
Probabilistic Schema Covering

Nguyen Thanh Toan1, Phan Thanh Cong1, Duong Chi Thang2, Nguyen Quoc Viet

Hung3, and Bela Stantic3

1 Back Khoa University, Ho Chi Minh, Vietnam
2 Ecole Polytechnique Federale de Lausanne, Lausanne, Switzerland

3 Griffith University, Gold Coast, Australia

Abstract. Schema covering is the process of representing large and complex

schemas by easily comprehensible common objects. This task is done by identi-

fying a set of common concepts from a repository called concept repository and

generating a cover to describe the schema by the concepts. Traditional schema

covering approach has two shortcomings: it does not model the uncertainty in

the covering process, and it requires user to state an ambiguity constraint which

is hard to define. We remedy this problem by incorporating probabilistic model

into schema covering to generate probabilistic schema cover. The integrated prob-

abilities not only enhance the coverage of cover results but also eliminate the

need of defining the ambiguity parameter. Both probabilistic schema covering and

traditional schema covering run on top of a concept repository. Experiments on

real-datasets show the competitive performance of our approach.

Keywords: Schema matching, Schema covering, Probabilistic models

1 Introduction

An important part in business nowadays is how to cooperate with little effort. As new

organizations arise, they need to integrate with existing organizations. However, new

organizations also create their own schemas to describe their business logics, which

makes cooperation harder. Since each organization has its own schema, the process of

cooperation becomes painful and tiresome. In order to support cooperation, they need to

match a schema of an organization to another. Schema matching is the process of finding

correspondences between attributes of schemas [1,2]. It is used extensively in many

fields [3,4,5], especially data integration [6,7]. In this paper, we study a new approach to

schema matching by representing the schemas in high level of abstraction.

Schema matching traditionally performs matching on attribute-level to create attribute

correspondences. This process is ineffective considering a large schema with thousands

of attributes. Moreover, users tend to think schemas in terms of business object level when

designing schema mappings. Therefore, describing the schemas at low-level structure

such as attribute makes the manual matching process error-prone. This matching process

would be easier if we could represent schemas in a higher level of abstraction.

Since schemas are used to capture everyday business activities and some of these

business activities are the same among organizations, these schemas may contain many

common parts. These common parts represent business objects that are comprised in

2 Nguyen Thanh Toan et al.

the schemas which are called concepts. Some common concepts are “Address”, which

describes the location of an entity, or “Contact”, which provides information about a

person or an organization. Based on this observation, the process of describing schemas

in terms of concepts can be made possible and it is called schema covering. Schema

covering is a novel approach which has been studied carefully in [8,9].

In [8], the schema cover found by schema covering must satisfy a pre-defined

ambiguity constraint which limits the number of times a schema attribute can be covered.

However, this ambiguity constraint is hard to define since it must be stated beforehand

and for each attribute in the schema. Traditional schema covering approach has another

shortcoming that it does not support modeling uncertainty arisen in the covering process.

For example, given a concept “InvoiceToAddres”, we are not sure that it represents

subschema “ShipToAddress” or “BillToAddress” in the schema. Schema covering would

cover both subschemas by the “InvoiceToAddress” concept as the subschemas and the

concept all refer to the real-life concept “Address”. As a result, these problems lead to the

employment of probability to express uncertainty. We propose incorporating probabilistic

model into schema covering to introduce probabilistic schema covering. This allows us

to solve the above shortcomings through user feedback. Without probabilities, the user

feedback on schema covers would be hard.

In short, our goal is to create a new schema covering mechanism that supports user

feedback and does not require a user-defined ambiguity constraint by incorporating

probabilistic model. The paper is organized as follows. In §2, we model and formulate

the problem of probabilistic schema cover. In §3, we present the probabilistic schema

covering framework. In §4, we run various experiments on probabilistic schema covering.

Finally, we provide some related work in §5 before §6 concludes the paper.

