy collection

Swiss energy landscape
▶ Annual consumption 60 TWh
▶ Nuclear phase out by 2050
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Swiss Competence Centers for Energy Research (SCCERs)
▶ Government supported initiative
▶ SCCER-FURIES for future grids
▶ Explore ways to interconnect a MVDC grid w/ a LVAC grid
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TREND TOWARDS DC

Bulk power transmission
▶ Break even distance against AC lines
▶ ∼ 50 km for subsea cables or 600 km for overhead lines
▶ Long history since 1950s
▶ Interconnection of asynchronous grids

LVDC ships
▶ Variable frequency generators⇒maximum efficiency of the internal

combustion engines
▶ Commercial products by ABB & Siemens

Datacenters
▶ 380 Vdc
▶ DC loads (including UPS)
▶ Expected efficiency increase

Large PV powerplants
▶ 1500 Vdc PV central inverters
▶ Higher number of series-connected panels per string

Open challenges
▶ DC breaker
▶ Conversion blocks missing
▶ Protection coordination
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combustion engines
▶ Commercial products by ABB & Siemens

Datacenters
▶ 380 Vdc
▶ DC loads (including UPS)
▶ Expected efficiency increase

Large PV powerplants
▶ 1500 Vdc PV central inverters
▶ Higher number of series-connected panels per string

Open challenges
▶ DC breaker
▶ Conversion blocks missing
▶ Protection coordination

⇒ dc beneficial for medium / high power applications
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TREND TOWARDS HIGHLY MODULAR CONVERTER TOPOLOGIES

HVDC

▶ Decoupled semiconductor switching
frequency from converter apparent
switching frequency

▶ Improved harmonic performance⇒
less / no filters

▶ Series-connection of semiconductors
still possible

▶ Fault blocking capability depending on
cell type

Solid-state transformers (SSTs)
▶ Power density increase w/ conversion & isolation at higher frequency
▶ Grid applications / traction transformer w/ different optimization objectives
▶ MFT design / isolation are the bottlenecks
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⇒ benefits in high power applications
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EMERGING MVDC APPLICATIONS

Installations
▶ ABB HVDC Light demo: 4.3 km/±9 kVdc [1]
▶ Tidal power connection: 16 km/10 kVdc (based on MV3000 & MV7000) [2]

▶ Unidirectional oil platform connection in China: 29.2 km/±15 kVdc [3]

Projects
▶ Angle DC: conversion of 33 kV MVac line to ±27 kV MVdc [4]

Universities
▶ Increased number of laboratories active in high power domain
▶ China, Europe, USA,...

Products
▶ Siemens MVDC Plus

▶ 30 - 150MW
▶ < 200 km
▶ < ±50 kVdc

▶ RXPE Smart VSC-MVDC
▶ 1 - 10MVAr
▶ ±5 - ±50 kVdc
▶ 40 - 200 km

[1] ABB. Tjæreborg. http://new.abb.com/systems/hvdc/references/tjaereborg

[2] Charles Bodel. Paimpol-Bréhat tidal demonstrator project. http://eusew.eu/sites/default/files/programme-additional-docs/EUSEW1606160PresentationtoEUSEWbyEDF.pdf. EDF
[3] G. Bathurst, G. Hwang, and L. Tejwani. “MVDC - The New Technology for Distribution Networks.” 11th IET International Conference on AC and DC Power Transmission. Feb. 2015, pp. 1–5
[4] SP Energy Networks. Angle dc. https://www.spenergynetworks.co.uk/pages/angle_dc.aspx
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▶ < ±50 kVdc

▶ RXPE Smart VSC-MVDC
▶ 1 - 10MVAr
▶ ±5 - ±50 kVdc
▶ 40 - 200 km

⇒ MVDC is gaining momentum!

[1] ABB. Tjæreborg. http://new.abb.com/systems/hvdc/references/tjaereborg
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MEDIUM OR LOW FREQUENCY CONVERSION?

Focus
▶ MVDC-LVAC galvanically isolated conversion system

Features
▶ High efficiency
▶ Galvanic isolation
▶ Modularity

▶ Scalability
▶ Reliability
▶ Availability

Prototype ratings
▶ S = 0.5MVA
▶ Ncells = 6 × 16

▶ Vdc = 10 kV
▶ Vac = 400 V

SST
▶ VSI on LVAC side of SST reduces efficiency by ≈ 2% (!) [5]
▶ Drawn solution is not the unique possibility
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Investigations
1. Comparative assessment of the control methods for a dc/3-ac MMC
2. Critical assessment of the modulation and branch balancing methods
3. Merging of the branch inductances and LFT leakage inductances: the GIMC
4. Virtual Submodule Concept for fast cell loss estimation method [6]
5. Design of a MMC cell (under certain academic constraints) [7]

