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A B S T R A C T

Structure-property relationships at the atomic scale are usually un-
derstood in terms of recurrent structural motifs formed by atoms and
molecules, and how they transform and interact with each other. We
introduce with this thesis a novel analysis approach, capable of deter-
mining such patterns automatically. This analysis provides a unique
fingerprint for metastable motifs, that is based exclusively on struc-
tural information. The rational behind the method and its functioning
will be presented, followed by a discussion regarding its application
to a wide range of problems in materials science and biology. We
will begin by showing how it is possible to use our methodology to
define adaptively the hydrogen bond in some different systems, in-
cluding water, ammonia and peptides. We will then demonstrate
how such definition can be used to probe the topological defects in
the 3-dimensional hydrogen bond network of liquid water and will
propose a method to study the non-trivial correlations among them.
Furthermore, we will apply our framework to the identification of
coordination environments in nanoclusters, and to the recognition of
secondary-structure patterns in oligopeptides and proteins. We will
prove that it is not only possible to obtain an algorithmic definition,
which is unbiased and adaptive, of local motifs of matter, but also to
identify and classify structures in their entirety. We will also demon-
strate that a clear interpretation of the stability of the system can be
obtained through the automatic analysis of atomistic simulation re-
sults, and will discuss possible applications, such as the definition
of collective variables for enhanced-sampling simulation techniques
or the identification of recurrent patterns in complex systems that
escape an interpretation in terms of conventional structural motifs,
such as intrinsically disordered proteins.

keywords Molecular dynamics, enhanced sampling, collective vari-
ables, structural fingerprints, machine learning, unsupervised learn-
ing, Bayesian classifiers, kernel density estimation, pattern recogni-
tion, clustering, dimensionality reduction, PAMM, Sketchmap, hydro-
gen bond, water, secondary structures, oligopeptides
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S O M M A R I O

Le relazioni tra struttura e proprietà su scala atomica sono solitamen-
te contestualizzate in termini di motivi strutturali ricorrenti e di come
essi si trasformano e interagiscono tra di loro. Con questa tesi viene
introdotto un nuovo approccio d’analisi, capace di determinare ta-
li strutture in modo automatico. Tale analisi fornisce un’impronta
digitale univoca per ognuna di esse, basata esclusivamente sull’infor-
mazione strutturale. Saranno presentati l’idea alla base del metodo
e il suo funzionamento dettagliato, seguiti da una discussione riguar-
do la sua applicazione a una vasta gamma di problemi in scienza
dei materiali e biologia. Inizieremo mostrando come sia possibile
usare la nostra metodologia per definire adattivamente il legame a
idrogeno in alcuni contesti diversi, come le proteine, l’ammoniaca e
l’acqua. Dimostreremo poi come tale definizione possa essere usa-
ta per identificare i difetti topologici nella rete 3-dimensionale dei
legami a idrogeno dell’acqua liquida e proporremo un metodo per
studiare le correlazioni non banali tra essi. Inoltre, applicheremo il
nostro metodo all’identificazione degli ambienti di coordinazione nei
cluster nanoscopici e al riconoscimento delle strutture secondarie in
oligopeptidi e proteine. Proveremo come sia possibile non solo ottene-
re una definizione algoritmica obbiettiva e adattiva dei motivi locali
della materia, ma anche identificare e classificare strutture nella loro
globalità. Dimostreremo anche che una chiara interpretazione della
stabilità del sistema può essere ottenuta attraverso l’analisi automati-
ca dei risultati delle simulazioni atomistiche e discuteremo possibili
applicazioni future, come la definizione di variabili collettive per tec-
niche di simulazione a campionamento accelerato o l’identificazione
di strutture ricorrenti in sistemi complessi ancora poco chiari, come
le proteine intrinsicamente disordinate.

parole chiave Dinamica molecolare, campionamento accelerato,
variabili collettive, impronte digitali strutturali, apprendimento auto-
matico, apprendimento non supervisionato, classificatore bayesiano,
stima kernel di densità, riconoscimento di pattern, clustering, riduzio-
ne di dimensionalità, PAMM, Sketchmap, legame a idrogeno, acqua,
strutture secondarie, oligopeptidi.
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1
M O T I VAT I O N

Materials science is an interdisciplinary field of research that tries to
shed light on the fundamental laws that govern materials. Materials
can be seen as very complex systems stemming from the interactions
of a large number of atoms and molecules. Understanding how such
building blocks arrange and transform over various time and space
scales to give rise to the macroscopic properties we can observe, is of
primary importance when explaining the behavior of existing materi-
als and designing new ones.

Since the very beginning of the field, the rationalization of structure-
property relationships has been driven by the interplay of two main
pillars: theory and experiment. Theory identifies the different physic-
ochemical mechanisms governing materials from the ground up, while
experiments validate the theoretical hypotheses through well-thought-
out measurements. The main limitation of this approach arises from
the wide range of space and time scales needed to characterize fully
all the possible interactions and correlations taking place in materials.
The common theoretical description, in fact, consists of defining a set
of equations, which apart from very few cases, cannot be solved ana-
lytically. A usual solution is the definition of approximate models of
the material, such as the free electron model to describe the valence
electrons in solid metals, or the use of Ising model to characterize
phase transitions in ferromagnetic materials. Such approximations
are inevitably inaccurate and only capable of explaining only qualita-
tively the experimental results qualitatively.

A step forward has been made possible with the advent of in silico
experiments, which open a virtual window on the atomistic side of
matter and thus remove the need of relying on approximate theories.
Atomic-scale simulation techniques, in fact, enable the description of
materials in their entirety with a great level of accuracy. Starting from
relatively few assumptions on the basic interactions between atoms
and molecules, they allow one to emulate and follow the complete
evolution of the system and to estimate its properties. They thus es-
tablish a link between experimental data and theoretical assumptions.
Given their two-fold purpose, as vehicles that enable us to test new
theories and approximations as well as to suggest new possible ex-
periments, simulations have become ubiquitous in materials science.
This has been catalyzed by the tremendous increase in the available
computational power in the last decades and to the increased avail-
ability of easily accessible high-performance computing facilities. In
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2 motivation

addition to the technological advances, models have become more
and more accurate, and a large number of simulation packages have
appeared that simplify the task of setting up and running a sim-
ulation. As a consequence, massive amounts of data can now be
produced as routine. However, the outcome of a computer simula-
tion is ultimately nothing but an enormous quantity of unstructured
numbers, that must be laboriously post-processed in order to extract
meaningful information. Defining proper analysis protocols can be
far from trivial, and traditional approaches, are usually not suitable
for manipulating enormous data sets containing different types of
multivariate data. Furthermore, simulations are often exploited for
their agnostic character, which enables us to test new unknown sys-
tems or to study phenomena that are not yet clear. The drawback here
is that researchers may not be able to formulate clearly the questions
to be addressed.

In order to exploit the flexibility of simulations, and to extract the
maximum amount of knowledge obtainable from the vast quantity of
data produced new mindsets are needed, as well as new tools that
are able to conduct the analysis automatically and to provide useful
information to assist and guide the interpretation of results.

Machine-learning algorithms provide the essential infrastructure
necessary to unravel all the potential regularities and correlations hid-
den in simulation data. Applications of machine-learning algorithms
to computational material science have already been successfully pro-
posed in the literature, providing, for example, insights on how dif-
ferent structures contribute to the stability of various systems, such
as nanoclusters, small organic molecules, and peptides. Machine-
learning strategies have also been used to introduce complete and ac-
curate descriptions of local atomic environments, which not only are
useful for the construction of regression models for property predic-
tion, but also for the identification of fundamental structural motifs
and their possible combinations into more complex supramolecular
patterns.

This thesis focuses on the use of machine-learning techniques to
guide the understanding of complex structural problems in materials
science and biology, by introducing a new general protocol for the
identification of repetitive global and local structural motifs sampled
through atomistic simulations. Nevertheless, all the ideas proposed
here are not strictly limited to atomistic simulations and could be
extended to other more general problems, i.e. the interpretation of
experimental data, as well as more standard pattern recognition ap-
plications, such as image and text recognition.

Identification of repetitive patterns in atomic-scale data could mean
the detection of specific structures along a simulation trajectory or
among those stored in a structural database. It could also refer to the
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recognition of the different meta-stable motifs intrinsic to a specific
system. The former is essentially a classification task where, for a given
input structure, a proper label is assigned, while the latter is a coarse-
graining process where, among all the possible input structures, a few
are selected to represent the structural landscape of the system being
studied. Both are very important and will be addressed in this work,
whose initial aim was to overcome some critical limitations faced by
standard analysis approaches, such as the use of an arbitrary, clear-
cut geometrical criterion to define a fuzzy entities such as hydrogen
bonds in liquid water and proteins.

In general, the usual paradigm for a structural analysis in atom-
istic simulations, involves the use of chemical intuition to guide the
manual inspection of structures along the trajectory. The traditional
descriptors commonly adopted to classify patterns in atomistic simu-
lations, usually involve the introduction of ranges of parameters that
are deemed to represent a specific motif. Threshold values for dis-
tances, angles and energies are typically estimated from experiments
and manually adjusted to be applied to various systems. Although
practical and quite effective for many simple examples, this approach
brings an intrinsic level of arbitrariness that could lead to a bias in any
of the following steps in the analysis. Different choices of models and
parameters reflect different final results, thus one must take particu-
lar care of the fact that, simulating a system using different methods
and level of approximations, could lead eventually to (slightly) dif-
ferent average structures. Because comparison and cross-validation
of results across different methods are routine in modern material re-
search, personal choices of parameters in structural definitions could
critically propagate into the inaccurate interpretation of the final re-
sults. Moreover, given that simulations produce large volumes of very
detailed, noisy, high-dimensional data, the idea of manually inspect-
ing trajectories using the spectacles of chemical intuition to guide the
discovery of possible complex motifs and meaningful correlations is
naive and often unfeasible.

We propose a solution to this problem by introducing a machin-
learning framework that is capable of analyzing atomistic data auto-
matically. We dub this procedure Probabilistic Analysis of Molecu-
lar Motifs (PAMM). PAMM provides not only a clear picture of all
the possible meta-stable structures explored in a simulation trajec-
tory, but also a natural out-of-sample probabilistic definition for each
one of them, which can be used afterwards to detect and quantify
similar structures in new simulation outcomes. PAMM builds on the
idea that meta-stable patterns are nothing more than configurations
which, due to the (free) energetics of the system, result in being more
probable at a certain thermodynamic condition. By exploiting a non-
parametric density estimation scheme, we learn, from all the possible
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configurations observed in a simulation, the underlying probability
distribution function. Since each mode of the distribution must cor-
respond to a class of configurations matching a specific meta-stable
pattern, we apply an unsupervised clustering algorithm to partition
the dataset between the different modes. This knowledge is used to
find the best Gaussian fit to each of the modes and thus approximates
the ideal probability distribution function with a Gaussian Mixture
Model.

We will show that these ingredients are enough to introduce a gen-
eral, flexible, probabilistic and data-driven definition for recurring
patterns, which combined with non-linear dimensionality reduction
schemes, greatly helps to fully characterize the configuration space of
complex atomistic systems.

summary

The rest of the thesis is organized as follows. After a short introduc-
tion about atomistic simulations and machine-learning techniques in
chapter II an III respectively, chapter IV contains a detailed discussion
of the rationale behind PAMM and describes its functioning, and im-
plementation. In chapter V we show how it is possible to use PAMM
to introduce an unbiased, smooth and adaptive definition of hydro-
gen bonds, while in chapter VI we make use of this definition to
study defect and correlations in the hydrogen-bond network of wa-
ter. In chapter VII we propose the use of PAMM, in combination
with sketchmap, to investigate the structural patterns exhibited by
nanoclusters and we apply the same methodology in chapter VIII to
identify recurrent motifs in biomolecules. Finally, in Chapter IX we
propose some future outlooks and in chapter X we draw our conclu-
sions.

Chapter IV is adapted from refs. [1] and [2], while chapter V is
adapted from ref. [1]. Chapter VI is an adaptation of ref. [3], while
chapter VII and VIII are adapted from ref. [2].
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Simulated experiments are becoming increasingly common in all
fields of materials science, engineering and chemistry. Before the
advent of simulations, the only way to predict properties of materi-
als was by describing them with some inevitably approximate mod-
els. The problem is that real materials can be extremely complex,
and crude analytic approximations lead often to qualitatively inaccu-
rate results. This fact, together with the ever-growing computational
power, and the development of more accurate numerical models has
made atomistic-scale simulations very common in modern materials
research.

Simulations can be used to test new theories and address questions
about materials more easily than experiment can, even if experiments
are still central to testing and validating the accuracy of the simula-
tion methodologies. Through simulations, it is possible to sample
all the possible configurations specific to a system and to predict its
static and dynamical equilibrium properties. Two main techniques
have been developed for this purpose, both of which are based on
statistical mechanics: Monte Carlo (MC) and Molecular Dynamics
(MD). Compared to MC methods, which allow the calculation only
of equilibrium averages, MD offers the possibility of also studying
time-dependent microscopic properties, such as adsorption mecha-
nisms, reaction pathways and conformational dynamics of polymers
and biomolecules. Furthermore, it is possible to compute time corre-
lation functions (TCFs) from MD trajectories. Using linear response
theory, these can be used to predict transport coefficients and spec-
tra [4]. In this thesis, we will focus exclusively on MD techniques,
which will later be described in more detail.
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6 atomistic simulations

A more complete and formal description of atomistic simulation
methods can be found in several excellent books: Statistical Mechan-
ics: Algorithms and Computations by W. Krauth, Understanding Molec-
ular Simulation: From Algorithms to Applications by B. Smith and D.
Frenkel, and Statistical Mechanics: Theory and Molecular Simulation by
M. Tuckerman.

2.1 molecular dynamics

Molecular dynamics (MD) is a broadly-used computational tool which
allows matter to be studied in its microscopic detail. By describing
a material as a classical system composed of N interacting particles,
its dynamical behavior and evolution over time can be predicted by
solving Hamilton’s equations:

ṙi =
∂H(p, r)

∂pi

=
pi

mi

ṗi = −
∂H(p, r)

∂ri
= −

∂V(r)

∂ri
= Fi ,

(1)

where ri, pi and Fi are respectively the position, momentum and
force associated with the ith particle, V is the interatomic potential
and H is the classical N-particle Hamiltonian.

Given some initial conditions, the state of the system is completely
determined at any time by the positions (r1, . . . , rN) and the mo-
menta (p1, . . . ,pN) of each particle. Since the analytical solution
of the equations of motion for a generic complex many-body prob-
lem is simply not feasible, the time evolution in MD is achieved by
iteratively applying a numerical integration scheme with a discrete
timestep Δt. The accuracy of such approximation depends on the
choice of Δt, which is usually taken to be from 0.5 to 2 fs. The most
common integration scheme is the velocity Verlet [5].

If the tractory is long enough to sample the whole phase space,
Hamiltonian molecular dynamics can be used to generate equilib-
rium ensemble averages consistent with the microcanonical ensemble
(NVE), by exploiting the so-called erogodic hypothesis:

ĀT = lim
T→∞

1

T

∫T
0

dtA(p(t), r(t)) = 〈A〉NVE , (2)

where A(p, r) is a function corresponding to a generic physical ob-
servable and T is the total length of the trajectory. However, exper-
iments are usually performed at thermodynamic conditions that are
not consistent with the microcanonical ensemble, such as constant
pressure or temperature. This has led to the development of many
approaches to generate alternative ensembles in MD [6–9].



2.2 interatomic potentials 7

2.2 interatomic potentials

In order to obtain a realistic time evolution of the system, a proper de-
scription for the interatomic interactions is compulsory. Clearly, the
quality of the final results depends to a great extent on the approxi-
mations that are made at this level.

A common approach consists of introducing an empirical inter-
atomic potential, called force field (FF), which gives a fairly simple,
qualitative mathematical description for each of the different inter-
actions. Several parameters are usually introduced and tuned from
experiments, or more accurate simulations, to reproduce different ex-
perimental systems. A commonly adopted formulation for a FF cor-
responds to a series of terms that represents the different interactions
that can occur among increasingly larger groups of atoms

V = ε(0) +
∑
i

ε
(1)
i +

∑
i

∑
j<i

ε
(2)
ij +

∑
i

∑
j<i

∑
h<j

ε
(3)
ijh + . . . , (3)

where, for instance ε
(2)
ij and ε

(3)
ijh represents the energy contribution

coming, respectively, from the two-body and three-body interactions
among the atoms i,j and h.

The first example of an empirical potential that was capable of de-
scribing a variety of molecules was probably the molecular mechanics
FF (MM) [10], which was followed by improved versions (MM2, MM3
and MM4) [11–13]. Current popular FFs are UFF [14], CHARMM [15],
AMBER [16], GROMOS [17], and OPLS [18] among many others.
Characterized by their low computational cost, FFs allow for very
large simulations (both in time and space). Impressive examples are
the simulations of the tobacco mosaic virus [19], bacterial flagellar
filament [20] and HIV-1 capsid [21].

The major disadvantage of most empirical FFs is the fact that the
connectivity between atoms is pre-defined and constrained through-
out the entire simulation. This implies the impossibility to model and
predict bond forming and breaking events. Moreover, the predictive
power of a FF is guaranteed only for those systems and thermody-
namic conditions for which they were designed.

A way to solve some of the problems faced by force fields is to
treat specific parts of the system by using more accurate methods,
such as quantum mechanical models. An example is QM/MM ap-
proaches [22–26], which aim to obtain a higher predictive accuracy,
while still at a low computational cost, by using cheaper approxi-
mations for those regions that are less important. QM/MM meth-
ods are very promising, but they still involve strong approximations,
meaning that they can fail to reproduce exactly the physics needed
to interpret experimental results, for which a more precise, accurate
description is necessary [27, 28].
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2.2.1 Ab Initio Molecular Dynamics

Ab Initio Molecular Dynamics (AIMD) offers an excellent solution to
the limitations of FFs, by combining classical dynamics with elec-
tronic structure methods to explicitly describe the quantum nature
of electrons. Assuming the Born-Oppenheimer (BO) approximation
and neglecting non-adiabatic effects, the internuclear forces are com-
puted at each timestep via an electronic structure calculation, starting
from a set of initial nuclear positions. At this point one step in the
dynamics can be done by plugging the forces, together with a set of
initial momenta for each atom, into a numerical integration algorithm.
New velocities and nuclear positions are obtained, which can be used
to iterate the procedure and evolve the system through time.

In this context, the role of the electronic structure methods is to
find an approximate solution to the non-relativistic time independent
many-body Schrödinger equation:

ĤΨ = EΨ, (4)

where Ψ is the many-body wavefunction and Ĥ is the Hamiltonian
of the system, which is the sum of all the interactions between nuclei
and electrons, plus their kinetic energy terms. Despite its simplicity,
eq. 4 is incredibly complex to solve, and an exact solution of the
electronic many-body problem is intractable.

Some approximations are needed to make the electronic calcula-
tion feasible. Many methods have been suggested, from simple mod-
els such as Hückel theory [29], to semi empirical approaches [30–32],
Hartree-Fock (HF) [33, 34] and correlated methods beyond HF, such
as configuration interaction (CI), Møller-Plesset perturbation theory
(MP, MP2, . . . ) [35, 36], and coupled cluster (CCD, CCSD, . . . ) [37–
39], to Quantum Monte Carlo [40–42]. Density Functional Theory
(DFT) [43–45] is probably the most widely-adopted approach in atom-
istic simulations of materials, mainly because of the computational
cost (if N is number of basis functions, standard DFT scales as O(N3),
which is massively faster than other approaches – CCSD scale as
O(N6)).

DFT is based on the principle that all the properties of a system,
subject to an external potential Vext, are determined by its ground
state density. In particular, the energy E0 associated with the ground
state is

E0 =

∫
drVext(r)ρ0(r) + F[ρ0(r)] , (5)

where ρ0 is the ground state density and F[ρ] = T [ρ] + Ee−e[ρ] a uni-
versal functional of the density, with T [ρ] being the kinetic-energy
functional and Ee−e[ρ] the electron-electron interaction functional.
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Among all the possible densities, F[ρ0] has its minimum value at the
true ground state density, which can be found through a variational
approach.

Usually DFT is implemented using the Kohn-Sham (KS) formula-
tion, where a system of interacting electrons is formally mapped into
a system of non-interacting electrons (N-representability), to give a
set of equations that can be solved self-consistently. The effective po-
tential for the KS Hamiltonian (HKS) is

VKS(r) = Vext(r) + VH(r) + VXC(r) , (6)

where Vext is the Coulomb potential due to the nuclei, VH is the
Hartree potential due to the mean field electron-electron interaction
and VXC is exchange-correlation potential, which describes the com-
plex many-body electron-electron interaction. VXC is the functional
derivative of the exchange-correlation functional (EXC) with respect
to the density. Within the KS scheme, the only term that requires
an approximation is EXC, which affects strongly the accuracy of the
results.

DFT has been applied to problems involving thousands of elec-
trons and has been successfully applied to study a broad range of
phenomena, from the virtual design of new catalysts [46] and battery
materials [47], as well as the study of adsorption onto porous mate-
rials and surfaces [48, 49], prediction of the optical properties of new
materials [50] and simulation of spectra [51]. DFT has also been used
to study the structural and dynamical properties of a number of neat
molecular liquids and solids including water [52, 53], ammonia [54],
ice [55], and many others [56–60]. Of course in a practical implemen-
tation one has to deal with various different approximations, and
standard DFT approaches can be affected by problems of self interac-
tion and a poor modelling of long range dispersion interactions. A
popular solution to this problem is to add a pairwise correction of
the internuclear energy, by adding a pairwise C6R

−6 dispersive term.
An example is the D3 method proposed by Grimme [61]. Other ap-
proaches are to include explicitly non-local correlations in the XC

functional [62].
The biggest approximation is that of the exchange-correlation func-

tional EXC, which is not known exactly, and a huge list of approaches
– spanning a very wide range of complexity – can be found in the liter-
ature. A useful classification, that aims to group the existing function-
als, was proposed by Perdew [63] and is the “Jacob’s ladder”, which
is schematically represented in fig. 1. According to this scheme, EXC

functionals can be grouped in classes of increasing complexity, from
the Hartree approximation to exact exchange-correlation. A further
classification is then possible, splitting the methods between empiri-
cal (fitted to known results properties of matter) and non-empirical
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Figure 1: The schematic diagram named “Jacob’s ladder” proposed
by J. P. Perdew to classify exchange-correlation functionals.

(based only on physical laws). A list of the most common exchange-
correlation functionals is:

• local-density approximation (LDA): EXC is a functional of the
local density [n(r)] only and the corresponding XC energy is
obtained from the uniform electron gas having the same den-
sity. Example functionals are Perdew-Zunger (PZ) [64], Perdew-
Wang (PW) [65] and Vosko-Wilk-Nusair (VWN) [66].

• generalised gradient approximation (GGA): EXC is a functional
of the local density [n(r)] and the gradient of the density [∇n(r)].
In practice the gradient correction to the xc energy is introduced
by enhancing LDA xc energy as a function of reduced gradient
(|∇n(r)|/n(r)4/3). Examples are the PBE [65], BLYP [67], and
BP86 [68] functionals.

• meta-GGAs: EXC is a functional of the local density [n(r)], the
gradient of the density [n(r)], and the kinetic energy density
[∇ψ(n(r))]. An example is the TPSS [68] functional.

• hybrid GGA: It is hybrid mixture of GGA xc functionals with
some fraction of Hartree-Fock exchange. Well known examples
are PBE0 [69] and B3LYP [66, 70, 71].

Another important approximation to consider, when dealing with
ab intio methods, is that all electronic structure methods expand the
unknown wave function in terms of a set of basis functions. Many
basis sets can be found in the literature, and particularly popular
is the use of an atom-centered localized basis. Examples are Gaus-
sian type orbitals (GTO), such those proposed by Pople (3-21G,6-
21G...) [72], and the correlation-consistent basis sets proposed by Dun-
ning (DZVP, TZVP,...) [73, 74], but also the numeric atom centered
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orbitals (NAO) [75]. Another very common choice is the use of plane
wave basis sets [76].

A complete description of ab initio methods is not in the scope of
the thesis and a more detailed description, about these and other
methods, can be found in many excellent books (Modern Quantum
Chemistry by A. Szabo and N. Ostlund, Density Functional Theory by E.
K. U. Gross and R. Dreizler).

2.2.2 Nuclear Quantum Effects

In the all the previous sections, a quantum mechanical treatment has
been assumed to be necessary only to achieve a better description of
electrons in some particular cases. However, in many cases, it is also
necessary to consider the quantum effects due to the nuclei. Nuclear
quantum effects (NQE) (e.g, zero point energy and tunneling) are
critical for all those systems where the motion of light nuclei (such
as hydrogen or lithium) is important. Examples are water [77–79],
ammonia [80], ice [55, 81], and enzymes [82] among many others.

When the internuclear potential is fitted from experiments, these
quantum effects are often considered implicitly, while when ab initio
methods are used without considering any correction for the quan-
tum behaviour of nuclei, the resulting error on the final estimates
can be as large as that due to the approximation of the exchange-
correlation energy for the electrons [83, 84].

The standard procedure to include NQEs in molecular dynamics
is to model them using the imaginary time path integral (PI) for-
malism [85, 86]. PI methods exploit the mathematical isomorphism
between the quantum Boltzmann statistics of a given system and
the classical Boltzmann statistic of its ring-polymer (RP) representa-
tion. This ring-polymer is composed of replicas (beads) of the phys-
ical problem, with corresponding atoms are connected by harmonic
springs [87, 88].

Consider the quantum canonical partition function for a single par-
ticle in one spatial dimension. The partition function is well-defined
and is given by the trace:

Z = Tr[e−βĤ] (7)

The path integral formalism exploits the Trotter theorem to write
an extended phase space expression for the partition function

ZP =
1

(2π�h)P

∫
dPp

∫
dPre−βHP(p,r)/P, (8)
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where P is the number of beads and HP(p, r) is the Hamiltonian of
an extended ring polymer

P−1∑
j=0

[
1

2
p2
j + V(rj) +

1

2
ω2

P(rj − rj+1)
2

]
, (9)

with ωP = P/(�hβ) and rP = r0 (β = (kBT)
−1 is the inverse tempera-

ture, kB the Boltzmann constant and �h the reduced Planck constant).
The RP partition function converges to the correct quantum me-

chanical result when the number of beads P tends to infinity, but to
get a converged result it is sufficient to use a number of beads which
is a small multiple of β�hωmax, where ωmax is the largest vibra-
tional frequency in the system. For example, if we consider a system
containing an O–H bond stretch, full convergence will be achieved
using 64 beads at around room temperature, therefore making the PI
simulation 64 times more expensive than the correspondent classical
simulation. As a consequence of this large overhead, NQEs were for
many years only rarely considered in the context of ab initio molecular
dynamics [89–91].

A promising approximate method for modeling NQEs is the use of
a coloured (correlated)-noise Langevin equation (GLE) thermostat in
combination with classical molecular dynamics [92, 93]. The accuracy
of this methodology has been proven for many systems, showing
that an inclusion of NQEs in MD is possible, at a fraction of the
cost compared with standard PIMD approach. Of particular note is
the so-called path integral generalized Langevin equation thermostat
(PIGLET) scheme [94], which enables one to achieve a speedup of
two orders of magnitude compared to standard PIMD, by combining
path integral and GLE methods.

