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Abstract5

Pinch analysis and Mixed Integer Linear Programming (MILP) have been extensively studied for optimiza-6

tion of industrial processes addressing heat recovery, utility selection and sizing. Analysis of renewable7

utility integration, such as solar thermal or photovoltaics, introduces several obstacles for established meth-8

ods: the time-dependency of resources, storage inertia and losses, and intrinsic non-linearities of the system9

performance are difficult to represent by linearized, time-invariant MILP equations. Moreover, waste heat10

recovery options such as heat pumping cannot be neglected as a potential competitor to solar heat.11

This work presents a set of multi-period MILP equations for solar technologies as well as a superstructure12

for optimization of heat pump cycles. Additionally, a methodology is proposed and applied to simultaneously13

optimize the process’ refrigeration and renewable utility system using ε-constrained parametric optimiza-14

tion. The proposed methodology is illustrated on the basis of a dairy plant for which the different utility15

technologies are compared and evaluated based on economic and environmental criteria.16

It is illustrated that integration of solar energy can contribute to strongly reduce the environmental17

impact of the process (65 - 75% reduction in CO2 equivalent emissions), but only in combination with18

heat recovery (27%) and an improved heat pump system (33%). Heat recovery and heat pump placement19

for industrial processes are hereby shown to reduce exergy destruction and total costs and increase energy20

efficiency in the system by means of thermo-economic optimization. The solutions show that investment in21

solar energy can be economically and environmentally attractive for industrial processes by considering the22

whole system and ensuring that solar energy is optimally integrated and utilized.23

Keywords: multi-period MILP, ε-constraint optimization, heat pump superstructure, flat plate thermal24

collectors, photovoltaics, thermal storage25

1. Introduction26

Within 90 minutes, enough solar radiation reaches Earth’s surface to fulfill the total global primary energy27

demand of one year [1]. This illustrates the enormous potential related to solar energy which is virtually28

inexhaustible, abundant, and carbon-neutral if gray energy of the conversion equipment is disregarded.29

Photovoltaic and solar thermal collectors are widely employed and tested (for warm water, heating and30

electricity production) in the urban sector; however, application in the industrial sector is still scarce [2].31

Although the potential has been extensively proven [3, 4], implementation of solar energy in industrial32

processes is constrained by several obstacles. Identification of the best point of integration is not trivial and33

should comply with the process specific thermodynamic and technical constraints related to e.g. the heat34

exchange equipment [3, 5].35

One important point which is often neglected is that integration of more efficient or less emitting heating36

sources (such as solar thermal) should always be compared to other process optimization measures. Process37
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integration is a first step in capitalizing the maximum heat recovery potential together with retrofitting of the38

heat exchanger network. Beyond this, further measures are possible such as optimization of the operating39

points of the available utility equipment (e.g. the temperatures of the refrigeration system), mechanical40

vapor re-compression (MVR), or integration of closed cycle heat pumps.41

Heat pump systems (including refrigeration) allow valorization of low-temperature waste heat and thereby42

improve the process energy efficiency. Optimization of industrial heat pumps has been addressed by var-43

ious authors. Shelton and Grossmann [6, 7] proposed a mixed integer linear programming (MILP) model44

for optimization of flexible heat pump superstructures which complies with the general process integration45

methodology presented by Papoulias and Grossmann [8–10]. They define all possible connections of refrig-46

eration stages with the drawback of high complexity for problems with many temperature levels. Other47

authors based their formulation in the linear domain [11–14]. While more recent work dealt with exergy48

analysis of heat pumps and Mixed Integer Nonlinear Programming (MINLP) [15, 16]. None of these works49

have dealt with solar utility integration.50

Optimization of a refrigeration and heat pump system for a dairy plant has been investigated by Becker51

et al. [17, 18] without the presentation of a flexible superstructure containing a variable number of stages,52

mixing, and various temperature levels.53

Maréchal et al. [19] proposed a multi-period process integration approach that allows utility targeting54

and optimization of process heat recovery systems during multiple operating periods. Different authors have55

dealt with the problem of clustering meteorological or energetic data into smaller sets [20, 21] demonstrating56

that data clustering reduces the computational effort while maintaining a desired accuracy.57

Solar integration with industrial processes by means of pinch analysis was addressed by several authors58

[2, 22–25]. In all cases the importance of process integration and pinch analysis for solar utility integration59

was considered. However, the time-variance of solar radiation and the related effect on the solar system60

performance as well as the influence of storage was often simplified or even neglected during the design phase.61

Furthermore, other process optimization techniques such as heat pumping were completely or partially62

disregarded.63

The main gaps identified in the current literature were the lack of a comprehensive approach for solar64

process integration which encompasses: (a) multi-period solar utility and storage modeling, (b) process65

integration techniques, while additionally (c) exploring process optimization tools, such as an improvement66

of the heat pumping system. Therefore, a step-by-step approach is proposed to overcome some of the67

identified gaps. The main goal is to account for the influence of meteorological time-variance on the solar68

collector performance and the impact of storage during the design process while respecting the importance69

of heat pumping as process optimization measure. A comprehensive method for simultaneous solar design70

and process refrigeration system optimization is presented of which the innovative aspects are summarized71

in the following points:72

• A multi-period MILP approach is chosen, which has been applied by other authors [19, 21, 25], but is73

extended to account for the specific characteristics of solar utilities and contains ε-constraints.74

• A novel heat pump superstructure presented in [26] is applied for optimal design of multiple stage heat75

pump cycles.76

• The meteorological data is clustered based on common clustering algorithms [27] by proposing a new77

performance indicator.78

• Solar performance calculations are based on state-of-the-art correlations and data from independent79

testing facilities and producers.80

2. Methodology81

A sketch of the applied methodology is presented in Figure 1. The work is employed in a computational82

framework which is based on the Lua [28] programming language. It is separated into three main steps: (A)83

data collection, (B) system resolution, and (C) performance calculation.84

(A) Data collection. During the data collection phase, utility and process data are gathered, the85

energy and mass balances are formulated, and the thermodynamic models are developed. In a preliminary86
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step the meteorological data are clustered to form a set of typical days such that the problem size can be87

reduced from a typical meteorological year (TMY) composed of 8760 hours to a much smaller set (of a few88

hundred hours). This part of the procedure is presented in Section 2.1.89

(B) System resolution. The system resolution aims at targeting different utility designs by solving90

the multi-period MILP for minimum total annual cost subject to the heat cascade constraints. The general91

formulation of the multi-period MILP can be found in Section 2.2. During the multi-period MILP a single-92

objective optimization is performed with the objective of minimizing the total annual cost. To compare the93

different scenarios under equal boundary conditions, an ε-constraint is introduced to limit the CO2-equivalent94

emissions for a set of values.95

(C) Performance calculation. Since the results of step (B) are based on linearized equations, it is96

necessary to recalculate some indicators that are more realistically described by non-linear relations such as97

the investment cost. Other performance indicators such Carnot efficiency are derived during this step. The98

respective equations are presented in Section 2.3.99

(*) Scenario definition & parameter selection. Different utility scenarios are studied by activating100

or deactivating the respective integer variables. These scenarios are evaluated based both on cost and101

emissions for a continuous (24/7) process operation and a daytime only scheme. The different cases are102

presented in Section 3.1.103

2.1. Data collection & clustering (A)104

This step includes utility and process data gathering, meteorological data clustering, energy and mass105

balances formulation, and thermodynamic model development.106

2.1.1. Process and utility modeling107

A flowsheet of the process case study and proposed utility system is presented in Figure 2. The units108

marked in black (boiler, and ammonia refrigeration cycle) are the utilities in place. Units indicated with an109

asterisk (*) are newly added in this study (mainly the heat pump superstructure and solar utilities).110

Process. The analyzed dairy plant is modeled as a retrofit problem, it transforms raw milk into concentrated111

milk, pasteurized milk and cream, yogurt, and dessert. Due to various outputs, specific heat requirements112

will always be provided with respect to the raw milk inlet. The process requires heating (up to 98°C) and113

cooling (down to 4°C), which in the original plant is provided by a boiler and an ammonia refrigeration cycle.114

Heating is conveyed through steam and cooling through a water glycol mixture (from the refrigeration) or115

cooling water. The original process energy requirements are 2.1MWth of heat and 167kWel of electricity116

(from the refrigeration cycle) for a raw material consumption of 10 kg/s.117

Figure 1: Methodology applied in this study.
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Figure 3 depicts the process composite curves. The three evaporation stages of the concentrated milk118

production create a clear process pinch point at 59°C. The highest temperature heat requirement is slightly119

below 100°C. The hot minimum energy requirement, MERhot, is 1.6 MWth and the MERcold lies at 0.8120

MWth. Through process integration (maximum heat recovery) the hot utility requirement can be reduced121

by 24% (compared to 2.1 MWth).122

The plant is positioned in Switzerland and the process heat requirements are taken as constant during123

its operation. This could eventually be refined by considering shifted operation schedules of different units124

throughout a working day, but is currently not considered. A full list of process streams is provided in125

Appendix E. The dairy plant was originally modeled by Becker et al. [17, 18], who proposed options126

for reduction of CO2-emissions with mechanical vapor re-compression and heating with a co-generation127

engine. In this study, the referenced work is expanded by evaluation of a flexible heat pump superstructure128

comprising various pressure levels and allowing to optimize the refrigeration system, in addition to analysis129

of the potential for time-variant solar utility integration.130

Two process operating schedules are investigated:131

• daytime only operation (7h/day, 2625h/year), Δ132

• continuous (8760h/year), O133

Boiler (BOI). It is assumed that the boiler is already installed in the industrial retrofit problem. Therefore,134

there is no capital cost associated with the use of the boiler. The boiler is activated in all scenarios as back-up135

utility. It relies on natural gas combustion and therefore generates CO2-emissions when in operation. Part-136

load performance is neglected. All respective modeling equations and input data are specified in Appendix137

