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Abstract
In the first part of this thesis, we present and compare several approaches for the
determination of the steady-state of large-scale Markov chains with an underlying low-
rank tensor structure. Such structure is, in our context of interest, associated with the
existence of interacting processes. The state space grows exponentially with the number
of processes. This type of problems arises, for instance, in queueing theory, in chemical
reaction networks, or in telecommunications.
As the number of degrees of freedom of the problem grows exponentially with the number
of processes, the so-called curse of dimensionality severely impairs the use of standard
methods for the numerical analysis of such Markov chains. We drastically reduce the
number of degrees of freedom by assuming a low-rank tensor structure of the solution.
We develop different approaches, all considering a formulation of the problem where
all involved structures are considered in their low-rank representations in tensor train
format.
The first approaches that we will consider are associated with iterative solvers, in
particular focusing on solving a minimization problem that is equivalent to the original
problem of finding the desired steady state. We later also consider tensorized multigrid
techniques as main solvers, using different operators for restriction and interpolation.
For instance, aggregation/disaggregation operators, which have been extensively used in
this field, are applied.
In the second part of this thesis, we focus on methods for feature selection. More
concretely, since, among the various classes of methods, sequential feature selection
methods based on mutual information have become very popular and are widely used in
practice, we focus on this particular type of methods. This type of problems arises, for
instance, in microarray analysis, in clinical prediction, or in text categorization.
Comparative evaluations of these methods have been limited by being based on specific
datasets and classifiers. We develop a theoretical framework that allows evaluating the
methods based on their theoretical properties. Our framework is based on the properties
of the target objective function that the methods try to approximate, and on a novel
categorization of features, according to their contribution to the explanation of the class;
we derive upper and lower bounds for the target objective function and relate these
bounds with the feature types. Then, we characterize the types of approximations made
by the methods, and analyse how these approximations cope with the good properties of
the target objective function.
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We also develop a distributional setting designed to illustrate the various deficiencies of
the methods, and provide several examples of wrong feature selections. In the context of
this setting, we use the minimum Bayes risk as performance measure of the methods.

Key-words: Markov chains, curse of dimensionality, low-rank structure, tensor train
format, entropy, mutual information, forward feature selection methods, performance
measure, minimum Bayes risk.
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Resumo
Na primeira parte da tese, apresentamos e comparamos algoritmos para a determinação
da distribuição estacionária de cadeias de Markov de larga escala com uma estrutura
subjacente de baixa característica. Tal estrutura está, no nosso contexto de interesse,
associada à existência de processos que interagem entre si. O espaço de estados cresce
exponencialmente com o número de processos. Aplicações podem ser encontradas, por
exemplo, em teoria de filas de espera, em análise de redes de reacções químicas, ou em
telecomunicações.
Como o número de graus de liberdade cresce exponencialmente com o número de processos,
a tão chamada maldição da dimensionalidade prejudica severamente o uso de métodos
standard para a análise numérica de tais cadeias de Markov. No nosso caso, reduzimos o
número de graus de liberdade assumindo que a solução tem uma estrutura tensorial de
baixa característica.
Desenvolvemos diferentes abordagens, que partilham o facto de o problema ser formulado
considerando que as estruturas envolvidas nas suas representações em termos do formato
tensor train.
As primeiras abordagens que vamos considerar estão associadas a métodos iterativos, em
particular focando-nos na resolução de um problema de minimização que é equivalente
ao problema de encontrar a distribuição estacionária desejada. Mais tarde, consideramos
também métodos multigrelha tensorizados, variando os operadores considerados para
restrição e interpolação, em particular considerando técnicas de agregação/desagregação,
que são particularmente adequadas para o problema que pretendíamos resolver.
Na segunda parte da tese, concentramo-nos em métodos de selecção de variáveis. Mais
concretamente, como, entre as várias classes de métodos, métodos de selecção de variáveis
sequenciais baseados em informação mútua tornaram-se bastante populares e amplamente
utilizados na prática, concentramo-nos neste tipo de métodos. Aplicações podem ser
encontradas, por exemplo, em análise de microarranjos, em predição clínica, ou em
categorização de textos.
Avaliações comparativas destes métodos têm sido limitadas pelo facto de se basearem
em conjuntos de dados e classificadores específicos. Neste trabalho, desenvolvemos uma
configuração teórica que permite avaliar os métodos baseando-nos nas suas propriedades
teóricas. A nossa configuração é fundamentada pelas propriedades teóricas da função
objectivo alvo que os métodos tentam aproximar, e numa nova categorização de variáveis,
de acordo com a sua contribuição para a explicação da classe; derivamos limites superiores
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e inferiores para a função objectivo alvo e relacionamos estes limites com os tipos de
variáveis. Em seguida, caracterizamos os tipos de aproximação considerados pelos
métodos, e analisamos como estas aproximações lidam com as boas propriedades da
função objectivo alvo.
Desenvolvemos também uma configuração distribucional projectada para ilustrar as várias
deficiências dos métodos, e fornecemos vários exemplos de selecções de variáveis erradas.
No contexto desta configuração, utilizamos o risco de Bayes mínimo como medida de
performance dos métodos.

Palavras chave: cadeias de Markov, maldição da dimensionalidade, estrutura de baixa
característica, formato tensor train, entropia, informação mútua, métodos de selecção de
variáveis sequenciais, medida de performance, risco de Bayes mínimo.
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Résumé
Dans la première partie de la thèse, nous présentons et comparons plusieurs approches
pour déterminer l’état stationnaire de chaînes de Markov à grande échelle ayant une
structure sous-jacente de tenseur à rang faible. Dans le notre cadre d’intérêt, une telle
structure est associée avec l’existence d’interactions entre processus. L’espace d’état
grandit de manière exponentielle en fonction du nombre de processus. Ce type de
problèmes se pose par exemple dans la théorie des files d’attente, l’analyse de réseaux de
réactions chimiques, ou dans les télécommunications.
Comme le nombre de degrés de liberté du problème grandit de manière exponentielle en
fonction du nombre de processus, le fléau de la dimension pose des problèmes lors de
l’utilisation de méthodes standard d’analyse numérique pour de telles chaînes de Markov.
Nous réduisons drastiquement le nombre de degrés de liberté en supposant une structure
de tenseur à faible rang de la solution.
Nous développons différentes approches qui ont en commun le fait que le problème est
formulé en considérant toutes les structures impliquées en représentations à rang faible
au format tensor train.
Les approches initiales que nous avons considérées étaient associées avec des solveurs
itératifs, en particulier se focalisant sur la résolution d’un problème de minimisation
équivalent au problème de trouver l’état stationnaire désiré. Ensuite, des techniques
multigrille tensorisées ont également été considérées comme des solveurs principaux
en utilisant différents opérateurs pour la restriction et interpolation, par exemple des
opérateurs d’aggrégation/désaggrégation, qui ont été utilisés intensivement dans ce
domaine.
Dans la deuxième partie de cette thèse, nous nous concentrons sur des méthodes de
sélection de caractéristiques. Plus concrètement, puisque les méthodes de sélection de
caractéristiques progressives basées sur l’information mutuelle parmi les différentes classes
de méthodes sont devenues très populaires et utilisées en pratique, nous nous focalisons
sur ce type de méthodes en particulier. Ce type de problèmes se pose par exemple dans
l’analyse de microréseaux, la prédiction clinique, ou la catégorisation de texte.
Les évaluations comparatives de ces méthodes ont été limitées par l’utilisation de jeux de
données et de classificateurs spécifiques. Nous développons un cadre théorique qui permet
d’évaluer les méthodes basées sur leurs propriétés théoriques. Notre cadre est basé sur
les propriétés de la fonction objectif cible que les méthodes essaient d’approximer et sur
la catégorisation originale de caractéristiques selon leur contribution à l’explication de
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la classe; nous dérivons des bornes supérieures et inférieures pour la fonction objectif
et nous mettons ces bornes en relation avec le type de caractéristiques. Ensuite, nous
caractérisons les types d’approximations faites par les méthodes et analysons comment
ces approximations se comportent avec les bonnes propriétés de la fonction objectif cible.
De plus, nous développons un cadre distributionnel construit pour illustrer les différentes
déficiences des méthodes et donnons plusieurs exemples de mauvaises sélections de
caractéristiques.

Mots clés : Chaînes de Markov, fléau de la dimension, structure à rang faible, format train
de tenseurs, entropie, information mutuelle, méthodes de sélection de caractéristiques
progressives, mesure de performance, risque Bayésien minimal.
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Acronyms
The following table describes the significance of various acronyms used throughout the
thesis. The page on which each one is defined or first used is also given.

Acronym Full definition Page
ALS alternating least squares 26

AMEn alternating minimal energy 34
CP CANDECOMP/PARAFAC 4
MI mutual information 5

SVD singular value decomposition 4
TMI triple mutual information 86
TT tensor train 4
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1 Introduction

In this chapter, we introduce the two main independently treated problems addressed in
this thesis: finding the stationary distribution of structured large-scale Markov chains
using low-rank tensor methods and evaluating a particular subclass of methods for feature
selection. The first problem is discussed in Section 1.1 while the second is discussed in
Section 1.2. We finish the chapter by briefly discussing the contributions in this thesis,
in Section 1.3.

1.1 Low-rank tensor methods for structured large-scale Markov
chains

In the first part of the thesis, we focus on the computation of the stationary distribution
of continuous–time Markov chains.

The problem to be solved is:

QTx = 0 with eTx = 1, (1.1)

where Q is the generator matrix of the Markov chain of interest and e denotes the vector
of all ones. For a certain ordering of the states of the Markov chain, the entry in the i-th
row and j-th column of Q contains the rate of transition from the state i to the state j.
Matrix QT is non-symmetric, singular and verifies eTQT = 0.

This problem can be formulated as a constrained least squares problem:

min
x

{‖QTx‖2
2 : eTx = 1}. (1.2)

For an irreducible – thus, also ergodic since we work with the continuous case – Markov
chain, the problem has an unique solution [Ros00, Ch. 4]. For reducible Markov chains,
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Chapter 1. Introduction

which also appear quite frequently, this does not hold. We will however also deal with
this latter case.

We focus on Markov processes that feature high-dimensional state spaces arising from
modelling subsystems that interact between them. The considered Markov chain consists
of d interacting subsystems (processes). Q consequently has a tensor – Kronecker –
structure of the form

Q =
V∑
t=1

d⊗
k=1

E
(t)
k , (1.3)

where each term in the summation represents a possible transition between states. The
number of possible states of subsystem k corresponds to the number of rows (or columns)
of the different E(t)

k . Note that QT has the same structure as we just need to replace
each E(t)

k in (1.3) by (E(t)
k )T .

Authors typically divide the possible transitions into three classes; see, for instance,
[Ste94, Ch. 9]: local transitions, associated with exclusively one subsystem; functional
transitions, whose rates involve the current state of other subsystems; and synchronized
transitions, which are transitions that occur simultaneously in different subsystems.

Therefore, the matrix can be decomposed in:

Q = QL +QI , (1.4)

where QL is the part representing the local transitions while QI represents the interactions
between subsystems – associated with functional and synchronized transitions. The local
part takes the form

QL =
d∑

μ=1
Id ⊗ . . . Iμ+1 ⊗ Lμ ⊗ Iμ−1 ⊗ · · · ⊗ I1, (1.5)

where Lμ is the matrix representing the local transitions in the μ-th subsystem. Note that
such local part can be simply represented using a Kronecker sum given that all possible
transitions that exclusively concern a particular subsystem can be considered together.
This is due to the fact that the matrices associated with the remaining subsystems are
simply identity matrices since such subsystems are completely independent of the related
transition.

Applications of such models can be found, e.g., in queueing theory [Kau83, Cha87];
stochastic automata networks [LS04a, PS97]; analysis of chemical reaction networks
[ACK10, LH07]; or telecommunications [PSS96, AFRT06].

Assuming a low-rank structure in the transition rate matrix is extremely useful when
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1.1. Low-rank tensor methods for structured large-scale Markov chains

Markov chains with an underlying Kronecker structure, as in (1.3), are considered.
Moreover, this becomes unavoidable if the goal is to study Markov chains associated
with an increasing number of processes, given that problems of this kind are known for
their so called state space explosion [BD07a] – exponential growth of the state space
dimension on the number of subsystems. Such state space explosion severely impairs the
numerical analysis of such Markov processes. In fact, as the number of processes grows,
the associated number of states easily becomes such that classical solvers are completely
inefficient. For example, if the number of states per subsystem is 5 and the number
of subsystems/processes is 10, we already have 510 = 500.000 states. The mentioned
classical solvers include all standard iterative solvers [BBC+94] for addressing the linear
system (1.1) or the equivalent eigenvalue problem; in fact, they have a complexity that
scales at least linearly with the state space dimension.

Low-rank tensor techniques can be used instead if we see the vector x from (1.1) as a
tensor. Denoting the number of states in the μ-th process, μ = 1, . . . , d, by nμ, x has
dimension n1n2 · · ·nd. Quite naturally, the entries of this vector can be rearranged into
an n1 × · · · × nd array, defining a d-th order tensor X ∈ �n1×···×nd . The entries of X are
denoted by

X(i1, i2, . . . , id), 1 ≤ iμ ≤ nμ, μ = 1, . . . , d,

where nμ is defined as the size of the μ-th mode of the tensor.

Recalling the example involving 10 subsystems with 5 possible states each, if x can be
simply represented as

x = xd ⊗ xd−1 ⊗ · · · ⊗ x1, xi ∈ �ni , i = 1, ..., d, (1.6)

there are only 5 × 10 = 50 degrees of freedom, instead of the original 510 = 500.000.

Product form solutions represent a particularly popular reduction technique that has
been successfully used in a wide range of applications for solving (1.3). The basic idea
of this reduction is to yield a system for which the stationary distribution factorizes
into a product of distributions for the individual processes – factorization of the form
(1.6). This reduced system naturally allows a much less expensive numerical treatment.
General techniques for arriving at product form solutions are described, e.g., in [Kul11,
Ch. 6]. Extensive work has been done on finding conditions under which such product
form approach applies; see [FPS08, Fou08] for some recent results. However, its practical
range of applicability is still limited to very specific subclasses. A rather different
approach is based on the observation that the transition rate matrix of a communicating
Markov process can often be represented by a short sum of Kronecker products [PFL89].
This property can then be exploited when performing matrix-vector multiplications
or constructing preconditioners [LS04b, LS04c] to reduce the cost of iterative solvers
significantly. However, the complexity of such linear solvers still scales linearly with the
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Chapter 1. Introduction

state space dimension.

Considering the simple product structure in (1.6), more sophisticated types of low-rank
tensor formats have been developed, which generalize the matrix rank to the tensor case.
The matrix rank is associated with the d = 2 case. X becomes a matrix and there is
an unique notion of rank that can be computed by the singular value decomposition
(SVD) [GL96]. The extension of this concept to d > 2 is then by no means unique,
originating different low-rank decompositions; see [KB09] for an overview.

The CANDECOMP/PARAFAC (CP) decomposition takes the form

vec(X) =
R∑
r=1
u(1)
r ⊗ u(2)

r ⊗ · · · ⊗ u(d)
r =

R∑
r=1

d⊗
μ=1

u(μ)
r , (1.7)

where each u(μ)
r is a vector of length nμ. The tensor rank of X is the smallest R admitting

such decomposition. The relation to (1.6) is clear: the corresponding x can be represented
as a tensor with tensor rank 1. Such representation clearly fits the considered structure
of the generator matrix; recall (1.3). This allows that efficient algorithms are developed
when combining the two representations, for instance, for defining the important matrix-
vector multiplication. In fact, such an operation can be then performed in a particularly
efficient way.

The introduced decomposition has been, in fact, used in [Buc10] for the specific problem
we aim to solve. More concretely, a version of (1.2), defined in terms of this format,
is solved. The algorithm uses an alternating optimization scheme. Despite certain
theoretical drawbacks [KB09], CP decomposition has been observed to perform fairly well
in practice. This decomposition may, however, not always be the best choice because it
does not exploit the topology of interactions. Furthermore, approximations (truncations)
are a crucial part of our proposed algorithms and this format does not allow performing
them efficiently. This is not the case for the related tensor train (TT) format, since it
has an associated truncation procedure – TT-SVD algorithm [Ose11b] – that is based
on singular value decomposition (SVD), which is known to have quasi-optimal upper
bounds for the error that is done in an approximation. We focus on this format instead
for dealing with the low-rank structure in high-dimensional tensors. This ansatz was
developed in the numerical linear algebra community [OT09, Ose11b] but had already
been used earlier in the physics community to represent quantum states of 1D spin chains
[AKLT87, Whi92, Sch11].

While TT format has been used, for instance, for simulating stochastic systems [JCJ10,
KKNS13], we explicitly target the computation of the associated stationary distributions,
developing and comparing different algorithmic approaches.
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1.2 Foundational topics in forward feature selection methods

Concerning the second part of the thesis, we focus on forward feature selection methods.

In an era of data abundance, of a complex nature, it is of utmost importance to extract,
from the data, useful and valuable knowledge for real problem solving. Companies seek,
in the pool of available information, commercial value that can leverage them among
competitors or give support for making strategic decisions. One important step in this
process is the selection of relevant and non-redundant information in order to clearly
define the problem at hand and aim for its solution [BCSMAB15]; the importance of this
step, in the context of this new era of data abundance, has been also noted, for instance,
in [YWDP14, LDC+15].

Feature selection problems arise in a variety of applications, reflecting their importance.
Instances can be found in: microarray analysis [XJK+01, SIL07, BCSMAB13, LZO04,
LLW02], clinical prediction [BKRA+15, LZO04, LLW02], text categorization [YP97,
RY02, VMAF13, KQB16], image classification and face recognition [BCSMAB15], multi-
label learning [SS00, CS02], and classification of internet traffic [POV+].

Feature selection techniques can be categorized as classifier-dependent (wrapper and
embedded methods) and classifier-independent (filter methods). Wrapper methods [KJ97]
search the space of feature subsets, using the classifier accuracy as the measure of utility
for a candidate subset. There are clear disadvantages in using such approach. The
computational cost is huge, while the selected features are specific for the considered
classifier. Embedded methods [GGNZ08, Ch. 5] exploit the structure of specific classes
of classifiers to guide the feature selection process. In contrast, filter methods [GGNZ08,
Ch. 3] separate the classification and feature selection procedures, and define a heuristic
ranking criterion that acts as a measure of the classification accuracy.

Filter methods differ among them in the way they quantify the benefits of including a
particular feature in the set used in the classification process. Numerous heuristics have
been suggested. Among these, methods for feature selection that rely on the concept
of mutual information are the most popular. Mutual information (MI) captures linear
and non-linear association between features, and is strongly related with the concept of
entropy. Since considering the complete set of candidate features is too complex, filter
methods usually operate sequentially and in the forward direction, adding one candidate
feature at a time to the set of selected features. In each step, the selected feature is the
one that, among the set of candidate features, maximizes an objective function expressing
the contribution of the candidate to the explanation of the class. A unifying approach
for characterizing the different forward feature selection methods based on MI has been
proposed in [BPZL12]. An overview of the different feature selection methods is also
provided in [VE14], adding a list of open problems in the field.

5
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Among the forward feature selection methods based on MI, the first proposed group
[Bat94, PLD05, HLLC08, Pas13] is constituted by methods based on assumptions that
were originally introduced in [Bat94]. These methods attempt to select the candidate
feature that leads to: maximum relevance between the candidate feature and the class;
and minimum redundancy of the candidate feature with respect to the already selected
features. Such redundancy, which we call inter-feature redundancy, is measured by the
level of association between the candidate feature and the previously selected features.
Considering inter-feature redundancy in the objective function is important, for instance,
to avoid later problems of collinearity. In fact, selecting features that contain repeated
information, considering the information in the already selected ones, in terms of class
explanation should be avoided.

A more recently proposed group of methods based on MI considers an additional term,
resulting from the accommodation of possible dependencies between the features given
the class [BPZL12]. This additional term is disregarded by the previous group of
filter methods. Examples of methods from this second group are the ones proposed in
[LT06, YM99, Fle04]. The additional term expresses the contribution of a candidate
feature to the explanation of the class, when considering that the information contained in
the already selected features is known, which corresponds to a class-relevant redundancy.
The effects captured by this type of redundancy are also called complementarity effects.

We build a theoretical framework for the evaluation of the most relevant forward feature
selection methods based on mutual information.

1.3 Contributions of this thesis

Chapter 2. This chapter starts the first part of the thesis. We first introduce tensors in
their full representation and some basic operations. We then discuss the tensor train
format and how the most relevant operations are done on it. These operations are
the ingredients needed in our proposed approaches for the solution of (1.1). The main
concern when performing such operations is that the resulting structures still have a
low-rank factorization.

Chapter 3. We propose and compare different algorithms for the solution of (1.1). All
these algorithms have their structures in TT format. We start with a simple iterative
solver that formulates (1.1) as an eigenvalue problem, proceeding then to an alternating
optimization scheme that uses a formulation based on the equivalent problem (1.2). The
importance of allowing the ranks to be flexible during this procedure motivated the
introduction of a third algorithm. Such algorithm is based on the same core principles
as the second, but adding a step that includes a natural rank adaptivity scheme, using
TT-SVD algorithm [Ose11b]. In the end, the first of the three algorithms is mostly added
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as a reference for comparison, being an algorithm based on a simple iterative solver,
while the main idea of the chapter is to consider alternating optimization schemes. This
is the core idea of the two remaining proposed algorithms.

We illustrate the use of the developed algorithms on two networks, which are queuing
networks that were used in the past for this same purpose. The associated numerical
experiments show the efficiency of our approaches when compared with a relevant existing
one. Furthermore, we extensively explore the differences between the proposed approaches,
concluding that those considering alternating optimization schemes are clearly better. It
is then also clear that the algorithm where rank adaptivity is allowed is clearly the best
of these two. For this particular algorithm, we show its scalability with respect to the
number of processes.

The content of this chapter is based on the paper [KM14].

Chapter 4. We propose a new algorithm for the solution of (1.1), combining the
advantages of considering a tensorized multigrid method. This allows reducing the mode
sizes and, as a consequence, the condition number of the matrix of the problem; solved
with an alternating scheme, similar to the one proposed in Chapter 3. Moreover, all
structures involved in the algorithm are again in TT format. Such a tensorized multigrid
should be a good main solver, as it takes advantage of the knowledge that the generator
matrix has the representation (1.3) on the definition of the corresponding restriction and
interpolation operators. Its coarsest grid problem however still suffers from the curse
of dimensionality, as the number of modes of the corresponding tensor is not reduced
from one grid to another. In this context, applying an algorithm, such as the mentioned
alternating scheme that is designed to deal with large d, is necessary.

We illustrate the use of the developed algorithm on a variety of models from different
fields taken from a broad benchmark collection that is also part of the contributions of the
work that was developed in the context of this thesis: [Mac15]. The main novelty about
this approach is that, as the numerical experiments show, it allows dealing efficiently
not only with a large number of possible states per process (mode sizes) but also with a
large number of processes (d). Furthermore, by considering models from different fields,
robustness is also verified.

The content of this chapter is based on the paper [BKK+16].

Chapter 5. We propose two variants of an additional algorithm for the solution of (1.1),
again based on multigrid methods with restriction and interpolation operators that take
advantage of the structure of the problem. The main difference is that such operators
are now of a different type – based on aggregation/disaggregation. Restriction and
interpolation are chosen in a very particular way, called aggregation and disaggregation,
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respectively. Such an approach has been used in the past to solve (1.1). Moreover, the
structure (1.3) has been considered when choosing the aggregation and disaggregation
operators. The difference of our proposed algorithms is that, again, all involved structures
are in TT format. The two variants result from considering aggregation and disaggregation
done in two different ways.

The use of the developed algorithms is again illustrated on a variety of models from the
benchmark collection [Mac15].

The main object of comparison in the numerical experiments is the algorithm from
Chapter 4. Such experiments show that the first variant performs similarly to the
algorithm of reference. This is expected as they are both based on tensorized multigrid
schemes that reduce the mode sizes from one grid to the next in a similar way. The
performance is however slightly better for the newly proposed one. Furthermore, the
second variant is the only algorithm that is able to deal with a very particular type
of models. In fact, such type of models was rarely addressed in the existing literature
associated with this context. It would, in particular, cause difficulties if we tried to apply
the algorithms proposed in the two chapters that come before this one in the thesis to it.

In the end, robustness is obtained in the sense that we can partition the models in two
parts and for each part, we always have a method that is extremely efficient: we can
use the first variant for the generality of the models, while the second variant for the
remaining mentioned models that cannot be properly addressed with any other of the
proposed algorithms. Robustness is also emphasized by the fact that even a reducible
model is considered. In fact, while the solution is not unique for this type of model, if we
only focus on each connected component of states, the solution becomes again unique, so
that a concrete solution is actually possible to find.

The content of this chapter is based on the paper [Mac16].

Chapter 6. This chapter marks the beginning of the second part of the thesis. We
discuss the core concepts associated with forward feature selection methods based on MI.
More concretely, the fundamental concept of entropy is explored in detail, for discrete
and continuous random variables, along with its main properties. This is important
since the relevant concepts associated with MI can be also written in terms of intuitive
expressions containing entropy terms. Such concepts related to MI are then presented,
along with their associated properties.

Chapter 7. We describe the general context of forward feature methods based on MI,
introducing standard objective functions to be maximized in each step. Then, some
relevant concepts concerning feature selection are defined, and we prove some properties
of the mentioned standard objective functions that concern such concepts.
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We focus on explaining the general context concerning forward feature selection methods
based on mutual information. We introduce a target objective function to be maximized
in each step; we then define important concepts and prove some properties of such target
objective functions.

The mentioned target objective function cannot be used in practice as there is a term that
is required when evaluating them that is quite complex. It requires, in particular, the
knowledge of a high-dimensional term that is hard to estimate accurately. The common
solution is to use approximations, leading to different feature selection methods. For
the analysis in this thesis, we selected a set of methods representative of the main types
of approximations to the target objective function. We will describe the representative
methods, and discuss drawbacks resulting from their underlying approximations; we then
discuss how these methods cope with the some desirable properties that hold for the
target objective function.

We compare the feature selection methods using a distributional setting, based on a
specific definition of class, features, and a performance metric. The setting provides an
ordering for each of the methods, which is independent of specific datasets and estimation
methods, and is compared with the ideal feature ordering – the one obtained for the
target objective function. The aim of the setting is to illustrate how the drawbacks of
the methods lead to incorrect feature ordering and to the loss of the good properties of
the target objective function.

We are clearly able to identify, based on the developed work, the methods that should be
avoided, and the methods that have the best performance.

The content of this chapter is based on the paper [MOPV17].
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2 Tensors and tensor train format

In this chapter, we present basic properties of tensors and discuss some basic operations.
We then also present the corresponding elementary properties of the representation in
tensor train format, while discussing how some operations are done in this format. The
main concern when performing such operations is that the resulting structures still have
a low-rank factorization. We focus on the operations needed in the algorithms for solving
(1.1), introduced in the chapters of the first part of the thesis that follow.

This chapter is the fundamental introduction to what follows in the first part of the
thesis.

2.1 Tensors

A tensor is simply a multidimensional array. If X ∈ �n1×n2×···nd , then the tensor is said
to be of dimension d, while the different ni, i = 1, ..., d, are its mode sizes – i is the mode,
while ni is the size of this mode. In particular, if d = 2, we have a matrix. We exemplify
the notation for individual entries of the tensors for this particular case: X(i1, i2) denotes
the element that is in the row i1 and the column i2 of the matrix.

From here on, Matlab’s colon notation will be used to designate a range of indices.

It is common to dispose the entries of the tensor in matrices or even vectors. The resulting
representations are called matricization and vectorization, respectively. In particular,
we will see that it is then possible to represent the most relevant operations on tensors
through operations on such matrices and vectors, making them more intuitive.
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Vectorization is first exemplified for d = 2. The vectorization of X ∈ �n1×n2 is:

vec(X) =

⎡
⎢⎢⎢⎢⎣

X(:, 1)
X(:, 2)

...
X(:, n2)

⎤
⎥⎥⎥⎥⎦ .

We now also discuss the generalization of the case d = 2 given that it may not be
straight-forward. If x = vec(X), then x(ξ(i1, ..., id)) = X(i1, ..., id), where ξ is a function
that gives the index map

ξ(i1, ..., id) = 1 +
d∑

μ=1
(iμ − 1)

μ−1∏
ν=1

nν . (2.1)

This function naturally goes from {1, ..., n1} × · · · × {1, ..., nd} to {1, ...,
d∏

μ=1
nμ}. In

practice, we are considering that the multi-indices of the form (i1, i2, ..., id) are traversed
in reverse lexicographical order.

As for matricizations, the idea is, as already noted, to organize the entries of X in a matrix.
A particularly used type of matricization consists of considering the matrix resulting
from associating the μ-th mode with the rows and the remaining modes with the columns.
This is called the μ-th matricization. The resulting matrix X(μ) ∈ �nμ×n1···nμ−1nμ+1···nd

can be also formally defined through an index map. This index map is now defined from

{1, ..., n1} × · · · × {1, ..., nd} to {1, ..., nμ} × {1, ...,
d∏

ν=1,ν �=μ
nν}, and it is given by

ξ(μ)(i1, ..., id) = (i(μ), i( �=μ)), where i( �=μ) = 1 +
d∑

ν=1,ν �=μ
(iν − 1)

ν−1∏
η=1,η �=μ

nη.

The column index i( �=μ) is, in coherence with the vectorization case, associated with a
reverse lexicographical order. It should be emphasized that the matricizations exemplified
above are just particular cases, and there are many other possible ways to obtain matrices
from reorganizing the entries of a tensor. In particular, while these are the most interesting
matricizations when we think of tensors in their full representation, the ones used in the
context of TT format are of a different type, as we see later in Section 2.2.

2.1.1 Basic operations on tensors

We now focus on operations that are important to understand in the context of what
follows in the first part of the thesis. This will, in particular, facilitate the perception of
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the operations in TT format, discussed in Section 2.2.1. In this context, operations that
are straight-forward generalizations of the matrix case are omitted.

Multiplication with a matrix. It is possible to define the multiplication of a tensor
X ∈ �n1×n2×···nd by a matrix Aμ ∈ �m×nμ . A natural restriction is that it must be
associated with the μ-th dimension for coherence in the mode sizes. The μ-th mode
multiplication is defined, along the μ-th mode, as follows

Y = X ×μ Aμ ⇔ Y(μ) := AμX(μ).

Note that the size of the μ-th mode of Y differs from that of X, being m instead of nμ.

A property that connects the μ-th mode product with the Kronecker product for matrices
follows. Given the matrices Aμ ∈ �mμ×nμ , μ = 1, ..., d,

Y = X ×1 A1 · · · ×d Ad ⇔ Y(μ) = AμX(μ)(Ad ⊗ · · ·Aμ+1 ⊗Aμ−1 ⊗ · · ·A1)T .

Note that Y ∈ �m1×m2×···md .

Inner product. In the tensor case, the inner product is defined by the sum of the
element-wise product. It should be clear that this can be written, for tensors X and Y,
in terms of their μ-th matricizations, and also of their vectorizations. We have

〈X,Y〉 = 〈vec(X), vec(Y)〉 = trace(XT
(μ),Y(μ)),

where μ can be any mode – μ = 1, ..., d.

In the matrix case, d = 2, we get the trace inner product.

As for the induced norm ||X|| =
√〈X,X〉, it is, for d = 2, the Frobenius norm.

2.2 Tensor train format

We now explore the tensor train format.

The number of degrees of freedom associated with X ∈ �n×···×n is nd, if we consider that
the access to each individual entry is allowed. Reducing the number of degrees of freedom
can be done by generalizing the notion of low-rank format from matrices to tensors.

A matrix of rank r, X ∈ �n1×n2 , can be written as X = USV T , where U ∈ �n1×r and
V ∈ �n2×r are matrices with orthonormal columns, while S ∈ �r×r is a diagonal matrix
with non-negative entries. Such a decomposition can be obtained using SVD.
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When we move to tensors, the nd storage can be reduced using low-rank tensor formats.
We focus on a particular one in this thesis – the tensor train (TT) format [OT09, Ose11b].
The main feature of this format is that the exponential dependency on d disappears.
This format had been first used in the physics community under the name matrix product
states (MPS) [AKLT87, Whi92, Sch11].

We next represent a tensor in this format, followed by the description of how some
relevant operations are performed in such representation. We particularly focus on the
operations needed in the context of the algorithms that are described in the following
chapters of the first part of the thesis.

The matricization of interest, concerning the μ-th mode, when considering TT format is
not the μ-th mode matricization. It is, instead, the called μ-th mode unfolding. For a
tensor X ∈ �n1×n2×···×nd , the μ-th mode unfolding consists of arranging the entries in a
matrix X〈μ〉 ∈ �(n1···nμ)×(nμ+1···nd) associated with the index map ξ(i1, ..., id) = (irow, icol),
where

irow = 1 +
μ∑

ν=1
(iν − 1)

ν−1∏
η=1

nη and icol = 1 +
d∑

ν=μ+1
(iν − 1)

ν−1∏
η=μ+1

nη.

Such an index map is defined from {1, ..., n1} × · · · × {1, ..., nd} to {1, ...,
μ∏

ν=1
nν} ×

{1, ...,
d∏

ν=μ+1
nν}.

The notion of rank in this format is related with the typical definition of rank for matrices
through different unfoldings. The so-called TT rank is given by

rankTT(X) = (r0, r1, ..., rd) := (1, rank(X〈1〉), ..., rank(X〈d−1〉), 1).

An individual entry of the original tensor X ∈ �n1×n2×···×nd can be written as a product
of d matrices

X(i1, ..., id) = U1(i1)U2(i2) · · ·Ud(id), (2.2)

where the matrices Uμ(iμ) ∈ �rμ−1×rμ , iμ = 1, ..., nμ, are the so-called TT cores, which
will frequently be called cores for simplicity.

Remark 1. Tensor train decomposition is expected to be more suitable for networks
with an underlying topology of the subsystems associated with a train, in the sense that
the existing interactions should concern consecutive subsystems after these are suitably
ordered; see (2.2).

Each individual core can be also defined through three-dimensional tensors Uμ ∈
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�rμ−1×nμ×rμ that verify Uμ(:, iμ, :) = Uμ(iμ) instead, again for iμ = 1, ..., nμ. This
provides an alternative way to represent the TT cores. Therefore, X(i1, ..., id) can be
also represented as

X(i1, ..., id) =
r1∑

k1=1
· · ·

rd−1∑
kd−1=1

Uμ(1, i1, k1)Uμ(k1, i2, k2) · · ·

Uμ(kd−2, id−1, kd−1)Uμ(kd−1, id, 1). (2.3)

Some additional concepts are worth introducing in the context of exploring the structure
of the format. In particular, these concepts will be useful when defining the operations
of interest associated with this format.

We start with left and right unfoldings. They are associated with particular reshapings
of Uμ into matrices, related to the corresponding μ-th mode unfolding: UL

μ = U〈2〉
μ and

UR
μ = U〈1〉

μ represent the left and right unfoldings, respectively.

The tensor can be additionally separated in left and right parts. The resulting structures
are called interface matrices:

X≤μ(i1, ..., iμ) = U1(i1)U2(i2) · · ·Uμ(iμ);
X≥μ(iμ, ..., id) = [Uμ(iμ)Uμ+1(iμ+1) · · ·Ud(id)]T .

Note that X≤μ is in �n1n2···nμ×rμ and X≥μ is in �nμnμ+1···nd×rμ−1 .