[5] J. E. Huber and J. W. Kolar. “Volume/weight/cost comparison of a 1MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer.” 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Sept. 2014, pp. 4545–4552
[6] A. Christe and D. Dujic. “Virtual Submodule Concept for Fast Semi-Numerical Modular Multilevel Converter Loss Estimation.” IEEE Transactions on Industrial Electronics 64.7 (July 2017), pp. 5286–5294
[7] A. Christe, E. Coulinge, and D. Dujic. “Insulation coordination for a modular multilevel converter prototype.” 2016 18th European Conference on Power Electronics and Applications (EPE’16 ECCE Europe). Sept. 2016, pp. 1–9
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GALVANICALLY ISOLATED
MODULAR CONVERTER

Integrating line frequency transformer into the MMC...
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TRANSFORMER INTEGRATION PROPOSALS

OEWMMC [8]

▶ Only one branch per phase-leg
▶ No CM voltage injection
▶ No current decoupling
▶ DC bias in trafo→ zig-zag trafo [9]
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Isolated dc/dc converter [10]

▶ DC bias cancellation for any operating point
▶ Two-phase at least
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[8] Multilevel converter. WO Patent App. PCT/EP2012/072,757. Jan. 2014. : https://www.google.com/patents/WO2013110371A3?cl=en
[9] N. Serbia, P. Ladoux, and P. Marino. “Half Wave Bridge AC/DC Converters - From diode rectifiers to PWM multilevel converters.” PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy

Management. May 2014, pp. 1–8
[10] High voltage dc/dc converter with transformer driven by modular multilevel converters (mmc). WO Patent App. PCT/EP2011/070,629. May 2013. : https://www.google.com/patents/WO2013075735A1?cl=fr
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↯ proper transformer configuration required

[8] Multilevel converter. WO Patent App. PCT/EP2012/072,757. Jan. 2014. : https://www.google.com/patents/WO2013110371A3?cl=en
[9] N. Serbia, P. Ladoux, and P. Marino. “Half Wave Bridge AC/DC Converters - From diode rectifiers to PWM multilevel converters.” PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy

Management. May 2014, pp. 1–8
[10] High voltage dc/dc converter with transformer driven by modular multilevel converters (mmc). WO Patent App. PCT/EP2011/070,629. May 2013. : https://www.google.com/patents/WO2013075735A1?cl=fr
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THE GALVANICALLY ISOLATED MODULAR CONVERTER - GIMC

Integration opportunities
▶ Multi-windings trafo
▶ Unification of proposals [11] & [12]
▶ Dc bias cancellation is effective for any operating point
▶ Different dc voltage levels can be accommodated with the same branch design

to r cells
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to LVAC
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▲ iGIMC trafo
▼ sGIMC trafo
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▲ Interleaved GIMC (iGIMC)
◀ Stacked GIMC (sGIMC)

[11] S. Tamada, Y. Nakazawa, and S. Irokawa. “A proposal of Modular Multilevel Converter applying three winding transformer.” 2014 International Power Electronics Conference (IPEC-Hiroshima 2014 - ECCE ASIA). May 2014, pp. 1357–1364
[12] M. Hagiwara and H. Akagi. “Experiment and Simulation of a Modular Push-Pull PWM Converter for a Battery Energy Storage System.” IEEE Transactions on Industry Applications 50.2 (Mar. 2014), pp. 1131–1140
[13] A. Christe and D. Dujic. “Galvanically isolated modular converter.” IET Power Electronics 9.12 (2016), pp. 2318–2328
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GIMC - MODELING

Method
▶ Carried out once via terminal mapping [14]
▶ v = L d

dt i + Ri

L =
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
Lσ,HV + LHV LHV MLV

LHV Lσ,HV + LHV MLV

MLV MLV Lσ,LV + LLV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
R =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣
RHV 0 0
0 RHV 0
0 0 RLV

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

v1
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ℛ

iGIMC

v1 = vl
v2 = −vr
v3 = vL

i1 = il
i2 = −ir
i3 = −ig

Result:

vB = el + er + RHV (il + ir) + Lσ,HV ( ddt il + d
dt ir)

0 = −el + er + RHV (−il + ir) + (Lσ,HV + 2LHV) (− d
dt il +

d
dt ir)

+ 2MLV
d
dt ig − 2vCM

vL = MLV ( ddt il − d
dt ir) − (Lσ,LV + LLV) ddt ig − RLVig

sGIMC

v1 = vp
v2 = −vn
v3 = vL

i1 = ip
i2 = −in
i3 = −ig

Result:

vB = ep + en + RHV (ip + in) + Lσ,HV ( ddt ip + d
dt in)