2 Model and Problem Statement

2.1 Background

Let schema s = {a1, a2, . . . , an} be a finite set of attributes. Attributes can be both sim-

ple or compound and compound attributes should not necessarily be disjoint. Attributes

in a “Purchase Order” schema might be item, unitPrice, firstName, etc. A compound

attribute might be name, combining two other attributes – firstName, and lastName.

Defining a schema as a set of attributes is general as it can represent both relational and

hierarchial schema.

Let s and s′ be schemas with n and n′ attributes, respectively. Let S = s× s′ be the

set of all possible attribute correspondences between s and s′. S is a set of attribute pairs

(e.g., (item, line)). Each attribute correspondence (a pair of attributes) is associated with

a confidence value mi,j(s, s
′) which represents the similarity between the i-th attribute

of s and the j-th attribute of s′ [10,11]. mi,j is defined to be a real number in [0, 1]
since it tends to express the probability of an attribute being substituted by the other.

These confidence values are generated by schema matchers which are matching tools

performing schema matching between two schemas. Some notable schema matchers are

AMC [12], COMA++ [13].

A concept c is also a set of attributes: c = a1, a2, ..., am where ai is an attribute. A

concept and a schema is basically the same as they are both sets of attributes. However,

Probabilistic Schema Covering 3

a concept is more meaningful as it describes a business object and it also has a smaller

size. Concepts have relations between them called micromappings. Each micromapping

is actually a set of attribute correspondences.

We also define the counterpart of concepts in the schema which are subschemas. A

subschema t is also a set of attributes and it is a subset of schema s. Each concept and its

subschema has an alignment score f(t, c) which describes the similarity between them.

2.2 Schema Covering Framework

In general, the schema covering framework mentioned in [8] takes a schema and a

prebuilt concept repository as input. The concept repository is a corpus of predefined

concepts, which is built before-hand [8]. Schema covering finds the cover of a schema

over two steps: schema decomposition and schema covering.

Schema decomposition. In the first step, given a schema s and a concept repository, the

schema is decomposed into smaller parts based on the concepts in the repository. More

specifically, we find the corresponding subschema t of each concept in the repository

by matching the schema with the concept. The corresponding attributes of the concept

attributes are grouped as the attributes of the subschema. Each concept and subschema

forms a 〈subschema, concept〉 pair that will be used in the schema covering step.

Finally, the alignment score of a pair f(t, c) is calculated based on its correspondences

where 〈t, c〉 is a 〈subschema, concept〉 pair and f is a pre-defined function. The output

of this decomposition step is a set of 〈subschema, concept〉 pairs with an alignment

score attached to each pair.

Schema covering. From the set of pairs after decomposition, we select the pairs that

best cover the schema. The selected pairs, which are called a schema cover, must satisfy

many constraints depending on the schema covering approach. The formal definition of

a schema cover is as follows:

Definition 1. Given a set of subschemas Ts of schema s, a set C of concepts, we define

a set of valid matchings between subschemas and concepts:

E(Ts, C) = {(t, c)|t ∈ Ts, c ∈ C}

where (t, c) is a set of attribute correspondences between subschema t and concept c. A

cover of s by C, vs,C ⊆ E(Ts, C) is a subset of valid matchings between Ts and C.

The schema cover found by traditional schema covering approach must satisfy an

ambiguity constraint which limits the number of times a schema attribute can be covered.

Therefore, traditional schema covering approach is also called ambiguity-based schema

covering, which is discussed in [8]. Having described the traditional schema covering

approach, we can turn to the problem we want to solve.

2.3 Problem Statement

In order to incorporate probabilistic model into schema covering, we need to find a

mechanism to integrate probabilistic model into schema covering.

4 Nguyen Thanh Toan et al.

Formally, our problem takes a set of 〈subschema, concept〉 pairs, E(Ts, C) =
{(t, c)|t ∈ Ts, c ∈ C}, as input where Ts is a set of sub-schemas and C is a set of

concepts in the repository. Each pair is attached with an alignment score f(t, c) where

f is a user-defined function. These pairs together with their alignment scores are taken

from the decomposition result. In other words, we do not focus on the decomposition

step and we assume that the decomposition result is available before.