The unfoldings and the interface matrices are related as follows:

X≤μ = (Inμ ⊗ X≤μ−1)UL
μ ;

XT
≥μ = UR

μ (XT
≥μ+1 ⊗ Inμ). (2.4)

Using (2.4), the μ-th core can be isolated. In fact, it holds that

vec(X) = (X≥μ+1 ⊗ Inμ ⊗ X≤μ−1)vec(Uμ).

Note that X≥μ+1 ⊗ Inμ ⊗ X≤μ−1 ∈ �n1n2···nd×rμ−1nμrμ .

Adopting the shorthand notation X �=μ = X≥μ+1 ⊗ Inμ ⊗X≤μ−1, we obtain an expression
that is crucial, as we will see in Chapter 3, for the definition of alternating optimization
schemes in this format:

vec(X) = X �=μvec(Uμ). (2.5)
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2.2.1 Operations on tensors in TT format

We now focus on operations that are intrinsic to the algorithms that will be defined later,
in the remaining chapters of the first part of the thesis. We go through some operations
that were skipped in Section 2.1.1 as they are straight-forward when dealing with tensors
in their full representation but not when this concrete format is considered. Additionally,
even for operations that are straight-forward, we want to at least present them so that
we go through all the ingredients needed in the algorithms.

Scaling. Given a TT tensor, and recalling that it can be represented in terms of core
tensors as in (2.2), it is clear that multiplying a constant by the tensor is the same as
multiplying it by one of the cores that compose it.

Orthogonalization. The representation of a given tensor in the TT format is not unique.
If, given the decomposition UL

μ = QR, we define that UL
μ becomes Q while UR

μ+1 becomes
RUR

μ+1, the representation is still associated with the same tensor. If Q has orthonormal
rows, this is called the left-orthogonalization of the μ-th core. Similarly, the right-
orthogonalization of a core is obtained by using the decomposition UR

μ = (QR)T = RTQT ,
setting then UR

μ to QT while UL
μ−1 is changed to UL

μ−1R
T .

In this context, if left-orthogonalization is performed on the first core, then for the second
and so on, we obtain a left-orthogonal tensor, meaning that (UL

μ)TUL
μ = Irμ . As a result,

it is also true that X≤μXT
≤μ = Irμ , for μ = 1, ..., d−1. Similarly, if right-orthogonalization

is performed on the second core, then for the third and so on, we obtain a right-orthogonal
tensor, meaning that UR

μ (UR
μ )T = Irμ . In that case, we also have X≥μXT

≥μ = Irμ , for
μ = 2, ..., d.

There is a more general definition concerning orthogonality than the possibilities of
a tensor being either left-orthogonal or right-orthogonal. If (UL

μ)TUL
μ = Irμ for μ =

1, ..., ν − 1, and UR
μ (UR

μ )T = Irμ for μ = ν + 1, ..., d, then the tensor is said to be
ν-orthogonal. In particular, being left-orthogonal is equivalent to being d-orthogonal
while right-orthogonal is to being 1-orthogonal.

Addition. Consider two tensors X and Y such that rankTT(X) = (r0, r1, ..., rd) and
rankTT(Y) = (r̃0, r̃1, ..., r̃d), represented in the format from (2.2) as

X(i1, ..., id) = U1(i1)U2(i2) · · ·Ud(id),
Y(i1, ..., id) = Ũ1(i1)Ũ2(i2) · · · Ũd(id).
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The result of adding the two tensors, Z = X + Y, can be represented as a TT tensor of
TT rank (r0 + r̃0, r1 + r̃1, ..., rd + r̃d),

Z(i1, ..., id) = V1(i1)V2(i2) · · ·Vd(id),

where

V1(i1) =
[
U1(i1) Ũ1(i1)

]
, Vd(id) =

[
Ud(id)
Ũd(id)

]
,

and

Vμ(iμ) =
[
Uμ(iμ) 0

0 Ũμ(iμ)

]
, μ = 2, ..., d− 1.

Adding two tensors results in a tensor with summed entries of the corresponding TT
rank vectors.

Inner product. The inner product between two tensors represented in TT format consists
of the Euclidean inner product of their vectorizations.

Noting that

vec(X) = X �=1vec(U1) = (X≥2 ⊗ In1)vec(U1) = vec(U1 ×3 X≥2),

the inner product can be efficiently computed reformulating it as follows:

〈X,Y〉 = vec(U2)TXT
�=2Y �=2vec(V2)

= vec(U2)T (XT
≥3 ⊗ In2 ⊗ Ir1)(Y≥3 ⊗ In2 ⊗ XT

≤1Y≤1)vec(V2)
= vec(U2 ×3 X≥3)Tvec(V2 ×1 XT

≤1Y≤1 ×3 Y≥3)
= 〈U2 ×3 X≥3,V2 ×1 XT

≤1Y≤1 ×3 Y≥3〉.

Therefore, we can take instead the inner product of two (d − 1)-dimensional tensors,
obtained by removing the first core of each involved tensor and changing the second core
of the second appropriately – V2 becomes V2 ×1 XT

≤1Y≤1 = V2 ×1 (UL
1 )TVL

1 .

As a result, the inner product can be obtained by successively reducing the dimensionality
of the involved tensors. The idea is to obtain the matrices (UL

μ)TVL
μ and multiply the

result to the next core Vμ+1, starting from μ = 1 and repeating the procedure until the
last case, μ = d, is reached.

Concerning the norm, induced by the inner product, if X is ν-orthogonal, then XT
�=νX �=ν =

17



Chapter 2. Tensors and tensor train format

Irν−1nνrν , so that

||X|| =
√

vec(Uν)TXT
�=νX �=νvec(Uν) =

√
vec(Uν)Tvec(Uν) = ||Uν ||.

This means that obtaining the norm of the tensor only requires the computation of the
norm of the ν-th core.

Truncation. In order to obtain a TT tensor with a certain TT rank, a generalization of
the truncated SVD procedure for matrices can be used. The procedure is called TT-SVD
[Ose11b] and it basically requires that truncated SVD is applied to the different μ-th
mode unfoldings of the tensor, for μ = 1, ..., d− 1.

Given a tensor X ∈ �n1×···×nd , with TT rank (r0, r1, ..., rd), we successively apply the
best rank-rμ approximation to the dimension μ, which we denote by Pμ

rμ , starting from
the first mode and finishing in the mode d − 1. Such a projection is described by
(Pμ

rμX)〈μ〉 = QQTX〈μ〉, where Q ∈ �nμ×rμ contains the first rμ left singular vectors of
X〈μ〉. The whole projection can be represented as PTT

r = P d−1
rd−1 ◦ · · · ◦ P 1

r1 . Note that
this projection goes from �n1×···×nd to the manifold containing the tensors of TT rank
(r0, r1, ..., rd).

While, as opposed to truncated SVD, TT-SVD does not fulfil the best approximation
property, it still fulfils a quasi-best approximation one. This is stated in [Ose11b], and
we also state it now, noting that �r stands for the manifold with tensors of TT-rank r.

Theorem 1. The result of applying the projection PTTr to tensor X, represented by
PTTr (X), is such that

||X − PTTr (X)|| ≤ √
d− 1||X − P�r(X)||, (2.6)

where Pr(X) is the projection associated with the best approximation of X within the set
of tensors with TT rank r.

If X is already given in TT format, with TT rank r, TT-SVD truncation to a prescribed
TT rank r̃ can be obtained efficiently. Assuming that X is d-orthogonal, it will become
(d− 1)-orthogonal if the SVD of UR

d , QSV T , is used to define new cores by setting UR
d

to V T and UL
d−1 to UL

d−1QS. Furthermore, if only r̃d−1 singular values are kept, rd−1

reduces to r̃d−1. This needs to be repeated until the core U1 is reached in order for the
TT rank to become r̃ instead of the original r.

Note that such truncation only makes sense if each individual entry of r̃ is smaller than
the corresponding entry of r.

An alternative to the upper bound in (2.6) for ||X − PTT
r (X)|| that is more convenient

follows.
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Figure 2.1: Singular values of X〈μ〉 for the stationary distribution of the large overflow
model, for d = 4 (left plot) and d = 6 (right plot).

Theorem 2. The result of applying the projection PTTr to tensor X, represented by
PTTr (X), is such that

||X − PTTr (X)| ≤
d−1∑
μ=1

nμ∑
j=rμ+1

σj
(
X〈μ〉)2

, (2.7)

where σj(·) denotes the j-th largest singular value of a matrix.

This upper bound is in fact strongly related with the TT-SVD procedure, in which the
goal is to obtain the smallest possible TT rank entries for a given desired accuracy. This
is a fundamental operation in the algorithms proposed in this format as we will explain
in the following chapters when discussing them.

As in the matrix case, the success of the application of low-rank tensor methods strongly
relies on the data – in our case, the stationary probability distribution – being well
approximated by a low-rank tensor or not. According to (2.7), this can be quantified by
considering the singular values of the different unfoldings. Good accuracy can only be
expected when their singular values decay sufficiently fast.

We now exemplify this for a concrete model of an overflow queuing network that has
been extensively used; see, e.g., [Buc00]; to test algorithms for solving the exact same
problem that we address in the first part of this thesis.

Figure 2.1 displays the singular values of the relevant matricizations of the mentioned
model. We consider two cases: d = 4 with nμ = 20 states per queue; and d = 6 with
nμ = 6. Note that only the first half of the matricizations are considered since the
singular values of the second half display a similar behaviour. It turns out that the
singular values have a very fast decay, showing that this model can be well approximated
with very low entries of the TT rank. This was expected since this model has a strong
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Chapter 2. Tensors and tensor train format

underlying Kronecker structure; see a more detailed description of it in Section 3.4.1.

In general, statements on the size of the values of the TT rank are hard to find. Such
statements can be found in [KS15] for a particular type of model. Furthermore, we here
show, again for a particular model, that the exact solution can be approximated with
very small TT rank entries.

2.2.2 Linear operators acting on tensors in TT format

It is crucial to define the multiplication of a tensor with a matrix in the context of the
need for applying a linear operator to a tensor in the algorithms that we will propose
later. The goal is to keep the low-rank structure after the operation is done, while trying
to apply the operator efficiently. In order for this to be possible, the linear operator
needs a suitable representation.

Given a tensor X ∈ �n1×···×nd , and a linear operator � that goes from �n1×···×nd to
�m1×···×md , whose matrix representation is A, the goal is to obtain the result Y ∈
�m1×···×md such that

Y = �X ⇔ vec(Y) = Avec(X).

Representation of a matrix in TT format The convenient representation of a matrix in
TT format is obtained through the so-called operator TT format, introduced in [Ose11a].
Similarly to what is done in the representation of a tensor, recall (2.2), the entries of
A ∈ �m1m2···md×n1n2···nd are represented as

Aξ(i1,...,id),ξ(j1,...,jd) = A1(i1, j1)A2(i2, j2) · · ·Ad(id, jd), (2.8)

where the index map ξ is associated with the index ordering of vectorization; recall (2.1).

Representing the associated TT rank vector, whose entries are defined exactly as those
of a TT tensor, by (R0, R1, ..., Rd), each Aμ(iμ, jμ), μ = 1, ..., d, is a matrix in �Rμ−1×Rμ .
It is alternatively possible to see each Aμ(iμ, jμ) in terms of a four-dimensional tensor
Aμ(:, iμ, jμ, :) = Aμ(iμ, jμ), where Aμ(:, iμ, jμ, :) ∈ �Rμ−1×mμ×nμ×Rμ . This reminds of
the alternatives associated with the representation of a tensor, where (2.3) could be used
instead of (2.2).

Note that such an operator is expected to have small entries of the corresponding TT rank
if there is an underlying Kronecker structure, emphasizing how this format is particularly
oriented for this type of structure.

The tensor rank of a matrix in CP format is defined following the same reasoning as
the corresponding definition when considering a tensor instead, as in TT format. In
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2.2. Tensor train format

sequence of the discussion based on (1.7) in Section 1.1, it is the smallest V that allows a
representation as (1.3). An interesting relation between the TT rank and the tensor rank
associated with the representation of a given matrix in TT and CP format, respectively,
follows. Given a matrix with tensor rank R, we can represent this matrix through an
operator TT format whose associated entries of the TT rank are not larger than R. In
fact, if A =

∑R
i=1 L

(i)
d ⊗ · · · ⊗L(i)

1 , the cores of the corresponding operator TT format are

A1(i1, j1) =
[
L

(1)
1 (i1, j1) L

(2)
1 (i1, j1) . . . L

(R)
1 (i1, j1)

]
, Ad(id, jd) =

⎡
⎢⎢⎢⎢⎢⎣

L
(1)
d (id, jd)
L

(2)
d (id, jd)

...
L

(R)
d (id, jd)

⎤
⎥⎥⎥⎥⎥⎦ ,

and

Aμ(iμ, jμ) =

⎡
⎢⎢⎢⎢⎢⎣

L
(1)
μ (iμ, jμ)

L
(2)
μ (iμ, jμ)

. . .
L

(R)
μ (iμ, jμ)

⎤
⎥⎥⎥⎥⎥⎦ , μ = 2, . . . , d− 1.

In particular, for a simple Kronecker product, all entries of the TT rank are equal to 1.
This is clear given that the cores are just the different matrices involved in the Kronecker
product.

Our problems of interest are those for which the generator rate matrix is possible to write
as (1.3) with small V . Such cases are also known to provide a simple TT representation.
Moreover, the TT rank entries can be, in general, further reduced. We now exemplify
this, again for the already mentioned overflow queuing network.

For the mentioned model, recalling (1.4), the matrices Lμ ∈ �nμ×nμ associated with (1.5)
contain arrival and departure rates. QI , in turn, is given by

∑
1≤μ1<μ2≤d

Id ⊗ · · · ⊗ Iμ2+1 ⊗Bμ2 ⊗ Cμ2−1 ⊗ · · · ⊗ Cμ1+1 ⊗Dμ1 ⊗ Iμ1−1 ⊗ · · · ⊗ I1

for some matrices Bμ, Cμ, Dμ ∈ �nμ×nμ . Therefore, the tensor rank of this operator is
d(d+1)

2 .

Obtaining the corresponding operator TT format with the smallest possible TT rank
entries, given the representation in CP format, can be done using a strategy that is
detailed in [KK12]. This is also the approach used to obtain the representation in
operator TT format of the different models in [Mac15]. Having a representation of the
model as in (1.3), Kronecker representation, is then enough to allow the corresponding
TT representation to be obtained.
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Chapter 2. Tensors and tensor train format

By direct calculation, using the mentioned strategy, it can be shown that the cores that
characterize the operator TT format are, for this model,

A1(i1, j1) =
[
L1(i1, j1) B1(i1, j1) I1(i1, j1)

]
, Ad(id, jd) =

⎡
⎢⎣
Id(id, jd)
Dd(id, jd)
Ld(id, jd)

⎤
⎥⎦ ,

and

Aμ(iμ, jμ) =

⎡
⎢⎣
Iμ(iμ, jμ) 0 0
Cμ(iμ, jμ) Bμ(iμ, jμ) 0
Lμ(iμ, jμ) Dμ(iμ, jμ) Iμ(iμ, jμ)

⎤
⎥⎦ , μ = 2, . . . , d− 1.

The TT rank associated with this operator is (1, 3, ..., 3, 1) – no entry of the TT rank
exceeds the value 3. This is independent of the choice of d. The complexity of storing
and performing operations will be significantly reduced when such entries of the TT rank
remain modest. This should be the case, as we already noted and tried to exemplify here,
when structured models are considered.

If there is additionally an underlying topology of the processes associated with a train,
then particularly small entries in the TT rank of the corresponding operator TT format
are expected, in sequence of Remark 1.

In practice, it can be additionally observed from the operator TT format representations
of different models in the benchmark collection [Mac15] that the entries of the associated
TT rank are in fact very small even for less favourable underlying topologies. This
suggests that algorithms in this format should be possible to apply efficiently even in
such contexts. We will in fact verify this in the experiments of the algorithms proposed
in this first part of the thesis.

Applying an operator TT format to a tensor in TT format After extensively introducing
how to represent linear operators in this format, it now becomes easy to describe how to
efficiently apply them to a TT tensor. The fact that the result of applying the linear
operator � in operator TT format to the TT tensor X is still in TT format is crucial.
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2.2. Tensor train format

The resulting tensor Y can be computed element-wise as described in [Ose11b]:

Y(i1, ..., id) =
n1∑
j1=1

· · ·
nd∑
jd=1
� (i1, ..., id, j1, ..., jd)X(j1, ..., jd)

=
n1∑
j1=1

· · ·
nd∑
jd=1

A1(i1, j1) · · ·Ad(id, jd)U1(j1) · · ·Ud(jd)

=
n1∑
j1=1

· · ·
nd∑
jd=1

(A1(i1, j1) ⊗ U1(j1)) · · · (Ad(id, jd) ⊗ Ud(jd)) .

Therefore, the μ-core of the resulting tensor can be obtained by
∑nμ

jμ=1Aμ(iμ, jμ)⊗Uμ(jμ).

For an efficient implementation of this operation, the explicit Kronecker products
Aμ(iμ, jμ) ⊗ Uμ(jμ) are not formed. The summation is performed instead by mul-
tiplying two matrices associated with suitable matricizations: (Aμ)T(3)(Uμ)(2), where
(Aμ)T(3) ∈ �Rμ−1mμRμ×nμ ; and (Uμ)(2) ∈ �nμ×rμ−1rμ . The corresponding core, the μ-th
core, is then obtained by appropriately reordering the entries of the obtained matrix of
size Rμ−1mμRμ × rμ−1rμ into a tensor of size Rμ−1rμ−1 ×mμ ×Rμrμ. In particular, the
corresponding entry of the TT rank is bounded by Rμrμ, μ = 1, ..., d− 1.
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3 Alternating optimization schemes

This chapter concerns the first proposed techniques for solving (1.1). We propose and
compare different algorithms. All these algorithms have their structures in TT format.
We start with a simple iterative solver that formulates (1.1) as an eigenvalue problem,
proceeding then to an alternating optimization scheme that uses a formulation based on
the equivalent problem (1.2). Our idea is exactly to focus on alternating optimization
schemes, while the simple iterative solver is mostly used as reference for comparison. A
third algorithm that allows the ranks to be flexible is then proposed; it is based on the
same core principles as the second, again based on an alternating optimization scheme,
but adding a step that includes a natural rank adaptivity scheme. The use of these
algorithms is then illustrated on two networks, which are queuing networks that were
used in the past for this same purpose.

We start by introducing the historical context of the application of alternating optimization
schemes combined with low-rank tensor formats to our problem.

An important property of all tensor formats is their multilinearity. This allows extending
powerful tools from linear algebra to the tensor setting.

In particular, the optimization problem in (1.2) can be formulated in terms of tensor
formats, making use of the underlying low-rank structure. This has been done in [Buc10],
where CP format was used. The idea is to solve the original problem but under the
additional restriction that x, tensor, represented in CP format, that represents the vector
x from the original formulation, is in the manifold�R of tensors of a fixed tensor rank
R:

min
x∈�R

{||QTx|| : eTx = 1}, (3.1)

where e is the representation of the vector of all ones, also in CP format. Recall that if
Q has a structure of the form (1.3), then QT also does, as noted in Section 1.1.
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Note that while we used the notation X, with capital letter, for a tensor in CP format
in (1.7), we now use x instead. The idea is that it represents a tensor obtained from
reshaping what initially was a vector in the original formulation, so that this notation
should be more intuitive. The same will be done for tensors in TT format that represent
vectors.

Under this formulation, the algorithm applied for finding an approximation of the solution
was the standard alternating least squares (ALS) scheme [Hit27]. Such methods first
appeared in quantum physics; for instance the so-called DMRG method for addressing
eigenvalue problems for strongly correlated quantum lattice systems, see [Sch11] for an
overview. The basic idea is to, given a least squares problem, (3.1) in this case, partition
the set of degrees of freedom of the problem in subsets, performing the optimization
associated with each subset at a time, while all other degrees of freedom are fixed; see
[Buc10] for details concerning the way to suitably partition the degrees of freedom in
this particular problem associated with CP format. These ideas have been extended to
linear systems in the numerical analysis community [OD12, HRS12], so that in the end
we can think of a more global class of alternating optimization schemes.

Our main argument for using TT format instead of CP is that, when CP format is used,
the tensor rank needed to get a good accuracy in the approximation of the solution is
usually too large, as observed in the numerical experiments in [Buc10]. In turn, when
using TT format, we expect the TT rank associated with the TT tensor representing
the exact stationary distribution to have small entries, as already exemplified in Section
2.2 for a model among those considered in [Buc10]. This is seen in more detail later in
the experiments of this chapter. Such large tensor rank is explained by the argument
for preferring TT format over CP, described in Section 1.1, that CP format does not
consider the topology of the interactions. This in fact explains such large tensor ranks.
Another argument for preferring TT format over CP that was also described in Section
1.1, the fact that truncation cannot be done efficiently in CP format, affects two of the
three algorithms that are proposed in this chapter. The algorithm that it does not affect
is the core alternating least squares scheme, since one of its main drawbacks is the fact
that there is no rank adaptivity, as we will see. However, the importance of including
rank adaptivity will emphasize the importance of such truncation steps.

The content of this chapter is based on the paper [KM14].

Before exploring such alternating scheme in detail, we introduce an algorithm that will
be used as reference for comparison. It is a simple algorithm for addressing (1.1), and
which we next adapt to TT format.
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3.1. Truncated power method

3.1 Truncated power method

We will first consider an adaptation of the simplest method to compute a single extremal
eigenvalue. This method is then adjusted to work when all involved structures are in TT
format.

3.1.1 Power method

We first introduce the application of the method to the matrix case. The method is
slightly adapted to fit our particular problem of interest.

In the context of the original problem, applying a time discretization with time step
Δt > 0 to the matrix Q, we obtain

P = I +ΔtQ. (3.2)

The problem (1.1) becomes equivalent to the eigenvalue problem

P Tx = x, eTx = 1. (3.3)

Furthermore, the eigenvector we are interested in is the one associated with the eigenvalue
with the largest magnitude if Δt > 0 is sufficiently small to guarantee that P is a non-
periodic stochastic matrix. In fact, this guarantees that the largest eigenvalue of P , and
equally of P T , is 1; see [Ste94, Ch. 1]. The condition on Δt is, as also noted in [Ste94,
Ch. 1],

0 < Δt < (max
i

|Q(i, i)|)−1. (3.4)

In this context, the well-known power method can be used. This method is the simplest
possible for computing the eigenvector associated with the largest eigenvalue of a matrix
A ∈ �n×n, given an initial guess x(0) ∈ �n, by forming the sequence {x(k)}+∞

k=0, where

x(k) := Ax(k−1), k = 1, 2, ... (3.5)

It is clear that

x(k) = Akx(0).

As explained above, in our particular problem, we know that this eigenvalue takes the
value 1.

Since we are interested not only in the direction of the vector but also on its length, we
might need to normalize the iterates from (3.5), recalling the extra constraint eTx = 1 in
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(3.3), restriction on the 1-norm of the vector. However, this is not the case since this
property is kept during an iteration.

Δt should be as large as possible since the convergence rate of this algorithm increases
with the ratio between the first and the second eigenvalue [Ste94, Ch. 1]. Recalling
(3.4), this is equivalent to stating that the value should be as close to (maxi |Q(i, i)|)−1

as possible.

3.1.2 Power method in TT format

Truncated power method is the name of the version of power method where all involved
structures are represented in terms of a low-rank tensor format. More concretely, as
in the case of ALS, this algorithm was first proposed in the context of CP format; see
[BM05]. The word truncated is associated with the need for adding truncation steps to
the original algorithm in order to prevent the ranks from becoming too large. The same
core idea can be applied but considering TT format instead. The particular advantage
of TT format is that it allows truncations to be done efficiently, given that the format
is based on SVD. Such truncations are based on the TT-SVD algorithm described in
Section 2.2.1.

The core of the algorithm is exactly as described for the matrix case, in Section 3.1,
but Q is now represented in terms of the corresponding operator TT format (2.8), so
that the same holds for P in (3.2) and in (3.3). As for e and x in (3.3), it is also their
representation as TT tensors that is considered.

Concerning the choice of Δt, since the matrix Q is only given implicitly, the approximation
of maxi |Q(i, i)| that is possible to obtain may not be very accurate. In any case, recalling
(3.4), we at least have to be sure that we consider a value that is an upper bound for this
quantity. As already noted, the representation of Q in terms of an operator TT format
is strongly associated with the corresponding representation in the form (1.3), Kronecker
representation. Therefore, an inexpensive upper bound is given by

d∏
μ=1

max
i

|E(1)
μ (i, i)| + · · · +

d∏
μ=1

max
i

|E(T )
μ (i, i)|.

Initial approximation of the solution. The algorithm is initialized considering a solution
based on the uniform distribution – the probability associated with all states is the same.

Truncations. Truncation is needed during a cycle to prevent excessive rank growth, as
already noted. We use the TT-SVD algorithm, which truncates the tensor back to lower
entries of the TT rank, within a specified tolerance. Such algorithm is performed after
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each step where the TT rank entries are allowed to increase.

We use an adaptive scheme where the target accuracy is a function of the residual norm
after the previous iteration. More concretely, it coincides with its value. The motivation
is that we should be more and more accurate as we become closer to an approximate
solution of the problem that has the desired accuracy, while being too accurate in the
initial stages of the algorithm would make the iterations unnecessarily expensive.

Normalization. In (3.3), we have the restriction that the sum of the entries of the
solution must be 1. While this property would be preserved by the power method in
general, it is lost in our particular setting, due to the introduced truncations. As a result,
we need to normalize the obtained approximation after each iteration. This normalization
could be performed only in the last step of the algorithm, instead of in each iterate.
Moreover, even if this constraint did not exist, it would be likely to observe in practice
that the iterates would, at some point, underflow or overflow – for small or large ||A||,
respectively. Therefore, some kind of normalization should in fact be done in any case to
prevent this.

The required inner product between the TT representations of the vectors e and the one
associated with the approximate solution obtained after the iteration is inexpensive since
the TT tensor representing e has all entries of the TT rank equal to 1 [Ose11b].

3.2 Alternating least squares

As introduced in the beginning of this chapter, defining an alternating optimization
scheme in TT format has already been done. However, such optimization scheme has
only been formulated for the solution of linear systems. In fact, a formulation that
particularly suits our problem, recall (3.1), has only been developed in CP format in
[Buc10].

Alternating schemes are expected to be suitable for TT format since the required partition
of the degrees of freedom of the problem is naturally defined taking into account that
each individual TT core enters the TT decomposition (2.2) linearly, recall (2.5). As a
consequence, the optimization with respect to a single TT core (while keeping all other
cores fixed) should pose no problem.

The formal way to represent (1.2) in TT format is, again viewing x as a tensor x,

min
x∈�r

{||QTx|| : 〈e,x〉 = 1}, (3.6)

where�r is the manifold of tensors having fixed TT rank r; e is again the representation
of the vector of all ones, now in TT format. As for CP format, the representation of QT
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in TT format is trivial if the one for Q also is.

This constrained optimization problem, because of the rank constraint, is a highly non-
linear problem with multiple minima, whose solution is by no means simple. This was
also the case for the corresponding formulation in CP format, in (3.1).

In sequence of the detailed introduction to TT format from Section 2.2, we know that it
is easy to isolate one core, so that ALS should be particularly suitable to this format.
More concretely, the partition of the degrees of freedom of the problem should be such
that the variables that are together are those belonging to the same core. Thus, in a
given step, the k-th core should be optimized, while the others remain fixed; this will be
called the subproblem of the ALS procedure from here on.

Assume that the representation of x in TT format, x, is, entry-wise,

x(i1, ..., id) = G1(i1)G2(i2) · · ·Gd(id), (3.7)

which means that the TT cores that compose it are G1, ..., Gd. The formulation of the
optimization that must be solved in the k-th core, k = 1, ..., d, can be easily obtained
recalling that, given the left and right interface matrices x≤k−1 and x≥k+1, respectively,
and the vectorization of the degrees of freedom of the k-th core, gk, we know, from (2.5),
that

vec(x) = x�=kgk,

where x�=k = x≥k+1 ⊗ Ink ⊗ x≤k−1.

It is assumed that the columns of the mentioned left and right interface matrices are
orthonormal.

Inserting the relation above into (3.6) yields

min
x�=kgk∈�r

{||QT
(
x�=kgk

)
|| : 〈e,x �=kgk〉 = 1}. (3.8)

In turn, ||QT
(
x�=kgk

)
|| can be written as gTk

(
xT�=kQQTx�=k

)
gk, while 〈e,x�=kgk〉 can be

written as (xT�=ke)Tgk. For this reason, the minimization problem is formulated in terms
of the vectorization of the k-th core, gk. This is the subproblem that must be solved on
the k-th core.

After the subproblem (3.8) has been solved, the k-th TT core of x is updated by reshaping
gk into its k-th core.

Algorithm 1 describes one sweep of ALS. A half sweep (forward sweep) of ALS consists of
processing all cores from the left to the right until reaching k = d. Similarly, the second
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Algorithm 1: ALS sweep for solving (3.6)
1 for k = 1, 2, ..., d− 1 do
2 Replace core Gk by the solution of (3.8), gk, after suitable reshaping
3 Apply orthogonalization to ensure that the updated core GL

k is left-orthogonal
4 end
5 for k = d, d− 1, ..., 2 do
6 Replace core Gk by the solution of (3.8), gk, after suitable reshaping
7 Apply orthogonalization to ensure that the updated core GR

k is right-orthogonal
8 end

half sweep (backward sweep) of ALS consists of processing all cores from the right to the
left until reaching k = 1. Two subsequent half sweeps constitute a full sweep of ALS,
and this is from here on considered as the reference measure of one iteration in such
alternating schemes. In turn, the sequence of steps that concern a particular core are
called microiterations. A microiteration includes not only the described update of a core,
but also an orthogonalization step, performed to ensure that the interface matrices are
again orthogonal in the subsequent optimization step. This step is also local – it only
applies to the updated core.

Solution of the subproblem. The constrained minimization (3.8) is an equality-constrained
quadratic program as defined in [NW06, Ch. 16]. According to the same reference, a
solution of the minimization problem satisfies the following system of equations:

[
xT�=kQQTx�=k ẽ

ẽT 0

] [
gk
λ

]
=
[
0
1

]
(3.9)

where 0 is a vector of all zeros and ẽ = xT�=ke, which is cheap to compute. Note that λ is
associated with the vector of Lagrange multipliers; in this context it consists of a single
value because there is only one constraint.

The problem to be solved in order to find the local solution, for a certain core, is (3.9).
This step is crucial in terms of efficiency since it is, together with orthogonalization, one
of the computationally most expensive parts of the algorithm. In fact, the linear system
has size rk−1rknk + 1. There are two main options: solving the linear system directly or
using an iterative solver.

For the efficient application of a direct solver, it is convenient to transform the linear
system in a symmetric positive definite one. In fact, it is indefinite but there is just one
negative eigenvalue, associated with the linear constraint. This can be done by standard
manipulation based on the tools provided in [NW06, Ch. 16] as we next detail.

According to the mentioned reference, given a symmetric positive definite matrix H and
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a vector a (a is originally a matrix in the reference but it concerns the linear constraints
so that, since we only have one, it simply becomes a vector),

[
H a

aT 0

]−1

=
[
C E

ET F

]
,

C = H−1 −H−1a(aTH−1a)−1aTH−1, E = H−1a(aTH−1a)−1, and F = −(aTH−1a)−1.
As a result, the solution of a linear system involving this type of matrix is equivalent to
the matrix-vector multiplication between the inverted matrix above and the vector in
the right side of the equation of the linear system of interest.

The solution will consist of a vector that is the desired one, plus a last entry λ that is
not relevant, associated with the constraint, so that we only need the remaining entries.
Such entries are those of gk. Moreover, our right side is a vector of zeros until the last
position, in which we find the value 1. This allows simplifying the expression for the
entries associated with gk. We obtain

gk = H−1a

aTH−1a
. (3.10)

This means that, assuming that the right side of the linear system is as described above,
we can simply solve a linear system on the symmetric positive definite matrix H, with an
associated right side that is the vector a. After solving this linear system, a normalization
step, which requires a simple inner product, is needed.

In our concrete problem, H is xT�=kQQTx�=k, while a is xT�=ke.

As the linear system now concerns a symmetric positive definite matrix, a direct solver
as Cholesky decomposition can be applied, and the associated cost is reduced by a factor
of 2

3 compared to the cost of a common direct solver.

The main problem is that the matrix xT�=kQQTx�=k has size nkrk−1rk so that, using
a Cholesky decomposition or not, the cost when using a direct solver easily becomes
infeasible when the TT rank entries start to increase (or even the mode sizes alone).
In fact, the obtained linear system still has a complexity � (r̂6n̂3), where r̂ and n̂ are
bounds for the TT rank entries and for the mode sizes, respectively.

The solution is to apply an iterative solver. Not only is this the natural solution to the
problem associated with the cost of the direct solver, as it additionally allows a speed
up associated with the fact that all involved matrix-vector multiplications can be done
without explicitly forming the matrix xT�=kQQTx �=k. In fact, this matrix can be also
written as a short sum of Kronecker products even though it is not sparse, since the
Kronecker structure is inherited by the small TT rank entries of Q; see [KSU14].

Given that the linear system can be converted into symmetric positive definite, as already
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explained, it might be advantageous to consider this when deciding which iterative solver
to use. An immediate idea would be to use conjugate gradient (CG). While this was
in fact the iterative solver that was used in the paper on which this chapter is based,
[KM14], it was noted that convergence was rarely obtained. This is mostly due to the
fact that, unless an effective preconditioner for accelerating convergence is found, its
performance is not satisfying, and in fact designing such preconditioners is not simple.
In fact, even the knowledge of a preconditioner for the problem in the full-space (1.1) is
generally not sufficient, and it has only been possible to convert a preconditioner for the
global problem in an effective preconditioner for the subproblems via a very particular
construction for Laplace-like operators [KSU14], which is however not relevant for the
problem under consideration.

Even without a preconditioner, if a good initial guess for the solution is available,
convergence might still be obtained. While such a good initial guess is in fact available
in theory, which would be the current approximation for the core that is being optimized,
such guess does not have the desired effect due to the normalization step that is then
needed; recall (3.10). In fact, the associated term, aTH−1a, is verified to be in general of
very large order, so that the initial guess is always extremely far from any good enough
approximation of the solution.

A solution is to apply the iterative solver MINRES [Gre97, Saa03] directly to (3.9). In
fact, this iterative solver only requires that the matrix is symmetric, which holds in that
case. While the problem concerning the fact that no effective preconditioner exists is
still a concern, the fact that a good initial guess is available should significantly help
reaching convergence. The initial guess that is used consists of considering the previous
approximation of the core for the entries associated with gk while the initial guess for λ
can be simply 0 since it is easy to deduce that its value, using the knowledge that it is
the entry associated with the Lagrange multipliers, is 1

aTH−1a . As a consequence, the
order of the denominator is what is large in this case so that 0 approximates the value
well.

Summing up, we can either use a direct solver based on Cholesky factorization taking into
account that the solution of the problem can be obtained from (3.10) so that the main
step consists of solving a symmetric positive definite linear system; or an iterative solver,
which would be applied to (3.9) instead, and for which MINRES should be particularly
suitable since the matrix is symmetric, while a good initial guess is available. While the
direct solver is expected to be inefficient when the TT rank entries start to grow, the
iterative solver has the limitation that convergence may be problematic if the condition
number of the matrix of the linear system is large because no good preconditioner is
available.
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Initial approximation of the solution. An initial approximation must be provided to
Algorithm 1. Moreover, it must be a right-orthogonal TT tensor. We consider again the
tensor associated with the uniform distribution.