2.3 enhanced sampling techniques

The interesting phenomena governing technological materials and bi-
ological systems occur on a vast scale of times and lengths. Often, the
behaviour of complex systems is driven by rare but important events.
This is because the (free) energy landscape of a complex system con-
sists of many metastable states divided by high kinetic barriers [95].

Long-lived (meta)stable states are a consequence of the difference
between the thermal energy and the energy needed to overcome barri-
ers. In fact, the dynamics evolves with the system fluctuating around
the high-probability configurations characteristic of a (free) energy
minimum for long time periods. Occasionally, larger fluctuations can
take place, with the system jumping from one state to another.

An example is the autoionization of molecules in liquid water:
while the average lifetime of a molecule is on the order of hours, spo-
radic fluctuations of the solvent can trigger a sub-picosecond event
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which eventually leads to the dissociation of a water molecule into
the ion pair H+ and OH− [96, 97]. Other well-known examples are
conformational changes in proteins [98], nucleation events in phase
transitions [99] and chemical reactions [100, 101].

Even with the advent of easily accessible high-performance com-
puting (HPC) facilities and massively parallel architectures and algo-
rithms, it is stil not possible to study physical phenomena that in-
volve rare events directly by brute force MD. However, a large variety
of methods, with the name of enhanced sampling techniques, have been
proposed to accelerate the dynamics and address the issue of poor
sampling in standard MD.

The reader is referred to the various excellent reviews present in
literature for more information [102–107]. Of particular interest for
the scope of this thesis are tempering-based approaches, such as par-
allel tempering, and those relying on collective variable biasing, such
as umbrella sampling and metadynamics, for which a more detailed
discussion will follow.

2.3.1 Collective Variables

The configurational state of a system is completely specified by the
set of atomic coordinates {r} ∈ R3N.

It is often convenient to reduce such great number of degrees of
freedom into a few parameters, which still can describe the physics
of the phenomena under study. These descriptors, depending on the
field, are called order parameters, collective variables (CV) or reaction
coordinates. We will mainly adopt the term CV in this thesis.

A CV can be any differentiable function of the atomic coordinates
S(r1, . . . , rN) mapping a 3N-dimensional space into an M-dimensional
one, with M << 3N.

The selection of proper CVs is probably the most difficult step in
any investigation. Good CVs should be as low dimensional as pos-
sible (ideally one to three-dimensional), but at the same time they
should be able to distinguish the different states of the system and
the relevant intermediates.

To face the problem of choosing proper CVs, many strategies have
been proposed. Of particular interest are Path CVs [108], the SPRINT
graph-based CVs [109], and sketch-map CVs [110]. The last of these is
particularly useful, since it tries to find the best low-dimensional de-
scription of the system, starting from a high-dimensional description
and reducing the dimensionality using a machine-learning scheme.
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2.3.2 Umbrella sampling

Umbrella Sampling is probably the most established among non–
Boltzmann sampling techniques. It was first introduced by Torrie and
Valleau [111] to overcome kinetic barriers and accurately estimate free
energy differences.

The main idea behind umbrella sampling is to modify the original
Hamiltonian by adding a bias potential (the umbrella potential, Vb)
which forces the system to explore configurations that would not be
sampled sufficiently during standard MD. It is often convenient to
define the umbrella potential as a function of one or few CVs (s), for
which the equilibrium probabilty distribution reads,

P(s) =
1

Z

∫
dr e−βV0(r)δ(s− s(r)) , (10)

where Z =
∫
dr e−βV0(r) is the configurational partition function.

The probability is linked to the free energy by

F(s) = −
1

β
lnP(s) , (11)

where β = (kBT)
−1 is the inverse temperature.

Each local minimum of F corresponds to a metastable state of the
system under study.

One could be interested in forcing the system to sample more (or
to avoid) a specific minimum and this could be done by adding an
attractive (or repulsive) bias potential Vb(s(r)), which is a function of
the CVs only. This leads to a biased distribution of the CVs (Pb(s)),
and any unbiased property of the system can be recovered afterward,
by exploiting the relationship:

P(s) ∝ Pb(s)e
βVb(s(r)) , (12)

where eβVb(s(r)) is the weight associated with the configurations hav-
ing a specific value of s.

Since usually a system of interest presents many free energy min-
ima, it is very difficult to define a priori a single bias potential to
enhance the sampling in each of the various minima.

A practical solution is to combine the results from different inde-
pendent simulations, where different restraining potentials are ap-
plied. In this case, the unbiased statistics can be recovered by com-
bining the data from all the trajectories using the so-called weighted-
histogram analysis method (WHAM) [112].

Of course, the enhancement in sampling promoted by the applica-
tion of an umbrella sampling strategy critically depends on how well
the chosen CV captures the physics of the process of interest.

For more details regarding umbrella sampling and its various ap-
plications the reader is referred to Ref. [113].
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2.3.3 Metadynamics

Metadynamics is an adaptive biasing method which solves the dif-
ficulties of building the bias potential encountered in umbrella sam-
pling, by adding to the Hamiltonian a history-dependent bias to dis-
courage the exploration of already-visited configurations [114]. At
different times, repulsive Gaussians are deposited in the low-dimensional
CV space to prevent the system from being trapped in a free energy
minimum. If S(r) is the chosen collective variable, than at the time t

the bias potential is defined as:

Vb(s, t) =

∫t
0

dt ′ωe
−

S(r)−S(r(t ′))
2σ2 (13)

where σ is the standard deviation of the Gaussian, and ω is a constant
that depends on the height of the Gaussian W and the deposition
stride τG in the form

ω =
W

τG
(14)

If the simulation is long enough, it is possible to recover the free
energy from the relation

Vb(s, t → ∞) = −F(s) +C , (15)

where C is an additive constant.
Metadynamics accelerates sampling of rare events without any prior

knowledge of the energy landscape, other than the choice of bias CV.
It can also help understand new reaction pathways since the system
typically escapes from a local minimum by overcoming the lowest
saddle point around. Moreover, metadynamics is highly paralleliz-
able since a faster filling of the free-energy is possible running mul-
tiple independent simulations [115]. On the other hand, standard
metadynamics has the limitation that, in a single simulation, instead
of converging to the free energy, it oscillates around it. Furthermore,
it is not trivial to understand when to stop the simulation.

Well-Tempered (WT) metadynamics [116] solves these problems by
decreasing the deposition rate with time by modulating the height of
the Gaussian

W = ω0τGe
−Vb(s,t)
kBΔT , (16)

where ω0 is the initial rate, and ΔT is a parameter controlling the
extent to which the free energy is explored. Unlike standard meta-
dynamics, the bias potential does not converge to the negative of the
free energy, but to a fraction of it

Vb(s, t → ∞) = −
ΔT

T +ΔT
F(s) +C , (17)
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where the term ΔT/(T +ΔT) is usually referred as the bias factor. The
result is an enhancement of sampling in CV space, that corresponds
to an effective temperature T +ΔT , where for ΔT → ∞ one recovers
standard metadynamics, and ordinary MD for ΔT = 0.

Finally, it is possible to reweight WT metadynamics simulations to
recover the proper statistics for any observable. Many solutions have
been proposed, and notable are the solutions by Bonomi et al. [117]
and Tiwary et al. [118]. Fewer possibilities are present in the literature
regarding the reweighting of non-WT metadynamics, with the most
popular solution being that of Marinelli et al. [119].

2.3.4 Parallel tempering

Parallel tempering (PT) [120] is the most common among the Replica
Exchange methods (RE) [121], that are built on the idea of running
multiple energetically independent simulations (namely the replicas)
which occasionally exchange configurations.

In particular, PT is an effective equilibrium Monte Carlo scheme,
that satisfies detailed balance, which when applied to MD, can en-
hance sampling in systems having a rough free-energy landscape
characterized by many local minima.

In PT, many replicas run simultaneously at different ensemble tem-
peratures (T ) with the Metropolis rule attempting exchanges of con-
figurations between the various replicas. Each swap move does not
affect the Boltzmann distribution corresponding to each ensemble,
thus ensemble averages can be computed from each individual trajec-
tory.

Usually exchanges happen between adjacent temperatures, with an
acceptance probability for the "swap" between the replica i and the
replica j defined using a Metropolis criterion

αij = min
(
1, e(βi−βj)[V(xi)−V(xj)]

)
, (18)

where β is the inverse temperature and V is the potential energy.
If the swap is accepted, a coordinate exchange take place, with the
velocities rescaled to the new temperatures:

vnew =

√
Tnew

Told
vold . (19)

The closer the replicas are in temperature, the higher the probabil-
ity of swapping.

As a general rule, the highest temperature must be sufficiently high
to allow the system to escape free-energy minima and explore low-
probability regions of the phase space, while the low-temperature
replicas should still probe efficiently the various (meta)stable states
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corresponding to the free energy minima. On the other hand, the
number of replicas should be large enough to ensure proper swap-
ping among adjacent replicas. Several schemes can be adopted in or-
der to find the optimal number and temperature of the replicas [122,
123], the most common scheme is to follow a geometric sequence be-
tween Tmin and Tmax. Furthermore, given that energy fluctuations
scale with

√
N, where N is the total number of atoms in the simula-

tion box, a large number of replicas is usually necessary to obtain a
reasonable exchange rate among adjacent trajectories. An elegant way
to overcome such limitations is to combine PT with the well-tempered
ensemble (WTE) [124] which is the biased ensemble emerging from
WT metadynamics when the energy is used as CV. Compared with
the canonical ensemble, the WTE ensures similar average energy with
much larger fluctuations, thus allowing for a smaller number of repli-
cas over the same range of temperature.
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Machine-learning (ML) is a modern, highly interdisciplinary, field
that is being developed with the aim of rationalizing how to get a
computer to learn from data, without being explicitly programmed
to perform a specific task. ML has had extraordinary progress in
the last two decades, and in an ever growing number of fields, sci-
entists now train machines with examples, rather than studying and
implementing new algorithms containing an a priori answer for any
possible future input scenario.

The gravitational center of ML is in data, and the term learning
refers to the ability of a machine to improve with experience (i.e., the
training data) when performing particular tasks, for example classi-
fying inputs.

It also means extracting knowledge and inferences from data, to
the extent that the primary application of ML is that of making pre-
dictions of new or missing data from what is already known. From
this latter point of view, ML can be effectively seen as the successor
of an older discipline, statistical model fitting, as it shares the same
goal of extracting useful information from a dataset by fitting the best
probabilistic model describing the data.

A vast array of ML schemes have been developed in order to deal
with the great variety of data, and problems, faced across all the pos-
sible fields of application of ML.

The most common approach to ML is Supervised Learning (SL), Supervised Learning

where starting from a collection of pairs (x, y), with x ∈ X and y ∈ Y,
the aim is to produce an output y∗ as a response for an input x∗. The
inputs x can be vectors, images or structures computed from an MD

19
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simulation, while the outputs y can be a label (classification tasks) or
a real number (regression tasks).

The predictive ability of SL algorithms builds on a non-linear object
F (x), that is capable of mapping X into Y. F is shaped from data by
borrowing ideas mainly from optimization theory, and can assume
various forms such as decision trees [125], random forests [126], lo-
gistic regression [127], support vector machines [128], kernels [129,
130] and neural networks [131]. A particularly promising class of
models are the so-called deep-learning methods [132, 133], where
multiple stacks combining simple non-linear modules (multilayered
networks) are optimized using gradient-based algorithms, allowing
for very complex functions to be learned.

Another paradigm of ML is reinforcement learning, where the ma-
chine produces some actions and interacts with the environment. Dif-
ferently from SL, the only indication provided is a reward if the out-
put generated is correct, or a penalty if it is wrong. This type of learn-
ing is common in control theory, game theory and neuroscience [134].

The other major form of ML is unsupervised learning (USL), whereUnsupervised
Learning inferences are drawn from data without the need for labels. That is,

starting from purely unstructured data, USL finds patterns, under
some assumptions, about the properties characterizing the data. The
most common examples of USL are dimensionality reduction and
clustering.

The following sections will thus introduce the reader to some key
methods, i.e. clustering, density estimation, Bayesian methods and
dimensionality reduction techniques.

For the readers interested in a general overview of ML, two interest-
ing references are Information Theory, Inference, and Learning Algorithms
by D.J.C. MacKay and Pattern Recognition and Machine Learning by C.
Bishop. Furthermore, excellent reviews on SL are Refs. [133, 135]. For
a panorama of USL methods, the reader is referred to Ref. [136].

3.1 clustering

Clustering is probably the most common form of unsupervised ma-
chine learning. It finds applications in very diverse fields, such as
image analysis, speech and text recognition, astrophysics, bioinfor-
matics, material science, and many others.

The aim of a cluster analysis is to discover the patterns hidden in
data, which is done by partitioning the elements of a dataset into
groups on the basis of their (dis)similarity. Each group, or cluster, is
a set of analogous patterns.

More formally, given a set of points Q, a clustering Z consists of
the partition into K sets of mutually disjoint subgroups composed of
similar objects, namely the clusters {Z1, Z2, . . . , ZK}, such that Zi ∩
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Zj = ∅ and
K⋃

i=1

ZK = Q. If N and Nk are the number of points in Q

and Zk respectively, then N =
∑K

k=1Nk.
Clustering is an unsupervised technique, meaning that there is no

need for labels, but just for information on similarity among the data,
which comes from two elements of crucial importance: the pattern
representation and the similarity measure.

A pattern is usually represented by a vector of features, specific for
the problem under study. For instance, when clustering atomic-scale
patterns, it is often convenient to define a feature space built using
functions of the atomic degrees of freedom, instead of dealing directly
with the Cartesian coordinates. The chosen description should be
capable of representing the local environment surrounding an atom
and at the same time highlight the properties of interest.

In the last decade, many classes of features have been proposed Features
representationin the literature. Examples are the graph-based order parameters

(SPRINT) by Pietrucci et al. [109], electronic-structure based descrip-
tors, such as Kohn–Sham eigenvalue fingerprints [137], Coulomb ma-
trices [138], symmetry functions [139], and smooth overlap of atomic
position (SOAP) power spectra [109], among many others.

Defining an appropriate feature space is essential in order to obtain
meaningful results, and the nature of descriptors (qualitative or quan-
titative, continuous or discrete) determines the choice of the other key
aspect of the analysis: the similarity measure.

The (dis)similarity between two feature vectors u, v ∈ RD can be
built simply by taking some kind of norm their distance vector. The
most common choice is the L2-norm, which is the Euclidean distance
between the two vectors : Measure of

similarity

d(u, v) =

√√√√ D∑
i=1

(ui − vi)2, (20)

The L1-norm; namely, the Manhattan distance, is also commonly
used:

d(u, v) =

D∑
i=1

|ui − vi|, (21)

or the L∞-norm,

d(u, v) = max
1�i�D

(|ui − vi|). (22)

All of these are special cases of the Lp-norm,

d(u, v) =

(
D∑
i=1

|ui − vi|
p

) 1
p

, (23)
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Many other choices have been proposed in the literature. The general
requirements for a proper distance function are:

1. symmetry d(u, v) = d(v,u)

2. positivity d(u, v) � 0

3. reflexivity d(u, v) = 0, if v = u

4. triangular inequality d(u, v) � d(v, z) + d(u, z), for all u, v and
z.

If the four conditions hold, then the distance is a metric. When the
objects to be compared are atomic structures a straightforward choice
for a metric is the root mean square displacement (RMSD) distance,
which is essentially the average distance between the atomic coordi-
nates of two superimposed structures. While very natural, RMSD is
not always the best metric to compare different configurations, since
it fails to capture simple symmetries, such as translation, rotation,
and permutation of equivalent atoms [140]. An interesting solution
is to consider the similarity among the environments, instead of their
dissimilarity.

This is usually achieved by making use of kernel functions instead
of distances, where a kernel K(u, v) : RD × RD → R, is a symmetric
semi-definite positive function, which takes in inputs two vectors in
the initial space and returns an inner product of a mapping function
in feature space:

K(u, v) = 〈φ(u), φ(v)〉M, (24)

where 〈·, ·〉M is the inner product of RM, with M > D, and the map-
ping function φ(u) transforms u to RM (φ : RD → RM). The use
of the kernel K is quite convenient, because it effectively represents
dot products in a higher-dimensional space RM, without any prior
knowledge of the underlying space of functions. This is the so-called
kernel trick.

A kernel is usually normalized, such that 0 � K(u, v) � 1 and
K(u,u) = 1.

Popular examples of kernel functions are:

• polynomial kernels: K(u, v) = (γ〈u · v〉+ c)r [141]

• radial basis functions: exp (−γ(u− v)2) [142]

• sigmoid kernels: tanh (〈u · v〉+ c).

It is usually possible to interpret a kernel as a distance by taking

d(u, v) =
√

K(u,u) +K(v, v) − 2K(v,u) (25)
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Particularly interesting are two recently developed kernels explic-
itly designed to compare the similarity among local atomic environ-
ments: the SOAP kernel [143] and its extension, the REMatch ker-
nel [144].

Once the pattern representation and the similarity measure have
been defined, different clustering techniques are possible, depending
on the algorithm used to partition the data. It is not straightforward
to classify all the possible type of clustering, and of course, for any
possible categorization, there would be some exception for which cat-
egories overlap. Traditionally, however, the algorithms are grouped
into two classes: hierarchical methods and partitional methods.

3.1.1 Hierarchical clustering

Hierarchical clustering refers to a set of iterative schemes that build,
for the entire dataset, a hierarchy of nested clusters (a tree). There are
two strategies to achieve such a result: agglomerative clustering and
divisive clustering. The former is a bottom-up approach, where each
object starts as a single cluster, and is iteratively merged, in pairs,
with the closest neighbor, until one large cluster covers the whole
dataset. The latter is called is a top-down scheme. At the first stage
all the dataset belongs to one cluster, and then it is split recursively
to obtain a hierarchy of clusters, until each object is separate from the
others.

Figure 2: Dendrogram (b) representing the hierarchical clustering of
an example data set containing two different classes of ob-
jects: animals and means of transportation (a).

In both cases, a connected tree is produced and visualized through
a dendrogram plot. The bottom of the plot consists of the single clus-
ters, which are sorted along the x axis in relation to the partitioning,
while in the y axis the lines, representing the proximity between the
pairs, are drawn, with a length that is proportional to the magnitude
of the proximity measure.

It is common habit to cut the dendrogram at a given height to
partition the dataset at a desired precision.
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The difference between different hierarchical methods stems fromThe linkage metric

how the proximity (the linkage metric) between two clusters is de-
fined. The prevalent criteria are:

• single linkage: two clusters are jointed when they have the
smaller intercluster distance between two of their members,

• complete linkage: the proximity between the two clusters cor-
responds to the distance between the farthest pair of objects,
where each cluster contribute with one object to the pair,

• average linkage: the distance between two clusters is defined as
the arithmetic mean of all inter-cluster pair distances,

• centroid method: the proximity between two clusters is the dis-
tance between the geometric centroids of the two clusters,

• Ward’s minimum variance method: the proximity is defined
such that two clusters are merged if they produce the minimum
increase in the total within-cluster variance after the merging
step.

Hierarchical methods are particularly interesting, since they allow
one to explore the partitioning of a dataset at different levels of granu-
larity. However, in certain cases this aspect can also be a disadvantage,
as it can be highly non-trivial to decide where to cut the tree in or-
der to obtain the optimal partitioning. Another disadvantage is that,
depending on the linkage metric used, the partitioning can be com-
putationally expensive (O(N3), where N is the number of elements
being clustered).

3.1.2 Partitional clustering

Partitional methods break the dataset into groups rather then build-
ing a nested tree, and the main difference with hierarchical algo-
rithms is that the partitioning into clusters is learned directly, instead
of being done gradually. The algorithm does so either by relocating
elements among the clusters, or by splitting the data in the regions
that are most populated. The former approach is called PartitioningK-means

Relocation method, and is probably the simplest, yet the most diffuse,
type of clustering algorithm.

Partitioning Relocation methods can be divided into two main groups:
K-means [145] and K-medoids [146]. The former attempts to mini-
mize the total within-cluster squared error, while the latter minimizes
the total dissimilarity between the elements of each cluster. These two
schemes are very similar, and consist in the iteration of two steps: an
assignment step and an update step. For instance, K-means starts
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from an initial set of K centroids, and proceed with the following
scheme:

1. each point is assigned to the closest centroid, e.g. by partition-
ing the data according to Vornoi tessellation around the means,

2. compute the new centroids, i.e. the mean of each cluster, is
computed.

The algorithm is repeated until a stopping criterion, such as a cer-
tain threshold in the variation, is fulfilled.

K-medoids differs from K-means in that it deals with medoids in-
stead of centroids. A medoid is a point whose average dissimilarity
to the rest of the dataset is minimal. Conceptually, medoids are simi-
lar to centroids, with the peculiarity that they are always members of
the data set.

In both K-means and K-medoids, the number of clusters (K) must
be specified in advance by the user. This is probably the biggest draw-
back of these algorithms, since the choice of K for a generic multidi-
mensional dataset is non-trivial. To face such a problem, one usually
has to perform a series of clustering calculation varying K. The op-
timal value of K is then found a posteriori, by using some method to
validate clusters’ quality, such as the Silhouette method [147].

Furthermore, K-means and K-medoids produce good results when
the clusters are isotropic and normally distributed, which is an as-
sumption that is often not satisfied in practice. When the clusters
to be identified have very irregular shapes, a better choice is to use
density-based procedures, where a cluster is seen as a dense group
of connected objects, whose boundaries are defined by the density
function underlying the data.

A large class of density-based methods exists, and a very popular
example is model-based clustering, where after describing the data
using a certain probabilistic model, the modes of the density distri-
bution are partitioned using an Expectation-Maximization algorithm
(EM) [148]. Gaussian Mixture clustering [149] is probably the most
famous example. Again, the drawback of such approaches is that in
general the number of clusters is an input parameter of the model.

When no prior assumption can be made about the number of clus-
ters, one needs to make use of non-parametric methods. The term
non-parametric comes from the field of statistical inference, where
models are classified as parametric and non-parametric, depending
on whether the model assumed to describe the data has a fixed or
variable number of parameters. Clustering schemes like k-means and
GMM are parametric algorithms, since the number of clusters K (and
all the corresponding hyperparameters of the model) needed to rep-
resent the data, are fixed a priori.
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Figure 3: Clustering of points sampled from a mixture of three bi-
variate Gaussians: (a) DBSCAN groups the point according
to the density, while (b) K-means partition the data as the
Voronoi tessellation of the final centroids, which number is
decided a priori. Notice that in (a) part of the points result
as not classified (black dots).

The most well-known non-parametric density-based algorithm is
Density-based spatial clustering of applications with noise (DBSCAN) [150].
DBSCAN makes use of two main hyperparameters, ε (neighbors cut-
off distance) and nm (the minimum number of points in a cluster) to
classify the points of a dataset according to the following types:

• core: points having at least nm neighbors within ε,

• border: points within ε from a core point but with a number of
neighbors lower than nm in a radius ε,

• noise: points that do not match either of the two previous types.

The clusters are formed by merging each of the core points with
the points within its cut-off radius.

DBSCAN is very fast and popular, and many different variants
have been proposed [151, 152]. One of the possible drawbacks is that
part of the dataset could be unclassified.

Another interesting density-based non-parametric approach is the
mean shift algorithm [153], which is based on a mode-seeking scheme,
meaning that, given a certain estimate of the density function under-
lying the data (f(u)), the modes are found by seeking the points of
the feature space located at ∇f(u) = 0, through a gradient ascent
scheme.

Mean shift exploits kernel density estimation (detailed in Sec. 3.2.2)
to obtain a smooth estimate of the probability density function (PDF)
underlying the data (f̂(x)). Each point xi of the dataset is clustered
by iterating two steps:

1. y0
i = xi
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2. yt+1
i =

∑N
i=1 Kh(y

t
i − xi)xi∑N

i=1 Kh(y
t
i − xi)

, where kh is a univariate Gaussian

kernel.

Starting from a point, the two steps are iterated till the closest sta-
tionary point is reached. In this way each point of the dataset is
linked with the closest local mode.

Carreira-Perpiñán showed that mean-shift can be viewed as a gen-
eralized EM algorithm [154]. Notice however that the number of clus-
ters is not specified a priori.

The main issue of mean shift is that the quality of the result strongly
depend on the quality of the density estimate.

Another well-established type of partitional scheme is spectral clus-
tering, which is a class of methods based on the solution of an eigen-
value problem built from the similarity S matrix of the data. The
idea is to apply a standard clustering algorithm to the relevant eigen-
vectors of S. An example is the Perron Cluster Analysis method
(PCCA) [155–158], which is widely used in atomostic simulations for
the identification of the metastable states used in Markov State Mod-
els.

3.2 density estimation

In unsupervised schemes, the learning step is usually built upon a
proper probabilistic model for the data. When no prior assumptions
can be expressed for the functional form of density function, one
must use non-parametric techniques to estimate it.

The most common approaches for non-parametric density estima-
tion are histograms, kernel density estimators, k-next-neighbors meth-
ods, and mixture models, such as Gaussian Mixtures, but other meth-
ods have been proposed, such as non-parametric wavelet density esti-
mators [159], orthogonal series estimators [160] and penalized maxi-
mum likelihood estimators [161]. Good references for density estima-
tion are [162] and [163].

3.2.1 Histograms

Histograms are the standard tool to visualize the distribution of val-
ues contained in a dataset, and also a simple – yet very powerful
– way to estimate the probability distribution for a continuous vari-
able [164].

The idea behind histograms as density estimators corresponds to
the natural definition of the density as the number of observations
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corresponding to a specific value, normalized by the total number of
observations N:

f̂(x) =
1

N

N∑
i=1

δ(x− xi) (26)

where δ is the Dirac delta function.
A frequency histogram can be viewed as a set of non-overlapping

intervals, namely the bins, which serve as a counter for the number
of points falling in specific portions of the space. If Nj is the num-
ber of observations falling in the jth interval, the density histogram
estimator for a certain x (inside the same interval) is defined as:

f̂(x) =
Nj

Nh
. (27)

Usually all the bins must have the same width h, to facilitate count-
ings across different bins, which implies that a histogram is entirely
defined simply by h and its boundaries.

A simple way to estimate the optimal number of bins k, given a set
of N points, is Sturges’ rule:

k = 1+ log2N. (28)

Sturges’ rule is the standard rule usually introduced in statistics
textbooks and is (often) the default choice in statistical packages.
When the underlying distribution is skewed and far from normal,
additional bins are usually required. Doane [165] proposed increas-
ing the number of bins by the factor log2

(
1+ γ

√
N/6

)
, where γ is

the standardized skewness coefficient of the data.
Alternative rules focus on deciding the optimal bin width h, e.g.

Scott’s rule [166]:

h =

[
24

√
πσ3

N

]
≈ 3.5σN− 1

3 , (29)

where σ is the sample standard deviation.
The use of histograms as density estimators is very practical and

easy to implement. The drawbacks are the fact they are non-smooth
estimators of the density and that the result is strongly dependent
on the choice h. Another problem is the curse of dimensionality, since
the size of a uniform grid scales exponentially with the number of
dimensions, implying high computational and storage costs.

3.2.2 Kernel density estimation

Kernel density estimation (KDE) 1 is a non-parametric way to esti-
mate the probability density function for a random variable. Con-

1 KDE is also known as Parzen-window density estimation, after its inventor E. Parzen,
who introduced it in 1962 [167]
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sider a set of N points {x1, . . . , xN}, with xi ∈ RD. The points are
sampled from a distribution with an unknown density function f.

