

GALVANICALLY ISOLATED HIGH POWER CONVERTERS FOR MVDC APPLICATIONS

Prof. Drazen Dujic, Dr. Alexandre Christe

École Polytechnique Fédérale de Lausanne (EPFL) Power Electronics Laboratory Switzerland

INTRODUCTION

Why more modular converters are needed?

MOTIVATION

SwissGrid infrastructure

- ► Existing infrastructure (220 380kV, 50 Hz) is ageing (2/3 built ~ 1960)
- ▶ Large PHSPs commissioned \Rightarrow sufficient capacity required
- Lengthy procedures for new overhead lines construction (low social acceptance, impact on landscape)

MVDC grids

- Might be a good candidate w/ underground cable
- Suited for medium-scale energy collection

Swiss energy landscape

- Annual consumption 60 TWh
- Nuclear phase out by 2050

Swiss Competence Centers for Energy Research (SCCERs)

- Government supported initiative
- SCCER-FURIES for future grids
- ► Explore ways to interconnect a MVDC grid w/ a LVAC grid

TREND TOWARDS DC

Bulk power transmission

- Break even distance against AC lines
- $\blacktriangleright~\sim$ 50 km for subsea cables or 600 km for overhead lines
- Long history since 1950s
- Interconnection of asynchronous grids

LVDC ships

- ► Variable frequency generators ⇒ maximum efficiency of the internal combustion engines
- Commercial products by ABB & Siemens

Datacenters

- ► 380 V_{dc}
- ► DC loads (including UPS)
- Expected efficiency increase

Large PV powerplants

- ► 1500 V_{dc} PV central inverters
- Higher number of series-connected panels per string

Open challenges

- DC breaker
- Conversion blocks missing
- Protection coordination

ADCGS 2018, Aachen, Germany

TREND TOWARDS DC

Bulk power transmission

- Break even distance against AC lines
- $\blacktriangleright~\sim$ 50 km for subsea cables or 600 km for overhead lines
- Long history since 1950s
- Interconnection of asynchronous grids

Datacenters

- ► 380 V_{dc}
- DC loads (including UPS)
- Expected efficiency increase

Large PV powerplants

- ► 1500 V_{dc} PV central inverters
- Higher number of series-connected panels per string

LVDC ships

- \blacktriangleright Variable frequency generators \Rightarrow maximum efficiency of the internal combustion engines
- Commercial products by ABB & Siemens

Open challenges

- DC breaker
- Conversion blocks missing
- Protection coordination

ADCGS 2018, Aachen, Germany

TREND TOWARDS HIGHLY MODULAR CONVERTER TOPOLOGIES

HVDC

- Decoupled semiconductor switching frequency from converter apparent switching frequency
- ► Improved harmonic performance ⇒ less / no filters
- Series-connection of semiconductors still possible
- Fault blocking capability depending on cell type

Solid-state transformers (SSTs)

- Power density increase w/ conversion & isolation at higher frequency
- Grid applications / traction transformer w/ different optimization objectives
- MFT design / isolation are the bottlenecks

MV drives

- Monolithic ML topologies (NPC, NPP, FC, ANPC) are not scalable
- ▶ Robicon drive → everyone offers it
- Siemens & Benshaw: MMC drive
- Low $dv/dt \Rightarrow$ motor friendly

FACTS

- SFC for railway interties (direct catenary connection)
- ► STATCOM
- BESS (split batteries)

TREND TOWARDS HIGHLY MODULAR CONVERTER TOPOLOGIES

HVDC

- Decoupled semiconductor switching frequency from converter apparent switching frequency
- ► Improved harmonic performance ⇒ less / no filters
- Series-connection of semiconductors still possible
- Fault blocking capability depending on cell type

Solid-state transformers (SSTs)

- Power density increase w/ conversion & isolation at higher frequency
- ► Grid applications / traction transformer w/ different optimization objectives
- MFT design / isolation are the bottlenecks

MV drives

- Monolithic ML topologies (NPC, NPP, FC, ANPC) are not scalable
- ▶ Robicon drive \rightarrow everyone offers it
- Siemens & Benshaw: MMC drive
- Low $dv/dt \Rightarrow$ motor friendly

FACTS

- SFC for railway interties (direct catenary connection)
- ► STATCOM
- BESS (split batteries)

EMERGING MVDC APPLICATIONS

Installations

- ► ABB HVDC Light demo: 4.3 km/±9 kV_{dc} [1]
- Tidal power connection: 16 km/10 kV_{dc} (based on MV3000 & MV7000) [2]

▶ Unidirectional oil platform connection in China: 29.2 km/±15 kV_{dc} [3]

Projects

► Angle DC: conversion of 33 kV MVac line to ±27 kV MVdc [4]

Universities

- Increased number of laboratories active in high power domain
- ► China, Europe, USA,...