0 = −ep + en + RHV (−ip + in) + (Lσ,HV + 2LHV) (− d
dt ip +

d
dt in)

+ 2MLV
d
dt ig − 2vMO

vL = MLV ( ddt ip − d
dt in) − (Lσ,LV + LLV) ddt ig − RLVig

[14] A. Christe and D. Dujić. “State-space modeling of modular multilevel converters including line frequency transformer.” 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe). Sept. 2015, pp. 1–10
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⇒ same as for conventional MMC

[14] A. Christe and D. Dujić. “State-space modeling of modular multilevel converters including line frequency transformer.” 2015 17th European Conference on Power Electronics and Applications (EPE’15 ECCE-Europe). Sept. 2015, pp. 1–10
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GIMC - OPERATION

▶ Inverter mode operation

▼ sGIMC
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▼ iGIMC
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▼ iGIMC
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⇒ iμ does not contain a dc component
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MAGNETIC COMPONENTS DESIGN
How much gain with the integrated magnetic component?
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AIR-CORE BRANCH INDUCTOR DESIGN

Design space (PEL target values)
▶ Target: Lbr = 2.5mH
▶ ibr,rms = 56.7 A

▶ J = 2 A/mm2

Analytical designs

▶ LWelsby =
μ0N

2πa2

b
1

1 + 0.9 a
b + 0.32 c

a + 0.84 c
b
[H]

▶ Cost function: Jcost =

√( lwire10 )2 + V2tot
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Optimal design

▶ Nturns = 132, Nlayers = 12, rint = 42.4mm
FEM opt
→ 42.6mm

▶ Vtot ≈ 6 l
▶ Plosses = 130W

▲ COMSOL frequency analysis @ 0.1 Hz (← B-field /→ H-field)
▼ Impedance between 0.1 Hz and 100 kHz
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LFT DESIGN

Design
▶ Three-limb dry-type transformer
▶ Short-circuit impedance > 5%
▶ Silicon steel (M19 from AK Steel): Bmax = 1.2 T ⇒ iμ = 1.37 %
▶ Vt2t = 10 V
▶ JHV = 2.5 A/mm2 , JLV = 2 A/mm2
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▶ Single unknown: ww = 4μ0μrAc − P⋆
c (6 + π)dc(4 + 6α)P⋆

c

Best design
▶ ww = 214.4mm and α = 4
▶ Vtot = 481.7 l
▶ Pw,HV = 79.08W and Pw,LV = 30.93W per phase

▲ Leakage H-field in COMSOL @ 50Hz (← phase a /→ phase b)
▼ Time domain simulations (← no-load /→ short-circuit)

−4.25

0

4.25

v
pr
i
[k
V
]

0 0.02 0.04 0.06 0.08 0.1

−0.6

0

0.6

Time [s]

i 𝜇
[A

]

−4.25

0

4.25

v
pr
i
[k
V
]

0 0.01 0.02 0.03 0.04 0.05 0.06

−120

0

120

Time [s]

i s
c
[A

]

ADCGS 2018, Aachen, Germany April 20, 2018 Power Electronics Laboratory | 15 of 23



GIMC TRANSFORMER DESIGN

Degree of freedom
▶ HV windings interleaving
▶ Leakage inductance (i.e., branch inductance) tuning
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Best design
▶ ww = 259.8mm and α = 4
▶ Vtot = 573.1 l
▶ Pw,HV = 63.29W and Pw,LV = 30.93W

Lσ,HV = {83.33, 108.21, 83.33} [mH] Lσ,HV = {25.57, 31.17, 25.57} [mH]

▲ Leakage H-fields
▼ Time domain simulations (← no-load /→ short-circuit)
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GIMC TRANSFORMER DESIGN

Degree of freedom
▶ HV windings interleaving
▶ Leakage inductance (i.e., branch inductance) tuning
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Best design
▶ ww = 259.8mm and α = 4
▶ Vtot = 573.1 l
▶ Pw,HV = 63.29W and Pw,LV = 30.93W

Lσ,HV = {83.33, 108.21, 83.33} [mH] Lσ,HV = {25.57, 31.17, 25.57} [mH]

▲ Leakage H-fields
▼ Time domain simulations (← no-load /→ short-circuit)
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⇒ high leakage inductance values are easily reachable by HV windings interleaving (+ positioning)
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MAGNETIC COMPONENTS COMPARISON

Case 1 MMC
▶ 6 branch inductors + conventional LFT

Vdc

6.6kV / 400V

+5kV

-5kV

Case 2 GIMC [15]
▶ no branch inductors + multi-windings transformer

Vdc

+5kV

-5kV

400V

Branch inductors Transformer
volume losses volume losses

DC/3-AC MMC 6× 6 l 780W (0.156 %) 481.7 l 660W (0.132 %)
GIMC - - 573.1 l 945W (0.19 %)