3.3 Alternating minimal energy

There are two main limitations associated with ALS: the entries of the TT rank of the
approximate solution have to be set a priori and convergence can be slow. However, the
core concept behind this algorithm is strong, so that we would like to keep it. In this
context, a new algorithm has been proposed that addresses the two mentioned drawbacks
while keeping the core structure of ALS. The alternating minimal energy (AMEn) method
was proposed in [DS14] as a solution for the mentioned problems of alternating schemes,
in the context of the already mentioned application of such schemes to the solution of
linear systems in TT format. The idea is to enrich the TT cores by adding gradient
information, which potentially yields faster convergence than ALS while it allows for
rank adaptivity since such enrichments increases the TT rank entries. The mentioned
enrichment is only done in the core that is currently being optimized in the ALS sweep,
so that the conceptual advantage of ALS that everything is done locally, only in terms of
a particular core, is kept, thus allowing to keep the computational effort small.

Such a core enrichment had also been proposed in [Whi05] in the context of the already
mentioned DMRG algorithm.

For d = 2, considering (3.7) as reference, the TT representation of x is associated with
the cores G1 ∈ �n1×r1 and G2 ∈ �n2×r2 – x = G1G

T
2 . Suppose that the first step of

ALS has been performed and G1 has been optimized. We then consider a low-rank
approximation of the negative gradient of 1

2 ||QTx||:

r = −QTx ≈ R1R
T
2 .

In practice, an approximation of r with a small rank is typically used. Then the method
of steepest descent applied to minimizing 1

2 ||QTx|| would compute

x + αr ≈
[
G1 R1

] [
G2 αR2

]T
for some suitably chosen scalar α. We now fix (and orthonormalize) the first augmented
core

[
G1 R1

]
. An increase in an entry of the TT rank results from this enrichment.

However, instead of using
[
G2 αR2

]
, we apply the next step of ALS to obtain an

optimized second core via the solution of a linear system of the form (3.9). As a result we
obtain a new approximation that is at least as good as the one obtained from one forward
sweep of ALS without augmentation; and, at the same time, ignoring the truncation
error in r, at least as good as one step of steepest descent. The described procedure
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Algorithm 2: AMEn sweep for solving (3.6)
1 for k = 1, 2, ..., d− 1 do
2 Replace core Gk by the solution of (3.8), gk, after suitable reshaping
3 Augment cores Gk and Gk+1 with cores Rk and Rk+1, respectively, according to

(3.11)
4 Apply orthogonalization to ensure that the updated core GL

k is left-orthogonal
5 end
6 for k = d, d− 1, ..., 2 do
7 Replace core Gk by the solution of (3.8), gk, after suitable reshaping
8 Augment cores Gk and Gk+1 with cores Rk and Rk+1, respectively, according to

(3.11)
9 Apply orthogonalization to ensure that the updated core GR

k is right-orthogonal
10 end

is repeated by augmenting the second core and optimizing the second core, and so on.
In each step, the rank of x is adjusted by performing low-rank truncation, meaning in
particular that the TT rank entries are also allowed to decrease. This rank adaptivity is
one of the major advantages of AMEn.

The generalization to d > 2 is straight-forward. Moreover, it follows analogously to
[KSU14] by applying the case d = 2 to neighbouring cores. We first generalize the
representation in TT format of the correction

r(i1, ..., id) = R1(i1)R2(i2) · · ·Rd(id).

In the k-th step of the forward ALS sweep, after the k-th core has been optimized, the
described procedure must be applied to the k-th and (k + 1)-th cores. The two cores are
augmented with the corresponding cores of the correction r, Rk and Rk+1, respectively.
The cores Gk and Gk+1 become G̃k and G̃k+1, respectively, where

G̃L
k =

[
GL
k RL

k

]
G̃R
k+1 =

[
GR
k+1 RR

k+1

]T
. (3.11)

In particular, the value of rk changes. In turn, for the backward sweep, the (k − 1)-th
core is the one that is updated together with the k-th, in a similar manner.

Algorithm 2 describes one sweep of AMEn.

We skip the details about the algorithm that are common to ALS, since in those cases
they are simply the same that were already described in Section 3.2. In particular, the
initial approximation of the solution and the way to solve the subproblem are the same.
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Truncations. As in the context of truncated power method, recall Section 3.1.2, trunca-
tions are done during a sweep to prevent excessive rank growth. We use again TT-SVD
algorithm. It is again applied after each step where the TT rank entries are allowed to
increase.

Again as in truncated power method, we use an adaptive scheme to define the target
accuracy of such truncations. Once again, a dependency on the last residual norm that
was computed is the reference. In this case, such residual norm concerns the previous
microiteration. The target accuracy is in this case the mentioned value divided by 100.

Enrichment rank. As noted before, the typically used values for the rank considered in
the approximation of the residual that is used to augment the cores, which is exactly
the quantity by which the corresponding entry of the TT rank is allowed to increase, is
small. In fact, while we want convergence to be fast, choosing a value that is too large
might lead to unnecessarily expensive microiterations. In our experiments, we consider
an enrichment rank of 3.

3.4 Numerical experiments

We now investigate the performance of the different proposed methods in TT format:
truncated power method, ALS, and AMEn. For reference, we have also implemented the
mentioned ALS method for CP decomposition [Buc10], based on functionality from the
tensor toolbox [BK+12]. To distinguish between the two different ALS algorithms, we
will denote them by “ALS-TT” and “ALS-CP”. All algorithms in this first part of the
thesis (including those associated with the two chapters that follow) were implemented
in Matlab version 2013b, using functions from TT-Toolbox [Ose11a].

Concerning the subproblems to be solved in ALS-TT and AMEn, in (3.9), we used a
direct solver in general, but we also tried to use the iterative solver MINRES in the
context of AMEn for comparison effects. When a direct solver is used, we denote the
algorithm simply by “AMEn”; while in the cases where an iterative solver is used, we
denote it by “AMEn (MINRES)”.

As for truncated power method, we simply call it “PM”.

Given that the ranks associated with ALS algorithms have to be fixed a priori, some
criterion had to be used to define what to use in ALS-CP and ALS-TT. In the case of
ALS-TT, we used the same value in all entries of the TT rank, corresponding to the
maximum among the entries of the TT rank obtained naturally when applying AMEn.
This way, we are sure that the algorithm converges if AMEn also does. As for ALS-CP,
we tried different tensor ranks, choosing the one exhibiting the best performance.
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Figure 3.1: Structure of the model overflow.

All computation times in this part of the thesis (including those in the next two chapters)
were obtained on a 12-core Intel Xeon CPU X5675, 3.07GHz with 192 GB RAM running
64-Bit Linux version 2.6.32.

Throughout all experiments in this thesis (including, again, those in the next two
chapters), the stopping criterion is defined in terms of the ratio between the current
residual norm, considering the approximate solution at that given step, and the residual
norm associated with the tensor of all ones (scaled so that the sum of its entries is one),
which is the initial guess for all algorithms tested in this chapter. We denote this measure
by relative accuracy from here on.

In the tables that follow: “Time” stands for the computation time, in seconds; “Rank”
stands for the maximal entry of the TT rank for the algorithms based on TT format,
while for the tensor rank in the case of ALS-CP, of the approximate solution.

3.4.1 First test case: an overflow queuing network

We first consider the model that was used to test ALS-CP in [Buc10] – the already
introduced overflow queuing network; recall Section 2.2. All benchmark problems used
in this thesis are taken from the already mentioned benchmark collection [Mac15], which
not only provides a detailed description of the involved matrices but also Matlab code.
In this case, the model is named overflow and its structure, for d = 6 as in the default
example in [Mac15], is depicted in Figure 3.1. Customers which arrive at a full queue
try to enter subsequent queues until they find one that is not full. After trying the last
queue, they leave the system.

In a first case study, we consider the default parameters from [Mac15], which had been
also considered in the experiments in [Buc10]: arrival rates for queues 1 to 6 of 1.2,
1.1, 1.0, 0.9, 0.8, 0.7, respectively; and departure rates 1 for all queues. The maximum
capacity of each queue that we consider is 10 so that the mode sizes are all 11, for a total
of 116 ≈ 1.77 × 106 states.
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Table 3.1: Obtained execution times (in seconds) and corresponding ranks for the large
overflow model with respect to different relative accuracies.

Relative accuracy 1.0 × 10−1 4.6 × 10−2 2.2 × 10−2 1.0 × 10−2

Time Rank Time Rank Time Rank Time Rank
ALS-CP 139.1 120 365.8 180 1102.1 240 2612.7 300

PM 35.7 16 48.5 19 65.6 23 85.3 26
ALS-TT 8.0 18 10.9 19 17.3 21 22.7 22

AMEn 4.6 18 5.1 19 6.6 21 9.6 22
AMEn (MINRES) 51.1 19 66.5 21 84.9 23 110.5 27

We have applied ALS-CP to the large overflow model for tensor ranks ranging from 120
to 300 – values associated with the best performances of the algorithm for the different
relative accuracies of interest. The considered relative accuracies are displayed in the first
row of Table 3.1. We then iterate the algorithms in TT format until the same relative
accuracies are reached. The obtained results are shown in rows 4–7 of Table 3.1. Note
that all algorithms attained the target relative accuracy.

Due to the lack of an effective preconditioner for MINRES, and despite the fact that a
good initial guess is available; recall the related discussion in Section 3.2; the subproblem
could not be solved to sufficient accuracy in AMEn (MINRES), thus resulting in a slow
convergence – the computation times are clearly worse and even the entries of the TT
rank are different. In fact, the associated matrix is very ill-conditioned, so that the
convergence of MINRES is severely impaired, often leading to stagnation. Furthermore,
we have explored the causes for the ill-conditioning in more detail and verified that it is
directly associated with the mode sizes. In this context, noting that the considered mode
sizes are as small as 11, this shows how there is no margin in AMEn for increasing the
mode sizes if the idea is to be able to apply an iterative solver. Therefore, the reference
should be the version of AMEn that solves the subproblem directly. As a consequence,
we do not consider AMEn (MINRES) in the experiments that follow.

The execution times of ALS-CP are much larger than those of the TT-based algorithms.
The theoretical reasons for this have already been discussed and they mostly concern
the fact that the required tensor ranks are particularly large, while the difference in the
ranks associated with the operators that represent the generator matrix in each format
also play a role. Such ranks have been explicitly stated in Section 2.2.2 for this model.

Among the TT-based algorithms, AMEn is clearly the best and the power method appears
to offer the poorest performance. This picture changes, however, when demanding that
the approximate solution is more accurate. In fact, this results in larger TT rank entries
and consequently makes the solution of the subproblems in AMEn and ALS-TT more
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Figure 3.2: Evolution of the relative accuracy with respect to the number of microitera-
tions and with respect to the accumulated execution time (in seconds) for ALS-TT and
AMEn applied to the model overflow.

expensive. For example, when demanding a relative accuracy of 10−5, the truncated
power method requires 538.2 seconds, ALS-TT 3016.0 seconds, and AMEn 1106.6 seconds.

The left plot of Figure 3.2 shows how the relative accuracy evolves for AMEn and
ALS-TT during the microiterations, for the case corresponding to the last column of
Table 3.1 – stopping when the relative accuracy is smaller than 10−2. Not surprisingly,
ALS-TT converges faster; in fact, it uses the maximal TT rank entry from the final
approximation of AMEn right from the first sweep. This picture changes significantly
when considering the evolution with respect to the accumulated execution time in the
right plot of Figure 3.2. AMEn operates with much smaller TT rank entries during the
first sweeps, making them less expensive and resulting in a smaller total execution time
despite the fact that the total number of microiterations, and equivalently also of sweeps,
is larger. This is representative of the conceptual differences between the two algorithms,
and in the end a better computation time is expected when AMEn is considered.

Exploring AMEn. Since the experiments above clearly reveal the advantages of AMEn,
we investigate its performance for high-dimensional problems in more detail. For this
purpose, we reduce the maximum capacity to 2 customers in each queue, so that all
mode sizes are 3, and target a relative accuracy of 10−1. We vary the number of queues
from d = 7 to d = 24. Departure rates are again 1 for all queues while the arrival rates
have been adjusted to 12−0.1×i

8 for the i-th queue.

Figure 3.3 reveals how the execution time and the maximal TT rank entry grow as d
increases. The maximal TT rank entry appears to grow approximately with d3, while
the execution time seems to grow proportionally with d4. Note that the first statement is
important for explaining the second since the cost of the algorithm is strongly associated
with the TT rank entries through the cost of the subproblem, which is the main cost of
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Figure 3.3: Execution time in seconds (left plot) and maximal TT rank entry (right plot)
for AMEn applied to the model overflow with d = 7, 8, . . . , 24 queues.

the whole algorithm given that a direct solver is used to solve it; as discussed in detail in
Section 3.2.

Note that the largest Markov chain is associated with a total of 324 ≈ 2.82 × 1011 states,
which is clearly infeasible for standard solvers, whose cost grows, as already noted in
Chapter 1, linearly with this number. In contrast, AMEn requires less than 3000 seconds
to obtain a good approximation of the solution.

3.4.2 Second test case: Kanban control model

We now consider the Kanban control model [Buc99], which is another queuing network,
where customers arrive in the first queue, being then served in sequence until the
last queue, leaving the network afterwards. We assume an infinite source – there is
automatically a new arrival when the first queue is not full. A customer that finishes the
service and experiences that the next queue is full needs to wait in the current queue.
This model is denoted by kanban in the benchmark collection [Mac15].

This study is intended to be more brief than for the previous model since we just want
to show that the most important conclusions do not depend on the considered model.

We choose d = 12 queues, each with a maximum capacity of one customer. The rate
of service is 1 for all queues. The time spent travelling from one queue to the next
follows an exponential distribution with expected value 1

10 . For the queues 2 to 11, one
needs to distinguish the type of customer (already served, waiting to move to the next
queue, or no customer), so that there are 3 possible cases, as opposed to what happens
in the generality of the models where customers are indistinguishable, in which there
are only two cases. In fact, in models with indistinguishable customers, the state of a
given subsystem is simply characterized by the number of customers since there are only
customers of one type so that all that matters is if they are in the queue or not. In
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Table 3.2: Obtained execution times (in seconds) and corresponding ranks for the model
kanban, for a relative accuracy of 10−1.

Time Rank

ALS-CP 3024.7 200
PM 3.3 12
ALS-TT 1.4 12
AMEn 0.7 12

this case, customers are distinguishable – they can either be customers that were served
or that are waiting to be served. The two subclasses of models together, models with
distinguishable and indistinguishable customers, naturally form a partition of the class of
models associated with customers. In the presence of distinguishable customers, a vector
of numbers is needed instead of a simple number to characterize the state of a particular
subsystem. This follows the idea in [Buc99], where the states are ordered considering a
decreasing lexicographic ordering of such vector. The size of this vector is the number of
types of customers plus one, since the first entry is the number of available places in the
subsystem, difference between the capacity and the sum of the number of customers of
the different types, while the remaining entries are simply associated with the number of
customers of the different types. The concept can naturally be generalized to the other
types of models – it is not necessarily for queues, so that it does not necessarily concern
customers. In this particular case, we have, in total, 2 × 310 × 2 ≈ 2.36 × 105 states.
The resulting operator TT format has TT rank (1, 4, ..., 4, 1), while the tensor rank that
concerns the representation in CP format is 3d− 2 = 34; as in the previous model, the
TT rank entries do not depend on d while this is not the case for the tensor rank.

Table 3.2 shows, for a relative accuracy of 10−1, just as Table 3.1, that, as long as the
subproblems that must be solved by AMEn and ALS-TT do not get too expensive,
which is the case given that the mode sizes are small but mostly because the entries of
the TT rank also remain small, the concept behind the two algorithms, the alternating
optimization scheme, is very hard to beat. Furthermore, AMEn beats ALS-TT again.
The main information to be extracted from this table is however the clear conclusion
that the algorithm based on CP format is outperformed by the algorithms based on TT
format that we propose in this chapter, which can be again explained by the exact same
theoretical reasons that were discussed for the previous model, in Section 3.4.1.

For this particular model, the entries of the TT rank are naturally even smaller than
in the experiments done on the previous model because of the suitable topology that
underlies the network, in the context of Remark 1. In fact, this model only features
interactions between consecutive queues.
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3.5 Conclusion

We have proposed three algorithms for approximating stationary distributions by low-
rank TT decompositions: truncated power method, ALS and AMEn. The provided
numerical experiments, which feature topologies of interactions that are expected to be
particularly suitable to TT format, demonstrate that these methods, in particular AMEn,
can perform remarkably well for very high-dimensional problems. In particular, they
clearly outperform an existing approach based on CP decompositions.

A bottleneck of ALS-TT and AMEn is that they use a direct solver for the subproblems,
which becomes rather expensive for larger entries of the TT rank. Since finding a good
preconditioner for the problem does not seem feasible, while we verified that applying an
iterative solver without preconditioner easily brings convergence problems, the work that
we develop next, presented in the next chapter, was focused on building a new algorithm
that incorporates AMEn but in a way that the iterative solver can already be applied
efficiently. We also leave for the next two chapters the illustration of the fact that even
for models with less suitable underlying topologies, our algorithms in TT format are able
to find an approximation of the solution efficiently.
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4 A tensorized multigrid scheme com-
bined with AMEn

In this chapter, we consider a tensorized multigrid scheme for solving (1.1). The idea of
considering a tensorized scheme is motivated by the structure of the generator matrices of
the models of interest, associated with (1.3). Such a scheme has already been proposed in
[MB14], but it has the important limitation that the curse of dimensionality still affects
it. This can be solved by combining this method with the AMEn method. As we will
see, this can be done in a way that the good properties of AMEn are reflected while its
drawbacks, discussed in the previous chapter, are not present.

The method proposed in this chapter basically combines the advantages of the two
mentioned methods. The tensorized multigrid method from [MB14] allows reducing the
mode sizes nk. This then allows an effective use of the low-rank tensor method AMEn
since both the size and, more importantly, the condition number of the subproblems get
reduced, allowing the iterative solver MINRES to be effectively applied.

The two algorithms were individually designed to deal with structures in TT format,
which is something that is desired since our idea is to build algorithms in TT format.
This idea is partially supported by the promising results obtained in the experiments in
Section 3.4. Such idea will be even more emphasized in the experiments of both this and
the next chapters.

In the end of the chapter, we illustrate the use of this new algorithm on a variety of
models from different fields taken from the already introduced benchmark collection
[Mac15].

The content of this chapter is based on the paper [BKK+16].
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Algorithm 3: Multigrid V -cycle
1 v� = MG(b�, v�)
2 if coarsest grid is reached then
3 Solve coarsest grid equation A�v� = b�
4 else
5 Update v� by ν1 smoothing steps for A�v� = b� with initial guess
6 Compute coarse right-hand side b�+1 = S(�)(b� −A�v�)
7 e�+1 = MG(b�+1, 0)
8 v� = v� + P (�)e�+1
9 Perform ν2 smoothing steps for A�v� = b� with initial guess v�

10 end

4.1 A tensorized multigrid scheme

We first recall the multigrid method from [MB14] for solving (1.1) considering that the
generator matrix has the tensor structure (1.3). Before this, we introduce the generic
components of a multigrid method for the matrix case.

4.1.1 Multigrid

Multigrid methods [Hac03] use a set of recursively coarsened representations of the
original setting to achieve accelerated convergence. They initially appeared for fast
solution of partial differential equations.

A multigrid approach has the following ingredients: the smoothing scheme; the set of
coarse variables; the transfer operators (restriction and interpolation operators); the
coarsest grid operator.

Algorithm 3 is a prototype of a V -cycle for a general linear system Ax = b that includes
the mentioned ingredients. In this algorithm: A1 is A, b1 is b, while an initial guess v1 is
considered. For a detailed description we refer the reader to [RS86, TOS01].

In particular, for a two-grid approach, i.e., � = 1, 2, one can describe the realization as
follows: the method performs a certain number ν1 of smoothing steps, using an iterative
solver that can be, for instance, weighted Jacobi or Gauss-Seidel; the residual of the
current iterate is computed and restricted by a matrix-vector multiplication with the
restriction matrix S ∈ �m×mc ; the operator A1 = A is restricted via a Petrov-Galerkin
construction to obtain the coarse-grid operator A2 = SA1P ∈ �mc×mc , where P ∈ �mc×m

is the interpolation operator; then we have a recursive call where we solve the coarse
grid equation, which is the residual equation; after this, the error is interpolated and
again some smoothing iterations are applied.
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4.1. A tensorized multigrid scheme

We now focus on how to choose mc and how to obtain the weights for the restriction
and interpolation S and P . The value mc is obtained by specifying coarse variables.
Geometric coarsening [TOS01] or compatible relaxation [Bra00, BF10] are methods
which partition the given m variables into fine variables � and coarse variables � –
m = |� | + |� |. If such a splitting is given, mc = |� | and the operators are defined in

S : �|�∪� | → �|� |, P : �|� | → �|�∪� |.

To obtain the entries for these operators, one can use methods like linear interpola-
tion [TOS01] or direct interpolation [RS86, TOS01]. Another possible approach for
choosing a coarse grid is aggregation [BMM+10], where one defines a partition of the set
of variables and each subset of this partition is associated with one coarse variable.

Instead of stopping at the second grid, because the matrix may still be too large, one can
solve the residual equation via a two-grid approach again. By this recursive construction
one obtains a multilevel (multigrid) approach, see Figure 4.1; in this case, we chose to
represent a particular type of multilevel construction, V -cycle, but we could alternatively,
for instance, think of W or F -cycles [TOS01]. The reason for this choice is that the core
concept is easier to understand using a V -cycle. Additionally, for our particular context
of interest, we verified through experiments that the difference in performance, in case
we use such more complex alternative schemes, is often negligible.

We now explain this generalization in words: on the way down, at level �, the method
performs a certain number ν1 of smoothing steps, using an iterative solver; the resid-
ual of the current iterate is computed and restricted by a matrix-vector multiplica-
tion with the restriction matrix for level �, S(�) ∈ �m�×m�+1 , where m� is the num-
ber of states at level �; the operator A� is also restricted via Petrov-Galerkin to get
A�+1 = S(�)A�P

(�), S(�)A�P
(�) ∈ �m�+1×m�+1 , where P (�) ∈ �m�+1×m� is the interpolation

operator at level �; then we have a recursive call where we solve the coarsest grid equation,
which is a residual equation just as all equations except the one associated with the first
level; then, on the way up the grids, the error is interpolated and again some smoothing
iterations are applied.

4.1.2 Tensorized multigrid

In what follows, mc represents the set of coarse variables, mc = |� |, associated with m,
in sequence of the two-grid approach from Section 4.1.1.

As in the transition from Section 3.1.1 to Section 3.1.2, we now convert the version
of an algorithm desgined for matrices, in this case Algorithm 3, so that it becomes
applicable to a tensor-structured problem. The tensor structure must be preserved along
the multigrid hierarchy. We follow the approach taken in [MB14] and define interpolation
and restriction in the following way.
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Presmoothing Coarsest grid solver Postsmoothing

S(1)

S(2)

. . .

S(nl) P (nl)

P (nl−1)

. . .

P (1)

Figure 4.1: Multigrid V-cycle with nl levels: on each level, a presmoothing iteration is
performed before the problem is restricted to the next coarser grid. On the smallest grid,
the problem is typically solved exactly by a direct solver. When interpolating back to
the finer grids, postsmoothing iterations are applied on each level.

Proposition 1. Let Q of the form (1.3) be given, with E(t)
k ∈ �mk×mk . Let P =

⊗d
k=1 Pk

and S =
⊗d

k=1 Sk with Pk ∈ �mk×(mk)c and Sk ∈ �(mk)c×mk where (mk)c < mk. Then
the Petrov-Galerkin operator corresponding to QT satisfies

SQTP =
V∑
t=1

d⊗
k=1

Sk(E(t)
k )TPk.

Thus, the task of constructing interpolation and restriction operators becomes a local
task, i.e., each part Pk of the interpolation P =

⊗d
k=1 Pk is exclusively associated with

the k-th subsystem.

Another important ingredient of the multigrid method is the smoothing scheme. In our
setting, it should fulfil two main requirements; it should:

(i) be applicable to non-symmetric, singular systems;

(ii) admit an efficient implementation in TT format.

Requirement (ii) basically means that only the operations that were mentioned in
Section 2.2 should be used by the smoother, since most other operations are far more
expensive. In this context, even though it is an atypical choice in a multigrid context
because it is a non-stationary method, one logical choice is the Krylov subspace method
GMRES [Saa03, SS86] (which also fulfills requirement (i)), given that it basically consists
of matrix-vector products and orthogonalization steps, i.e., inner products and additions.
In turn, Gauss-Seidel and Jacobi do not fulfil requirement (ii), see [MB14]. The use of
GMRES as smoother is discussed, for instance, in [RVZ10], having been successfully
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applied to tensor structured Markov chains in [MB14].

Restriction and interpolation. As suggested in [MB14], we choose the interpolation
operator Pk as direct interpolation based on the matrices describing the local part; the
different Lμ, μ = 1, ..., d, matrices from (1.5).

The choice for interpolation mentioned above was defined for a particular model, again
the overflow queuing network that was first introduced in Section 2.2, which is a model
that has a non-trivial local part in all modes. Such non-trivial part exists when there
are interactions that are local, and this is the case as its structure, depicted in Figure
3.1, represents. In fact, in each queue, there are local arrivals and local departures.
The corresponding matrices Lμ, μ = 1, ..., d, which have been mentioned for this exact
model in Section 2.2 while not explicitly written down, then have non-zero entries in
the subdiagonal and in the superdiagonal, respectively. In order to understand this, we
should recall from Section 3.4.2 that the state of a given subsystem, in a model with
customers that are indistinguishable as this one, is simply characterized by a numerical
quantity that represents the current number of customers in the corresponding queue.
Therefore, the matrices associated with the operator in each queue consider a natural
ordering of the states, starting from the empty queue and finishing with the full queue.
For more details, see [Mac15]. As a consequence, and recalling that our matrix of interest
is the generator matrix transposed, arrivals of individual customers are represented in
the form of subdiagonal non-zero entries while departures lead to superdiagonal entries.

In general, however, the local part associated with a model can easily be trivial, at
least in some of the modes. In fact, it is rare that the local parts of all modes are
non-trivial, considering the broad benchmark collection [Mac15] as reference. Direct
interpolation cannot be applied to modes that do not have such a non-trivial local part.
Furthermore, we observed in practice that for models whose local part is associated with
a superdiagonal matrix, which in sequence of the discussion in the previous paragraph is
associated with departures for models with indistinguishable customers, applying direct
interpolation also leads to problems in convergence of the corresponding multigrid cycle.

Thus, we consider, in modes with a non-trivial local part that is also not associated with
a superdiagonal matrix, direct interpolation; while for all remaining cases, we consider
linear interpolation. In fact, linear interpolation can always be applied, so that it is a
possible backup plan. Note that linear interpolation should be particularly suitable in
the presence of models with indistinguishable customers given the intrinsic 1D topology
in the local transitions associated with the described natural ordering of the states –
the associated matrix is tridiagonal. In turn, it is clearly not suitable for models with
distinguishable customers, as described in Section 3.4.2, since the ordering of the states
gets totally changed, being in particular associated with higher dimensions than one (the
number of dimensions will depend on the number of types of customers that is considered
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in the model).

Concerning the discussion about the partition of the class of models in models with
indistinguishable or distinguishable customers, it should be added that we initially
referred to customers given that the models addressed in the experiments in Section
3.4 were all associated with queuing networks, so that the numerical quantity that
defines the state is in fact associated with a number of customers. However, the
general context of indistinguishable/distinguishable is easy to extend to any other type
of model. While, as noted in [Mac15], this numerical quantity refers instead to a
number of particles for chemical networks, a number of users for telecommunications,
or a number of deficiencies in quality control; the separation in terms of whether
the referred elements are indistinguishable or distinguishable applies exactly as for
customers in queuing networks. In this context, for simplicity and in order to leave the
concepts general and not restricted to a certain type of model, we start referring to
indistinguishable models or distinguishable models. In particular, the comments made
until this point about models with indistinguishable/distinguishable customers apply in
general to indistinguishable/distinguishable models, respectively.

As for the restriction operator, we simply consider the individual matrices Sk to be
the transpose of the matrices Pk, k = 1, ..., d. By considering tensorized restriction
and interpolation operators as described in Proposition 1, the TT ranks associated to
their representations in TT format have all entries equal to 1, as explained in Section
2.2. The idea is that the small matrices Sk and Pk, k = 1, ..., d, from their respective
Kronecker representations are simply the matrices Ak, k = 1, ..., d, in the corresponding
TT representations (2.8).

When using the multigrid scheme described in Algorithm 3, the only important property
of the matrix that should be kept from one level to another is that the sum of the columns
is still 0. Given the possible choices for interpolation, and corresponding choices for
restriction, introduced above, it can be easily checked that this holds.

Smoother. For smoothing, we use three steps of GMRES in each grid.

Given the small number of smoothing steps, the associated requirements in storage and
computation are negligible.

Normalization. In (1.1) we have the restriction that the sum of the entries of the solution
is 1. This is not naturally kept during a cycle. For this reason, we normalize the obtained
approximation after each cycle. Such an explicit normalization step is also done in
truncated power method in the end of each iteration; recall Section 3.1.2.

As noted when describing the mentioned normalization step for truncated power method,
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this step is inexpensive since the inner product that is required is between the solution
we obtain after the cycle and a vector of all ones, which has the simplest possible TT
representation – all entries of the TT rank equal to 1.

Truncations. As in truncated power method and AMEn, algorithms proposed in the
previous chapter, truncation is needed during a cycle to prevent excessive rank growth.
We use again the TT-SVD algorithm, which truncates the tensor back to lower entries of
the TT rank, within a specified tolerance, as described in Section 2.2.1. Once again, it is
performed after each step where the TT rank entries are allowed to increase.

In particular, truncation has to be performed after lines 6 and 8 of Algorithm 3. Con-
cerning the truncation of the restricted residual in line 6, we have observed that we do
not need a very strict accuracy to obtain convergence of the global scheme, so that we
set the target accuracy to 10−1. As for the truncation of the updated iterates vl after
line 8, we note that they have very different norms on the different levels, so that the
target accuracy of the truncation should depend on the level. Additionally, a dependency
on the cycle, following the idea introduced in the context of truncated power method, in
Section 3.1.2, which was then also used in AMEn, in which such an adaptive scheme is
applied to the different iterations, is also included. Precisely, the accuracy depends on the
residual norm after the previous cycle (which can be seen as the measure of an iteration
for such multigrid schemes). Summarizing, the target accuracy of the truncation of the
different vl is the norm of vl divided by v1 (dependency on the level), times the residual
norm after the previous cycle (dependency on the quality of the current approximate
solution), times the value 10. This double adaptivity is also used within the GMRES
smoother, again in the steps after which the TT rank entries may increase. Note that
the adaptivity in terms of the residual norm after the previous cycle can be motivated
just as the adaptive scheme associated with truncated power method, in Section 3.1.2,
was motivated – we should be more and more accurate as we approach an approximate
solution with the desired accuracy.

We also impose an upper bound on the TT rank entries that are allowed after each
truncation. This bound is initially set to 15 and grows by a factor of

√
2 after each

cycle for which the new residual norm is larger than 9
10 times the residual norm obtained

considering the solution from the previous cycle, signalling stagnation. This differs from
the value 3

4 proposed in [MB14], but it seems more suitable; in fact, our experiments
demonstrated that, using the value 3

4 , the TT rank entries might easily still grow more
than what is needed.

Coarsest grid solver. The direct solver that is considered for solving the coarsest grid
problem is the Moore-Penrose pseudoinverse.
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Initial approximation of the solution. The algorithm is initialized with the tensor that
results from solving the coarsest grid problem and then bringing it up to the finest level
using interpolation.

Allowing the number of levels to depend on the mode. We allow the possibility that a
different number of levels for different modes is considered. For a certain level, if there
are modes for which we do not want to restrict further, we simply set the corresponding
core to identity. Note that this is possible due to the local nature of the operators for
restriction and interpolation, in the sense that there is one of each per mode.

This is particularly useful if the initial mode sizes are different since the optimal sizes to
consider in the coarsest grid are expected to be the same for all modes.

4.2 Multigrid-AMEn

We have introduced a tensorized multigrid scheme (Section 4.1) and AMEn (Section 3.3)
for solving (1.1) considering that the generator matrix has the tensor structure (1.3).
They are expected to perform well but they both have limitations that are in turn
expected to lead to not so good performances in certain contexts. We first go through
such limitations and then describe a novel combination that potentially overcomes these
limitations.

4.2.1 Limitation of AMEn

The limitations of AMEn were extensively discussed in the previous chapter already, so
that we just sum them up now.

The cost of its subproblems becomes prohibitively large when a direct solver is used
for solving the subproblem. This was discussed in Section 3.2 and confirmed in the
experiments in Section 3.4 when demanding a relative accuracy of the solution that led
to large TT rank entries.

In turn, the alternative use of an iterative solver is problematic given that the matrix
of the subproblem easily becomes ill-conditioned which, despite the fact that a good
initial guess can be considered when MINRES is the chosen solver as noted in Section
3.2, can lead to bad convergence of the algorithm, as verified again in Section 3.4, more
concretely in Table 3.1. Also in sequence of this table, it was noted that the cause for
the ill-conditioning is associated with the mode sizes.
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9 × 9 × · · · × 9

5 × 5 × · · · × 5

3 × 3 × · · · × 3

S(1)

S(2) P (2)

P (1)

Figure 4.2: Coarsening process for a problem with mode sizes 9.

4.2.2 Limitations of the tensorized multigrid scheme

The described tensorized multigrid method is limited to modest values of d, simply
because of the need for solving the problem on the coarsest grid. The size of this problem
grows exponentially in d, so that it is still affected by the curse of dimensionality. In fact,
only the mode sizes are reduced from one level to the next, while the value of d remains
unchanged. Figure 4.2 illustrates the coarsening process if one applies full coarsening to
each (E(t)

j )T according to the possible operators of interpolation and restriction discussed
in Section 4.1.2, assuming a capacity of 8, associated with mode sizes 9. In the case of
three levels, a problem of size 3d would need to be addressed by a direct solver on the
coarsest grid. While such constructions would not allow that we coarse the problem to a
single variable in each dimension, given that the mode sizes must be of the form 2q + 1,
q = 0, 1, ..., it would still be possible to reduce the mode sizes further to the value 2.

4.2.3 Combination of the two methods

Instead of using a direct method for solving the coarsest grid problem, as generally done
in the context of multigrid methods as noted in Figure 4.1, and as done in particular in
the tensorized multigrid method discussed in Section 4.1.2, we propose the use of AMEn.
We expect that it becomes much simpler to solve the subproblems (3.9) within AMEn,
in particular since this should allow the iterative solver MINRES to be used effectively,
in sequence of the fact that, as noted in the previous chapter and reminded in Section
4.2.1, the problems on MINRES only occur if the mode sizes are allowed to increase. In
fact, using this new algorithm, we can force them to be as small as needed. Moreover,
in a context where such drawback of AMEn is avoided, AMEn should be very hard to
beat as concluded in the experiments in Section 3.4 for problem sizes that still allow an
effective application of a direct solver on the subproblems.

Note that the problem to be solved on the coarsest grid constitutes a correction (or
residual, as already called) equation, thus differing from the original problem (1.1) in
having a nonzero right-hand side and incorporating a different linear constraint. To
address this problem, we apply the version of AMEn that was proposed in [DS14],
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designed for addressing linear systems, instead of the version that is proposed in Section
3.3, to the normal equations and ignore the linear constraint. The linear constraint is
fixed only at the end of the cycle by explicitly normalizing the obtained approximation,
as done in [MB14] and already described in Section 4.1.2.

