
Contents lists available at ScienceDirect

Journal of Electroanalytical Chemistry

journal homepage: www.elsevier.com/locate/jelechem

Semi-analytical modelling of linear scan voltammetric responses for soluble-
insoluble system: The case of metal deposition

Imene Ateka,b, Sunny Mayeb, Hubert H. Giraultb, Abed M. Affounea,⁎, Pekka Peljob,⁎

a Laboratoire d'Analyses Industrielles et Génie des Matériaux, Département de Génie des Procédés, Faculté des Sciences et de la Technologie, Université 8 Mai 1945 Guelma,
BP 401, Guelma 24000, Algeria
b Laboratoire d'Electrochimie Physique et Analytique, École Polytechnique Fédérale de Lausanne, EPFL Valais Wallis, Rue de l'Industrie 17, Case Postale 440, CH-1951
Sion, Switzerland

A R T I C L E I N F O

Keywords:
Modelling
Metal deposition
Soluble-insoluble system
Linear sweep voltammetry

A B S T R A C T

The absence of general theoretical models describing linear sweep voltammetry (LSV) or cyclic voltammetry
(CV) responses for soluble-insoluble systems such as one-step electrodeposition reactions under quasi-reversible
condition makes it difficult to extract quantitative kinetic information from experimental voltammograms. In
this work, a semi-analytical method for modelling LSV responses for one–step electrodeposition process is de-
scribed, for a case where instantaneous nucleation takes place, such as metal deposition on same metal.
Voltammetric peaks were analyzed following variation of both dimensionless rate constants and charge transfer
coefficients in a broad range. Therefore, kinetic curves for electron transfer processes were established and fitted
perfectly by sigmoidal Boltzmann function and linear models. With these models, LSV or CV experimental data
can be used to measure electrodeposition reactions kinetics whatever the degree of reversibility. The Cu(I)/Cu(0)
couple in acetonitrile was selected as an experimental example. The model developed in this work predicts
accurately the current response for Cu electrodeposition reaction and an excellent experiment–theory agreement
was found.

1. Introduction

Over the years within the field of electrochemistry, many efforts
have been devoted to modelling and simulation techniques to help to
understand electroanalytical experiments [1–10]. Linear sweep vol-
tammetry (LSV) and cyclic voltammetry (CV) are well-known electro-
chemical techniques which have played an important role to obtain a
clear view about the kinetics, thermodynamics and mechanisms of
electrode reactions [3–6]. In LSV, the potential is scanned linearly
starting at the initial potential while measuring the current response.
CV is an extension of LSV in that the direction of the potential scan is
switched at a predetermined value and the potential is scanned again in
the reverse direction to the initial value. Thus, a triangular potential-
time waveform is used in CV [4]. In this framework and according to
Oldham's earlier work, there are three possible pathways for the es-
tablishment of a theoretical voltammograms [5]: analytical modelling,
semi-analytical modelling and digital simulation.

For a single-step reaction and particularly for soluble-soluble sys-
tems where both oxidized and reduced species are soluble, a com-
plementary theoretical studies by either analytical modelling, semi-
analytical modelling or by digital simulation, was presented and

extensively discussed for reversible, quasi-reversible and irreversible
processes experiments [1–10]. Randles and Ševčík were the pioneers in
this field [11,12]. After that many other investigations have been car-
ried out, especially the work of Matsuda and Ayabe for quasi-reversible
systems [10,13]. A very important theoretical development of cyclic
voltammetry was achieved by Nicholson and Shain in their well-known
paper published in 1964 [14,15]. For soluble-insoluble system, mod-
elling of the voltammograms was first introduced by Berzins and De-
lahay [16] who studied the reversible deposition on solid electrodes
and derived an analytical expression for current-potential curve for
single scan, using the Laplace transform and Dawson's integral. Later
on, the theory was extended by Delahay to totally irreversible process
[17]. Other researchers have also done similar studies but their main
focus was for reversible cyclic voltammetry [18–20]. All these devel-
opments concerned the redox reactions of simple ions with a single
step. However, in the case involving amalgam formation, some ap-
parent anomalies were noted between experiment and theory for cyclic
voltammetry. These facts were discussed by Beyerlein, and Nicholson
[21] and others [22]. Additionally, more complicated models including
ion adsorption have been proposed [23].