The kernel density estimator of f is defined by:

f̂(x) =
1

NhD

N∑
i=1

K(
x− xi

h
), (30)

where h is the bandwidth and K is a symmetric, non-negative func-
tion that integrates to one, namely the kernel. Depending on the
type of data, different choices can be optimal for the kernel, and com-
mon functions include Gaussian, box, triangular, Epanechnikov, and
biweight functions shown in fig. 4.

Figure 4: Some of the most commonly adopted kernels for KDE.

Cacoullos [168] and Epanechnikov [169] introduced the use of mul-
tivariate kernels:

f̂(x) =
1

N|H|

N∑
i=1

K
(
H−1(x− xi)

)
, (31)

where H is a positive definite D×D bandwidth matrix, which can be
interpreted as the covariance matrix of K.

An alternative, less general, method is the product kernel density
estimator, which takes the form:

f̂(x) =
1

Nhi . . . hD

N∑
i=1

⎧⎨
⎩

D∏
j=1

K(
xj − xij

hj

)

⎫⎬
⎭ , (32)

However, in general, the choice of the functional form of the kernel
is relatively unimportant and not crucial to the accuracy of the final
estimates. The only parameter that eventually influencies the quality
of the estimator ˆf(x) is the bandwidth h [163].

The equations above have the general form of fixed-bandwidth
KDE. The terminology fixed-bandwidth derives from the fact that
h is kept constant for all x ∈ RD, meaning that, at a specific point
x, the estimate of the density is the average of identical kernels, cen-
tered in each data point and scaled by h. The choice of the optimal
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value for a fixed h is a very delicate task: a small value of h could
lead to over-structuring, with spurious, false peaks due to the noise,
while a large value for h usually wipe out all the details, leading to
a significant over-smoothening of the peaks in the final estimate (see
fig. 5).

The standard procedure to select the optimal value of h would
be to perform many different KDE varying the window width and
eventually analyze which one results being the best estimator. This
can be done minimizing the average L2 risk function, also known as
the Mean Integrated Squared Error (MISE) test:

MISE(h) = E

[∫ (
f̂(x) − f(x)

)2
dx

]
. (33)

A faster alternative, proposed by Silverman [170], is to use asymp-
totic analysis and consider the h which minimize the AMISE – namely
the asymptotic MISE for a number of trials n → ∞ – which is:

hAMISE =

[
R(K)

nR(f ′′)
(∫

K(x)dx
)2

] 1
5

, (34)

where R is a functional corresponding to R(φ) =
∫
(φ(x))2 dx. Even

though in some cases the AMISE trick is a good approximation, Mar-
ron and Wand [171] have shown that in general it can be very poor,
since it takes sample sizes in the order millions to have a good ap-
proximation, even when the KDE is done in low dimensions. Further-
more, as the ideal density function f(x) is usually unknown and no
prior assumptions can be made, in most of the real life examples, h
cannot be estimated by minimizing the bias.

A variety of automatic, data-based methods have been developed
for selecting the optimal bandwidth [163], with the rule-of-thumb
when using univariate Gaussian kernels being that proposed by Sil-
verman [170]:

h =

(
4

(D+ 2)N

) 1
D+4

σ , (35)

where σ is an estimate of the standard deviation of the dataset and N

the number of points.
Silverman’s rule is the choice that minimizes the MISE when the

data points are drawn from a univariate Normal distribution.
Another very common rule is the variation proposed by Terrell and

Scott [172] and known as Scott’s rule

h = N− 1
D+4σ , (36)

which slightly over-smooths the final result.
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While these rules are easy to compute, they should be used with
caution as they can give very inaccurate estimates when the data is
not normally distributed, as shown in fig 5. A detailed survey on
bandwidth selection can be found in Ref. [173, 174].

Figure 5: Ideal probability density composed by the mixture of
three normal distributions (black dashed line). In red, the
fixed global KDE computed from 103 points using Silve-
man’s rule to select the optimal bandwidth: one can no-
tice how the final estimate is over-smoothed. The blue line
is the KDE computed using a bandwidth value that is too
small. This too small bandwidth produces an undesired
over-structuring in the final estimate.

Fixed-bandwidth KDE leads in general to very poor estimates of
the density function, especially when data exhibits multi-modality.

A more promising approach consists of the adoption of an adaptive
(or variable) bandwidth, where h is varied depending upon the loca-
tion of the estimate or the samples. In principle, where f(x) is large
in magnitude – which corresponds to a region of a high density of
data points – h should be small, while in the regions where f is close
to zero, h should be very large, to account for the lack of statistics.

Adaptive KDE methods can be divided into two categories: balloon
estimators and sample point estimators.

In the former, a different bandwidth is used for each estimation
point x:

f̂(x) =
1

Nh(x)D

N∑
i=1

K(
x− xi
h(x)

), (37)

while in sample point estimators a different h is used for each sample
point:

f̂(x) =
1

N

N∑
i=1

1

hD
i

K(
x− xi
hi

), (38)
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From a pointwise point of view, balloon estimators behave exactly
as fixed kernel estimators.

A big drawback of balloon estimators is that, when considered as
a global estimate, the estimator does not integrate to one.

Various strategies have been explored to automatically set the proper
local value of h, which, as a starting point, is usually set to be the
next-neighbour distance.

In the specific case of sample point estimation, Abramson [175]
proposed a two step scheme where, starting from a pilot fixed kernel
global estimator f̂(x), the local bandwidths are re-scaled following
the rule h(xi) ∝ f̂(xi)

1/2.
Silverman [170] extended this approach and proposed a three-step

global implementation of an Abramson-like estimator, where after
computing a global pilot estimator, with a fixed h, one defines local
bandwidth factors as:

λi =
{
f̂(xi)/g

}α
, (39)

where g is the geometric mean of f̂(xi) and 0 � α � 1 is called the
sensitivity parameter. In this way the adaptive kernel is built as:

f̂(x) =
1

N

N∑
i=1

1

(hλi)D
K(

x− xi
hλi

). (40)

Compared with the global procedure, an adaptive scheme will in
general lead to an improved estimator. However, poorly constructed
adaptive schemes can be inferior to global fixed approaches. This is
especially true for sample point estimation, which, as shown by Teller
and Scott [176], can suffer from a "non-locality" phenomenon, mean-
ing that the estimate at any point can be strongly influenced by data
very far away. This can be particularly delicate in high-dimensions,
since, as the dimensionality increases, the probability mass of a dis-
tribution tend to move toward the tails (and thus the value of kernel
with a large bandwidth will decay more slowly in high dimensions).

3.2.3 KNN Density Estimation

An alternative approach to the use of kernels for local density estima-
tion, is the next-neighbors method, namely the KNN density estima-
tion.

Once has been established the number of neighbors (K) needed to
estimate the density properly, the density at a point x can be esti-
mated using the formula:

f̂(xi) =
K/N

VNN
i

, (41)
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where VNN
i is the volume occupied by the K neighbors and N is the

total number of points.
The volume is what determine the final density – since K and N

are constants – in analogy with the bandwidth parameter in KDE, in
fact, KNN methods can be used to estimate the local bandwidth in
adaptive KDE.

KNN methods are particularly robust when working with high-
dimensional problems, even though the problem of determining the
volume of the neighborhood in a generic high-dimensional manifold,
can be non-trivial. Furthermore, the results of the clustering are
strongly dependent on the choice of K.

A standard way of choosing a value for K is by hyperparameter
optimization [177, 178], which is a very common practice in machine-
learning, for setting the optimal parameters of a learning model, even
if it is sometimes impractical when the problem becomes complex.

3.2.4 Gaussian Mixtures

Mixture models [179] provide flexible representations for densities
that can be used to model heterogeneous data in high dimensions.

A Gaussian Mixture Model (GMM) is a probabilistic model to rep-
resent a complex probability density function as a linear combination
of (K) Gaussians representing different sub-populations in the dataset:

P̂(x) =

K∑
k=1

pkG (x|μk,Σk) , (42)

where the pks are the so-called mixing coefficients (the weight asso-
ciated with each Gaussian, which are positive and

∑K
k=1 pk = 1) and

normalized such that G (x|μk,Σk) is a multivariate D-dimensional
Gaussian distribution

G (x|μ,Σ) =
1√

(2π)D det |Σ|
e−(x−μ)TΣ−1(x−μ)/2, (43)

with mean μ ∈ RD and covariance Σ ∈ RD×D.
GMM is a semi-parametric scheme, since the number of Gaussians

needed to model the data (K), must be decided a priori, while the
parameters of the model (pk,μk,Σk)) are learned from a training
dataset through an expectation-maximization (EM) technique, which
recalls the iterative two-step scheme introduced with K-means.

Starting from a dataset X, made up of N feature vectors {x1, . . . , xN},
with xi ∈ RD, after defining some reasonable initial parameters for
the Gaussians, one must iterate an expectation step (E-step) and a
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maximization step (M-step) until the log-likelihood L of the model is
maximized:

logL =

N∑
i=1

(
log

K∑
k=1

pkG (x|μk,Σk)

)
. (44)

The performance of the EM algorithm depends strongly on the
choice of the initial parameters.

Another approach to optimize the paremeters is through variational
Bayesian inference [180].

GMMs are commonly used as a parametric model to fit multi-
modal, asymmetric density functions and, from a machine-learning
point of view, they can be exploited as unsupervised learning schemes
for model-based clustering and classification tasks.

3.3 bayesian classifiers

A Bayesian classifier is a simple probabilistic function which is used
to classify the data by minimizing the probability of misclassifica-
tion [181]. The name comes from the fact that the classification task
builds upon the application of Bayes’ theorem, under the (strong) as-
sumptions of independence between the input features – which is
why they also go by the name of naive Bayesian classifiers.The Bayesian

framework Bayes rule is a simple, yet very powerful, method for dealing with
uncertainty in a model, and it can be expressed, in words, as:

posterior =
prior× likelihood

evidence
, (45)

which can be easily derived from basic probability theory. The prior
can be seen as the probability reflecting the degree of belief about an
event, before having had any evidence about it. The posterior is the
updated probability for the event after having taken into account the
information collected about it.

Consider a pair of random variables x and y taking values in some
spaces X and Y, respectively. Knowing the joint probability of the
two variables P(x, y) one can extract the marginal probability of x by
summing (or integrating, if they are continuous variables) over all
possible values of y:

P(x) =
∑
y∈Y

P(x, y). (46)

Assuming that the two variables are independent one can decom-
pose P(x, y) as

P(x, y) = P(x)P(y|x) = P(y)P(x|y), (47)
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where P(x) is the marginal probability of x and P(x|y) is the condi-
tional probability of x given a certain value of y (and the other way
around for P(y) and P(y|x)).

Combining and rearranging these two equations one can easily ob-
tain the Bayes rule:

P(y|x) =
P(y)P(x|y)

P(x)
, (48)

where in a practical implementation x might be a data point and y

some model parameters.
From the Bayesian point of view, P(y) represents the prior proba-

bility of the model y before knowing anything about x. P(x|y) is the
likelihood of the model. P(y|x) is the posterior probability of y after
observing x, and P(x) is the normalizing constant, ensuring that the
left-hand side is a valid probability distribution.

From the point of view of pattern recognition, P(y|x) can be seen as
a smooth function, varying from zero to one, which can be used as a
fingerprint function to partition the domain of x into distinct classes
(patterns or labels).

Assume now that we have a dataset X = {x1, . . . , xN}, with xi ∈ RD

and a set of labels Y = {1, . . . , K}, a classification task is the process of
associating each point of X with one of the elements of its class label Y.
This can be done easily through a Bayesian classifier, which combines
a probabilistic model for the data with a decision rule. For instance,
if the data is modeled through a Gaussian Mixture Module, with K

multivariate Gaussians composing the mixture and corresponding to
the “labels” used to partition the dataset, one can use the maximum a
posteriori decision rule to associate a point x with the most probable
Gaussian from which it was sampled as:

CBayes(x) = arg max
k∈Y

PGMM(k|x), (49)

where PGMM(k|x) is the Bayesian class posterior probability (referred
to as responsibility) defined as:

PGMM(k|x) =
pKG (x|μk,Σk)∑K
k=1 pkG (x|μk,Σk)

. (50)

3.4 dimensionality reduction

Dimensionality reduction (DR) has the goal of simplifying data so
that it can be efficiently processed or visualized.

Consider a data set represented by an n×D matrix X where the n

rows are data vectors xi having dimensionality D. Assume that X has
intrinsic dimensionality d, with d < D, meaning that the distribution
of points X lies on or near a d-dimensional manifold embedded in
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the D-dimensional space underlying X. DR aims to map X into a
new d-dimensional data set Y , conserving the geometry of the data
as much as possible.

Reducing dimensionality can be useful for characterizing variabil-
ity, removing unimportant degrees of freedom, and discovering bet-
ter representations of complex data. The latter is probably the most
common application of DR methods.

In atomistic simulations, for instance, the degrees of freedom char-
acterizing a system can be on the order of millions, which often makes
the reduction of dimensionality necessary for obtaining an intuitive
picture of the physics hidden in the data.

Several linear and nonlinear approaches have been developed to
derive a meaningful low-dimensional mapping of high-dimensional
spaces. The most common approach is probably principal compo-
nent analysis (PCA) [182], which is a linear projection algorithm that
reduces the dimensionality of the data set by projecting the data on
the eigenvectors of the covariance matrix with the largest eigenval-
ues. PCA assumes that the data lies on a linear d-dimensional sub-
space embedded in the full D-dimensional original space. Other well-
known reduction algorithms are the linear multi-dimensional scaling
(MDS) [183], and more advanced non-linear projections techniques,
such as ISOMAP [184], diffusion maps [185], kernel PCA [186], Lapla-
cian eigenmaps [187], locally-linear embedding [188], Hessian eigen-
maps [189], t-SNE [190] among the many others.Sketch-map

In this thesis, we will use Sketch-map [191], which is a non-linear
DR method specifically designed to examine high-dimensional data
produced from atomistic simulations.

Sketch-map can deal with the thermal fluctuations typical of metastable
configurations in a tempered simulation.

The rationale of sketchmap is very similar to that of MDS, i.e. a low
dimensional projection is found by iteratively optimizing the stress
function

χ2 =
∑
i�=j

[
s(Rij) − s(rij)

]2
, (51)

which represents the mismatch between the distances in high dimen-
sions and the distances between the corresponding low-dimensional
projections. The difference with MDS consists in the transformation
s, which is a non-linear switching function with a sigmoidal form:

s(rij) = 1−
(
1+

(
2a/b − 1

) (
rij/σ

))−b/a

, (52)

where σ is the threshold of the switching function, which can be used
to tune the length scale of the problem. The function s(rij) trans-
forms to zero distances that are characteristic of fluctuations within
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the same meta-stable state, and to one the distances between config-
urations that are completely unrelated. The exponents a and b have
a relatively small effect on the projection and control the steepness of
the sigmoid.

Since the transformation is applied in both the high and low di-
mensional spaces, this is equivalent to requiring that points that are
close together stay close in the projected space, and configurations
that are far apart from each other are projected in separate regions.
This is a much simpler task than matching distances, and the itera-
tive optimization (which has to be used since eq. 51 cannot easily be
expressed as an eigenvalue problem) can focus on representing cor-
rectly the connectivity between nearby basins, which is arguably the
most important requirement to obtain a meaningful representation of
the configuration space of a compound at the atomic scale. Since the
iterative minimization of eq. (51) is not trivial and very expensive, it
is important to start from a good selection of reference configurations
(the landmarks). Then, the projection of the other data points can be
obtained based on these reference configurations using out-of-sample
embedding [110].

For a comprehensive overview of dimensionality reduction meth-
ods, we refer the reader to refs. [192–194].
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In this chapter we will introduce a general framework to analyze
the results of atomistic simulations automatically and identify recur-
rent structural motifs in an unbiased and quantitative fashion.

The main purpose is to demonstrate that machine-learning routines
can assist the interpretation of in silico experiments, in particular with
the rationalization of recurring structural patterns.

Applying unsupervised-learning techniques and using exclusively
structural information to guide the analysis, makes it possible to work
with results coming from different levels of theory, or even from ex-
periments.

This is at odds with other analysis techniques proposed in the liter-
ature, that rely on specific types of data, such as those coming from
ab initio methods. An example is ALMO [195], which is based on an
energy decomposition on top of an electronic structure calculation.

The name Probabilistic Analysis of Molecular Motifs reflects the
core idea behind the method: the estimation of the stability of struc-
tural motifs is inferred by computing their probability distribution
from a simulation. One could also use experimental data to train the
model, for example by parsing X-Ray or NMR structures deposited
in a database. This is justified by the fact that the (free) energetic sta-
bility of different molecular patterns is implicit in the frequency with
which they appear and in line with the free-energetic interpretation.

This chapter is adapted from refs. [1] and [2]

39
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Distinct clusters (patterns) are separate modes of the distribution, cor-
responding to the basins of attraction of local maxima.The PAMM

workflow A PAMM analysis is based ideally on a preliminary atomistic simu-
lation, and its general workflow – which is schematically represented
in Fig. 6 – can be split into three main steps:

1. Training set definition: Given a set of structures, for instance, a
trajectory from an MD simulation, a training dataset is built
by selecting a set of representative structures, which are then
mapped to some (possibly) high-dimensional feature space. This
can be done by describing the groups of atoms that might be
involved in recurring molecular patterns with the set of their
inter-atomic distances or, more generally, with abstract descrip-
tors based on some expansions of atomic environments. This
step yields a set X = {xi} that contains N vectors of dimension-
ality D, that represent the molecular configurations observed in
the simulation.

2. Model definition: A kernel density estimation is used to evaluate
the PDF of X, which is then analyzed to recognize the different
modes of the distribution by applying a partitioning clustering
algorithm. This splits X into n disjoint clusters which are used
to fit a Gaussian mixture model. This procedure provides a
probabilistic framework that is capable of associating regions
of the D-dimensional feature space to one or more recurring
patterns.

3. Pattern classification: the mixture model can then be used to give
qualitative and quantitative insight on the system being studied.
It can also possibly serve as a basis for defining more complex
order parameters to describe and bias collective rearrangements
of the various molecular patterns when used in combination
with accelerated sampling methods, such as metadynamics and
umbrella sampling.

1 PAMM is designed to work with atomistic simulation data and
to overcome the limitations of common generic methods such as K-
means or DBSCAN.

A detailed discussion of each step in the algorithm will follow in
the next sections.

1 A basic implementation of PAMM is available at https://github.com/cosmo-epfl/
pamm, together with a series of Python scripts to process simulation trajectories
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Figure 6: Schematic illustration of the PAMM workflow applied to an
artificial two-dimensional dataset.
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4.1 definition of the training set

4.1.1 Feature space representation

The analysis we propose starts by introducing descriptors of the rela-
tive arrangement of groups of atoms, for which one wishes to identify
recurring patterns. For most applications, it is impractical to directly
use the Cartesian coordinates of the atoms to describe structures or
local environments. One should preferably represent them in terms
of a (possibly large) number of “order parameters” or “fingerprints”,
that provide an unbiased and sufficiently complete description of the
geometry while fulfilling all of the important symmetries – such as
being invariant to atom labelling or to rigid rotations and transla-
tions [137, 140, 196]. For example, if one wanted to recognize the ex-
istence of a bond between two atomic species, for instance, one could
process the configurations from an atomistic simulation to output the
list of distances between the pairs of atoms of the two species.

For more complex structural patterns, one could pick all the pos-
sible tuples of atoms of a few selected species, and describe them
in terms of all the pair-wise distances among them, possibly sort-
ing groups of distances to account for the permutation of identical
atoms [197]. Seen through this lens, the atomistic simulation data
is converted to a set X = {xi} containing a large number N of D-
dimensional vectors, xi ∈ RD, with each vector representing either a
subset or the entirety of the atoms within a structure.

It is worth stressing that the selection of a proper set of descriptors
is far from being a trivial point, and it can influence the outcome of
the subsequent analysis deeply. To mitigate this problem, we opti-
mized the different ingredients in PAMM to be robust with growing
dimensionality, so that many order parameters can be used simulta-
neously to deal, e.g., with heterogeneous systems.

One could also use more abstract descriptors that are based on
more or less systematic expansions of atomic environments – for in-
stance Behler-Parrinello symmetry functions [139], SOAP power spec-
tra [140], SPRINT coordinates [109]. The choice of input order param-
eters is also important, because it determines the metric relative to
which probability distributions and free energies are computed [198,
199]. A poor choice can generate spurious maxima in the probability
distribution, or merge kinetically separate states into a single basin.
These artifacts can be corrected, at least in part, by taking into account
kinetic information in the definition of the order parameters [200,
201].
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4.1.2 Grid Selection

To mitigate the high cost of density estimation for large datasets in
high dimension, the first step in the PAMM workflow involves the
selection of subset Y ⊆ X containing M 
 N points. One could think
about doing the KDE on a uniform grid. This is impractical in our
case, however, as PAMM should in principle work with very high-
dimensional spaces. The problem is that the size of a uniform grid
grows with the number of dimensions.

A better idea is thus to use sparse grids. A grid covering almost
uniformly the parameter space spanned by X can be obtained using a
greedy farthest-point sampling (FPS) procedure [202], using a minmax
criterion [203] to select the points.

The first point y1 ∈ X is chosen randomly, and then iteratively we
repeat

yj+1 = arg max
y∈X

[
min
i�j

|yi −y|

]
. (53)

Each new point in the sample is chosen that it has the maximal min-
imum distance to the points that have already been selected. The
procedure can be repeated until M points had been chosen. These
M points then form a sparse grid on which the probability can be
estimated (Figure 6(c)). The computational cost of the FPS selection
is O(MN), so it can also be performed on huge datasets.

The determination of the grid by sub-sampling the full set X also
allows one to partition the data into neighborhoods of the grid. For
instance, one can construct the Voronoi polyhedra for Y, and assign
each datum x to the Voronoi set Vi of the closest-by grid point yi.
Different strategies for subsampling are also possible [93, 204]. It
should be stressed, however, that the subsequent steps in the PAMM
workflow are designed to minimize the impact of the grid size on the
final outcome, and to guarantee that in the limit M,N → ∞ there is
no dependence at all.

4.2 model definition

4.2.1 Kernel density estimation

Optimal bandwidth
SelectionDensity-based clustering algorithms depend crucially on the quality

of the estimation of the underlying probability density. [205, 206]
Kernel-density estimation provides a smooth, robust approach for
estimating this probability density, that also leaves the flexibility to
adapt to strongly anisotropic probability distributions and/or non-
Euclidean geometries.
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Recalling eq. 38, the KDE on a grid point yi can be written as

P(yi) =
1∑N

j=1wj

N∑
j=1

wjKHj
(xj −yi) , (54)

where we use a very general expression in which each data point can
be assigned a weight wi (e.g. to compensate for biased sampling),
and an adaptive bandwidth matrix Hj.

The use of a grid implies that (for a fixed grid) the cost of evaluating
P scales only linearly with the number of data points.

We use an anisotropic multivariate Gaussian kernel,

KH(x) =
1√

(2π)D|H|
exp

[
−
1

2
xTH−1x

]
, (55)

that provides enough flexibility to adapt to strong variations of the
geometric distribution of data points.

As mention before in Sec. 3.2.2, a common problem with KDE is
the optimization of the bandwidth of the kernel. This is particularly
severe for high-dimensional and/or sparsely populated datasets.

The shape of the kernel, encoded in the bandwidth matrix H in
eq. (55), determines a trade-off between the statistical noise in the
estimated density and a systematic error due to the smoothing of the
true underlying density.

Since the true density is not known in general, the optimal band-
width cannot be selected by minimizing the MISE. One has to resort
to recipes to choose the bandwidth that are derived based on some
reasonable assumptions about the underlying distribution. A partic-
ularly simple heuristic for selecting the bandwidth is the multivariate
extension of Silverman’s rule,

H =

[
4

N(D+ 2)

] 2
D+4

Σ, (56)

where Σ is the covariance of the entire dataset, N the number of data
points and D the dimensionality.Local Kernel Metric

Analysis Silverman’s rule (56) minimizes the MISE for a single multivari-
ate normal distribution. For a general distribution, composed of
many separate peaks, this generally results in an over-estimation of
the bandwidth, and in loss of resolution unless an extremely large
amount of data is available. As a possible solution, and to provide a
mechanism to fine-tune the balance between resolution and statistical
noise, we propose a simple strategy to localize the determination of
the bandwidth and the dimensionality of the data. Basically, the idea
is to apply Silverman’s rule to subsets of the full dataset.
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In order to estimate the optimal KDE bandwidth for a sample xi,
we introduce weighting factors for each of the other sample points xj
around it, that are computed from a spherical Gaussian

uij = exp
[
−
(xj − xi)

2

2 · σ2
i

]
Nwj/

∑
j

wj, (57)

where σi is a localization factor whose choice we will discuss be-
low. The weights-adjusted sample population for the selected point
is computed as Ni =

∑
j uij. We find it convenient to introduce two

possible approaches to determine the localization parameters σi.

1. in cases where one expects the spatial extent of clusters to be rel-
atively homogeneous, one can choose a fixed localization win-
dow expressed as a fraction of the overall spatial extent of the
dataset, assessed as the global covariance matrix of the data,
Σ; this can be achieved by setting σi = fs

√
TrΣ. In this case,

each localization region can contain a different weight-adjusted
population Ni.

2. in cases where one expects clusters with very different spreads,
but similar populations, it might be more convenient to use a
position-dependent localization window that is adjusted so that
each region contains a prescribed fraction fp of the total num-
ber of weighted data points. Each σi should then be adjusted
iteratively until Ni ≈ Nfp.

Depending on the problem, one strategy can perform better than
the other. Impact of the

Localization on the
KDE Accuracy

To assess the accuracy of the multivariate adaptive KDE schemes,
in Fig. 7, we compare the MISE analysis for bimodal distributions of
two skewed Gaussians in 2,4 and 10 dimensions using both the local-
ization approaches to estimate the bandwidth matrices, and compare
it with an identical adptive KDE scheme. However, instead of a mul-
tivariate kernel, a spherical one is used (as in eq. 38). By using a
spherical Gaussian we refer to a bandwidth Hi = 1σi, where σi cor-
responds to the localization parameter.

We also include in the comparison the more standard, naïve ap-
proach of setting the local kernel bandwidth to the next (grid) neigh-
bour distance.

It is clear that (at least for this test case) a multivariate Gaussian
kernel shows considerably better performance compared to a spher-
ical Gaussian particularly when the dimensionality of the problem
increases. For fp ≈ 1 or for fs >> 1 both heuristics converge to the
standard version of Silverman’s rule, which results in oversmoothing
of this bimodal distribution.
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Figure 7: MISE analysis for different anisotropic Gaussian mixture
distributions with increasing dimensionality. Left panels
show the ideal PDFs, where, for D > 2, the corresponding
2D PCA projection is shown. Green and red lines represent
the MISE obtained from the KDE computed using the new
PAMM v2.0 scheme, scanning over various possible param-
eters of fp and fspread respectively. Gray and blue lines repre-
sent a modified version of the PAMM, where a 1D Gaussian
kernel is used in place of the multivariate Gaussian kernel.
Black dashed lines correspond to the results obtained using
the next-neighbour distance as local bandwidth.
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The local weights from eq. (57) can be used, for instance, to estimate
the local covariance Σi, around each data point. Each element of the
covariance is estimated using

[Σi]kl =

N∑
j=1

uij · (xjk − x̄k)(xjl − x̄l)/Ni (58)

where x̄ =
∑N

j=1 uijxi/Ni.
Computing the covariance of a subset of the points can exacerbate

stability problems that are also present, in general, when the sam-
pling is insufficient or when different degrees of freedom are strongly
correlated. In these circumstances, Σi can be very ill-conditioned,
and can even have eigenvalues that are zero to within machine preci-
sion. This is a consequence of the fact that the usual estimator for the
covariance Σi is a biased estimator of its inverse Σ−1

i . This is well-
known problem and is typically addressed by introducing alternative
estimators that are less strongly biased.