We now focus on some particularities that characterize our approach, focusing only on
those that are related with the coarsest grid problem given that those associated with
the main core of the algorithm, the tensorized multigrid scheme, are just as those already
described in Section 4.1.2. More concretely, the two algorithms share the details about:
the choice of the restriction and interpolation operators, the smoother, the normalization
step, the truncations, and the way to allow that the number of levels is set to different
values for different modes.

Parameters of AMEn in the coarsest grid problem. AMEn targets an accuracy that is
at the level of the residual norm after the previous multigrid cycle. More concretely, we
stop AMEn once this value is reached. The motivation is the same as when we defined
the target accuracies of the truncations in truncated power method, AMEn, and then
also in the tensorized multigrid that we use here as main solver, recall Section 4.1, in an
adaptive way.

The enrichment rank, rank of the approximation of the negative gradient that is then
used to augment the cores, is 3, as in our AMEn algorithm; recall Section 3.3. This
approximation is obtained by ALS as suggested in [DS14].

A crucial reason for the success of the method that is proposed in this chapter is, as
already noted, the fact that the difficulties in solving the subproblems inside AMEn
using an iterative solver are associated with the mode sizes. In fact, since the tensorized
multigrid scheme that is considered allows reducing the mode sizes, the coarsest grid
then becomes perfect for the application of AMEn. In this context, MINRES is used on
the subproblems of AMEn. To be more precise, given that the direct solver can still be
efficient while the problem size is small, we set a threshold on the value 1000, applying a
direct solver for problems with sizes up to this value, using MINRES otherwise.

Size of the coarsest grid problem. By construction of restriction and interpolation, the
mode sizes in the coarsest grid can only be of the form 2q + 1, q = 0, 1, ..., as already
noted. In sequence of the study that is mentioned in Section 3.4.1, even if not explicitly
shown, concerning the idea that a possible ill-conditioning of the matrix in the coarsest
grid will depend on the mode sizes, we verified that mode sizes 5 might still lead to
too ill-conditioned subproblems (in the mentioned experiments, we only showed this
explicitly for mode sizes 11). This emphasizes even further how there is almost no margin
for increasing the mode sizes so that the application of such a method as this tensorized
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multigrid for reducing the mode sizes is really needed in order for an iterative solver to
be possible to effectively apply in the subproblems of AMEn.

Thus, the number of levels is chosen such that the coarsest grid problem has mode sizes
3, as in the example that is represented in Figure 4.2.

Initial approximation of the solution. The approach for defining the initial approxima-
tion of the solution is the same as in Section 4.1.2 – the tensor that results from solving
the coarsest grid problem is brought up to the finest level using interpolation. However,
the coarsest grid problem should now be solved differently. In fact, we again need to
avoid the curse of dimensionality that is the main drawback of the original tensorized
multigrid scheme. A good solution is, in the context of the main scheme of this new
algorithm, to use AMEn; considering its variant proposed in this thesis.

4.3 Numerical experiments

We now illustrate the efficiency of the newly proposed algorithm.

4.3.1 Model problems

The benchmark problems that are used are all taken, as already noted, from the benchmark
collection [Mac15]. In total, we consider six different models, which can be grouped into
three categories. The considered parameters are the natural generalizations of the default
ones that are considered in the mentioned benchmark collection.

All considered models are indistinguishable models as we have explained in Section 4.1.2
that the construction associated with interpolation (and restriction) does not suit models
associated with a local topology that is not 1D, which is the case for distinguishable
models.

Overflow queuing models. The first class of benchmark models includes an already
extensively discussed overflow queuing network; recall, for instance, Section 3.4.1, where
its structure is depicted in Figure 3.1. Additionally, two variations of it are considered.
The arrival rates, the service rates and the capacity depend on the queue. We consider,
for the arrival rate of the k-th queue, 1.2 − (k − 1) · 0.1, for k = 1, . . . , d; while we set all
service rates to 1. The variations of the model differ in the way the queues interact. For
the already introduced overflow, the following description has been provided in Section
3.4.1: customers which arrive at a full queue try to enter subsequent queues until they
find one that is not full; after trying the last queue, they leave the system. As for its two
variations that are also considered:
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Figure 4.3: Structure of the model kanbanalt2.

• overflowsim: As overflow, but customers arriving at a full queue try only one
subsequent queue before leaving the system;

• overflowpersim: As overflowsim, but if customers arrive at the last queue and this
queue is full, they try to enter the first queue instead of immediately leaving the
system.

For these models, it is possible to consider direct interpolation based on the local part of
the operator, as already noted for the model overflow when discussing such operators
in Section 4.1.2. This extends to the other two models because their local parts are
common.

Simple tandem queuing network (kanbanalt2). A network of queues has to be passed
through by customers, one after the other. Each queue has its own service rate and its
own capacity. We set the service rate of all queues to 1, while arrivals only occur at the
first queue with a rate of 1.2. The service in queue k can only be finished if queue k + 1
is not full, so that a served customer can immediately enter the next queue. Figure 4.3
illustrates this model.

The only subsystems with a non-trivial local part are the first and the last, but the last is
associated with a superdiagonal matrix given that, as seen in Figure 4.3, it corresponds
to a departure; recall the discussion concerning the association between the type of
transitions and the type of non-zero entries that occur in the matrices that represent such
transitions for indistinguishable models in Section 4.1.2. In the end, we can only apply
direct interpolation based on the local matrix associated with the first mode, L1 from
(1.5). As a result, P1 is constructed via direct interpolation, while linear interpolation is
considered in P2, . . . , Pd.

Metabolic pathways. The next model problems we consider come from the field of
chemistry, describing stochastic fluctuations in metabolic pathways. In Figure 4.4(a)
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Figure 4.4: Structure of the models directedmetab (a) and divergingmetab (b).

each node of the given graph describes a metabolite. A flux of substrates can move along
the nodes being converted by means of several chemical reactions (an edge between node
k and � in the graph means that the product of reaction k can be converted further by
reaction �). The rate at which the k-th reaction happens is given by

vkmk

mk +Kk − 1
,

where mk is the number of particles of the k-th substrate, while vk and Kk are constants
which we choose as 0.1 and 1000, respectively, for all k = 1, . . . , d. Each substrate has a
capacity, and such capacities can differ from one substrate to another. This model will
be called directedmetab.

Model divergingmetab is a variation of directedmetab. In this case, one of the metabolites
in the reaction network can be converted into two different metabolites, meaning that
the reaction path splits into two independent ones, as shown in Figure 4.4(b).

The interpolation and restriction operators for these models are chosen in the same way
as for kanbanalt2 given that the local transitions that exist in the different modes are of
the same type.

4.3.2 Numerical results

We next report the results of the experiments we performed on the models from Section
4.3.1 to test the proposed method, “Multigrid-AMEn”. We compare its performance
against: algorithm “AMEn”, proposed in Section 3.3; and also against the original
tensorized multigrid scheme proposed in [MB14], and presented in this thesis in Section
4.1.2, which we simply denote by “Multigrid”.

Throughout all experiments, we stop an iteration when the relative accuracy, defined in
Section 3.4 as the current residual norm divided by the residual norm when considering
the tensor of all ones (scaled so that the sum of its entries is one), is smaller than 10−2.
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Table 4.1: Execution time (in seconds), number of iterations and maximal TT rank
entry of the computed approximations for overflow with mode sizes 17 and varying the
number of subsystems d. The symbol “—” indicates that the desired accuracy could not
be reached within 3600 seconds.

AMEn Multigrid Multigrid-AMEn
d Time Iter Rank Time Iter Rank Time Iter Rank
4 4.5 7 16 4.6 13 13 4.2 13 13
5 36.3 9 23 6.4 11 20 7.0 11 20
6 239.4 12 28 24.7 17 29 20.4 17 29
7 1758.4 14 36 252.4 24 29 38.3 24 29
8 — — — — — — 98.4 28 41
9 — — — — — — 214.8 36 57
10 — — — — — — 718.8 40 80
11 — — — — — — 2212.2 45 113

Such normalized tensor of all ones happens to be our initial guess considered by AMEn,
as noted in Section 3.4, but it does not correspond to the initial guesses of Multigrid and
Multigrid-AMEn.

In the tables that follow, in coherence with the experiments from Section 3.4: “Time”
stands for the computation time, in seconds; “Rank” stands for the maximal entry of
the TT rank of the approximate solution. As for “Iter”, it will stand for the required
number of iterations, which concerns the number of sweeps for AMEn while the number
of cycles for the two multigrid algorithms. A limit on the allowed computation time of
3600 seconds (one hour) is imposed.

Scaling with respect to the number of subsystems. In order to illustrate the scaling
behaviour of the three methods, we first choose in all models a capacity of 16 in each
subsystem; i.e., mode sizes 17; which is again the default choice in [Mac15]; and vary d,
the number of subsystems. Figure 4.5 displays the obtained execution times.

To provide more insight into the results depicted in Figure 4.5, we also give the required
number of iterations and the maximal TT rank entry of the computed approximation for
the overflow model in Table 4.1. For the other models, the observed behaviour is similar
and we therefore refrain from providing more detailed data.

In Figure 4.5, we observe that Multigrid and Multigrid-AMEn behave about the same
up to d = 6 subsystems. For larger d, the cost of solving the coarsest grid problem of
size 3d with a direct method becomes prohibitively large within Multigrid. Multigrid-
AMEn is almost always faster than AMEn even for d = 4 or d = 5. To which extent
Multigrid-AMEn is faster depends on the growth of the TT rank entries of the solution
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with respect to d, since these have the largest influence on the performance of AMEn;
recall the detailed discussion in Chapter3.2 about the cost of AMEn when applying a
direct solver in the subproblems.

In the context of Remark 1, the TT format is a degenerate tree tensor network, thus match-
ing the topology of interactions in the models overflowsim, kanbanalt2, and directedmetab;
recall the figures that represent these models in Section 4.3.1. The influence of the
mentioned topology is expected to be mostly felt in the sense that a good approximation
of the solution should be possible to obtain with a TT tensor with small TT rank entries,
as already noted in the context of the small TT rank entries obtained in the models tested
in Section 3.4, specially in the model associated with Table 3.2 which is particularly
suitable to the format, just as the models mentioned above. This strongly influences the
computation times, in particular when applying AMEn, as emphasized in the previous
paragraph, or as for instance noted in the context of Figure 3.3. Note that another
factor that helps justifying the good performances of the algorithms is the fact that the
TT ranks associated with the operators TT format that represent the models are small
and independent of d, just as for the models tested in Section 3.4; for details about the
operators, check [Mac15]. Comparing the mentioned models (overflowsim, kanbanalt2,
and directedmetab) to overflowsim, the performance is slightly worse for kanbanalt2 and
directedmetab. This should be caused by the fact that linear interpolation must replace
direct interpolation in most modes (all except the first) for the latter two models as
noted in Section 4.3.1. This suggests that the solution of considering linear interpolation
is not as efficient as we would expect, recall the discussion about the suitability of
this interpolation operator for indistinguishable models in Section 4.2.3. In contrast,
overflowsim, as well as overflow and overflowpersim, consider direct interpolation in all
modes, which clearly seems to be a very efficient choice. This seems to in fact be a
relevant factor, noting that the second best performance is observed for overflowpersim
even though its underlying topology contains a cycle – the topology can be represented
as in Figure 3.1 but adding also an arrow from the last to the first queue – thus not
matching the TT format. It becomes clear that there is robustness with respect to the
topology, as in fact the performances are not that different for topologies that were
expected to be completely out of context when considering TT format. This is also
reflected by the good results obtained for divergingmetab; see the underlying topology
from Figure 4.4(b).

We see in Table 4.1 that the upper bound that is considered on the TT rank entries in
each truncation of the multigrid approaches; described in Section 4.1.2; works particularly
well, given that we obtain similar maximal TT rank entries to those obtained in AMEn,
whose rank adaptivity procedure is more natural.

The maximum problem size that is considered is 1713 ≈ 9.9 × 1015. Multigrid-AMEn
easily deals with larger d, but this is the largest configuration for which execution times
below 3600 seconds can still be obtained.
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Table 4.2: Execution time (in seconds), number of iterations and maximal TT rank
entry of the computed approximations for overflow with d = 6 and varying mode sizes.
The symbol “—” indicates that the desired accuracy could not be reached within 3600
seconds.

AMEn Multigrid Multigrid-AMEn
n Time Iter Rank Time Iter Rank Time Iter Rank
5 0.7 4 13 5.9 8 15 6.2 8 15
9 3.8 6 19 6.1 8 15 3.9 8 15
17 239.4 12 28 24.8 17 29 19.5 17 29
33 — — — 102.9 17 41 104.6 17 41
65 — — — 882.1 20 57 904.1 20 57

Scaling with respect to the mode sizes. To also illustrate how the methods scale with
respect to increasing mode sizes, we next perform experiments where we fix, for all
models, d = 6 subsystems, which is again the default choice in [Mac15] for most of the
involved models, and vary their capacity. The execution times are presented in Figure 4.6,
while more detailed information about the model overflow is provided in Table 4.2. The
capacity is considered to be the same for all subsystems, implying that the mode sizes
are also all the same, so that for simplicity we can state them as scalar values n; in
particular in Table 4.2; which represent such common values.

Figure 4.6 shows that AMEn outperforms the two multigrid methods (except for
kanbanalt2) for small mode sizes. Depending on the model, the multigrid algorithms
start to be faster for mode sizes 9 or 17, since the subproblems to be solved in AMEn
become too expensive at this point, given again the fact that a direct solver is used. In
fact, the bad performance of AMEn for kanbanalt2 can be explained by the fact that the
steady state distribution of this model has rather large TT rank entries already for small
mode sizes. This again emphasizes the idea that the quality of the performance is not
only a function of how suitable the underlying topology is to the format given that this
model has, in theory, a perfect topology.

Concerning the comparison between the two multigrid methods, no significant difference
is visible in Figure 4.6. We have already seen in Figure 4.5 that d = 6 is not large enough
to let the coarsest grid problem solver dominate the computational time in Multigrid. As
a consequence, Figure 4.6 nicely confirms that using AMEn for solving the coarsest grid
problem also does not have an adverse effect on the convergence of multigrid, in which
case the times obtained for Multigrid-AMEn would be worse than those of Multigrid.

The already mentioned robustness that concerns the idea that the format seems to be
able to deal even with less suitable topologies is again confirmed. In fact, the scaling
behaviour observed in Figure 4.6 is very similar for all models.
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We again verify that the TT rank entries remain in control in the multigrid schemes by
looking at the results in Table 4.2.

The maximum problem size that is considered is 1296 ≈ 4.6 × 1012. Additionally, once
again, no problem should arise from going further on the mode sizes; the fact that we
stop is simply because the computations would start taking longer than 3600 seconds.

4.4 Conclusion

We have proposed a novel combination of two methods, AMEn and an existing ten-
sorized multigrid scheme, for computing the stationary distribution of large-scale tensor
structured Markov chains. Our numerical experiments confirm that this combination
truly combines the advantages of both methods. In particular, it addresses the main
difficulty of AMEn that it cannot deal with mode sizes that are not extremely small by
only applying this method after they have been reduced on the way down the grids. As a
result, we can address a much wider range of problems not only in terms of the number
of subsystems but also in terms of the number of possible states per subsystem. Our
experiments also demonstrate the robustness of TT format in the sense that it is capable
of dealing with a larger variety of applications and topologies, compared to what has
been reported in the literature, including Section 3.4.

Further improvement is required in the choice of the restriction and interpolation operators.
In fact, while applying direct interpolation on the local part of the operator representing
the generator matrix seems to be extremely efficient, it is rare that all modes have a
non-trivial local part that allows such procedure to be applied. In such cases, linear
interpolation must be used instead, and we verified in the numerical experiments that the
algorithms are then significantly less efficient. Furthermore, this choice for interpolation
is here applied to indistinguishable models, associated with a local 1D topology, but it
would not suit distinguishable models, so that robustness still fails in the sense that this
type of model cannot be addressed.
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Figure 4.5: Execution time (in seconds) needed to compute an approximation of the
steady state distribution for the benchmark models from Chapter 4.3.1. All mode sizes
are set to 17.

60



4.4. Conclusion

10 20 30 40 50 60
100

101

102

103

Mode sizes

C
om

pu
ta

tio
n 

tim
e 

[s
]

AMEn
Multigrid
Multigrid AMEn

(a) overflow

20 40 60 80 100 120

100

101

102

103

Mode sizes

C
om

pu
ta

tio
n 

tim
e 

[s
]

AMEn
Multigrid
Multigrid AMEn

(b) overflowsim

10 20 30 40 50 60
100

101

102

103

Mode sizes

C
om

pu
ta

tio
n 

tim
e 

[s
]

AMEn
Multigrid
Multigrid AMEn

(c) overflowpersim

10 20 30 40 50 60

101

102

103

Mode sizes

C
om

pu
ta

tio
n 

tim
e 

[s
]

AMEn
Multigrid
Multigrid AMEn

(d) kanbanalt2

10 20 30 40 50 60

100

101

102

103

Mode sizes

C
om

pu
ta

tio
n 

tim
e 

[s
]

AMEn
Multigrid
Multigrid AMEn

(e) directedmetab

10 20 30 40 50 60

100

101

102

103

Mode sizes

C
om

pu
ta

tio
n 

tim
e 

[s
]

AMEn
Multigrid
Multigrid AMEn

(f) divergingmetab

Figure 4.6: Execution time (in seconds) needed to compute an approximation of the
steady state distribution for the benchmark models from Chapter 4.3.1. All cases consider
d = 6.
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5 Aggregation/disaggregation tech-
niques

In this chapter, we consider a specific subclass of multigrid schemes for solving (1.1).
The difference to the approach that was considered in the previous chapter is that
restriction and interpolation are done in a very particular way, which is well-established
in the solution of our problem of interest of finding steady states of Markov chains. Our
main concern was to, in sequence of the conclusions of the previous chapter, try to find
operators for restriction and interpolation that are more efficient for indistinguishable
models while also distinguishable models to be effectively addressed.

Aggregation/disaggregation techniques, which can be seen as a subclass of multigrid
methods, have also been used to solve (1.1). A reduced version of (1.1) where states have
been aggregated in groups is solved and then a solution for the original problem needs to
be extrapolated using some disaggregation scheme. Thus, these techniques are associated
with a certain way to choose the restriction and interpolation operators. Aggregation,
already mentioned in this context in Section 4.1.1, can be defined, for instance: assuming
an underlying Kronecker structure of the generator matrix [HL94, BD07a, PM11, Day12];
or imposing specific relations between the rates of transition between states, entries
of the generator matrices, of the original and the aggregated processes – lumpability
[DHS03, HMRP13].

The approaches proposed in this chapter consist of using aggregation/disaggregation
techniques that are particularly convenient to adapt to TT format. In particular, as in the
algorithm proposed in the previous chapter, restriction (aggregation) and interpolation
(disaggregation) are again tensorized. Two types of operators for aggregation, which give
two algorithms, are considered: one based on a tensorized aggregation scheme [HL94]
that is particularly similar to that proposed in the previous chapter; and another where
full subsystems are aggregated [BD04, BD07b, Day12].

The goal is again to target the computation of the stationary distribution for finite-
dimensional communicating Markov processes, developing and comparing different algo-
rithmic approaches in TT format, testing their sensitivity to different models by using a
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broad benchmark collection for testing. Such tests will be also used to emphasize even
more that building algorithms based on TT format is generally a good option.

The content of this chapter is based on the paper [Mac16].

5.1 Aggregation/disaggregation schemes

Having already described the core ideas behind multigrid; recall Section 4.1.1; we directly
move to the introduction of their subclass that considers a particular type of restriction
and interpolation, called aggregation and disaggregation, respectively. We then describe
particular variants that are expected to be effective for Markov chains characterized by
interacting subsystems.

The original idea can be found in [Tak75], in an algorithm called iterative aggregation/dis-
aggregation (IAD), where only two levels/grids were used. The number of states in the
coarse level is typically much smaller than the original number of states given that many
states are merged (aggregated) into one. An important drawback is that a big amount
of information then gets lost. This is a limitation of methods with two levels since the
coarse grid problem has to be small enough to be solved efficiently, thus implying such
excessive merging. This is the same idea that was briefly mentioned in Section 4.1.1 for
justifying that considering a two-grid approach might be problematic.

The general concept of multigrid, with more than two levels being considered, started to
be later combined with the core idea of IAD, of aggregating and disaggregating states.
Many different possibilities for the way to define aggregation were proposed, where some
of them focus on the case in which there is an underlying Kronecker structure of the
generator matrix, as already noted in the beginning of this chapter. This is our case of
interest. We next go into detail on such variants. The idea is that the chosen aggregation
(restriction) operator has a simple Kronecker representation. This is the case when
assuming the existence of subsystems inside the network.

5.1.1 Tensorized algorithm pairing states in each subsystem

This first scheme was proposed in the numerical experiments of [HL94]. A Petrov-Galerkin
construction, recall Proposition 1, is again considered, meaning that restriction and
interpolation are again tensorized. More concretely, as in the algorithm proposed in
[MB14] and described in Section 4.1.2 of this thesis, restriction (aggregation) results in a
reduction of the number of states of each subsystem by merging the states associated with
consecutive pairs of numbers. As a result, this method should be particularly suitable
for networks for which the states are naturally ordered in each subsystem according
to the numerical quantity they represent, as described for indistinguishable models in
Section 4.1.2. This is the same local topology that should suit the tensorized multigrid
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0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Figure 5.1: Example of how aggregation works for d = 2 and 4 possible states per
subsystem.

scheme proposed in the previous chapter also, in particular when linear interpolation is
considered, recall again Section 4.1.2.

The matrix Sk, in the context of Proposition 1, associated with each subsystem, k =
1, ..., d, is, for an example where the number of states of each subsystem is 4,

[
1 1 0 0
0 0 1 1

]T
. (5.1)

In particular, defining, as in Section 4.1.1, m� as the number of states at level �,
m�+1 = m�/2d as the number of states per subsystem is divided by 2.

The way states are aggregated is represented in Figure 5.1, for an example with d = 2
and again assuming 4 states per subsystem.

The suitability of a setting with an underlying ordering of the states in each subsystem
associated with a 1D topology is clear in Figure 5.1.

5.1.2 Aggregating all states from fixed subsystems

Aggregation can be also done, again assuming the existence of interacting subsystems,
through aggregating all states of one particular subsystem in each level [BD04, BD07b,
Day12].

Once again, restriction (aggregation) is tensorized, meaning that it is represented by
a simple Kronecker product – it follows a Petrov-Galerkin construction, recall again
Proposition 1. The difference is that all matrices Sk, k = 1, ..., d, are now identity
matrices except for the one associated with the subsystem whose states are aggregated.
For that particular dimension, the matrix is a column vector of ones instead. Therefore,
this is a tensorized scheme that has the particularity that only one of the small matrices
that compose it is not identity. Note that m�+1 = m�/ni, where i is the mode associated
with the subsystem whose states are aggregated from level � to �+ 1.
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0,0 1,0 2,0 3,0

0,1 1,1 2,1 3,1

0,2 1,2 2,2 3,2

0,3 1,3 2,3 3,3

Figure 5.2: Example of how aggregation works for d = 2 and 4 possible states per
subsystem, assuming that the first dimension is the one associated with the subsystem
whose states are aggregated.

The way states are aggregated is represented in Figure 5.2, again for an example with
d = 2 and 4 states per subsystem.

Two states are aggregated from one level to the next if they are in the same state in
a subset of the subsystems that includes all except one – the one whose states are
aggregated in that level. In particular, any local topology is now ignored. In Figure 5.2,
the subsystem whose state is not relevant for defining the states that are aggregated is
the first.

Figure 5.2 clearly suggests how, when the mode sizes start to increase, the distance
between states that are aggregated together increases, in case the local topology is
associated with naturally ordered states – 1D topology. This means, in particular,
recalling the discussion in Section 4.1.2 concerning the fact that such a 1D topology is
intrinsic to modes associated with such indistinguishable models, that this algorithm is
not expected to behave particularly well for this type of model. In particular, problems
in the convergence of this algorithm are expected when, given a model of this type, the
mode sizes start to increase.

5.2 Proposed algorithms

As done, for instance, in the transition from Section 3.1.1 to Section 3.1.2, the idea is to
now convert the particular variants of aggregation/disaggregation techniques for matrices
described in Section 5.1 into algorithms in TT format. In particular, as noted in the
context of the construction of the tensorized multigrid scheme proposed in Section 4.1.2,
the tensor structure must be preserved along the multigrid hierarchy.

5.2.1 Algorithm from Section 5.1.1 in TT format

Our first proposed algorithm combines the algorithm described in Section 5.1.1 with
TT format by having all involved structures, in particular matrices and vectors, in this

66



5.2. Proposed algorithms

format.

As noted in Section 5.1.1, this new algorithm is a similar tensorized multigrid scheme
to the one proposed in Section 4.1.2 (both reducing the size of the different modes
in each grid considering an underlying 1D local topology). This should become even
more clear now that we explicitly discuss the adaptation of the algorithm to TT format.
Furthermore, they are similar in the fact that they both aim at reducing the mode sizes
in each grid. As a consequence, it is logical that the particularities of the tensorized
multigrid scheme that we consider are very similar to those that were considered for the
other mentioned scheme. We now go through such particularities, and the mentioned
similar algorithm is referred to as algorithm of reference.

Restriction and interpolation. Because the corresponding aggregation is represented in
a tensorized way, as seen in Section 5.1.1, it allows a TT representation with all entries
of the TT rank equal to 1. The same holds for disaggregation. A similar statement was
made for the restriction and interpolation operators associated with the algorithm of
reference. The idea is that the small matrices involved in the Kronecker representation
are simply the matrices Aμ, μ = 1, ..., d, in the corresponding TT representation (2.8).
The difference is that such matrices are now of the form (5.1) (adapted to the mode
sizes).

As noted in the context of the algorithm of reference, when using the multigrid scheme
described in Algorithm 3, the only important property of the matrix that should be kept
from one level to another is that the sum of the columns is 0. This holds independently
of how interpolation is chosen as, assuming that the sum of the columns at level � is 0,
1TA�+1 = 1T (S(�)A�P

(�)) = (1TS(�))A�P (�) = 1TA�P (�) = 0 (where 0 denotes, again, a
vector of zeros) using the fact that 1TS(�) = 1T – the sum of the columns of the restriction
operator S� is 1. In this context, we use the transpose of restriction for interpolation,
which corresponds to considering, as in the context of the corresponding operators for the
algorithm of reference, each Pk, k = 1, ..., d, to be the transpose of Sk. The reason was
explained in when justifying in Section 1.1 how simple it is to obtain a representation of
QT of the form (1.3) given the same type of representation for Q.

Smoother. The fulfilments that must be verified by the smoother are exactly the same
as in the algorithm of reference. In this context, we choose again GMRES.

We use three steps of GMRES in the finest grid while one step in the remaining grids.
In fact, while we used three steps in all other grids for the algorithm of reference, in
this case we verified that the extra cost associated with such additional steps was not
worth the corresponding gain in convergence. Note that the separation is done depending
on the level and not on whether we are in a presmoothing or postsmoothing stage, as
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typically done.

Given that we have even less smoothing steps than in the algorithm of reference, the
associated requirements in storage and computation are now even more negligible.

Coarsest grid solver. The coarsest grid is still affected by the curse of dimensionality.
In fact, just as in the algorithm of reference, the mode sizes are reduced from one level
to the next while the number of modes remains unchanged. In this context, the same
solution that was adopted in the algorithm proposed in this thesis to solve this problem
from the algorithm of reference, recall Section 4.2.3, can be adopted: we use AMEn
[DS14] as coarsest grid solver.

Normalization. In (1.1) we have the restriction that the sum of the entries of the solution
is 1. This is not naturally kept during a cycle, so that, again as in the algorithm of
reference, we normalize the obtained approximation after each cycle.

Truncations. Truncation is again needed during a cycle to prevent excessive rank growth.
TT-SVD algorithm is again used as in the algorithm of reference, being applied in the
exact same steps of Algorithm 3.

In particular, truncation is again done after lines 6 and 8 of Algorithm 3. As for the
parameters that are considered in these truncations, the restricted residual in line 6
is again truncated with constant accuracy 10−1. As for the truncation of the updated
iterates v� after line 8, it is now less complicated since the dependency of their norms
on the level is not as strong as in the algorithm of reference, so that we do target an
accuracy that depends on the level. The only adaptive scheme that is considered is
related to the residual norm after the previous cycle. In fact, the target accuracy is that
value times a constant, 10. This is again also the accuracy that is considered for the
truncations inside the GMRES smoother.

The same upper bound on the TT rank entries that are allowed after each truncation as
in the algorithm of reference are imposed: it is initially set to 15 and grows by a factor of√

2 after each cycle for which the new residual norm is larger than 9
10 times the residual

norm obtained considering the solution from the previous cycle.

Parameters of AMEn in the coarsest grid problem. For the same reason that the
particularities of this algorithm are in general similar to those from the algorithm of
reference, it makes sense that the parameters associated with the application of AMEn
in the coarsest grid are similar to those of Multigrid-AMEn; recall Section 4.2. In fact,
the parameters are the same: AMEn targets an accuracy that is the residual norm after
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the previous multigrid cycle; the enrichment rank is 3, and the approximation of the
associated residual is obtained by ALS as suggested in [DS14]; the subproblems are solved
with a direct solver for problems of size up to 1000, while MINRES is used otherwise.

Size of the coarsest grid problem. By construction of restriction and interpolation, the
mode sizes in the coarsest grid can only be powers of 2 (except 20 = 1 since it is not
possible to reduce the problem to a single variable per mode, which was also the case for
the algorithm of reference, even if for different reasons, recalling that the operators for
restriction and interpolation are different). In sequence of the comments concerning the
size of the coarsest grid problem for Multigrid-AMEn; recall Section 4.2; it was noted
that mode sizes 5 would still be too large while mode sizes 3 are already small enough
for AMEn to be possible to apply effectively. The question is whether mode sizes 4 are
still possible to use or we need to reduce the mode sizes to the value 2. With a similar
type of study that led to the mentioned conclusions for Multigrid-AMEn, we concluded
that mode sizes 4 would still be too large.

Thus, the number of levels is chosen such that the coarsest grid problem has mode sizes
2, which is the minimum possible value.

Initial approximation of the solution. The algorithm is initialized with the tensor that
results from solving the coarsest grid problem, which is then brought up to the finest level
using interpolation, and such problem suffers from the curse of dimensionality so that we
cannot apply a direct solver, just as for the algorithm of reference. In this context, as in
Multigrid-AMEn; recall Section 4.2; our variant of AMEn is used.

Allowing the number of levels to depend on the mode. We allow the possibility that a
different number of levels for different modes is considered, as in Multigrid-AMEn; recall
Section 4.2. For a certain level, if there are modes for which we do not want to restrict
further, we simply set the corresponding core to identity.

5.2.2 Algorithm from Section 5.1.2 in TT format

The second proposed algorithm combines the algorithm discussed in Section 5.1.2 with
TT format by again considering the algorithm with all structures in this format.

We now refer to important particularities of the algorithm. It will be possible to observe
that most of them coincide with those in the other variant proposed in Section 5.2.1,
which is logical since the core of the two algorithms is the same. Looking at the
parameters that were tuned to get an optimal performance of the algorithms, we even
note that the similarities between the two variants proposed in this chapter are more
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clear than those between the variant proposed in Section 5.2.1 and Multigrid-AMEn.
This was not expected since these latter two are very similar as already noted before and
particularly emphasized in Section 5.2.1. For instance, the number of smoothing steps
or the parameters of the TT-SVD truncations are the same, as we see next, for the two
variants proposed in this chapter while they were seen to differ between the algorithm
proposed in Section 5.2.1 and Multigrid-AMEn.

Restriction and interpolation. As the corresponding aggregation is represented in a
tensorized way, as in the variant proposed in Section 5.2.1, it again allows a TT represen-
tation with all entries of the TT rank equal to 1. The same holds again for disaggregation.
The operators TT format associated with aggregation and disaggregation are obtained
by setting the different cores to the small matrices from the Kronecker representation.
Such matrices, in the case of aggregation, are now as described in Section 5.1.2: for a
given level, they are all identity except for the one associated with the mode whose states
are aggregated in that level.

We use the transpose of aggregation as disaggregation, again as in the variant proposed
in Section 5.2.1.

Smoother. The fulfilments that must be verified by the smoother are, as in the context
of the variant proposed in Section 5.2.1, the same as in the tensorized multigrid scheme
proposed in Section 4.1.2. In this context, we choose again GMRES.

The number of smoothing steps that is considered is the same as in the mentioned variant:
three steps in the finest grid while one step in the remaining grids. This results again in
a storage and computation that is negligible.

Coarsest grid solver. While in the multigrid scheme from Section 5.2.1, the mode
sizes are reduced from one level to another, while the value of d is unchanged; in this
one we maintain the mode sizes but reduce the number of modes. Therefore, AMEn
is not so suitable and it is replaced with the direct solver that was also used in the
scheme described in Section 4.1.2 – Moore-Penrose pseudoinverse. This is not a problem
since using such a direct solver is no longer problematic because there is no curse of
dimensionality, as opposed to the case for the algorithm of reference, motivating the
creation of Multigrid-AMEn back in Section 4.2. In fact, we can reduce the number of
modes as much as desired.

Normalization. As in the variant proposed in Section 5.2.1, the sum of the entries must
be 1 and this is not kept during a cycle, so that we normalize the obtained approximation
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after each cycle.

Truncations. Truncation is again performed to avoid excessive rank growth using TT-
SVD algorithm, and it is done in the exact same steps of Algorithm 3 as in the variant
proposed in Section 5.2.1. Additionally, it is applied with the same target accuracies.
Furthermore, the imposed upper bound on the TT rank entries is defined in the same
way.

Size of the coarsest grid problem. Since the expensive Moore-Penrose pseudoinverse is
the coarsest grid solver, we define the number of levels as the smallest value for which
the number of states on the coarsest grid is smaller than 350.

Initial approximation of the solution. The algorithm is again initialized with the tensor
that results from solving the coarsest grid problem, after bringing it up the grids using
interpolation. The difference is that the coarsest grid solver must be coherent with the
solver that is used in general in the coarsest grid of the main cycle; the reasoning is the
same as when we changed the coarsest grid solver from Section 4.1.2 to Section 4.2.

Allowing the number of levels to depend on the mode. As in the variant proposed in
Section 5.2.1, we allow the possibility that a different number of levels for different modes,
by considering identity matrices in the cores associated with modes that we do not want
to restrict further.

5.3 Numerical experiments

We now analyse the performance of the two algorithms proposed in this chapter. The
algorithms of reference for comparison are: AMEn, from Chapter 3; Multigrid-AMEn,
from Chapter 4.

The algorithms from Sections 5.2.1 and 5.2.2 are denoted by “TensorizedAggregation”
and “ModeAggregation”, respectively.

As in the experiments in Section 4.3, we stop an iteration when the relative accuracy,
current residual norm divided by the residual norm associated with the tensor of all ones
(scaled so that the sum of its entries is one), is smaller than 10−2. This only corresponds
to the initial guess in the case of AMEn. It is not the initial guess of the multigrid-based
algorithms proposed in this thesis, which share a particular procedure for determining
an initial guess.
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Table 5.1: Comparison of the algorithms for model convergingmetab – 410 ≈ 1.05 × 106

states.

