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ABSTRACT

Deep networks such as the U-Net are outstanding at seg-
menting biomedical images when enough training data is
available, but only then. Here we introduce a Domain Adap-
tation approach that relies on two coupled U-Nets that either
regularize or share corresponding weights between the two
streams, along with a differentiable loss function that approx-
imates the Jaccard index, to leverage training data from one
domain in which it is plentiful, to adapt the network weights
in another where it is scarce.

We showcase our approach for the purpose of segmenting
mitochondria and synapses from electron microscopy image
stacks of mouse brain, when we have enough training data for
one brain region but only very little for another. In such cases,
we outperform state-of-the-art Domain Adaptation methods.

Index Terms— Image segmentation, Domain Adapta-
tion, Electron Microscopy, Machine Learning

1. INTRODUCTION

Deep Learning techniques became central to image segmen-
tation, and are now used for tissue characterization, digital
pathology, and high-content screening. The U-Net [1] is one
of the most successful deep architectures, and has been used
in many diverse settings. It is an encoding-decoding network
that uses intermediate encodings at different resolutions as ad-
ditional features while decoding. With enough training data
available, such design yields exceptional segmentation results
in many biomedical problems [2, 3, 4], and ranks above hu-
mans [?] in academic challenges such as the SNEMI3D. We
have also experimentally confirmed that the U-Net is well
suited for segmenting mitochondria and synapses in electron
microscopy (EM) images of brain tissue.

However, like most machine learning techniques, the
U-Net is sensitive to domain shifts, which occur when the
statistical properties of the test data differ from that of the
training data. In our specific application, this might occur
when a U-Net is trained using organelles from one part of the
brain and then tested in another one where the appearance
differs, as shown in Fig. 1, or due to inconsistent tissue stain-
ing processes, among other reasons. This can be addressed by
annotating entirely new training data, which is slow, costly,

and error-prone. A more effective approach is to perform
Domain Adaptation, which aims at leveraging existing anno-
tations along with a very small amount of labeled data from
the new acquisition, to adapt the model to the new statistics.

Let the source domain be the one in which we have
enough annotated data and let the target domain be another
to which we want to adapt using as few new annotations as
possible. In the context of Deep Learning, recent Domain
Adaptation works aim to learn representations that are in-
variant to the domain shift, for example by minimizing the
Maximum Mean Discrepancy (MMD) between source and
target distributions [6, 7], by training adversarial domain
classifiers [8, 9] or by aligning the second- or higher-order
statistics of the domains [10, 11]. These methods typically
either use one common network with identical weights for
both domains, or fine-tune the source network using the few
annotated target samples. By contrast, in [?], it was shown
that it may be beneficial to allow source and target network
weights to differ while regularizing them to prevent them
from drifting too far apart. Although promising, all of the
above methods deal only with classification or regression
problems, using relatively simple networks.

In this work, we tackle the more complex image segmen-
tation case, using the more sophisticated U-Net architecture.
We introduce a simple and effective approach to adapting the
U-Net weights from a source to a target domain, which relies
on mirroring the U-Net structure into two streams, one for
the source domain and one for the target, and allowing some
of their weights to differ, while the others are shared. With
this, we find a compromise between preserving what can be
learned from the source domain using enough training data
and adapting the weights to the potentially different statistics
of the target domain. In addition, we introduce a novel loss
function based on a differentiable version of the Jaccard in-
dex, which is more consistent with the standard evaluation cri-
terion in segmentation. Our experiments demonstrate that our
approach surpasses state-of-the-art Domain Adaptation tech-
niques on the task of segmenting organelles in EM images.