Here we use the so-called Oracle Approximating Shrinkage (OAS)
estimator [207] that reads

Σ̃i = (1−ψi)Σi +
ψiTr(Σi)I

D
(59)

where

ψi = min

[
1,

(
1− 2

D

)
Tr(Σ2

i ) + Tr2(Σi)(
Ni + 1− 2

D

)
Tr(Σ2

i ) −
Tr2(Σi)

D

]
. (60)

Furthermore, the eigenvalue spectrum of the local covariance ma-
trix can be used to estimate an effective local dimensionality Di based
on the effective rank of Σi [208]:

Di = exp

(
−

D∑
k=1

ηk log(ηk)

)
(61)

where ηk = λk/
∑D

k=1 |λk| and {λk} is the eigenvalue spectrum of Σi.
Given the local covariance matrices and an estimate of the local di-

mensionality, one can introduce an expression for the optimal band-
width matrices to be used in the KDE. Assuming that each local zone
resembles a normal distribution, the optimal bandwidth for xi can
finally be obtained as a localized version of Silverman’s Rule (56):

Hi =

[
4

Ni(Di + 2)

] 2
Di+4

Σ̃i. (62)

Performing this analysis for each datum would entail poor scaling
of the procedure with the total number of points. One can however
exploit the definition of a sparse grid to accelerate greatly the com-
putation, without changing the spirit of the localization strategy. In



48 probabilistic analysis of molecular motifs

essence, one can first compute the local bandwidth Hi only for the
grid points yi, and can then assign this to all the samples that belong
to its Voronoi set, i.e. Hj ≡ Hi, Σ̃j ≡ Σ̃i ∀xj ∈ Vi.

Furthermore, the evaluation of eq. (58) can be accelerated by in-
cluding the contribution from grid points beyond a reasonable cutoff
distance using only the position of the grid yi and assigning to it a
weight proportional to the total weight of points within its associated
Voronoi polyhedron, rather than summing over all sample points as-
sociated to it.

Finally, we note that in cases in which sampling is particularly ir-
regular, it can happen that the bandwidth is smaller than the dis-
tance to the nearest neighbor of a grid point. Often these outliers
result from insufficient grid size and/or non-Gaussian tails of the dis-
tribution, and should not generate additional clusters. To avoid this,
we increase automatically the bandwidth to match the first-neighbor
distance, but issue a warning to allow for manual inspection to deter-
mine whether the outlier is of some significance.

Improving numerical stability of the KDE

One common problem when working with probability densities in
high dimension is the enormous range of values they can span, which
can lead to instabilities and numerical errors. To improve numerical
stability in our implementation, we have used the logarithms of P

throughout. Thus, if the sum or difference of probabilities should be
calculated, we use the log-sum-exp (LSE) approximation [209]

log
M∑
i

elogPi = logP∗
i + log

M∑
i

elogPi−logP∗
i , (63)

where logP∗
i = max {logP1, . . . , logPM} and Pi ≡ P(yi). the KDE

expression then becomes

log(Pi) = log
N∑
j

e
logKHj

+logwj − log
N∑
j

wj (64)

and the kernel function in the exponent can be evaluated using

logKH = −
1

2

(
+p log 2π+ log |H|+ xTH−1x

)
(65)

This has two main advantages:

1. a numerically stable algorithm calculating logarithms of band-
width matrix determinants, log |H|, is explicitly used in the ker-
nel density estimation (cf. eq. (65)),

2. log-densities are stable even if unscaled densities exceed the
natural maximum values possible for the specific data type used
in the computation.
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4.2.2 Identification of Motifs

After having estimated the density at the grid points P(yi), one can
proceed to use it to subdivide the distribution into several distinct
clusters. As discussed above, we chose to identify clusters that repre-
sent recurring molecular patterns as maxima in the probability distri-
bution, and to associate to each maximum all the grid points falling
within its basin of attraction. In atomistic trajectories this construction
has a profound physical interpretation: each identified maximum
of the probability distribution can be associated with a free energy
(meta-)stable minimum of the D-dimensional description of a group
of atoms.

We perform a non-parametric clustering based on this idea using
the Quick-Shift algorithm [210]. Starting from a random grid point
which has not been assigned yet to a cluster, one connects it to the
nearest grid point that has a higher probability density, i.e., yi is
connected to yj such that

j = argmin
P(yj)>P(yi)

|yi −yj|. (66)

The procedure can be interrupted based on a suitable stopping crite-
rion, as discussed below. The final point is identified as a maximum,
and tagged as the center zk of a cluster. All the points in the chain
are tagged as belonging to the associated set Zk. One can then start
climbing from another unassigned point, and stop when the proce-
dure encounters another maximum, or one of the points that have al-
ready been assigned to one of the Zk clusters, with which the current
chain would then be merged. After all points have been traversed,
the grid Y will be partitioned into n disjoint sets, without the need
of specifying a priori the number of clusters or their geometry. The
stopping criterion for Quick-Shift is typically set by requiring that
the Euclidean distance between the current point and the next one
in the chain is below a set threshold Δ. In line with the spirit of the
local metric analysis we perform to obtain the bandwidth matrix for
the KDE, we select the cutoff locally. At each stage in the procedure,
the cutoff is chosen based on the covariance associated with the grid
point that is being considered, i.e.

Δi = α

√
Tr Σ̃i. (67)

This choice adapts the cutoff to the local spread of the data, and is
consistent with the Gaussian assumption that underlies the localiza-
tion procedure. For a multivariate Gaussian, it would cluster together
two points that are drawn at random from the distribution. If needed,
the values of Δi can be further adjusted by a multiplicative factor α,
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to fine-tune the resolution of the clustering procedure. In the exam-
ples we used to benchmark this method we found only small changes
in the final clustering upon scaling the cutoff by ±10%.

4.2.3 Gaussian Mixture Model

After having determined the number and position of modes of the dis-
tribution, we fit a Gaussian Mixture Model to the data. To avoid any
ambiguity, we use a mixture of Gaussians with the purpose of model-
ing the PDF underlying X, which is something conceptually different
from GMM clustering, where the Gaussian parameters are found by
optimizing the log-likelihood of the model. Our choice combines the
simplicity of a Gaussian mixture model, the fuzzy, smooth nature of
the posterior cluster probabilities, and the robust, deterministic parti-
tioning of the probability density obtained by applying quick shift to
an adaptive, optimally-tuned gridy-KDE.

The aim of this step is to provide a simple interpretation of the den-
sity in terms of a number of separate modes, which makes it possible
to develop fingerprints for the different molecular motifs that have a
transparent probabilistic interpretation. As introduced in Sec. 3.2.4,
the probability distribution can be fitted to a sum of n multivariate
Gaussians

P̂(x) =

n∑
k=1

pkG(x|μk,Σk), (68)

where G is a multivariate Gaussian, associated with a weight pk, with
covariance matrix Σ and mean position μ. Rather than fitting the
Gaussian parameters with an expectation-maximization algorithm,
we exploit the fact that we know the number n and modes zk of
clusters. We set the mean of the Gaussian cluster to the mode of the
cluster, and estimate the covariance with the usual expression:

μk = zk, pk =
∑
y∈Zk

P(y)
/ ∑

y∈Y

P(y),

ȳk =
∑
y∈Zk

yP(y)/
∑
y∈Zk

P(y)

Σk =
∑
y∈Zk

(y− ȳk)(y− ȳk)
TP(y)

/ ∑
y∈Zk

P(y).

(69)

The reason for introducing this additional step, after having al-
ready obtained a non-parametric clustering by quick-shift, is that
a GMM lends itself quite naturally to a probabilistic interpretation.
Given a configuration associated with the fingerprints x, the expres-
sion

P̂k(x) = pkG(x|μk,Σk)/
(
ζ+ P̂(x)

)
(70)
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corresponds to the probability that such configuration belongs to
the kth cluster. Eqn. (70) can therefore be used to introduce some
smooth, fuzzy Probabilistic Motif Identifiers (PMI) that constitute a
data-driven definition of a molecular pattern – such as the hydro-
gen bond [1, 3] or the accumulation of charge around an excess pro-
ton [211].

The “background” parameter ζ – that defaults to zero and should
in any case be set to a very small value – serves to provide a more
physical description of outlier configurations. In practice, configura-
tions for which all Gaussian densities are below ζ are considered to
be new, unclassified states that had not been sampled properly in the
initial dataset.

4.2.4 Mixture models in periodic spaces

Figure 8: Example of von Mises distribution with different concentra-
tion parameters.

When working with descriptors that are periodic in nature (e.g. an-
gles and dihedrals) the probabilistic description should be adapted to
account for the non-Euclidean geometry of the space. Von Mises dis-
tributions [212, 213] are the equivalent of a Gaussian on a circle, and
can be used to describe periodic data, as they are smooth across the
boundaries. The multivariate extension of a von Mises distribution,
however, cannot be normalized analytically, which makes it hard to
use it for the KDE step in our procedure. Furthermore, when the
bandwidth is negligible with respect to the periodicity, a Gaussian
kernel computed while using a minimal image convention in defin-
ing distances between points is virtually indistinguishable from a von
Mises distribution. For this reason, we use multivariate Gaussian ker-
nels in the KDE step, also along periodic directions.



52 probabilistic analysis of molecular motifs

When determining the GMM that underlies our fingerprints, how-
ever, one cannot assume that the covariance associated with each clus-
ter is small with respect to the periodicity of the pattern space. Given
the difficulties with normalizing a multivariate von Mises distribu-
tion, we use a product of one-dimensional distributions to construct
basis functions for the GMM that represent each cluster, i.e. we use

G(x|μ,κ) =

D∏
i

eκi cos(xi−μi)

2πI0(κ)
, (71)

in lieu of Eq. (43). In this expression I0 is the modified Bessel func-
tion of order zero. The mean value and weight for each cluster are
determined according to (69), whereas κi values are obtained using
the conventional estimators for the concentration parameter of a one-
dimensional von Mises distribution [214].

4.2.5 Error Assessment

Computing the absolute MISE requires knowledge of the underlying
probability distribution. It is however possible to estimate the statis-
tical error associated with a given estimate, which can be useful to
fine-tune the KDE parameters and to decide on the statistical signif-
icance of the clusters that are identified in later stages of the PAMM
analysis. Bootstrapping provides a very general and well-established
approach to infer the statistical error in a distribution, when its ana-
lytic form is not known [215].

Bootstrapping relies on the analogy existing between the popula-
tion and the sample drawn from it and consists in re-sampling with
replacement a large number of sets from the given data, in order to
build empirically an estimate of the probability distribution related
to a certain statistical estimate. In this specific case, we exploit boot-
strapping to generate NBS independent samples of the KDE, P(m)(yi).
From these, one can estimate the standard error δP(yi) associated
with the KDE at each grid point.

The bootstrapping procedure is not only useful to get an estimate of
the statistical error in the KDE. By performing the (deterministic) clus-
tering procedure we discussed above on the m-th bootstrapped esti-
mate of P(yi), one can obtain clusters Z

(m)
k that reflect the statistical

fluctuations of the KDE. The comparison between the bootstrapped
clusters and those obtained on the straightforward KDE can then be
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used to compute indicators of how “stable” the clustering procedure
can be considered. To do so, one can first compute

Q =
∑
i

P(yi), Qk =
∑
y∈Zk

P(y),

Q
(m)
k =

∑
y∈Z

(m)
k

P(y), Q
(m)
j|k

=
∑

y∈Zk∩Z
(m)
j

P(y)

Q
(m)
k

,
(72)

and then introduce

Aij =
1

NBS
√

QiQj

∑
m

∑
k

Q
(m)
k Q

(m)
i|k

Q
(m)
j|k

. (73)

For each bootstrapping run, this expression determines what is the
probability that – taking one of the bootstrap cluster at random, and
drawing two sample points from them – one would be part of the
reference cluster i, and one of the reference cluster j, renormalized
over the probabilities of clusters i and j.

The diagonal elements Aii report on how robust is the determina-
tion of the i-th cluster. If the i-th cluster appears identical in each
bootstrapping run, Aii takes a value of one, which becomes smaller
if in one or more of the iterations the cluster is split over multiple
clusters.

Off-diagonal terms report on how “fuzzy” the borders of the clus-
ters are. If no bootstrapping run generates a cluster that overlaps
with both Zi and Zj, Aij would take a value of zero, which increases
if the clusters get merged in some of the runs, or if some of the Z

(m)
k

include points from both clusters.

4.2.6 Cluster Association

The cluster stability matrix Aij from eq. (73), can also be used to
perform an additional “meta-clustering” step, that suggests ways to
group together some of the clusters identified in the previous steps of
PAMM, based on the notion that they were separated due to statisti-
cal error rather than because they correspond to separate free-energy
basins.

We attempted two approaches, that provide satisfactory and simi-
lar results, but differ in the underlying interpretation. One possibility
is to choose a threshold value for the adjacency matrix, and find the
connected components of the associated graph. This approach cor-
responds to a sort of “flooding” scheme, in which clusters that are
above a prescribed level of fuzziness are merged at once.

Alternatively, one can proceed with a hierarchical clustering proce-
dure [216], which can also be represented in a tree-like plot which
helps when it comes to interpreting the relations between different
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clusters [144]. Based on the adjacency matrix one can define a dis-
tance between clusters as dij = − log(Aij/

√
AiiAjj). The pair of

clusters which are closest is merged first, after which the merging
is repeated iteratively until a single cluster remains. The cluster hi-
erarchy can be represented as a binary tree, in which the vertical
position of the branching point correspond to the distance between
the leaves. Different strategies exist – and can be tried to improve the
resolving power of the method – to define a distance between merged
clusters. In this work we always use Ward’s minimum-variance pre-
scription [217], unless otherwise specified. This second strategy is
more consistent with an interpretation in which fuzzy clusters corre-
spond to clustering errors, and performs as little merging as possible
to achieve the desired number of clusters, or degree of separation.

4.2.7 Non-Gaussian Patterns.

Besides making the clustering procedure more robust, this merging
step is also useful to address the presence of strongly non-Gaussian
features in fingerprint space. Even though the KDE and Quick-Shift
algorithms are fully non-parametric, at many steps in our protocol we
invoked the assumption that data can be (locally) described by mul-
tivariate Gaussian distributions. As a specific, and rather extreme,
example of non-Gaussian behavior, let us consider the distribution
depicted in Fig. 9, corresponding to three concentric rings. Fig-
ure 9 demonstrates how, in the presence of non-Gaussian clusters,
the partitioning of the data by PAMM is highly unstable, leading to
an adjacency matrix that shows considerable overlap between differ-
ent clusters. Hierarchical clustering, illustrated using a dendrogram
in Fig. 9e, shows clearly that there are three “macro-clusters” that
correspond to the rings, while Gaussian features within each ring are
clearly detected as being strongly connected. It is worth noting that,
once different Gaussian clusters have been joined based on the adja-
cency matrix, it is easy to develop non-Gaussian fingerprints, by sim-
ply summing over all GMM fingerprints associated with each macro-
cluster M

P̂M(x) =
∑
k∈M

pkG(x|μk,Σk)/
(
ζ+ P̂(x)

)
. (74)

A demonstration of this non-Gaussian fingerprint is also depicted in
Fig. 9d.

4.3 pattern classification

A critical analysis of the outcome of the quick shift partitioning of the
probability density, and of the adjacency among the clusters, makes
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Figure 9: (a) Radially-symmetric probability density function that cor-
responds to concentrical circles. Clusters before (b) and
after (c) merging and the PMIs corresponding to the final
macroclusters (d). Panel (f) represents the dendrogram re-
sulting from the agglomerative clustering based on the clus-
ter stability matrix A (e) and using a single-linkage strategy
for the merging.
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it possible to associate a specific PMI with a structural pattern, de-
scribed by the D dimensional feature vector.

In many cases – such as the example of the hydrogen bond that will
be discussed in chapter 6 – one cluster stands out clearly as the dis-
tinct structural feature one is interested in, and one can focus further
analysis on a single mode using the associated conditional probabil-
ity function (68). For simplicity we will consider the selected cluster
to be the one labeled by k = 1.

The most direct application of the definition embodied by P̂1(x) is
to use it to test whether tuples of atoms Rijk... = (ri, rj, rk, . . .) match
the definition of the structural pattern by computing

s
(D)
ijk... = P̂1(x(Rijk...)). (75)

If the components of x are continuous functions of the atomic coor-
dinates, P̂1 is also a smooth continuous function, that takes a value
close to 1 whenever a group of atoms matches the target pattern (Fig-
ure 6(h)). This makes our definition of a pattern recognition function
well-suited for use as a collective variable in accelerated sampling
methods,[218] possibly in conjunction with other machine learning
techniques to characterize the overall connectivity induced by the
selected molecular pattern [109], or similar fingerprint metrics that
are guaranteed to distinguish dissimilar structures [137]. The PAMM
variables corresponding to different structural descriptors can also be
analyzed to yield a coarse-grained, low-dimensional map [110, 185,
219]. If necessary, one can also artificially “soften” the transition
between clusters, by dividing all the covariance matrices Σk in the
Gaussian model by a scaling factor α.

Since the s
(D)
ijk...’s effectively count the instances of the structural

pattern that are present at any given time in the trajectory, one can
also combine several of these indicators together to count the number
of patterns that involve a tagged atom i, or pair of atoms (i, j):

s
(1)
i =

∑
j,k,...

s
(D)
ijk..., s

(2)
ij =

∑
k,...

s
(D)
ijk..., etc. (76)

Depending on the application being considered, s(1)i can be taken to
represent the total coordination of the atom i, s(2)ij the overall bonding
between atoms i and an atom j, and so on.



5
A N A G N O S T I C D E F I N I T I O N O F T H E H Y D R O G E N
B O N D

Contents
5.1 The Hydrogen Bond 57
5.2 Feature space definition 58
5.3 Analysis of simulation results 59

5.3.1 Alanine dipeptide 60
5.3.2 Classical and quantum water 65
5.3.3 Liquid ammonia 77

5.1 the hydrogen bond

The PAMM framework we have introduced in the previous chapter
is very abstract, and can be applied to any situation in which one
wishes to recognize recurring motifs in an atomistic simulation. As a
first application to a practical case, we chose to focus on recognizing
the Hydrogen Bond (HB) in a number of different contexts.

The term “hydrogen bond” refers to a highly directional three-
center interaction between two polar atoms and a hydrogen. [220]
The hydrogen atom H is covalently bound to one of the polar atoms,
which is designated as the donor D, and points towards the second
polar atom which is designated as the HB acceptor A.

Despite the apparent simplicity of the concept, it is not easy to de-
velop an universal definition of the HB, mostly because this entity
has been used in many different contexts. The term has been asso-
ciated to near-covalent interactions with an energy in excess of 30
kcal/mol, as well as to exceedingly weak ones with an energy of less
than one kcal/mol. Typically, HBs are understood to have a predom-
inantly electrostatic nature, with strongly electronegative donors and
acceptors such as F, O or N. However, the observation of recurring
C–H· · · O units in the secondary structure of polypeptides have also
been interpreted in terms of weak HBs, that have been suggested to
play a significant role in stabilizing proteins. [221]

Adding to the complexity of the broad energy scale covered by HBs
is the fact that in most situations of interest thermal fluctuations and
the environment modulate their stability, and that they are formed
and destroyed on a relatively short time scale. One sees the difficulty
in giving a clear-cut definition of a chemical entity which exhibits

This chapter is an adaptation of ref. [1]
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such a variability. The most generally applicable definitions rely on
performing an electronic structure calculation, and on decomposing
the energy of the systems in a sum of terms that can be interpreted
as the binding energy of putative HBs [222–225]. Definitions that are
based solely on structural information are much more practical, in
that they do not require a supporting electronic structure calculation
and can be applied to experimental structural data or to atomistic sim-
ulations based on empirical force fields. The downside is that these
structural definitions invariably contain a degree of arbitrariness, as
they are based on the heuristic introduction of ranges of structural
parameters that are deemed to represent a hydrogen bond in a given
context [226, 227].

Kumar et al. carried out a systematic comparison of many of these
structural definitions in the case of liquid water [228], and recognized
that the best way to assess whether a given definition makes physi-
cal sense is to compare the probability distribution of the structural
parameters with the range of values associated with the hydrogen
bond.

PAMM offers a very natural probabilistic way of describing this
fuzzy entity, by automatically inferring from a training simulation
the probability of the various recurrent metastable patterns that have
been explored.

The data itself informs the definition of a range of parameters that
unambiguously identify hydrogen-bonded configurations, and natu-
rally and smoothly describes the transition between this region and
configurations that are clearly not hydrogen bonded. Even though
this definition is by construction system-specific, the protocol to ob-
tain it is univocal and unbiased, as it does not rely on choosing man-
ually threshold values for the structural parameters.

5.2 feature space definition

The first steps in the application of PAMM are the identification of
groups of atoms that should be tested for recurring patterns and
the choice of structural parameters that describe the arrangement of
atoms within each group. In the case of the HB, these choices are
fairly obvious. One should select an atomic species that should be
considered as the putative HB donor D, one that should be consid-
ered as the acceptor A and (a subset of) the hydrogen atoms that
complete the HB triplet. The geometry of each of these groups is
completely determined by the three distances d(A-D), d(A-H) and
d(D-H). To simplify comparison with other definitions, and to high-
light the symmetries inherent in the problem, we decided to use
combinations of these distances, namely the proton-transfer coordi-
nate ν = d(D-H) − d(A-H), the symmetric stretch coordinate μ =
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Figure 10: Simple scheme of the hydrogen bond in water. In general,
a hydrogen bond can be seen as a three-center interaction
between two polar atoms and a hydrogen. The donor atom
(D) is covalently bound to the H, which is weakly bounded
to the acceptor atom (A).

d(D-H) + d(A-H) and the acceptor-donor distance r = d(A-D) as the
group descriptors. We computed these (ν, μ, r) triplets for each D-
H-A group present in each snapshot extracted from the simulations,
thereby obtaining the training data set X that we used to run PAMM.
In building the probability distribution, each point was weighed by
a factor [r(ν+ μ)(μ− ν)]−1, that accounts for the trivial phase space
volume so that a uniform distribution of atoms would yield a con-
stant probability density in (ν, μ, r).

5.3 analysis of simulation results

By direct inspection of configurations, one can clearly see that only
one cluster (that for simplicity will be labeled by k = 1) corresponds
to hydrogen-bonded configurations – the orange hue in Figure 11.

Having developed an effective definition for a specific HB pattern,
we can proceed to probe such a pattern in the structural outcome of a
simulation. During the analysis, the most direct application of the HB
PMI is to use it to test whether a triplet D-H-A matches the definition
of the HB pattern by computing

sDHA = P̂1(xDHA). (77)

Since sDHA takes a value close to 1 whenever a group of atoms
matches the characteristic hydrogen bonded configuration exhibited
by the system, we introduced effectively an HB counting function.
Combining several of these indicators together one can count the
number of bonds that involve a tagged atom i. For instance, by sum-
ming over all the possible acceptor atoms O ′ and hydrogen atoms H,
one can get a smooth order parameter to count the total number of
HBs donated by a selected oxygen O:

sO =
∑
H,O ′

sOHO ′ . (78)
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Having a value of sO ≈ 2 means that the water molecule is donating
two HBs. In the text we will use the notation sD when referring to
donated HBs and sA for accepted HBs. If we sum over all the acceptors
O ′ and donors O we obtain the count of the total number of HBs in
which a selected hydrogen H is involved:

sH =
∑
O,O ′

sOHO ′ , (79)

where sH = 0 =not H-bonded, sH ≈ 1 =standard HB, sH ≈ 2 =bifurcated
HB and so on. One could also evaluate the bonding order between
pair of atoms (i, j). For instance by summing over all the possible
H atoms one can probe if two tagged water molecules are hydrogen
bonded or not:

sO,O ′ =
∑
H

sOHO ′ . (80)

We can then compute the probability distribution P(s) relative to
a certain counter s by normalizing the histogram h(s) obtained pro-
cessing the outcome of a long equilibrated simulation

P(s) = 〈δ[s(q) − s]〉. (81)

The probability P(s) can then be expressed as a free energy:

F(s) = −kBT ln(P(s)). (82)

5.3.1 Alanine dipeptide

Let’s consider the case of an empirical forcefield model of alanine
dipeptide (N-acetylalanine-N’-methylamide) – one of the simplest ex-
amples of peptide bonding, displaying many of the essential features
that are present in proteins.

This is an ideal test case, as it allows us to demonstrate the func-
tioning of PAMM for different kinds of hydrogen bonds.

We will consider HBs donated by water molecules to the carbonyl
of alanine OC, HBs donated by the peptide nitrogen to the oxygens
in water Ow, and investigate the significance of a more exotic, weak
HB donated by the peptide Cα to the Ow atoms.

We used the CHARMM27 forcefield [229] to describe interactions
within the polypeptide and a TIP3P model for the water molecules [230],
with flexible bonds modelled as harmonic stretches, as implemented
in LAMMPS [231]. We equilibrated a supercell containing 128 wa-
ter molecules in the NpT ensemble, and ran subsequently 600 ns of
NVT molecular dynamics using a Langevin thermostat with a time
constant of 10 ps. [232] The configurations were saved every 1 ps.

The first kind of HB we considered is Ow–H· · · OC. To accelerate
the analysis we only included configurations with μ < 5Å. Figure 11
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Figure 11: (Upper panel) Distribution of (ν, μ, r) configurations for
Ow–H· · · OC in a simulation of alanine dipeptide in wa-
ter. Size and opacity of points correspond to the KDE of
P(y), and colors indicate the cluster each grid point has
been assigned to. (Lower panel) Free energy (kcal/mol)
computed from the distribution of number of accepted
hydrogen bonds sA for the oxygen atom in the carbonyl
group in solvated alanine dipeptide. The histogram was
smoothed with a triangular kernel of width 0.025. We also
report the integrated probabilities for for having sA < 0.5,
0.5 < sA < 1.5 and so on. The average number of accepted
HBs is 〈sA〉 = 2.1 and the standard deviation is 0.6.
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shows the distribution of the values of (ν, μ, r), colored according to
the partitioning of the density obtained by running PAMM on the
data set. Several clusters are recognized, which means that besides
HBs there are other recurring patterns that can be distinguished by
this analysis. One of these clusters – represented with an orange hue
– can be seen by direct inspection of configurations (or by comparison
with other structural definitions) to correspond clearly to hydrogen-
bonded configurations. As discussed in section 4.2.3 we used the
Gaussian-mixture model built based on the clustering to define the
degree of confidence sDHA by which we classify a certain configura-
tion of a D donor, H hydrogen and A acceptor as a hydrogen bond,
and then introduce a count of the total HBs that involve a given ac-
ceptor oxygen sA =

∑
D,H sDHA. The free energy built from the his-

togram of sA is represented in the lower panel of Figure 11. The free
energy is strongly peaked at integer values of sA, because the transi-
tion between 0 and 1 is very sharp when a hydrogen bond is formed
or broken. This plot shows clearly that most of the time the carbonyl
is involved in receiving two hydrogen bonds, but there is also a fairly
large probability of accepting one or three bonds. It would be in-
teresting to compare these results with first-principles simulations of
solvated alanine dipeptide, to verify whether the possibility of form-
ing over and under-coordinated configurations is a consequence of
the simplified modelling of the interactions between water molecules
and the carbonyl.