Time Rank Iter
Multigrid-AMEn 37.4 15 13

AMEn 1.8 16 4
TensorizedAggregation 31.0 29 13

ModeAggregation 14.9 15 8

In the tables that follow, in coherence with the experiments from Section 4.3: “Time”
stands for the computation time, in seconds; “Rank” stands for the maximal entry of
the TT rank of the approximate solution; “Iter” stands for the required number of
iterations, which are defined differently depending on whether they refer to AMEn or to
a multigrid-based method, representing the number of sweeps and the number of cycles,
respectively. We use “—” in the rows of the tables associated with algorithms that do
not converge.

As in the experiments from Section 4.3, we will consider common mode sizes in each test
case. As a consequence, for simplicity, we again state them as scalar values n, which
represent such common values.

The benchmark problems that are used are all taken, as already noted, from the benchmark
collection [Mac15]. We consider three different models as test cases.

5.3.1 First test case: converging metabolic pathways

We consider a model [LH07], named convergingmetab in [Mac15], from the field of chemical
networks, which has a topology of interactions that should not suit TT format particularly
well, in the context of the ideal underlying train topology introduced in Remark 1.

We consider n = 4 and d = 10; see Table 5.1.

AMEn has an excellent performance. It is, in fact, expected to be hard to beat, as
concluded in the experiments in Section 3.4 and emphasized in the beginning of Section
4.2.3 when motivating the use of AMEn in the coarsest grid of Multigrid-AMEn algorithm,
unless the entries of the TT rank are large since this would imply a significant increase
on the cost of the subproblem that must be repeatedly solved; recall the discussion about
the cost of applying a direct solver to such subproblems in Section 3.2. This was already
noted in the previous experiments done in this thesis; more concretely, in Sections 3.4
and 5.3.
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As for the proposed algorithms, we see that the restriction and interpolation operators
that are used in TensorizedAggregation are particularly effective against those used
in Multigrid-AMEn, recalling that the two algorithms are totally similar in terms of
their concept, as introduced in Section 5.1.1 and emphasized in Section 5.2.1, while the
concretizations differ exclusively on the way such operators are selected. They are both
expected to perform well since this is an indistinguishable model, recall the discussion
relating Multigrid-AMEn and indistinguishable models in Section 4.1.2 and then also
the one associated with TensorizedAggregation in the beginning of this chapter. The
idea is that this type of model has an intrinsic 1D topology in each subsystem, but
the results of the experiments in Section 4.3 already suggested that the performance of
Multigrid-AMEn should be possible to improve. TensorizedAggregation seems to be a
method that allows achieving such desired improvement.

ModeAggregation also behaves particularly well in this context with small mode sizes.
This is expected since this algorithm is only expected to have problems when the mode
sizes are large given the local 1D topology that is intrinsic to such indistinguishable
models; recall the associated comment in sequence of the representation in Figure 5.2.

Globally, the algorithms, all in TT format, seem to be efficient even when the underly-
ing topology is not theoretically suitable, in coherence with the conclusions from the
experiments in Section 4.3.

5.3.2 Second test case: cyclic metabolic pathways

We now consider another model [LH07], named convergingmetab in [Mac15], from the
field of chemical networks, with an underlying topology that is even further from the
ideal one. In fact, the train topology is destroyed by an interaction between the last and
first subsystems, which introduces a cycle. Additionally, this model is reducible, meaning
in particular that the steady state is not unique, which implies that it is a subclass of
models that algorithms for finding steady states of Markov chains tend to avoid. We
however note that, if we only focus on each connected component of states, the solution
is unique again, so that a solution should in fact be possible to find. Basically, we can
find a solution for each connected component since they are associated with different
problems (in particular, the linear constraint associated with probabilities summing to
one must be imposed on each connected component instead). Therefore, we can in fact
deal with such models, as introduced in Section 1.1.

This model is again an indistinguishable model.

We go further on n and d, one at each time, considering two cases.

We first consider n = 4 and d = 18. The corresponding results can be found in Table 5.2.
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Table 5.2: Comparison of the algorithms for model cyclemetab – 418 ≈ 6.87 × 1010 states.

Time Rank Iter
Multigrid-AMEn 525.5 80 22

AMEn 418.7 31 6
TensorizedAggregation 82.2 57 17

ModeAggregation 80.9 41 10

The proposed algorithms perform globally well despite the mentioned particularities of
this model. The performances are worse than in Table 5.1 but this is not necessarily bad
given that the number of modes that are now considered is also larger. The resulting
large TT rank entries lead to a bad performance of AMEn, while Multigrid-AMEn
is again outperformed by TensorizedAggregation. It is additionally outperformed by
ModeAggregation, whose good performance is again justified by the small mode sizes
that are considered.

The performance of the proposed algorithms might be even better in case there was more
control on the rank growth. In fact, the entries of the TT rank could be much smaller
while still leading to the same quality in the approximation of the solution; just see the
maximum entry of the TT rank of the approximate solution obtained with AMEn. The
same holds for Multigrid-AMEn. In fact, the upper bound that is imposed on the TT
rank entries that are obtained after each truncation on all the multigrid-based algorithms
(all except AMEn); recall for instance Section 4.1.2, where it is first described; in order
to avoid such entries to grow too much does not work that well in this case, even if it did
in the experiments in Section 4.3.

The fact that the algorithms are effective even when the underlying topology is not
suitable to the format is even more emphasized, recalling that the topology associated
with this model is particularly bad because of the existing cycle. Such topology is similar
to that of model overflowpersim tested in Section 4.3, for which the performance of the
algorithms in TT format was also surprisingly good.

The second case consists of taking n = 32 and d = 6. The corresponding results are in
Table 5.3.

The performance of ModeAggregation is strongly affected by increasing the mode sizes,
as expected; see the related argument in sequence of Table 5.1, noting that there is
again an underlying 1D local topology because this is an indistinguishable model. As for
AMEn, it is also more suited for problems with a large number of subsystems than for
problems with a large number of possible states per subsystem; recall from Section 3.2
that there is a direct influence of the mode sizes on the cost of the subproblem, which is
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Table 5.3: Comparison of the algorithms for model cyclemetab – 326 ≈ 1.07 × 109 states.

Time Rank Iter
Multigrid-AMEn 432.1 80 19

AMEn 1956.5 31 6
TensorizedAggregation 64.2 57 15

ModeAggregation — — —

the main cost associated with this algorithm when a direct solver is used for solving it.
This explains that its performance is worse than in Table 5.2 despite the smaller global
problem size.

5.3.3 Third test case: wireless network with handoff

This model [SS97, AFRT06], named handoff2class1d in [Mac15], from the telecommu-
nications field has a topology of interactions that suits TT format perfectly, again in
the context of Remark 1, given that a linear local geometry is considered. Its main
particularity is the fact that we consider two different classes of users. Thus, this model is
in the subclass of distinguishable models, which significantly differ from indistinguishable
models as explained in the context of queuing networks for the previously explored dis-
tinguishable model; Kanban control model, in the experiments in Section 3.4.2; and then
generalized for models that are not necessarily queuing networks, while also explained
in more detail, in Section 4.1.2. As noted in the same context in Section 4.1.2, this is
a subclass in which the application of Multigrid-AMEn and TensorizedAggregation is
not a good option since they consider restriction and interpolation operators that are
only suitable for models with a local 1D topology. These ideas were noted in Section
4.1.2 and in the beginning of Section 5.1.1, respectively. Just as in the case of reducible
models, algorithms for finding steady states of Markov chains tend to avoid testing on
such models; an exception is [Buc99], where the mentioned Kanban control model is
considered.

While Multigrid-AMEn and TensorizedAggregation are not suitable for this type of
model, in a certain sense we expect the opposite from ModeAggregation. As noted in
sequence of Figure 5.2, a 1D local topology, associated with indistinguishable models, is
particularly bad for this algorithm when the mode sizes start to increase, as confirmed
in Table 5.3. However, when considering this type of model, a distinguishable model,
this bad effect on increasing mode sizes is expected to be much less significant. In fact,
the distance between states is not as straight-forward in the new underlying topology,
associated with the decreasing lexicographic ordering of the states in terms of the vector
that characterizes them, as introduced in Section 3.4.2, but it is at least clear that it is
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Table 5.4: Comparison of the algorithms for model handoff2class1d – 1028 states.

Time Rank Iter
AMEn 4.7 4 3

ModeAggregation 149.7 21 4

Table 5.5: Comparison of the algorithms for model handoff2class1d – 2104 ≈ 1.94 × 109

states.

Time Rank Iter
AMEn 231.4 8 6

ModeAggregation 134.7 29 5

not as in Figure 5.2. More concretely, the distance between states that are aggregated is
now undoubtedly smaller.

We go even further on the mode sizes and number of dimensions, considering again two
cases.

We first consider n = 10 and d = 28. The corresponding results can be found in Table
5.4.

AMEn and ModeAggregation can easily deal with 28 modes, which is expected since
they are both particularly suited for large d. This was already explained in sequence of
Table 5.3 for AMEn, and it is clear from its conceptual definition for ModeAggregation,
recall Section 5.1.2, since the number of modes is what is reduced along the grids.

In the case of AMEn, because the TT rank entries are very small, in sequence of the
already mentioned suitable underlying topology of the network, this algorithm is very
hard to beat, in coherence with what had also been concluded for Table 5.1.

The reason why the computation time is much worse for ModeAggregation is the problem
that was mentioned in the context of Table 5.2 concerning the fact that the TT rank
entries of the multigrid-based methods easily grow too far.

Note that the problem size that is being addressed is clearly the largest that was tested –
total of 1028 states.

The results for the second case, in which we consider n = 210 and d = 4, are in Table 5.5.

Despite the smaller problem size, when compared with Table 5.4, AMEn behaves worse
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because of the larger mode sizes that are now considered; by the same argument as in
the comparison of the performances of AMEn in the two tables from Section 5.3.2.

We see that ModeAggregation can deal with such a value of n. In fact, while mode
sizes 32 are too large for this algorithm to converge in Section 5.3.2, recall Table 5.3,
we now get good convergence for mode sizes 210. This confirms the expectation that
the problems that this algorithm has with large mode sizes for indistinguishable models
disappear when considering distinguishable models.

In the end, despite not using any information about the topology of each subsystem
(local topology), which is more complex in the presence of distinguishable models,
ModeAggregation seems to perfectly address such models. Note that it would be even
more competitive if the adopted rank adaptivity scheme would not generate far too large
entries of the TT rank of the approximate solution.

5.3.4 Choosing the algorithm to use

In sequence of the performed experiments, the way to decide which algorithm to use,
depending on the type of model that is given, should be clear. In particular, we will
conclude that the two algorithms proposed in this chapter cover all possible models.

AMEn would be the best option in general, as noted in sequence of Tables 5.1 and 5.4,
if its performance was not so strongly affected by increasing TT rank entries of the
approximate solution. The problems when the TT rank entries increase are justified by
the cost of the subproblems; recall the related discussion in Section 3.2. Additionally,
in sequence of the mentioned discussion, the TT rank entries do not even need to be
particularly large for the cost of the subproblems to become prohibitively large. Moreover,
it is common that such large TT rank entries are found, for instance, for models with not
so suitable underlying topologies or when considering mode sizes that are not particularly
small; recall Tables 5.3 and 5.5, respectively.

As for Multigrid-AMEn, while it is clearly a good option given that it performs well for
a large and representative collection of models as seen in the experiments in Section 4.3,
the restriction and interpolation that are chosen seem to be possible to outperform, as
we had also predicted in the context of the mentioned experiments. This in fact happens
when replacing them with the aggregation and disaggregation operators proposed in
TensorizedAggregation, as repeatedly observed in the tables throughout the experiments
that were performed. This way we can see TensorizedAggregation as an improved
version of Multigrid-AMEn. In fact, as already noted in sequence of Table 5.1 and
emphasized when describing TensorizedAggregation in Section 5.2.1, these two algorithms
are conceptually very similar, being both particularly suited for inistinguishable models,
while not for distinguishable models, so that the comparison of their performances directly
reflects the quality of the chosen restriction and interpolation operators.
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Therefore, for indistinguishable models, TensorizedAggregation is the best option, noting
that ModeAggregation has the problem associated with the intrinsic 1D local topology
that has been particularly noted in Table 5.3.

Concerning distinguishable models, TensorizedAggregation, and also Multigrid-AMEn,
are not suitable, as explained in the beginning of Section 5.3.3. The only option that
remains is ModeAggregation. This is however not a problem since this method has a
particularly good performance when applied to models of this subclass. In fact, the
problem associated with the 1D local topology that affects it does not apply now.

Summing up, we have proposed two algorithms that seem to perfectly complement each
other. While TensorizedAggegation is ideal for indistinguishable models but cannot be
applied to distinguishable models effectively, ModeAggregation has problems with the
underlying 1D local topology of indistinguishable models but behaves particularly well
for distinguishable models. The most important fact to be noted is that, for each of the
two subclasses in which we have partitioned the set of all models, indistinguishable/dis-
tinguishable models, there is one algorithm that perfectly suits it.

It should be added that being distinguishable or indistinguishable may, in some cases,
not be a characteristic of the model, but instead of its individual subsystems. This is
the case of the model analysed in Section 3.4.2, the Kanban control model, which is not
completely distinguishable since its first and last subsystems are in fact indistinguishable.
The solution, in such contexts, is to combine the two proposed algorithms. This can be
done in two ways. We can apply aggregation as in ModeAggregation until all modes that
remain have a 1D local topology, so that TensorizedAggregation can be then effectively
applied in the remaining levels. We can alternatively go in the opposite direction and
first apply aggregation as in TensorizedAggregation, only restricting the modes that do
not have a 1D local topology, and then apply ModeAggregation in the remaining levels
since all modes are then associated with 1D local topology but with a small number of
states (those that have been processed by TensorizedAggregation), or with different local
topologies.

5.4 Conclusion

We have proposed algorithms for approximating steady states for structured Markov
chains combining the concepts of aggregation/disaggregation with TT decompositions.

Numerical experiments demonstrate that, for general problem sizes, we go further
in terms of performance comparing the two proposed algorithms against the main
algorithms proposed in the previous two chapters: AMEn and Multigrid-AMEn. They
can, furthermore, perform remarkably well for very high-dimensional problems. The
largest problem size that is addressed is 1028; the largest mode sizes are 210; the maximum
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number of modes is 28.

We take the definition of robustness that was used to characterize the algorithm Multigrid-
AMEn in the previous chapter to a whole new level. With the proposed algorithms, all
models deriving from Markov chains with a simple Kronecker representation should be
possible to address. In fact, when choosing the algorithm to use, depending on the type
of model, the choice is quite natural, as seen in Section 5.3.4. While after the previous
chapter, we only had an algorithm to deal with all possible indistinguishable models, we
can now also find a solution efficiently for distinguishable models, so that robustness is
now a word that perfectly applies. Furthermore, the performance of the algorithm for
indistinguishable models was improved.

Still in the context of robustness, besides covering different fields of interest, the tests done
in this chapter include: a reducible model, for which the performances of the algorithms,
both in comparative and absolute terms, seem to be similar to the performances for
a general irreducible model; a distinguishable model, which should be particularly
challenging but for which we have now an algorithm that perfectly deals with it. These two
subclasses of models are in fact extremely important because of their range of applications
and also because of the difficulties, in the past, in addressing them. Additionally, the idea
from the conclusions of Chapter 4 that we obtain good performances of the algorithms
even for models with underlying topologies that are not, in theory, suitable for applying
TT format is emphasized.

In the end, the two main problems mentioned in the conclusions of the previous chapter
were addressed: we proposed an algorithm that improves the performance of Multigrid-
AMEn on indistinguishable models by considering other operators for restriction and
interpolation, even though we maintain the exact same concept; we proposed an algorithm
that can deal particularly well with distinguishable models.

One important limitation that the proposed algorithms have, and which also affects
Multigrid-AMEn, is on the control of the rank growth. Even imposing an upper bound
on the TT rank entries allowed after each truncation done inside each cycle, such entries
can grow far too much, clearly influencing the global performances. This should be
further investigated.
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6 Entropy and mutual information

In this chapter, we present the main ideas behind the concepts of entropy and mutual
information, along with their basic properties. Moreover, we discuss definitions and
important properties associated with conditional MI and MI between three random
vectors. In what follows, � denotes the support of a random vector X. Additionally, we
assume the convention 0 ln 0 = 0, justified by continuity since x ln x→ 0 as x→ 0+.

This chapter is thus the fundamental introduction to what follows in the second part of
the thesis.

6.1 Entropy

The concept of entropy [Sha48] was initially motivated by problems in the field of
telecommunications. Introduced for discrete random variables, the entropy is a measure
of uncertainty. In the following, P (A) denotes the probability of A.

Definition 1. The entropy of a discrete random vector X is:

H(X) = −
∑

x∈�
P (X = x) lnP (X = x).

Given an additional discrete random vector Y , the conditional entropy of X given Y is

H(X|Y ) = −
∑
y∈�

∑
x∈�

P (X = x|Y = y)P (Y = y) lnP (X = x|Y = y).

Note that the entropy of X does not depend on the particular values taken by the
random vector but only on the corresponding probabilities. It is clear that entropy is
non-negative since each term of the summation in (1) is non-positive. Additionally, the
value 0 is only obtained for a degenerate random variable.
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An important property that results from Definition 1 is the so-called chain rule [CT06,
Ch. 2]:

H(X1, ...,Xn) =
n∑
i=2
H(Xi|Xi−1, ...,X1) +H(X1), (6.1)

where a sequence of random vectors, such as (X1, ...,Xn) and (Xi−1, ...,X1) above,
should be seen as the random vector that results from the concatenation of its elements.

6.2 Differential entropy

A logical way to adapt the definition of entropy to the case where we deal with an
absolutely continuous random vector is to replace the probability (mass) function of a
discrete random vector by the probability density function of an absolutely continuous
random vector, as next presented. The resulting concept is called differential entropy.
We let fX denote the probability density function of an absolutely continuous random
vector X.

Definition 2. The differential entropy of an absolutely continuous random vector X is:

h(X) = −
∫

x∈�
fX(x) ln fX(x)dx. (6.2)

Given an additional absolutely continuous random vector Y , such that (X,Y ) is also
absolutely continuous, the conditional differential entropy of X given Y is

h(X|Y ) = −
∫

y∈�
fY (y)

∫
x∈�

fX|Y =y(x) ln fX|Y =y(x)dx dy.

It can be proved [CT06, Ch. 9] that the chain rule (6.1) still holds replacing entropy by
differential entropy.

The notation that is used for differential entropy, h, is different from the notation used
for entropy, H. This is justified by the fact that entropy and differential entropy do not
share the same properties. For instance, non-negativity does not necessarily hold for
differential entropy. Also note that h(X,X) and h(X|X) are not defined given that
the pair (X,X) is not absolutely continuous. Therefore, relations involving entropy and
differential entropy need to be interpreted in a different way.

Example 1. If X is a random vector, of dimension n, following a multivariate normal
distribution with mean μ and covariance matrix Σ, X ∼ 	n(μ,Σ), the value of the
corresponding differential entropy is 1

2 ln ((2πe)n|Σ|) [CT06, Ch. 9], where |Σ| denotes
the determinant of Σ. In particular, for the one-dimensional case, X ∼ 	 (μ, σ2),
the differential entropy is negative if σ2 < 1/2πe, positive if σ2 > 1/2πe, and zero if
σ2 = 1/2πe. Thus, a zero differential entropy does not have the same interpretation as in
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the discrete case. Moreover, the differential entropy can take arbitrary negative values.

In what follows, when the context is clear, we will refer to differential entropy simply as
entropy.

6.3 Mutual information

We now introduce mutual information (MI), which is a very important measure since it
measures both linear and non-linear associations between two random vectors.

6.3.1 Discrete case

Definition 3. The MI between two discrete random vectors X and Y is:

MI(X,Y ) =
∑

x∈�

∑
y∈�

P (X = x,Y = y) ln P (X = x,Y = y)
P (X = x)P (Y = y)

.

MI satisfies the following; see, e.g., [CT06, Ch. 9]:

MI(X,Y ) = H(X) −H(X|Y ); (6.3)
MI(X,Y ) ≥ 0; (6.4)
MI(X,X) = H(X). (6.5)

Equality holds in (6.4) if and only if X and Y are independent random vectors.

According to (6.3), MI(X,Y ) can be interpreted as the reduction in the uncertainty of
X due to the knowledge of Y . Note that, applying (6.1), we also have

MI(X,Y ) = H(X) +H(Y ) −H(X,Y ). (6.6)

Another important property that immediately follows from (6.3) is

MI(X,Y ) ≤ min(H(X), H(Y )). (6.7)

In sequence, in view of (6.3) and (6.4), we can conclude that, for any random vectors X

and Y ,

H(X|Y ) ≤ H(X). (6.8)

This result is again coherent with the intuition that entropy measures uncertainty. In
fact, if more information is added, about Y in this case, the uncertainty about X will
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not increase.

6.3.2 Continuous case

Definition 4. The MI between two absolutely continuous random vectors X and Y , such
that (X,Y ) is also absolutely continuous, is:

MI(X,Y ) = −
∫

y∈�

∫
x∈�

fX,Y (x,y) ln fX,Y (x,y)
fX(x)fY (y)

dx dy.

It is straight-forward to check, given the similarities between this definition and Definition
3, that most properties from the discrete case still hold replacing entropy by differential
entropy. In particular, the only property from (6.3) to (6.5) that cannot be restated for
differential entropy is (6.5) since Definition 4 does not cover MI(X,X), again because
the pair (X,X) is not absolutely continuous. Additionally, restatements of (6.6) and
(6.8) for differential entropy also hold.

On the whole, MI for absolutely continuous random vectors verifies most important
properties from the discrete case, including being symmetric and non-negative. Moreover,
the value 0 is obtained if and only if the random variables are independent. Concerning
a parallel of (6.7) for absolutely continuous random vectors, there is no natural finite
upper bound for h(X) in the continuous case. In fact, while the expression MI(X,Y ) =
h(X) − h(X|Y ), similar to (6.3), holds, h(X|Y ) and h(Y |X) are not necessarily non-
negative. Furthermore, as noted in Example 1, differential entropies can be become
arbitrarily small, which applies, in particular, to the terms h(X|Y ) and h(Y |X). As a
result, MI(X,Y ) can grow arbitrarily.

6.3.3 Combination of continuous with discrete random vectors

The definition of MI when we have an absolutely continuous random vector and a discrete
random vector is also important in later stages of this article. For this reason, and despite
the fact that the results that follow are naturally obtained from those that involve only
either discrete or absolutely continuous vectors, we briefly go through them now.

Definition 5. The MI between an absolutely continuous random vector X and a discrete
random vector Y is given by either of the following two expressions:

MI(X,Y ) =
∑
y∈�

P (Y = y)
∫

x∈�
fX|Y =y(x) ln

fX|Y =y(x)
fX(x)

dx

=
∫

x∈�
fX(x)

∑
y∈�

P (Y = y|X = x) ln P (Y = y|X = x)
P (Y = y)

dx.
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The majority of the properties stated for the discrete case are still valid in this case.
In particular, analogues of (6.3) hold, both in terms of entropies as well as in terms of
differential entropies:

MI(X,Y ) = h(X) − h(X|Y ) (6.9)
= H(Y ) −H(Y |X). (6.10)

Furthermore, MI(X,Y ) ≤ H(Y ) is the analogue of (6.7) for this setting. Note that
(6.10), but not (6.9), can be used to obtain an upper bound for MI(X,Y ) since h(X|Y )
may be negative.

6.4 Triple mutual information and conditional mutual informa-
tion

We next discuss definitions and important properties associated with conditional MI
and MI between three random vectors. Random vectors are considered to be discrete in
this section as the generalization of the results for absolutely continuous random vectors
would follow a similar approach.

6.4.1 Conditional mutual information

Conditional MI is defined in terms of entropies as follows, in a similar way to property
(6.3); cf. [Fle04, MB06].

Definition 6. The conditional MI between two random vectors X and Y given the random
vector Z is written as

MI(X,Y |Z) = H(X|Z) −H(X|Y ,Z). (6.11)

Using (6.11) and an analogue of the chain rule for conditional entropy, we conclude that:

MI(X,Y |Z) = H(X|Z) +H(Y |Z) −H(X,Y |Z). (6.12)

In view of Definition 6, developing the involved terms according to Definition 3, we
obtain:

MI(X,Y |Z) = EZ [MI(X̃(Z), Ỹ (Z)], (6.13)

where, for z ∈ 
 , (X̃(z), Ỹ (z)) is equal in distribution to (X,Y )|Z = z.
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Taking (6.4) and (6.13) into account,

MI(X,Y |Z) ≥ 0, (6.14)

and MI(X,Y |Z) = 0 if and only if X and Y are conditionally independent given Z.

Moreover, from (6.11) and (6.14), we conclude the following result similar to (6.8):

H(X|Y ,Z) ≤ H(X|Z). (6.15)

6.4.2 Triple mutual information

The generalization of the concept of MI to more than two random vectors is not unique.
One such definition, associated with the concept of total correlation, was proposed in
[Wat60]. An alternative one, proposed in [Bel03], is called triple MI (TMI). We will
consider the latter since it is the most meaningful in the context of objective functions
associated with the problem of forward feature selection.

Definition 7. The triple MI between three random vectors X, Y , and Z is defined as

TMI(X,Y ,Z) =
∑

x∈�

∑
y∈�

∑
z∈


P (X = x,Y = y,Z = z)×

ln P (X = x,Y = y)P (Y = y,Z = z)P (X = x,Z = z)
P (X = x,Y = y,Z = z)P (X = x)P (Y = y)P (Z = z)

.

Using the definition of MI and TMI, we can conclude that TMI and conditional MI are
related in the following way, which provides extra intuition about the two concepts:

TMI(X,Y ,Z) = MI(X,Y ) − MI(X,Y |Z). (6.16)

The TMI is not necessarily non-negative. This fact is exemplified and discussed in detail
in the next chapter.
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7 Forward feature selection methods
based on MI

In the first part of this chapter, we focus on explaining the general context concerning
forward feature selection methods based on mutual information. More concretely, target
(ideal) objective functions to be maximized in each step are presented and studied.
We then define important concepts and prove some properties of such target objective
functions. These target objective functions cannot be used in practice as there is a term
that is required when evaluating them that is quite complex. It requires, in particular,
the knowledge of a high-dimensional term that is hard to estimate accurately. The
common solution is to use approximations, leading to different feature selection methods.
For the analysis in this thesis, we selected a set of methods representative of the main
types of approximations to the target objective function. In the second part of the
chapter, we explore such methods: we describe them, we discuss drawbacks resulting
from their underlying approximations, and we discuss how they cope with some desirable
properties that hold for the target objective function. A third and last part consists of a
distributional setting, based on a specific definition of class, features, and a performance
metric. The setting provides an ordering for each of the methods, which is independent
of specific datasets and estimation methods, and is compared with the ideal feature
ordering. The aim of the setting is to illustrate how the drawbacks of the methods lead
to incorrect feature ordering and to the loss of the good properties of the target objective
functions.

The content of this chapter is based on the paper [MOPV17].

7.1 The forward feature selection problem

In this section, we focus on explaining the general context concerning forward feature
selection methods based on mutual information. We first introduce target objective
functions to be maximized in each step; we then define important concepts and prove
some properties of such target objective functions. In the rest of this section, features
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are considered to be discrete for simplicity. The name target objective functions comes
from the fact that, as we will argue, these are objective functions that perform exactly
as we would desire ideally, so that a good method should reproduce its properties as well
as possible.

7.1.1 Target objective functions

Let C represent the class, which identifies the group each object belongs to. S (F ), in
turn, denote the set of selected (unselected) features at a certain step of the iterative
algorithm; in fact, S ∩ F = ∅, and S ∪ F is the set with all input features. In what
follows, when a set of random variables is in the argument of an entropy or MI term, it
stands for the random vector composed by the random variables it contains.

Given the set of selected features, forward feature selection methods aim to select a
candidate feature Xj ∈ F such that

Xj = arg max
Xi∈F

MI(C,S ∪ {Xi}).

Therefore, Xj is, among the features in F , the feature Xi for which S ∪ {Xi} maximizes
the association (measured using MI) with the class, C. Note that we choose the feature
that maximizes MI(C,Xi) in the first step (i.e., when S = ∅).

Since MI(C,S ∪ {Xi}) = MI(C,S) + MI(C,Xi|S) [HLLC08], in view of (6.16), the
objective function evaluated at the candidate feature Xi can be written as

OF(Xi) = MI(C,S) + MI(C,Xi|S)
= MI(C,S) + MI(C,Xi) − TMI(C,Xi,S)
= MI(C,S) + MI(C,Xi) − MI(Xi,S) + MI(Xi,S|C). (7.1)

The feature selection methods try to approximate this objective function. However, since
the term MI(C,S) does not depend on Xi, the reference objective function for most
feature selection methods is the simplified form of objective function given by

OF′(Xi) = MI(C,Xi) − MI(Xi,S) + MI(Xi,S|C).

This objective function has distinct properties from those of (7.1) and, therefore, deserves
being addressed separately.

The objective functions OF and OF′ can be written in terms of entropies, which provides
a useful interpretation. Using (6.3), we obtain for the first objective function:

OF(Xi) = H(C) −H(C|Xi,S). (7.2)
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7.1. The forward feature selection problem

Maximizing H(C) −H(C|Xi,S) provides the same candidate feature Xj as minimizing
H(C|Xi,S), for Xi ∈ F . This means that the feature to be selected is the one leading
to the minimal uncertainty of the class among the candidate features. As for the second
objective function, we obtain, using again (6.3):

OF′(Xi) = H(C|S) −H(C|Xi,S). (7.3)

This emphasizes that a feature that maximizes (7.2) also maximizes (7.3). In fact, the
term that depends on Xi is the same in the two expressions.

We now provide bounds for the target objective functions.

Theorem 3. Given a general candidate feature Xi:

1. H(C) −H(C|S) ≤ OF(Xi) ≤ H(C).

2. 0 ≤ OF′(Xi) ≤ H(C|S).

Proof. Using the corresponding representations (7.2) and (7.3) of the associated objective
functions, the upper bounds follow from H(C|Xi,S) ≥ 0. As for the lower bounds, in
the case of statement 1, it comes directly from the fact that OF′(Xi) = MI(C,Xi|S) ≥ 0.
As for statement 2, given that, from (7.2), OF(Xi) = H(C) − H(C|Xi,S) = H(C) −
H(C|S) + MI(C,Xi|S), we again only need to use the fact that MI(C,Xi|S) ≥ 0.

The upper bound for OF, H(C), corresponds to the uncertainty in C, and the upper
bound on OF′, H(C|S), corresponds to the uncertainty in C not explained by the already
selected features, S. This is coherent with the fact that OF′ ignores the term MI(C,S).
The lower bound for OF corresponds to the uncertainty in C already explained by S.

7.1.2 Feature types and their properties

Features can be characterized according to their usefulness in explaining the class at a
particular step of the feature selection process. There are two broad types of features,
those that add information to the explanation of the class, i.e. for which MI(C,Xi|S) > 0,
and those that do not, i.e. for which MI(C,Xi|S) = 0. However, a finer categorization is
needed to fully determine how the feature selection process should behave. We define
four types of features: irrelevant, redundant, relevant, and fully relevant.

Definition 8. Given a subset of already selected features, S, at a certain step of a forward
sequential method, where the class is C, and a candidate feature Xi, then:

• Xi is irrelevant given (C,S) if MI(C,Xi|S) = 0 ∧ H(Xi|S) > 0;

89



Chapter 7. Forward feature selection methods based on MI

• Xi is redundant given S if H(Xi|S) = 0;

• Xi is relevant given (C,S) if MI(C,Xi|S) > 0;

• Xi is fully relevant given (C,S) if H(C|Xi,S) = 0 ∧ H(C|S) > 0.

If S = ∅, then MI(C,Xi|S), H(Xi|S), H(C|S), and H(C|Xi,S) should be replaced by
MI(C,Xi), H(Xi), H(C), and H(C|Xi), respectively.

Under this definition, irrelevant, redundant, and relevant features form a partition of
the set of candidate features F . Note that fully relevant features are also relevant since
H(C|Xi,S) = 0 and H(C|S) > 0 imply that MI(C,Xi|S) = H(C|S) −H(C|Xi,S) > 0.

Our definition introduces two novelties regarding previous works: first, we separate
non-relevant features in two categories, of irrelevant and redundant features; second, we
introduce the important category of fully relevant features.

Our motivation for separating irrelevant from redundant features is that, while a redun-
dant feature remains redundant at all subsequent steps of the feature selection process, the
same does not hold necessarily for irrelevant features. The following example illustrates
how an irrelevant feature can later become relevant.

Example 2. We consider a class C = (X + Y )2 where X and Y are two independent
candidate features that follow uniform distributions on {−1, 1}. C follows a uniform
distribution on {0, 4} and, as a result, the entropies of X, Y and C are ln(2). It can be
easily checked that both X and Y are independent of the class. In the feature selection
process, both features are initially irrelevant since, due to their independence from C,
MI(C,X) = MI(C, Y ) = 0. Suppose that X is selected first. Then, Y becomes relevant
since MI(C, Y |X) = ln(2) > 0, and it is even fully relevant since H(C|Y,X) = 0 and
H(C|X) = ln(2) > 0.

The following theorem shows that redundant features always remain redundant.

Theorem 4. If a feature is redundant given S, then it is also redundant given S′, for
S ⊂ S′.

Proof. Suppose that Xi is a redundant feature given S, so that H(Xi|S) = 0, and S ⊂ S′.
This implies that H(Xi|S′) = 0 by (6.15). As a result, Xi is also redundant given S′.

This result has an important practical consequence: features that are redundant at a
certain step of the feature selection process can be immediately removed from the set of
candidate features F , alleviating in this way the computational effort associated with
the feature selection process.
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7.1. The forward feature selection problem

Regarding relevant features, note that there are several levels of relevancy, as measured
by MI(C,Xi|S). Fully relevant features form an important subgroup of relevant features
since, together with already selected features, they completely explain the class, i.e.
H(C|S) becomes 0 after selecting a fully relevant feature. Thus, all remaining unselected
features are either irrelevant or redundant and the algorithm must stop. This also means
that detecting a fully relevant feature can be used as a stopping criterion of forward
feature selection methods. The condition H(C|S) > 0 in the definition of fully relevant
feature is required since an unselected feature can no longer be considered of this type if
it already holds that H(C|S) = 0.

A stronger condition that could be considered as a stopping criterion is H(C|S) =
H(C|S,F ), meaning that the (complete) set of candidate features F has no further
information to explain the class. As in the previous case, the candidate features will
all be irrelevant or redundant. However, since forward feature selection algorithms only
consider one candidate feature at each iteration, and the previous condition requires
considering all candidate features simultaneously, such condition cannot be used as a
stopping criterion.

Regarding the categorization of features introduced by other authors, only one category
of non-relevant features was considered in [BPZL12], named irrelevant, consisting of
the candidate features Xi such that MI(C,Xi|S) = 0. Both irrelevant and redundant
features have been considered in [MSB08, VE14]. The definition of irrelevant feature is
the one in [BPZL12]; redundant features are defined as features such that H(Xi|S) = 0.
Since the latter condition implies that MI(C,Xi|S) = 0 by (6.3) and (6.15), it turns
out that redundant features are only a special case of irrelevant ones, which is not in
agreement with our definition.

According to the feature types introduced above, a good feature selection method must
select, at a given step, a relevant feature, preferably a fully relevant one, keep irrelevant
features for future consideration and discard redundant features. The following theorem
relates these desirable properties with the values taken by the target objective functions.