B.2.138

Flat plate collector (FP). Single glazing flat plate thermal collectors are modeled according to available139

performance data of independent testing facilities (such as the Institut für Solartechnik, (SPF) [29]) with140

solar keymark [30] status. The provided test parameters comply with the European norm for efficiency mea-141

surements of thermal collectors EN-12975. Flat plate thermal collectors produce heat up to approximately142

130°C. However, efficiency decreases with higher operating temperatures due to heat losses.143

Therefore, the operating temperature range is fit to the dairy process demand which is between 80 and144

105°C. The collector working fluid is a water glycol mixture. The efficiency is further dependent on the145

intensity of the incoming radiation and its direction. All respective performance equations and input data146

are presented in Appendix C.1.147

Photovoltaic module (PV). High efficiency mono-crystalline photovoltaic modules were considered during148

the calculation. The modeled energetic output was based on certified producer data (IEC 61215, IEC149

61730,[31] taken from the 10th year of operation. The two main parameters influencing the PV performance150

are the cell temperature (dependent on the ambient temperature, the incident radiation, and the wind speed)151

and the irradiation intensity. All relevant equations and a performance analysis are presented in Appendix152

C.2.153

Photovoltaic and thermal (HCPVT). The high concentration photovoltaic and thermal system is a concen-154

trating dish (with concentrations of up to 2000 at the focal point) with two axis tracking of the sun which155

is mounted on a tower. Electricity is generated with photovoltaic cells in the receiver positioned in the focal156

point. Highly efficient cooling prevents receiver and photovoltaic cell overheating and provides useful heat157

around 100°C. Thereby the exergetic losses of the photovoltaic conversion are recovered. High concentration158

devices can only convert direct beam radiation. Performance indicators are retrieved from producer data159

[32–35]. All modeling equations are depicted in Appendix C.3.160

Thermal storage tank (S). The thermal storage mass and energy balances are formulated based on the161

assumption of sensible heat storage at different temperature levels modeled one tank operating between two162

temperatures. An intra-cyclic constraint is introduced, which ensures that the storage is always at initial163

conditions at the end of each day. Furthermore, it is defined (in agreement with a real storage tank with164

two outlets) that the fluid leaving the storage tank is always at the lowest temperature (bottom) during165
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Figure 2: Process flowsheet including utility system. Marked in black are the utilities that are currently in place. Units with
(*) are newly added in this study.

Figure 3: Hot and cold composite curves and grand composite curve of dairy process reproduced from Becker et al. [18] for
raw milk inlet of 10 kg/s.
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charge periods or highest temperature (top) during discharge periods. More information on the storage tank166

considered can be found in Appendix C.4.167

Limitations. The performance of the three respective solar systems is modeled for one piece of equipment.168

Industrial applications require large collector fields and, therefore, a constant loss factor is introduced in169

this work to account for thermal and transmission losses in the field. This factor, in reality, scales with the170

field size and follows certain power laws. Additionally, the impact of shading on the overall output is non-171

negligible especially for the tracking systems considering the space is usually limited which is not accounted172

for either. It is planned to explore the validity of these simplifications by further in-depth analysis in future173

work.174

Heat pump superstructure (REF, MVR, HPS). A superstructure is employed which permits investigation175

of possible combinations between different heat pump components: compressors, evaporators, condensers,176

and presaturators [26].177

For selecting the optimal heat pump structure, a set of pressure levels must be defined. The active levels178

are selected during the system resolution with help of integer variables. The choices are only constrained by179

the fact that the highest pressure level must be a condenser and the lowest level needs to be an evaporator.180

Since the pressures and respective temperature levels are chosen in advance, the sizing of the components181

can be formulated by linear constraints as part of the MILP. Figure 4(a) presents a temperature entropy182

diagram to illustrate the problem definition, formulating all generic heat pump cycles after the pressure183

levels are selected. Figure 4(b) shows a flow chart of the superstructure. Connections between all pressure184

levels are defined as well as potential presaturation, evaporation, and condensation units on every level.185

This permits the generation of all possible single and multi-stage cycles between a predefined set of186

pressure levels. The one-stage refrigeration cycle in place, the vapor re-compression system as well as the187

improved multi-stage heat pump cycle are modeled with this superstructure. The performance equations as188

well as all investigated specifications are presented in Appendix B.3.189

2.1.2. Meteorological data clustering190

Meteorological data. Weather data including the solar angles (azimuth and elevation), wind speed, ambient191

temperature, and global horizontal (GHI) and direct normal (DNI) irradiance of hourly time resolution is192

retrieved from a commercial software (Meteonorm 7.0 [36]). The analysis is carried out for the Swiss city of193

Sion, having comparably high yearly solar irradiance (GHI 1430, DNI 1690 kWh/m2) relative to the rest of194

the country (1200 kWh/m2) due to a favorable micro-climate.195

Figure 4: (a) Ammonia liquid-vapor saturation curve with isobars, (b) heat pump superstructure.
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Figure 5: Load duration curve of DNI for Sion, Switzerland, of original data and 8 typical plus 2 extreme days. In background
yearly distribution of DNI of original and typical days.

Data clustering. k-means or k-medoids clustering is usually applied when robustness to outliers is required,196

or when the mean or median do not have a clear meaning. Weather data for optimal design of solar systems197

naturally falls into both categories. k-medoids clustering was selected since the resulting set is always a198

subset of the original data. A MATLAB [37] function, which is based on the widely employed Partitioning199

Around Medoids (PAM) algorithm [27], was used in order to reduce the problem size from 8760 points of200

hourly weather data to below 500 points. In Appendix D the data and parameters are described in more201

detail. Following the indications of Dominguez et al. [20], the typical days were built from n clusters with 2202

extreme days. For clustering, 3 indicators were chosen which influence the solar performance the most: DNI,203

GHI, and the ambient temperature. Since the DNI fluctuates the most on an hourly, daily, and monthly204

basis with a high influence on the solar output, it was chosen as the main reference for determination of the205

performance indicator. Also the extreme days were determined based on the DNI.206

The procedure for finding the optimal number of clusters is divided into three steps:207

1. Data normalization: The data are scaled such that all values are represented between zero and one208

[0,1]. Additionally, they are sub-divided into 365 data knots, each containing 24 hours of data.209

2. k-medoids clustering: Data clustering is performed, increasing the number of clusters after each iter-210

ation until the stopping criterion is met.211

3. Stopping criterion: The mean squared error of the normalized Load Duration Curve (LDC) of the DNI212

is used as stopping criterion, as it is found that the LDC is best representing the data characteristics.213

The limit is set to 3.5×10−4.214

mELDC2 =

8760∑
t=1

(LDCoriginal (t)− LDCtypical days (t))
2

8760

Figure 5 presents the results from the clustering algorithm. The load duration curve of the DNI is displayed215

for the original data and the typical days. In the background, the hourly data is displayed showing that216

high values can also be reached during winter. This is particular for the DNI as it is not reduced by cosine217

losses in contrast to the GHI. The fit of the LDC is below the pre-defined limit of 3.5×10−4 and is also218

visibly acceptable. In the upper right corner the resulting typical days and their occurrence are illustrated.219

The two extreme days are represented only once. It can be seen that there are few days with very low DNI.220
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2.2. System resolution (B)221

This section presents the optimization problem formulation and the respective constraints. The sets222

presented in Subsection 2.2.1 are specified in the present case study in the following manner. The set223

of utility technologies W refers to Section 2.1. W = {boiler (BOI), refrigeration (REF), mechanical va-224

por re-compression (MVR), heat pump superstructure (HPS), flat plate solar (FP), photovoltaic modules225

(PV), concentrated photovoltaic and thermal system HCPVT), thermal storage (STO), cooling water (CW),226

electricity grid (GRID)}. The set of periods P stems from Section 2.1.2.227

2.2.1. MILP utility targeting formulation228

The problem is formulated as a multi-period MILP that solves the heat cascade and finds optimal229

utility integration [8–10, 19]. The general optimization problem is described by the following set of linear230

constraints. Scalar decision variables are represented by italic letters and parameters by standard text;231

vectors and sets are represented in bold.232

Objective function. The problem objective is the minimization of the total annualized cost (TAC, depicted233

in Equation (1)) which is composed of the operating cost of each utility technology w during period p and234

the annualized investment that is found with aid of the maximum size of each technology.235

min
yw
p ,fw

p ,yw,fw

P∑
p=1

(
W∑
w=1

OPw
1,p · ywp + OPw

2,p · fwp

)
·∆tp · occp︸ ︷︷ ︸

Operating cost

+τ ·
W∑
w=1

IVw
1 · yw + IVw

2 · fw︸ ︷︷ ︸
Investment cost

(1)

Where P is the set of periods {1,2,3, ...,Np}, W is the set of utility technologies , fwp ∈ R+ is the236

multiplication factor of the reference size of a technology w during period p, ywp is a binary variable related237

to the existence of a technology w during period p, OPw
1,p [e/h] is the fixed operating cost for using the238

technology w during period p, OPw
2,p [e/h] is the proportional operating cost for using technology w during239

period p and is scaled with the multiplication factor, IVw
1 [e/y] is the fixed cost related to the investment240

of technology w, IVw
2 [e/y] is the proportional cost related to the investment of technology w, ∆tp [h] is the241

operating time of period p, occp [1/y] is the occurrence of period p, and τ = i·(1+i)n

(1+i)n−1 [-] is the investment242

cost annualization factor.243

Heat cascade constraints. The heat cascade constraints enforce the second law of thermodynamics, so that244

heat is only transferred from a hot temperature interval to a colder.245

W∑
w=1

fwp ·Q
w
p,j +

S∑
s=1

Qs
p,j +Rp,j+1 −Rp,j = 0 ∀ p ∈ P, j ∈ J (2)

Where, J is the set of temperature intervals {1,2,3, ...,Nj}, S is the set of process streams, Qw
p,j [kW] is246

the reference heat release or demand of a technology w during period p in the temperature interval j, Qs
p,j247