In this problem, we want to compute a probabilistic schema cover. It is a set of

possible covers vi and each cover is associated with a probability Pr(vi). The formal

definition for probabilistic schema cover is described as follows.

Problem 1 (Probabilistic Schema Cover). Let E be a set of 〈subschema, concept〉 pairs.

The probabilistic schema cover built from E is a set V = {(v1, P r(v1)), . . . , (vn, P r(vn))}
such that

– For each i ∈ [1, n], vi is a cover and for every i, j ∈ [1, n], i 6= j ⇒ vi 6= vj
– Pr(vi) ∈ [0, 1] and

∑n

i=1 Pr(vi) = 1

The running example below illustrates a probabilistic schema cover.

Example 1. Assuming we have found two pairs 〈t1, c1〉 and 〈t2, c2〉, their alignment

scores are respectively 0.8 and 0.3. From this set of pairs, we can generate a set of possi-

ble covers namely {v1, v2, v3, v4} = {{〈t1, c1〉, 〈t2, c2〉}, {〈t1, c1〉}, {〈t2, c2〉}, ∅} Each

cover is attached with a probability, for example, (Pr(v1), P r(v2), P r(v3), P r(v4))
= (0.24, 0.56, 0.06, 0.14). Together, they form a probabilistic schema covering.

3 Probabilistic schema covering

In this section, we discuss the approach to build a probabilistic schema cover. We first

describe what properties a good cover must have. After that, we discuss the probabilistic

schema covering framework. In the framework, we show how to generate a probabilistic

cover from a set of pairs after decomposition.

3.1 Cover characteristics

A schema covering approach must satisfy two fundamental properties to ensure a good

cover result.

– Overlapping of subschemas: Schema covering must accept the overlapping of sub-

schemas. Since an attribute meaning is ambiguous, it is unreasonable to enforce “one

attribute - one concept”. For example, attribute “name” could be a person’s name or

a company’s name depending on the context. We may need two concepts “Person”

or “Company” to cover this attribute. In addition, as the concepts generating these

subschemas are also overlapping, which leads to the overlapping of subschemas.

– Although schema covering can add concepts that cover the same parts of the schema,

schema covering should not add bogus concepts into the final cover. A bogus concept

is one that is not related to the schema as illustrated in Fig. 1. There are two cases that

the concept is not related to the schema: it covers an insignificant part of the schema

or it covers the schema incorrectly. For example, the concept “Organization” in Fig. 1

is a bogus concept as it covers only two attributes but one of them is incorrect.

These properties are the guideline to create a good cover for a schema covering approach.

6 Nguyen Thanh Toan et al.

pairs would lead to computational explosion since the size of Ω, |Ω| = 2|E|, is large.

Therefore, we need some methods to reduce the computational space.

We introduce the alignment score threshold λ and the error window ǫ to decrease

the size of the computational space. Using the threshold λ and the error window ǫ, we

define two sets of pairs Ec and Eu:

– Certain set Ec = {(t, c) ∈ E|f(t, c) ≥ λ+ ǫ}
– Uncertain set Eu = {(t, c) ∈ E|f(t, c) < λ+ ǫ ∧ f(t, c) ≥ λ− ǫ}

By setting the alignment score threshold λ, we want to focus only on the promising pairs.

Pairs with alignment scores higher than the threshold are more likely to be correct. On

the other hand, the error window value ǫ represents pairs that we are unsure if they are

correct or not. That means we need to assign probabilities to only these pairs in Eu to

express uncertainty.

From the uncertain set of pairs Eu, we generate the possible covers Ωu = v∗i |v
∗
i ⊂ Eu.