Theorem 5.

1. If Xi is a fully relevant feature given (C,S), then OF(Xi) = H(C) and OF′(Xi) =
H(C|S), i.e., the maximum possible values taken by the target objective functions
are reached; recall Theorem 3.

2. If Xi is an irrelevant feature given (C,S), then OF(Xi) = H(C) −H(C|S) and
OF′(Xi) = 0, i.e., the minimum possible values of the target objective functions are
reached; recall Theorem 3.

3. If Xi is a redundant feature given S, then OF(Xi) = H(C)−H(C|S) and OF′(Xi) =
0, i.e., the minimum possible values of the target objective functions are reached;
recall Theorem 3.
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4. If Xi is a relevant feature, but not fully relevant, given (C,S), then H(C) −
H(C|S) < OF(Xi) < H(C) and 0 < OF′(Xi) < H(C|S).

Proof. The two equalities in statement 1 are an immediate consequence of equations
(7.2) and (7.3), using the fact that H(C|Xi,S) = 0 if Xi is fully relevant given (C,S).

Suppose that Xi is an irrelevant feature given (C,S), so that MI(C,Xi|S) = 0. Then,
the relation OF′(Xi) = 0 results directly from OF′(Xi) = MI(C,Xi|S). Conversely,
the relation OF(Xi) = H(C) −H(C|S) follows from the fact that OF(Xi) = H(C) −
H(C|S) + MI(C,Xi|S). As a result, statement 2 is verified.

The equalities in statement 3 follow likewise since MI(C,Xi|S) = 0 if Xi is a redundant
feature given S.

As for statement 4, we need to prove that the objective functions neither take the
minimum nor the maximum value for a relevant feature that is not fully relevant. We
start by checking that the minimum values are not reached. The proof is similar to
that of statement 2. Since OF′(Xi) = MI(C,Xi|S), and since the assumption is that
MI(C,Xi|S) > 0, then OF′(Xi) is surely larger than 0. Concerning OF(Xi), since
OF(Xi) = H(C) −H(C|S) + MI(C,Xi|S) and MI(C,Xi|S) > 0, OF(Xi) must be larger
than H(C) − H(C|S). Concerning the upper bounds, the proof is now similar to
that of statement 1. If the feature Xi is not fully relevant given (C,S), meaning that
H(C|S, Xi) > 0, the desired conclusions immediately follow from (7.2) and (7.3).

Thus, fully relevant (irrelevant and redundant) features reach the maximum (minimum)
of the objective functions, and relevant features that are not fully relevant reach a
value between the maximum and the minimum values of the objective functions. These
properties assure that the ordering of features at a given step of the feature selection
process is always correct. Note that irrelevant and redundant features can be discriminated
by evaluating H(Xi|S).

7.1.3 Complementarity

The concept of complementarity is associated with the TMI term of the target objective
function, given by TMI(C,Xi,S) = MI(Xi,S) − MI(Xi,S|C); recall (6.16). Following
[MB06], we say that Xi and S are complementary with respect to C if −TMI(C,Xi,S) >
0. Interestingly, in [CQF+11], complementarity is referred to as the existence of positive
interaction, or synergy, between Xi and S with respect to C.

Given that MI(Xi,S) ≥ 0, a negative TMI is necessarily associated with a positive
value of MI(Xi,S|C). This term expresses the contribution of a candidate feature to the
explanation of the class, when considering that the information contained in the already
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selected features is known. Following [LT06, VZCB15], we call this term class-relevant
redundancy. This term is called conditional redundancy in [BPZL12]. Class-relevant
redundancy is sometimes coined as the good redundancy since it expresses an association
that contributes to the explanation of the class. In [GGNZ08], it is highlighted that
correlation does not imply redundancy to stress that association between Xi and S is not
necessarily bad.

The remaining term of the decomposition of TMI, MI(Xi,S), measures the association
between the candidate feature and the already selected features. Following [LT06], we
call this term inter-feature redundancy. It is sometimes coined as the bad redundancy
since it expresses the information of the candidate feature already contained in the set of
already selected features.

Note that TMI takes negative values whenever the class-relevant redundancy exceeds
the inter-feature redundancy, i.e. MI(Xi,S|C) > MI(Xi,S). A candidate feature Xi

for which TMI(C,Xi,S) is negative is a relevant feature, i.e. MI(C,Xi|S) ≥ 0, since
MI(C,Xi|S) = MI(C,Xi) − TMI(C,Xi,S) by (6.16), and MI(C,Xi) ≥ 0. Thus, a
candidate feature may be relevant even if it is strongly associated with the already
selected features. Moreover, class-relevant redundancy may turn a feature that was
initially irrelevant into a relevant feature, as illustrated in Example 2. In that example,
the candidate feature Y was independent of the already selected one, X, i.e. MI(Xi,S) =
MI(Y,X) = 0, but Y taken together withX had a positive contribution to the explanation
of the class (indeed it fully explained the class), since the class-relevant redundancy is
positive, i.e. MI(Xi,S|C) = MI(Y,X|C) = ln(2) > 0.

An interesting interpretation was obtained, noting that

−TMI(C,Xi,S) = MI({Xi} ∪ S, C) − MI(Xi, C) − MI(S, C),

in [MB06]: if −TMI(C,Xi,S) > 0, then MI({Xi} ∪ S, C) > MI(Xi, C) + MI(S, C).
Therefore, −TMI(C,Xi,S) > 0 measures the gain resulting from considering Xi and S

together, instead of considering them separately, when measuring the association with
the class C.

7.2 Representative feature selection methods

The target objective functions discussed in Section 7.1 cannot be used in practice since
they require joint distributions associated with S, which are not known and have to be
estimated. This becomes more and more difficult as the cardinality of S, denoted by |S|
from here on, increases.

The common solution is to use approximations, leading to different feature selection
methods. For the analysis in this chapter, we selected a set of methods representative
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Table 7.1: Objective functions of the representative feature selection methods, evaluated
at candidate feature Xi.

Method Objective function evaluated at Xi

MIM MI(C,Xi)

MIFS MI(C,Xi) − β∑Xs∈S MI(Xi, Xs)

mRMR MI(C,Xi) − 1
|S|
∑

Xs∈S MI(Xi, Xs)

maxMIFS MI(C,Xi) − maxXs∈S MI(Xi, Xs)

CIFE MI(C,Xi) −∑
Xs∈S (MI(Xi, Xs) − MI(Xi, Xs|C))

JMI MI(C,Xi) − 1
|S|
∑

Xs∈S (MI(Xi, Xs) − MI(Xi, Xs|C))

CMIM MI(C,Xi) − maxXs∈S {MI(Xi, Xs) − MI(Xi, Xs|C)}
JMIM MI(C,Xi) − maxXs∈S {MI(Xi, Xs) − MI(Xi, Xs|C) − MI(C,Xs)}

of the main types of approximations to the target objective functions. In what follows,
we first describe the representative methods, and discuss drawbacks resulting from their
underlying approximations; we then discuss how these methods cope with the desirable
properties given by Theorem 3 and Theorem 5; finally, we briefly refer to other methods
proposed in the literature and how they relate to the representative ones. In this section,
features are considered to be discrete for simplicity.

7.2.1 Methods and their drawbacks

The methods selected to represent the main types of approximations to the target objective
functions are: MIM [Lew92], MIFS [Bat94], mRMR [PLD05], maxMIFS [POPV16], CIFE
[LT06], JMI [YM99], CMIM [Fle04], and JMIM [BHS15]. These methods are listed in
Table 7.1, together with their objective functions. The objective function at the first step
of all methods, including mRMR and JMI (their objective functions are not well-defined
for S = ∅), is simply MI(C,Xi). This implies, in particular, that the first feature to be
selected is the same in all methods.

The methods differ in the way their objective functions approximate the target objective
functions. All methods except JMIM have objective functions that can be seen as
approximations of the target OF′; the objective function of JMIM can be seen as
an approximation of the target OF. The approximations made by the methods are
essentially of three types: approximations that ignore both types of redundancy (inter-
feature and class-relevant), approximations that ignore class-relevant redundancy but
consider an approximation for the inter-feature redundancy, and approximations that
consider an approximation for both the inter-feature and class-relevant redundancies.
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These approximations introduce drawbacks in the feature selection process with different
degrees of severity, discussed next. The various drawbacks are summarized in Table 7.2.

The simplest method is MIM. This method discards the TMI term of the target objective
function OF′, i.e.

OF′(Xi) ≈ MI(C,Xi). (7.4)

Thus, MIM ranks features accounting only for relevance effects, and completely ignores
redundancy. We call the drawback introduced by this approximation redundancy ignored.

The methods MIFS, mRMR, and maxMIFS ignore complementarity effects, by approx-
imating the TMI term of OF′ through the inter-feature redundancy term only, i.e. by
discarding the class-relevant redundancy –

OF′(Xi) ≈ MI(C,Xi) − MI(Xi,S). (7.5)

In this case, the TMI can no longer take negative values, since it reduces to the term
MI(Xi,S). As discussed in Section 7.1.3, the complementarity expresses the contribution
of a candidate feature to the explanation of the class, when considering that the informa-
tion contained in the already selected features is known, and ignoring this contribution
may lead to gross errors in the feature selection process. This drawback will be called
complementarity ignored, and it was noted in [BPZL12]. These methods include an
additional approximation, to calculate the TMI term MI(Xi,S), which is also used by
the methods that do not ignore complementarity, and will be discussed next.

The methods that do not ignore complementarity, i.e. CIFE, JMI, CMIM, and JMIM,
approximate the terms of the objective functions that depend on the set S, i.e. MI(C,S),
MI(Xi,S), and MI(Xi,S|C), which are difficult to estimate, through a function of the
already selected features Xs, Xs ∈ S, taken individually. Considering only individual
associations neglects higher order associations, i.e. between a candidate and two or more
already selected features. Specifically, for CIFE, JMI, and CMIM,

OF′(Xi) ≈ MI(C,Xi) − Γ (TMI(C,Xi,S))

and for JMIM,

OF(Xi) ≈ MI(C,Xi) − Γ (TMI(C,Xi,S) − MI(C,S)),

where Γ denotes an approximating function. This type of approximation is also used
by the methods that ignore complementarity. Hereafter, we denote an already selected
feature Xs ∈ S simply by Xs. Three types of approximating functions have been used: a
sum of Xs terms scaled by a constant (MIFS and CIFE), an average of Xs terms (mRMR
and JMI), and a maximization over Xs terms (maxMIFS, CMIM, and JMIM).
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MIFS and CIFE approximate the TMI by a sum of Xs terms scaled by a constant. In
particular, for CIFE,

TMI(C,Xi,S) ≈
∑
Xs∈S

TMI(C,Xi, Xs) =
∑
Xs∈S

[MI(Xi, Xs) − MI(Xi, Xs|C)]

=
∑
Xs∈S

MI(Xi, Xs) −
∑
Xs∈S

MI(Xi, Xs|C).

The MIFS approximation is similar, but without the class-relevant redundancy terms,
and with the sum of inter-feature redundancy terms scaled by a constant β. In both
cases, a problem arises because the TMI is approximated by a sum of terms which
individually have the same scale as the term they try to approximate. This results in
an approximation of the TMI that can have a much larger scale than the original term.
Since these terms are both redundancy terms, we will refer to this as the redundancy
overscaled drawback. It becomes more and more severe as S grows. This drawback was
also noted in [BPZL12], referring to it as the problem of not balancing the magnitudes
of the relevancy and the redundancy.

Two other approximating functions were introduced to overcome the redundancy over-
scaled drawback. The first function, used by mRMR and JMI, replaces the TMI by an
average of Xs terms. In particular, for JMI,

TMI(C,Xi,S) ≈ 1
|S|

∑
Xs∈S

TMI(C,Xi, Xs) = 1
|S|

∑
Xs∈S

[MI(Xi, Xs) − MI(Xi, Xs|C)]

= 1
|S|

∑
Xs∈S

MI(Xi, Xs) − 1
|S|

∑
Xs∈S

MI(Xi, Xs|C).

The mRMR approximation is similar, but without the class-relevant redundancy terms.
This approximation solves the overscaling problem but introduces another drawback. In
fact, since MI(Xi,S) ≥ MI(Xi, Xs), implying that MI(Xi,S) ≥ 1

|S|
∑

Xs∈S MI(Xi, Xs),
the approximation undervalues the inter-feature redundancy; at the same time, given
that MI(Xi,S|C) ≥ MI(Xi, Xs|C), implying MI(Xi,S|C) ≥ 1

|S|
∑

Xs∈S MI(Xi, Xs|C),
it also undervalues the class-relevant redundancy. We call this drawback redundancy
undervalued.

The second approximating function introduced to overcome the redundancy overscaled
drawback is a maximization over Xs terms. This approximation is used differently in
maxMIFS and CMIM, on one side, and JMIM, on the other. Methods maxMIFS and
CMIM just replace the TMI by a maximization over Xs terms. In particular, for CMIM,

TMI(C,Xi,S) ≈ max
Xs∈S

TMI(C,Xi, Xs) = max
Xs∈S

(MI(Xi, Xs) − MI(Xi, Xs|C)) .

The maxMIFS approximation is similar, but without the class-relevant redundancy terms.
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The discussion regarding the quality of the approximation is more complex in this case.
We start by maxMIFS. In this case, since MI(Xi,S) ≥ MI(Xi, Xs),

MI(Xi,S) ≥ max
Xs∈S

MI(Xi, Xs) ≥ 1
|S|

∑
Xs∈S

MI(Xi, Xs). (7.6)

Thus, this approximation still undervalues inter-feature redundancy, but is clearly bet-
ter than the one considering an average. Additionally, it is clearly the best possible
approximation, under the restriction that only one Xs is considered.

Regarding CMIM, we first note that a relationship similar to (7.6) also holds for the
class-relevant redundancy, i.e.

MI(Xi,S|C) ≥ max
Xs∈S

MI(Xi, Xs|C) ≥ 1
|S|

∑
Xs∈S

MI(Xi, Xs|C),

since MI(Xi,S|C) ≥ MI(Xi, Xs|C). However, while it is true for the two individual
terms that compose the TMI that MI(Xi,S) ≥ maxXs∈S MI(Xi, Xs) and MI(Xi,S|C) ≥
maxXs∈S MI(Xi, Xs|C), it is not true that TMI(C,Xi,S) ≥ maxXs∈S TMI(C,Xi, Xs).
Thus, the maximization over Xs terms of CMIM is not as effective as that of maxMIFS;
as a matter of fact, it becomes senseless. Moreover, applying a maximization jointly to
the difference between the inter-feature and the class-relevant redundancy terms clearly
favours Xs features that together with Xi have small class-relevant redundancy, i.e. a
small value of MI(Xi, Xs|C). This goes against the initial purpose of methods that, like
CMIM, introduced complementarity effects in forward feature selection methods. We
call this drawback complementarity penalized. We now give an example that illustrates
how this drawback may impact the feature selection process.

Example 3. Assume that we have the same features as in Example 2, plus two extra
features W and Z, independent of any vector containing other random variables of the
set {W,Z,X, Y,C}. Moreover, consider the objective function of CMIM.

In the first step, the objective function value is 0 for all features. We assume that
W is selected first. In this case, at the second step, the value taken by the objective
function is again 0 for all features. We assume that X is selected. At the third step, Y
should be selected since it is fully relevant and Z is irrelevant. At this step, the objective
function value at Z is 0. The objective function at Y requires more attention. Since Y is
independent of the class, MI(Y,C) = 0, the target objective function evaluated at Y is

−TMI(C, Y, {W,X}) = − [MI(Y, {W,X}) − MI(Y, {W,X}|C)]
= − [0 − (H(Y |C) −H(Y |W,X,C))] = −(0 − ln(2)) = ln(2),
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and the objective function of CMIM evaluated at Y is

− max{TMI(C, Y,W ), TMI(C, Y,X)}
= −max{MI(Y,W ) − MI(Y,W |C),MI(Y,X) − MI(Y,X|C)}
= −max{0 − 0, 0 − (H(Y |C) −H(Y |X,C))} = −max{0 − 0, 0 − ln(2)}
= −max{0,− ln(2)} = 0.

This shows that, according to CMIM, both Y and Z can be selected at this step, whereas Y
should be selected first, as confirmed by the target objective function values. The problem
occurs because the class-relevant redundancy MI(Y,X|C) brings a negative contribution
to the term of the maximization that involves X, leading to TMI(C, Y,X) = −ln(2), thus
forcing the maximum to be associated with the competing term, since TMI(C, Y,W ) = 0.
As noted before, the maximum applied in this way penalizes the complementarity effects
between Y and X that, as a result, are not considered in the objective function of
candidate Y ; contrarily, the term that corresponds to an already selected feature that
has no association with Y , i.e. the term involving W , is the one that is reflected in the
objective function of candidate Y .

Note that since MI(Xi,S) ≥ MI(Xi, Xs) and MI(Xi,S|C) ≥ MI(Xi, Xs|C), this ap-
proximation also undervalues both the inter-feature and the class-relevant redundancies.
However, since the maximum is applied to the difference of the terms, it can no longer be
concluded, as in the case of maxMIFS, that the approximation using a maximum is better
than the one using an average (the case of JMI). The inter-feature redundancy term
still pushes towards selecting the Xs that leads to the maximum value of MI(Xi, Xs),
since it contributes positively to the value inside the maximum operator; contrarily, the
class-relevant redundancy term pushes towards selecting Xs features that depart from
the maximum value of MI(Xi, Xs|C), since it contributes negatively.

JMIM uses the approximation based on the maximization operator, like maxMIFS and
CMIM. However, the maximization embraces an additional term. Specifically,

TMI(C,Xi,S) − MI(C,S) ≈ max
Xs∈S

{TMI(C,Xi, Xs) − MI(C,Xs)}.

The additional term of JMIM, i.e. MI(C,Xs), tries to approximate a term of the target
objective function that does not depend on Xi, i.e. MI(C,S), and brings additional
problems to the selection process. We call this drawback unimportant term approximated.
Moreover, the extra term adds a negative contribution to each Xs term, favouring
Xs features with small association with C, which goes against the whole purpose of
the feature selection process. Additionally, JMIM inherits the drawbacks of CMIM,
complementarity penalized and redundancy undervalued.

The representations of the objective functions of CMIM and JMIM in the references
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Table 7.2: Drawbacks of the representative feature selection methods.

Drawback MIM MIFS mRMR maxMIFS CIFE JMI CMIM JMIM

Redundancy Xignored

Complementarity X X Xignored

Complementarity X Xpenalized

Redundancy X X X X Xundervalued

Unimportant term Xapproximated

Redundancy X Xoverscaled

where they were proposed originally [Fle04, BHS15] differ from the ones in Table 7.1.
More concretely, their objective functions were originally formalized in terms of minimum
operators:

OFCMIM(Xi) = min
Xs∈S

MI(C,Xi|Xs); (7.7)

OFJMIM(Xi) = min
Xs∈S

{MI(C,Xs) + MI(C,Xi|Xs)} . (7.8)

The representations in Table 7.1 result from the above ones using simple algebraic
manipulation; recall (6.16). They allow a nicer and unified interpretation of the objective
functions. For instance, they allow noticing much more clearly the similarities between
maxMIFS and CMIM, as well as between CMIM and JMIM.

7.2.2 Properties of the methods

The drawbacks presented in Section 7.2.1 have consequences in terms of the good
properties that forward feature selection methods must have, as expressed by Theorem
3 and Theorem 5: (i) the existence of meaningful bounds for the objective function,
and (ii) the fact that fully relevant candidate features are the only ones that reach the
maximum value of the objective function, while irrelevant and redundant features are
the only ones to reach the minimum, which guarantees a perfect ordering of the features.
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With a few exceptions, the approximations made by the various methods make them
lose these properties.

Concerning the preservation of the bounds stated by Theorem 3, it can be shown that
MIFS, mRMR, maxMIFS, and CIFE, do not preserve neither the lower bound nor the
upper bound. Indeed, the objective function of CIFE is unbounded, both superiorly and
inferiorly, due to the overscaled redundancy drawback. Moreover, the objective functions
of MIFS, mRMR, and maxMIFS are unbounded inferiorly, due to the complementarity
ignored drawback, i.e. due to the lack of the compensation provided by the class-relevant
redundancy. For these methods, the upper bound of the objective function becomes
H(C). This bound is meaningless since it no longer expresses the uncertainty in C not
explained by already selected features; in fact, it is independent of the set of already
selected features, S.

MIM, JMI, CMIM, and JMIM preserve one of the bounds: JMIM preserves the upper
bound and the remaining methods preserve the lower bound. MIM preserves the lower
bound but just because its objective function is too simplistic.

In order to see that JMI preserves the lower bound, note that, using (6.16), its objective
function can also be written as

OFJMI(Xi) = 1
|S|

∑
Xs∈S

MI(C,Xi|Xs). (7.9)

For any candidate feature Xi, since MI(C,Xi|Xs) ≥ 0 for all Xs ∈ S, it follows that
OFJMI(Xi) ≥ 0. Similarly, using (7.7), it follows immediately from the non-negativity of
MI(C,Xi|Xs) that OFCMIM(Xi) ≥ 0, again for any candidate feature Xi.

To see that JMIM preserves the upper bound, note that, using (7.8), its objective function
can also be written as

OFJMIM(Xi) = min
Xs∈S

{MI(C,Xs) + MI(C,Xi|Xs)}
= min

Xs∈S
{H(C) −H(C|Xi, Xs)}

= H(C) − max
Xs∈S

H(C|Xi, Xs).

Hence, the objective function of JMIM has H(C) as upper bound for any candidate
feature Xi since H(C|Xi, Xs) ≥ 0 for all Xs ∈ S. This is the desired bound since this
method has target objective function OF as reference.

Despite maintaining one of the bounds stated by Theorem 3, MIM, JMI, CMIM, and
JMIM, do not preserve the bound that involves the conditional entropy H(C|S). For
MIM the upper bound becomes H(C) which, as in the case of methods ignoring com-
plementarity, is meaningless. For the remaining methods, the bound is lost due to the
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approximation that replaces the terms of the objective function that depend on set S by
a function of the already selected features Xs taken individually. As for the lower bound
of JMIM and the upper bounds of JMI and CMIM, they are now functions of H(C|Xs).
As in the case of MIFS, mRMR, and maxMIFS, the new bounds become meaningless:
the upper bounds of JMI and CMIM no longer express the uncertainty in C that is not
explained by the complete set of already selected features; and the lower bound of JMIM
no longer expresses the uncertainty in C already explained by the complete set of already
selected features.

In Section 7.3 we will illustrate the loss of bounds by the various methods.

Regarding the connections between the bounds of the objective functions and the feature
types, stated by Theorem 5, these connections are lost for all methods, despite the fact
that some bounds are preserved. It is no longer possible to assure that fully relevant
features reach the maximum value of the objective function (when it exists) and that
irrelevant and redundant features reach the minimum (when it exists). In particular, the
stopping criterion is lost. We will provide several examples in Section 7.3. This is again
due to the approximation that replaces the dependencies on the whole set of already
selected features, S, by dependencies on individual features Xs ∈ S, which is shared by
all methods.

It would be useful to have results similar to those of Theorem 5, if their validity given
Xs would imply their validity given S. Unfortunately, this is only true for redundant
features. In fact, according to Theorem 4, a feature that is redundant given Xs will
also be redundant given S. The same does not hold for irrelevant and relevant features
since, as discussed in Section 7.1.2, as S grows, relevant features can become irrelevant,
and vice-versa. Thus, only properties concerning redundancy given Xs are worth being
considered. In this respect, a weaker version of Theorem 5.3 can be proved for CMIM.

Theorem 6. If there exists Xs ∈ S such that Xi is a redundant feature given {Xs}, then
OFCMIM(Xi) = 0, i.e., the minimum possible value taken by the objective function of
CMIM is reached.

Proof. Since Xi is a redundant feature given {Xs}, then MI(C,Xi|Xs) = 0 by (6.3)
and (6.15). As a result, OFCMIM(Xi) = 0 follows from (7.7). In fact, in order for
minXs∈S MI(C,Xi|Xs) to be 0, it is enough that MI(C,Xi|Xs) is 0 for one particular
Xs, since the terms involved in the minimization are all non-negative.

Theorem 6 states that the objective function of CMIM reaches the minimum for a
feature that is redundant given Xs. Note that a feature can be redundant given S but
not redundant given Xs, which renders this result weaker than that of Theorem 5.3.
Theorems analogous to Theorem 6 cannot be proved for the remaining methods, and
we provide counter-examples in Section 7.3. In particular, the possibility to discard
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redundant features from the set of candidate features is lost, except for CMIM in the
weaker context of Theorem 6.

To summarize, the approximations made by all methods make them lose the good
properties exhibited by the target objective functions, namely the guarantee that features
are correctly ordered, the existence of a stopping criterion, and the possibility to discard
redundant features (here the exception is CMIM, in the weaker context of Theorem 6).

7.2.3 Other methods

We now briefly discuss other methods that have appeared in the literature, explaining why
they have not been included as part of the representative methods presented previously.

MIFS-U [KC02] differs from MIFS in the estimation of the MI between the candidate
feature and the class – this is a meaningless difference for the type of theoretical properties
of the methods that we intend to address, in which estimation does not play a role.
MIFS-ND [HBK14] considers the same reference terms as mRMR, employing a genetic
algorithm to select the features, thus again not changing anything in theoretical terms.
ICAP [Jak05] is similar to CIFE, while forcing the terms TMI(C,Xi, Xs), Xs ∈ S, to be
seen as redundancy terms by only considering their contribution when they are positive
(negative for the objective function). IGFS [AOA08] chooses the same candidate features
in each step as JMI; and CMIM-2 [VE10] is also just the same as JMI, as its objective
function is defined exactly as (7.9).

A particular type of methods that were also not considered as representative is character-
ized by considering similar objective functions to those of the introduced representative
methods, with the difference that all MI terms are replaced by corresponding normalized
MI terms. More concretely: NMIFS [ETPZ09] is an enhanced version of MIFS, MIFS-U,
and mRMR; DISR [MB06] is adapted from JMI, and considers a type of normalization
called symmetrical relevance; NJMIM [BHS15] is adapted from JMIM, using also symmet-
rical relevance. Past experiments [BPZL12, BHS15] show that such normalizations make
the methods more expensive, due to associated extra computations, with no compensation
in terms of performance. In fact, it is argued in the mentioned experiments that the
performance of such methods is actually worse than the performance of the corresponding
methods that do not use normalized MI, which should be, as added in [BPZL12], related
to the additional variance introduced by the estimation of the extra normalization term.
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7.3 Comparison of feature selection methods on a distributional
setting

This section compares the feature selection methods using a distributional setting, based
on a specific definition of class, features, and a performance metric. The setting provides
an ordering for each of the methods, which is independent of specific datasets and
estimation methods, and is compared with the ideal feature ordering. The aim of the
setting is to illustrate how the drawbacks of the methods lead to incorrect feature ordering
and to the loss of the good properties of the target objective functions.

We start by introducing a performance measure for feature selection methods that does
not rely on the specificities of a fixed classifier – the minimum Bayes risk (MBR). We then
describe the characteristics of the setting, namely the definitions of class and features,
and show how the quantities required to calculate the objective functions of the methods,
i.e. the various types of MI, are calculated. Finally, we present and discuss the results.

7.3.1 Minimum Bayes risk

Commonly, the performance measures used to compare forward selection methods depend
on how a particular classifier performs for certain data sets. As a result, it is not clear if
the obtained conclusions are exclusively explained by the characteristics of the feature
selection method, or if the specificities of the classifier and/or the data under study
create confounding effects. To overcome this limitation, we consider a different type of
performance measure that is computed at each step of the forward selection method
under consideration. Using the set of selected features until a given step, we obtain, for
a fixed classifier, the associated Bayes risk (BR) or total probability of misclassification
[JW07, Ch. 11]. Bayes risk is a theoretical measure in the sense that it does not rely
on data but instead directly on the, assumed to be known, distributions of the involved
features into consideration; see, for practical contexts where it was used, [KB04, GB00].
The Bayes classifier ; see [HLLC08, Ch. 1]; is a classifier that defines a classification
rule associated with the minimum Bayes risk, which will be our performance measure.
The suitability of this measure to our setting results from the fact that it relies on the
distributions of the features, and also on their class-conditional distributions.

Bayes risk and Bayes classifier For a given class C, with values on the set {0, 1, ..., c}, and
a set of selected features S, with support � , a (C,S)-classifier g is a (Borel-)measurable
function from � to {0, 1, ..., c}, and g(s) denotes the value of C to which the observation
s is assigned by the classifier. Then, the Bayes risk of the (C,S)-classifier g is given by

BR(C,S, g) = P (g(S) �= C) =
c∑

j=0
P (g(S) �= j|C = j)P (C = j).
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The proposed performance evaluation measure consists of the minimum possible value
of the BR, called minimum Bayes risk (MBR). Thus, for a given class C and a set of
selected features S, the associated minimum Bayes risk, MBR(C,S), is given by:

MBR(C,S) = min
g

BR(C,S, g).

The minimum Bayes risk corresponds to the Bayes risk of the so-called Bayes classifier.
The (C,S) Bayes classifier assigns an object s ∈ � to the value that C is most likely to
take given that S = s. That is, the (C,S) Bayes classifier g is such that

g(s) = argmax
j∈{0,1,...,c}

P (C = j|S = s)

= argmax
j∈{0,1,...,c}

P (C = j)fS|C=j(s).

Note that, in particular, when there are two possible values for the class, i.e. c = 1, the
Bayes classifier g is such that:

g(s) = 1 ⇐⇒ fS|C=0(s)
fS|C=1(s)

≤ P (C = 1)
P (C = 0)

. (7.10)

see [JW07, Ch. 11].

Properties of the minimum Bayes risk We now discuss a few properties of the minimum
Bayes risk, the proposed performance evaluation criterion. In the following, measurable
should be read as Borel-measurable.

Theorem 7. If C is a measurable function of S, then MBR(C,S) = 0.

Proof. Let g be the measurable function such that C = g(S). As C = g(S), it follows
that BR(C,S, g) = P (g(S) �= C) = 0. As MBR(C,S) is non-negative and MBR(C,S) ≤
BR(C,S, g), we conclude that MBR(C,S) = 0, as intended.

Note that C being a measurable function of S is equivalent to saying that features in S

fully explain the class.

Theorem 8. If Xi is a measurable function of S, then MBR(C,S ∪{Xi}) = MBR(C,S).

Proof. Let ξ be the measurable function such that Xi = ξ(S), and g be the (C,S ∪{Xi})
Bayes classifier, so that, in particular, MBR(C,S ∪ {Xi}) = BR(C,S ∪ {Xi}, g). Let
g′ be the (C,S) classifier such that, given an observation s ∈ � , g′(s) = j when
g(s, ξ(s)) = j. Then BR(C,S∪{Xi}, g) = BR(C,S, g′). As a consequence, by transitivity,
MBR(C,S ∪ {Xi}) = BR(C,S, g′). This implies that MBR(C,S) ≤ MBR(C,S ∪ {Xi}).
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In turn, it always holds that MBR(C,S) ≥ MBR(C,S ∪ {Xi}) since S ⊂ S ∪ {Xi}.
Therefore, MBR(C,S ∪ {Xi}) = MBR(C,S).

Note that Xi being a measurable function of S is equivalent to saying that Xi is redundant
given S.

7.3.2 Setting description

We now describe the distributional setting used to illustrate the various deficiencies of
the feature selection methods. The class chosen for this setting is a generalization of the
one proposed in [POPV16], which was based on the scenario introduced in [KC02] and
later used in [HLLC08]. It is defined as

Ck =
{

0, X + kY < 0
1, X + kY ≥ 0

, (7.11)

where X and Y are independent features with standard normal distributions and k ∈
]0,+∞[.

According to the discussion in Section 7.1, our scenario includes fully relevant, relevant,
redundant, and irrelevant features. Specifically, our features are X, X − k′Y , k′ > 0, Z
and Xdisc. X and X − k′Y were chosen as relevant features that, taken together, fully
explain the class. As irrelevant feature, we chose Z, independent of X and Y , which for
simplicity is considered to follow a Bernoulli distribution with success probability 1/2.
Finally, as redundant feature we chose

Xdisc =
{

0, X < 0
1, X ≥ 0

, (7.12)

The first selected feature is the candidate Xi that has the largest value of MI(Ck, Xi).
The possible candidates are X, X − k′Y , and Xdisc, which are the initially relevant
features. Z is an irrelevant feature and, therefore, will not be selected first. We want X
to be selected first to assure that, at the second step of the algorithm, there will be, as
candidates, one fully relevant, one redundant, and one irrelevant feature. This provides
an extreme scenario, where the relevancy level of the relevant feature is the maximum
possible, making a wrong decision the hardest to occur. We next discuss the conditions
for selecting X before X − k′Y and before Xdisc.

X is selected before X − k′Y if MI(Ck, X) > MI(Ck, X − k′Y ), which is equivalent to
the condition

arctan k < (π − arctan k′) − arctan k,
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where the left term represents the angle between the lines X = 0 and X + kY = 0 and
the right term represents the angle between the lines X − k′Y = 0 and X + kY = 0,
in the context of the two-dimensional space defined by the pair of orthogonal vectors
(X,Y ). The condition can be written in terms of k as

k < tan
(
π − arctan k′

2

)
. (7.13)

Feature Xdisc is never selected before X since MI(Ck, Xdisc) ≤ MI(Ck, X) for all k >
0. To see this, note that this inequality can be written, using (6.3), as H(Ck) −
H(Ck|Xdisc) ≤ H(Ck) − H(Ck|X), which is equivalent to H(Ck|Xdisc) ≥ H(Ck|X).
This is equivalent to H(Ck|Xdisc) ≥ H(Ck|Xdisc, X), which holds by (6.15). In turn,
H(Ck|X) = H(Ck|Xdisc, X) is equivalent to MI(Ck, Xdisc|X) = 0 by (6.11). Finally,
since Xdisc is redundant given {X}, equations (6.11) and (6.15) can be used to verify
that MI(Ck, Xdisc|X) = 0.

In view of the above discussion, the ideal feature ordering coming out of the distributional
setting is X in first place and X − k′Y in second place. Ideally, the feature selection
method should stop at this step, since a fully relevant feature has been added. However,
further steps need to be considered, since actual methods do not preserve the stopping
criterion, as noted in Section 7.2.2. Then, at the third step, the remaining features, Z
and Xdisc, must be equally likely to be selected since, according to Theorems 5.2 and 5.3,
both their target objective functions reach the lower bound.

7.3.3 Required quantities

In order to be able to determine the order in which the features are selected by the different
methods, we have to derive expressions, depending on k and k′, needed for evaluating the
corresponding objective functions. We need: the MI between each candidate feature and
the class, the MI between different pairs of candidate features, and the class-conditional
MI between pairs of candidate features. The computation of these quantities require
obtaining the univariate entropies of the candidate features and of the class. The
derivations of such expressions are provided in Appendix A.1.1 and their final forms are
available in Tables 7.3 to 7.6.

Univariate entropies. We start with a summary of the univariate entropies of the
different features and of the class presented in Table 7.3. The corresponding derivations
can be found in Appendix A.1.1.
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Table 7.3: Entropies of the class, Ck, and the input features.

Ck X X − k′Y Z Xdisc

Entropy ln(2) 1
2 ln(2πe) 1

2 ln(2πe(1 + k
′2)) ln(2) ln(2)

Table 7.4: MI between each input feature and the class, Ck.

