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Abstract. Haptic guidance has been shown to improve performance in many 

fields as it can give additional information without overloading other sensory 

channels such as vision or audition. Our group is investigating new intuitive 

ways to interact with robots, and we developed a suit to control drones with up-

per body movement, called the FlyJacket. In this paper, we present the integra-

tion of a cable-driven haptic guidance in the FlyJacket. The aim of the device is 

to apply a force relative to the distance between the drone and a predetermined 

trajectory to correct user torso orientation and improve the flight precision. Par-

ticipants (n=10) flying a simulated fixed-wing drone controlled with torso 

movements tested four different guidance profiles (three linear profiles with dif-

ferent stiffness and one quadratic). Our results show that a quadratically shaped 

guidance, which gives a weak force when the error is small and a strong force 

when the error becomes significant, was the most effective guidance to improve 

the performance. All participants also reported through questionnaires that the 

haptic guidance was useful for flight control.  

Keywords: Wearable Haptics and Exoskeletons, Teleoperation and 

Telepresence, Robotics. 

1 Introduction 

The recent years have witnessed a growing demand for drones in multiple fields such 

as agriculture, industrial inspection, logistics, and search and rescue [1]. However, 

despite the recent advances in drone design and sensing, their direct teleoperation still 

mainly relies on traditional remote controllers. These types of controllers are neither 

natural nor intuitive and require long training periods to be mastered [2]. In order to 

make drones more accessible to non-expert users and facilitate their direct control in 

demanding tasks such as inspection or rescue missions, several studies have investi-

gated the use of gestures [3],[4]. In a previous study, the authors have identified an 

intuitive upper body movement pattern that naïve users exploited to fly a fixed wing 

drone [5]. This embodied flight style, which allows the user to directly control the 
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Fig. 1: FlyJacket with haptic guidance device. Cables are highlighted in red and the forces 

shown in green. (A) Front view. (B) Side view. (C) Back view. (D) Magnification on the torso 

part to highlight the reinforcements. (E) Magnification of the lower back part to highlight the 

back motors. 

pitch and roll of a drone using torso movements, reduces learning time and increases 

performance when compared to the use of a traditional remote controllers. In order to 

record torso gestures, the authors have developed the FlyJacket, a sensorised suit 

equipped with unobtrusive and removable arm supports, which allow people to fly 

with their arms spread out without experiencing fatigue or degrading the flight per-

formance [6]. 

This paper presents the integration and test of a cable-driven haptic guidance in the 

FlyJacket. This work is motivated by several results showing that haptic feedback 

improves the task performance in many domains such as for surgery [7], rehabilitation 

[8] or sports [9],[10]. Haptic feedback has been implemented as a force feedback on 

joysticks to control flight for obstacles avoidance [11-13]. In those studies, an attrac-

tive or resistive corrective force relative to the distance between the drone position 

and the obstacle  awareness and reduces collision occurrences. The 

flight immersion can also be enhanced by including the velocity of the drone in the 

haptic feedback [14],[15].  

When the aim of the haptic feedback is to correct a trajectory, linear feedback con-

trol laws (e.g. proportional-derivative control) on the error between the robot position 

and a reference trajectory are typically used [7],[8],[16-18]. The stiffness of the guid-

ance is a very important feature because a too soft guidance may not be effective 

while a too strong guidance may lead to user passivity [16],[17],[19]. Therefore, the 

force profile and stiffness play an important role and need to be studied in order to 

optimize the guidance provided by the haptic feedback  

The kinesthetic feedback proposed in this paper aims to correct and guide the user 
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toward waypoints when flying a simulated fixed-wing drone using torso gestures. We 

investigated four different force profiles to determine their contribution on the reduc-

tion of the error between the drone and the waypoints. We studied how the addition of 

haptic feedback acts on the performance and on the workload of the user.  

2 Haptic Guidance Implementation 

2.1 FlyJacket Hardware 

The FlyJacket is a soft exosuit developed for gesture based control of drones [6] (Fig. 