Therefore, the number of possible covers |Ωu| is 2|Eu| . Since 2|Eu| ≪ 2|E|, we have

reduced the computational space significantly. Finally, the probabilistic schema cover

for E is computed based on Ωu as follows: Ω = {vi|vi = v∗i ∪ Ec, v
∗
i ∈ Ωu} and

Pr(vi) = Pr(v∗i).

In Alg. 1, we describe how to generate the probabilistic cover for the set of pairs E.

In Line 1-7, we divide the decomposition result into two sets. In Line 8, we generate

subsets of the uncertain pairs and then assign probability to each of them in Line 11.

Finally, we combine each set of pairs after assigning probability with the certain pairs to

generate a cover of the probabilistic cover in Lines 10-13. The probability assignment

step is discussed next.

Algorithm 1: Generating probabilistic cover

input : P ⊲ a set of pairs

λ ⊲ an alignment score threshold

ǫ ⊲ an error window

output : A set of covers with probability V

1 C = ∅ ⊲ A set of certain pairs

2 U = ∅ ⊲ A set of uncertain pairs for pair p ∈ P do

3 if p.alignmentScore ≥ λ + ǫ then

4 C.add(p)

5 else if p.alignmentScore < λ + ǫ and p.alignmentScore ≥ λ − ǫ then

6 U.add(p)

7 S = ∅ ⊲ sets of uncertain pairs

8 S = generateSubsets(U)
9 assignProbability(S)

10 for set s ∈ S do

11 c.add(C)
12 c.add(s)
13 V.add(c)

14 return V

3.4 Assign probability to each cover

After the first step, we have generated a set of possible covers Ωu from the uncertain set

of pairs Eu. In this step, we assign probability to each cover v∗i ∈ Ωu.

Probabilistic Schema Covering 7

Consistency constraint Despite the fact that alignment scores express how similar

between the subschemas and the concepts, they do not tell us which concept a subschema

should align to. For example, although a subschema “ShipToAddress” is more similar to

the concept “DeliverToAddress” than to “BillToAddress”, it is still reasonable to align

“ShipToAddress” to “BillToAddress” in a cover. The reason is that some people use their

delivery address also as a billing address. Therefore, we could find probabilistic schema

covers that still make sense according to a set of 〈subschema, concept〉 pairs. In other

words, there could be sets of probabilistic schema covers that are consistent with a set

of 〈subschema, concept〉 pairs. As a result, we can specify a consistency constraint to

define which probabilistic covers are consistent with a set of pairs.

Definition 2. A probabilistic cover V is consistent with a pair (t, c) if the sum of

probabilities of all covers that contain (t, c) equals the alignment score f(t, c). A

probabilistic cover V is consistent with a pair (t, c) if

∑

(t,c)∈vi

Pr(vi) = f(t, c)

A probabilistic cover V is consistent with a set of pairs M if it is consistent with each

pair in M .

This constraint is introduced to ensure that a cover containing a pair with low

alignment score has low probability. Since a pair with low alignment score is more likely

to be incorrect, the cover in which it participates is also less likely to be correct. We

illustrate this observation in Example 2.

Example 2. Applying the consistency constraint into the covers in Example 1, we have

the following equations:

Pr(v1) + Pr(v2) = 0.8 (1)

Pr(v1) + Pr(v3) = 0.3 (2)

Since Pr(v1) ≥ 0, Pr(v3) ≥ 0 and due to Eq. 1, Pr(v1), Pr(v3) must be less than 0.3.

However,the probability for cover v2 which does not contain pair 〈t2, c2〉 is higher as

Pr(v1) < 0.3 then Pr(v2) must be higher than 0.5 according to Eq. 2. Therefore, the

consistency constraint ensures that covers containing pairs with low alignment scores:

v1, v3 have low probabilities and vice versa.