[kW] is the heat release or demand of process stream s during period p in the temperature interval j, and248

Rp,j [kW] is the residual heat of temperature interval j that is cascaded to the next j+1 in period p.249

Thermodynamic feasibility. The thermodynamic feasibility ensures a closed energy balance:250

Rp,1 = 0, Rp,Nj+1 = 0, Rp,i ≥ 0 ∀ i = {1, 2, ...,Nj + 1}, p ∈ P (3)

Existence of a technology. The maximum size of operation and existence of technology w is given by:251

fw − fwp ≥ 0 ∀w ∈W, p ∈ P
yw − ywp ≥ 0 ∀w ∈W, p ∈ P

fw,min · ywp ≤ uwp ≤ fw,max · ywp ∀w ∈W, p ∈ P
(4)
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Solar equation. An additional equation for the solar utilities is introduced, since their utilization (multipli-252

cation factor) which is equivalent to the installed capacity of collectors or panels cannot vary over different253

time steps. This stems from the intention to always operate the solar field at full capacity rather than254

allowing active shading of parts of the collector field or defocussing the trackers if less capacity is needed.255

Therefore, the multiplication factor in period p needs to be equal to the maximum multiplication factor.256

This implies that if the solar system is delivering more heat than the amount needed by the process, cooling257

water will be consumed to evacuate the surplus heat.258

fws − fws
p = 0 ∀ws ∈Ws ⊂W, p ∈ P (5)

Where Ws is the set of solar utility technologies. The solar radiation input and therefore the output259

does change with time, but that is accounted for in the constant solar heat release Qws
p,r [kW] during period260

p (see Appendix C).261

Computational environment. The overall thermo-economic model is solved in Lua-based platform OSMOSE262

developed at École Polytechnique Fédérale de Lausanne in Switzerland [38, 39]. In the Lua-based platform,263

the MILP problem is converted to AMPL mathematical programming language [40] and then solved by264

CPLEX [41].265

2.2.2. ε-constraint266

As mentioned, an ε-constraint was added to the MILP which constrains the CO2-equivalent emissions267

of the system. The total CO2-equivalent emissions depicted in Equation 6 are found by taking into account268

emissions from natural gas consumption and the electricity grid. Life cycle assessment of the associated269

technologies is not considered. The positive impact on the grid created by selling solar electricity was as270

well disregarded.271

CO2,tot =

P∑
p=1

(
CO2,el · EGRID · fGRID,in

p +CO2,ng ·Qng · fBOI
p

)
·∆tp · occp (6)

Where CO2,el [kgCO2eq/kWh] are the life cycle emissions related to buying electricity from the Swiss grid272

and CO2,ng [kgCO2eq/kWh] are the life cycle emissions from natural gas burning, EGRID [kW] is the reference273

electricity supply of the grid utility, fGRID,in
p [-] is the multiplication factor of the incoming grid utility in274

period p, fBOI
p [-] is the multiplication factor of the boiler in period p, and Qng [kW] is the reference natural275

gas consumption in the boiler.276

The ε-constraint ensures that the total emissions do not exceed ε, which is specified as a fraction of the277

reference emissions and which is incrementally changed in this work (between 95 and 60% of the reference278

emissions).279

CO2,tot ≤ ε (7)

2.3. Performance calculation (C)280

After the optimization step the non-linear functions, such as the investment cost are recalculated as well281

as other performance indicators depicted below. The necessary parameters are presented in Table 1.282

Operating cost. During the MILP optimization step, the buying price of electricity is set to the market283

price displayed in Table 1, while the selling price is set to a very small negative number. This serves as a284

protection against oversizing the photovoltaic systems not to become pure electricity exporters due to too285

high profits from selling electricity. The solar utilities are sized with the ε-constraint on the emissions.286

In the Performance calculation step, the operating cost are recalculated with adequate numbers. It287

is assumed that the solar utilities do not have operating costs. Therefore, the total operating costs are288

composed of the electricity bought from or sold to the grid and the natural gas consumption in the boiler.289
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Table 1: Data related to emissions, primary energy consumption and operating cost in Switzerland.

Parameter Unit Value Source

Ambient temperature Ta [K] 298 [-]
Interest rate i [-] 0.05 [-]
Equipment lifetime n [years] 20 [-]
Maintenance cost fraction of total investment m 0.05 [-]
Cost of buying electricity opel,in [e/kWh] 0.142 [42]
Cost of buying natural gas opng [e/kWh] 0.081 [42]
Emissions electricity CO2,el [kgCO2eq/kWh] 0.11257 [43]
Emissions natural gas CO2,ng [kgCO2eq/kWh] 0.20196 [43]

The selling price of electricity is set to 80% of the buying price to represent the market situation more290

realistically.291

OP tot =

P∑
p=1

(
opel,in · EGRID ·

(
fGRID,in
p − 0.8 · fGRID,out

p

)
+opng ·Qng · fBOI

p

)
·∆tp · occp (8)

Where opel,in [e/kWh] is the electricity cost, fGRID,in
p [-] is the multiplication factor of the incoming grid292

utility in period p, fGRID,out
p [-] is the multiplication factor of the outgoing grid utility in period p, The293

natural gas and electricity prices are depicted in Table 1.294

Investment cost. The investment cost of the units in-place (the boiler and standard refrigeration cycle) are295

not considered. Other investment cost functions can be found in Appendix B. All cost data are actualized296

with the Marshall and Swift index [44]. The total investment cost INVtot is calculated as a sum of the297

maximum sizes of each utility technology w in all periods p.298

Total annual cost. The total annual cost is derived from the yearly operating cost OPtot, the annualized299

investment, where τ is the annualization factor, and the maintenance cost, which is a fraction m [-] of the300

total investment, see also Table 1.301

TAC = OPtot + INV tot · (τ+ m) (9)

Carnot factor. The Carnot factor permits re-scaling the temperature levels on the standard composite302

curve. This has two advantages: firstly, the representation is more compact since the y-axis will always be303

in between -1 and 1 (equivalent to a temperature range of [-124,∞) °C) which makes visualization of the304

process easier; and secondly, the factor is proportional to the exergetic potential of a temperature level and305

therefore exergetic losses between sources and sinks can be visualized.306

ηCarnot = 1− Ta

T
(10)

3. Results and discussion307

3.1. Scenario definition308

A set of cases is analyzed in order to gain a proper understanding of the different options for energy309

efficiency improvement and emissions reduction of the studied dairy plant. In Table 2, all possible utility310

technologies and investigated cases are presented.311

The Original case refers to the current energy consumption of the plant without process integration (no312

maximum heat recovery) based on the utilities in place (boiler, one-stage ammonia based refrigeration cycle,313

and cooling water); the Reference case is based on the Original case, however, considering process integration314

with maximum heat recuperation. Subsequently, mechanical vapor re-compression around the process pinch315

(1. MVR) and a heat pump superstructure (2. HPS) improving the refrigeration cycle are proposed. The316

heat pump (1. MVR) was also proposed by Becker et al. [18]. The subsequent cases including different317

solar scenarios and the heat pump superstructure display an extension to the previous analysis.318
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Table 2: Investigated utility technology cases, first four cases: non-renewable utilities, next four: solar utilities. The grid
(GRID) and cooling water (CW, Appendix B.1) utility technologies are present for all cases. The detailed models can be found
in: Appendix B.2 (BOI), Appendix B.3 (REF, VCR& HPS), Appendix C.1 (FP), Appendix C.3 (HCPVT), Appendix C.2
(PV).

Case Process Boiler Ref- Vapor Heat pump Solar Solar Solar
integr. (BOI) rigeration re-comp. superstructure flat plate HCPVT PV
(EI) (REF) (MVR) (HPS) (FP) (HCPVT) (PV)

Original - X X - - - - -
Reference X X X - - - - -
1. MVR X X X X - - - -
2. HPS X X X X X - - -

2.1. FP X X X X X X - -
2.2. PV X X X X X - - X
2.3. PV&FP X X X X X X - X
2.4. HCPVT X X X X X - X -

3.2. Daytime operation of the process (Δ)319

Throughout this Section, daytime only operation is investigated. Due to fewer operating hours and with320

that lower operating costs less space for investment decisions is left.321

3.2.1. Reference scenario and heat pump integration322

In this Subsection, the Reference case and efficiency improvements related to heat pump integration323

are in investigated. Therefore, mechanical vapor re-compression (1. MVR), and a multi-stage heat pump324

superstructure (2. HPS) are subsequently added to the Reference case which consists of the process demands325

considering heat recovery and the utilities in place (as described in Section 3.1).326

Figure 6 depicts the integrated Carnot factor enthalpy profiles of the dairy process and respective three327

utility systems. The process curve is a rescaled version of the grand composite curve presented in Figure 3328

and represents the net heating and cooling demands of the dairy process considering maximum heat recovery.329

The active utilities for each case, which are responsible for closing the energy balance, were selected and330

sized during the utility targeting step (in Section 2.2.1) by minimizing the total annual costs. The three331

investigated utility systems are depicted in this integrated Carnot factor enthalpy diagram as an envelope to332

the process composite curve (thus ensuring energy conservation). Figure 7 and Table 3 provide an illustration333

and the resulting data of the discussed scenarios, respectively.334

Reference case. The utility envelope (black, Figure 6) of the Reference case shows at a high temperature335

plateau (T ≈1000°C, ηCarnot = 0.77) the radiative heat release of the boiler (BOI) and down to 50°C the336

convective heat release of its combustion gases. At 30°C (ηCarnot = 0.02) the condensation level of the337

refrigeration system (REF) in place is visible. Cooling water (CW) is consumed at 15°C (ηCarnot = −0.03)338

to remove the waste heat from the condensation of the refrigeration systems as well as part of the medium339

temperature waste heat from the process. The energy balance is closed with the evaporation level of the340

refrigeration cycle which provides refrigeration at -2°C (ηCarnot = −0.1).341

The exergy losses between the utility system and the process composite curve are represented by the342

area between the two curves. Especially between the boiler producing heat at very high temperatures, but343

also in the lower temperature range between the process self-sufficient pocket and the utility system drastic344

exergy losses are visible. This becomes increasingly clear when looking at the cooling water which is used345

for final cooling of the evaporation stage of the refrigeration cycle and partial cooling of the steam from346

the concentrated milk production which summed up to a cooling water consumption of 23.6 kWh/t of raw347

material (see Table 3).348

The total annual costs, TAC, between the Original case and the Reference case were reduced from 5.9 to349

4.3 e/t of raw material if only the reduction in heating and cooling needs are considered and it reduced to350

5.1 e/t of raw material, if the estimated capital investment of the retrofit heat exchanger network (HEN)351

analysis are considered.352
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Figure 6: Integrated composite curves of the dairy process and respective utility system. [Reference] case with utilities in place,
compared to case [1. MVR] with additional mechanical vapor re-compression around 67°C, and [2. HPS] with additional heat
pump superstructure between -2,15,30, and 50°C.
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Figure 7: Illustration of the conversion cycles involved in the respective scenarios.