Products

- ► Siemens MVDC Plus
 - ▶ 30 150 MW
 - ► < 200 km
 - ► $< \pm 50 \, kV_{dc}$

- RXPE Smart VSC-MVDC
 - ▶ 1 10 MVAr
 - ▶ ±5 ±50 kV_{dc}
 - ▶ 40 200 km

[1] ABB. Tjæreborg. http://new.abb.com/systems/hvdc/references/tjaereborg

- [2] Charles Bodel. Paimpol-Bréhat tidal demonstrator project. http://eusew.eu/sites/default/files/programme-additional-docs/EUSEW1606160PresentationtoEUSEWbyEDF.pdf. EDF
- [3] G. Bathurst, G. Hwang, and L. Tejwani. "MVDC The New Technology for Distribution Networks." 11th IET International Conference on AC and DC Power Transmission. Feb. 2015, pp. 1–5

[4] SP Energy Networks. Angle dc. https://www.spenergynetworks.co.uk/pages/angle_dc.aspx

EMERGING MVDC APPLICATIONS

Installations

- ► ABB HVDC Light demo: 4.3 km/±9 kV_{dc} [1]
- Tidal power connection: 16 km/10 kV_{dc} (based on MV3000 & MV7000) [2]

Unidirectional oil platform connection in China: 29.2 km/±15 κ_{νuc}

Projects

► Angle DC: conversion of 33 kV MVac line to ±27 kV MVdc [4]

Universities

- Increased number of laboratories active in high power domain
- China, Europe, USA,...

Products

- ► Siemens MVDC Plus
 - ▶ 30 150 MW
 - ► < 200 km
 - \blacktriangleright < ±50 kV_{dc}

- ► RXPE Smart VSC-MVDC
 - 1 10 MVAr
 - ▶ ±5 ±50 kV_{dc}
 - ▶ 40 200 km

[1] ABB. Tjæreborg. http://new.abb.com/systems/hvdc/references/tjaereborg

- [2] Charles Bodel. Paimpol-Bréhat tidal demonstrator project. http://eusew.eu/sites/default/files/programme-additional-docs/EUSEW1606160PresentationtoEUSEWbyEDF.pdf. EDF
- [3] G. Bathurst, G. Hwang, and L. Tejwani. "MVDC The New Technology for Distribution Networks." 11th IET International Conference on AC and DC Power Transmission. Feb. 2015, pp. 1–5

[4] SP Energy Networks. Angle dc. https://www.spenergynetworks.co.uk/pages/angle_dc.aspx

MEDIUM OR LOW FREQUENCY CONVERSION?

Focus

MVDC-LVAC galvanically isolated conversion system

Features

- High efficiency
- Galvanic isolation
- Modularity

ScalabilityReliability

Availability

Prototype ratings

- ► *S* = 0.5 MVA
- $N_{\text{cells}} = 6 \times 16$

V_{dc} = 10 kV
 V_{ac} = 400 V

SST

- ▶ VSI on LVAC side of SST reduces efficiency by \approx 2 % (!) [5]
- Drawn solution is not the unique possibility

MMC

Solution with MMC + LFT has higher efficiency

Investigations

- 1. Comparative assessment of the control methods for a dc/3-ac MMC
- 2. Critical assessment of the modulation and branch balancing methods
- 3. Merging of the branch inductances and LFT leakage inductances: the GIMC
- 4. Virtual Submodule Concept for fast cell loss estimation method [6]
- 5. Design of a MMC cell (under certain academic constraints) [7]

[5] J. E. Huber and J. W. Kolar. "Volume/weight/cost comparison of a 1MVA 10 kV/400 V solid-state against a conventional low-frequency distribution transformer." 2014 IEEE Energy Conversion Congress and Exposition (ECCE). Sept. 2014, pp. 4545–4552

[6] A. Christe and D. Dujic. "Virtual Submodule Concept for Fast Semi-Numerical Modular Multilevel Converter Loss Estimation." IEEE Transactions on Industrial Electronics 64.7 (July 2017), pp. 5286–5294

[7] A. Christe, E. Coulinge, and D. Dujic. "Insulation coordination for a modular multilevel converter prototype." 2016 18th European Conference on Power Electronics and Applications (EPE'16 ECCE Europe). Sept. 2016, pp. 1–9

GALVANICALLY ISOLATED MODULAR CONVERTER

Integrating line frequency transformer into the MMC...