We then moved on to look into the hydrogen bond donated by
the amide group N–H· · · Ow. Since the chemical identity of atoms is
fixed in an empirical force field calculation, we specifically restricted
the search to include only the amide H atom and oxygen atoms from
the water molecules. We used a cut off of μ < 5.5Å to disregard con-
figurations that are clearly irrelevant to the HB search. We report the
distribution of configurations and the PAMM clustering in Figure 12.
Perhaps unsurprisingly, the distribution of (ν, μ, r) associated with
this set of atoms differs considerably from that in Figure 11 – this is a
somewhat weaker bond, which results in a less structured P(ν, μ, r).
Still, one can recognize a cluster that is clearly associated with HB
configurations, that we can use to define a bond counting order pa-
rameter, that in turns can be used to compute the total number of
hydrogen bonds donated by the N atom, sD =

∑
A,H sDHA. While the

most likely value of sD is one, there is a high probability of observing
a N–H group donatinhg two HBs. Given the geometry of the amide
group, this actually means that based on our unbiased, self-consistent
definition, HBs donated by the amide group as described by the em-
pirical force field we used have a large probability of being bifurcated,
binding simultaneously to two different water molecules.
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Figure 12: (Upper panel) Distribution of (ν, μ, r) configurations for
N–H· · · Ow in a simulation of alanine dipeptide in water.
Size and opacity of points correspond to the KDE of P(y),
and colors indicate the cluster each grid point has been
assigned to. (Lower panel) Free energy (kcal/mol) com-
puted from the distribution of number of donated hydro-
gen bonds sD for the amide nitrogen atom in solvated ala-
nine dipeptide. See Fig. 11 for details. The average number
of accepted HBs is 〈sD〉 = 1.3 and the standard deviation
is 0.5.
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Figure 13: (Upper panel) Distribution of (ν, μ, r) configurations for
Cα–H· · · Ow in a simulation of alanine dipeptide in wa-
ter. Size and opacity of points correspond to the KDE of
the P(y), and colors indicate the cluster each grid point
has been assigned to. (Lower panel) Free energy com-
puted from the distribution of number of donated hydro-
gen bonds sD for the amide carbon atom in solvated ala-
nine dipeptide. See Fig. 11 for details. The average number
of donated HBs is 〈sD〉 = 5.2 and the standard deviation is
1.1.
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Finally, to verify how the PAMM algorithm behaves when applied
to a selection of atoms that does not exemplify a typical hydrogen
bond, we considered groups that would correspond to a Cα–H group
donating a HB to water. Fig. 13 shows the partitioning of the probabil-
ity density for this choice of atoms, which has some features that are
reminiscent of those seen for conventional HBs, albeit with a much
longer d(A–H). A more careful inspection of configurations that be-
long to the lobe of the probability density with the lowest μ, however,
shows that these can hardly be described as HBs: in many cases the
hydrogen atoms of water molecules are oriented towards the Cα–H
group, and the distribution of sD shows very little structure. This ex-
ample demonstrates that the presence of a recurring structural motif
with a signature in terms of the probability distribution in configu-
ration space does not necessarily imply that the atoms that compose
the motif are involved in some sort of chemical bonding. Here, the
non-uniform structure of oxygen atoms in the vicinity of the Cα–H
group is probably an indirect consequence of the hydrogen-bond in-
teraction of water molecules with nearby carbonyl groups, and of the
stiffness of the backbone of the dipeptide.

5.3.2 Classical and quantum water

Figure 14: Distribution of (ν, μ, r) configurations for O–H· · · O ′ in a
simulation of neat TIP4P water. Size and opacity of points
correspond to the KDE of P(y), and colors indicate the clus-
ter each grid point has been assigned to. Clusters with
ν > 0 have not been colored, but have been correctly iden-
tified by PAMM.

Simulations of alanine dipeptide contain different kinds of hydro-
gen bonds, and allowed us to demonstrate the adaptive nature of
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PAMM to derive a different, data-driven definition of the range of
structural parameters that can be associated with a HB for each set
of constituent atoms. In a simulation of neat water, instead, there is
only one type of O–H· · · O ′, the slight complication being that each
oxygen atom can simultaneously act as a donor and an acceptor of
hydrogen bonds.

TIP4P water

We began by analyzing a simulation of a very common empirical
water force field, the flexible TIP4P/2005f [233] model. A box con-
taining 128 water molecules was first equilibrated for 2 ns at constant
pressure (1 atm), constant temperature (298 K) NpT dynamics. A sub-
sequent 500 ns NVT run was performed using a Langevin thermostat
with relaxation time τ=5 ps. The configurations were saved every 1 ps.
In the spirit of a fully automated analysis of the trajectory, we did not
exploit knowledge of the chemical identity of water molecules, which
is fixed in a simulation with a non dissociable model. The distribu-
tion of (ν, μ, r) shows clearly the dual role played by the O atoms
(see Figure 14), which is apparent in the symmetry of the probability
density across the ν = 0 plane. Both the cluster highlighted in orange
and its mirror image correspond to legitimate HB configurations, but
only the former corresponds to structures in which the first oxygen
is acting as the donor and the second as the acceptor.

Once sDHA has been defined based on the analysis of the simula-
tion data, it can be used to characterize in great detail how a given
model of water describes hydrogen bonding. Figure 15 summarizes
some of the information that can be obtained from this analysis. One
can compute free energies for the number of hydrogen bonds do-
nated (sD) or accepted (sA) by each oxygen atom, as well as for the
total (sA + sD) and for the number of HBs that are formed by each
hydrogen. A large fraction of TIP4P water molecules are tetracoordi-
nated, with nearly 65% of oxygen atoms receiving and donating two
HBs. There is a small but significant asymmetry between the distri-
bution of sD and that of sA, the former being more strongly peaked
at sD = 2, while there is somewhat more flexibility in the count of ac-
cepted bonds. Given the rigid constraints on the covalent O–H bond,
any oxygen in the simulation can donate two bonds at most, except
for the case of bifurcated HBs where a single O–H moiety is involved
with bonds to two different O ′ atoms. The distribution of sH shows
that there is just about 2% probability of observing such bifurcated
bonds. More detailed information on the topology of the HB net-
work can be obtained by observing the joint probability distribution
of sD and sA. While the order of magnitude of the probability of
each joint configuration is determined by the product of sD and sA,
there are significant deviations that are indicative of the correlations
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Figure 15: Hydrogen-bond counts statistics for a classical simulation
of TIP4P water at room temperature. All the probability
distributions have been smoothed with a triangular kernel
of width 0.025, and are represented in terms of the asso-
ciated free energies F = −kBT lnP, that are expressed in
kcal/mol throughout. We also report integrated probabil-
ities (in percent) to have a configuration in the vicinity of
the different integer numbers of HBs. Below the values
of the joint probabilities of sA and sD the product of the
marginal probabilities are indicated, in italics.
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between defects in the network. For instance, the probability of hav-
ing a “linear” water that donates and accepts a single HB is almost
twice the value that would be expected based on the product of the
marginal distributions. Note that this analysis focuses on the connec-
tivity of the network rather than on the geometry of the environment
of each water molecule. An interesting way to extend this analysis
could consider the correlation between the HB counts and the degree
of tetraedrality, with the electronic structure, or with quantities that
can be directly related to experimental observables.

Comparison with GMM clustering

We decided to rely on the non-parametric QS clustering procedure,
because of the ambiguity introduced by the EM optimization of the
model log-likelihood of GMM clustering.

To proof the stability of our procedure, we here apply a GMM
clustering, instead of QS, to the TIP4P test case.

In GMM after having chosen the number of clusters needed to fit
the PDF underlying the data, one has to first fit the model and then
assign each point to the Gaussian from which, it was more likely
sampled from. Figure 17 shows the posterior classification obtained
using PAMM, which differ considerably from those resulting from a
standard GMM with a similar number of clusters (see e.g. Fig. 16a).
Furthermore, varying the number of cluster (K), changes significantly
the results, as shown in fig. 16b, where according to the results, the
HB mode should be described by two Gaussians.

Hydrogen-bonding defects in ice Ih

The consistency of the results obtained with PAMM descriptors of
the hydrogen bond and those obtained with more conventional de-
scriptors is reassuring. It is however useful to verify the behavior of
indicators such as sA and sD in a more ordered environment such as
the tetrahedral hydrogen-bond network of ice Ih, in which one should
be able to identify clearly coordination defects.

To this aim, we have performed a PAMM analysis of a simulation
of ice Ih, using the same flexible TIP4P model discussed above, and a
proton-disordered unit cell with 768 molecules [234]. We have then
created a pair of Bjerrum coordination defects [235, 236], and sepa-
rated them by the maximum distance allowed by the simulation cell,
by repeatedly flipping water molecules in the lattice (Figure 18(a)).
We have then equilibrated the simulation for a few tens of ps, col-
lected some snapshots of the configurations and evaluated sA and sD

for each oxygen. The vast majority of the O atoms have sA = sD = 2,
as one would expect in a perfect tetrahedral arrangement consistent
with the ice rules. We could however identify clearly a pair of oxygen
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(a) n = 7, L = 1161405.

(b) n = 13, L = 1514967.

Figure 16: Application of GMM clustering to the (ν, μ, r) configura-
tions for O–H· · · O ′ in a simulation of neat TIP4P water.
The colors indicate the cluster each grid point has been
assigned to (i.e. the cluster with the largest posterior prob-
ability at that point).
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Figure 17: Classification of the FPS grid in Figure 14 based on the
PMIs trained for the TIP4P water model. Points are col-
ored according to the Gaussian with the largest value of
the PMI.

Figure 18: a) Schematic representation of how a pair of Bjerrum de-
fects are generated by flipping the orientation of a water
molecule in a lattice that satisfies the ice rules. By flipping
other molecules, the L and D defects can be separated. b)
and c) Configurations of equilibrated L and D defects in
ice Ih. Oxygen atoms with sA = 1 are colored in red,
atoms with sA = 3 are colored in blue, while atoms with
sA = sD = 2 are in white, or hidden for clarity.
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atoms with sA = 1 (a L defect), and a pair with sA = 3 (a relaxed D
defect). Snapshots of these defective environments are represented in
Figure 18.

Classical ab initio water.

We then moved on to perform our analysis on a first-principles sim-
ulation of liquid water. The trajectory is the classical simulation
from Ref. [94], which was performed using the CP2K software pack-
age, [237, 238] with a BLYP exchange-correlation functional [239, 240]
and a DZVP basis set. The simulation box contained 64 water molecules
at the experimental density, and 100 ps of NVT dynamics were per-
formed, with the first 5 ps discarded for equilibration. A PAMM
analysis of the simulation yielded very similar clusters to those ob-
tained from TIP4P water. The analysis of HB counts, in Figure 19,
shows that BLYP water has a very regular structure, with a higher
count of tetracoordinated oxygen atoms, and a very low count of de-
fective structures. This is consistent with the well-known observation
that generalized-gradient approximation models of water are over-
structured compared to experiment and to empirical water models.
Note that correlations in the HB network are stronger in this case
than for TIP4P water, with one-donor/one-acceptor oxygen atoms be-
ing four times more likely than one would expect given the separate
probabilities of sA ≈ 1 and sD ≈ 1.

Quantum ab initio water.

Finally, we considered a simulation that used the PIGLET technique
to introduce nuclear quantum effects [94] on top of a first-principles
description of the electronic structure, analogous to the one used
for the classical trajectory described above. To achieve convergence
of quantum properties, 6 beads were used together with a custom-
tailored generalized Langevin equation thermostat, [94] as implemented
in the i-PI Python interface. [241] The overall statistics of the HB net-
work (Figure 20) are not dramatically changed by nuclear quantum
effects, that only enhance marginally the probability of distorted con-
figurations, with a decrease of ideal (sD ≈ 2, sA ≈ 2) configurations
and an increase of bifurcated hydrogen bonds. These are not how-
ever substantial changes, and are in part due to the fact that quantum
fluctuations make the PAMM definition of sDHA less clear-cut than in
the classical case.

Defining HBs with a method such as PAMM, that does not make
any assumption on the covalent bonds present in the system, is partic-
ularly convenient in a context such as the present one. Extreme quan-
tum fluctuations of protons along the hydrogen bond lead to transient
formal autolysis events, where the hydrogen atom detaches from the
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Figure 19: Hydrogen-bond counts statistics for a classical simulation
of BLYP water at room temperature. See the caption of
Figure 15 for a detailed explanation of the plots.
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Figure 20: Hydrogen-bond counts statistics for a PIGLET simulation
of BLYP water at room temperature. See the caption of
Figure 15 for a detailed explanation of the plots.
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donor atom and reaches out to be closer to the acceptor oxygen. [242]
From a structural standpoint, PAMM does not recognize a distinct
cluster corresponding to these distorted configurations, but rather a
continuum of structures. Starting from a O1–H· · · O2 bond where the
hydrogen atom is covalently bound to O1, one goes smoothly through
distorted donated hydrogen bond to a configuration that is formally
classified as a distorted bond accepted by O1 and donated by O2. These
fluctuations conserve the total number of HBs between the two oxy-
gen atoms, and only change their character from donated to accepted.
These excursions are apparent in the joint probability distribution of
sD and sA, where they show up as regions with higher probability
extending diagonally between two near-integer (sD, sA) regions.

Hydrogen Bond dynamics in water

Figure 21: (a) Time correlation functions of the hydrogen-bond
counts for a tagged oxygen in a simulation of TIP4P/2005f
water. (b) Rate function for the hydrogen-bond
formation/break-up, computed as the derivative of the cor-
relation function 〈sDA(t)sDA(0)〉
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The asymmetry between sA and sD is also apparent when one con-
siders the dynamical behavior of the two quantities. The upper panel
of Figure 21 shows the correlation functions for the counts of acceptor
and donor HBs for a tagged oxygen, as well as the total. The curves
were computed by analyzing several short NVE simulations started
from independently equilibrated configurations. The correlation time
for sD is very short, because configurations where a water molecule
donates less or more than two HBs are very short-lived. Configura-
tions that are distorted from the point of view of accepted HBs are
less unstable, and therefore the correlation function of sA decays more
slowly. The correlation function for the total is dominated by the slow
decay of sA, and is compatible with the results reported in Ref. [228]
for traditional structural definitions of the hydrogen bond.

The hydrogen-bond count functions we have used this far do not
consider the identity of individual bonds, so a quick fluctuation that
momentarily breaks a HB and that is immediately re-formed is indis-
tinguishable from a fluctuations that breaks a HB and leads imme-
diately to the formation of a new HB with a different acceptor oxy-
gen. A correlation function that is sensitive to the identity of the HB
triplet, which is more easily interpreted in terms of physical observ-
ables, [243] can be readily computed by considering all the (D,A)

pairs, computing for each pair sAD =
∑

H sDHA. One can then com-
pute the rate function as the time derivative of the autocorrelation of
sAD, computed for each pair separately:

k (t) = −
1

nAnD

∂

∂t

∑
A,D

〈sAD(t)sAD(0)〉 . (83)

The decay takes place on a similar time scale to that observed in
Ref. [243], and exhibits similar features, including the presence of
multiple time scales in the decay of the rate function.

A Graph-based analysis of the HB network.

Most of the remarkable properties of liquid water stem from its abil-
ity to form dynamic, labile HB networks [244] whose connectivity
changes constantly. Thus, in order to properly understand water, it is
fundamentally important to be able to characterize the structure and
the dynamics of the whole HB network. [245]

One can think about combining PAMM with some basic concepts of
graph theory to describe the 3-dimensional HB network in its entirety.

A graph is a mathematical structure that can be used to model pair-
wise relations between objects. The objects are called vertices (or nodes),
and the relations (link) between the nodes are called edges. A graph
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having n vertices can be associated with an n× n matrix A which is
called the adjacency matrix and is defined as

Ai,j =

{
1 if (i, j) ∈ E

0 otherwise
, (84)

where E denotes the set of edges.
In the specific context of water one can build a weighted oriented

graph in which the nodes are the oxygens, while the edges are de-
fined as in Eq. 80. A schematic example is shown in Figure 22.

One can use A to capture the dynamical behavior of the HB net-
work by defining the function:

ζ(t) =
1

NO

||A(t) −A(0)||2F , (85)

where the subscript F stands for Frobenius Norm.1

Figure 23 shows the adjacency matrix relaxation analysis applied
to a NVT simulation of 64 water molecules at room temperature with
the TIP4P-2005f empirical force field (black curve) compared with
an analogous classical NVT ab-initio simulation using a dispersion-
corrected BLYP exchange-correlation functional and a DZVP basis set
(red curve). From this analysis it clearly emerges that ab-initio water
is glassier compared to the empirical water model. From fig. 23 it
appears that the timescale on which the HB network relaxes to a new
configuration is of the order of tens of picosecond.

The long relaxation time of the HB network can also be probed
in terms of the more familiar radial distribution function (RDF) by
introducing the autocorrelation function

crr(t) =
1

σ2
g

〈(g0(r∗) − 〈g(r∗)〉)(gt(r∗) − 〈g(r∗)〉)〉 , (86)

1 The Frobenius norm of a m × n matrix M is defined as ||M||F =√∑m
i=1

∑n
i=1 |mi,j|

2.

Figure 22: Schematic representation of three hydrogen bonded water
molecules (left) and (right) the adjacency matrix associated
to the graph built having the oxygens as nodes and sO,O ′

as edges.
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Figure 23: Adjacency matrix relaxation curve ζ(t) for a classical MD
simulation (black) compared to a classical ab-initio MD sim-
ulation (red). The fact that ζ(t) reaches a plateau at a value
close to 4 after certain time means that each water molecule
has changed all four of the HBs in which it was involved.

where r∗ is a fixed distance, e.g. the position of the first maximum or
first minimum in the averaged RDF, g0(r∗) is the value of the RDF in
r∗ at the instant t = 0, gt(r∗) is the value of g(r∗) at the time t, and
σ2
g = 〈g(r∗)2〉− 〈g(r∗)〉2.
The autocorrelation function crr(t) describes how quickly the tra-

jectory loses memory of fluctuations away from the mean, we can
thus use such information to have a clear idea of the timescale in
which we have a structural rearrangement of the whole system.

In Figure 24(b) we compare the analysis results – in the case of
the TIP4P simulation just mentioned above – for the crr(t) curves
for the first maximum and first minimum RDF values (fixing r∗ at
the average positions shown in Figure 24(a)). Both the curves show a
first initial fast decay followed by a long tail that is representative of a
really slow decay. This is consistent with the PAMM network analysis
result: in order to lose memory of an initial structural configuration
one should wait a time on the order of tens of picoseconds.

5.3.3 Liquid ammonia

As a final example, we considered liquid ammonia at 180K and am-
bient pressure. Configurations were kindly provided by Joshua More
and David Manolopoulos. [246] Simulations were performed includ-
ing nuclear quantum effects by path integral molecular dynamics, us-
ing 12 beads and PIGLET [94] as implemented in i-PI. [241] Quantum
Espresso [247] was used as the force back-end, with a PBE exchange-
correlation functional [248] and ultra-soft pseudo-potentials. [249] The
simulation box contained 32 molecules, and trajectories were per-
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Figure 24: a) The RDF for TIP4P-2005f water at 300K: the position of
the first maximum (red dashed line) and of the first mini-
mum (blue dashed line) are marked. b) Comparison of the
semi-log plots of the autocorrelation curves for the first
maximum and first minimum RDF values. The fixed po-
sitions during the ACF computation are those shown in
a).
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formed for 10ps at constant, experimental density, with the first 2 ps
discarded for equilibration.

Figure 25: Distribution of (ν, μ, r) configurations for O–H· · · O ′ in a
simulation of liquid BLYP ammonia at 180K. Size and opac-
ity of points correspond to the KDE of P(y), and colors
indicate the cluster each grid point has been assigned to.
Clusters with ν > 0 have not been colored, but have been
correctly identified by PAMM.

Ammonia is a less-structured liquid than water, with weaker hy-
drogen bonds, as it is already apparent from the probability density
shown in Figure 25. Clusters are barely recognizable when using a
two-dimensional (ν, r) representation, which was capable of charac-
terizing the HB in all the other cases we considered. Clustering is
much more evident using the three-dimensional (ν, μ, r) description,
and PAMM clearly identifies a range of values that can be ascribed
to hydrogen-bonded configurations. We expect the observation that
higher-dimensional descriptors offer increased discriminating power
to be general, and provide a strategy to resolve weakly structured sys-
tems. However, as the dimensionality is increased it becomes more
difficult to converge the probability distribution, so longer simula-
tions are needed and PAMM becomes more sensitive to the parame-
ters of the procedure. As it is the case for oxygen in H2O, nitrogen
atoms act both as donors and acceptors, leading to a symmetric struc-
ture for P(ν, μ, r).

Figure 26 shows the analysis of the distribution of sD, sA and sH.
Despite the low temperature, the weaker and less directional HBs re-
sult in a less clear-cut distribution of HB environments. A little more
than 50% of the nitrogen atoms receive and donate 3 HBs – the ideal
HB pattern that is observed in the solid phases of ammonia. Even
though the simulation included nuclear quantum effects, there is no
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Figure 26: Hydrogen-bond counts statistics for a classical simulation
of BLYP liquid ammonia at 180K. See the caption of Fig-
ure 15 for a detailed explanation of the plots.
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trace of the diagonal patterns that are a manifestation of extreme pro-
ton excursions along the hydrogen bond. Molecules maintain strictly
their chemical integrity, and from a structural standpoint these weak
HBs appear to have a purely electrostatic character.

summary

We demonstrated the effectiveness of PAMM as a tool for recognizing
a ubiquitous but hard to define entity: namely, the hydrogen bond,
in a variety of different contexts. For each donor-hydrogen-acceptor
triplet of atoms, PAMM automatically identifies an appropriate range
of structural parameters that provides an unbiased, agnostic defini-
tion of what constitutes a hydrogen bond for a given set of atoms
and a particular atomistic model. In the case of an empirical forcefield
model of solvated alanine dipeptide it identifies three (very different)
ranges of configurations that qualify as a distinct, recurring patterns
for the carbonyl oxygen accepting a HB from water, for the ammide
nitrogen donating a HB to water, and for a hypothetical weak HB in-
volving Cα atoms and water oxygens. In the latter case, the presence
of a distinct feature in the probability distribution is probably an in-
direct effect of the structural correlations in the water HB network,
be tween the HBs between water and the electro-negative atoms in
alanine dipeptide and of the rigidity of the molecular backbone.

We then assessed the behavior of PAMM when performing a more
detailed analysis of hydrogen bonding in water, comparing an em-
pirical water model and a first-principles, density functional model
of water with and without a description of the quantum nature of
nuclei. We introduced a compact representation of the hydrogen-
bonding properties of water molecules in terms of the total number of
accepted and donated HBs, that arises naturally because PAMM iden-
tifies hydrogen-bonded configurations in terms of a smoothly vary-
ing HB count function. We demonstrated that these hydrogen bond
counts can be used to study the dynamics of the hydrogen bond net-
work, giving results that are fully compatible with well-established
definitions of the hydrogen bond, and to identify coordination de-
fects in the otherwise ideal HB network of ice Ih. This analysis also
highlights the presence of characteristic features that are a signature
of extreme excursions of protons along the hydrogen bond observed
with a quantum description of nuclei. Finally, we discussed liquid
ammonia as an example of a weakly hydrogen-bonded system, that
shows a much less clear-cut partitioning of the probability distribu-
tion and a more varied ensemble of hydrogen-bonding molecular en-
vironments.

In all of these cases our algorithm provides an adaptive approach
to define the hydrogen bond in a unique and unbiased way, that only



82 an agnostic definition of the hydrogen bond

uses structural information and that can be easily exploited to recog-
nize correlation between the HB patterns involving a given molecule.
Even though we have used hydrogen bonding as a representative
benchmark, application of the PAMM algorithm is by no means lim-
ited to this example. It could be used to recognize complex structural
patterns in a variety of materials and compounds, and can be easily
applied to bias molecular simulations to accelerate the interconver-
sion between different (meta)stable atomic configurations.
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Many of the anomalous physical and chemical properties of water
can be understood in terms of its highly-structured hydrogen-bond
network [250, 251]. Tetrahedrally coordinated water, with two do-
nated and two accepted H-bonds constitutes the fundamental build-
ing block of such networks. Of course, this idealized tetrahedral envi-
ronment can be heavily distorted by thermal [252] and quantum [253]
fluctuations. In the liquid phase, coordination defects exist and their
presence, concentration, and relative arrangement contribute to the
structural and dynamical properties of water [251, 254, 255]. Here we
investigate the properties of such coordination defects, with a partic-
ular focus on their structural correlations, by means of first-principles
molecular dynamics simulations.

Over the last three decades, considerable effort and progress has
been made in the simulation of liquid water from first principles cal-
culations. In this regard, DFT-based ab initio simulations have eluci-
dated the importance of several factors such as the quality of the elec-
tronic structure, the treatment of nuclear quantum effects and also
the role of statistical sampling [256–276] in reproducing the experi-
mentally available oxygen-oxygen pair correlation function of water
(see Figure 28). Unlike the idealized tetrahedral structure of ice, finite
temperature fluctuations create defects which are a small fraction of
the H-bond network and thus challenging to sample. Here we have
taken exceptional precautions to ensure as extensive as possible ther-
modynamic sampling to collect meaningful statistics on the popula-
tions and structure of defects that in some cases contribute to less

This chapter is an adaptation of ref. [3]

83
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Figure 27: Ideal tetrahedrally coordinated water, with two donated
and two accepted H-bonds.

than a percent of the H-bond network of liquid water. To achieve this,
we used parallel tempering combined with the well-tempered ensem-
ble [124] (PTWTE) to perform an extensive sampling of a box of 64
and 128 water molecules.

Using different models for the inter-atomic forces, or different ther-
modynamic conditions, may change slightly the typical geometry of
a hydrogen bond.

We use PAMM to make the structural definition of a hydrogen
bond and the classification of the different coordination environments
independent from these effects.