On the other hand, to describe the transition between fast and slow
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electrode kinetics, the important study related to the main features in
voltammetric curves such as the peak potential, the peak current and
the half wave potential as a function of normalized heterogeneous rate
constant was done by Matsuda and Ayabe in 1950s. Therefore, three
reversibility diagrams were established for soluble-soluble systems
[10,13]. In this direction, recently Krulic et al. presented a rough eva-
luation of the degree of the reversibility for one electron transfer re-
action with an insoluble deposit, considering only the case when the
anodic and cathodic charge transfer coefficients are both equal to 0.5
[24]. However, the effect of the combination of the rate constant and
charge transfer coefficient have not been reported before this work.

Furthermore, another key aspect for kinetics study was introduced
by Nicholson under the so-called working curves theory. This theory is
based on correlation between the peak-to-peak potential in the cyclic
voltammogram and the non-dimensional kinetic rate [15]. Thus, via the
use of the Matsuda and Ayabe diagrams and Nicholson working curves,
data quantifying soluble-soluble reaction kinetics could simply be de-
termined, whatever the degree of the reversibility. Since no practical
tools are available for soluble-insoluble systems, many authors [25–27]
have simply resorted to use the traditional Nicholson approach in
conjunction with Matsuda and Ayabe criteria to analysis experimental
voltammograms under quasi-reversible condition. This approach,
however, leads to misinterpretation of the experimental data.

For these reasons and to remedy these shortfalls, the purposes of the
present paper are:

- Modelling of LSV responses for quasi-reversible soluble-insoluble
system, employing a semi analytical method.

- Developing a general model to extract the kinetic parameters via
LSV or CV data, whatever the degree of reversibility.

However, LSV models proposed in this work are only applicable to a
situation where instantaneous nucleation takes place, such as metal
deposition on same metal, or for example silver deposition on gold in
some specific conditions [28]. If nucleation overpotential is required to
induce the nucleation, followed by for example progressive 3D nu-
cleation, the shape of the voltammogram will change drastically [24].

Finally, to demonstrate the accuracy and the effectiveness of our
numerical model, experimental tests with the system Cu(I)/Cu(0) are
performed. The accurate estimation of the electrochemical kinetics of
this process is required to understand better the limitations for the non-
aqueous batteries utilizing Cu(I)/Cu(0) couple as the negative redox
couple [29,30].

A further complication not considered in this works is the aptly
named “enigma of metal deposition” [31], namely, the fact that the
solvation environment of the ion changes completely upon metal de-
position, while in electron transfer reactions of soluble-soluble systems
only slight solvent reorganization is required. Despite this difference,
some metal deposition reactions are among the fastest electrochemical
reactions [31]. This problem has been described in detail by Gileadi
[31–34], and has been studied both experimentally and theoretically
for amalgam formation reactions, including copper deposition from
various nitriles by Fawcett et al. [35,36]. To conclude, simplified
Butler-Volmer type formalism employed in this work yields apparent
rate constants, while more detailed analysis including corrections for
double layer effects would be required to obtain the standard rate
constant [35,36]. A solution for the “enigma of metal deposition” was
recently proposed by Schmickler et al. based on theoretical calcula-
tions, proposing that univalent metal cations can approach very close to
the metal surface without loss of solvation energy [37]. At this position
the ion is close enough to experience a strong energetically favourable
electronic interaction with the identical atoms of the electrode surface,
allowing overcoming the large energy required to remove the solvation
shell [37].