TRANSFORMER INTEGRATION PROPOSALS

OEWMMC [8]

- ► Only **one** branch per phase-leg
- ► No CM voltage injection
- No current decoupling
- DC bias in trafo \rightarrow zig-zag trafo [9]

- DC bias cancellation for any operating point
- ► Two-phase at least

[8] Multilevel converter. WO Patent App. PCT/EP2012/072,757. Jan. 2014. URL: https://www.google.com/patents/W02013110371A3?cl=en

[9] N. Serbia, P. Ladoux, and P. Marino. "Half Wave Bridge AC/DC Converters - From diode rectifiers to PWM multilevel converters." PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. May 2014, pp. 1–8

[10] High voltage dc/dc converter with transformer driven by modular multilevel converters (mmc). WO Patent App. PCT/EP2011/070,629. May 2013. URL: https://www.google.com/patents/W02013075735A1?cl=fr

TRANSFORMER INTEGRATION PROPOSALS

OEWMMC [8]

[8] Multilevel converter. WO Patent App. PCT/EP2012/072,757. Jan. 2014. URL: https://www.google.com/patents/WO2013110371A3?cl=en

[9] N. Serbia, P. Ladoux, and P. Marino. "Half Wave Bridge AC/DC Converters - From diode rectifiers to PWM multilevel converters." PCIM Europe 2014; International Exhibition and Conference for Power Electronics, Intelligent Motion, Renewable Energy and Energy Management. May 2014, pp. 1–8

[10] High voltage dc/dc converter with transformer driven by modular multilevel converters (mmc). WO Patent App. PCT/EP2011/070,629. May 2013. URL: https://www.google.com/patents/W02013075735A1?cl=fr

THE GALVANICALLY ISOLATED MODULAR CONVERTER - GIMC

Integration opportunities

- Multi-windings trafo
- ► Unification of proposals [11] & [12]
- Dc bias cancellation is effective for any operating point
- > Different dc voltage levels can be accommodated with the same branch design

- ▲ iGIMC trafo
- ▼ sGIMC trafo

[12] M. Hagiwara and H. Akagi. "Experiment and Simulation of a Modular Push-Pull PWM Converter for a Battery Energy Storage System." IEEE Transactions on Industry Applications 50.2 (Mar. 2014), pp. 1131–1140

[13] A. Christe and D. Dujic. "Galvanically isolated modular converter." IET Power Electronics 9.12 (2016), pp. 2318–2328

GIMC [13]

e

 V_{\cdot}

 $V_B v_{C1N}$

Interleaved GIMC (iGIMC)
 Stacked GIMC (sGIMC)

GIMC - MODELING

Method

- ► Carried out once via terminal mapping [14]
- ► $\mathbf{v} = \mathbb{L} \frac{\mathrm{d}}{\mathrm{d}t} \mathbf{i} + \mathbb{R}\mathbf{i}$

$$\mathbb{L} = \begin{bmatrix} L_{\sigma, HV} + L_{HV} & L_{HV} & M_{LV} \\ L_{HV} & L_{\sigma, HV} + L_{HV} & M_{LV} \\ M_{LV} & M_{LV} & L_{\sigma, LV} + L_{LV} \end{bmatrix}$$
$$\mathbb{R} = \begin{bmatrix} R_{HV} & 0 & 0 \\ 0 & R_{HV} & 0 \\ 0 & 0 & R_{LV} \end{bmatrix}$$

iGIMC

$$v_1 = v_l$$
 $i_1 = i_l$
 $v_2 = -v_r$ $i_2 = -i_r$
 $v_3 = v_L$ $i_3 = -i_g$

Result:

$$\begin{split} \mathbf{v}_B &= \mathbf{e}_l + \mathbf{e}_r + R_{\mathsf{HV}} \left(i_l + i_r \right) + L_{\sigma,\mathsf{HV}} \left(\frac{\mathrm{d}}{\mathrm{d}t} i_l + \frac{\mathrm{d}}{\mathrm{d}t} i_r \right) \\ \mathbf{0} &= -\mathbf{e}_l + \mathbf{e}_r + R_{\mathsf{HV}} \left(-i_l + i_r \right) + \left(L_{\sigma,\mathsf{HV}} + 2L_{\mathsf{HV}} \right) \left(-\frac{\mathrm{d}}{\mathrm{d}t} i_l + \frac{\mathrm{d}}{\mathrm{d}t} i_l \right) \\ &+ 2M_{\mathsf{LV}} \frac{\mathrm{d}}{\mathrm{d}t} i_g - 2\mathbf{v}_{\mathsf{CM}} \\ \mathbf{v}_L &= M_{\mathsf{LV}} \left(\frac{\mathrm{d}}{\mathrm{d}t} i_l - \frac{\mathrm{d}}{\mathrm{d}t} i_r \right) - \left(L_{\sigma,\mathsf{LV}} + L_{\mathsf{LV}} \right) \frac{\mathrm{d}}{\mathrm{d}t} i_g - R_{\mathsf{LV}} i_g \end{split}$$