Since in this study we restrict ourselves to a narrow range of ther-
modynamic conditions, this choice does not entail dramatic differ-
ences relative to one of the more traditional definitions. It provides,
however, a robust framework that makes it straightforward to per-
form a similar analysis for different systems or to investigate more
dramatic changes in environmental factors. We also report on the
impact of different details of the electronic structure calculation, al-
though as we will see, for a given choice of exchange-correlation func-
tional, the main factor contributing significantly to the structure and
population of defects is the use or neglect of dispersion corrections.
This is consistent with previous observations which have shown that
the inclusion of dispersion corrections significantly reduces the over-
structuring that is seen for the most common choices of exchange-
correlation density functional [268, 277, 278]

The topological constraints induced by the presence of an extended
H-bond network mean that defects appear at highly correlated posi-
tions and are hence clustered together with different propensities [255,
279]. What is more, the details of the description of the inter-atomic
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forces do not significantly change the population of defects, nor their
relative structural correlations. Although the RDF provides useful
information on the structure of the system that can be readily com-
pared with accurate experiments [280] and is therefore regarded as
the holy grail for benchmarking the quality of ab initio models, it
averages over all the underlying complexity of the topology of the
HB network and its directional correlations [281]. As we will show
here, one should consider the RDF as arising from the combination
of correlations between different ideal or defective coordination en-
vironments. We present an extremely thorough analysis of such cor-
relations, that assesses the impact of many different computational
details, and shows which of these matter, and which only cause
small changes to the RDF but no profound qualitative change to
the topological properties of the H-bond network. Furthermore, we
use defect-resolved three dimensional distribution functions to eluci-
date the role of the weak interactions that are characteristic of under-
coordinated environments. We find that the interactions between de-
fects formed in the network have a remarkably directional character
that could be interpreted as arising from weak rather than altogether
broken hydrogen bonds – and link these angular correlations to those
found in solid phases of water. While our analysis here focuses on
thermodynamic, time-independent properties, we believe the struc-
ture and correlations of H-bond defects will prove crucial to under-
stand the fluctuations and hence dynamics of liquid water in future
studies.

6.1 computational methods

In this work we have used AIMD simulations based on DFT cou-
pled with PTWTE. We will begin by first summarizing details of the
electronic structure methods used and then describe the protocol we
applied for the PTWTE simulations.

6.1.1 Ab Initio methods

The electronic structure calculations for computing the energies and
forces were conducted using Quickstep which is part of the CP2K
package [282]. The molecular dynamics and parallel tempering sim-
ulations were performed using the recently released code i-PI, that
decouples the calculation of the interatomic forces from the dynamic
evolution of the nuclei [241]. A convergence criterion of 5× 10−7a.u
was used for the optimization of the wavefunction in all the simula-
tions. Unless otherwise stated, the wavefunction was expanded in a
DZVP Gaussian basis set, and an auxiliary basis set of plane waves
was used to expand the electron density up to a cutoff of 300Ry. The
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D3 Grimme dispersion corrections [283] for the van der Waals (VDW)
interactions were used for most of the simulations. We used the BLYP
generalized gradient correction [284] to the local density approxima-
tion and Goedecker-Teter-Hutter (GTH) pseudopotentials [285]. All
simulations were thermostatted within the NVT ensemble using the
canonical-sampling velocity-rescaling thermostat [286] with a time
constant of 1fs. To maximize sampling of uncorrelated potential en-
ergy structures and accelerate replica exchanges in PT simulations,
we also included a generalized Langevin equation thermostat tuned
for efficient sampling [8, 93].

Extensive tests of the sensitivity of results to different computa-
tional details were performed using a box of side length 12.4138Å
with 64 water molecules, corresponding to the experimental den-
sity of the system at 300K. The different PT simulations that were
conducted included the following: BLYP without D3 Grimme’s dis-
persion correction (BLYP+NOVDW), BLYP with dispersion correc-
tions (BLYP+VDW), BLYP+VDW simulations with the TZV2P basis
set (BLYP+VDW+TZV2P) and finally BLYP+VDW simulations using
a plane wave cutoff of 350Ry (BLYP+VDW+350). For all the previ-
ously described PT runs, a timestep of 1fs was used. Most AIMD sim-
ulations using Born Oppenheimer molecular dynamics use a smaller
timestep of 0.5 fs, which is necessary to obtain accurate real-time dy-
namics, but does not change significantly structural properties. In
order to assess the sensitivity of our results to the choice of a larger
timestep than commonly used, PT simulations were also conducted
using BLYP+VDW with a timestep of 0.5fs (BLYP+VDW+0.5fs) which
shows that using a larger timestep does not qualitatively change the
structural properties of the system such as the diversity of different
defects in the system.

The PT runs for the 64 water boxes detailed above were used to
identify parameters for our production simulations with a larger box.
We thus also performed parallel tempering simulations of 128 wa-
ter molecules with a box size of 15.6404Å using BLYP+VDW, DZVP,
300Ry cutoff and 1fs time step. This simulation will be referred to
as PTL. From our PTL simulations, we initiated four independent
PIGLET simulations, using six beads and colored-noise thermostat-
ting [94], to assess the role of nuclear quantum effects (NQE).

Besides the simulations using the BLYP functional, we also con-
ducted simulations with the more expensive hybrid functional B3LYP
implemented in CP2K [287], with D3 vdW corrections, in order to as-
certain the role of electron exchange on the properties of liquid water.
Due to the high cost of including Hartree-Fock exchange, we could
not run replica-exchange simulations. Instead, we ran four indepen-
dent simulations of about 16ps each, starting from BLYP equilibrated
configurations extracted from the BLYP+VDW PT simulation consist-
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ing of 64 waters, and discarding the first 2ps for equilibration with
the hybrid functional.

Although the combination of hybrid functionals and dispersion
corrections appear to improve the properties of ab initio water, we
wanted to ascertain whether the defect correlations were not exclu-
sive to DFT simulations. Hence, to complement our AIMD simula-
tions, we also investigated populations and correlations of defects
using force field models. In particular, we performed a classical
simulation of 512 water molecules using a fixed point-charge model
(TIP4P/2005f [288]) and classical and PIGLET simulations of 216 wa-
ter molecules using MB-pol, a sophisticated force-field based on a
many-body expansion and high-end quantum chemical reference cal-
culations [289–291]. For non-reactive simulations of water, MB-pol
is probably the most realistic theoretical model of the behaviour of
molecular H2O. Finally, we also make some comparisons of the topo-
logical defects found in liquid water to the coordination environment
found in solid phases of ice.

In what follows, we will focus mostly on the results of the PTL
simulations with 128 waters. Simulation details for the various sys-
tems considered for the analysis of the temperature dependence and
electronic structure, are summarized in Table. 1 .

6.1.2 Parallel tempering protocol

Ab initio parallel tempering simulations for the 64 water boxes were
performed using six replicas at the following temperatures: 290, 304,
322, 343, 365, 390K. In parallel tempering, a series of replicas are sim-
ulated at these six temperatures and thereafter exchanges between ad-
jacent replicas are performed using a Metropolis criterion. In order to
achieve efficient exchange between the replicas there must be signifi-
cant overlap in the potential energy distributions of neighboring tem-
peratures. Since a larger system exhibits smaller (relative) energy fluc-
tuations, for PTL we used 8 replicas at the temperatures 290, 300, 310,
322, 335, 351, 369, 390K. It has recently been shown that by combin-
ing parallel tempering with the well tempered ensemble (PT+WTE),
the overlap in energy between adjacent replicas is increased result-
ing in more frequent exchanges [124]. In the well tempered ensemble
the enhancement of the fluctuations in energy is tuned by the γ factor
which in our case was chosen to be 4. Exchanges between the replicas
were attempted every MD step.

AIMD simulations are still prohibitively computationally expen-
sive and hence it is rather challenging to perform a systematic bench-
marking of parameters to tune the optimal number of replicas used
as well as the γ factor. We decided to adopt a simplified protocol
to determine the bias to generate the well-tempered ensemble. The
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Models NH2O vdW T [K] δt [fs] Time [ps] Run type
PT BLYP-GTH
DZVP (300Ry)

64 No
290, 304, 322,
343, 365, 390

1 112 6 PT (NVT) runs

PT BLYP-GTH
DZVP (300Ry)

64 Yes
290, 304, 322,
343, 365, 390

1 120 6 PT NVT runs

PT BLYP-GTH
TZV2P (300Ry)

64 Yes
290, 304, 322,
343, 365, 390

1 39 6 PT NVT runs

PT BLYP-GTH
DZVP (350Ry)

64 Yes
290, 304, 322,
343, 365, 390

1 52 6 PT NVT runs

PT BLYP-GTH
DZVP (300Ry)

64 Yes
290, 304, 322,
343, 365, 390

0.5 25 6 PT NVT runs

PT BLYP-GTH
DZVP (300Ry)

128 Yes
290, 300, 310,
322, 335, 351,

369, 390
1 145 8 PT NVT runs

MD BLYP-GTH
DZVP (300 Ry)

64 Yes 300 0.5 30
4 independent

NVT runs
MD BLYP-GTH
DZVP (300 Ry)

128 Yes 300 0.5 16
4 independent

NVT runs
MD B3LYP-GTH
DZVP (300 Ry)

64 Yes 300 0.5 16
4 independent

NVT runs
MD BLYP-GTH
DZVP (300Ry)

NQE
64 Yes 300 0.5 23

4 independent
PIGLET NVT runs

(6 beads each)
MD

TIP4P/2005f
512 Yes 300 1 25000 1 NVT run

MD MBPOL 216 Yes 300 0.5 80 1 NVT run
MD MBPOL

NQE
216 Yes 300 0.25 25

4 PI NVT runs
(32 beads each)

Table 1: Computational details for all the simulations discussed in the
main text. From left to right we report: a short title describing
the model used for the potential energy surface, the presence
or neglect of a correction for dispersion forces, the ensemble
temperature, the integrator timestep, the length of each tra-
jectory (e.g. in simulations with multiple independent runs,
the total simulation time is the indicated length times the
number of runs), and some remarks on the type of runs per-
formed.
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Figure 28: Oxygen-oxygen radial distribution functions computed at
300K from PTL (BLYP+VDW+PTWTE-128) runs. Left to
right, the figures correspond to the usual 1D radial distri-
bution, to the 3D distribution and finally to slices of the 3D
distribution along the xy and xz molecular planes. Dashed
circles are a drawn as a guide for the eye, indicating a ra-
dial grid with a 1Å spacing.

mean and fluctuations of potential energy as a function of tempera-
ture were determined based on a short (5ps) preliminary run. Then, a
fixed bias was constructed and applied for the remainder of the sim-
ulation. Rather than using a (divergent) parabolic bias, we decided to
give it a Gaussian shape with mean and curvature compatible with
the measured fluctuations, but designed to cut off to zero for large
fluctuations. Specifically, we used

B(V) = kBT (γ− 1) exp
[
−

1

2γδV2

(
V − V̄

)2]
, (87)

where V̄ and δV2 are respectively the mean and variance of the po-
tential energy evaluated for a given parallel tempering replica.

6.2 structural patterns in water

We will now introduce the different types of pair correlation functions
that will be discussed in the rest of the chapter. The left-most panel
of Fig. 28 illustrates the familiar oxygen-oxygen pair RDF obtained
from the PTL simulations at 300K. The middle panel of Fig. 28 shows
instead the 3D oxygen-oxygen correlation function, which contains
information on angular correlations that are lost in the RDF. The con-
tour plot in the right-most panel shows a cut of this 3D correlation
function in the plane of the molecule (xy) and along the orthogonal
symmetry plane (xz). The middle and right panels quantify the ori-
entation of water molecules either accepting or donating hydrogen
bonds in the first hydration shell of a particular water. The peaks at
positive x correspond to the position of water molecules to which the
tagged water is donating a hydrogen bond, and the broader peaks at
negative x values involve the accepting side of the central molecule.
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This is consistent with the notion of a ring of delocalized electron
density, refered to as the ’negativity track’ created by the lone-pairs
which permits a larger range of local tetrahedrality [251]. Note that
a peak in the density from both the donating and accepting side is a
signature of highly directed nature of the hydrogen bonds. The im-
portance of highlighting this feature will become clear when we show
similar distributions for clustered defects.

One of the crucial observations we make is that there are signif-
icant correlations amongst defects in the hydrogen bond network.
Since these defects tend to be rare, fleetingly lived and characterized
by geometrical properties that are possibly different from idealized
tetrahedral water, we wanted to ascertain how structurally intact or
well-defined hydrogen bonds change under different definitions or
thermodynamic conditions. In the previous chapter we have seen
how, using PAMM, it is possible to give an adaptive definition of
HBs, that could be made fully consistent with systems as diverse as
alanine dipeptide, classical and quantum water, and liquid ammonia.

This definition has many advantages over more traditional ones.
Firstly, it is probabilistic in nature and fuzzy: each O–H· · · O ′ triplet
is assigned a fingerprint that varies smoothly between 0 (no HB)
and 1 (clear-cut HB). Secondly, it is adaptive: since it detects modes
of the probability distribution in configuration space, the definition
will change depending on temperature and water model, separating
clearly the slight model dependence of HB geometry and the changes
in populations of defects. Whereas a conventional geometrical defi-
nition would require a manual adjustment of its parameters [228],
PAMM determines automatically, for each simulation scenario, which
range of geometries should be considered to be a hydrogen bond. For
the simulations conducted in this specific study – which is performed
at the thermodynamic conditions to which the traditional hydrogen-
bond definitions have been tuned – the choice of a PAMM definition
over a conventional bond-angle definition introduces only minor dif-
ferences and does not change our conclusions (see sec. 6.2.1).

6.2.1 The role of the H-bond definition

The rationale behind a PAMM-based HB definition is that – partic-
ularly for an inherently fuzzy chemical entity such as the hydro-
gen bond – the range of structural parameters that can be quali-
fied as a bonding pattern depend on the thermodynamic conditions
and inter-atomic potential, and should therefore be determined self-
consistently.

This is a very different approach from what is done by most stan-
dard definitions. These approaches introduce heuristically a range
of structural parameters that identifies a bonded configuration. Let
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Figure 29: H-bond coordination summary for the PTL simulation
data at T = 300K. sD counts the H-bonds donated by a
O atom, and sA those accepted. Fractional values char-
acterize fluctuations. The (sD, sA) range is partitioned in
discrete regions that are assigned to different coordination
states. For instance, the region with 0.5 � sD < 1.5 and
1.5 � sA < 2.5 is assigned to the 1D2A state. The numbers
reported in each region correspond to the overall fraction
of O atoms observed in a given state (in percent), while
the number in italics is the corresponding value obtained
as a product of the marginal probabilities. The larger the
difference between the two values, the larger the correla-
tions that exist between the donor and acceptor counts, for
a given coordination state.
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Figure 30: The four panels show a cut of the 3D O-O radial distri-
bution function in one of the symmetry planes of a water
molecule. The region for which a the O atom of a second
water molecule would be identified as hydrogen-bonded
is also highlighed. The top-left panel shows results for
PTL runs at 300K: the green cone corresponds to a conven-
tional definition of the H-bond [243], while the red line is
the p1 = 0.5 iso-contour for the self-consistent PAMM def-
inition. The other panels, top to bottom, left to right corre-
spond to a simulation at 300K including quantum effects,
to the T = 390K replica of PTL, and to a classical simula-
tion of BLYP water (with no VDW corrections) at 523K and
the experimental coexistence density. In these panels, the
PAMM definition obtained at 300K is reported as a dashed
line, for reference, while the full line corresponds to the
self-consistent PAMM definition in the various conditions.
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us discuss briefly why this affects our analysis, and how it is im-
portant when extending our study to a broader range of thermody-
namic conditions. To this aim, let us first compare the standard angle-
distance definitions with the PAMM-based definition for a classical
BLYP+VDW simulation at 300K. Such a comparison is performed in
the top-left panel of Fig. 30, that shows a slice of the 3D O-O correla-
tion function together with the region of space for which a hydrogen
bond with a second O atom would be identified as formed when us-
ing the self-consistent PAMM definition (red contour) or when using
the definition of Luzar and Chandler (green contour) [243].

The bond-angle definition tags two water molecules as bonded if
their O-O distance is less than 3.5Å and if the O–H· · · O angle is less
than 30◦. In the case of the probabilistic, PAMM definition we show
the contour where the fingerprint takes a value of 0.5. We consider
the central molecule to have the ideal, rigid geometry typically used
for empirical water models, and only vary in space the position of the
putative acceptor. Both definitions single out the maximum of gOO(r)
corresponding to the nearest-neighbor acceptor oxygen atom. This
is not surprising, since the conventional definition has been tuned
heuristically to give a reasonable description of H bonding at these
thermodynamic conditions. One can see, however, that for this water
model, this criterion cuts out too sharply the angular fluctuations,
whereas the PAMM definition approaches more closely the saddle-
point region in the distribution function.

To give an indication of how sensitive the PAMM definition is
to changes in the underlying potential energy surface or thermody-
namic conditions, fig. 30 also reports some other examples. As long as
the general shape of the distribution function does not vary dramat-
ically (as it is the case for instance when raising temperature at con-
stant density) the changes in the PAMM isocontour are limited. Cases
in which the distribution, or the shape of the molecule, are modified
more dramatically lead to a pronounced change in the shape of the
H-bond region. In particular, nuclear quantum fluctuations deform
quite dramatically the geometry of a water molecule, and result in
a considerably broader H-bond region. It should be noted, however,
that quantum fluctuations lead to a stronger correlation between the
covalent OH bond length and the H-bond definition – that cannot
be fully captured by the plot in Fig. 30 that assumes a fixed molecu-
lar geometry. Increasing the temperature to 390K while keeping the
density constant induces minimal changes to the H-bond definition,
while simulations at 523K and the corresponding coexistence density
of 798.598kg/m3 show substantial changes to the region that is recog-
nized as a H-bond.

To get a sense of the significance of the differences between vari-
ous models, it is useful to examine how the populations of defects
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change for a given water model, when one only changes the H-bond
definition.

Figure 31: Bar charts showing the H-bond coordination summary for
the TIP4P/2005f simulation using four different HB defini-
tions. Left to right: PAMM-based definition trained from
the TIP4P/2005f data, PAMM-based (trained from PT runs
at 300K with no vdW corrections), PAMM-based (trained
from the PTL runs at 390K), conventional bond/angle def-
inition.

Fig. 31 shows bar-charts obtained for TIP4P/2005f water model us-
ing different definitions of the HB (see the caption for details). It is
clear that the choice of the HB definition can introduce small changes
in the relative proportion of defects, although qualitatively they all
present very similar features. One should then be wary of discussing
in too much detail the quantitative values of the defect populations,
as that depends on the (rather arbitrary) choice of hydrogen-bond
definition.

6.2.2 Population of coordination defects

The PAMM methodology provides a convenient approach to define
three main H-bond count functions, sD, sA, and sH. sD quantifies the
total number of HBs donated by a tagged O atom, sA the number
of HBs accepted by an atom and finally sH quantifies the number
of HBs that any particular hydrogen participates in [1]. These are
obtained by summing the value of the PAMM HB fingerprint com-
puted for all possible donor-H-acceptor triplets involving the tagged
atom1. Based on these counts, one can build very informative defect
stability maps as seen in Fig. 29, that summarize the relative probabil-
ities of finding a water molecule in each of the different coordination
states. It is clear that for the PTL simulations at 300K that most wa-

1 Of course, in practical implementations, a cutoff and a neighbor list can be used to
maintain a linear scaling computational complexity of the analysis.
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ter molecules donate and accept 2 hydrogen bonds. However, there
is a sizable fraction of different types of topological defects. A nice
feature of this type of analysis is that one can immediately point to
asymmetries in the accepting vs donating abilities of hydrogen bonds
- for example, there is a higher probability of finding water molecules
that accept 2 and donate 1 hydrogen bond compared to those that
accept 1 and donate 2 hydrogen bonds. We also see clearly the asym-
metry in the distributions associated with a water molecule being a
donor or acceptor which is consistent with previous observations by
Agmon [251]. Similar maps for other simulations at a higher temper-
ature and electronic structure approximations can be found in the SI
of ref. [3].

An important advantage of PAMM relative to traditional H-bond
definitions is that since the underlying fingerprint is probabilistic,
and varies smoothly between zero and one, it is possible to recog-
nize features in the transition regions between clear-cut defect states.
The smooth definition of PAMM provides a qualitative description
of the pathway from one defect state to another. Even though an
order parameter based on a single site cannot capture quantitatively
the complex collective modes that underlie the rearrangement of the
H-bond network [292], the height of the barrier between two defect
states gives an indication of the relative propensity towards a transi-
tion. For instance, one can see that in the overwhelming majority of
cases the state of an O atom evolves by increasing or decreasing by
one the donated or accepted hydrogen-bond count, while concerted
transitions do not contribute significantly. By looking at cuts in the
free energy surface at constant sA or sD, one can also get an idea of
how the free energy barriers along the pathways to make or break
hydrogen bonds change for molecules that are initially undercoordi-
nated or overcoordinated (see fig. 32).

For instance, the barrier for the 1D2A → 1D1A transition is lower by
∼ 33% than the barrier for the 2D2A → 2D1A transition. Similarly, the
barrier for the 2D1A → 1D1A transition is lower than the 2D3A → 1D3A

transition roughly by a factor of two. Interestingly, these qualitative
trends appear to be quite robust to the choice of different approxima-
tions made in treating the underlying electronic potential. However,
it should be noted that small differences in these barriers will lead
to much larger changes in dynamical properties, thus making it even
more challenging to achieve statistical convergence.

Although we will not exploit this aspect here, it is worth stress-
ing that strictly speaking, PAMM identifies coordination of O atoms,
rather than water molecules, which means that this classification could
be used transparently also in the presence of charged defects and
charge fluctuations, since one is not relying on the definition of molec-
ular entities. For instance, in the presence of an excess proton, one
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Figure 32: Cuts in the free energy surface at constant sD (left) and sA

(right) for the PTL simulation. The three curves are colored
according to the specified H-bonding state, as indicated.
The numbers above the curves correspond to the free-
energy barriers (in kcal/mol) in the two directions, that
are computed by integrating over the free-energy basins
around integer H-bond counts.

would expect to see an increase in density in the region with sD ≈ 3

and sA < 1, or detect the quantum fluctuations of a proton along a hy-
drogen bond by the appearance of diagonal features (see Ref. [1]) that
correspond to one hydrogen bond momentarily changing its charac-
ter from acceptor to donor.

6.2.3 Defect correlations and the RDF

The hydrogen bond maps of sA and sD shown in fig. 29 provide a
convenient way to classify water environments based on their coor-
dination state [293, 294]. Given that the probability maxima are very
clear-cut and with a rather obvious structure as seen in Fig. 29, we
subdivided the map manually labelling e.g. nDmA an oxygen atom
that has sA ∈ [mA − 0.5,mA + 0.5) and sD ∈ [nD − 0.5, nD + 0.5).

Armed with this classification, we can proceed to investigate whether
different nDmA states are distributed randomly in the network, or
whether significant correlations exist between them. Two-body spa-
tial correlation functions provide powerful tools to recognize such
correlations, and allow us to disentangle the underlying factors that
control the shape of the overall O-O RDF shown in Fig. 28.

The simplest analysis involves coordination-resolved RDFs nDmA −

n ′
Dm

′
A – that report on the probability of finding an O atom in a co-

ordination state nDmA and another in n ′
Dm

′
A at a distance r from

one another. In addition, one can also look at the 3D distributions,
as shown in Fig. 28, which give deeper insight into the angular po-
sition of waters within the first hydration shell. We will label as
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Figure 33: The figure reports concisely the O-O correlation functions
involving a defective H-bond O environment, and a sec-
ond oxygen atom without specification of its H-bonding
state. The first row reports the baseline O-O correlations,
as in Fig.28. The 1D radial distribution function reports all
the distributions of oxygen atoms around the most impor-
tant defect environments, with the baseline shaded in grey.
The following six panels report slices along high-symmetry
molecular planes of the 3D distribution of the various de-
fects around a non-specified O atom, while the last six re-
port the mirror distribution of an arbitrary O atom around
the specified defective species.
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nDmA → n ′
Dm

′
A the distribution of n ′

Dm
′
A evaluated in the ref-

erence frame of a nDmA molecule. It is important to recognize that
for each pair of species, the distributions associated with nDmA and
n ′

Dm
′
A are not symmetric. If there is enhanced probability of find-

ing n ′
Dm

′
A waters in the donor region of a nDmA molecule, one

can expect that viewed from the point of view of n ′
Dm

′
A this same

correlation will amount to an enhancement in the acceptor region. Fig-
ure 33 provides an example of this kind of analysis, where we con-
sider correlations between an un-specified �D�A O atom and the main
coordination states. The complete series of radial and 3D correlation
functions, for all temperatures and electronic structure methods we
considered in the present study can be found in the SI of ref [3]. Here
we will only comment on the most significant correlations, that can
shed some light on the complex topological features of the H-bond
network of liquid water.

Let us start by commenting on the O-O radial distribution func-
tions. It is tempting to analyze the changes of the overall O-O RDF
with temperature and simulation details in terms of the components
resolved into the different coordination states. Contrary to the inher-
ent structure analysis, that identifies “low-density/high-tetrahedrality”
and “high-density/low-tetrahedrality” by quenching instantaneous
liquid configurations [295], the analysis we perform here includes
snapshots that are fully consistent with the given thermodynamic
state point. We have seen in Section 6.2.2 that the majority of wa-
ter molecules corresponds to thermal fluctuations around a tetrahe-
dral 2D2A environment. All defective environments conspire to mod-
ify the shape of the short-range region of the RDF: over-coordinated
defects do so by broadening the first peak, but would themselves
increase the depth of the first minimum. Undercoordinated environ-
ments, instead, enhance the density in the interstitial region. This
analysis thus provides an alternative interpretation of the structure of
the RDF in terms of correlations between coordination defects on top
of a dominant tetrahedral network, without explicitly invoking the ex-
istence of two thermodynamically distinct low and high-density wa-
ter networks. Changing the simulation temperature, or the details of
the electronic structure, modulate both the populations and the shape
of the RDF of defect resolved individual components, although many
of the qualitative features associated with the relative population of
defects as well as the strutural correlations between them, are still
conserved.

It is perhaps worth stressing that any decomposition of this kind
that dissects a structural observable based on prior structural analy-
sis, risks being tautological to some extent. For instance, the lowering
of the first peak, and appearance of a second peak in the interstitial re-
gion for undercoordinated defects could be regarded just as hydrogen
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Figure 34: Defect-resolved structural correlations in the hydrogen-
bond network of vdW-corrected BLYP water. We focus on
a few particularly significant pairs of under-coordinated
and over-coordinated defects. The structural correlations
resemble some features seen in solid phases of ice. The
crosses and circles correspond, respectively, to the posi-
tions of the nearest oxygen atoms in ice Ih, and ice VIII
expanded to match the density of room temperature wa-
ter.
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bonds caught in the act of breaking up, rather than as a significant
feature in the water network. An analysis of the 3D DF can identify
more clearly the nature of the correlations between defects, telling
apart artifacts of the analysis from genuine features of the H-bond
network.

Focusing first on the under-coordinated water environments, and
looking in the direction of the donated H-bond in the 1D2A → �D�A

and 1D1A → �D�A correlation functions, one can see a sharp second
peak that could indeed be interpreted as arising from the tail of the
distribution of a “normal” H-bond, that is identified as broken by
the PAMM fingerprint function (or the conventional structural def-
inition). On the other hand, inspection of the mirror distributions
�D�A → 1D2A and �D�A → 1D1A does not show a similar sharp
peak just next to the “normal” acceptor peak. Rather, it reveals the
presence of strong angular correlations in anomalous directions, that
could be regarded as the manifestation of a weaker type of H-bond
rather than truly unbound configurations or broken hydrogen bonds.
Even though all simulations in the present work were thermostatted,
making it not possible to extract rigorous dynamical information, it
is clear from inspection of the trajectories that these weak hydrogen
bonds, while forming a smaller part of the population in the hy-
drogen bond network, are not just fleetingly formed transition-state
structures, but rather involve meta-stable states.