2. Theory

Prior to solving and calculating LSVs for soluble-insoluble system,
we give a brief overview of Nicholson-Shain model currently used for
extracting of detailed information about kinetics and mass transport for
electrode reactions where both oxidized (O) and reduced (R) species are
soluble in the solution. The reversibility factor is defined as [10]:
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Throughout this paper, we seek to apply Nicholson's method to
generate LSV model for reactions involving an insoluble species.
Nicholson's method, also called semi-analytical method, generally
consists of solving the mass transport problem analytically, and de-
riving the theoretical voltammetric relationships numerically [14,15].
In the present work, our attention focused on single step electro-
deposition reaction. Thus, a soluble-insoluble system of metallic ions
Mn+ and metal M couple could be represented as Mn+(sol)+ ne−⇄M
(s).

Upon neglecting migration and convection contribution, the pro-
blem of the mass transport of metallic cations in Cartesian coordinates
can be described by the partial differential equations (PDE):
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With the following initial and boundary conditions:

= = ∗+ +t C x C0, ( , 0)M Mn n (5)

→ ∞ ∞ = ∗+ +x C t C, ( , )M Mn n (6)

→ = − ⎡
⎣⎢

∂
∂

⎤
⎦⎥ =

+
+

x I t
n A

D
C x t

x
0, ( )

F
( , )

x
M

M

0

n
n

(7)

The current change is given by Butler-Volmer equation:
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The electrode potential E(t), is swept linearly with scan rate v in the
negative direction starting at initial potential Ei which no electrode
reactions occur, so that the potential at any time t is given by:

= −E t E vt( ) i (9)

Let us consider that at the initial state, the equilibrium is achieved at
the surface of electrode, so the equilibrium potential is given by the
Nernst equation:
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where aM=1 for pure metal and =+ +
+a γ

C

CM Mn n
nM
0 are respectively the

activity of the metal and the corresponding cation, γi is the activity
coefficient of the species i and C0 is the standard concentration of
1mol L–1. The concentration of metal CM in Eq. (8) can be expressed as
CM= aMC0= C0 assuming that the activity coefficient of the metal is 1.

In order to solve the above equations system (Eqs. (4)–(10)), we
summarize briefly our solution procedure in three steps as follows:
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Step 1: converting Fick's differential law into Integral Equations.
Before the computation of the current-potential curve, it is neces-

sary to know the concentration as a function of time. After applying
Laplace's transform to PDE Eq. (4) under the initial condition (5) and
the boundary conditions (6)–(7), the solution has the form:
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and remembering that CM(0, t)= C0.
Step 2: converting the linear sweep voltammetry parameters into a

non-dimensional form.
For modelling purposes, it is helpful to convert the dimensioned

variables into a non-dimensional form. Thus, we set:
Dimensionless initial potential, Init:
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Dimensionless applied potential, Φ:
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Dimensionless scan rate, σ:
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Step 3: calculation of the current.
From combination of Eqs. (1)–(14), we obtain the general equation

for the current:
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where the dimensionless current Ψ(σt)
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is given by the following integral:
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With the dimensionless heterogeneous rate constant defined as de-
scribed in by Krulic et al. [24]:
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In this work the initial potential Ei is used to calculate ∗ +C Mn as
activity of the metal is always taken as 1. For performing the calculation
of the integrals in the expression (17), the same numerical method
developed by Nicholson and Shain [14] was used which leads to the
following LSV algorithm:
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Thus, this algorithm enables the dimensionless voltammograms to
be calculated, provided that the values of Init, Φ, ω and α are known.

3. Material and methods

3.1. Chemicals

All solvents and chemicals were used as received without further
purification. The solvent was acetonitrile (ACN, extra dry over mole-
cular sieves, 99.9%, from Acros). Electrodes were made with copper
wire (dia. 1 mm, ≥99.99%, from GoodFellow). The supporting elec-
trolyte was tetraethylammonuim tetrafluoroborate (TEABF4, 99%, from
ABCR) and the electroactive species was tetrakis(acetonitrile)copper(I)
tetrafluoroborate ([Cu(CH3CN)4]BF4,> 98%, from TCI).

