
A Novel Centralized Strategy for Coded Caching

with Non-uniform Demands

Pierre Quinton, Saeid Sahraei and Michael Gastpar

EPFL

IPG (IC)

CH-1015 Lausanne, Switzerland

Email: {pierre.quinton, saeid.sahraei, michael.gastpar}@epfl.ch

Abstract—Despite significant progress in the caching literature
concerning the worst case and uniform average case regimes, the
algorithms for caching with nonuniform demands are still at
a basic stage and mostly rely on simple grouping and memory-
sharing techniques. In this work we introduce a novel centralized
caching strategy for caching with nonuniform file popularities.
Our scheme allows for assigning more cache to the files which
are more likely to be requested, while maintaining the same sub-
packetization for all the files. As a result, in the delivery phase
it is possible to perform linear codes across files with different
popularities without resorting to zero-padding or concatenation
techniques. We will describe our placement strategy for arbitrary
range of parameters. The delivery phase will be outlined for
a small example for which we are able to show a noticeable
improvement over the state of the art.

I. INTRODUCTION

Caching is a communication technique for redistributing

the traffic in a broadcast network and thereby reducing its

variability over time. The idea is to transfer part of the data to

the users during low traffic periods. This data is stored at the

caches of the users and helps as side information when later

the server transfers the remaining data in a second phase. The

central question in the caching literature is that for a given

cache size, by how much one can reduce the traffic in this

second (delivery) phase, assuming that in the first (placement)

phase one only had partial or no knowledge at all of the

requests of the users. There has been significant progress in

answering this question under two paradigms. Firstly, when

we look at the worst case delivery rate, meaning that we

aim at minimizing the delivery rate for any request vector.

Secondly, when we consider an average delivery rate under

uniform distribution of the popularity of the files. For both of

these scenarios the exact tradeoff between the size of the cache

and the delivery rate has been characterized under uncoded

placement [1], [2] , i.e., when in the placement phase users

are not permitted to perform coding across several files.

By comparison, the question about minimizing the average

delivery rate when the file popularities are non-uniform is

still largely open. The main line of work [3]–[6] consists of

partitioning the files into two or more groups, where each

group contains files with similar popularity. Then one performs

memory-sharing between these groups: each user divides his

cache into several chunks, and assigns a chunk to each group

of files. Naturally, if a group includes the more popular files a

larger chunk of the cache (per file) will be allocated to them.

Finally in the delivery phase each group is served individually,

ignoring coding opportunities between files from different

groups.

This simple scheme even when restricted to two groups has

been proved to be order-optimal, meaning that it achieves

a rate within a constant factor of an information theoretic

converse bound. Nevertheless, the fact that coding opportu-

nities between files from different groups are ignored should

be viewed as an unfortunate technical obstacle rather than

a natural extension of the strategies that exist for uniform

caching. The dilemma is clear: assigning unequal amounts

of cache to different groups and applying the centralized

caching strategy in [1] for each group results in different sub-

packetizations for files that belong to different groups. As a

result, their sub-files will be of unequal size. It is therefore

impossible to apply linear codes between different groups

unless we resort to zero padding strategies or we concatenate

the subfiles. Problems of the same nature - but perhaps less

severe - appear if we resort to decentralized caching strategies

[3], [5], [7].

Our main contribution in this paper is to propose a central-

ized caching strategy that bypasses this seemingly inevitable

barrier. Specifically our placement strategy allows us to assign

different amount of cache per file to different groups while

maintaining equal sub-packetization for all the files. It is

then very natural to allow for coding between files even if

they do not belong to the same group. To the best of our

knowledge this is the first centralized caching strategy that

is specifically tailored for nonuniform file popularity. We will

demonstrate the potential of this caching strategy by providing

explicit delivery schemes for a small choice of the parameters

and comparing its performance with the grouping strategies

discussed earlier.

The rest of the paper is organized as follows. In Section

II we will briefly describe the model. We will then move on

to explaining our placement strategy in Section III. Next, in

section IV we will describe our delivery strategy for a small

choice of the parameters and compare its performance to the

literature. Finally, we will conclude our work in Section V.

user 1 user K

Fig. 1: An illustration of the caching network

II. MODEL DESCRIPTION

Our model and notation will be almost identical to the one

described in [1]. We have a server which is in possession of N
independent files {W 1, . . . ,WN} of equal size F and K users

each equipped with a cache of size MF . The communication

is done in two phases. In the placement phase, the server fills

in the cache of each user without prior knowledge of their

requests but with the knowledge of the popularity of the files.