2. METHOD

Let us consider a source domain s, for which we have enough
annotated data to properly train a U-Net, and a target do-
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Fig. 1. Segmenting EM images. (Left) A U-Net trained to segment mitochondria (top) or synapses (bottom) in a specific brain region does
it well. (Right) The same U-Net does poorly elsewhere in the brain before Domain Adaptation but much better after Domain Adaptation.

main t, in which we have far less. Let X s = {Xs
i }

Ns

i=1 be
the training images for the source domain with corresponding
annotations Ys = {Ys

i }. Furthermore, let X t = X tl ∪ X tu be
the target images, separated into labeled X tl = {Xtl

i } images,
with labels Yt = {Yt

i}, and unlabeled images X tu = {Xtu
i }.

We formulate the segmentation problem as that of assigning
pixels a value of either one or zero, depending on whether
they belong to a structure of interest or not. To this end, we
develop the coupled U-Net architecture described below.

A standard U-Net comprises a series of convolutional lay-
ers with an either increasing or decreasing number of chan-
nels, interleaved with pooling operations for the encoding lay-
ers and up-convolutions for the decoding layers. As shown in
Fig. 2, we use two U-Nets, one for each domain. The be-
havior of these two streams is defined by two sets of weights
Θs = {θsj}

L
j=1 and Θt = {θtj}

L
j=1, where L is the number of

layers, with some layers potentially being shared and others
not, as proposed in [?].

We train the network by minimizing the loss function

L(Θs,Θt|X s,X t,Ys,Yt) =

Ns∑
i=1

c(fs(Xs
i |Θ

s),Ys
i ) +

|X tl|∑
i=1

c(f t(Xtl
i |Θ

t),Yt
i) +

λw
1

|Ω|
∑
j∈Ω

rw(θsj , θ
t
j) +

λoro(X s,Θs,X t,Θt) , (1)

where f ·(X·|Θ·) denotes the function encoded by one U-Net
stream, i.e., the network predictions, c(·, ·) is a classification
loss that is tailored for segmentation purposes, as discussed
in Section 2.3, and the other terms, described in detail in Sec-
tions 2.1 and 2.2 below, are regularizers and their correspond-
ing weights. We optimize this loss with respect to Θs, Θt

jointly using the Adam optimizer [12] with 10−4 learning rate.
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Fig. 2. Simplified representation of our two-stream U-Net.
(See [1] for the detailed U-Net architecture.) Top stream is trained
on the source domain and bottom stream on the target domain. Some
of the weights are shared (dashed arrows) while the others can differ
but are constrained not to be excessively dissimilar. The final feature
maps, shown in blue, are also constrained to exhibit similar statistics.

2.1. Parameter Regularization and Sharing

In practice, for a particular U-Net layer, we either share all
or no weights across the two streams. The first regularizer
then penalizes weight differences between corresponding lay-
ers that do not share their weights. Specifically, let Ω be the
subset of weights from layers that the two streams do not
share. For each weight, we take the penalty term rw of Eq. 1
as

rw(θsj , θ
t
j) = ‖ajθsj + bj − θtj‖

2
2, j ∈ Ω , (2)

where aj and bj are scalars that are learnt jointly with the net-
work weights. We have observed the best results by sharing
the weights of the up-coding layers—the right part of each
stream in Fig. 2—and not sharing those of the others.



2.2. Feature Regularization

Following common practice, we also apply a regularizer that
aims to compare the distribution of the final feature maps
fso,i(X

s
i ,Θ

s) and f to,i(X
t
i,Θ

t) produced by the two streams,
that is, the representation preceding the classifier layer. We
evaluated two such standard regularization terms.

The first one corresponds to the MMD between the source
and target features, and can be expressed as

rMMD
o (fso , f

t
o) =

∥∥∥∥∥∥ 1

NsM

Ns∑
i=1

M∑
k=1

φ(fso,i,k(Xs
i ,Θ

s))

− 1

N tM

Nt∑
i=1

M∑
k=1

φ(f to,i,k(Xt
i,Θ

s))

∥∥∥∥∥∥
2

, (3)

where k sums over the spatial positions on the output feature
maps (since we have a fully-convolutional architecture), and
φ(·) is a mapping to a reproducing kernel Hilbert space. The
MMD can in fact be expressed in terms of a kernel function,
and in practice we use the RBF kernel.