3.2. Electrochemical measurements

LSV measurements were performed by using one-compartment
three-electrode cell where the reference electrode and auxiliary elec-
trode were coils of 1 mm diameter copper wire and with a copper disc
serving as a working electrode. The working electrode was prepared by
heat-sealing 1mm diameter copper wire in 2mm diameter glass tube,
followed by polishing with consecutively finer abrasive papers followed
by different sizes of alumina, down to 0.05 μm particles, on polishing
cloths. The electrolyte consisted of a mixture of given concentrations of
[Cu(CH3CN)4]BF4 as a copper source, 100mM TEABF4 as a supporting
electrolyte, and acetonitrile as a solvent. All potentials are expressed vs.
the Cu wire in the solution of the given concentration of [Cu(CH3CN)4]
BF4. Hence, the potential of the Cu reference in equilibrium with 10mM
Cu+ solution in acetonitrile on the “non-aqueous standard copper
electrode” scale (SCuE), i.e. vs. Cu+ solution with the activity of 1 in
equilibrium with Cu in acetonitrile is assumed to follow the Nernst
equation considering the γCu+ = 1, i.e. the potential of the reference is
−0.118 V vs. SCuE in acetonitrile. To establish the relation with the
ferrocene (Fc) scale recommended by IUPAC, the potential of the Fc+/
Fc couple vs. Cu/10mM Cu+ in ACN was measured as 0.69 ± 0.01 V,
i.e. the potential of our reference electrode is −0.69 V vs. Fc+/Fc. LSV
data for the reduction of copper (I) in acetonitrile were recorded with
an Autolab model PGSTAT302N potentiostat equipped with the
SCAN250 analog scan generator module. We point out that, all ex-
perimental steps (solution preparation, LSV measurement) were per-
formed at ambient temperature (25 °C) under anaerobic conditions
using a nitrogen filled glove box, utilizing positive feedback iR com-
pensation.

4. Results and discussion

4.1. Theoretical results

4.1.1. Effect of the kinetic rate
Generally, the critical parameters used for the diagnosis of electron

transfer reactions via linear sweep voltammograms are the magnitudes
of the peak current, the peak potential and the half peak width. These
LSV responses may depend on multiple variables including the charge
transfer coefficient α, the potential sweep rate v, and the heterogeneous
standard rate constant k0. In the present paper, the mutual influence of
k0 and v is expressed through the magnitude of the dimensionless
parameter, ω, defined by Eq. (18). The effects of varying ω for a con-
stant value of α on the position, high and width of peak are examined
and shown in Fig. 1, in which three distinct regions can be seen:

1) ω≥ 103

For which, the dimensionless current-potential curves become in-
sensitive to the dimensionless rate constant (curves a, b, c in the inset of
Fig. 1). The dimensionless peak current, π1/2Ψp, takes a constant value
of −0.6105, as reported by Berzin and Delahay [16] for reversible
system.
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2) ω≤ 10−3

In this region, the calculated linear sweep voltammograms retain
their shape (curves i-k in Fig. 1). The peak half width, ΔΦp/2, remains
unchanged and the dimensionless peak current (π1/2Ψp) keeps stable in
value of −0.350, which is in good agreement with literature values for
irreversible systems [17]. Contrary to the peak shape, the peak position
is shifted towards more negative potentials as ω decreases.

3) 10−3 < ω < 103

Within these two kinetic regions (curves d–h in Fig. 1), a decrease in
ω leads to a diminution in the peak height, an increase in peak half
width, and a shift of the dimensionless peak potential (Φp) towards
more negative values. These observations refer to characteristics of
quasi-reversible waves.

4.1.2. Effect of the charge transfer coefficient
A series of theoretical voltammograms in which the charge transfer

coefficient α is varied, are displayed in Fig. 2. Note that the impact of α
on the peak parameters depends upon the magnitude of the di-
mensionless kinetic rate ω.

- For ω=103, no change occurs in current and potential values with
α varying from 0.2 to 0.8. This observation agrees reasonably with
previous studies for reversible system [16].

- For ω=1, an increase in α value from 0.2 to 0.8 is followed by a
slightly increase in the dimensionless peak current (in absolute
value), while the peak potential remains almost constant.

- For ω=10−3, the effect of the electron transfer coefficient has an
appreciable influence on the height, position, and the shape of the
peak.