Fig. 33 quantifies the structural correlations for water molecules in
the vicinity of different topological defects in the H-bond network,
by fixing the coordination state of only one of the two oxygen atoms
involved. Of course, one could proceed to look into pair correlation
functions for which both species are in a prescribed coordination state.
This more detailed analysis reveals that in many cases there appear to
be strong correlations between the position of defective coordination
states. In other terms, when fluctuations in the generally tetrahedral
network generate topological defects, such low-probability environ-
ments appear to be clustered close to each other. Henchman and
co-workers have performed a similar analysis looking at the RDFs ex-
clusively for water molecules that are different acceptor types [255].
In particular, they observed for example, that water molecules that
were single acceptors and triple acceptors tend to be close to each
other. Here we considered more than 50 possible pairs of environ-
ments: all the results, for different models and simulation details, are
reported in the SI of ref. [3], while here we focus on the most striking
features that we could identify (fig. 34).

Undercoordinated water molecules do indeed tend to be strongly
clustered together. The defect-resolved RDF between the 2D1A (red
line) and 1D2A environments shows a very pronounced peak at about
3.5Å. Inspection of the directionally-resolved RDF reveals that this
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sharp peak at least partly originates from the PAMM analysis that
singles out a hydrogen bond in the act of breaking into a 2D1A–1D2A

pair. However, the very broad angular spread of the peak at 3.5Å
clearly paints a more complicated picture in which the weakening of
the hydrogen bond is associated with greater conformational flexibil-
ity on both the donor and the acceptor side with respect to a tetra-
hedral 2D2A environment (see Fig. 33). In other terms, one can see
this feature of hydrogen bonding as related to a form of entropic
stabilization. In addition, 2D1A defects are associated with unusual
angular correlations, with two very distinct peaks that can be seen at
about 3.5Å distance, well separated from typical H-bond directions.
These are seen in the 2D1A → 1D2A, 2D2A → 1D2A, and also in the
2D3A → 2D1A correlations discussed in Ref. [255]. More generally,
strong, anomalous angular correlations are observed for all under-
coordinated species (see also the whole series of defect-resolved 3D
DFs in the SI of ref. [3]), reinforcing the notion of the presence of a
“weak” H-bonding mode that does not match the structural param-
eters range of a full-fledged hydrogen bond, but that contributes to
the stability of coordination defects in liquid water.

In the liquid phase, the disorder and larger angular flexibility of
water molecules makes it difficult to pinpoint the specific geomet-
ric features that lead to the peculiar angular correlations. We thus
turned to high density phases of water at lower temperature to un-
derstand the origins of these correlations. In Figure 34 we overlaid
markers that indicate the position of the neighboring O atoms in ice
Ih (crosses) and for a model of ice VIII expanded to match the density of
room temperature water (circles) on the 3D O-O distribution functions.
The standard hydrogen-bonded peaks correspond perfectly to the po-
sition of nearest neighbors in hexagonal ice, but the additional an-
gular correlations found around undercoordinated waters are closely
related to the coordination environments in ice VIII. A relationship
between “interstitial” waters and high-density phases of ice was sug-
gested in Ref. [296] as a method to asses the accuracy of different
electronic structure methods in describing defective environments in
water. Our analysis confirms this intuition, and suggests that an even
more representative benchmark could be obtained by expanding the
unit cell to match the density of water at ambient conditions.

Fig. 34 also shows that 2D3A and 3D2A environments are very strongly
correlated. In particular the 3D2A → 2D3A distribution function shows
two distinct peaks at the brim of the donated H-bond region, sug-
gesting that in most cases these configurations are associated with
bifurcated H-bonds. The inverse distribution 2D3A → 3D2A shows
the characteristic trigonal distribution of accepted H-bonds, however
with broader angular fluctuations that once again point at the in-
creased flexibility associated with correlated defective environments.
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Figure 35: Temperature dependence (at constant room-temperature
density) of the fraction of the main H-bonding defect states
in the PTL simulations (BLYP+VDW, 128 water molecules).

6.3 comparison of water models

In the preceding discussions we have focused on the structural corre-
lations of defects that we have found by examining our production
runs of the 128 water system at 300K (PTL). In the following, we will
now describe how defect populations and correlations change as a
function of finite temperature, box size, the quality of the electronic
structure and nuclear quantum effects. We find that topological de-
fects appear to be present with similar concentrations across all the
simulations. Furthermore, the structural correlations between them
also appear to be qualitatively and sometimes even quantitatively
conserved. However, the relative concentration of different defects
changes in a subtle manner.

We begin by showing how the proportion of different types of struc-
tural defects change in water as a function of temperature at constant,
room-temperature density. As one moves from 290K to 390K (Fig. 35),
there is a clear decrease, by about 25%, in the proportion of water
molecules that accept and donate two HBs. This is in turn accompa-
nied by an increase in the number of structural defects. In particular,
in going from 290K to 390K there is a significant increase in the num-
ber of water molecules accepting 2 and donating 1 HBs, accepting
1 and donating 2 hydrogen bonds and a smaller increase in the the
number of defects accepting and donating 1 hydrogen bond. The
concentration of overcoordinated defects such as the 2D3A and 3D2A

stays more or less constant, at least in the constant density conditions
we are currently simulating. Despite the increase in the concentration
of defects with growing temperature, the 3D correlation plots reveal
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Figure 36: The bar-charts show the percentage of the main defect
states considered in the text for different models explored
in this work. The label on top of each chart indicates the
simulation protocol (functional, system size, temperature,
the inclusion of van-der-Waals corrections). On the ex-
treme left, in bold, the defect type corresponding to each
segment of the stack plots is indicated. The numbers on
the right of each bar-chart indicate the percentage of each
defect for the specified batch of simulations. Note that the
segment corresponding to the majority, tetrahedral 2D2A

environments has been truncated for clarity.

the presence of well formed directed hydrogen bonds up to 390K (see
Fig. 39–41).

Fig. 36 shows the percentage of the main defects in the water net-
work that we obtained with various simulation protocols. We com-
pare the effect of finite box size (moving from 128 to 64 water molecules,
that we used for most comparisons), the role of nuclear quantum ef-
fects and the use of model potentials such as TIP4P/2005 and the
more recently developed MB-pol water model. For the most part, we
see that the relative proportion of coordination defects is not very
sensitive to the simulation protocol. In the case of MB-pol, the num-
ber of 2D2A waters is lower than that of BLYP+VDW PTWTE 64 by
about 10%, which is compensated by a slight increase in the under-
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Figure 37: Radial and 3D O-O distribution functions, for selected sim-
ulation conditions. The bottom row compares BLYP-based
simulations without vdW corrections at three different tem-
peratures.

coordinated 1D2A and 2D1A defects in the network. It is thus rather
comforting to see that all these various protocols for simulating liquid
water at ambient conditions produce qualitatively consistent results
at least with respect to the types of coordination defects in the hydro-
gen bond network. On the other hand, the predictions for physical
properties of water such as the RDF and the diffusion constant, do
change significantly between these models. Seeing how such changes
depend on small differences in the structure and stability of topo-
logical defects gives some rationale for the difficulty in obtaining a
quantitatively accurate description of the structural and dynamical
properties of water.

The clear outlier between the defect population plots in Fig. 36 is
the case of the BLYP functional without vdW corrections that leads
to a dramatic increase of the fully-coordinated tetrahedral environ-
ments. Indeed, it is well appreciated that standard generalized gradi-
ent approximation functionals used in AIMD simulations lead to the
overstructuring of the hydrogen bonds in liquid water. A common
trick that has been suggested in early CPMD simulations, and which
has been used in many AIMD simulations thereafter, is to increase
the temperature in the simulation. This trick was applied to account
for the supercooled nature of DFT water at 300K [297]. Typical val-
ues that have been used are 330K but there have also been sugges-
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tions that temperatures above 400K are needed [277]. When this is
done, it is empirically observed that the RDF gets less structured and
agrees more closely with experiments. Indeed, we see that by raising
the temperature to 360K (the right-most stack plot in the first row
of fig. 36) one can reproduce quite accurately the defect populations
obtained with vdW corrections.

Earlier, we alluded to the fact that one can think of the ensemble-
averaged RDF as coming from individual contributions involving
structural correlations between tetrahedral waters together with those
from the clustering of different types of defects. To appreciate a
bit better the challenge in converging this property, in Fig. 37 we
compare the RDFs obtained with vdW corrections to those with the
bare BLYP functional, at 300K, 360K and 390K, to illustrate how the
choice of simulation temperature and the inclusion of dispersion in-
teractions conspire to affect different parts of the distribution. It is
clear that van-der-Waals interactions cannot be fully mimicked by an
increase in simulation temperature. Without dispersion, the simula-
tions at 360K reproduce the height of the first peak of the distribu-
tion, but the long-range oscillations in the RDF are still considerably
stronger than the vdW-corrected reference. One has to increase the
temperature up to 390K to approach the corrected long-range behav-
ior, at the expense however of lowering too much the height of the
first peak. Angular correlations, that are seen in the 3D distribution
functions, clarify the source of this discrepancy. The bare GGA simu-
lation shows pronounced peaks in the second coordination shell, that
correspond to the angular positions seen in ice Ih (see also Fig 34).
Raising the temperature broadens this peak, and shifts it towards the
interstitial region that is characteristic of under-coordinated defects.
At the same time, the increased temperature enhances the fluctua-
tions and lowers the height of the first-neighbor peak. There is no
temperature at which thermal fluctuations match the effect of vdW
corrections on these two components simultaneously – performing
simulations at an artificially increased temperature is a poor substi-
tute for a model that describes properly dispersion interactions. vdW
interactions thus play an important role in tuning both the short (first
shell) and long-range (second shell and beyond parts of the RDF
although the effect is more pronounced on the latter. Similar con-
clusions have also been made by Weeks and co-workers examining
classical models of water such as SPC/E with molecular field theo-
ries [298].

There is currently an ongoing lively debate regarding the level of
electronic structure theory required to reproduce structural and dy-
namical properties of liquid water. In particular, several studies have
advocated for the need of including a certain amount of Hartree-Fock
exchange in the exchange-correlation functional [276, 287]. For this
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reason, we performed AIMD simulations with the B3LYP hybrid func-
tional. Although we could not afford replica-exchange simulations,
we ran four independent simulations at 300K, for a total of more
than 60ps. The distributions with BLYP and B3LYP (both including
dispersion interactions) show that the relative proportion of differ-
ent types of coordination states are almost quantitatively the same.
Also, radial and angular-resolved distribution functions are remark-
ably similar. Thus, while it has been previously observed that the
use of hybrid functionals alone gives much better RDFs than bare
GGAs [276], it appears that dispersion corrections can similarly rem-
edy the most blatant deficiencies of BLYP, and that combining the two
does not have a major effect compared to applying the exchange or
vdW corrections separately.

The delicate balance between an ice-Ih-like and a defective hydrogen-
bond network cannot be ascribed to a single approximation in the
electronic structure framework. What is more, one should not focus
too much on the RDF as the only benchmark to assess the quality of
a water model: as we have shown, angular correlations and defect-
resolved distribution functions contain much more detailed informa-
tion, and other physical properties (such as thermodynamic and dy-
namical properties [299], or isotope fractionation ratios [300]) should
also be included to avoid the risk of obtaining an RDF that matches
experiment for the wrong reasons. Empirical vdW corrections seem
to be enough to reproduce the experimental RDF, but there is strong
evidence that this is largely due to a cancellation of errors between
three and four-body terms [301], and it has been shown that the de-
scription of the water monomer energy is very poor in the absence of
an exact exchange correction [302].

6.3.1 Impact of simulation details on defect correlations

The main effect of changing the model of inter-atomic forces is the
modulation of the population of H-bond defects. Defect-defect corre-
lations are robust to details in the inter-molecular potential, and can
be traced to topological constraints in the network. In what follows
we report, for selected defects, coordination-state-resolved 3D oxygen
distribution functions computed from all of the different models we
have considered. All show remarkably similar features, and even the
BLYP simulations with no vdW corrections – that stand out as the
outlier in all of our analyses – display the same angular correlations
between under-coordinated defects that are observed for the more ac-
curate models. The main structural difference induced by neglect of
dispersion corrections is the over-structuring of the fully tetrahedral
H-bond network, that can be understood easily as it underlies long-
range order in hexagonal ice. For completeness, the full listing of
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Figure 38: O-O radial distribution function for selected H-bond de-
fects, computed for all the simulation protocols discussed
in the main text. The baseline shaded in gray corresponds
to the total O-O RDF.

correlation plots, for all water models and defect pairs, is provided
as an electronic archive in the SI of ref. [3].
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Figure 39: 3D O-O distribution function for 1D2A defects, computed
for all the simulation protocols discussed in the main text.
The first 15 figures are obtained considering the distribu-
tion of the tagged O around an arbitrary water molecule,
and the second 15 figures to the mirror distribution, with
the tagged O atom fixed at the origin.
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Figure 40: 3D O-O distribution function for 2D2A defects, computed
for all the simulation protocols discussed in the main text.
The first 15 figures are obtained considering the distribu-
tion of the tagged O around an arbitrary water molecule,
and the second 15 figures to the mirror distribution, with
the tagged O atom fixed at the origin.
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Figure 41: 3D O-O distribution function for 3D2A defects, computed
for all the simulation protocols discussed in the main text.
The first 15 figures are obtained considering the distribu-
tion of the tagged O around an arbitrary water molecule,
and the second 15 figures to the mirror distribution, with
the tagged O atom fixed at the origin.
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summary

In this chapeter we have used PAMM, combined with extensive AIMD
simulations under a variety of different modelling conditions to un-
derstand the complex hydrogen bond landscape of liquid water. We
have shown that due to topological constraints in the hydrogen bond
network, water molecules that deviate from idealized tetrahedral struc-
tures cluster with each other with different propensities. In particu-
lar, we find that under-coordinated environments display consistently
strong angular correlations that can be traced to a weaker, but still di-
rectional, mode of the hydrogen bond. This alternative H-bonding
mode, that is not recognized as such by definitions that are trained to
identify the majority tetrahedral environment, is related to the corre-
lations found in a (dilated) ice VIII lattice. Although the focus of this
work has been on structural correlations, these features have impor-
tant bearing on understanding dynamical processes in liquid water.
In particular, the clustering of these defects suggests that the break-
age and formation of hydrogen bonds are correlated over an extended
part of the network, and provides a mechanism to lower the barriers
associated with hydrogen bond dynamics. In this regard, the type of
analysis we have presented here forms a framework to rationalize, in
a microscopic way, the balance between entropic and enthalpic forces
that drive fluctuations in the hydrogen bond network.

Here, we took extra care to ensure that the AIMD simulations we
used for analysis of the HB network were sampled extensively us-
ing ab initio replica exchange molecular dynamics. Furthermore, we
examined the sensitivity of the topological properties of the hydro-
gen network to temperature, the use of dispersion corrections, the
inclusion of exact exchange and nuclear quantum effects. Within the
framework of ab initio methods, the inclusion of dispersion correc-
tions appears to have the most significant impact on the RDF com-
pared to the inclusion of exact exchange or nuclear quantum effects.
It is rather comforting to see, however, that regardless of the details
of the choice of the water potential, the qualitative predictions for
the defect populations and structures are very similar. While there
has been a lot of effort in trying to come up with simulation recipes
to reproduce the experimental RDF, we find that the differences one
observes from using different simulation protocols are quite subtle,
and that for instance it is not possible to fully mimic the effect of
dispersion corrections by altering the temperature of the simulation.
Examining the sensitivity of defect distributions to the use of differ-
ent simulation protocols, shows that there are noticeable differences
in the relative populations of the various defects when varying mi-
nor computational details. It should however be stressed that it is
very hard to assess the statistical convergence of the minority popula-
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tions, and that therefore we do not believe one can draw meaningful
conclusions on the significance of these differences.

It is clear that the radial distribution function masks a lot of com-
plexity in the underlying hydrogen bond network and that the details
of its structure will be modulated by the balance in the relative pro-
portions of different defects and how they cluster with each other
– two aspects that can be disentangled by looking at three dimen-
sional distribution functions resolved in different defect pairs. We be-
lieve that the analysis framework we introduce here, based on a self-
consistent, data-driven definition of the hydrogen bond and the study
of non-trivial correlations between topological defects, will prove to
be particularly effective when investigating different portions of the
phase diagram of bulk water, the role of charged defects as well as
the behaviour of water in confinement and at interfaces.
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Particles containing a relatively small number of atoms or molecules
(from few to thousands) are commonly referred to as “clusters”. Ex-
amples are fullerenes, boranes, and carboranes, among many others.

Given the high proportion of surface, clusters manifest tunable and
unique properties compared to their bulk counterparts. This fact ex-
plains their essential role in many technological fields, such as catal-
ysis and nanotechnology [303]. A great example is that of Quantum
dots, which have fascinating optical, magnetic and electrical proper-
ties [304, 305], and represent a classical textbook example of a promis-
ing class of nanomaterials.

Depending on their size and composition, clusters can be character-
ized by very complex potential energy surface (PES), which reflects a
vast range of behaviors. Indeed, they provide a powerful theoretical
test case to clarify the relationship between structural properties and
PES and gain insights regarding more complex systems, that behave
similarly.

In this chapter, we choose to focus only on the study of Lennard-
Jones (LJ) clusters, since their structural and thermodynamical prop-
erties have been extensively studied, providing a perfect test case for
PAMM.

A LJ pair potential governs the interaction between atoms:

U(rij) = 4ε

[(
σ

rij

)12

−

(
σ

rij

)6
]
, (88)

where ε is the well depth and 2
1
6σ is the equilibrium separation for a

diatomic molecule. This potential describes dipole fluctuation attrac-
tive interactions that decay as r−6, and a somewhat arbitrary r−12

repulsive wall at short inter-atomic separations, that models the Pauli
repulsion between electron clouds. The Lennard-Jones potential is a

This chapter is adapted from ref. [2]
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good model for the interaction between noble gases atoms, as well as
an inexpensive model of an isotropic pair-wise interaction between
atoms.

We will use PAMM to learn automatically the structural patters of
a LJ cluster of 38 atoms. The LJ38 cluster has been used very often
as a benchmark of minimization algorithms, free-energy techniques,
and structure-recognition methods, because its potential energy land-
scape contains a very deep, narrow enthalpic minimum correspond-
ing to a truncated fcc lattice, and a broad basin containing a multitude
of defective structures corresponding to icosahedral symmetry [93,
306–308]. Fig. 42 shows the structures corresponding to the lowest
energy minima of LJ38 [309].

Here we used data from the T = 0.18T� replica of a long parallel
tempering trajectory [93], that contains structures that are representa-
tive of both the solid phases and liquid-like, highly defective configu-
rations.

Figure 42: From left to right: the LJ38 global minimum, which is an
fcc truncated octahedron, and the second and the third
lowest energy minima, which are both incomplete Mackay
icosahedra.

7.1 local motifs in lj38

Several of the possible environments (e.g. corner, edge, facet and core
atoms) can be roughly identified by the number of nearest neighbors,
that can be characterized based on purely radial information. Here
we use the coordination number c(i) for particle i, that we define as

c(i) =

N∑
j�=i

1

exp
(
rij−rc

γ

)
+ 1

(89)

where rij indicates the vector between particle i and j and rij = |rij|
is the Euclidean distance between those two atoms. In order for
the Fermi function to count the number of first neighbors, we set
rc = 1.45σ and γ =0.2σ. While neighbor counts can be very effec-
tive in identifying motifs in the minimum-energy structures, finite-
temperature simulations can be considerably fuzzier. Furthermore,
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Figure 43: A PAMM analysis of local environments in a LJ38 cluster
simulated at T� = 0.18. (a) The probability distribution
in fingerprint space, that include a smooth coordination
number c, and the Steinhardt order parameters q4 and q6.
Grid points have an area proportional to the KDE of the
probability density, and are colored according to the quick-
shift clustering. Marginal probabilities are also drawn as
contour plots. (b) Slices of the probabilistic motif indica-
tors that result from the GMM built on the PAMM clusters.
Each cluster is indicated with the corresponding solid color
when its PMI is equal to 1, while the opacity linearly de-
creases to 0 when the value of the PMI is 0. (c) The proba-
bility distribution for c only. (d) Representative configura-
tions of the LJ38 clusters, with atoms colored according to
the dominant PMI. (e) Binary tree representation of the hi-
erarchical clustering based on the adjacency matrix of the
PAMM clusters.



116 structural patterns in nanoclusters

the coordination number cannot distinguish between bulk environ-
ments from a fcc lattice and the core of an icosahedral motif. To
address these problems, and to demonstrate the behavior of PAMM
in a non-trivial example, we supplemented c(i) with angular informa-
tion. We used the local bond order parameters (or Steinhardt order
parameters) [310] q4(i) and q6(i), which are known to be able to dis-
tinguish body center cubic (bcc), face centered cubic (fcc) or hexagonal
close packed (hcp) crystal lattices [311–313].

We use the definition

ql(i) =

√√√√ 4π

2l+ 1

l∑
m=−l

|qlm(i)|2 (90)

in which the complex vector qlm(i) is defined as

qlm(i) =
1

c(i)

N∑
j�=i

Ylm(rij)

exp
(
rij−rc

γ

)
+ 1

(91)

The functions Ylm(rij) are the spherical harmonics and the loop runs
over all particles, since the Fermi function singles out contributions
from just the first coordination shell. Since c(i), q4(i) and q6(i) have
very different ranges, when combining the different order parameters
to give a 3D descriptor of the environments, we centered and scaled
them so that each component has unit variance.

Figure 43 demonstrates the outcome of a PAMM analysis for the
finite-temperature trajectory. A point based approach with a smooth-
ing parameter fpoints = 0.02 was used to compute the KDE, while
for the clustering step the scaling factor α was set to 1. PAMM can
recognize motifs based on both coordination number and angular
correlations based on the three-dimensional joint probability density
(Fig. 43a) – identifying several more clusters than it would be possi-
ble based on c(i) alone (Fig. 43c). The PMIs for the different motifs
(Fig. 43b) can be used to recognize the motifs in each snapshot of
the simulation (Fig. 43d), and could be used, e.g., to bias a molec-
ular dynamics simulation which triggers transitions between differ-
ent structures. In this relatively simple case clusters are clear-cut,
robust to sub-sampling and to variations of the PAMM parameters,
and with an approximately Gaussian shape. Even though an ag-
glomerative meta-clustering step is therefore not necessary, we did
compute the cluster stability matrix, and generated the associated hi-
erarchical clustering tree (Fig. 43e). Inspection of the binary tree is
insightful, showing that individual clusters can be grouped in two
main branches, corresponding to surface and bulk atoms. As we will
also see in other cases, it appears that the hierarchical merging of
the PAMM clusters can be interpreted much in the same way as a
disconnectivity graph [314, 315], reporting on the relations between
different basins in pattern space.
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Figure 44: PAMM classification of configurations extracted from a
simulation of LJ38 at T� = 0.18. (a) The clusters gen-
erated from the first stage of PAMM using the parame-
ters fp = 0.05 for the (point-based) KDE smoothing and
α = 1 for the scaling of the Quick-Shift cutoff. Config-
urations from the trajectory are represented using a two-
dimensional sketch-map representation. The size of points
reflects the probability density. Points are colored accord-
ing to the cluster to which they belong. (b) The initial
clusters are merged according to the hierarchical clustering
procedure. (c) Sketch-map representation colored accord-
ing to the macro-clusters, together with a snapshot repre-
sentative of the highest-probability region for each motif.
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7.2 global classification for lj38

LJ38 is one of the classical examples of simple clusters exhibiting a
major structural transition, between a truncated-octahedral structure
and a defective icosahedron. Since we consider a temperature close to
the melting point, liquid-like configurations should be present in the
trajectory. In order to identify different structures, we use the same
15-dimensional descriptors based on a smooth histogram of coordina-
tion numbers that were introduced in Ref. [316], and use them both as
the basis for a PAMM analysis and as the input for the construction of
a sketch-map representation, for which we used the same parameters
and reference map as in Ref. [316]. We decided not to tune the fin-
gerprints that had already been used in the literature so as to test the
stability of PAMM-based clustering when dealing with sub-optimal
inputs. For instance, some of the histogram bins have near-zero vari-
ance, which would yield singular bandwidth matrices if we did not
stabilize the estimator with the OAS. Furthermore, the sharp cutoff
function used in defining the coordination number histogram leads
to the presence of a large number of basins, corresponding to minute
differences in the structures. However, by using a point-based local-
ization with fp = 0.05, we implicitly consider a probabilistic model in
which each cluster contains at least 5% of the data. As a result, the
smearing parameter and the Quick-Shift threshold are large enough
that many of these minute clusters coalesce, leaving just 8 motifs de-
tected (Figure 44a).

The number and type of clusters, however, depend rather sensi-
tively on the PAMM parameters. If one inspects the structural fea-
tures that are associated with the initial PAMM clusters (see Fig-
ure 44a) it becomes clear that PAMM clustering does identify por-
tions of configuration space that are clearly distinct, corresponding
e.g. to different defective “gemstone” structures, to the truncated
octahedron, and to liquid-like structures with different kinds of sur-
face geometry. A dendrogram representation of the hierarchical clus-
tering based on the adjacency matrix (Figure 44b) shows that some
of the clusters are very sensitive to statistical noise, corresponding
in high adjacency. One can identify three very stable meta-clusters,
that are represented in (Figure 44c). PAMM recognizes that the most
prominent features of the free-energy landscape comprise liquid-like
states, more or less disordered icosahedral fragments and – even
more clearly separated –the truncated octahedron. Once again it is re-
markable how the adjacency matrix, despite being constructed just as
a heuristic indicator of cluster stability, reflects the connectivity of the
free-energy landscape. Although this far we were not able to reveal a
formal connection, this aspect will be the subject of further investiga-
tion. One final consideration concerns the relationship between the
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clustering and the dimensionality reduction approaches to describe
complex atomistic systems. A sketch-map representation does offer
a more intuitive, bird’s eye view of the landscape. However, in order
to achieve such a high level of coarse graining, the dimensionality re-
duction algorithm introduces considerable distortion, including also
discontinuities in the projection [110, 316, 317]. For this reason, it
is important to perform the clustering step in the high-dimensional
space to avoid having a classification which is biased by sketch-map
artifacts. For instance, Figure 44 shows clearly that one of the clusters
identified by PAMM is split in two by the projection, without a con-
tinuous path connecting the fragments on the map. Thus, combining
clustering and dimensionality-reduction approaches might provide a
strategy to compensate for the shortcomings of the two methods, and
obtain deeper understanding of the structural features of the system.

7.2.1 Comparison of clustering schemes

Many clustering approaches have been proposed during the past
years, and could be used within PAMM to identify the modes of the
pattern probability distribution.

To proof the efficiency of PAMM, fig. 45 shows a comparison of
some of the most known clustering algorithms used instead of quick-
shift for clustering the 15D-dimensional dataset describing the globlal
structure of LJ38 discussed above. The data are standard-scaled be-
fore performing the clustering and the low-dimensional representa-
tion is generated using sketch-map.

From the results shown in Fig. 45 emerges the issues related to the
use of a standard clustering schemes, which is the strong dependence
of the partitioning on the choice of the initial parameters. Further-
more, PAMM provides an estimate of the quality of the clusters and
the connectivity among them, which are non-trivial to extract from
more standard techniques, such as K-Means or DBSCAN.