However, given a set of pairs Eu, there are various probabilistic schema cov-

ers that are consistent with it. In Example 2, (Pr(v1), P r(v2), P r(v3), P r(v4)) =
(0.1, 0.7, 0.2, 0) or (Pr(v1), P r(v2), P r(v3), P r(v4)) = (0.24, 0.56, 0.06, 0.14) are

the possible solutions. In the following, we describe how to select a probabilistic schema

cover from a set of probabilistic covers that are consistent with a set of pairs.

Entropy maximization Among the probabilistic covers that are consistent with a set of

pairs, we select one that maximizes the entropy of its probabilities. Maximizing entropy

is reasonable that given a set of candidate covers, we are not sure which one is correct.

8 Nguyen Thanh Toan et al.

This uncertainty leads to the observation that these covers should be treated unbiasedly.

Maximizing entropy is not a new method since it has been used in various fields such as

natural language processing [14,15].

The probability assignment problem can now be reformulated to a constraint opti-

mization problem (OPT). That is, we need to assign the probabilities to the covers in a

probabilistic cover such that both the consistency constraint is satisfied and the entropy

is maximized. The optimization problem is described as follows.

Definition 3. Let Pr(v1), . . . , P r(vn) be the probabilities of cover v1, . . . , vn respec-

tively. Pr(vi) is found by solving the following OPT problem:

maximize
∑n

i=1 −Pr(vi) logPr(vi), subject to:

1. ∀i ∈ [1, n], 0 ≤ Pr(vi) ≤ 1
2.

∑
i=1..n Pr(vi) = 1

3. ∀(t, c) ∈ Eu :
∑

j∈[1,n]:(t,c)∈vj
Pr(vj) = f(t, c)

Probabilities for the covers in the running example can be found by solving the

following problem:

Example 3. maximize −Pr(v1) logPr(v1)−Pr(v2) logPr(v2)−Pr(v3) logPr(v3)−
Pr(v4) logPr(v4), subject to:

1. Pr(v1) + Pr(v2) + Pr(v3) + Pr(v4) = 1
2. Pr(v1) + Pr(v2) = 0.8 (consistency constraint)

3. Pr(v1) + Pr(v3) = 0.3 (consistency constraint)

4. ∀i ∈ [1, n], 0 ≤ Pr(vi) ≤ 1

This problem can be solved by using an OPT solver such as Knitro [16]. Solving this prob-

lem, we get the following solution (Pr(v1), P r(v2), P r(v3), P r(v4)) = (0.24, 0.56, 0.06, 0.14).
We can generate many other solutions if we don’t maximize the entropy such as (Pr(v1), P r(v2),
Pr(v3), P r(v4)) = (0.1, 0.7, 0.2, 0). However, the latter solution is biased as it favors

pair (t2, c2) over (t1, c1). In addition, this solution implies that the pairs (t1, c1) and

(t2, c2) are dependent.

Observing the above example, it may seem counter-intuitive to consider an empty

cover as a possible solution. However, if all the pairs have low alignment score, it is

rational to regard the empty cover as a possible solution as other non-empty covers could

be incorrect.

Probabilistic schema covering complies with the properties we described in §3.1.

Since bogus concepts tend to have low alignment score, they are only contained in

covers with low probabilities. However, users might focus on the top-k covers with high

probabilities where these bogus concepts are not available. In other words, probabilistic

schema covering satisfies the first property of generating good covers. Moreover, since

the pairs in each cover of the probabilistic schema cover is a subset of the pairs from the

decomposition step, these pairs may overlap. This means probabilistic schema covering

satisfies the second property of good cover generation.

Probabilistic Schema Covering 9

4 Experiments

We now describe experiments that validate the performance of the probabilistic schema

covering and its application. The main goal of these experiments is to examine the quality

of the cover obtained from probabilistic schema covering.

4.1 Experimental setup

Dataset We start by introducing the dataset being used for evaluation in this document.

In fact, finding an appropriate dataset is a non-trivial task as the collected schemas must

be relevant and belong to a same domain. We have collected 5 schemas from the Purchase

Order domain. Their statistics are described in Table 1. From these schemas, we also

create the golden mappings between them manually. The number of goldenmappings

between pairs of schemas is described in Table 2.