Next, each user requests precisely one file from the server. The

request of each user is drawn independently from a distribution

p[1:N] where pi represents the probability of requesting file

i. Note that this distribution does not vary across different

users. We represent the set of requests by a vector d where

di ∈ [1 : N] for all i ∈ [1 : K]. In the delivery phase the

server broadcasts a message of rate R(d) to satisfy all the users

simultaneously. See Figure 1 for an illustration. We deviate

from the model in [1] in that we look at the expected delivery

rate instead of the peak delivery rate. We say that a memory-

rate pair (M,R) is achievable if and only if there exists a

joint caching and delivery strategy with a cache of size MF
such that for any request vector d a delivery message of rate

R(d)F satisfies all the users simultaneously, and

R =
∑

d

P(d)R(d) =
∑

d∈[1:N]K

K
∏

i=1

pdi
R(d).

III. THE PLACEMENT PHASE OF STRATEGY β

The placement phase of our strategy, which we refer to as

strategy β, starts by partitioning the N files into L groups

G1,...,GL of respective size N1,...,NL, such that
∑L

i=1 Ni =
N . How to perform this partitioning is left as a design

parameter but in general files within one partition should

have similar probabilities of being requested. We represent

by gi ∈ [1 : L] the group to which the file W i belongs.

Accordingly, each user partitions his cache into L chunks

of size M1,...,ML such that for any ℓ ∈ [1 : L], we have

Mℓ ∈ {0, Nℓ/K, 2Nℓ/K, . . . , Nℓ}. It should be clear that this

is only possible for discrete values of M =
∑L

i=1 Mi. The

overall achievable memory-rate region will be the convex hull

of all the discrete pairs (M,R) which can be served by our

strategy. We define

rℓ = KMℓ/Nℓ (1)

and assume without loss of generality that r1 ≥ r2 ≥ · · · ≥
rL. Note that r[1:L] are integers.

Naturally, the following two identities hold.

L
∑

ℓ=1

Nℓrℓ = MK (2)

0 ≤ rℓ ≤ K ∀ℓ ∈ [1 : L]. (3)

Every file in the network regardless of which group they

belong to is divided into S subfiles of equal size where

S =

(

K

K − r1, r1 − r2, . . . , rL−1 − rL, rL

)

.

The subfiles are indexed as follows

W i
τ1,...,τL

where τ1 ⊆ [1 : K]

τj ⊆ τj−1 for j ∈ 2, . . . , L,

|τi| = ri for i ∈ [1 : L].

Note that there are precisely S such distinct indices.

For any (i, k) user k stores subfile W i
τ1,...,τL

in his cache if

and only if k ∈ τgi .

At this point it may help to illustrate this placement

strategy via a simple example. Let us say that we have

3 users and 2 files and 2 groups such that each group

contains exactly one file. Let us call the files A = W 1

and B = W 2 and assume that r1 = 2 and r2 = 1, so

M = r1N1+r2N2

K
= 1. We must divide file A into 6 subfiles

A = {A12,1, A12,2, A13,1, A13,3, A23,2, A23,3}. Same division

applies to file B. The contents of the caches of the two users

are illustrated in Table I.

user 1 user 2 user 3

A12,1 A12,1 A13,1

A12,2 A12,2 A13,3

A13,1 A23,2 A23,2

A13,3 A23,3 A23,3

B12,1 B12,2 B13,3

B13,1 B23,2 B23,3

TABLE I: Placement phase of strategy β for parameters N =
2, K = 3, M = 1, r1 = 2, r2 = 1

Let us now go back to the general placement strategy and

calculate the amount of cache that user k dedicates to the ℓ’th
group. By definition the index of the k’th user must be present

in all the sets τ1, . . . , τℓ whereas its index may or may not be

present in the sets τℓ+1, . . . , τL. We should divide the number

of such indices τ1 . . . τL by the total number of subfiles S to

find the amount of cache dedicated to each file in group ℓ.

Mℓ =
Nℓ

S

(

K − 1

r1 − 1

)

×

ℓ−1
∏

i=1

(

ri − 1

ri+1 − 1

)

×

L−1
∏

i=ℓ

(

ri
ri+1

)

=Nℓ

(

K−1
r1−1

)

(

K
r1

) ×
ℓ−1
∏

i=1

(

ri−1
ri+1−1

)

(

ri
ri+1

)

=Nℓ

r1
K

×

ℓ−1
∏

i=1

ri+1

ri

=
rℓNℓ

K
.

Note that this expression matches with the way we defined the

parameter rℓ in Equation (1).