4.1.3. Kinetics curves: coupling effects of kinetic rate and charge transfer
coefficient

It is clear from the above results that the voltammograms in the
intermediate region, 10−3 < ω < 103, are qualitatively different.
Furthermore, until now, as no characteristic equations or practical tools
for analysis of experimental voltammograms for quasi-reversible sys-
tems has been reported, our goal in this section is to provide a general,
simple and direct model capable to solve the problem of the determi-
nation of the kinetic parameters in the case of quasi-reversible soluble-
insoluble systems. The same issue was encountered before for soluble-
soluble system, and the solution was offered by suggesting series of
working curves which covered the range from reversible to irreversible

Fig. 1. Calculated linear sweep voltammograms for various value of ω with α=0.5; a: ω=105, b: ω=104, c: ω=103, d: ω=102, e: ω=101, f: ω=1, g:
ω=10−1, h: ω=10−2, i: ω=10−3, j: ω=10−4, k: ω=10−5.

Fig. 2. The effect of transfer coefficient α on theoretical voltammograms.
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behaviour.
Likewise, in the next set of figures, we have constructed three ki-

netic curves for single electron transfer process, in which we show
quantitatively the coupling effects of the dimensionless kinetic rate (ω)
and the electron transfer coefficient α on LSV responses. The values of ω
in these calculations was varied from 106 to 10−6 while the values of α
was varied from 0.2 to 0.8. Fig. 3 shows the plot of the peak current
ratio Ψp/(Ψp)rev vs. log(ω), where (Ψp)rev is the reversible dimension-
less peak current. Fig. 4 shows quantitatively the variation of the peak
shape through the half peak width changes, = −Φ E EΔ ( )n

Tp/2
F

R p p/2 as a
function of log(ω) and α and Fig. 5 describes how the cathodic peak
position ηp, = −η E E( )n

T p eqp
F

R , changes as a function of log(ω) and α.
It is apparent from Fig. 4, that the plots of the LSV responses as a

function of both, the dimensionless heterogeneous rate constant ω and
the charge transfer coefficient α, exhibit sigmoidal shapes. Data were
then fitted perfectly by the sigmoidal Boltzmann functions:

= + −
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− − −

αΨ
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1 (0.811 1)
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where: X= log (ω). Each of these fit models enables voltammetric
quantification of the electrode kinetics from simple peak current and
peak potential measurements of the experimental linear sweep vol-
tammograms for either reversible, quasi reversible or totally irrever-
sible electron transfer process, provided that the value of α is known or
can be estimated accurately. Also, from Figs. 3–5, the following kinetic
zones properties can be concluded:

In the zone A both the current and the peak potentials are in-
dependent of the values of α and the dimensionless kinetic rate ω. All
peak parameters ηp, Ψp, and ΔΦp/2, reach their reversible values,
yielding to the following reversible criteria:

For ω≥ 103:

= ⎛
⎝

⎞
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∗ + +I nFAC D nFv
RT

0.6105 ( )p M M
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n n

(24)

= −E E RT
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− = −E E RT
nF
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These criteria for kinetically reversible system are in excellent
agreement with those of previous theoretical investigations
[16,18–20,38].

Quasi-reversible features are observed in the zone B (−3 < log
ω < 3), where marked changes in the various peak parameters as a
function of both log ω and α are evident. As shown in Figs. 3–4, the
peak height ratio increases while the half peak width decreases for
increasing values of α. Both values decrease with decreasing values of
log ω. This effect of the charge transfer coefficient can be interpreted by
the change in the symmetry of the energy barrier.

Irreversible behaviour is evident in the zone C, where the peak
current and half peak width remain constant with decreasing log ω for
specific values of α while the peak potential continues to decrease lin-
early as the function of decreasing log ω. As for the quasi-reversible
case, the peak height ratio and peak potential increase and the half peak
width decreases for increasing values of α. Therefore, the following
conclusions can be drawn:

For ω≤ 10−3:

=
Ψ

Ψ
α

( )
0.811p

p rev

1/2

(27)

Fig. 3. Variation of the peak current ratio, Ψp/(Ψp)rev, as the function of the
dimensionless rate constant for several values of α. Solid lines are best fits to the
sigmoidal Boltzmann functions with a correlation coefficient of 0.99. Zones A,
B, C denote the reversible, quasi-reversible and totally irreversible zones, re-
spectively.