Table 1. Statistics of the five schemas

Apertum CIDX Excel Noris Paragon

#Nodes 140 40 54 65 77

#Internal Nodes 25/115 7/33 12/42 11/54 12/65

Depth 4 3 3 3 5

Table 2. #Golden mappings between schemas

Apertum CIDX Excel Noris Paragon

Apertum 54 79 85 66

CIDX 54 65 32 49

Excel 79 65 50 60

Noris 85 32 50 45

Paragon 66 49 60 45

Concept repository In order to facilitate the schema covering process, a concept

repository must be built first. As it is hard to find a concept repository that contains

concepts that are relevant to the above schemas, we create the concepts from the schemas

based on their structure.

From three schemas Apertum, Paragon and CIDX, we create the concepts using the

leaf-only strategy. If an attribute contains leaf attributes, we create a new concept. The

concept name is the attribute’s name and the concept attributes are the leaf sub-attributes

of it. After breaking the schemas into concepts, we connect these concepts using the

available golden correspondences (i.e. correspondences present in the ground truth). For

each source and target attribute of a golden correspondence, we find the corresponding

source and target attributes of the concepts. Next, we create correspondences between

these concept attributes by COMA++ [13] with default parameters. We apply this process

to generate all correspondences between the concept. Moreover, as we want the concepts

to have various sizes, we create smaller concepts in the repository from the existing ones.

For a set of concepts that are connected to each other, we create a new concept from

the intersections of them. Next, mappings from these new concepts to their parents and

parents’ neighbors are made. Eventually, we have constructed a concept repository that

contains concepts of various sizes and correct mappings between them. The statistics

of the concept repository are: 45 concepts, 50 micromappings, 220 attributes, 5.089

attributes per concept in average, 1.11 micromappings per concept in average.

12 Nguyen Thanh Toan et al.

matchers, one can consult the surveys at [17,21]. The closest approach to our work is

the schema covering technique discussed in [8]. In this work, they have described the

general framework for schema covering and showed that schema covering is possible.

However, their approach required user to define an ambiguity constraint before starting

the covering process, which is unrealistic. Our probability assignment approach for

probabilistic schema covering basically follows the approach mentioned in [22,23].

In this work, they have described a systematic way to assign probabilities to schema

mappings to generate probabilistic schema mappings. Since there are various analogies

between two approaches such as a cover, a pair and its alignment score are similar to a

schema mapping, a correspondence and its confidence value, their probability assignment

approach is applied in our work.

6 Conclusions

This paper describes a novel approach to schema covering in order to mitigate uncertainty

and improve covering results: probabilistic schema covering. In order to propose this

approach, we have solved the problem of finding a mechanism to integrate probabilistic

model into schema covering In order to generate a probabilistic schema cover, we first

construct its possible set of covers and then we assign probability to each cover. The

assigned probabilities must satisfy a consistency constraint and their entropy must also

be maximized. Throughout the experiments, we have shown that probabilistic schema

covering is a robust approach and competitive to traditional schema covering approach.

References

1. Hung, N.Q.V., Luong, X.H., Miklós, Z., Quan, T.T., Aberer, K.: Collaborative schema

matching reconciliation. In: CoopIS. (2013) 222–240

2. Hung, N.Q.V., Tam, N.T., Chau, V.T., Wijaya, T.K., Miklós, Z., Aberer, K., Gal, A., Weidlich,

M.: SMART: A tool for analyzing and reconciling schema matching networks. In: ICDE.