1). This wearable suit tracks the torso orientation, and converts it into drone com-

mands. The design of the exosuit and its ergonomics are suited for this flight style that 

has been identified has a natural and intuitive approach that naïve users adopt to fly 

fixed wing drones [5]. The user sits on a backless stool and bends his torso forward 

and backward in the sagittal plane, to control the pitch up and down maneuvers re-

spectively. The user bends at the sides in the frontal plane to control the roll angle of 

the drone. The mapping between torso movements and drone commands is linear and 

the gains from the torso angle to the drone angle are 2.5 when pitching up, 1.5 when 

pitching down and 2 when rolling. Torso movements are recorded with an Inertial 

Measurement Unit (IMU) (Xsens, Enschede, The Netherlands) located in the middle 

of the back (Fig. 1 C). The exosuit is equipped with arm supports that allow the user 

to fly with the arms spread out without experiencing fatigue (Fig. 1 A).   

Haptic guidance to the FlyJacket user was provided by a cable-driven system. With 

this system, four electrical motors (DC22S, gear ratio 6.6:1, Maxon Motor, Switzer-

land) pull on cables (Dyneema 0.4mm, Spiderwire, SC, USA, displayed in red in Fig. 

1) attached . In order to pull the torso according to the ges-

tures performed by the user during flight, e.g. bending forward and backward with a 

center of rotation located on the hip (see Fig. 1 B), one motor is positioned on the 

distal part of each leg and two motors on each side of the lower back. With this an-

tagonistic configuration, forces bend the user in both the sagittal and frontal planes. 

Both front motors are fixed to the legs with a harness system. To prevent the motors 

from sliding along the legs when pulling on the cables, they are maintained by a non-

e mean of a loop. 

Padding on the knee avoids user discomfort due to the force routing. The two back 

motors are located on the lower back and screwed onto a rigid plate to prevent them 

from moving (Fig. 1 E). Cantilevers made of 3D printed Acrytonitrite Butadiene Sty-

rene (ABS) create a lever arm to induce forces that pull the user backward, instead of 

downward. Two non-elastic textile bands attached from the extremities of the cantile-

vers to the leg harness, passing on the back of the thigh, restrain the cantilever tips 

from moving when the back motors are pulling on cables. As the cables are attached 

on the torso part made of leather, reinforcements made of polymorph thermoplastic 

(Thermoworx Ltd, Ayrshire, Scotland, UK) have been inserted to stiffen the structure 

in order to prevent force losses and transmission delays (see  Fig. 1 D).  

The range of force of the haptic guidance should induce a torque higher than the 

passive stiffness of the human torso of around 10 Nm [20], in order to be able to 
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Fig. 2: (A) 2 D s

wp) to measure the performance at each waypoint. (B) Force guidance 

over wp) found in previous experiment [6]. 

move the torso of a fully compliant human.  However, the user should also have full 

control of their body movements at any time. Therefore, we ensure that the maximal 

torque applied to the torso is much lower than the maximal torque a human can pro-

duce, which is around 150 Nm [21],[22]. As a comparison, the X-Arm 2, a rigid arm 

exoskeleton used to teleoperate a humanoid robot for extra-vehicular space missions, 

can produce up to 1/20th of the maximum human arm torque to deliver force feedback 

during manipulation [23]. Each motor of the F can produce 

up to 30 N of force, which corresponds to a torque of approximately 20 Nm for a 175 

cm tall user when both motors of one body side are pulling together. 

The four electrical motors are independently controlled by four transistors activat-

ed through a control board (Arduino Uno, Arduino, Italy). Thanks to the low gear 

ratio (6.6:1), motors are back-drivable. They are only activated when a corrective 

force is required to pull on the cables.  

2.2 Guidance Profiles 

drone position and a prede-
termined trajectory at a predefined time in the future. For ease of visualization, Fig. 2 
A is showing a 2D schematic of the distances, but the flight trajectories in the tasks are 
3D. This error is calculated as the scalar product between the vector from the 
drone to the look ahead point and the vector perpendicular to the direction of flight, 
pointing to the right for the correction in roll and up for the correction in pitch. The 
look ahead principle has been shown to enable stable vehicle control using external 
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interfaces (e.g. remote controller) [17],[18]. In this study, participants were asked to 
follow a trajectory in the sky symbolized by small clouds (see Fig. 3 A), called way-
points, spaced apart by approximately 40 meters. The look ahead time was set to 3 
seconds, which corresponds to a distance of 36 meters as the drone is flying at a con-
stant speed of 12 m/s. The user receives an attractive force relative to their error , 
which indicates how they should move their torso to correct the drone position. As the 
four motors can be actuated separately, combination of forces on the front, back, and 
sides are achievable in order to correct the drone in pitch, roll or a combination of both. 
For example, as shown in Fig. 2 A, if the drone is positioned too far on the left regard-
ing to the predetermined trajectory, front-right and back-right motors will pull on ca-
bles to on the right side. With this torso move-
ment, the drone will roll on the right, and the error will be reduced. 