Fig. 4. Dependence of the half peak width of linear sweep voltammograms
(ΔΦp/2) on the logarithm of the kinetic parameter ω for various α values. Solid
lines are best fits to the sigmoidal Boltzmann functions with a correlation
coefficient of 0.98.

Fig. 5. Plots of the reduction peak position (ηp) against log(ω) for various α
values.
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= −Φ αΔ 1.857p/2
1 (28)

These equations show a very good agreement with those obtained
by Delahay for irreversible soluble–insoluble redox system [17].

A further key point to consider in Fig. 5, which was also observed
and demonstrated by Krulic et al. [24], is that in the region when log
ω≤−1), the magnitude of ηp depends linearly on the logarithm of the
kinetic parameter ω. Therefore, by using linear regression approxima-
tions, the dependency of ηp on ω and α could be expressed as follows:

= − +αη X α2.303 [0.115 log( ) 0.78]p (29)

This equation coincides with that established by Krulic for α=0.5
[24], it can be used for estimation of the kinetic rate constant, in par-
ticularly for quasi-reversible and irreversible electrodeposition pro-
cesses if the value of α is known or can be estimated.

4.2. Experiment–theory comparison

In order to test the validity of our numerical approach to extract
kinetic and mass transport parameters from LSV data, an example of Cu
electrodeposition reaction in organic solution is presented. The Cu
system includes a simple one-electron transfer reaction according to
[29]:

+ →+ −Cu e Cu(0) (i)

although, the removal of the complexing solvent should also be con-
sidered [35,36]. Fig. 6a depicts typical LSV profiles collected at dif-
ferent scan rates for reduction reaction, Cu(I)/Cu(0), in acetonitrile.
Regarding to the peak heights, an increasing trend was observed on
increasing the scan rates. Furthermore, the peak potential was seen to
shift gradually towards more negative potential values over
25–200mV/s scan rate suggesting a quasi-reversible character. To de-
duce the mass-transport and kinetic proprieties of the Cu(I)/Cu(0)
system, the unknown parameters values: DCu(I), α and k0 need to be
derived. There are two ways for the calculation of DCu(I), α and k0: by
either computationally or by adjusting curves based only on LSV al-
gorithm (Eq. (21)) and different combinations of DCu(I), α and k0.

4.2.1. Utilization of working curves
First, we used the common employed procedure, the semi-in-

tegrative voltammetry, for the calculation of Cu(I) diffusion coefficient
and a direct Tafel analysis for the measurement of the transfer coeffi-
cient α. Fig. 6b shows a sigmoidal curve (dotted line) obtained from
semi-integration of typical voltammetric current recorded at 100mV/s.
It should be noted that we have employed the Saila methodology [39]
for establishing semi-integrated plots. As shown in Fig. 6b and as per
principle of semi-integration technique, the semi-integration of the
voltammetric current responses with respect to time yields to the sig-
moidal-type curve with a plateau. This plateau level represents the
limiting semi-integral current, of height m∗:

Fig. 6. (a) LSV curves of electrodeposition of Cu(I) on Cu disc electrode from 10.25 mM of tetrakis(acetonitrile)copper(I) tetrafluoroborate in acetonitrile at various
scan rates. (b) LSV curve of reduction reaction of Cu(I) recorded scan rate of 100mV/s. The dotted line indicates semi-integrated current for forward scan. (c) Tafel
curve derived from the rising part of the LSV curve at scan rate of 100mV/s. The inset shows the LSV data used for drawing the Tafel curve. The potential is expressed
vs. the Cu reference in equilibrium with 10.25mM Cu+ in solution, i.e. −0.118 V vs. standard copper electrode in acetonitrile or −0.69 V vs. Fc+/Fc.
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and the diffusion coefficient of Cu(I) in acetonitrile at 25 °C was com-
puted utilizing this equation (as shown in Table 1) by considering the
following experimental values: n=1, CCu+