A MI(Ck, A)

X 1
2 ln(2πe)− 1

2
∑1

j=0

∫
� fX|Ck=j(u) ln fX|Ck=j(u)du

X − k′Y 1
2 ln(2πe(1 + k

′2))− 1
2
∑1

j=0

∫
� fX−k′Y |Ck=j(u) ln fX−k′Y |Ck=j(u)du a

Z 0

Xdisc 2 ln(2) + arctan k
π

ln( arctan k
2π ) + (1− arctan k

π
) ln( 1

2 − arctan k
2π ) b

aX|Ck = j ∼ SN(0, 1, (−1)j+1

k
), j = 0, 1.

bX − k′Y |Ck = j ∼ SN(0,
√

1 + k′2, (−1)j+1( 1−kk′
k+k′ )), j = 0, 1.

MI between input features and the class. As for the MI between input features and
the class, they are provided in Table 7.4. The corresponding derivations can be found in
Appendix A.1.2.

It must be added that the notation W ∼ SN(μ, σ, α) (where μ ∈ �, σ > 0, and α ∈ �),
means that the random variable W follows a skew-normal distribution, so that it has
probability density function [Azz86]

fW (w) = 2
σ
φ(w − μ

σ
)Φ(α(w − μ)

σ
), w ∈ �, (7.14)

where Φ(z) denotes the value of the standard normal distribution function at point z,
while φ(z) denotes the probability density function, for the same distribution, also at z.

MI between pairs of input features. As for the MI between the different pairs of input
features, they are provided in Table 7.5. The corresponding derivations can be found in
Appendix A.1.3.

Class-conditional MI between pairs of input features. As for the class-conditional MI
between the different pairs of input features, they are provided in Table 7.6. The
corresponding derivations can be found in Appendix A.1.4.
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Table 7.5: MI between pairs of input features.

A B MI(·, ·)

X X − k′Y 1
2 ln(1 + 1

k′2 )

X Xdisc ln(2)

X − k′Y Xdisc
1
2 ln(2πe)− 1

2
∑1

j=0

∫
� fX|Ck′ =j(u) ln fX|Ck′ =j(u)du a

Z B 0, B ∈ {X,X − k′Y,Xdisc}
aX|Ck′ = j ∼ SN(0, 1, (−1)j+1

k′ ), j = 0, 1.

Table 7.6: Class-conditional MI between pairs of input features.

A B MI(·, ·|Ck)

1
2
∑1

j=0

∫
� fX|Ck=j(u) ln fX|Ck=j(u)du+

X X − k′Y 1
2
∑1

j=0

∫
� fX−k′Y |Ck=j(u) ln fX−k′Y |Ck=j(u)du−

(1 + lnπ + ln k′) a,b

X Xdisc − arctan k
π

ln( arctan k
π

)− (1− arctan k
π

) ln(1− arctan k
π

)

X − k′Y Xdisc
1
2
∑1

j=0

∫
� fX−k′Y |Ck=j(u) ln fX−k′Y |Ck=j(u)du− h(X − k′Y |Xdisc, Ck) b,c

Z B 0, B ∈ {X,X − k′Y,Xdisc}
aX|Ck′ = j ∼ SN(0, 1, (−1)j+1

k′ ), j = 0, 1.
bX−k′Y |Ck = j ∼ SN(0,

√
1 + k′2, (−1)j+1( 1−kk′

k+k′ )), j = 0, 1. c h(X−k′Y |Xdisc, Ck) in (A.5).

7.3.4 Applying the different feature selection methods

We now present the results of applying the various feature selection methods to the
distributional setting. The feature ordering will be discussed for different values of k
and k′. Taking the objectives of this study into consideration, for fixed k′, the most
interesting case is that where X alone leaves the largest possible amount of information
undetermined about the class; this leads to X − k′Y having the most importance in the
explanation of the class, making the error of not choosing it after X the worst possible.
According to the performance metric introduced in Section 7.3.1, we want to choose a
value of k that leads to a large MBR when X is the only selected feature, MBR(Ck, {X}),
which is given by (see Appendix A.2):

MBR(Ck, {X}) = arctan k
π

. (7.15)

Since MBR(Ck, {X}) is an increasing function of k, we want k to be as large as possible,
under the restriction (7.13). We consider k = tan

(
(π − arctan k′ − 10−6)/2

)
.
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Given that, in our setting, the features X and X − k′Y fully explain the class, so that,
according to Theorem 7, MBR(Ck, {X,X − k′Y }) = 0, it makes sense to take the MBR
based on the first two selected features as performance measure for characterizing each
forward feature selection method. This measure is denoted by MBR2.

We will carry out two different studies. In the first one, we concentrate on the methods
that ignore complementarity; recall (7.5); i.e. MIFS, mRMR, and maxMIFS, and study
the feature ordering as a function of k′. The purpose of this study is, in fact, to highlight
the consequences of ignoring complementarity. In the second study, we compare the
feature ordering of all methods under analysis, for fixed k′. The goal is to provide examples
showing wrong decisions made by the various methods, highlighting the corresponding
drawbacks.

The consequences of ignoring complementarity We start by focusing on the conse-
quences of ignoring complementarity, as a function of k′; thus, we concentrate on methods
MIFS (β = 1), mRMR, and maxMIFS. The motivation for scanning k′ is that it provides
different levels of association between the already selected feature X and the candidate
feature X − k′Y . For small values of k′, X and X − k′Y are strongly associated, and the
level of association decreases as k′ increases.

Scanning k′ from 0 to +∞ defines three regions, each corresponding to a specific feature
ordering. This is shown in Figure 7.1, where k′ was scanned with a step size of 0.01,
starting at 0.01. To complete the discussion, we include the objective function values in
the second step of the algorithms in Figure 7.2, and the corresponding MBR2 values in
Figure 7.3. Note that, at this step, for each candidate feature, the objective function
takes the same value for all methods. As a result, all methods will select the same feature
and, in particular, the MBR2 is the same for all methods.

For small values of k′, smaller than 0.565 for MIFS and maxMIFS, and than 0.575 for
mRMR – region (a) – the feature ordering is X, Z, Xdisc, X − k′Y . In this region,
X − k′Y is chosen last due to a large inter-feature redundancy with X. As shown in
Figure 7.2, in this region, the objective function values of X − k′Y and Xdisc at the
second step are negative and smaller than that of Z, which explains why Z is selected
in second place. At the third step, the objective function values of X − k′Y and Xdisc

are exactly the same as in the second step for MIFS and maxMIFS, and only slightly
different for mRMR. Thus, in this region, the objective functions of X − k′Y are more
negative than those of Xdisc, which explains why Xdisc is selected in third place.

For intermediate values of k′, smaller than 2.115, and larger than 0.565 for MIFS and
maxMIFS and than 0.575 for mRMR – region (b) – the feature ordering is X, Z, X−k′Y ,
Xdisc. In this region, the objective functions of X − k′Y are larger than those of Xdisc,
but smaller than those of Z.
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Figure 7.1: Regions associated with a specific ordering of the features, defined by the
values of k′. In this representation, k′ is defined through the line x− k′y = 0. For region
(a), the ordering is {X,Z,Xdisc, X−k′Y }; for (b), it is {X,Z,X−k′Y,Xdisc}; and for (c),
the ordering is already correct since X is chosen first and X − k′Y second. For methods
MIFS and maxMIFS (mRMR), represented in the left (right), (a) is associated with
0 < k′ < 0.575 (0 < k′ < 0.565) and (b) with 0.575 < k′ < 2.115 (0.565 < k′ < 2.115).
Region (c) is associated with k′ > 2.115 for the three methods.

For large values of k′, larger than 2.115 – region (c) – the correct feature ordering is
achieved since X − k′Y is selected in second place. Note that in this region, there are
two possible orderings for Z and Xdisc, but this issue is not relevant for our discussion.

The problem of these methods in regions (a) and (b) is due to the lack of the class-relevant
redundancy term in their objective functions, which expresses the complementarity effects.
In fact, the association between X and X − k′Y , as measured by MI(X − k′Y,X), grows
significantly as k′ approaches 0, but so does the class-relevant redundancy, which is given
by MI(X−k′Y,X|Ck); recall Tables 7.5 and 7.6, respectively. Ignoring the compensation
given by the latter term leads to objective function values that can take negative values;
this explains why the lower bound of 0 from Theorem 3, associated with the target
objective function, is lost for these methods. Also, in contradiction with the good
properties of the target objective function, the objective functions of these methods do
not take the same (minimum) values at Xdisc and Z. The MBR2 values of these methods
(see Figure 7.3) confirm that the performance is very poor in regions (a) and (b): it is
above 0.4 in region (a) and above 0.3 in region (b). These results show that ignoring
complementarity is a severe drawback that can lead to gross errors in the feature selection
process.

Figure 7.2 also shows that results analogous of Theorem 6 do not hold for MIFS, mRMR,
and maxMIFS. In fact, the objective function at Xdisc, a redundant feature, is not
necessarily the minimum; in particular, this happens for small values of k′, where the
objective function at X − k′Y takes lower values than that at Xdisc.
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Figure 7.2: Evaluation of the objective function for the different candidate features in the
second step of the algorithms (MIFS, mRMR, and maxMIFS) depending on the value of
k′.

Feature ordering for all representative methods We now compare the feature ordering
of all methods, for fixed k and k′. We want that a mistake in the selection of the
second feature becomes particularly severe, so that we use k and k′ values that maximize
MBR(Ck, {X}) – worst possible case. Per (7.15) we need to maximize k and per (7.13)
we need to minimize k′. We choose for k′ the first value of the grid used in the context
of Figure 7.1, i.e. k′ = 0.01. In this case, k = tan(π−arctan k′−10−6

2 ) = 199.985 and
MBR(Ck, {X}) ≈ 0.498. Recall that, since (7.13) holds, and therefore MI(Ck, X) >
MI(Ck, X − k′Y ), X is always selected in first place.

Table 7.7 shows the feature ordering and the associated values of MBR2. The ordering of
features relates to the concrete values of the terms that compose the objective functions.
These are provided in Table 7.8, which contains the values of MI between each candidate
feature and the class; Table 7.9, which contains the values of MI between the different
features; and Table 7.10, which contains the values of the class-conditional MI between
the different input features. Note that, in Table 7.8, MI(Ck, X), MI(Ck, X − k′Y ), and
MI(Ck, Xdisc) are all shown as taking approximately the value 0, but actually MI(Ck, X)
is the largest one.

Table 7.7 shows that all methods, except MIFS, mRMR, and maxMIFS, achieve an MBR2

of 0. However, the third step of the algorithm is only completely correct for CMIM. In
fact, it should be equally likely to choose Z or Xdisc, but CIFE, JMI, JMIM, and MIM
select Xdisc first.

MIM suffers from redundancy ignored drawback. The fact that the selection is correct at
the first two steps of the feature selection process is meaningless; it only happens because
MI(Ck, X − k′Y ) is slightly larger than MI(Ck, Xdisc).

The methods that ignore complementarity, i.e. MIFS, mRMR, and maxMIFS, fail at the
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Figure 7.3: MBR2 for the different algorithms (MIFS, mRMR, and maxMIFS) de-
pending on the value of k′. For k′ < 2.115, MBR2 = π−arctan k′−10−6

2π using k =
tan

(
(π − arctan k′ − 10−6)/2

)
and (7.15); for k′ > 2.115, the right second feature is

chosen, X − k′Y , so that MBR2 = 0.

Table 7.7: Feature ordering and corresponding MBR2, for k = 199.985 and k′ = 0.01.

Methods Order of feature selection MBR2

MIM X X − k′Y Xdisc Z 0
MIFS (β = 1) X Z Xdisc X − k′Y 0.498

mRMR X Z Xdisc X − k′Y 0.498
maxMIFS X Z Xdisc X − k′Y 0.498

CIFE X X − k′Y Xdisc Z 0
JMI X X − k′Y Xdisc Z 0

CMIM X X − k′Y Z/Xdisc Xdisc/Z 0
JMIM X X − k′Y Xdisc Z 0

second step of the feature selection process, by not selecting X−k′Y . For all methods, the
objective function is 0 for Z, MI(Ck, X − k′Y ) − MI(X − k′Y,X) = −4.605 for X − k′Y ,
and MI(Ck, Xdisc) − MI(Xdisc, X) = −0.693 for Xdisc, which explains why Z is selected
at this step. Adding the class-relevant redundancy term to the objective functions, would
make them take the value ln(2) for X − k′Y and 0 for Xdisc, leading to the selection of
X − k′Y . In fact, the class-relevant redundancy term is MI(X − k′Y,X|Ck) = 5.298 for
X−k′Y , and MI(Xdisc, X|Ck) = 0.693 forXdisc. Note that ln(2) is precisely the maximum
of the target objective function, which is achieved for fully relevant features (the case
of X − k′Y ), and the minimum is 0, achieved by irrelevant and redundant features (the
cases of Z and Xdisc). Thus, accounting for the class-relevant redundancy compensates
the potentially large negative values associated with the inter-feature redundancy.

With the exception of CMIM, the methods that do not ignore complementarity, fail at
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Table 7.8: MI between the class and each input feature, for k = 199.985 and k′ = 0.01.

X X − k′Y Z Xdisc

MI(·, Ck) ≈ 0 ≈ 0 0 ≈ 0

Table 7.9: MI between pairs of input features, for k = 199.985 and k′ = 0.01.

MI(·, ·) X X − k′Y Z

X − k′Y 4.605
Z 0 0
Xdisc 0.693 0.686 0

the third step of the feature selection process since their objective functions take larger
values at Xdisc than at Z, implying that Xdisc is preferred over Z as shown in Table 7.7.

As discussed in Section 7.2, CIFE suffers from overscaled redundancy drawback. At the
third step of the feature selection process, after selecting X and X − k′Y , the objective
function for candidate feature Xi is

MI(Ck, Xi)−MI(Xi, X)+MI(Xi, X|Ck)−MI(Xi, X−k′Y )+MI(Xi, X−k′Y |Ck), (7.16)

while the associated target objective function is

MI(Ck, Xi) − MI(Xi, {X,X − k′Y }) + MI(Xi, {X,X − k′Y }|Ck). (7.17)

Both objective functions take the value 0 for the candidate feature Z. For the candidate
Xdisc, the target objective function (7.17) can be written as

MI(Ck, Xdisc) − MI(Xdisc, X) + MI(Xdisc, X|Ck), (7.18)

given that MI(Xdisc, {X,X − k′Y }) = MI(Xdisc, X) and MI(Xdisc, {X,X − k′Y }|Ck) =

Table 7.10: Class-conditional MI between pairs of input features, for k = 199.985 and
k′ = 0.01.

MI(·, ·|Ck) X X − k′Y Z

X − k′Y 5.298
Z 0 0
Xdisc 0.693 0.689 0
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MI(Xdisc, X|Ck). Concerning the first condition, note that MI(Xi,S) = MI(Xdisc, {X,X−
k′Y }) = H(Xdisc)−H(Xdisc|X,X−k′Y ) = H(Xdisc)−H(Xdisc|X) = MI(Xdisc, X), since
H(Xdisc|X) = 0 implies that H(Xdisc|X,X−k′Y ) = 0 also, by (6.15); a similar reasoning
can be used to show that the second condition also holds.

Thus, in the case of Xdisc, we see that, when comparing the objective function of CIFE,
given by (7.16), with the target objective function, given by (7.18), CIFE includes
an extra part with two terms, −MI(Xi, X − k′Y ) + MI(Xi, X − k′Y |Ck), which is
responsible for increasing the redundancy scale. In our case, the extra term takes the
value −MI(Xdisc, X − k′Y ) + MI(Xdisc, X − k′Y |Ck) = −0.686 + 0.689 = 0.003; recall
Tables 7.9 and 7.10. This is exactly the value of the objective function at Xdisc, since the
remaining terms sum to 0, which explains why Xdisc is selected before Z. To see that the
remaining terms sum to 0, note that these terms correspond exactly to the evaluation
of the target objective function OF’, and recall that the target objective function value
must be 0 for a redundant feature.

The overscaling effect is relatively modest in this example but, clearly, the problem gets
worse as S increases, since more terms are added to the objective function. We also
note that, while in this case the objective function has been overestimated, it could have
equally been underestimated. This fact together with the overscaling problem is what
makes the objective function of CIFE not bounded, neither from below nor from above.

JMI tried to overcome the problem of CIFE by introducing the scaling factor 1/|S| in
the TMI approximation. However, as discussed in Section 7.2, this leads to redundancy
undervalued drawback. At the third step of the feature selection process, when X and
X − k′Y have been selected, the objective function of JMI is

MI(Ck, Xi)− 1
2

MI(Xi, X)+ 1
2

MI(Xi, X|Ck)− 1
2

MI(Xi, X−k′Y )+ 1
2

MI(Xi, X−k′Y |Ck)

for the candidate Xi. Its value equals 0 for the candidate Z, but for candidate Xdisc it
equals 0 − 0.5 × 0.693 + 0.5 × 0.693 − 0.5 × 0.689 + 0.5 × 0.686 = 0.0015, which explains
why Xdisc is selected before Z.

This results directly from the undervaluing of the terms MI(Xi,S) and MI(Xi,S|C) of
the target objective function at Xi = Xdisc. In fact, MI(Xi,S) = MI(Xdisc, X) = 0.693,
but JMI approximates it by a smaller value, i.e. 1

2 MI(Xdisc, X) + 1
2 MI(Xdisc, X − k′Y ) =

1
2 × 0.693 + 1

2 × 0.686 = 0.6895. Similarly, MI(Xdisc,S|Ck) = MI(Xdisc, X|Ck) = 0.693,
but again JMI approximates it by a smaller value, i.e. 1

2 MI(Xdisc, X|Ck)+ 1
2 MI(Xdisc, X−

k′Y |Ck) = 1
2 × 0.693 + 1

2 × 0.689 = 0.691.

JMIM introduced an additional term in the objective function which, as discussed
in Section 7.2, is unimportant and may lead to confusion in the selection process –
unimportant term approximated drawback. At the third step of the selection process,
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when X and X − k′Y have been selected, the objective function of JMIM is

MI(Ck, Xi)−max {MI(Xi, X) − MI(Xi, X|Ck) − MI(Ck, X),
MI(Xi, X − k′Y ) − MI(Xi, X − k′Y |Ck) − MI(Ck, X − k′Y )

}
,

for candidate feature Xi. In this case, the objective function for candidate feature Z
is 0 − max {0 − 0 − MI(Ck, X), 0 − 0 − MI(Ck, X − k′Y )}, and for candidate Xdisc it is
0 − max {0.693 − 0.693 − MI(Ck, X), 0.686 − 0.689 − MI(Ck, X − k′Y )}. We first note
that MI(Ck, X) and MI(Ck, X − k′Y ) are both approximately 0, while MI(Ck, {X,X −
k′Y }), the quantity they try to approximate, takes the value ln(2), since it is H(Ck) −
H(Ck|X,X − k′Y ) = H(Ck). Since, per design of our experiment MI(Ck, X) >
MI(Ck, X−k′Y ), it turns out that the objective function of Z equals MI(Ck, X−k′Y ), and
that of Xdisc equals MI(Ck, X), leading to the selection of Xdisc. There are two observa-
tions that should be pointed out. First, contrarily to the previous cases of CIFE and JMI,
the objective function for Z takes a value that is no longer according to the corresponding
target objective function, which in this case should be MI(Ck, {X,X − k′Y }) = ln(2).
Second, the choice between the two features, Z and Xdisc, is being done by two terms,
MI(Ck, X) and MI(Ck, X − k′Y ), that try to approximate a term that does not depend
on the candidate features, MI(C,S), and therefore should take the same value for both
features and not become a deciding factor.

The results regarding MIM, CIFE, JMI, and JMIM provide counter-examples showing
that theorems analogous to Theorem 6 do not hold for these methods. Indeed, in all cases,
the objective function at the third step of the algorithms, after X and X − k′Y have
been selected, at Xdisc, a redundant feature, takes values different from the minimum of
the corresponding objective function.

CMIM is the only method that performs correctly in the distributional setting. At the
third step of the feature selection process, the objective function is 0 for both Z and
Xdisc. The latter result can be obtained from Theorem 6, since Xdisc is redundant given
{X}. This can be confirmed numerically. The objective function of CMIM at the third
step of the feature selection process is

MI(Ck, Xi)−max
{

MI(Xi, X) − MI(Xi, X|Ck),MI(Xi, X − k′Y ) − MI(Xi, X − k′Y |Ck)
}
,

for candidate feature Xi. In this case, the objective function for candidate feature
Z is 0, and the same holds for Xdisc since 0 − max {0.693 − 0.693, 0.686 − 0.689} = 0.
Note however that this does not mean that CMIM always performs correctly. As
discussed in Section 7.2.1, CMIM suffers from the problems of redundancy undervalued
and complementarity penalized, and Example 3 provides a case where CMIM decides
incorrectly.
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7.4 Conclusion

We have carried out an evaluation and a comparison of forward feature selection methods
based on mutual information. For this evaluation we selected methods representative of
all types of feature selection methods proposed in the literature, namely MIM, MIFS,
mRMR, maxMIFS, CIFE, JMI, CMIM, and JMIM. The evaluation was carried out
theoretically, i.e. independently of the specificities of datasets and classifiers; thus, our
results establish unequivocally the relative merits of the methods.

Forward feature selection methods iterate step-by-step and select one feature at each
step, among the set of candidate features: the one that maximizes an objective function
expressing the contribution each candidate feature to the explanation of the class. In
our case, the mutual information (MI) is used as the measure of association between the
class and the features. Specifically, the candidate feature selected at each step is the one
that maximizes the MI between the class and the set formed by the candidate feature
and the already selected features.

Our theoretical evaluation is grounded on target objective functions that the methods try
to approximate and on a categorization features according to their contribution to the
explanation of the class. The features are categorized as irrelevant, redundant, relevant,
and fully relevant. This categorization has two novelties regarding previous works: first,
we introduce the important category of fully relevant features; second, we separate non-
relevant features in two categories of irrelevant and redundant features. Fully relevant
features are features that fully explain the class and, therefore, its detection can be
used as a stopping criterion of the feature selection process. Irrelevant and redundant
features have different properties, which explains why we considered them separately.
In particular, we showed that a redundant feature will always remain redundant at
subsequent steps of the feature selection process, while an irrelevant feature may later
turn into relevant. An important practical consequence is that redundant features, once
detected, may be removed from the set of candidate features.

We derive upper and lower bounds for the target objective functions and relate these
bounds with the feature types. In particular, we showed that fully relevant features reach
the maximum of the target objective functions, irrelevant and redundant features reach
the minimum, and relevant features take a value in between. This framework (target
objective functions, feature types, and objective function values for each feature type)
provides a theoretical setting that can be used to compare the actual feature selection
methods. Under this framework, the correct decisions at each step of the feature selection
process are to select fully relevant features first and only afterwards relevant features,
leave irrelevant features for future consideration (since they can later turn into relevant),
and discard redundant features (since they will remain redundant).

Besides the theoretical framework, we defined a distributional setting, based on the
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definition of specific class, features, and a performance metric, designed to highlight the
various deficiencies of methods. The setting includes four features, each belonging to one
of the feature types defined above, and a class with two possible values. As performance
metric, we introduced the minimum Bayes risk, a theoretical measure that does not
rely on specific datasets and classifiers. The metric corresponds to the minimum total
probability of misclassification for a certain class and set of selected features.

Actual feature selection methods are based on approximations of the target objective
functions. The target objective function OF’, in particular, comprises three terms,
expressing the association between the candidate feature and the class (the relevance),
the association between the candidate feature and the already selected features (the
inter-feature redundancy), and the association between the candidate feature and the
already selected features given the class (the class-relevant redundancy). The class-
relevant redundancy is sometimes coined as the good redundancy, since it expresses the
contribution of the candidate feature to the explanation of the class, when considering
that the information contained in the already selected features is known. We also say that
this term reflects the complementarity between the candidate and the already selected
features with respect to the class.

Method MIM was the first method to be proposed, and completely ignored redundancy.
Methods MIFS, mRMR, and maxMIFS ignored complementary effects, i.e. they did
not include the class-relevant redundancy term in their objective functions. These
methods lose both the upper and lower bounds of the target objective function and, more
importantly, lose the connection between the bounds and the specific feature types, i.e.
it is no longer possible to guarantee that fully relevant and relevant features are selected
before redundant and irrelevant features, or that fully relevant come before relevant.

Methods CIFE, JMI, CMIM, and JMIM considered complementarity effects, but in
different ways. The main difference between these methods lies in the approximation of
the redundancy terms (the ones related with inter-feature and class-relevant redundancies).
These terms depend on the complete set of already selected features and are difficult to
estimate. To overcome this difficulty, the methods approximate the redundancy terms
by a function of already selected features taken individually. In particular, CIFE uses
the sum of the associations with the individual already selected features, JMI uses the
average, and both CMIM and JMIM use the maximum. In relation to other methods,
JMIM introduced an extra term in its objective function, which is unimportant and leads
to confusion in the selection process. The approximations of the remaining methods
lead to the following problems: CIFE overscales the redundancy, JMI undervalues the
redundancy, and CMIM undervalues the redundancy in a lower extent than JMI but
penalizes the complementarity. The consequences of these approximations are that CIFE
loses both the upper and lower bound of the target objective function, JMI and CMIM
preserve only the lower bound, and JMIM preserves only the upper bound. Moreover, as
in the case of the methods that ignore complementary, the methods lose the connection
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between the bounds of the target objective function and the specific feature types, except
in a specific case for CMIM. The drawbacks of the various methods were summarized in
Table 7.2.

These results show that, for all methods, it is always possible to find cases where incorrect
decisions are produced, and we have provided several examples throughout this chapter
and as part of our distributional setting. However, the drawbacks of the methods have
different degrees of severity. MIM is a very basic method that we only considered for
reference purposes. Ignoring complementary is a severe drawback that can lead to gross
errors in the selection process. Thus, MIFS, mRMR, and maxMIFS, should be avoided.
Regarding the methods that include complementarity effects, CIFE and JMIM should
also be avoided, CIFE because its objective function is unbounded both inferiorly and
superiorly due to the overscaled redundancy drawback, and JMIM because its objective
function includes a bad approximation of an unimportant term that leads to confusion.
Thus, the methods that currently have superior performance are JMI and CMIM. There
is no clear-cut decision between these two methods, since both present drawbacks of
equivalent degree of severity. JMI undervalues both the inter-feature and the class-
relevant redundancy. CMIM also undervalues both types of redundancy. However, it
tends to approximate better the inter-feature redundancy, but worse the class-relevant
redundancy due to the problem of complementarity penalized.

A question that might arise is whether it makes sense to consider such methods based
on MI on a setting with both absolutely continuous and discrete features. Recall that
the properties of entropy and differential entropy differ significantly – for instance, they
are defined in different ranges. We used features of both types in our theoretical setting.
Absolutely continuous features were useful in particular for emphasizing the potential lim-
itations concerning methods suffering from complementarity ignored drawback. However,
if this drawback, or the remaining discussed drawbacks of the methods, did not exist,
there would be no problem in considering features of the two types. In fact, the values
obtained by the target objective functions are exactly as they should, independently of
the type of feature considered.

A related theoretical aspect that should be addressed is how to extend the definitions
of differential entropy and MI for absolutely continuous variables to include quantities
such as h(X,X), h(X|X), and MI(X,X). It has been argued that MI(X,X) = +∞,
using limiting arguments; see, for instance, [Kot66]. By a similar argument, we would
have, from (6.3), h(X|X) = −∞, which is coherent with the idea that the value of the
differential entropy decreases as the uncertainty decreases, recall (6.8). In fact, we have
noted that arbitrarily small values can be, in fact, reached by differential entropy, even
for random variables on which there is uncertainty. An example that enlightens this fact
is the univariate normal distribution, considering a variance that tends to 0. However,
in the discrete case, no uncertainty is associated with entropy 0, and no uncertainty
corresponds to having a degenerate random variable, which is in the end a discrete
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random variable.

Concerning further open problems, the need to estimate high-dimensional MI terms is
mentioned in [VE14]: An important challenge is developing more efficient methods for
estimating MI in high-dimensional spaces. Until this is possible, it is unavoidable that
approximations as the one that is considered by all methods, where terms on individual
features of S replace the original terms that contain the whole S in the objective functions
of the different methods, are considered. It was clearly emphasized throughout this work
how considering such approximations restricts the properties of interest of the associated
methods.
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8 Conclusion

In the first part of this thesis, we have proposed different types of algorithms for
approximating steady states of structured Markov chains. Our main achievement is
that, for any model that we are given, we have an algorithm that is able to find
the corresponding approximate steady state efficiently, even for very high-dimensional
problems. This includes models that are associated with topologies that, in theory, would
not suit TT format, which is the format associated with all proposed algorithms. In
order to apply the algorithm, we only need the Kronecker representation (1.3) of the
transition rate matrix of the model of interest, given that the corresponding required
representation associated with TT format can be then easily extracted. We next go in
more detail through the contributions from the first part of the thesis chapter by chapter.

In Chapter 3, we have proposed and compared different algorithms for the solution of
(1.1), whose structures are all in TT format: after having proposed a simple iterative
method adapted from the well-known power method for matrices, using an eigenvalue
problem formulation; we have focused on alternating optimization schemes, considering
an equivalent least squares formulation. Since such alternating schemes do not allow
that ranks are adapted during the iteration, a third algorithm, AMEn, was proposed. It
combines the advantages of such alternating schemes with a rank adaptive strategy based
on incorporating information about the residual that reminds of the steepest descent
method. By considering the residual information, convergence should be improved, which
is also relevant because alternating schemes tend to converge slowly. We have verified that
the three algorithms, because of being built in terms of TT format, perform particularly
well when compared to an existing algorithm in a different tensor format. We have
additionally verified that the last algorithm performs better than the remaining two,
while it behaves particularly well for high-dimensional problems associated with a large
number of subsystems. Such experiments were performed on two queuing networks from
our benchmark [Mac15].

In Chapter 4, we have proposed an algorithm of a different type for the solution of (1.1),
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based on an existing tensorized multigrid method, which is itself particularly suited for
Kronecker structured Markov chains given the way restriction and interpolation operators
are defined. We have combined the advantages of this method with the advantages of
AMEn, while trying to avoid the drawbacks of each. The two algorithms had already
been implemented in TT format so that combining them to obtain an algorithm in TT
format was natural. While the existing tensorized multigrid had problems in the coarsest
grid as the mode sizes get reduced on the way down the grids but not the number of
subsystems, AMEn is perfectly suited for being applied in the corresponding coarsest grid
problem since its main limitation concerns cases where the mode sizes are not particularly
small. In turn, the fact that the number of modes is the same as in the finest grid is not
a problem since this algorithm is particularly suited for problems with a large number of
modes. We have verified on a variety of models from our benchmark [Mac15] that the
proposed method consistently beats both AMEn and the original tensorized multigrid
scheme as the number of subsystems and the number of possible states per subsystem
are increased. We have also verified how algorithms in TT format in general can perform
remarkably well even for topologies that are not, in theory, suitable.

In Chapter 5, we have proposed two alternative algorithms for the solution of (1.1) that
are both based again on multigrid approaches. Restriction and interpolation have however
been chosen differently, based on the well-known aggregation/disaggregation techniques.
Such an approach has been in fact used in the past to solve (1.1), in particular with
aggregation (name given to restriction) operators that take the Kronecker structure of
the generator matrix (1.3) into account, but never considering all structures in TT format
as we have here done. The two algorithms are associated with two variants (two possible
choices for the aggregation and disaggregation, name given to interpolation, operators).
In the end, we have shown, again considering the broad benchmark collection [Mac15],
that these two variants allow covering the efficient computation of steady states of all
types of models. The first variant considers aggregation and disaggregation operators
that are improved versions of the restriction and interpolation operators considered in
the algorithm proposed in Chapter 4, by serving the same purpose of dealing with models
with local 1D topology particularly well but performing better. Therefore, this variant
should be used for indistinguishable models. In turn, the second variant is able to address
the complementary subclass of models – distinguishable models – particularly well. Such
models are not possible to address with neither the first variant nor the algorithm
proposed in Chapter 4. The experiments that have been performed in the context of
this chapter, again considering models from the benchmark [Mac15], demonstrate the
expected robustness of the proposed methods in this deeper level than that observed in
the experiments performed in Chapter 4, in particular with distinguishable models also
being possible to address; while we also consider a reducible model, for which one can in
fact find a logical unique solution by isolating the connected components of states even
though in theory there is no goal unique solution for the problem given a model of this
type. Both mentioned subclasses of models are typically avoided in the literature given
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their tricky particularities, but they are in fact extremely relevant and associated with
wide ranges of applications.

In the second part of the thesis, we have carried out an evaluation and a comparison
of forward feature selection methods based on mutual information. The methods are
based on approximations of target objective functions, and we have selected a set of
methods representative of the various types of approximations. We have discussed the
various drawbacks introduced by such approximations. We have introduced a theoretical
setting based on the target objective functions and on a categorization features according
to their contribution to the explanation of the class. The features are categorized as
irrelevant, redundant, relevant, and fully relevant. This categorization has two novelties
regarding previous works: first, we have introduced the important category of fully
relevant features; second, we have separated non-relevant features in two categories
of irrelevant and redundant features. Fully relevant features are features that fully
explain the class and, therefore, its detection can be used as a stopping criterion of the
feature selection process. Irrelevant and redundant features have different properties,
which explains why we considered them separately. In particular, we have showed that
a redundant feature will always remain redundant at subsequent steps of the feature
selection process, while an irrelevant feature may later turn into relevant. An important
practical consequence is that redundant features, once detected, may be removed from
the set of candidate features. We have derived upper and lower bounds for the target
objective functions and related these bounds with the feature types: we have showed that
fully relevant features reach the maximum of the target objective functions, irrelevant
and redundant features reach the minimum, and relevant features take a value in between.
We have then analysed how each method copes with the good properties of the target
objective functions. Additionally, we have defined a distributional setting, based on a
specific definition of class, features, and a novel performance metric; it provides a feature
ranking for each method that is compared with the ideal feature ranking coming out
of the theoretical framework. The setting has been designed to challenge the feature
selection methods, and illustrate the consequences of their drawbacks. Based on our
work, we have identified clearly the methods that should be avoided, and the methods
that have the best performance.
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A Some analytical relevant computa-
tions

In this chapter, we deduce some results associated with analytical computations that
are relevant but whose inclusion in the core of the thesis would become heavy, while
it would tend to distract the reader from the main content. Such results concern the
distributional setting developed in Section 7.3.

A.1 Computation of the terms in the tables of Section 7.3.3

In this section, we derive the expressions required for completing the tables given in
Section 7.3.3.

A.1.1 Values in Table 7.3

Univariate differential entropies (continuous features). The entropy of X is obtained
from Example 1, in Section 6.2, considering n = 1. As for the entropy of the other
continuous feature, X − k′Y , the same expression can be used since it is widely known
that linear or affine combinations of independent univariate features following normal
distributions also follow normal distributions. All we need are the variances of these
two features. The variance of X is 1 and the variance of X − k′Y is 1 + k′2. Therefore,
the corresponding entropies are h(X) = 1

2 ln(2πe) and h(X − k′Y ) = 1
2 ln(2πe(1 + k′2)),

respectively.

Univariate entropies (discrete features and class). Concerning Z, applying Definition
1, H(Z) = ln(2).

We now discuss the values of H(Xdisc) and H(Ck). Given that X and Y are independent
and individually follow standard normal distributions, the joint density function of (X,Y )
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α

X

Y

Figure A.1: Angle between two rays starting from the origin; α/(2π) is the probability
that (X,Y ) belongs to the region delimited by the two rays, when X and Y are two
independent random variables following standard normal distribution.

is

fX,Y (x, y) = 1
2π

exp(−(x2 + y2)) = φ(x)φ(y).