[15] Design values are related to ongoing prototype design at Power Electronics Laboratory
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MAGNETIC COMPONENTS COMPARISON

Case 1 MMC
▶ 6 branch inductors + conventional LFT

Vdc

6.6kV / 400V

+5kV

-5kV

Case 2 GIMC [15]
▶ no branch inductors + multi-windings transformer

Vdc

+5kV

-5kV

400V

Branch inductors Transformer
volume losses volume losses

DC/3-AC MMC 6× 6 l 780W (0.156 %) 481.7 l 660W (0.132 %)
GIMC - - 573.1 l 945W (0.19 %)

⇒ volume + cost reduction & efficiency increase with the integrated magnetic component

[15] Design values are related to ongoing prototype design at Power Electronics Laboratory
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MV MMC CONVERTER PLATFORM
University laboratory environment...
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INDUSTRIAL MMC CELL DESIGNS

▶ HVDC designs ▶ MV designs
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INDUSTRIAL MMC CELL DESIGNS

▶ HVDC designs ▶ MV designs

⇒ numerous designs for similar target applications
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MMC CELL @ PEL

Ratings

▶ 0.5MVA apparent power
▶ 10 kV MVDC connection
▶ 400 V / 6 kV AC output

▶ 96 cells (16 per branch)

Cell concept

half-bridge
full-bridge
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GNDGD3
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swGD3
faultGD3

swGD4
faultGD4

HB2

Design
▶ 1.2 kV / 50 A IGBT module (Semikron SK50GH12T4T)
▶ 1.2 kV / 70 A Thyristor module (Semikron SK70KQ)
▶ Csm = 2.25mF (6x Exxalia SnapSiC 4P 1500 µF, 400 V)
▶ Current sensor (Allegro ACS759 100 A)
▶ Bypass relay (KG K100 B-D012 X P)
▶ TI TMS320F28069 DSP
▶ Integrated Flyback auxiliary cell power supply from DC link with planar trafo

ACPS
GD1..4

cell
controller

IGBT
module

thyristor
module

relayCcellplanar
trafo

1 2

3 4

protection

HRRdis current
sensor

pulse
trafo

voltage
dividers

GD2 energy
bu�er

5V�3.3V
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Rx/Tx
optical �bers

▲ Circuit partitioning
▼ Assembled cell
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INSULATION COORDINATION OF A MV CONVERTER PROTOTYPE

System partitioning

branch
phase-leg

10
kV

dc

400Vac

400Vac

multi-windings
transformer

Yd11y0

phase-leg 1
cabinet

GND

phase-leg 2
cabinet

phase-leg 3
cabinet

control
cabinet

GIMC trafo
cabinet

Standards
▶ UL840 for cell PCB (< 1 kV)
▶ IEC61800-5-1 (AC motor drives)

▶ Pollution degree 2: “Normally, only non-conductive pollution occurs. Occasionally,
however, a temporary conductivity caused by condensation is to be expected,
when the PDS is out of operation.”

▶ Overvoltage category II: “Equipment not permanently connected to the fixed
installation. Examples are appliances, portable tools and other plug-connected
equipment.”

Zones definition

SM1 SM2 SM3 SM4

SM5 SM6 SM7 SM8

SM9 SM10 SM11 SM12

SM13 SM14 SM15 SM16

Zone 1
Zone 2
Zone 3
Zone 4

xr

xv

xc xh

rb

Zone 1
Zone 2
Zone 3
Zone 4

xc xr

xr

xv

Zone 1 (ins. coord. inside a SM’s enclosure) system voltage: 1 kVac

Zone 2 (ins. coord. branch)
▶ Horizontal system voltage: 1 kVac
▶ Vertical system voltage: 3.6 kVac

Zone 3 (ins. coord. branch - cabinet (at GND)) system voltage: 6.6 kVac

Zone 4 (ins. coord. for LV circuits) system voltage: 0.4 kVac

Zone 2
▶ Box at dc- cell’s potential (floating)
▶ Box corner radius: 3mm
▶ MKHP (high CTI material) drawer holding 4 cells
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SUMMARY

GIMC
▶ DC bias free magnetic structure (no penalty on magnetic material utilization)
▶ iGIMC & sGIMC suitable for Boost or Buck between the DC and AC voltages
▶ The integrated magnetics offer efficiency and power density increase
▶ Cost savings

MV MMC converter platform
▶ Realistically sized MV converter prototype
▶ LV IGBT based MMC cell
▶ Flyback-based ACPS, local cell controlled
▶ Complete dielectric design - insulation coordination
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