∗=10.25 mM. Fig. 6c de-
picts the representation of the Tafel plot obtained from experimental
LSV data, at a scan rate of 100mV/s. Using the slope calculated from
Fig. 6c and the Tafel equation, the value of α was calculated and the
result is reported in Table 1. In the next step, a more detailed ex-
amination of the voltammetric peaks allowed us to quantify the stan-
dard rate constant (k0 in cm2/s) for the Cu(I)/Cu(0) redox couple ac-
cording to the models presented in Section 4.1.3. The results are listed
in Table 1. With these values, Eqs. (22), (23) and (29) were used to
obtain the final value for the k0.

4.2.2. Fit and simulation
The parameters, DCu(I), α and k0 were also obtained by comparison

of theoretical and the experimental linear scan voltammograms (in
100mM TEABF4 and 10mM Cu(CH3CN)4BF4), using the LSV model
algorithm with a series of adjustments in the input values. For this
purpose, theoretical voltammograms were obtained by utilizing the
diffusion coefficient of Cu ions within the range reported in the lit-
erature [40], and varying the values for k0 and α for the Cu(I)/Cu(0)
system as these values have not been reported previously in the lit-
erature. In our work, α was varied from 0.1 to 0.9 while the di-
mensionless kinetic rate was varied from 10−3 to 103.

In the purpose to compare the two approaches: i) theoretical fitting
and ii) working curves, and to illustrate the LSVs are obtained with the
parameters from Eqs. (22), (23) and (29), an analysis study was per-
formed first with the voltammetric data collected at 100mV/s. To
achieve best fit to experimental LSV data obtained at 100mV/s, we
tested various values of DCu(I), α and k0. With the following parameters:
DCu(I) = 1.7×10−9m2s−1, α=0.8 and k0= 5.12× 10−5 cm s−1

, the
resultant theoretical voltammogram is in very good agreement with the
experimental LSV curve (see Fig. 7a). To demonstrate the applicability
of the working curves, theoretical voltammograms were calculated with
Eq. (21) with the parameters shown in Table 1 and the results are
presented in Fig. 7b. Better agreement was obtained by using Eqs. (22)
and (23) than by Eq. (29). The small discrepancy in kinetic prediction
using Eq. (29) could be attributed to the dimensionless kinetic rate
constant ω of copper reduction which was just out of range of

applicability of Eq. (29). We have found above that Eq. (29) is valid for
ω≤ 0.1; however the ω value calculated for Cu reaction is 0.15.

Table 1 shows the obtained parameters for the reduction of Cu(I) to
Cu(0) in acetonitrile at 100mVs−1. The obtained DCu(I) values are si-
milar with the values previously reported in literature [40], although
slightly higher diffusion coefficient was obtained from semi-integration
analysis. Furthermore, the calculated values of k0 indicated that the Cu
deposition process in acetonitrile is quasi-reversible.

Likewise, the kinetics of the Cu(I)/Cu(0) system were analyzed at all
scan rates. The use of Eqs. (22), (23) and (29), yielding average values
of the standard rate constant k0: 4.86(± 0.68)× 10−5,
4.63(± 0.22)× 10−5 and 7.76(± 0.76)× 10−5 cm/s, respectively.
Excellent fits were reproduced between the experimental LSVs and si-
mulated ones under various scan rates (see Fig. 8) and the average
fitted k0 value was found: 5.43(± 0.52)× 10−5 cm/s. These results

Table 1
Kinetic-mass transport parameters for Cu(I)/Cu(0) redox couple.