Table 3: Utility integration scenarios as described in Section 3.1. Costs and energy specific consumption data (referred to ton
of raw material. (*) TAC neglecting HEN retrofit cost estimation

Original Reference 1. MVR 2. HPS

Operating costs OPtot [e/t] 5.9 4.3 2.9 2.6
Natural gas cons. Qng [kWh/t] 64.6 47.9 28.1 24.3
Electricity cons. EGRID [kWh/t] 4.6 2.6 4.6 4.8
Compressor size EHPcomp [kW] 167.0 94.7 111.8 55.2 87.5 65.1 10.4 9.7
Coeff. of performance COPc [-] 5.7 4.8 11.6 4.8 11.6 11.0 11.0
Cooling water cons. Qcw [kWh/t] n.a. 23.6 7.8 4.5
Compressor cap. exp. INVHPcomp [e/t] 0 0 0.190 0 0.221 0.042 0.040
Heat exchang. area AHEN

tot [m2] 826 1032 1161
Number of HEX NHEN

min [-] 48 64 85
HEN capital cost est. INVHEN [e/t] 0.9 1.2 1.5

TAC w/o HEN TAC* [e/t] 5.9 4.3 3.1 3.0
Total annual costs TAC [e/t] 5.9 5.1 4.3 4.4

12



1. MVR. Introducing a mechanical vapor re-compression unit (1. MVR) elevates the pressure of the steam353

exiting the milk evaporation unit to produce useful heat above the process pinch. In Figure 6, this can354

be seen by two horizontal lines surrounding the process pinch (T={56,76}°C, ηCarnot = {0.1, 0.15}). What355

has to be noted is that by reusing the steam released in the milk production, the self-sufficient pocket is356

provided with less heat, meaning that the process can no longer be self-sufficient in the lower temperature357

range. This is, however, compensated by the evaporation stage of the refrigeration cycle which provides358

useful heat (at elevated condensation levels of 35°C) to the process in this scenario. Exergetic losses were359

thus drastically diminished, as well as the cooling water (from 23.6 to 7.8 kWh/t of raw material, Table360

3) and the natural gas consumption (from 47.9 to 28.1 kWh/t of raw material). The electricity usage was361

slightly increased (from 2.6 to 4.6 kWh/t of raw material) which permits the calculation of the incremental362

coefficient of performance COP= ∆Qng/∆EGRID = 9.9 [-]. Where Qng and EGRID are the natural gas and363

electricity consumption respectively (as reported in Table 3). On top of this improvement in efficiency, the364

total annual cost dropped from 5.1 in the Reference case to 4.3 e/t of raw material due to drastic reductions365

in the operating costs.366

The elevation of the condensation level (from 30 to 35 °C) is an engineering choice which was motivated by367

the fact that the size of the mechanical vapor re-compression unit is constrained by how much heat could be368

delivered to the process from the evaporation stage of the refrigeration cycle. By elevating this temperature369

more use of vapor re-compression could be made and a higher incremental COP was be achieved. However,370

there is a limit to increasing the upper pressure of an existing compressor.371

2. HPS. Therefore, a heat pump superstructure (2. HPS) is introduced to explore further installation of372

heat pumps with respect to the total annual costs. Adding the heat pump superstructure provides various373

options for single-and multi stage cycles between -2 and 50 °C (in 2 °C intervals) to the system resolution.374

With this, a new utility system configuration was found consisting of the refrigeration cycle in place, the375

mechanical vapor re-compression unit, and two new heat pump cycles between -2 and 15 °C and between 30376

and 50 °C. In Figure 6 it can be seen that this lead to a higher use of the mechanical vapor re-compression377

unit, because more heat could be provided to the process by the heat pumps. And this imposed a further378

decrease in the boiler consumption and, consequentially, a reduction of the exergy losses in the system. The379

total annual costs not considering the HEN costs (disregarded in the MILP) were reduced as well. However,380

considering the estimated capital expenses for the HEN, the TAC slightly increased from 4.3 to 4.4 e/t of381

raw material. The cooling water consumption was further decreased from 7.8 to 4.5 kWh/t of raw material;382

and the electricity consumption was only slightly increased from 4.6 to 4.8 kWh/t. This originated from the383

use of a lower temperature refrigeration cycle (-2 to 15 °C) with a higher COPc of 11, which resulted in a384

reduction of the consumption of the refrigeration in place (COPc 4.8). Thereby the incremental COP was385

further improved to 24.2 [-] with respect to the previous scenario (1. MVR).386

Summary. What can be concluded from here is that more complex systems (in terms of heat pumping) offer387

higher potential from the energetic point of view. And more complex systems require more complex tools (as388

illustrated with integration of the heat pump superstructure). However, there is always a trade-off between389

efficiency improvements accompanied by potential operating cost reduction and increase of the complexity390

of the system and therewith the heat exchanger network. The presented results indicate the strong potential391

of such installations and enunciates the importance of investigating selected case studies in further detail.392

In the next Section, the relation between efficiency improvements (through heat pumping) on solar sizing393

is presented and general guidelines are provided.394

3.2.2. Heat pump & solar integration395

Process schedule. Figure 8 depicts the process operating scheme and solar global horizontal (GHI) and direct396

normal (DNI) radiation during all typical periods. The winter days are marked by DNI levels exceeding the397

GHI, meaning that the sun elevation is not very high. The starting hours of the process operation was set to398

8:00 o’clock in the morning lasting between 7 and 8 hours per day in order to form 2625 operating hours per399

year. This is a design choice attempting to overlap process operation with the sunshine hours. Observing400

the overlap between solar radiation and process operation, it becomes clear that there are several instances401
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Figure 8: Process operation scheme and solar radiation during all typical periods. (GHI: Global Horizontal Irradiance, DNI:
Direct Normal Irradiance.)

in which the overlap would be more aligned with the solar insolation if the process starting time was shifted402

to later in the morning. However. knowing that many manufacturing schedules traditionally start at earlier403

hours, 8:00 o’clock was the accepted trade-off.404

In the daytime operation, the option of storage is not considered. As seen in Figure 8, the main lack of405

solar energy occurs in the early morning hours. It is difficult to store thermal energy over night and thus it406

was unreasonable to consider storage of solar energy for these periods of low solar productivity.407

ε-constraint optimization. The results from the ε-constraint optimization can be seen in Figure 9. The408

two heat pump cases (1. MVR 6.2 & 2. HPS 5.5 kg CO2-eq/t) were determined without ε-constraint as409

described in Section 3.2.1. Among these, the best scenario in terms of emissions was chosen as reference for410

the solar integration (2. HPS). For integration of the solar components the ε-constraint was gradually set to411

a fraction of these reference emissions (between 95 and 60%) while minimizing the total system cost. In this412

way a Pareto type curve was produced (Figure 9(a)) between the annualized investment cost and the specific413

emissions. As expected, with decreasing emissions the annualized investment costs increased. The solar cases414

are presented with error bars (the data of which can be found in Appendix C.1,Appendix C.2, Appendix415

C.3). Especially for the HCPVT system which is the most novel technology with the most volatile prices,416

this is a reasonable assumption. Under the current input data, the solar cases performed very similarly417

in terms of investment cost. The total annual cost in Figure 9(b) include besides the investment cost also418

the operating expenses. This leads to a different distribution of the data points. In terms of total annual419

cost, both heat pumping scenarios and most solar options were profitable with respect to the Reference420

case (of the utilities in place). The relative emission reductions amounted to 27% (between Original and421

Reference scenario) due to heat recuperation, 38% due to mechanical vapor re-compression (from Reference422

to 1. MVR), and 12% due to improved refrigeration (from 1. MVR to 2. HPS). The solar scenarios further423

decreased the emissions by 5-40% (ε =95-60%) with respect to the 2. HPS scenario.424

It can be observed that some solar technologies potentially resulted in higher emission reductions than425

others. With PV modules the least reductions were achieved since they could not replace the boiler natural426

gas consumption; however, their advantage is the ability to sell overproduction to the grid. Still, up to427

20% emission reduction was be achieved integrating solar PV. The reduction is achieved by replacing the428

incoming electricity from the grid with green electricity. The HCPVT system and combined FP and PV429

can reach the highest emission reductions at reasonable cost. At specific CO2 reductions of 3.8 kg CO2-430

equivalent/ton of raw material, which is equivalent to 70% of the best heat pump only (reference) case,431

the TAC of all solar systems overlap, which indicates that this establishes an appropriate balance between432

operating, investment cost and energy waste.433
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The uncertainty related to the solar investment cost is indicated on Figure 9, but not the uncertainty434

related to the heat exchanger area cost estimation. This is a rough estimation with errors varying between435

20 and 40%; therefore, grand conclusions should not be drawn when considering a difference in TAC between436