Therefore, the density at point (x, y) only depends on the distance from this point to
the origin,

√
x2 + y2, in the context of the two-dimensional space defined by (X,Y ). As

a consequence, the probability of (X,Y ) taking values in a region limited by two rays
having the origin as starting point is given by α/(2π), with α denoting the angle between
the two rays, as illustrated in Figure A.1. The circle is dashed in the figure since we can
consider an infinite radius.

Considering an infinite radius is in fact what we need. Both Ck and Xdisc are characterized
by a partition of �2 in two regions separated by a line that crosses the origin. Therefore,
each region covers an angle α = π, so that each region has associated probability 1/2.
Thus, Ck and Xdisc follow a Bernoulli distribution with success probability 1/2, just as
Z. As a result, H(Ck) = H(Xdisc) = H(Z) = ln(2).

A.1.2 Values in Table 7.4

Continuous features. In order to derive MI(Ck, X) and MI(Ck, X − k′Y ), expression
(6.9) should be, in general, preferred over (6.10). In fact, the entropy of a feature given
the class can be obtained through the corresponding probability density functions; recall
(6.2). These, in turn, are possible to derive easily in our setting. Therefore, we calculate
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the MI of interest using the representation

MI(Xi, Ck) = h(Xi) −
1∑

j=0

∫
fXi|Ck=j(u)P (Ck = j) ln fXi|Ck=j(u)du, (A.1)

where P (Ck = j) = 1/2, j = 0, 1. It all comes down to determining fXi|Ck=j(u), j = 0, 1,
as h(Xi) is known (vide Table 7.3).

Given that the features follow a normal distribution, the conditional distribution of
interest is the well-known skew-normal distribution [Pas13, Ch. 5]. Therefore, we only
need to determine, in each case, the parameters of the mentioned distribution; recall
(7.14).

In the case of MI(Ck, X), it was proved in [Pas13, Ch. 5] that X|Ck = j, j = 0, 1,
follow skew-normal distributions with parameters (0, 1, (−1)j+1

k ); i.e. X|Ck = j ∼
SN(0, 1, (−1)j+1

k ), j = 0, 1.

As for MI(Ck, X − k′Y ), we use the procedure used for the determination of MI(Ck, X)
in [Pas13, Ch. 5] to prove that X − k′Y |Ck = j ∼ SN(0,

√
1 + k′2, (−1)j+1(1−kk′

k+k′ )),
j = 0, 1. The procedure consists of obtaining the conditional distribution functions of the
feature given the two different possible values of the class, taking then the corresponding
derivatives in order to obtain the associated probability density functions.

In this context, we will need the probability density function fX+kY,X−k′Y (z, w). This
can be obtained from the joint density of the pair (X,Y ). In fact, there is a way to
obtain the probability density function of g(X,Y ), with g being a bijective function,
from the probability density function of (X,Y ), using the general well-known expression
[Kar93, Ch. 2]

fg(X,Y )(z, w) = fX,Y (g−1(z, w))
∣∣∣∣∣dg

−1(z, w)
d(z, w)

∣∣∣∣∣ , (A.2)

where |dg−1(z,w)
d(z,w) | denotes the absolute value of the Jacobian of the inverse of the function

g.

As for the inverse function of the transformation g(X,Y ) = (X + kY,X − k′Y ), it is
given by

g−1(z, w) =
(
kz + k′w
k + k′ ,

w − z
k + k′

)
.

The absolute value of its Jacobian is |1/(k + k′)|. As both k and k′ are non-negative,
this can be simply written as 1/(k + k′).
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As a result, we have

fX+kY,X−k′Y (z, w) = 1
k + k′φ

(
kz + k′w
k + k′

)
φ

(
w − z
k + k′

)
, (z, w) ∈ �2.

We can now proceed with the derivation of the distribution functions of interest. From
now on, the distribution function of Z at z will be represented by FZ(z).

We start with the case Ck = 0:

FX−k′Y |X+kY <0(u) = P (X − k′Y ≤ u|X + kY < 0)

= P (X − k′Y ≤ u,X + kY < 0)
P (X + kY < 0)

= 2
∫ 0

−∞

∫ u

−∞
fX+kY,X−k′Y (z, w)dw dz

= 2
∫ 0

−∞

∫ u

−∞
1

k + k′φ(kz + k′w
k + k′ )φ(w − z

k + k′ )dw dz

= 2
∫ 0

−∞

∫ u

−∞
1

k + k′
1

2π
exp

{
−1

2
(k2 + 1)z2

(k + k′)2

}
exp

{
−1

2
(k′2 + 1)[w − z(1 − kk′)

1 + k′2 ]2+

z2[ (1 + k2)(1 + k′2) − (1 − kk′)2

1 + k′2 ]
}
dw dz

=
∫ u

−∞
1√
π

exp
{
−1

2
(k + k′)2z2

(k + k′)2

}∫ 0

−∞
1√

π(k + k′)
×

exp{−1
2

(1 + k′2)(w − z(1−kk′)
1+k′2 )2

(k + k′)2 }dz dw

=
√

2
∫ u

−∞
1√
2π

√
2√

1 + k′2

∫ 0

−∞
1√

2π(k+k′)√
1+k′2

exp
{
−1

2
z2(k + k′)2

1 + k′2

}
dz dw

=
√

2√
1 + k′2

∫ u

−∞
1√

2π
√

1 + k′2(k + k′)
exp

{
−1

2
z2

1 + k′2

}
Φ(− (1 − kk′)z

(k − k′)
√

1 + k′2 )dz

=
∫ u

−∞
2√

1 + k′2φ( z√
1 + k′2 )Φ(− (1 − kk′)z

(k − k′)
√

1 + k′2 )dz.

Hence, X − k′Y |X + kY < 0 ∼ SN(0,
√

1 + k′2, −(1−kk′)
k+k′ ).

Some auxiliary steps were required in the first step of the derivation above in which
1

k+k′φ(kz+k′w
k+k′ )φ( z−w

k−k′ ) was transformed significantly. The main technicality about such
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steps was the algebraic manipulation

(kz + k′w)2 + (w − z)2

= (1 + k2)z2 − 2wz(1 − kk′) + (k′2 + 1)w2

= (1 + k′2){w2 − 2wz(1 − kk′)
1 + k′2 + [z(1 − kk′)

1 + k′2 ]2 − [z(1 − kk′)
1 + k′2 ]2} + (1 + k2)z2

= (1 + k′2){[w − z(1 − kk′)
1 + k′2 ]2 − [z(1 − kk′)]2

(1 + k′2)2 } + (1 + k2)z2

= (1 + k′2)[w − z(1 − kk′)
1 + k′2 ]2 + z2 (k + k′)2

1 + k′2 .

As for the conditional case in which Ck = 1, we provide a briefer version of the computation
as most steps are the same as for Ck = 0.

FX−k′Y |X+kY ≥0(u)
= P (X − k′Y ≤ u|X + kY ≥ 0)

= P (X − k′Y ≤ u,X + kY ≥ 0)
P (X + kY ≥ 0)

= 2
∫ +∞

0

∫ u

−∞
fX+kY,X−k′Y (z, w)dw dz

= 2
∫ +∞

0

∫ u

−∞
1

k + k′φ(kz + k′w
k + k′ )φ(w − z

k + k′ )dw dz

= 2
∫ 0

−∞

∫ u

−∞
1

k + k′
1

2π
exp

{
−1

2
(k2 + 1)z2

(k + k′)2

}
exp

{
−1

2
(k′2 + 1)[w − z(1 − kk′)

1 + k′2 ]2+

z2[ (1 + k2)(1 + k′2) − (1 − kk′)2

1 + k′2 ]
}
dw dz

=
∫ u

−∞
2√

1 + k′2φ( z√
1 + k′2 )[1 − Φ(− (1 − kk′)z

(k − k′)
√

1 + k′2 )]dz.

Given the symmetry of the normal distribution, we know that (1 − Φ(−x)) = Φ(x). This
allows reducing the expression to

∫ u

−∞
2√

1 + k′2φ( z√
1 + k′2 )Φ( (1 + kk′)z

(k − k′)
√

1 + k′2 )dz.

Thus, X − k′Y |X + kY ≥ 0 ∼ SN
(
0,
√

1 + k′2, (1−kk′)
k+k′

)
.

Discrete features. In order to obtain MI(Ck, Xdisc), we can use (6.6) in the form
MI(Ck, Xdisc) = H(Ck) +H(Xdisc)−H(Ck, Xdisc). In this case, we only need to compute
H(Ck, Xdisc) since the required univariate entropies are known from Table 7.3. From
Definition 1, this requires obtaining the probabilities of the four possible combinations
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(c)

(b)

(a)

(d)
θ

X

Y

Figure A.2: Four regions associated with the joint distribution of (Xdisc, Ck), where
θ = arctan k, when X and Y are two independent random variables following standard
normal distribution.

of values associated with the pair (Ck, Xdisc). We represent the regions associated with
such values in Figure A.2, considering the two-dimensional space defined by the pair
(X,Y ). Considering the reasoning used to obtain H(Ck) and H(Xdisc), associated with
Figure A.1, we only need the four angles covered by the associated four regions in order
to compute their corresponding probabilities. The determination of such angles only
requires the knowledge of θ, represented in Figure A.2 since the remaining angles consist
of its supplementary, its opposite, and the opposite of its supplementary.

In the end, there are two angles (associated with regions (a) and (b) in Figure A.2) whose
value is arctan k, while the other two (associated with regions (c) and (d) in Figure A.2)
have the value (π − arctan k), implying that

P (Xdisc = u,Ck = j) =
{

π−arctan k
2π , u = 0, j = 0 and u = 1, j = 1

arctan k
2π , u = 0, j = 1 and u = 1, j = 0

. (A.3)

As a result,

H(Ck, Xdisc) = −2 ×
(arctan k

2π
ln(arctan k

2π
) + (1

2
− arctan k

2π
) ln(1

2
− arctan k

2π
)
)
.

We obtain

MI(Ck, Xdisc) = 2 ln(2) + arctan k
π

ln(arctan k
2π

) + (1 − arctan k
π

) ln(1
2
− arctan k

2π
).

As for MI(Ck, Z), its value is 0 since Ck and Z are independent.
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A.1.3 Values in Table 7.5

We start with MI(X,Xdisc). Xdisc is redundant given {X}, so that H(Xdisc|X) = 0.
Additionally, H(Xdisc) = ln(2) (vide Table 7.3), so that, by (6.3), MI(X,Xdisc) =
H(Xdisc) −H(Xdisc|X) = ln(2) − 0 = ln(2).

As for MI(X−k′Y,Xdisc), we first note that the deduction of MI(Ck, X) in [Pas13, Ch. 5]
can be similarly done for the case where k in (7.11) is allowed to be negative, from which
one would conclude that MI(C−k′ , X) = MI(Ck′ , X). In turn, Xdisc and X − k′Y are
obtained from Ck′ and X, respectively, by rotating k′ degrees anticlockwise, considering
the two-dimensional space defined by the pair (X,Y ). As a result, MI(Xdisc, X − k′Y ) =
MI(Ck′ , X). In fact, MI is invariant under one-to-one transformations; see [DMS10] for
more details. Finally, by transitivity, MI(X − k′Y,Xdisc) = MI(Ck′ , X).

As for MI(X,X − k′Y ), we use (6.6). We have MI(X,X − k′Y ) = h(X) + h(X −
k′Y ) − h(X,X − k′Y ). We only need to compute h(X,X − k′Y ) since the univariate
entropies are known (vide Table 7.3). As both features follow normal distributions,
the joint distribution is a bivariate normal distribution, whose entropy depends on the
determinant of the covariance matrix, as described in Example 1. The value of the
mentioned determinant is k′2, so that MI(X,X − k′Y ) = 1

2 ln
(
1 + 1/k′2).

The MI terms involving Z do not require any calculation given that Z is independent of
X, Xdisc, and X − k′Y , implying that MI(Z,X) = MI(Z,Xdisc) = MI(Z,X − k′Y ) = 0.

A.1.4 Values in Table 7.6

For deriving MI(X,Xdisc|Ck), we use (6.11). We have MI(X,Xdisc|Ck) = H(Xdisc|Ck) −
H(Xdisc|X,Ck). Noting that H(Xdisc|X,Ck) = 0 since H(Xdisc|X) = 0, using (6.15), we
have MI(X,Xdisc|Ck) = H(Xdisc|Ck). In turn, H(Xdisc|Ck) = H(Xdisc) − MI(Xdisc, Ck),
where the values H(Xdisc) and MI(Xdisc, Ck) have been obtained; recall Tables 7.3 and
7.5, respectively. We conclude that

MI(X,Xdisc|Ck) = −arctan k
π

ln(arctan k
π

) − (1 − arctan k
π

) ln(1 − arctan k
π

).

Concerning MI(X,X−k′Y |Ck), we use (6.12). We have MI(X,X−k′Y |Ck) = h(X|Ck)+
h(X − k′Y |Ck) − h(X,X − k′Y |Ck). The first two terms were obtained in the context of
the determination of MI(X,Ck) and MI(X − k′Y |Ck); they consist of the second term
in (A.1).

As in the computation of class-conditional entropies for univariate continuous features,
recall (A.1), we only need the joint probability density functions of (X,X − k′Y ) con-
ditioned on the two possible values of the class to determine h(X,X − k′Y |Ck). These
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are obtained from the corresponding conditional probability density functions associated
with the pair (X,Y ), using (A.2).

We first need to derive the probability density functions associated with the distributions
(X,Y )|Ck = j, j = 0, 1. These are obtained starting from the corresponding distribution
functions, as done in the context of the determination of the probability density functions
needed in sequence of (A.1).

We start with Ck = 1. We have

F(X,Y )|Ck=1(x, y) =P (X ≤ x, Y ≤ y,X + kY ≥ 0)
P (X + kY ≥ 0)

=2P (X ≤ x, Y ≤ y,X + kY ≥ 0).

In order to proceed, we separate the expression in two cases. In fact, if x < −ky, the
value is simply 0. If, instead, x ≥ −ky, we have

2P (X ≤ x, Y ≤ y,X + kY ≥ 0) =2
∫ x

−∞

∫ y

−u
k

φ(u)φ(v)dv du

=2
∫ x

−∞
φ(u)[Φ(v) − Φ(−u

k
)]du

=2Φ(y)Φ(x) − FSN(0,1,− 1
k

)(x).

Thus, the corresponding density is given by

f(X,Y )|Ck=1(x, y) =
{

2φ(y)φ(x), x ≥ −ky
0, x < −ky .

We now make the same type of deduction for Ck = 0. We have

F(X,Y )|Ck=0(x, y) =P (X ≤ x, Y ≤ y,X + kY < 0)
P (X + kY < 0)

=2P (X ≤ x, Y ≤ y,X + kY < 0).

If x < −ky, we obtain

2P (X ≤ x, Y ≤ y,X + kY < 0) =2
∫ x

−∞

∫ y

−∞
φ(u)φ(v)dv du

=2Φ(y)Φ(x).
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If, instead, x ≥ −ky, we have

2P (X ≤ x, Y ≤ y,X + kY ≥ 0) =2
[∫ x

−∞

∫ y

−∞
φ(u)φ(v)du dv −

∫ x

−∞

∫ y

−u
k

φ(u)φ(v)dv du
]

=2Φ(y)Φ(x) − [2Φ(y)Φ(x) − FSN(0,1,− 1
k

)(x)]

=FSN(0,1,− 1
k

)(x).

Thus, the corresponding density is given by

f(X,Y )|Ck=0(x, y) =
{

0, x ≥ −ky
2φ(y)φ(x), x < −ky .

We can now obtain fX,X−k′Y (u, v) using (A.2). In this case, g−1(z, w) = (z, z−w
k′ ). The de-

terminant of the corresponding Jacobian is 1/k′. Therefore, we have f(X,X−k′Y )|Ck=c(u, v) =
f(X,Y )|Ck=c(u, u−v

k′ ) 1
k′ , c = 0, 1. Thus, we obtain

f(X,X−k′Y )|Ck=1(u, v) =
{

2φ(u)φ(v−u
k′ ) 1

k′ , u >
k

k′+kv

0, u ≤ k
k′+kv

and

f(X,X−k′Y )|Ck=0(u, v) =
{

0, u > k
k′+kv

2φ(u)φ(v−u
k′ ) 1

k′ , u ≤ k
k′+kv

,

where we note that φ(v−u
k′ ) 1

k′ can be also seen as the density for a normal distribution
with parameters (u, k′2) evaluated at v.

We have

h(X,X − k′Y |Ck = 1) = −
∫ +∞

−∞

∫ +∞
k

k′+k
v

2φ(u)φ(v − u
k′ ) 1

k′ ln(2φ(u)φ(v − u
k′ ) 1

k′ )dv du

and

h(X,X−k′Y |Ck = 0) = −
∫ +∞

−∞

∫ k
k′+k

v

−∞
2φ(u)φ(v − u

k′ ) 1
k′ ln(2φ(u)φ(v − u

k′ ) 1
k′ )dv du.

This implies that

h(X,X − k′Y |Ck) = −
∫ +∞

−∞

∫ +∞

−∞
φ(u)φ(v − u

k′ ) 1
k′ ln(2φ(u)φ(v − u

k′ ) 1
k′ )dv du.

The part inside the logarithm can be re-written considering the explicit expression of the
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density of a standard normal distribution. We have

ln(2φ(u)φ(v − u
k′ ) 1

k′ ) = ln( 1
πk′ exp(− 1

2k′2 [(1 + k′)u2 − 2uv + v2]))

= − ln(πk′) − 1
2k′2 [(1 + k′)u2 − 2uv + v2].

We can still write this as

h(X,X−k′Y |Ck) =
∫ +∞

−∞

∫ +∞

−∞
φ(u)φ(v)[ln(πk′) + 1

2k′2 [(1 +k′)u2 −2uv+ v2]]dv du.

The final result is ln(πk′) + 1
2 + 1

2 = ln π + ln k′ + 1. In fact, the first term is a double
integral in the whole space of a probability density function, associated with (X,Y ),
times a constant, so that the result is such constant, ln(πk′); while the remaining terms
are also easy to obtain since they consist of constants multiplied with first and second
order moments from the normal distribution with parameters (u, k′).

As for MI(X − k′Y,Xdisc|Ck), we compute it, using (6.11), through its representation
MI(X−k′Y,Xdisc|Ck) = h(X−k′Y |Ck)−h(X−k′Y |Xdisc, Ck). Note that h(X−k′Y |Ck)
has already been derived, in the context of the determination of MI(X − k′Y,Ck); recall
(A.1). Thus, we only need to derive h(X − k′Y |Xdisc, Ck).

We need to obtain fX−k′Y |Xdisc=u,Ck=j(v) for each possible combination of pairs (u, j).
We first note that

fX−k′Y |Xdisc=u,Ck=j(v) = d

dv
FX−k′Y |Xdisc=u,Ck=j(v)

= d

dv

P (X − k′Y ≤ v,Xdisc = u,Ck = j)
P (Xdisc = u,Ck = j)

= 1
P (Xdisc = u,Ck = j)

d

dv
P (X − k′Y ≤ v,Xdisc = u,Ck = j).

The values P (Xdisc = u,Ck = j), u = 0, 1 and j = 0, 1, can be found in (A.3).

Therefore, we only need to obtain P (X − k′Y ≤ v,Xdisc = u,Ck = j). We start with
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u = 1 and j = 1. We have to split in two cases. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 1, Ck = 1)

=
∫ 0

− v
k′+k

∫ v+k′z

−kz
φ(w)φ(z)dw dz +

∫ +∞

0

∫ v+k′z

0
φ(w)φ(z)dz dw

=
∫ 0

− z
k′+k

φ(z)[Φ(v + k′z) − Φ(−kz)]dz +
∫ +∞

0
φ(z)[Φ(v + k′z) − 1

2
]dz

=
∫ 0

− v
k′+k

φ(z)Φ(v + k′z)dz − 1
2

[FSN(0,1,−k)(0) − FSN(0,1,−k)(−
v

k′ + k
)]

+
∫ +∞

0
φ(z)Φ(v + k′z)dz − 1

4

=
∫ +∞

− v
k′+k

φ(z)Φ(v + k′z)dz − 1
2
FSN(0,1,−k)(0) + 1

2
FSN(0,1,−k)(−

v

k′ + k
) − 1

4
.

In turn, for v < 0,

P (X − k′Y ≤ v,Xdisc = 1, Ck = 1)

=
∫ +∞

− v
k′

∫ v+k′z

0
φ(w)φ(z)dz dw

=
∫ +∞

− v
k′
φ(z)[Φ(v + k′z) − 1

2
]dz

=
∫ +∞

− v
k′
φ(z)Φ(v + k′z)dz − Φ( v

k′ ).

We now need to take the derivative of the two expressions with respect to v to obtain
the corresponding conditional density functions. In the case of v ≥ 0,

d

dv

[∫ +∞

− v
k′+k

φ(z)Φ(v + k′z)dz − 1
2
FSN(0,1,−k)(0) + 1

2
FSN(0,1,−k)(−

v

k′ + k
) − 1

4

]

=
∫ +∞

− v
k′+k

φ(z)φ(v + k′z)dz + 1
2
fSN(0,1,−k)(−

v

k′ + k
) 1
k′ + k

− 1
2
fSN(0,1,−k)(−

v

k′ + k
) 1
k′ + k

=
∫ +∞

− v
k′+k

φ(z)φ(v + k′z)dz;
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while, for v < 0,

d

dv

[∫ +∞

− v
k′
φ(z)Φ(v + k′z)dz − 1

2
Φ( v
k′ )
]

=
∫ +∞

− v
k′
φ(z)φ(v + k′z)dz + 1

2
φ( v
k′ )

1
k′ −

1
2
φ( v
k′ )

1
k′

=
∫ +∞

− v
k′
φ(z)φ(v + k′z)dz.

Note that the following important result; cf. [AS64, Ch. 3]; was required in order to
obtain both final expressions above:

d

dx

∫ b(x)

a(x)
g(x, y)dy =

∫ b(x)

a(x)

dg(x, y)
dx

dy + g(x, b(x))b′(x) − g(x, a(x))a′(x). (A.4)

This result was applied to d
dv

∫+∞
− v

k′+k
φ(z)Φ(v + k′z)dz, in the expression for v ≥ 0, and

also to d
dv

∫+∞
− v

k′
φ(z)Φ(v + k′z)dz, concerning the case v < 0.

The desired probability density function is

fX−k′Y |Xdisc=1,Ck=1(v) =

⎧⎨
⎩

2π
π−arctan k

∫+∞
− v

k′+k
φ(z)φ(v + k′z)dz, v ≥ 0

2π
π−arctan k

∫+∞
− v

k′
φ(z)φ(v + k′z)dz, v < 0

.

We now consider u = 0 and j = 1. We have to split again in two cases. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 1) =
∫ +∞

0

∫ 0

−kz
φ(w)φ(z)dz dw

=
∫ +∞

0
φ(z)[1

2
− Φ(−kz)]dz

=1
2
FSN(0,1,−k)(0) − 1

4
.
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For v < 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 1)

=
∫ − v

k′

− v
k′+k

∫ v+k′z

−kz
φ(w)φ(z)dw dz +

∫ +∞

− v
k′

∫ 0

−kz
φ(w)φ(z)dz dw

=
∫ − v

k′

− v
k′+k

φ(z)[Φ(v + k′z) − Φ(−kz)]dz +
∫ +∞

− v
k′
φ(z)[1

2
− Φ(−kz)]dz dw

=
∫ − v

k′

− v
k′+k

φ(z)Φ(v + k′z)dz − 1
2

[FSN(0,1,−k)(−
v

k′ ) − FSN(0,1,−k)(−
v

k′ + k
)]

+ 1
2

[1 − Φ(− v
k′ )] −

1
2

[1 − FSN(0,1,−k)(−
v

k′ )]

=
∫ − v

k′

− v
k′+k

φ(z)Φ(v + k′z)dz + 1
2
FSN(0,1,−k)(−

v

k′ + k
) + 1

2
Φ( v
k′ ).

We now need to take the derivative of the two expressions with respect to v to obtain
the corresponding conditional density functions. In the case of v ≥ 0, it is simply 0 since
there is no dependency on v. As for v < 0,

d

dv

[∫ − v
k′

− v
k′+k

φ(z)Φ(v + k′z)dz + 1
2
FSN(0,1,−k)(−

v

k′ + k
) + 1

2
Φ( v
k′ )
]

=
∫ − v

k′

− v
k′+k

φ(z)φ(v + k′z)dz + 1
2
fSN(0,1,−k)(−

v

k′ + k
) 1
k′ + k

− 1
2
φ( v
k′ )

1
k′

− 1
2
fSN(0,1,−k)(−

v

k′ + k
) 1
k′ + k

+ 1
2
φ( v
k′ )

1
k′

=
∫ − v

k′

− v
k′+k

φ(z)φ(v + k′z)dz.

Once again, (A.4) was applied, in this case to
∫− v

k′
− v

k′+k
φ(z)Φ(v + k′z)dz.

The desired probability density function is

fX−k′Y |Xdisc=0,Ck=1(v) =

⎧⎨
⎩

0, v ≥ 0
2π

arctan k
∫− v

k′
− v

k′+k
φ(z)φ(v + k′z)dz, v < 0 .
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We now consider u = 1 and j = 0. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 1, Ck = 0)

=
∫ − v

k′+k

− v
k′

∫ v+k′z

0
φ(w)φ(z)dw dz +

∫ 0

− v
k′+k

∫ −kz

0
φ(w)φ(z)dz dw

=
∫ − v

k′+k

− v
k′

φ(z)[Φ(v + k′z) − 1
2

]dz +
∫ 0

− v
k′+k

φ(z)[Φ(−kz) − 1
2

]dz dw

=
∫ − v

k′+k

− v
k′

φ(z)Φ(v + k′z)dz − 1
2

[Φ(− v

k′ + k
) − Φ(− v

k′ )]

+ 1
2

[FSN(0,1,−k)(0) − FSN(0,1,−k)(−
v

k′ + k
)] − 1

2
Φ( v

k′ + k
)

=
∫ − v

k′+k

− v
k′

φ(z)Φ(v + k′z)dz − 1
2
Φ( v

k′ + k
)

+ 1
2
FSN(0,1,−k)(0) − 1

2
FSN(0,1,−k)(−

v

k′ + k
).

As for the case v < 0, P (X − k′Y ≤ v,Xdisc = 1, Ck = 0) = 0.

We now need to take the derivative with respect to v of the expression obtained for v ≥ 0
(the derivative of the one for v < 0 is 0) to obtain the corresponding conditional density
functions. We have

d

dv

[∫ − v
k′+k

− v
k′

φ(z)Φ(v + k′z)dz − 1
2
Φ(− v

k′ + k
) + 1

2
FSN(0,1,−k)(0) − 1

2
FSN(0,1,−k)(−

v

k′ + k
)
]

=
∫ − v

k′+k

− v
k′

φ(z)φ(v + k′z)dz − 1
2
φ(− v

k′ + k
) − 1

2
fSN(0,1,−k)(−

v

k′ + k
) 1
k′ + k

+ 1
2
φ(− v

k′ + k
) + 1

2
fSN(0,1,−k)(−

v

k′ + k
) 1
k′ + k

=
∫ − v

k′+k

− v
k′

φ(z)φ(v + k′z)dz.

We again applied (A.4), in this case to
∫− v

k′+k

− v
k′

φ(z)Φ(v + k′z)dz.

The desired probability density function is

fX−k′Y |Xdisc=1,Ck=0(v) =

⎧⎨
⎩

2π
π−arctan k

∫− v
k′+k

− v
k′

φ(z)φ(v + k′z)dz, v ≥ 0
0, v < 0

.

138



A.1. Computation of the terms in the tables of Section 7.3.3

We finally consider u = 0 and j = 0. For v ≥ 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 0)

=
∫ 0

−∞

∫ +∞

−∞
φ(w)φ(z)dw dz −

∫ +∞

0

∫ 0

−kz
φ(w)φ(z)dz dw

−
∫ − v

k′

−∞

∫ 0

v+k′z
φ(w)φ(z)dz dw

= 1
2
−
∫ 0

−∞
φ(z)

[
Φ(−kz) − 1

2

]
dz −

∫ − v
k′

−∞

[1
2
− Φ(v + k′z)

]
φ(z)dz

= 3
4
− 1

2
FSN(0,1,−k)(0) − 1

2
Φ

(
− v
k′

)
+
∫ − v

k′

−∞
Φ(v + k′z)φ(z)dz.

As for the case v < 0,

P (X − k′Y ≤ v,Xdisc = 0, Ck = 0)

=
∫ − v

k′+k

−∞

∫ v+k′z

−∞
φ(w)φ(z)dw dz +

∫ +∞

− v
k′+k

∫ −kz

−∞
φ(w)φ(z)dz dw

=
∫ − v

k′+k

−∞
Φ(v + k′z)φ(z)dw dz +

∫ +∞

− v
k′+k

Φ(−kz)φ(z)dz

=
∫ − v

k′+k

−∞
Φ(v + k′z)φ(z)dz + 1

2
− 1

2
FSN(0,1,−k)

(
− v

k′ + k

)
.

We again need to take the derivative of the two expressions with respect to v to obtain
the corresponding conditional density functions. In the case of v ≥ 0,

d

dv

[
1
4

+ 1
2
FSN(0,1,k)(0) − 1

2
Φ(− v

k′ ) +
∫ v

k′

−∞
Φ(v + k′z)φ(z)dz

]

=
∫ v

k′

−∞
φ(v + k′z)φ(z)dz − 1

2
φ(− v

k′ )
1
k′ + 1

2
φ(− v

k′ )
1
k′

=
∫ v

k′

−∞
φ(z)φ(v + k′z)dz;

while, for v < 0,

d

dv

[∫ − v
k′+k

−∞
Φ(v + k′z)φ(z)dz + 1

2
− 1

2
FSN(0,1,−k)(−

v

k′ + k
)
]

=
∫ − v

k′+k

−∞
φ(z)φ(v + k′z)dz − 1

2
fSN(0,1,−k)(−

v

k′ + k
) v

k′ + k

+ 1
2
fSN(0,1,−k)(−

v

k′ + k
) v

k′ + k

=
∫ − v

k′+k

−∞
φ(z)φ(v + k′z)dz.
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We applied (A.4) to
∫ v

k′
−∞ Φ(v + k′z)φ(z)dz and

∫− v
k′+k

−∞ Φ(v + k′z)φ(z)dz.

The desired probability density function is

fX−k′Y |Xdisc=0,Ck=0(v) =

⎧⎨
⎩

2π
π−arctan k

∫ v
k′

−∞ φ(z)φ(v + k′z)dz, v ≥ 0
2π

π−arctan k
∫− v

k′+k
−∞ φ(z)φ(v + k′z)dz, v < 0

.

We can finally obtain an expression for h(X − k′Y |Xdisc, Ck):

−π − arctan k
2π

(∫ 0

−∞
(
∫ +∞

− v
k′

2π
π − arctan k

ζ(z, v)dz) ln(
∫ +∞

− v
k′

2π
π − arctan k

ζ(z, v)dz)dv+
∫ +∞

0
(
∫ +∞

− v
k′+k

2π
π − arctan k

ζ(z, v)dz) ln(
∫ +∞

− v
k′+k

2π
π − arctan k

ζ(z, v)dz)dv+

∫ 0

−∞
(
∫ v

k′+k

−∞
2π

π − arctan k
ζ(z, v)dz) ln(

∫ v
k′+k

−∞
2π

π − arctan k
ζ(z, v)dz)dv+

∫ +∞

0
(
∫ v

k′

−∞
2π

π − arctan k
ζ(z, v)dz) ln(

∫ v
k′

−∞
2π

π − arctan k
ζ(z, v)dz)dv

)

−arctan k
2π

(∫ 0

−∞
(
∫ − v

k′

− v
k′+k

2π
arctan k

ζ(z, v)dz) ln(
∫ − v

k′

− v
k′+k

2π
arctan k

ζ(z, v)dz)dv+

∫ +∞

0
(
∫ − v

k′+k

− v
k′

2π
arctan k

ζ(z, v)dz) ln(
∫ − v

k′+k

− v
k′

2π
arctan k

ζ(z, v)dz)dv
)
,

(A.5)

where ζ(z, v) is the function φ(v + k′z)φ(z).

As for the class-conditional MI values that involve Z, MI(Z,X|Ck) = MI(Z,X −
k′Y |Ck) = MI(Z,Xdisc|Ck) = 0. This requires checking that pairwise class-conditional
independence holds for the three involved pairs. This follows, as argued in Section 7.3.2,
from the fact that Z is independent of the pair composed by Ck and any other input
feature.

A.2 Calculations of MBR values in Section 7.3.4

In this section, we start by obtaining the value of MBR(Ck, {X}). We then prove that
MBR(Ck, {X,Z}) = MBR(Ck, {X}).

Concerning the computation of MBR(Ck, {X}), the (C, {X}) Bayes classifier assigns x,
x ∈ � , to 1 if and only if, recall (7.10),

fX|X+kY <0(x)
fX|X+kY ≥0(x)

≤ 1.
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The required densities fX|X+kY ≥0 and fX|X+kY <0 are known from Appendix A.1.2. We
take this into account to re-write the expression above as

2 exp
{

−x2

2σ2
Xσ

2
X+kY

}
1√

2πσX
Φ

(
−ρ
√

σ2
X+kY

x√
σ2
X

1√
σ2
X+kY

(1−ρ2)

)

2 exp
{

−x2

2σ2
Xσ

2
X+kY

}
1√

2πσX
Φ

(
ρ
√

σ2
X+kY

x√
σ2
X

1√
σ2
X+kY

(1−ρ2)

) ≤ 1,

where σ2
X = 1 is the variance of X, σ2

X+kY = 1 + k2 is the variance of X + kY , and
ρ = 1√

1+k2 is the correlation between X and X + kY .

Many terms cancel out, and we get simply

Φ

(
−x
k

)
≤ Φ

(
x

k

)
.

As Φ is a non-decreasing function, this condition is the same as

−x
k
≤ x

k
.

After further cancellations of the denominators, we simply obtain the condition −x ≤ x,
which holds if and only if x ≥ 0. As a result, the classifier assigns x to 1 if x is
non-negative, and to 0 otherwise; note that the classifier applied to X gives Xdisc.

Therefore, MBR(Ck, {X}) depends on the angle, in the two-dimensional space defined by
the pair (X,Y ), between the lines associated with X and X + kY , arctan k. Note that
the only knowledge of X needed concerns the value that Xdisc takes; recall (7.12). As
a result, Figure A.2 also illustrates the regions where a wrong classification will occur,
which are the regions (a) and (b). The probabilities associated with the different regions
have been given in (A.3), allowing us to obtain

MBR(Ck, {X}) = 2arctan k
2π

= arctan k
π

.

We now verify that MBR(Ck, {X,Z}) = MBR(Ck, {X}). By (7.10), the (Ck, {X,Z})
Bayes classifier associated with the MBR takes the value 1 if and only if

f(X,Z)|X+kY <0(x, z)
f(X,Z)|X+kY ≥0(x, z)

≤ 1.

Using the facts that Z and X are class-conditionally independent and that Z is indepen-
dent of Ck, the condition above reduces to

fX|X+kY <0(x)
fX|X+kY ≥0(x)

≤ 1.
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As a result, the points (x, z) assigned by the classifier to the value 1 are those that verify
x ≥ 0. As a result, MBR(Ck, {X,Z}) = MBR(Ck, {X}).
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