Cu(I)/Cu(0) system DCu(I)[10−9m2s−1] α k0[10−5 cm s−1]
SI Fit Tafel Fit Working curves Fit

Eq. (22) Eq. (23) Eq. (29)
1.75 1.70 0.82 0.80 3.84 4.99 7.73 5.12

Fig. 7. (a) A comparisons between theoretical
linear scan voltammogram and experimental
voltammogram obtained and recorded at
100mV/ s scan rate. The parameters used for
theoretical prediction are: DCu(I) =
1.70× 10−9 m2s−1, α=0.8 and
k0= 5.12× 10−5 cm s−1. (b) Comparison
of theoretical LSV responses with experimental
data using Fit models presented by Eqs. (22),
(23) and (29). Parameters used for LSV model-
ling: DCu(I)=1.75×10−9 m2s−1α=0.82 and
k0=3.83×10−5 cm s−1 calculated from Eq.
(22), k0=3.83×10−5 cm s−1 calculated
from Eq. (23) and k0=5.88×10−5 cm s−1

calculated from Eq. (29). The potential is ex-
pressed vs. the Cu reference in equilibrium with
10.25mM Cu+ in solution, i.e. −0.118V vs.
standard copper electrode in acetonitrile.

Fig. 8. Fits obtained between experimental LSV data (solid line) and theoretical
LSV data (dashed line) generating using Eq. (21), for parameters (α and DCu(I))
shown in Table 1, under different scan rates.
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confirm the above conclusions, and reveal that the working curves
provided in this work can be used to accurately analyze the linear scan
voltammetric current responses for quasi-reversible soluble/insoluble
system.

The high transfer coefficient value of 0.8 obtained in this work is in
line of the values obtained for Cu deposition on amalgams from nitrile
solvents, indicating that the reaction site is located in the inner part of
the electric double layer [35,36]. However, the apparent rate constants
measured in this work for Cu deposition are three orders of magnitude
smaller than the standard rate constants obtained for copper deposition
on mercury [35,36], indicating that ion transfer into mercury is easier
than nucleation on copper surface.

5. Conclusion

In summary, using an extension of Nicholson's method, a new LSV
algorithm has been proposed for use in the computing of voltammo-
grams in the case of soluble-insoluble system where the electron
transfer takes place in a single step. The effect of the kinetic parameters
on the LSV responses has been examined. Through the variation of the
peak parameters with dimensionless kinetic rate (ω) and the transfer
coefficient (α), series of kinetic curves have been established. The ob-
tained results showed that according to the magnitude of the di-
mensionless rate constant the various LSV responses limitation could be
divided into three zones:

Zone A: ω≥ 103, reversible process.
Zone B: 10−3 < ω < 103, quasi-reversible process.
Zone C: ω≤ 10−3, irreversible process.
Moreover, we offer here three working curves to extract kinetic

details with high accuracy and simplicity to use, as only the experi-
mental values corresponding to the peak high, peak position and peak
width are required.

LSV models proposed in this work are applicable only to a situation
where instantaneous nucleation takes place, such as metal deposition
on same metal, or for example silver deposition on gold in some specific
conditions [28]. If nucleation overpotential is required to induce the
nucleation, followed by for example progressive 3D nucleation, the
shape of the voltammogram will change drastically, and the described
kinetic curves and LSV models are no longer valid [24]. On the other
hand, we point out that although this paper was limited to investigation
of the soluble-insoluble system during a linear scan, the LSV algorithm
could be extend with some modifications to model also CV, but in this
case the activity of the metal as the function of surface coverage would
be required.
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Appendix 1. Nomenclature

Notations

CM Concentration of the metal M
CMn+ Concentration of the metallic ions Mn+

∗ +C Mn Bulk concentration of the metallic ions Mn+

C0 Standard concentration
DMn+ Diffusion coefficient of metallic ions Mn+

A Electroactive surface area
n Number of electrons
F Faraday's constant

R Universal gas constant
T Absolute temperature
k0 Standard rate constant
I Current
E(t) Electrode potential
Ei Initial potential
E0 Standard potential
Eeq Equilibrium potential
v Potential scan rate
t Time

Greek letters

α Charge transfer coefficient
1–α Anodic charge transfer coefficient
ω Dimensionless kinetic rate parameter
Ψ Dimensionless current
η Dimensionless overvoltage (η= nF/RT(E− Eeq))
σ Dimensionless scan rate
γMn+ Activity coefficient of the metallic ions Mn+

δk Small time interval
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