IV. DELIVERY STRATEGY FOR K = 3, N = 2 AND

COMPARISON TO THE LITERATURE

Let us start by describing our delivery strategy for the same

toy example as in the previous section. The explicit delivery

messages for all possible request vectors are provided in Table

II.

request vector delivery message delivery rate

(A,A,A) A12,1 ⊕A13,1 ⊕A23,2 1/3
A12,2 ⊕A13,3 ⊕A23,3

(A,A,B) B12,1 ⊕A23,2 , B13,1 ⊕A23,3 2/3
B12,2 ⊕A13,1 , B23,2 ⊕A13,3

(A,B,B) B12,1 ⊕A23,2 , B13,1 ⊕A23,3 2/3
B12,2 ⊕B13,3 , B23,2 ⊕B23,3

(B,B,B) B12,1 ⊕B12,2 , B12,1 ⊕B13,3 2/3
B13,1 ⊕B23,2 , B13,1 ⊕B23,3

TABLE II: the set of delivery messages for N = 2,K = 3
and r1 = 2, r2 = 1 for all possible request vectors (different

permutations are omitted.)

Let us say that file A is requested with probability p and file

B with probability 1−p. We assume without loss of generality

that p ≥ 0.5. The expected delivery rate is

R =
1

3
p3 +

2

3
(1− p3) =

2

3
−

1

3
p3.

Alternatively we can set (r1, r2) = (3, 0) which results in an

expected delivery rate of 1− p3. Therefore,

Rβ = min{
2

3
−

1

3
p3, 1− p3}. (4)

Therefore, the point (M,R) = (1,min{ 2
3 − 1

3p
3, 1 − p3}) is

achievable with strategy β. We want to compare this with the

achievable rate of grouping strategy in [3]. The strategy in

[3] is particularly designed for decentralized caching, which

by nature has an inferior performance (in terms of delivery

rate) compared to its centralized counterpart. Thus, before we

perform the comparison we slightly modify the strategy in [3]

without compromising its basic concepts: the files are grouped

in L disjoint sets and each user partitions his cache into L
segments. Coding opportunities between several groups are

ignored in the placement and delivery phase. However, instead

of performing decentralized caching within each group we

deploy the centralized caching strategy from [1], [2]. We refer

to this as strategy α. It is easy to see that strategy α always

outperforms the strategy in [3] in terms of expected delivery

rate. It is also easy to see that strategy α always performs at

least as good as the strategy in [1], [2] since by definition we

can have only one partition which includes all the files. Let

us now proceed to compare the two strategies α and β.

For the same choice of parameters K = 3, N = 2,M = 1,

strategy α can be deployed with L = 1 or L = 2 groups. The

former gives an expected rate of

Rα,L=1 =
1

2
(p3 + (1− p)3) +

2

3
(1− p3 − (1− p)3)

=
2

3
−

1

6
(p3 + (1− p)3).

If instead we set L = 2, we must divide the cache into two

segments of sizes M1 and M2 = 1−M1. We will then ignore

any coding opportunities between the files A and B, so the

delivery rate is given by

Rα,L=2 = [1−M1]p
3 + [1−M2](1− p)3

+ [(1−M1) + (1−M2)](1− p3 − (1− p)3)

= 1−M1p
3 − (1−M1)(1− p)3.

Assuming p ≥ 1
2 it is then profitable to set M1 = 1 and we

get a rate of

Rα,L=2 = 1− p3.

To summarize, we can write

Rα = min{
2

3
−

1

6
(p3 + (1− p)3), 1− p3}. (5)

Comparing Equations (4) and (5) we see that strategy β strictly

outperforms strategy α as long as 1
2 < p < (1/2)

1
3 ≈ 0.794.

Let us summarize this in a table.

probability of file A Expected Delivery Rate

strategy α Strategy β

0.5 ≤ p ≤ 0.739 2

3
− 1

6
(p3 + (1− p)3) 2

3
− 1

3
p3

0.739 < p ≤ 0.794 1− p3 2

3
− 1

3
p3

0.794 < p ≤ 1 1− p3 1− p3

TABLE III: Comparison of the expected delivery rate of

strategies α and β when K = 3, N = 2 and M = 1. We

assume that file A is requested with probability p ≥ 1/2.

In Figure 2 we compare the delivery rates of the two

strategies for N = 2,K = 3,M = 1. On the horizontal axis

the probability of ordering file A increases from 0.5 to 1 and

on the vertical axis we have the expected delivery rate. The

maximum gain is offered over strategy α when p = 0.738
in which case Rβ ≈ 0.89Rα. A converse bound from [8] is

plotted for comparison.

Similar analysis can be done for other cache sizes. In

Table IV we summarize the achievable rate of strategy β for