Four guidance curves were implemented to investigate which type of feedback 

could best correct torso movements during a flight task (see Fig. 2 B). We used three 

linear profiles with different levels of stiffness (hard, medium, and soft) and one 

quadratic profile that transitions from soft to hard guidance. These force profiles have 

been calibrated based on the Root Mean Square (RMS) and standard deviation (std) of 

the error wp) measured at each waypoint from a previous study having a similar 

flight task but without guidance (see Fig. 2 A and C, and [6]). This error was the dis-

tance between the center of the waypoint and the point where the trajectory of the 

drone crosses a plane drawn perpendicular to the line connecting the previous and 

next waypoint [24]. The performance was computed as the RMS of these 

distances over all waypoints of the task. The mean RMS error over all participants 

was 4.02 ± 1.62 meters (mean ± std).  

 The hard guidance has the advantage of giving a strong feedback to the user 

with a stiffness of 3.75 N/m. This guidance imparts the maximum force the motor can 

produce (30 N) at twice the mean RMS error found in previous experiment (Eq. 1). At 

more than 30 N, the motor is not able to produce more force, and it saturates as shown 

in Fig. 2 B. Since more than 90% of the errors wp) found in the previous experi-

ment [6] were smaller than twice the mean RMS error (8 meters, see Fig. 2 B), users 

seldom reach the saturation limit. This guidance strongly pulls the torso toward the 

orientation that ectory and immediately emphases every 

small error . However, this strong force may be unpleasant for the user as they 

may feel less involved in the control.  

 

In contrast, the soft guidance aims to hint which movements the user should perform 

to correct their orientation as the forces are too weak to influence the torso movement. 

This guidance has a stiffness of 0.59 N/m, which gives the maximal force at the mean 

error plus 30 times the standard deviation (Eq. 2). For small errors, the guidance force 

is very weak, which allows the user to make some mistakes without being strongly 

pushed back towards the reference trajectory as the hard guidance does.  
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Fig. 3: (A) Flight environment. (B) Task order for each participant. 

 

The medium guidance aims to be an intermediate guidance between hard and soft 

guidance and was designed to give half of the maximal force at the mean error plus 10 

times the standard deviation, which corresponds to a stiffness of 1.5 N/m (Eq. 3).  

 

The fourth proposed guidance has a quadratic shape. It combines the advantages of 

both the soft and the hard guidance. For small errors, it gives a weak correction force; 

therefore, the participant avoids being strongly perturbed. When the error becomes 

more significant, this guidance pulls the user strongly towards the reference trajecto-

ry. The force intensity was set to match the error of the medium guidance at half of 

the maximum motor force (15 N) as display in Fig. 2 B (Eq. 4).  

 

2.3 Flight Experiment 

In order to evaluate the effectiveness of haptic guidance of the four different guidance 
profiles, ten participants (six men and four women, age 28.5 ± 4.5 years; mean ± std) 
flew a simulated fixed-wing drone using upper body movements. All participants test-
ed the four types of guidance and flew once without guidance. They sat on a stool 
wearing the FlyJacket with arm support and virtual reality goggles (Oculus Rift, Ocu-
lus VR, Menlo Park, USA) that gave a first person view of the flight and wind sound 
for more immersion. They flew a fixed-wing drone in a simulator developed in Uni-
ty3D (Unity Technologies, San Francisco, CA, USA). The simulated drone physics 
were based on the eBee (SenseFly, Parrot Group, Paris, France), flying at a constant 
cruise speed of 12m/s which is the nominal speed of drones during imaging and map-
ping tasks. 

Participants started with a short training without guidance composed of two tasks. 

At first, they had to follow the direction of an arrow positioned in front of them. The 

, 

this task, which lasted one minute, was to make the participants perform every flight 

control movement at least once. The second task was one and a half minutes of free 

flight in a 3D reconstruction of our campus. The goal of the training was to enable the 

participant to feel comfortable with the control of the flight. For the evaluation part, 
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Fig. 4: Participant performance measured by RMS error reduction of each haptic guidance rela-

tive to without guidance (n=10). The central mark indicates the median, the bottom edge the 25th 

percentile and the top edge the 75th percentile. The whiskers show the most extreme data points 

not considered outliers (open circles). Asterisk (*) denotes p < 0.05. 

participants were instructed to fly through 42 waypoints represented by small clouds 

(see Fig. 3A). These waypoints formed a trajectory in the sky and disappeared when 

they were reached. The waypoints sequence was randomized, but the number of ma-

neuvers (up/down/right/left) was the same for every task. Each participant completed 

five trials, once with each guidance condition and once without guidance. They were 

not told which type of guidance they were to receive or what type they had received. 