(2015) 1488–1491

3. Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K.: On leveraging crowdsourcing techniques

for schema matching networks. In: DASFAA. (2013) 139–154

4. Hung, N.Q.V., Luong, X.H., Miklós, Z., Quan, T.T., Aberer, K.: An MAS negotiation support

tool for schema matching. In: AAMAS. (2013) 1391–1392

5. Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K.: Reconciling schema matching networks

through crowdsourcing. EAI (2014) e2

6. NGUYEN, Q.V.H.: Reconciling Schema Matching Networks. PhD thesis, Ecole Polytech-

nique Federale de Lausanne (2014)

7. Gal, A., Sagi, T., Weidlich, M., Levy, E., Shafran, V., Miklós, Z., Hung, N.Q.V.: Making

sense of top-k matchings: A unified match graph for schema matching. In: IIWeb. (2012) 6

8. Saha, B., Stanoi, I., Clarkson, K.L.: Schema covering: a step towards enabling reuse in

information integration. In: ICDE. (2010) 285–296

9. Gal, A., Katz, M., Sagi, T., Weidlich, M., Aberer, K., Hung, N.Q.V., Miklós, Z., Levy, E.,

Shafran, V.: Completeness and ambiguity of schema cover. In: CoopIS. (2013) 241–258

10. Hung, N.Q.V., Wijaya, T.K., Miklós, Z., Aberer, K., Levy, E., Shafran, V., Gal, A., Weidlich,

M.: Minimizing human effort in reconciling match networks. In: ER. (2013) 212–226

Probabilistic Schema Covering 13

11. Hung, N.Q.V., Tam, N.T., Miklós, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go

reconciliation in schema matching networks. In: ICDE. (2014) 220–231

12. Peukert, E., Eberius, J., Rahm, E.: Amc-a framework for modelling and comparing matching

systems as matching processes. In: Data Engineering (ICDE), 2011 IEEE 27th International

Conference on, IEEE (2011) 1304–1307

13. Arnold, P., Rahm, E.: Enriching ontology mappings with semantic relations. Data & Knowl-

edge Engineering 93 (2014) 1–18

14. Berger, A.L., Pietra, V.J.D., Pietra, S.A.D.: A maximum entropy approach to natural language

processing. Computational linguistics 22(1) (1996) 39–71

15. Della Pietra, S., Della Pietra, V., Lafferty, J.: Inducing features of random fields. IEEE

transactions on pattern analysis and machine intelligence 19(4) (1997) 380–393

16. Byrd, R.H., Nocedal, J., Waltz, R.A.: Knitro: An integrated package for nonlinear optimization.

In: Large-scale nonlinear optimization. Springer (2006) 35–59

17. Bernstein, P.A., Madhavan, J., Rahm, E.: Generic schema matching, ten years later. Proceed-

ings of the VLDB Endowment 4(11) (2011) 695–701

18. Rahm, E.: The case for holistic data integration. In: East European Conference on Advances

in Databases and Information Systems, Springer (2016) 11–27

19. Aumueller, D., Do, H.H., Massmann, S., Rahm, E.: Schema and ontology matching with

coma++. In: Proceedings of the 2005 ACM SIGMOD international conference on Manage-

ment of data, Acm (2005) 906–908

20. Seligman, L., Mork, P., Halevy, A., Smith, K., Carey, M.J., Chen, K., Wolf, C., Madhavan,

J., Kannan, A., Burdick, D.: Openii: an open source information integration toolkit. In:

Proceedings of the 2010 ACM SIGMOD International Conference on Management of data,

ACM (2010) 1057–1060

21. Rahm, E., Bernstein, P.A.: A survey of approaches to automatic schema matching. the VLDB

Journal 10(4) (2001) 334–350

22. Das Sarma, A., Dong, X., Halevy, A.: Bootstrapping pay-as-you-go data integration systems.

In: Proceedings of the 2008 ACM SIGMOD international conference on Management of data,

ACM (2008) 861–874

23. Nguyen, Q.V.H., Nguyen, T.T., Miklos, Z., Aberer, K., Gal, A., Weidlich, M.: Pay-as-you-go

reconciliation in schema matching networks. In: Data Engineering (ICDE), 2014 IEEE 30th

International Conference on, IEEE (2014) 220–231