[14] A. Christe and D. Dujić. "State-space modeling of modular multilevel converters including line frequency transformer." 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe). Sept. 2015, pp. 1–10

 $i_1 = i_p$ $V_1 = V_0$ $i_2 = -i_n$ $v_2 = -v_n$ $i_3 = -i_q$ $V_{3} = V_{1}$

Result:

sGIMC

$$\begin{split} v_{B} &= e_{p} + e_{n} + R_{HV} \left(i_{p} + i_{n} \right) + L_{\sigma,HV} \left(\frac{d}{dt} i_{p} + \frac{d}{dt} i_{n} \right) \\ 0 &= -e_{p} + e_{n} + R_{HV} \left(-i_{p} + i_{n} \right) + \left(L_{\sigma,HV} + 2L_{HV} \right) \left(-\frac{d}{dt} i_{p} + \frac{d}{dt} i_{n} \right) \\ &+ 2M_{LV} \frac{d}{dt} i_{g} - 2v_{MO} \\ v_{L} &= M_{LV} \left(\frac{d}{dt} i_{p} - \frac{d}{dt} i_{n} \right) - \left(L_{\sigma,LV} + L_{LV} \right) \frac{d}{dt} i_{g} - R_{LV} i_{g} \end{split}$$

GIMC - MODELING

Method

[14] A. Christe and D. Dujić. "State-space modeling of modular multilevel converters including line frequency transformer." 2015 17th European Conference on Power Electronics and Applications (EPE'15 ECCE-Europe). Sept. 2015, pp. 1–10

GIMC - OPERATION

Inverter mode operation

GIMC - OPERATION

Inverter mode operation

MAGNETIC COMPONENTS DESIGN

How much gain with the integrated magnetic component?

AIR-CORE BRANCH INDUCTOR DESIGN

Design space (PEL target values)

- ► Target: L_{br} = 2.5 mH
- ► *i*_{br,rms} = 56.7 A
- $J = 2 \text{ A/mm}^2$

Analytical designs

Optimal design

►
$$N_{\text{turns}} = 132$$
, $N_{\text{layers}} = 12$, $r_{\text{int}} = 42.4 \text{ mm} \xrightarrow{\text{FEM opt}} 42.6 \text{ mm}$

- $V_{\rm tot} \approx 61$
- ► P_{losses} = 130 W

 10^{2}

Frequency [Hz]

10⁻²

10

 10^{1}

105

 10^{4}

LFT DESIGN

Design

- Three-limb dry-type transformer
- ► Short-circuit impedance > 5 %
- ▶ Silicon steel (M19 from AK Steel): $B_{max} = 1.2 \text{ T} \Rightarrow i_{\mu} = 1.37 \%$
- ► V_{t2t} = 10 V
- $J_{\rm HV} = 2.5 \,{\rm A/mm^2}, J_{\rm LV} = 2 \,{\rm A/mm^2}$

Core's permeance model

• Single unknown:
$$w_w = \frac{4\mu_0\mu_rA_c - \mathcal{P}_c^{\star}(6+\pi)d_c}{(4+6\alpha)\mathcal{P}_c^{\star}}$$

Best design

- $w_w = 214.4 \text{ mm}$ and a = 4
- ► V_{tot} = 481.7 |
- ▶ $P_{w,HV} = 79.08 \text{ W}$ and $P_{w,LV} = 30.93 \text{ W}$ per phase

▲ Leakage H-field in COMSOL @ 50 Hz (← phase a / \rightarrow phase b)

▼ Time domain simulations (\leftarrow no-load / \rightarrow short-circuit)

GIMC TRANSFORMER DESIGN

Degree of freedom

- HV windings interleaving
- Leakage inductance (i.e., branch inductance) tuning

Best design

- $w_w = 259.8 \text{ mm}$ and a = 4
- ► V_{tot} = 573.11
- ► $P_{w,HV} = 63.29 \text{ W}$ and $P_{w,LV} = 30.93 \text{ W}$

▲ Leakage H-fields

0.01

0.02

0.04

0.05

0.04

GIMC TRANSFORMER DESIGN

Degree of freedom

- HV windings interleaving
- Leakage inductance (i.e., branch inductance) tuning

w.