7.2.2 Comparison of dimensionality reduction schemes

Several different approaches have been developed to obtain low di-
mensional representations of complex databases. Figure 46 shows a
comparison of the 2D representations of the Lennard-Jones cluster
dataset as obtained with six different dimensionality-reduction tech-
niques: Sketchmap [110], t-SNE [190], Diffusion maps [318], ISOMAP [184],
Principal Component Analysis [319], Multidimensional scaling [182].

Even though all the algorithms can qualitatively understand the
shape of the high-dimensional manifold, sketch-map appears capable
of distinguishing more efficiently different basins.
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Figure 45: Global clustering for LJ38 from some of the most common
algorithms. For each technique, various parameters have
been tested.
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Figure 46: 2D representation of the LJ38 dataset, as obtained using
different dimensionality reduction algorithms. Points are
colored according to PAMM clustering.
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Figure 47: Structures of the 20 commonly occurring natural amino
acids.

Polypeptides and proteins are macromolecules corresponding to
a polymer chain composed of 20 elementary building blocks, namely
the naturally occurring amino acids, schematically depicted in Fig. 47

In each amino acid, a sp3 carbon atom (labeled α), is covalently con-
nected to an amino group, a carboxylic acid group, a hydrogen atom,
and a side-chain (usually labeled as R). What distinguishes different
amino acids is the identity of R, whose nature can be hydrophobic,
charged, or polar. Apart from glycine, for which the side-chain is
just a hydrogen, the Cα is a chiral center that, depending on where
the side-chain is attached, splits the amino acids into L and D opti-

This chapter is adapted from ref. [2]
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cal stereoisomers. Naturally occurring proteins are composed only of
amino acids of type L.

Proteins play a central role in living systems and, depending on
their function, they can have very different structures. The inves-
tigation of the structure-function paradigm in proteins is one of the
most active fields of research in structural biology and the complexity
of biomolecular structures is usually understood by looking at their
recurrent patterns, such as helices and sheets. Among the most com-

Figure 48: (a) Schematic representation of a generic polypeptide. For
each residue, the φ and ψ dihedral angles are also shown.
(b) Example of a Ramachandran plot.

monly used tools to visualize and understand structures in biology
is the Ramachandran plot [320]. An example is shown in fig. 48(b).
It is a 2D-plot in which one visualizes, for each residue in the pep-
tide chain, the dihedral angle φ against ψ, which can be regarded
as the most natural local structural parameter to describe backbone
conformations, as schematically described in fig.48(a).

The Ramachandran plot computed for naturally occurring polypep-
tides provides a clear indication of the protein’s propensity to form
few well-known secondary structures (SSs), such as helices, sheets,
and coils. Many algorithms exist to identify secondary structure pat-
terns, that are based on the identification of hydrogen bonds [321,
322]. More recently, it has been shown that secondary structure con-
formations can be classified solely on the basis of backbone dihedrals
of a protein [323, 324]. However, SSs are somewhat arbitrarily de-
fined, since helices and sheets are often not in their ideal shapes in
protein structures. For this reason, polypeptides offer a perfect test
case to demonstrate the flexibility of PAMM.
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Figure 49: (a) PMIs for the backbone dihedrals of a β-hairpin are
shown as a function of the Ramachandran angles. Differ-
ent regions are colored based on the cluster that is asso-
ciated with the dominant PMI. The underlying probability
distribution is shown using black contours, that are equally
spaced on a logarithmic scale. (b) Dendrogram representa-
tion of the hierarchical clustering of the adjacency matrix
of the PAMM clusters. (c) A few representative structures
of the molecules are shown with the residues colored ac-
cording to the dominant PMI. The color code corresponds
to that used in panel (a).
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8.1 local motifs of a β-hairpine peptide

Secondary structure in proteins is a textbook example of how molec-
ular motifs can behave as building blocks of complex supramolecular
structures, and thus a perfect benchmark for our pattern recognition
algorithm. As a demonstration of our classification approach to real-
istic periodic data, we have applied our method to analyze the data
of the backbone dihedral pairs (φ,ψ) from a replica exchange sim-
ulation of a 16-residue C-terminal fragment of the immunoglobulin
binding domain B1 of the Streptococcus protein G in explicit solvent
(GB1, amino acids sequence Ace-GEWTYDDATKTFTVTE-Nme) (for
further details of the simulation see Ardevol et al. [325]). For each
residue and each frame of the trajectory we computed the backbone
dihedral angles φ and ψ, and performed a PAMM analysis. The un-
derlying KDE was estimated by using a point-based KDE smoothing
fp = 0.15, and step-scaling α = 1.0 for the subsequent Quick-Shift
clustering. The resulting PMIs result in a partitioning of the Ra-
machandran φ−ψ plot [326] into 5 regions, that correspond roughly
to β sheets, α helices, turns, etc. (see Fig. 49), and that are clearly
associated with local probability maxima in the KDE (shown as black
contours in Fig. 49a).

Even though the clusters are identified as von Mises modes, with
a single basis function assigned to each of them, it is clear that the
PMI correspond very accurately to the partitioning of the probability
density in basins of attraction, with the transition zones between two
PMIs following closely the dividing surface between basins. In Fig.
49b we also show a few reference structures selected from the trajec-
tory. The aminoacids in the backbone have been colored based on the
dominant PMI to which they are associated.

It is easy to recognize the PMIs associated with well known sec-
ondary structure elements by comparing reference structures to the
PAMM partitioning of the Ramachandran plot. One can clearly iden-
tify, e.g. α-helices or the antiparallel β-sheets that are abundant in the
simulation data for the GB1 fragment. Chains of dihedrals that corre-
spond to a β-sheet conformation are also seen in extended structures.
We also find several instance of turn-type T1 motifs [324], that in our
case concentrate in the unstructured portions of the polypeptide.

Meanwhile, it is clear that there is not a 1:1 correspondence be-
tween PMIs and “traditional” secondary structure motifs. Some of
the PMIs correspond to portions of the Ramachandran plot that are
traditionally assigned to polyproline II (PPII) helices and left-handed
helices, yet we could not identify a significant presence of stable
structures associated with these motifs. Rather, extended structures
and distorted β strands are associated with the PPII region, while
left-handed helical patterns appear, together with many other PMIs,
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within disordered, “random-coil” configurations. This observation
highlights the potential of a data-driven approach for the definition
of molecular patterns. Well-separated clusters in fingerprint space are
recognized even though they do not appear clearly when the trajec-
tory is inspected and well-established structural motifs are searched
for. This agnostic behavior could be very useful, for instance, in ratio-
nalizing the behavior of intrinsically-disordered proteins [327, 328], or
to study polypeptides in unusual environments, such as at inorganic
interfaces or in combination with synthetic polymers. Furthermore,
an automated probability analysis allows one to extend the definition
of pattern space by combining e.g. several backbone dihedrals, or
by combining dihedrals and H-bonding indicators. This procedure
could give rise to more precise identification on secondary-structure
patterns, and will be the subject of future research. Finally, the hier-
archical clustering of the five PAMM motifs (Fig. 49b) shows another
example of how the adjacency matrix built by a bootstrapping analy-
sis reflects the structure in the free-energy landscape of patterns, with
the linkage distance corresponding roughly to the free-energy barrier
between basins.

8.2 structural classification for a β-hairpine peptide

The structural landscape for the GB1 oligopeptide provides another
suitable benchmark for the application of PAMM to the clustering for
the high-dimensional data. This β-hairpin fragment has been stud-
ied extensively by metadynamics [329], and has been used to demon-
strate the comparison between wild type and mutant proteins using
sketch-map [325]. Such analysis revealed a rugged free-energy land-
scape, containing many metastable states including a helical configu-
ration, several mis-folded hairpin configurations as well as the native
fold.

As in the case of the the LJ38 cluster, we used a simple-minded
choice of high-dimensional descriptors – namely, the 30 backbone di-
hedrals – as the input representation. This choice minimizes the bias
on the clustering procedure, but implies that configurations that dif-
fer by minor details (e.g. the configuration of the terminal aminoacids)
are considered as distinct structures. Indeed, a global classification
of the GB1 peptide produces a multitude of clusters (Figure 50(a)),
and varies considerably depending on the clustering details and boot-
strapping resampling. Hierarchical cluster merging, however, sim-
plifies considerably this picture (Figure 50(b)), making it possible to
group states that are associated with a helical configuration, the na-
tive fold, and a few misfolded hairpin configurations (Figure 50(c)).
Clustering also highlights the limitations of the sketch-map projec-
tion, that gives a contiguous representation of the high-probability
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clusters (helix and native hairpin) but scatters higher-free-energy states
at the periphery of the map.
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Figure 50: PAMM classification of configurations extracted from a
simulation of the GB1 hairpin fragment. (a) Clusters gen-
erated in the first stage of PAMM using the parameters 0.1
for the (point-based) KDE smoothing and α = 1 for the
scaling of the Quick-Shift cutoff. Configurations from the
trajectory are represented using a two-dimensional sketch-
map representation. The size of points reflects the proba-
bility density. Points are colored according to the cluster
to which they belong. A snapshot representative of the
highest-probability region for each cluster is also shown.
(b) The initial clusters are merged according to the hierar-
chical clustering procedure. (c) Sketch-map representation
colored according to the macro-clusters.
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We have shown how it is possible to build an automatic, unbiased
framework to learn patterns in the complex feature spaces generated
from atomistic simulations. However, the feature space is determined
by the chosen order parameters, which play a critical role in the fol-
lowing analysis. It would be very interesting to introduce new gen-
eral descriptors that are capable of efficiently describing local environ-
ments automatically. A possible idea is to use the symmetry functions
introduced by Behler and Parrinello as discussed in sec. 9.1.

Another promising extension of this thesis’ work is the use of PAMM
to classify and clarify the structural properties of proteins and pep-
tides. PAMM can provide new flexible definitions of complex pat-
terns, which can be used to identify recurrent motifs in intrinsically
disordered proteins and in proteins in contact with non-physiological
environments, such as inorganic interfaces. It can also be used to im-
prove the standard classifiers used in scoring functions for docking.
This idea will be discussed in sec. 9.2.

Finally, a very interesting extension would be the use of PAMM to
design elaborate order parameters to enhance sampling when com-
bined with biasing schemes. A simple example, will be discussed in
sec. 9.3.

9.1 automatic definition of the feature space

The distinction of local atomic environments is not only crucial for
rationalizing complex structure-property relationships in simulations,
but also for building effective CVs capable of adequately sampling
interesting regions of phase space using enhanced sampling schemes,
such as metadynamics.

We introduced PAMM as an agnostic, unsupervised method, as-
suming however that the choice of the descriptors generating the fea-
ture manifold was the optimal one. Unfortunately, in many realistic
scenarios, the choice of suitable descriptors is far from trivial.
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Figure 51: Classification of the local environments for two different
structures of the LJ38. At the right side of each structure,
a zoom of the core atoms is shown. Two different SFs
where used, G2 with parameters rc = 12.3, rs = 2 and
η = 0.05, and G7 with rc = 20.3, η = 0.01, α = 0.3. The
SFs were applied to the simulation trajectory to transform
the Cartesian coordinates into a 1D dataset, on which a
PAMM analysis was run to find distinct stable patterns.
While with this choice of parameters G2 can distinguish
only the surface from the core, G7 can classify a core atom
in a diamond-like structure as different from those of a
truncated octahedron, as well as distinguish surface atoms
with different symmetries and neighborhood.

We here propose the use of the same symmetry functions (BPSFs)
used in neural networks (NN) for energies and forces calculations.
Such symmetry functions, introduced by Behler and Parrinello [196],
are used to decompose the system into smaller units, corresponding
to the environments surrounding each atom.

BPSFs can be of two types: radial (two-body) and angular (three-
body). The former provides information regarding the radial distribu-
tion of surrounding atoms, while the latter also includes information
regarding angular distributions between triplets of atoms. Both obey
the following requirements:

• rotational and translational invariance

• permutational invariance for the same element types

Many SFs have been proposed [330], and few examples are:

• Gi
2 =

∑
j e

−η(rij−rS)
2
fc(rij)



9.2 structural patterns in proteins 133

• Gi
3 = 21−ξ

∑
j,k �=j(1+γcosθijk)

ξe−η(rij+rik+rjk)
2
fc(rij)fc(rik)fc(rjk)

• Gi
7 = 1

2

∑
j,k �=j sin

[
η(θijk −α)

]
fc(rij)fc(rik) ,

where j and k are the indexes of the atoms surrounding i, θijk is
the angle between the three atoms, and rS, γ, ξ, η, α are the parame-
ters that have to be adjusted to probe different angles and distances.
The function fc(r) is used to ensure that the symmetry function goes
smoothly to zero at a fixed cutoff value rc.

Each BPSF corresponds to a different fingerprint, and carries dif-
ferent pieces of spatial information. To test the ability of symmetry
functions to distinguish local environments, we applied them to the
LJ38 dataset introduced in chapter 7. Fig. 51 shows how choosing
different BPSFs and different parameters it is possible to control how
sensitive the SF is to the different environments.

One could think about combining many BPSFs into a feature vector,
thus obtaining a manifold in which all the significant patterns stand
out as clear, distinct modes in the underlying PDF.

The critical issue in this case would be to find a general method
able to decide, for very different scenarios, the optimal number of
BPSFs needed for an efficient description of the system, and to guess
reasonable parameters for each BPSF.

9.2 structural patterns in proteins∗

Secondary structure in proteins is usually understood in terms of
hydrogen bonds patterns in the peptide backbone or as regular pat-
terns in the values of the Ramachandran angles φ and ψ. In both the
approaches, the classification is clear-cut and based on the arbitrary
assumption of some geometrical or energetic parameters.

In chapter 6 we have demonstrated how it is possible to use PAMM
to introduce a flexible and adaptive definition of the hydrogen-bond.
An exciting extension of this study, would be to use PAMM to learn
the different HB patterns formed along the backbone chain. This anal-
ysis could help when it comes to understanding whether hydrogen
bonds with different donor and acceptor species, or in different parts
of the protein (main or side chain) have different preferred geome-
tries.

Fig. 52, shows the PMIs for different types of HB occurring in a pro-
tein backbone. We performed the analysis on the X-Ray experimental
structures deposited in the Protein Data Bank (PDB) and resolved to
1.2Å or better. This high resolution was necessary to ensure an accu-
rate account of all the atomic positions in the protein, including the
hydrogens. However, also in high-resolution structures, it could also

∗This work is done in collaboration with B. A. Helfrecht.
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Figure 52: PAMM PMIs for the different types of hydrogen bonds in
a protein backbone. The training was done from the high-
resolution (better than 1.2Å) X-ray structures deposited in
the PDB. The HBs correspond to the PMIs covering the re-
gion with dAH ≈ 1.9Å and dAD ≈ 2.8Å. One can notice
how the ranges of parameters in which PAMM identifies a
structure as a HB vary substantially in the different scenar-
ios.
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be that hydrogen positions are set to a predefined distance from the
donor atom. To avoid any bias in the clustering analysis, we decided
to use only the donor-acceptor and acceptor-hydrogen distances to
represent D–H· · · A triplet of atoms.

From the preliminary results shown in fig. 52, it is evident that the
backbone HBs involving different species have very different charac-
teristics, which implies that the substitution of a generic, clear-cut,
geometrical definition with a flexible PAMM-based description could
be very reasonable.

Figure 53: 2D projections of the distribution of points in two different
feature spaces built from the backbone dihedrals of high-
quality X-Ray structures deposited in the PDB: (left) each
point corresponds to four Ramachandran angles coming
from two consecutive amino acids, (right) each point cor-
responds to eight Ramachandran angles coming from four
consecutive amino acids. Since dihedral angles are peri-
odic variables, the PCA was done following the approach
proposed in ref. [331], where each angle φn is represented
by its equivalent vector (cos(φn), sin(φn)) on the unit cir-
cle. The contour plots are shown in logarithmic scale, with
the isolines separated by a unit in the logarithm of the den-
sity.

Another natural application of PAMM, would be to use it for the
automatic definition of secondary structures. We proved, in chap-
ter 8, that an automatic classification of SSs based on the partitioning
of the Ramachandran plot is possible. However, the description of
secondary structures based only on the 2D Ramachandran angles is
very simplistic. One can think about a more accurate description
using PAMM that learns recurrent patterns in higher dimensional
feature spaces, where the information relative to a local motif comes
from more than one amino acid. Increasing the dimensionality of the
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learning space should enable the classification of patterns at a higher
resolution.

To support this idea, fig. 53 shows the logarithm of the histogram
of the distribution of points in two different high-dimensional feature
spaces, where one feature point corresponds to the Ramachandran
angles computed from two and four consecutive amino acids respec-
tively. The analysis is done on the high-resolution X-Ray structures
deposited in the PDB (resolved to 1.8Å). We used PCA to project
the points in two dimensions, following the approach proposed in
ref. [331] to deal with periodicity.

One can see how, increasing the dimensionality of the feature space,
increases the number of modes that appear in the PDF.

9.3 enhanced sampling

A very promising application of PAMM is the construction of com-
plex order parameters to be used, in combination with biased-sampling
schemes, to modify the statistic of specific patterns.

Here we report some preliminary results on the use of PAMM to
modify the statistics of a particular defective state in the HB network
of liquid water, with the final aim of accelerating the dynamics of
water molecules.

Speeding up the motion of liquid water could have many advan-
tages, from a better understanding of the dynamics of neat water,
thanks to the use of more expensive and accurate models, to the
possibility of more efficiently sampling the interactions among wa-
ter molecules and solutes, such as a protein.

Figure 54: Schematic representation of the H-bond exchange mech-
anism in liquid water. Three consecutive snapshots of an
actual H-bond switching event are shown, where the green
lines indicate the water molecules involved in the HB ex-
change, while the black arrows shows the key movements
of the molecules between the first and the second coordi-
nation shells. This figure is adapted from [332].

Laage et al. [332] proposed a model (Extended Jump Model, EJM) to
describe the reorientation mechanism of water molecules, in which a
molecule forms a new HB through a large-amplitude angular jump,
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rather than by a sequence of small diffusive steps, which is the com-
monly accepted picture (Debye small-step diffusion model).

A clear picture of the mechanism is shown in Figure 54, where a
rotating water molecule breaks a HB with an overcoordinated neigh-
bor in the first coordination shell, and form a HB with an under-
coordinated water coming from the second coordination shell. The
HB cleavage and the molecular reorientation occur concertedly and
not successively, as usually considered. In this picture the transition
state in the water reorientation mechanism is some state that involve
a bifurcated HB. PAMM can easily recognize this particular pattern
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Figure 55: Effect on the free-energy, in a TIP4P-2005f simulation at
300K, due to the application of the bias potential intro-
duced in eq. 95. The parameter used in this example are
h =1, μ =1.9, σ =0.05 and α =0.85.

using the sH counter introduced in sec. 4.3. If a water molecule is
involved in standard standard HB patterns, each of of its hydrogens
have sH ≈ 1. In the case a bifurcated HB is formed sH ≈ 2.

A possible way to speedup the dynamics of water molecules, would
be to increase the number of the extended jump events. To this aim, a
PAMM-based collective variable can be introduced to encourage the
sampling of configurations involving a bifurcated HB.

The general idea is to use umbrella sampling to add a bias term
B(s(q)) to the potential V(q) to sample configurations according to a
modified probability distribution P̃(sH) in which bifurcated HBs have
a higher weight compared to the original distribution P(sH)

Ṽ(q) = V(q) +B(s(q)) . (92)

The change in the free energy due to the biasing procedure is

F̃(s) = −
1

β
ln

∫
dqe−β[V(q)+B(s(q))]δ(s− s(q)) = F(s)+B(s) , (93)

where we exploited the fact that e−βB(s) can be brought outside the
integral, as δ selects only those configurations with s(q) = s. The
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unbiased statistics of any configuration-dependent property A(q) rel-
ative to F can be obtained by reweighting

〈A〉unbiased = 〈AeβB(s((q)))〉biased (94)

Since the bias has to favour just the free energy minimum corre-
sponding to bifurcated HB configurations, a convenient choice is to
define B(sH) as a Fermi-like function:

B(sH) = h

((
1

1+ e
sH−μ

σ

)α

− 1

)
. (95)

where h is the height of the step and α is a smoothing factor, while μ

ans σ set the position and the width of the step respectively.

Figure 56: MSD curve of an unbiased NVT TIP4P-2005f at 300K (red)
compared with a biased one (dashed black), using the bias
potential shown in Fig. 55. The corresponding diffusion
coefficients D are also reported.

To test this idea, we run two NVT simulations, one of neat TIP4P-
2005f water at 300K and another one adding a bias potential as in
Figure 55. To check how the introduction of the bias influences the dy-
namics of water molecules, we computed the mean square displace-
ment (MSD), from which is possible to extract the diffusion coefficient
D using the relation:

〈(r(t) − r(0))2〉 = 6Dt (96)

Figure 55 shows that the introduction of the bias effectively enhances
the diffusion of water molecules. Unfortunately, the RDF computed
from the biased simulation (fig. 57(a)), clearly shows that, under the
action of the bias, the structure of the liquid results is modified sub-
stantially. Figure 57(b) shows that obtaining the original RDF by
reweighting is not possible.
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Figure 57: a) Comparison between the RDFs of an unbiased NVT
TIP4P-2005f simulation at 300K (red) and a biased simula-
tion (black) that was done by adding the umbrella potential
described in the main text and shown in fig. 55. b) Compar-
ison between the RDF computed from the unbiased simu-
lation and that obtained by reweighting from the biased
simulation.

From these results, it appears that our PAMM-based collective vari-
able is not selective in capturing only the transition state of water
reorientation events.

To understand these results, we processed the unbiased trajectory
to collect all the EJM events as described in Ref. [332] and computed
the sH, sD and sA values for the molecules involved in the HB ex-
change. By construction, in all the EJM transition states, the hydro-
gen involved in the molecular jump has sH ≈ 2, but this appears to
be just a small fraction among all the possible events in which sH ≈ 2.

Fig. 58 shows the hydrogen bond counting maps for the water
molecules involved in an EJM event.

Many complex scenarios are compatible with the recipe proposed
by Laage, and further research should be done to find a more so-
phisticated descriptor that is able to bias the EJM events in a more
efficient fashion. A suggestion of the possible defective states of the
HB network that could be involved in an HB exchange event is shown
in fig. 58, where the HB counting maps for the molecules involved in
EJM event are reported.
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Figure 58: Hydrogen-bond counts statistics for a classical simulation
of TIP4P water at room temperature selecting only water
molecules involved in an EJM event: while in (a) all the
molecules involved are considered, in (b) only the central
water molecule is taken into account. The probability dis-
tributions are represented in terms of the associated free
energies F = −kBT lnP, that are expressed in kcal/mol
throughout. We also report integrated probabilities (in per-
cent) to have a configuration in the vicinity of the different
integer numbers of HBs. Below the values of the joint prob-
abilities of sA and sD the product of the marginal probabil-
ities are indicated, in italics.
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Machine-learning algorithms constitute a promising approach to guide
the rationalization and analysis of complex, large-scale atomistic sim-
ulations. In this thesis, we have presented a general machine-learning
framework, the Probabilistic Analysis of Molecular Motifs (PAMM),
to analyze the outcome of atomistic simulations in order to search for
the essential atomic-scale patterns that characterize the behavior of
materials and molecules. PAMM can be exploited in atomistic simu-
lations to reproduce in an automatic, data-driven manner the process
of recognizing recurring structural patterns that is behind our intu-
itive understanding of chemical bonding and structuring in materials
and biomolecules. A PAMM analysis starts by learning a probabilistic
model underlying structural data through non-parametric density es-
timation methods, followed by the partitioning of the PDF through a
density-based clustering approach. We eventually model the PDF as
a mixture of Gaussians, by fitting each local mode with a multivariate
Gaussian. A natural application of such a model is the construction
of Bayesian classifiers to classify patterns in atomistic simulations,
which enable the fuzzy definition of chemical entities in terms of
smoothly varying posterior probabilities.

PAMM is a general method that is capable of dealing with peri-
odic, high-dimensional and/or sparsely sampled data. It combines
several state-of-the-art techniques to guarantee robust, reliable and ef-
ficient clustering. We also introduced a new original way to estimate
the quality of the clusters and to infer the connectivity among them.
Indeed, this method performs repeated clustering attempts on top
of re-sampled distributions constructed by bootstrapping, and uses
these to construct an adjacency matrix that characterizes the stabil-
ity and the overlaps between clusters. Combined with a hierarchical
“meta-clustering” and a binary tree representation this further analy-
sis serves two purposes. First, it provides a way to improve the qual-
ity of PAMM clusters – by merging non clear-cut motifs and allowing
the representation of strongly non-Gaussian modes in the probability.
Second, it makes it possible to recognize the relations between the
fine-grained details of the free-energy landscape and the main basins
on a coarser scale. In all the examples we considered, the hierarchical
clustering reflects qualitatively the structure of the free energy and re-
sembles a disconnectivity graph. It might be possible to construct the
adjacency matrix such that this analogy is made quantitative, which
will be the subject of future reaserch.
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We demonstrated that PAMM is able to identify fuzzy entities such
as hydrogen bond in a variety of different contexts. Based on a
PAMM analysis, we then introduced a compact representation of the
hydrogen-bonding properties of liquid water as a function of the to-
tal number of accepted and donated HBs per water molecule, which
arises naturally from the use of a smoothly varying PAMM count-
ing function. We demonstrated that these hydrogen bond counts can
be used to clarify the structure and dynamics of the hydrogen bond
network, which we studied extensively to probe the non-trivial cor-
relations between topological defects and the influence of different
simulation protocols.

To prove the generality of PAMM, we applied it to classify coordi-
nation environments in a LJ38 cluster and secondary-structure motifs
in a 16-residues β-hairpin peptide. Although our method is geared
towards recognizing local molecular patterns, we also showed it can
cluster overall structures for both LJ38 and the oligopeptide, which
allows for the further development of the method as an approach to
identify global conformational states. This could be applied simply
for classification purposes, as well as for Markov state models to clus-
ter simulation data into microstates and discretize the state space of
Markov chains.

The combination of PAMM clustering, binary-tree merging of the
motifs and the sketch-map representation of high-dimensional free
energy landscapes provides multiple insights into the behavior of
complex atomistic systems, and overcomes some of the limitations
of the methods, such as the presence of discontinuities in sketch-
map projections. The probabilistic motif identifiers associated with
each cluster can be used as fuzzy, smoothly varying collective vari-
ables in biased molecular dynamics schemes to accelerate sampling
and reconstruct the underlying free-energy landscape. The Gaussian
Mixture Model associated with the PMI could also be used as an
ansatz for the target probability distribution in a variational-sampling
scheme [333], with the populations of the clusters as the variational
parameters.

To summarize, the research performed in this thesis tested the
capability of machine-learning schemes within the domain of struc-
tural identification in atomic-scale structures. The development of
general analysis tools that are capable of identifying and classifying
metastable patterns of matter at the atomic scale is a remarkable chal-
lenge, which must cope with the growing complexity and high vari-
ability of the systems that can be simulated through atomistic simu-
lations.

Data-driven approaches to recognize the building blocks of com-
plex materials constitute a necessary ingredient to assist the analysis
and interpretation of large-scale atomistic trajectories, and provide a
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natural representation of free-energy landscapes in terms of the most
stable configurations of the system. Such a flexible description of the
structural space can be used with a twofold aim: it can be exploited
to accelerate configurational sampling in complex computer experi-
ments, as well as to classify structural patterns along simulation tra-
jectories, or in structural databases, in an unbiased and adaptive way.
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