The order of the guidance conditions presented to the participant was arranged so that 

each condition was placed twice at every position in the task order (see Fig. 3 B). The 

same succession of conditions was avoided as much as possible in order to remove 

learning effects. Participants  performance was computed as the RMS of the error 

wp) of all waypoints.  

At the end of each task, participants completed a Nasa-TLX questionnaire with 

pairwise comparison [25], which assessed the workload variation between flight con-

ditions. At the end of the experiment, participants completed a final questionnaire 

asking which kind of guidance condition they enjoyed the most and the least, and 

which guidance condition they found the most and least useful (Table 1). The EPFL 

Human Research Ethics Committee approved the study and the participants provided 

written informed consent. All calculations for the data analysis done in this study 

were computed in Matlab (MathWorks, Massachusetts, USA). Graphs were also 

ploted in Matlab and aesthetically enhanced with Adobe Illustrator (Adobe Systems 

Incorporated, San Jose, CA, USA). 

3 Results 

3.1 Performance Results  

Participant performance was measured as the RMS error reduction obtained by sub-

tracting the RMS error of each task done with haptic guidance from the RMS error in 
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the condition without guidance for each participant. This removes the performance 

level variation among participants and shows the effect of flying with a haptic guid-

ance with respect to no guidance, i.e. what is the error reduction induced by the haptic 

guidance comparatively to flying without guidance. Therefore, a positive RMS error 

reduction means that the haptic guidance increases flight performance. 

Results of Fig. 4 show that the median RMS errors for all types of haptic guidance 

are positive; the RMS error of the task was lower when performing the task with any 

type of haptic guidance than when flying without guidance. To determine if any of the 

guidance has a statistically significant effect on the error reduction, we ran a Wilcox-

on Signed Rank Test using Matlab. The error reduction was significant for the quad-

ratic guidance with a p-value of 0.0488. The three other guidance conditions, i.e. soft 

guidance (p-value = 0.4922), medium guidance (p-value = 0.0840) and hard guidance 

(p-value = 0.4316), do not show any statistical significance. However, due to the lim-

ited number of samples commonly gathered with human experiments, these results do 

not have a high statistical power. Therefore, we used a bootstrap metric. This non-

parametric method generates the replication of 500 sample means (obtained by sam-

pling with replacement 10 samples from the original dataset), which follow the same 

distribution as the data recorded during the experiment. This allowed us to obtain the 

empirical distribution for the sample mean. We then assessed whether the [2.5;97.5] 

quantile interval covers 0; the negation of the latter implying that the mean is signifi-

cantly different than 0. We found that the quadratic guidance has a significant p-value 

of 0.0040, which supports the result found using the Wilcoxon Signed Rank Test done 

on our ten participants. In addition, the medium guidance also has a significant result 

with a p-value of 0.0260. The other two guidance conditions, i.e. soft guidance and 

hard guidance did not show any statistical significance with p-values of 0.2080 and 

0.1860 respectively. 

3.2 Subjective Assessment of Haptic Guidance 

At the end of the experiment, participants filled a questionnaire specific to haptic 

guidance. The statement I found the  was rated 6.08 out of 7 

on the Likert scale from 1 (Strongly disagree) to 7 (Strongly agree). All participants 

rated between 5 and 7. They reported that it helped them anticipate maneuvers, par-

ticularly roll movements.  

In the same questionnaire, they had to state which flight condition they found the 

most and the least enjoyable and the most and the least useful (Table 1). 6/10 partici-

pants found the hard guidance the least enjoyable versus 0/10 for the quadratic guid-

ance. Also, half of the participants found the hard guidance the least useful versus 

1/10 for the quadratic guidance. Notably, no participants found that the soft guidance, 

which provides the weakest force, was the least useful guidance.  