d. Windings

HV 1 HV 2

LV

Best design

- $w_w = 259.8 \text{ mm}$ and a = 4
- $V_{tot} = 573.11$
- $P_{W,HV} = 63.29 \text{ W} \text{ and } P_{W,LV} = 30.93 \text{ W}$

MAGNETIC COMPONENTS COMPARISON

Case 1 MMC

▶ 6 branch inductors + conventional LFT

Case 2 GIMC [15]

no branch inductors + multi-windings transformer

	Branch inductors		Transformer	
	volume	losses	volume	losses
DC/3-AC MMC	6×61	780 W (0.156 %)	481.71	660 W (0.132 %)
GIMC	-	-	573.1 l	945 W (0.19%)

[15] Design values are related to ongoing prototype design at Power Electronics Laboratory

MAGNETIC COMPONENTS COMPARISON

Case 1 MMC

▶ 6 branch inductors + conventional LFT

Case 2 GIMC [15]

no branch inductors + multi-windings transformer

	Branch inductors		Transformer	
	volume	losses	volume	losses
DC/3-AC MMC	6×61	780 W (0.156 %)	481.71	660 W (0.132 %)
GIMC	-	-	573.1 l	945 W (0.19 %)

→ volume + cost reduction & efficiency increase with the integrated magnetic component

[15] Design values are related to ongoing prototype design at Power Electronics Laboratory

MV MMC CONVERTER PLATFORM

University laboratory environment...

INDUSTRIAL MMC CELL DESIGNS

HVDC designs

MV designs

April 20, 2018

INDUSTRIAL MMC CELL DESIGNS

HVDC designs

MV designs

MMC CELL @ PEL

Ratings

► 0.5 MVA apparent power

▶ 96 cells (16 per branch)

- 10 kV MVDC connection
- 400 V / 6 kV AC output

Cell concept

Design

- 1.2 kV / 50 A IGBT module (Semikron SK50GH12T4T)
- 1.2 kV / 70 A Thyristor module (Semikron SK70KQ)
- $C_{sm} = 2.25 \text{ mF} (6x \text{ Exxalia SnapSiC 4P 1500 } \mu\text{F}, 400 \text{ V})$
- Current sensor (Allegro ACS759 100 A)
- Bypass relay (KG K100 B-D012 X P)
- TI TMS320F28069 DSP
- Integrated Flyback auxiliary cell power supply from DC link with planar trafo

ADCGS 2018, Aachen, Germany

- 1 IGBT HR current thyristor relay R_{dis} voltage planar cell module controller dividers module sensor trafo pulse trafo 5V+3.3V LDO GD2 energy Rx/Tx buffer optical fibers
- Circuit partitioning
- Assembled cell

INSULATION COORDINATION OF A MV CONVERTER PROTOTYPE

System partitioning

- Zone 1 (ins. coord. inside a SM's enclosure) system voltage: $1\,kV_{ac}$
- Zone 2 (ins. coord. branch)
 - Horizontal system voltage: 1 kV_{ac}
 - Vertical system voltage: 3.6 kV_{ac}
- Zone 3 (ins. coord. branch cabinet (at GND)) system voltage: 6.6 kV_{ac}
- Zone 4 (ins. coord. for LV circuits) system voltage: 0.4 kV_{ac}

Standards

- ▶ UL840 for cell PCB (< 1 kV)
- IEC61800-5-1 (AC motor drives)
 - Pollution degree 2: "Normally, only non-conductive pollution occurs. Occasionally, however, a temporary conductivity caused by condensation is to be expected, when the PDS is out of operation."
 - Overvoltage category II: "Equipment not permanently connected to the fixed installation. Examples are appliances, portable tools and other plug-connected equipment."

Zone 2

- Box at dc- cell's potential (floating)
- Box corner radius: 3 mm
- ► MKHP (high CTI material) drawer holding 4 cells

SUMMARY

GIMC

> DC bias free magnetic structure (no penalty on magnetic material utilization)

- ▶ iGIMC & sGIMC suitable for Boost or Buck between the DC and AC voltages
- ► The integrated magnetics offer efficiency and power density increase
- Cost savings

MV MMC converter platform

- Realistically sized MV converter prototype
- LV IGBT based MMC cell
- Flyback-based ACPS, local cell controlled
- Complete dielectric design insulation coordination

GALVANICALLY ISOLATED HIGH POWER CONVERTERS FOR MVDC APPLICATIONS

Prof. Drazen Dujic, Dr. Alexandre Christe

École Polytechnique Fédérale de Lausanne (EPFL) Power Electronics Laboratory Switzerland