10 and 20%.437

Figure 9(c) illustrates the associated total costs of the different scenarios. The operating cost are pre-438

dominant in the Reference case, which explains the fact that the total cost of the solar scenarios did not439

drastically increase. This is attributed to a shift from operating expenses to specific investment cost.440

A break even CO2 tax was calculated with respect to the case with lowest TAC (1. MVR). If the441

respective tax was applied all cases would exhibit the same costs as scenario 1. MVR. The tax lied between442

100 and 300 e/ton CO2-equivalent which is slightly higher than the current prices, but in the same order443

of magnitude.444

Figure 10(a) depicts the optimal active solar area for different CO2-equivalent emissions (ε∈ [60%, 95%])445

of all studied solar collector types. It can be observed that the required solar area increased with decreasing446

CO2-equivalent emissions. The relationship between emission reduction and active solar area does not447

follow a linear regression, but rather flattens out, especially for HCPVT and PV (and the lowest three FP448

data points) systems. This is attributed to the interconnectivity of the system, where higher solar thermal449

production has an influence also the utilization of the heat pumps and mechanical vapor re-compression450

and therewith on the electricity inflicted CO2-equivalent emissions. And vice versa, the solar electricity451

production directly affects the utilization of the heat pumps which influences the boiler consumption.452

The HCPVT system required the smallest active area in comparison to the other solar technologies. This453

stems from the high total conversion efficiency. It has to be noted though that due to two axis tracking and454

Figure 9: Results from ε-constraint optimization of different solar options for daytime only process operation.
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the danger of shading, the actual required land area may be increased by a factor of 2.455

Figure 10(b) shows the integrated Carnot factor enthalpy profiles of the dairy process and respective456

utility systems. Flat plate collectors (scenario 2.1 FP) at 80% emissions with respect to the 2. HPS case457

(at 4.3 kg CO2-equivalent/ton of raw material) are shown at solar noon during different typical days. The458

optimization results show that in comparison to the 2. HPS scenario, a different heat pump configuration459

was chosen: instead of two heat pumps (30 to 50 °C and -2 to 15°C) a two stage heat pump between -2,460

15, and 50 with flash gas removal and intercooling at 30°C was selected during the MILP. In the curve, this461

can be traced with help of the missing evaporation plateau at 30°C which is present in case 2 .HPS. The462

higher operational cost due the higher electricity consumption were compensated by reduced natural gas463

consumption and apparently higher flexibility towards solar variations. This supports again the advantage464

of the holistic approach that takes into account the complete system for the complete operating range.465

It is further visible that the solar thermal production drastically contributed to reducing the exergetic466

losses between process and utility system, as it produces heat at temperatures much closer to the actual467

requirements.468

Figure 11 shows a graphical representation of the multi-period results of case 2.1 FP at 80% emissions469

with respect to case 2. HPS. In (a) the hot utility streams heat load and meteorological input data are470

shown, illustrating that the solar flat plate collector output (filled area) reduces the boiler consumption. The471

Figure 10: (a) Optimal active solar area, from ε-constraint optimization (ε between 95 and 60%). (b) Integrated composite
curves of the dairy process and respective utility system. [Reference, 1. MVR, 2. HPS] and Solar integration of Case 2.1 FP
at 80% emissions with respect to the reference and 4.3 kg CO2-equivalent/ton of raw material during different typical days.

Figure 11: Solar integration, Case 2.1 FP∆ at 80% emissions with respect to the reference i.e. 4.3 kg CO2-equivalent/ton
of raw material, multi-period MILP results: (a) hot utility streams heat load vs time, (b) multi-period integrated composite
curves of the dairy process and respective utility system.

16



solar output follows the available global radiation drawn in gray. In Figure 11(b) the respective integrated472

composite curves are shown for multiple periods. Close investigation shows the pattern of the solar output473

from Figure 11(a) in the high temperature plane of the boiler in the curves in Figure 11(b). This is related474

to the much lower operating temperatures of the solar system compared to the boiler and the related drop475

on the temperature axis.476

It should be noted that the required boiler output changes drastically over time when solar heat is present.477

This might have an influence on the overall efficiency of the energy conversion if part load performance of478

the boiler is modeled in more detail, which was not considered here.479

In conclusion, it can be stated that there is high economic and environmental potential for this type480

of industrial dairy plants for heat pump and solar integration. Results may be extrapolated to other481

low temperature food processing plants especially when operated in the underlying temperature range.482

Integration of both types of systems, solar and heat pumping should always be investigated with a holistic483

approach. For further steps, it is crucial to investigate the heat exchanger network design to explore technical484

feasibility of integrated systems.485

3.3. Continuous process operation (O)486

Throughout this Section, continuous process operation is investigated. Due to a higher number of487

operating hours (8760 vs 2625h) and with that increased operating costs more space for investment decisions488

is potentially available.489

Figure 12 shows the results from the ε-constraint optimization. It can be observed that the raw material490

specific annualized investment cost were lower than the cost for the daytime only operation. This is explained491

by the higher operating hours and thus increased yearly raw material consumption. This increase had no492

Figure 12: Results of ε-constraint optimization of different solar options for continuous process operation.
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influence on the specific operating cost which scale linearly with the raw material consumption. But the493

estimated HEN area and compressor sizes remains unchanged compared to daytime only operation and,494

therefore, the specific capital cost estimations decrease for a higher yearly raw material consumption. This495

leads to lower TAC of the 2. HPS scenario in comparison to 1. MVR and daytime operation.496

This decrease in relative specific investment costs also showed improvements for the flat plate (FP) and497

photovoltaic modules (PV) at low emission reductions (ε= 95%), which in this case are both profitable with498

respect to the best non-solar case (2. HPS). The PV system could not reach higher emission reductions than499

95%, because batteries are not considered and the positive impact from a renewable source to the grid is not500

counted. With increasing emission reductions the solar size and cost increased and the flat plate scenarios’501

TAC reached slightly above best non-solar case. The HCPVT exhibited the smallest specific TAC of all502

solar options as the overproduced electricity could be sold and therefore the operating costs decrease.503

The option of storage was only chosen by the optimizer for emission reductions below and including 80%504

(FP) and 70% (HCPVT), respectively. This is attributed to the additional investment cost imposed by the505

storage. Therefore, if the emission goals could be achieved without storage, the storage was not selected.506

The storage volume of the FP cases amounted to 182m3 (80%) which resulted in an investment cost of about507

5% of the investment cost for the solar collectors, and for the HCPVT to 80m3 (70%) which corresponded508

to 3% of the solar investment cost.509

Figure 13(a) depicts the optimal active solar area for different CO2-equivalent emissions (ε∈ [70%, 95%])510

of all studied solar collector types. Similarly to the daytime only operation, it can be observed that the511

required solar area increased with decreasing CO2-equivalent emissions. This was, however, not the case512

between the FP 80 and 75% emission reductions. Referring to Figure 12(c), it becomes clear that the513

improvement in emission reductions was achieved by an increase in operating cost and compressor investment514

cost, rather than an increase in solar collector area. This solution together with the 70% FP&PV case should515

be excluded from further conclusions as they lead to an extreme oversizing of the heat pump system without516

thermodynamic needs in order fulfill the ε-constraint. This could be prevented by choosing more carefully517

the variable bounds for the heat pump cycles. As seen in the case of daytime only operation, it can be seen518

that the HCPVT system required the smallest active area in comparison to the other solar technologies for519

strong emission reductions due to high efficiency and high uptime.520

Figure 13(b) shows the integrated composite curves of the dairy process and respective utility systems.521

The HCPVT system (scenario 2.1 HCPVT) at 70% emissions with respect to the 2. HPS case (at 3.8 kg522

CO2-equivalent/ton of raw material) are shown at solar noon and evening during two typical days. The523

same heat pump configuration as for the daytime operation scheme was chosen by the optimizer: instead of524

two heat pumps (30 to 50 °C and -2 to 15°C, 2. HPS) a two stage heat pump between -2, 15, and 50 with525

Figure 13: (a) Optimal active solar area, from ε-constraint optimization (ε between 95 and 70%). (b) Integrated composite
curves of the dairy process and respective utility system. [Reference, 1. MVR, 2. HPS] and Solar integration of Case 2.4
HCPVTO at 70% emissions with respect to the reference i.e. 3.8 kg CO2-equivalent/ton of raw material during different
typical days.
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flash gas removal and intercooling at 30°C. During noon at day 1, there was not enough solar heat available526

to cover the process demand completely which is why the boiler was required to back-up.527

On day 7 at solar noon, the HCPVT produced heat which was not required by the process. As a result,528

the storage system was filled which can be seen by the little nose in the curve. This permits to store the529

surplus of heat in the thermal storage unit, which can then be released in the evening when solar heat is not530

available. This can be seen on the third curve, where the storage system provides the low temperature heat531

for the process and the HCPVT system is not active any more. The behavior of the storage system, boiler,532

and solar dish is further illustrated in Figure C.18 (in Appendix C.4) indicating a prolongation of the solar533

operation between 1-4 hours (at ε=70%).534

It has to be noted that with the HCPVT the boiler is always active to provide high temperature heat535

that cannot be provided by the HCPVT due to a process utility pinch. Limiting the operating range of the536

boiler between the maximum and a minimum at 80% of the maximum would make study of the storage537

system even more interesting and put aside the question of part load performance of the boiler, but was not538

considered in this work. This will, however, be subject to further studies.539

4. Conclusions540

The work presented here has proposed a comprehensive methodology that allows simultaneous optimiza-541

tion of the process’ refrigeration and solar utility system with respect to economic and environmental criteria.542

This includes data collection and clustering, development of a heat pump superstructure, and multi-period,543