Results for the most enjoyable and the most useful haptic guidance were more 

mixed (Table 1). 3/10 participants found the quadratic guidance the most enjoyable 

and the most useful and three others the soft guidance versus 0/10 for without guid-

ance. As no participants rated the without guidance condition as the most enjoyable or 

the most useful, this result corroborates the high score of the guidance usefulness. 
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Fig. 5: (A) Overall workload found from the Nasa-TLX questionnaire, which includes contribu-

tion from the effort. See Fig. 4 for boxplot explanation. (B) Effort contribution. (*) denotes p < 

0.05 (n=10), (open circles) signify outliers. 

 

Table 1. Number of participants selecting the flight task as the most or least enjoyable and 

most or least useful in the final questionnaire (n=10). 

In which task was 

haptic feedback: 

Soft 

guidance 

Medium 

guidance 

Hard 

guidance 

Quadratic 

guidance 

Without 

guidance 

the least enjoyable 1 2 6 0 1 

the least useful 0 1 5 1 3 

the most enjoyable 3 3 1 3 0 

the most useful 3 2 2 3 0 

3.3 Workload Results 

As shown in Fig. 5 A, there are no statistically significant workload differences be-

tween flying with a haptic guidance and flying without guidance. There is also no 

difference in workload among haptic guidance types. Workload is composed of six 

different contributions: physical demand, mental demand, effort, temporal demand, 

frustration and performance, each of which can be analyzed separately [25]. The ef-

fort (Fig. 5 B) when flying with the medium and the quadratic guidance is significant-

ly lower than when flying without guidance (p = 0.0488 and p = 0.0352 respectively). 

The same bootstrap metric used for the performance analysis with a replication of 500 

sample means was applied. Both guidance show significance with p = 0.0080 for the 

medium guidance and p = 0.0040 for the quadratic guidance. The contribution of the 

effort on the general workload is 17%. The other workload contributions did not show 

any significant difference from zero and between guidance conditions.  
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4 Discussion 

This study demonstrated that receiving quadratically shaped haptic guidance when 

performing a flight task with the FlyJacket helped improve flight accuracy without 

increasing the workload. Out of the four force profiles tested, the quadratic profile 

was found to be the best over three linear profiles of different stiffness. In addition, 

our results showed that all users found haptic guidance useful when flying. 

Having a quadratically shaped guidance, which gives weak force when the error is 

small and strong force when the error becomes large, is the most effective type of 

feedback to improve precision but also the one that requires the lowest effort. In com-

parison, the soft guidance was not only more enjoyable than hard guidance, but partic-

ipants also found it more useful. Hard guidance was rated least enjoyable because 

participants felt the force was too strong. This may be because any small deviations 

from the nominal trajectories trigger large forces from the FlyJacket , 

frequently perturbing the body. Consequently, they may not feel fully in con-

trol of their torso orientation, leading to the unpleasant feeling of being obstructed or 

to user passiveness [19]. The medium guidance, which is an intermediate guidance 

between the hard and soft guidance, had a more meaningful impact on the perfor-

mance than the two extremes (soft and hard guidance) and significantly reduced us-

er  effort. 

Our study had a few limitations. We instructed users to follow waypoints during 

the evaluation task, and we calculated the performance measure only at these way-

points. However, in order to have a more precise understanding of drone dynamics, 

error in future studies could be measured by assessing the deviation from an overall 

trajectory, rather than discrete waypoints. To do so, additional experiments should be 

designed were the participant is able to see, for example by the mean of a line, the full 

trajectory in between the waypoints. We also restricted our tests to proportional con-

trollers. Additional experiments could be performed to determine if adding a deriva-

tive term of the drone position to the quadratic or medium controller (e.g. PD control-

ler) would further improve the performance. 

By identifying an effective profile to reduce the error when following waypoints, 

this study provides the basis for further investigating the learning rate of the user with 

guidance in comparison to without guidance. The goal will be to understand if haptic 

guidance can accelerate the flight learning process and if this knowledge can be better 

retained by users. If so, having such a haptic guidance included in the FlyJacket could 

greatly reduce user training time. This could facilitate drone control and, therefore, 

make their use more accessible to non-expert users. For real world applications, we 

will also explore the use of haptic guidance for obstacle avoidance. This collision 

avoidance feedback can also be implemented by having the device pull 

torso away from obstacles detected by vison or range sensors commonly embedded in 

commercial drones. While our current study utilized known reference trajectories for 

guidance, this type of force feedback can also be applied to constrain user motions to 

prevent maneuvers outside the flight envelope of the drone, for example to avoid stall 

conditions. 
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