The second regularizer we evaluated is based on the cor-
relation alignment method of [10]. Let Cs

o be the correlation
matrix of the final source feature map fso,i(X

s
i ,Θ

s), and Ct
o be

the equivalent matrix for the target domain. We then write

rcorr
o (fso , f

t
o) = ‖Cs

o − Ct
o‖

2

F . (4)

In our experiments, we have found such regularizer, which
implicitly encourages the segmentations in both domains to
correlate in a similar fashion, to be more effective than rMMD

o .

2.3. Segmentation Loss Function

For binary classification, the most commonly used loss func-
tion is the binary cross-entropy [13]. However, the most pop-
ular metric to assess segmentation quality is the Jaccard in-
dex, or Intersection over Union (IoU), written as

J(y, ŷ) =
|y+ ∩ ŷ+|
|y+ ∪ ŷ+|

=
|y+ ∩ ŷ+|

|y+|+ |y− ∩ ŷ+|
. (5)

Here, y+ and ŷ+ represent the set of positive ground-truth
pixels and corresponding segmentation pixels predicted to be
positive, respectively, and y− are the ground-truth pixels be-
longing to the negative class, for a specific annotated image.

The Jaccard Index is not differentiable and cannot be di-
rectly used when performing backpropagation. We therefore
introduce a differentiable “soft” version of it

Jsoft(y, ŷ) =

∑
i yis(yi, ŷi)∑

i yi +
∑

i(1− yi)s(1− yi, ŷi)
, (6)

where s(·, ·) is a similarity metric that outputs 0 if the values
differ, and 1 if they are equal. In particular, we use the Radial
Basis Function s(a, b) = exp(−‖a − b‖2/σ), but other simi-
larity metrics can also be adapted and used. Adapting other

popular count-based metrics akin to the Jaccard Index, such
as the F1 score and the Matthews correlation coefficient, to
their equivalent differentiable formulation is straightforward.

We then write the classification loss of Eq. 1 as

c(y, ŷ) = 1− Jsoft(y, ŷ) , (7)

which approximates the difference between the true Jaccard
index and one, the value a perfect segmentation would return.

3. RESULTS

We test our method on different Transmission Electron Mi-
croscopy volumes. For synapse segmentation, we use a
750×564×750 stack from the mouse cerebellum as the source
domain, and a 1445×987×147 stack from the mouse so-
matosensory cortex as the target domain, both at an isotropic
6.8 nm resolution. For mitochondria segmentation, we use
a stack from the mouse striatum of size 853×506×496 as the
source domain and a 1024×883×165 stack from mouse hip-
pocampus as the target, both at an isotropic 5 nm resolution.

Our U-Nets are trained on individual 2D slices. For both
synapses and mitochondria, we use the entire source domain
stack as training data for the source domain stream. For the
target domain, we spatially split the volume along one of the
dimensions in two separate halves and use one as our test set.
We then randomly select 1%, 5%, 10%, or 25% of the slices
from the other half for training purposes. In this way, we
avoid training the model on slices similar to the ones used
at test time. We report results for these different amounts of
training data in Fig. 3. For all other experiments, we take our
target domain training set to be 10% of the slices.

Regularizing and sharing parameters from different layers
yields different segmentation results. Fig. 4 shows the effects
of applying different regularization schedules. We obtained
the best results by regularizing weights in the down-coding
layers of the U-Net, sharing parameters in the up-coding ones,
and using correlation alignment to regularize the final feature
maps, as shown in Fig. 2. We attribute this to the fact that
the down-coding layers deal with the particular appearance
of each domain, so those layers require a looser relationship
across streams. Note that sharing all weights and using an
MMD or a correlation alignment regularizer corresponds to
the methods of [14] and [10], respectively and that our two-
stream approach therefore outperforms them both.