ε-constrained Mixed Integer Linear Programming (MILP) optimization. The proposed methodology was544

demonstrated on the basis of a dairy plant where different solar components are compared and evaluated545

based on the total cost and CO2-equivalent emissions. The methodology permits to derive cost optimal546

solar field, heat pump, and thermal storage tank sizing as well as optimal operation of the system during547

all operating periods at selected emission levels.548

Optimization of heat recovery, heat pump, and mechanical vapor re-compression placement (disregarding549

the solar options) shows reduced exergy destruction and total costs at increased energy efficiency in the550

system.551

Three solar systems were investigated for daytime only and continuous operation of the dairy process:552

photovoltaic modules (PV), flat plate collectors (FP), and a high concentration photovoltaic and thermal553

system (HCPVT). One mayor conclusion from the presented case study is that integration of solar energy can554

contribute to reduce the environmental impact and exergetic losses of the process at beneficial total costs.555

Solar energy is, however, only selected by the thermo-economic optimization algorithm in combination with556

an optimized system comprising heat recuperation, mechanical vapor re-compression, and heat pumping.557

This supports the choice of a comprehensive approach.558

For continuous operation of the process, the reduction in specific emissions was not as significant as559

for daytime only operation. Due to the capital cost the thermal storage system, it is only chosen by560

the optimization for high emission reductions requirements. Photovoltaic panel integration offers the least561

emission reduction potential (up to 20% reduction in daytime only operation with respect to the best non-562

solar case). However, installation is simple, independent, and if overproduced, can be exported to the563

grid. In comparison, the HCPVT system, has high potential with very high efficiencies bringing emission564

reductions easily up to 40% (daytime only) at uncertain cost and shading losses. The very low cost, low565

efficiency flat plate collectors offer a simple solution providing more reliability of the system performance566

capital cost expenses with emission reductions of up to 30% (daytime only).567
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Appendix A. Heat Exchanger Network (HEN) cost699

The heat exchanger area is estimated as presented by Ian C. Kemp [45–47] (area targeting) based on700

vertical intervals placed between the hot and cold composite curves. In each interval the approximate heat701

exchanger area is estimated based on the logarithmic mean temperature difference, the hot and cold average702

heat transfer coefficients, and the heat transferred within the interval. The total area AHEN
tot [m2] is found703

by the summing over all intervals. Estimation of the installed heat exchanger capital expenses springs from704

the assumption that all heat exchangers are equal.705

CHEN
p = a + b ∗

(
AHEN

tot,p

NHEN
min,p

)c

∗NHEN
min,p (A.1)

The minimum number of heat exchangers (units) NHEN
min to be placed in each zone (between pinches) is706

estimated following the suggestion of Linnhoff et al. [48] based on graph theory. The cost correlations are707

taken from Taal et al. [49] reprinted from Hall et al. [50] and can be found in Table A.4 for retrofit heat708

exchanger costs. The total cost is calculated for each period p ∈ P and the final installed cost is then found709

as the maximum of all periods.710

CHEN = max
p

(
CHEN

p

)
(A.2)

Table A.4: Heat exchanger network (HEN) cost estimation parameters from Hall et al. [50] reprinted by Taal et al. [49](2.33)
updated to 2015 e, Carbon steel (CS)-CS heat exchangers.

Parameter Symbol Value Unit
Heat exchanger cost estimations HEN

Fixed parameter a 9’500 e
Scaling parameter b 460 e/m2

Non-linear parameter c 0.8 -

711

Appendix B. Non-renewable technologies712

Appendix B.1. Cooling water (CW)713

The cooling water is modeled by one cold stream between 15 (Tcw
in ) and 17°C (Tcw

out). The operating cost714

are negligible as the cooling water is assumed to origin from a river close by the plant. The cooling thermal715

stream is formulated by the following relation, where cCW
p [kJ/kgK] is the specific heat capacity, and mcw,716

1 kg/s, is the reference mass flow rate.717

QCW = mCW · cCW
p ·

(
TCW

out − TCW
in

)
(B.1)

Appendix B.2. Boiler (BOI)718

The boiler heat release is modeled by three streams: air preheating, radiative and convective thermal719

power from natural gas combustion. The total heat release is derived by a multiplication of the lower heating720

value (LHV) with the reference fuel flow rate including the efficiency. Cooling down the combustion gases721

from the adiabatic flame temperature to a pre-defined radiation temperature defines the radiative component722

and is displayed as a hot stream at constant temperature (radiation temperature). The convective component723

is defined as a hot stream between the radiation temperature and the exhaust gases outlet temperature.724

The air preheating is written as a cold stream from ambient to preheating temperature. This practice has725

been published by Maréchal et al. [51] and is applied in the same manner by Becker et al. [18]. The heat726

release is illustrated below in equation B.2.727
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QBOI = − Qpre

∣∣Tpreh

Ta
+ Qrad|Trad

+ Qconv|
Trad

Tout
(B.2)

The parameters are described in Table B.5. The boiler investment cost is set to zero, since it is already728

in-place. The natural gas consumption (eq. B.3) is derived from the boiler useful heat release based on729

a conversion fraction. The conversion fraction includes the thermal losses as well as the part of the heat730

released in the combustion that is dispensed in the exhaust gases and therefore not delivered to the process731

as useful heat.732

Qng = QBOI/fBOI (B.3)

Table B.5: Boiler (BOI) parameters, adapted from [18].

Parameter Symbol Value Unit

Investment (in-place) IVBOI 0 e/kW

Adiabatic flame temperature Tf
ad 2768 °C

Radiation temperature Trad 1027 °C
Exhaust gases temperature Tout 120 °C
Air preheating temperature Tpreh 120 °C
Radiative heat load Qrad 28842 kW
Convective heat load Qconv 15031 kW
Air preheating load Qpreh 1740 kW
Boiler conversion fraction fBOI 90 %

Appendix B.3. Heat pump superstructure733

In the following, the heat and electricity consumption and production of all heat pump utilities are734

described for a reference mass flow rate which is to say, a fixed size. These parameters enter into the utility735

targeting constraints (1)-(4) and are multiplied with sizing factors.736

The heat release in a condenser at temperature level Ti of fluid f for a reference flow rate mref is composed737

of two parts: condensation at the saturation temperature and subcooling between saturation and subcooling738

temperature. Likewise, the heat consumption in an evaporator is defined.739

Q
HPcond/evap

i = mref ·
(

[hV (Ti)− hL (Ti)]Ti
+ [hL (Ti)− hSC (Ti)]

Ti

Ti,SC

)
= mref ·

(
∆hcond/evap (Ti) + ∆hSC (Ti)

) (B.4)

Also the liquid side of the presaturator needs to be cooled down to the subcooling temperature.740

Q
HPpresat,SC

i = mref · [hL (Ti)− hSC (Ti)]
Ti

Ti,SC
(B.5)

Desuperheating from the superheated vapor balance can be achieved by mixing in the presaturator or741

with help of a heat exchanger.742

Q
HPdesupQ

i = mref · [hSH (Ti)− hV (Ti)]
Ti,SH

Ti
(B.6)

The power consumption depends on the isentropic efficiency and the enthalpies of both pressure levels.743

E
HPcomp

k→i = mref ·
[

hisentropic,k (Ti)− hV (Tj)

ηisentropic

]
(B.7)

The non-linear cost function for compressors [in e, 2010] is formulated after reference [52] reprinted by [18]744

where the installation factor was assumed to be 1.5.745

IVHP,comp = 1.5 · 1500 · 1600.1 · (EHP,comp)
0.9

(B.8)
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To ensure mass and energy conservation within the heat pump, linear constraints are defined at all liquid,746

vapor and superheated vapor points. These constraint are added to the utility targeting constraints. These747

equations are further documented in [26].748

Figure B.14 presents the annualized compressor capital costs as a function of the compressor power rating749

including the maintenance cost and its linear fitting function which was assumed during the MILP problem750

resolution.751

y = 0.3064x + 0.8256
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Figure B.14: Linearized, annualized capital cost function of the compressor, including maintenance costs.

Table B.6: Heat pump parameters.

Parameter Symbol Value Unit

Heat pump superstructure (HPS)

Investment IVHPs eq. (B.8)
Temperatures THPS

cond,1 -2,10,15,20,25,30,35,40,45,50 °C
Isentropic compressor efficiency η

HPS
comp 0.76 -

Fluid Ammonia

Refrigeration in-place (REF)

Investment IVREF 0 e/kW
Condenser temperature TREF

cond 30 &35 °C
Evaporator temperature TREF

evap -2 °C
Isentropic compressor efficiency η

REF
comp 0.76 -

Fluid Ammonia

Vapor recompression as proposed by [18] (MVR)

Investment IVHP eq. (B.8)
Condenser temperature THP

cond 76 °C
Evaporator temperature THP

evap 56 °C
Isentropic compressor efficiency η

HP
comp 0.76 -

Fluid Water

Appendix C. Solar technologies752

Global horizontal radiation. The global solar radiation incident on a plane is composed partly of direct and753

partly of diffuse radiation reflected from the ground, clouds and the atmosphere. A common measurement754

provided by weather stations around the globe is the Global Horizontal Radiation (GHI, gh, [W/m2]) as755
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well as the Direct Normal Incindence (DNI, bn, [W/m2]) or beam radiation. The GHI is derived from the756

diffuse and the direct radiation incident on the plane [53].757

gh = dh+bh

= dh+bn · cos (θs)
(C.1)

where dh [W/m2] is the diffuse horizontal and bh [W/m2] is the direct horizontal radiation, θs [°] is the758

solar zenith angle indicated in Figure C.15 (in grey) as the angle between the earth surface normal (zenith)759

and the sun.760

Figure C.15: Angles of the sun and an inclined surface.

Global radiation on inclined surface. The global radiation present on an inclined surface (i) is derived from761

the solar beam on the slope and the present diffuse radiation. The direct beam on an inclined surface is762

calculated by the product of the direct horizontal radiation and the cosine of the incidence angle between763

beam and slope. Calculation of the diffuse component on a slope is not trivial since the diffuse sky radiation764

is anisotropic meaning that it is not uniformly distributed over the hemisphere. Perez et al. [54, 55] offer765

correlations for modeling the anisotropic component of the diffuse radiation. In order to keep the problem766

at reasonable complexity the isotropic diffuse model proposed by Liu and Jordan [56], reprinted in [57] is767

used in this work. It is divided into three components: the beam, isotropic diffuse, and global radiation768

diffusely reflected from the ground (Eq. 2.15.1 [57]).769

gi = bn · cos (λis)︸ ︷︷ ︸
bi

+ dh ·
(

1 + cos (θi)

2

)
︸ ︷︷ ︸

di

+ gh · ρg ·
(

1− cos (θi)

2

)
︸ ︷︷ ︸

ggr,i

= bi + di + ggr,i

(C.2)

where bi [W/m2] is the direct beam, di [W/m2] is the sky diffuse and ggr,i [W/m2] is the ground reflected770

diffuse radiation present on the surface i, θi [°] is the slope inclination. The ground reflectivity is given in771

Table C.7.772

Under the assumption that the solar angles are known, the incidence angle of the solar beam with respect773

to an inclined surface λis can be calculated (Eq. 1.6.3 [57]) as follows.774

cos (λis) = cos (θs) · cos (θi) + sin (θs) · sin (θi) · cos (γs − γi)
= sin (αs) · cos (θi) + cos (αs) · sin (θi) · cos (γs − γi)

(C.3)
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Table C.7: Parameters to calculate incident radiation.

Parameter Symbol Value Unit

Ground reflectivity [58] ρg 0.154 -

Appendix C.1. Solar thermal: flat plate collector (FP)775

The efficiency of solar thermal collectors at steady state conditions is commonly described by a quadratic776

performance curve that depends on the operating temperature TFP
m = 0.5 ·

(
TFP

in + TFP
out

)
, the incoming radi-777

ation intensity during that period gp,i [W/m2], the conversion factor ηFP
0 , and two experimental parameters778

aFP
1 and aFP

2 .779

The general conversion factor is defined by the absorber material, thickness, and heat transfer fluid780

flow characteristics. The first experimental coefficient is usually related to the collector convective heat781

losses, and the latter is influenced by the collector re-radiation losses. The temperature dependent efficiency782

Equation C.4 is then written as follows ([57] Eq. 6.17.7, [22]).783

η
FP
p = ηFP

0 − aFP
1 · TFP

m − Tp,a

gp,i
− aFP

2 · gp,i ·

(
TFP

m − Tp,a

gp,i

)2

∀p ∈ P (C.4)

All parameters can be found in Table C.8. The formula accounts for a reduction in efficiency for operating784

temperatures higher than the ambient (due to thermal losses) and for reduction in efficiency due to reduced785

radiation intensities at normal incidence. However, since panels are installed at a fixed position, an incidence786

angle modifier is introduced in order to account for optical losses related to the angle of the incident radiation.787

By definition, it is set to one at 0° incidence and is usually provided at 50°. In order to find other data788

points a cosine law is traditionally suggested (e.g. 6.17.10 [57] also in ASHRAE 93-2003), which however789

cannot be evaluated for angles close to 90°. Therefore an Ambrosetti type Equation [59] is used here which790

can be evaluated up to 90°.791

fFP
IAM (λ) = 1− tana

(
λ

2

)
(C.5)

where the coefficient a here provided in Table C.8, is usually derived from known data at a certain inclination792

(e.g. 50°); for beam radiation, the incidence angle λ is equivalent to the solar angle of incidence on the slope793

λis [°]. For the diffuse and ground reflected component, the incidence angle is found from Equation (C.6)794

based on the slope inclination θFP
i ([57], Figure 5.4.1, Eq. 5.4.1, 5.4.2).795

λid = 90− 0.5788 · θFP
i + 0.002693 ·

(
θ

FP
i

)2

λigr = 59.7− 0.1388 · θFP
i + 0.001497 ·

(
θ

FP
i

)2 (C.6)

With this, the time-dependent thermal energy production QFP
p [W] of the solar flat plate collectors can be796

formulated.797

QFP
p = ηFP

p · f
FP
field ·

(
bp,i · fFP

p,IAM,ib + dp,i · fFP
IAM,id + gp,gr,i · f

FP
IAM,ir

)
·AFP ∀p ∈ P (C.7)

where each type of radiation (direct beam bp,i, sky diffuse dp,i, ground reflected diffuse gp,gr,i) is multiplied798

with the respective incidence angle modifier Eq. (C.5,C.6), the collector area, thermal field loss factor (Table799

C.8) and efficiency from Eq. (C.4).800

Performance. Figure C.16 shows the thermal conversion efficiency ηFP
p,tot = QFP

p /(gh,p ∗AFP) of the thermal801

energy production of a flat plate collector QFP
p in period p with respect to the global horizontal radiation802

gh,p in each period p. This efficiency is comprised of not only the conductive and radiative thermal losses,803

but also the losses caused by the non-perpendicular angle of incidence of the sun. Since the collectors are804

installed in a fixed position, different angles of inclination need to be tested. The graph indicates clearly805

26



Figure C.16: Thermal conversion efficiency of flat plate (FP) solar thermal collectors as a function of time for different inclination
angles, performance equations presented in Appendix C.1.

that in some days (e.g. day number four and eight) collectors with 55° inclination outperform the collectors806

with smaller inclination angles. This stems from the fact that on these (winter) days the solar elevation807

angle is not very high (see Figure 5) and collectors installed at higher inclination can capture more of the808

incoming radiation. On days in the middle of the summer (e.g. day number seven and nine), the solar809

elevation angle is very high and therefore the collectors with the smallest inclination angles exhibit the best810

performance. In the end, the total yearly performance is the most important indicator which is displayed in811

Figure C.16 for all the inclination angles. It is weighted by the relative occurrence of each typical period in812

the year. An inclination angle of 35°with an overall efficiency of about 25.3% exhibits the best performance813

and was therefore chosen for further analysis.814

This average efficiency of the considered flat plate collectors is far below the theoretical maximum of up to815

60%. In this study a balance is struck between performance and capital investment. The efficiency of single816

glazed flat plate thermal collectors drops with higher operating temperatures, lower ambient temperatures,817

and the inclination of the sun. These insufficiencies are partly overcome by better insulation or by changing818

the collector model (e.g. evacuated tube collectors). Both of these options come at distinctly higher costs819

Table C.8: Flat plate solar collector (FP) parameters, if no other indication, data taken for single glazing flat plate collectors
from Tehnomont [60] data tested by SPF [29].

Parameter Symbol Value Unit

Ground reflectivity ρg 0.154 -
Heat transfer fluid water glycol mix
Investment cost ([29],2012) IVFP 196 e/m2

Installation cost factor fFP 1.5 -
Total investment {min,max} {200,600} e/m2

Collector area AFP 2.059 m2

Standard efficiency/ conversion factor η
FP
0 0.74 -

Efficiency coefficient 1 aFP
1 3.5940 W/m2K

Efficiency coefficient 2 aFP
2 0.00864 W/m2K2

Incidence angle modifier coefficient a 2.40 -
Fluid inlet temperature TFP

in 80 C
Fluid outlet temperature TFP

out 105 C
Slope Inclination (recommended: similar to latitude) θ

FP
i 35 °

Azimuth, shift towards south γ
FP
i 0 °

Thermal field loss factor fFP
field 0.97 -
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(factor 2 and higher [29]) and were, therefore, not considered.820

Appendix C.2. Photovoltaic module (PV)821

As mentioned before, the two main parameters influencing the PV performance is the cell temperature
and the irradiation intensity. The cell temperature can be determined by correlations found in the literature
(Eq. 23.3.4 [57]).

TPV
p,c = Tp,a +

gp,i
gNOCT

· 9.5

5.7 + 3.8 · vp,a
·
[
1−
η

PV
m

(τα)

]
·
(
TPV

NOCT − Ta,NOCT

)
∀p ∈ P (C.8)

where Tp,a is the (time dependent) ambient temperature, vp,a is the ambient wind speed, and gp,i is the global822

incident radiation on an inclined surface during period p (see Appendix C). The irradiation and ambient823

temperature at nominal operating cell temperature (NOCT) conditions as well as all other parameters are824

depicted in Table C.9. The ambient temperature and wind speed are provided from the meteorological data825

described in Section 2.1.2.826

A factor accounting for the influence of the incident radiation intensity is calculated by linear interpolation
between the standard testing conditions (STC, see Table C.9) and the certified indication at 200W/m2.

fPV
p,g = f200 +

(
gp,i − g200

)
· 1− f200

gSTC − g200

∀p ∈ P (C.9)

The time-dependent electricity production EPV
p [W] is then written according to the following (Eq. 23.2.16

[57]).

EPV
p = ηPV

m · fPV
gen · f

PV
p,g ·

[
1− fPV

T ·
(
TPV

p,c − TPV
STC

)]
· gp,i ·APV ∀p ∈ P (C.10)

where all parameters such as the module area, the temperature reduction factor, and the electrical conversion827

factor are depicted either in Table C.9 or in the Equations above.828

Table C.9: Photovoltaic module (PV) parameters, if no other indication, data taken from [31]. Nominal Cell Operating
Temperature (NOCT) are a set of conditions which are defined in order to find the nominal cell operating temperature.
Standard Testing Conditions (STC) are at 1000W/m2, 25°C cell temperature and air mass 1.5.