Furthermore, using our proposed cost function, formu-
lated as the differentiable approximation of the Jaccard in-
dex of Eq. 6, consistently performs better than relying on the
more traditional cross-entropy during the whole optimization
process, as shown in Fig. 5.

In Table 1, we compare our method against recent ones:

Fully-annotated Target Domain. (Full TD) Using all the
available training data from the target domain to train a
U-Net from scratch. This is our gold standard, that is, the
best results that Domain Adaptation can achieve.



Experiment Full TD NoDA Tuning SA+B SLSB MIVC CORAL Ours
Synapses

Cerebellum→ Cortex 0.7511 0.2224 0.1973 0.1350 0.6705 0.5709 0.6862 0.7230
Mitochondria

Hippocampus→ Striatum 0.8060 0.5054 0.6979 0.2417 0.6336 0.5933 0.6700 0.7456

Table 1. Jaccard indices for different methods using 10% of the target domain training data, except in the case of Full TD where we
used all the training data but no Domain Adaptation. Our approach consistently outperforms the other state-of-the-art methods.
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Fig. 3. Using different amounts of target domain training
data. The Jaccard index when using from 1% to 25% of the training
data and Domain Adaptation for the mitochondria (left) and synapse
(right). The dotted line denotes the Full TD case (our gold standard).
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Fig. 4. Parameter Sharing vs. Regularizing. Layers can either
share their weights or not. We plot the Jaccard indices for different
configurations when coupled with the two different feature map reg-
ularizations. Results from the mitochondria segmentation problem.
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Fig. 5. Evolution of the Jaccard index during training. Our
Jaccard-based cost function yields a consistently higher score than
the standard cross-entropy based one.

No Domain Adaptation. (NoDA) A U-Net trained on the
source domain is applied on the target domain as is.

Fine-tuning. (Tuning) Train a standard U-Net on the source
domain and refine the weights using a small quantity of anno-
tated data from the target domain.

Subspace Alignment + Boosting. (SA+B) Align the source
and target domain PCA subspaces and find a decision bound-
ary by boosting [15].

Shared Latent Space + Boosting. (SLSB) Learn mappings

for both source and target domains onto a shared space,
where a boosting classifier decides the pixel-wise class as-
signments [16].

Multiple Instance Visual Correspondence. (MIVC) Estab-
lish visual correspondences between image domains to drive
the threshold adjustment of a boosted tree parameters from
the source to the target domain [17].

Deep Correlation Alignment. (CORAL) Align the correla-
tions of the data from different layers in a deep net [18].

Table 1 shows that our method outperforms all the others.
Moreover, it yields Jaccard indices of 0.7230 and 0.7456 for
synapses and mitochondria, respectively, which are close to
0.7511 and 0.8060 that we obtain using all the available train-
ing data in the target domain instead of only 10%.

Interestingly, the simple approach of just fine-tuning the
source domain U-Net with 10% of target domain annotated
data performs quite well for mitochondria segmentation but
poorly for synapses. We attribute this to the fact that synapse
segmentation is harder because other membrane-like struc-
tures can be easily mistaken for synapses. Therefore the de-
tection heavily relies on context rather than only on texture.

Altogether, our results show that our method leverages the
source domain information and requires very few annotated
target examples to achieve a performance similar to that of a
U-Net trained on fully-annotated data and superior to that of
state-of-the-art methods.

4. CONCLUSION

Using a two-stream architecture for Domain Adaptation is
advantageous, because it provides a convenient trade-off be-
tween exploiting shared elements of the problem and allowing
independent streams to learn the specificities of their own do-
main. This approach is particularly well suited to the U-Net
with its different levels of granularity in the learned represen-
tations, which encode different aspects of the image.

Furthermore, our approach is also generic and could be
applied to many different architectures and modalities beyond
electron microscopy. To give it even more flexibility and
avoid negative transfer, which happens when trying to adapt
information that is inherently not transferable between tasks,
future work will focus on adapting not only the deep net pa-
rameters but also its architecture.
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