Parameter Symbol Value Unit

Investment cost [61] IVPV 260 e/m2

Installation cost factor fFP 1.5 -
Total investment {min,max} {300,800} e/m2

Maximum power 290 W
Module area APV 1.63 m2

Module efficiency η
PV
m 0.178 -

Temperature reduction factor fPV
T 0.004 -/K

Efficiency reduction at g200 = 200W/m2 f200 0.98 -
STC radiation gSTC 1000 W/m2

Nominal Operating Cell Temperature TNOCT 45 °C
NOCT radiation gNOCT 800 W/m2

NOCT ambient temperature Ta,NOCT 20 °C
NOCT wind speed va,NOCT 1 m/s
Inclination (around latitude) θ

PV
i 30 °

Azimuth, shift towards south γ
PV
i 0 °

Effective transmittance-absorptance product τα 0.9 -
Electrical conversion factor fPV

gen 0.95 -
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Performance. Figure C.17 shows the conversion efficiency from the global horizontal irradiance (GHI) gp,i829

in each period p to the electricity produced in the photovoltaic modules ηPV
p,tot = EPV

p /(gp,i · APV), where830

EPV
p is the electrical production of a PV module in period p. As discussed previously, the GHI only covers831

the fraction of the solar radiation that hits the earth at a perpendicular angle. This allows the conversion832

efficiency (if it is described in this manner) to exceed the rated efficiency of the PV modules (e.g. on day 1),833

since the inclined modules may capture more of the inclined sun rays than the GHI takes into account. The834

assessment also changes if shadowing is taken into account, though this was not considered as a factor in this835

study. The winter days (1, 4, and 9) show due to this peculiarity and due to lower ambient temperatures the836

highest efficiencies. In agreement with the observation from the plate collectors, it can be seen that higher837

inclinations are favored in winter days while lower inclination angles perform better during summer days.838

The highest overall efficiency is found for the lowest inclination angle of 30°with an average of 18.1%. Such839

efficiencies may only be reached for high performance PV modules such as the ones assumed. More detailed840

modeling, considering shading and conversion losses, will most likely show lower performance values.841
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Figure C.17: Electrical conversion efficiency of photovoltaic modules (PV) solar thermal collectors as a function of time for
different inclination angles, input data presented in Appendix C.2.

Appendix C.3. Photovoltaic and thermal (HCPVT)842

High concentration devices only convert direct beam radiation. Performance indicators are retrieved843

from the producer [32–35]. Due to the high concentration ratio, the efficiency is assumed to be independent844

of the incident radiation intensity and due to the two axis tracking the angle of incidence is always zero. The845

time-dependent electricity EHCPVT
p [W] and thermal energy production QHCPVT

p [W] is formulated according846

to the following.847

EHCPVT
p = fHCPVT

gen · ηHCPVT
el · bp,n ·AHCPVT ∀p ∈ P

QHCPVT
p = QHCPVT

p,prim

∣∣THCPVT
out,prim

THCPVT
in,prim

+ QHCPVT
p,sec

∣∣THCPVT
out,sec

THCPVT
out,prim

= fHCPVT
field ·

(
η

HCPVT
th, prim+ηHCPVT

th, sec

)
· bp,n ·AHCPVT ∀p ∈ P

(C.11)

where bp,n is the direct beam normal radiation in period p, all further parameters are presented in Table848

C.10. The primary efficiency ηHCPVT
th,prim stems from the PV cell cooling while the secondary efficiency ηHCPVT

th,sec849

is derived from the cooling of the secondary concentrators positioned immediately prior to the receiver. The850

PV cell cooling is constrained by the cell temperature which should not exceed 100°C; therefore, the cooling851

stream cannot reach temperatures higher than 95°C. The secondary cooling, contrary to the restriction im-852

posed for the primary PV cooling, can reach any superheating temperature. Therefore, two thermal streams853

are produced which are between the three temperatures THCPVT
in,prim , THCPVT

out,prim, and THCPVT
out,sec . The average854
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yearly overall efficiency of the HCPVT system with respect to the DNI is 24%el and 55%th, respectively,855

which is extremely high and may be overestimated.856

857

Table C.10: High concentration photovoltaic and thermal system (HCPVT) parameters, data taken from [32].

Parameter Symbol Value Unit

Heat transfer fluid water glycol mix
Investment cost IVHCPVT 700 e/m2

Dish area AHCPVT 40.05 m2

Installation cost factor fFP 1.5 -
Total investment {min,max} {500,1500} e/m2

Primary efficiency η
HCPVT
th,prim 0.5 -

Secondary efficiency η
HCPVT
th,sec 0.05 -

Electrical efficiency η
HCPVT
el 0.25 -

Fluid temperature primary in THCPVT
in,prim 85 °C

Fluid temperature primary out THCPVT
out,prim 92 °C

Fluid temperature secondary out THCPVT
out,sec 110 °C

Thermal field loss factor fHCPVT
field 0.9 -

Electrical conversion factor fHCPVT
gen 0.9 -

Performance. The HCPVT conversion efficiencies are not depicted here as they are assumed to be constant858

over time independent from the irradiance and other potentially influencing factors such as the ambient859

temperature (active cooling). The dish thermal efficiency is assumed to approximate 55%, and the electrical860

efficiency 25%. Constant electrical conversion losses and solar thermal losses in the field were considered in861

this study.862

Appendix C.4. Storage863

The MILP Equations of the storage are explained by Becker et al. [18], where the thermal storage mass864

and energy balances are formulated based on different temperature levels modeled as different interconnected865

tanks. The implementation relies on the mass storage presented by Moret et al. [62] which is expanded to866

represent the thermal behavior. The parameters of the sensible heat storage are presented in Table C.11.867

The non-linear storage [e/m3, 2002] cost is taken from [63] where the volume V is in m3, and an868

installation factor of 1.5 is assumed.869

IVSTO = 1.5 ∗ 18179 · (V · 1000)
−0.3653

(C.12)

The coefficients of the linearized, annualized, and actualized cost IV STO = a + b ∗ V are depicted in Table870

C.11.871

Table C.11: Storage parameters.

Parameter Symbol Value Unit
Storage tank STO

Investment IVSTO Eq. (C.12)
Constant investment cost coefficient a 871 e/a
Linear investment cost coefficient b 67.5 e/m3/a
Hot temperature (FP, HCPVT) Th 90,85 °C
Cold temperature Tc 75 °C
Hourly thermal losses 0.1 %/h
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Performance. Figure C.18 illustrates the thermal storage filling in addition to the boiler and solar dish872

behavior over a selected range of operating periods. The storage is charged when the availability of the sun873

exceeds the process requirements (at around 80% of its total potential) and is consumed with decreasing874

solar availability. It can be seen that the solar availability is increased by the storage or in other words875

that the boiler utilization is reduced due to the emptying of the tank, which indicates the advantage of the876

storage. For higher utilization of the storage, the ε-constraint would have to be decreased.877

Figure C.18: Thermal storage volume and temperature distribution between typical day 6 and 9 with HCPVT solar dish and
non-stop operation of the industrial process, case 2.4. HCPVTO at ε= 70% of the 2. HPS case. In dark blue: operation of
boiler and solar dish normalized between [0,1].

Appendix D. Weather data & clustering878

Follwoing the indications of Dominguez et al. [20] the typical days are built from n clusters with 2879

extreme days. For clustering, 3 indicators are chosen which influence the solar performance the most: DNI,880

GHI, and the ambient temperature. Since the DNI fluctuates the most on an hourly, daily, and monthly881

basis with a high influence on the solar output, it is chosen as the main reference for determination of the882

performance indicator. Also the extreme days are determined based on the DNI, which means that one883

extreme day is found for the highest daily radiation and lowest solar radiation. In Figure 5 in the upper884

corner the typical days and their occurrence are illustrated. The two last days are extreme days which are885

represented only once. The operating time of one period is one hour which leads to 240 operating periods.886

Table D.12 displays the yearly average values and mean squared error of the six weather data attributes887

of which only three are subject to the clustering. The yearly means of the three attributes that are used for888

clustering are very close to the original data and thus the error of the first three indicators is comparably889

small. Errors for the outside temperature and the wind speed, however, are distinctly higher. This may890

be explained by stronger fluctuations throughout the year even though the ambient temperature is used as891

input to the k-medoids clustering.892

Appendix E. Dairy process893

The process streams as discussed in [18] are depicted in Table E.13.894
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Table D.12: Data of typical days compared to original.

Attribute Unit Meanoriginal Meantypical mELDC 10−4

GHI [W/m2] 163.2 163.3 1.685
DNI [W/m2] 192.8 190.1 3.242
Elevation αs [°] 14.1 13.4 2.603
Azimuth γs [°] 44.4 45.2 5.592
Ta [°C] 10.7 10.5 51.321
va [m/s] 2.1 3.1 100.837

Table E.13: Hot and cold streams of the dairy process, reproduced from Becker et al. [18].

Unit Name Tin Tout Heat load ∆Tmin/2 Remarks
[°C] [°C] [kW] [°C]

Regrigeration ref 6.0 4.0 76.0 2.0 refrigeration inlet milk

Pasteurization pasto1a 4.0 66.0 2356.0 2.0 preheating
pasto2a 66.0 86.0 676.4 2.0 pasteurization milk
pasto3a 86.0 4.0 2773.2 2.0 refrigeration milk
pasto4a 66.0 98.0 119.7 2.0 pasteurization cream
pasto5a 98.0 4.0 351.6 2.0 refrigeration cream

Concentration eva1 4.0 70.3 504.0 2.0 preheating
eva2 70.3 70.3 904.2 1.2 evaporation 1.effect
eva3 66.4 66.4 864.1 1.2 evaporation 2.effect
eva4 60.8 60.8 849.8 1.2 evaporation 3.effect
eva5 60.8 4.0 151.5 2.0 refrigeration concentrated milk
eva6 68.9 68.9 904.2 1.2 condensation 1.effect
eva7 65.9 65.9 864.1 1.2 condensation 2.effect
eva9 68.9 15.0 87.8 2.0 condensation 3.effect
eva10 65.9 15.0 80.8 2.0 cooling condensates 1.effect

Condensates cooling eva8 60.1 60.1 849.8 1.2 cooling condensates 2.effect
eva11 60.1 15.0 69.7 2.0 cooling condensates 3.effect

Yoghurt production yog1 4.0 94.0 1026.0 2.0 heating
yog2 94.0 10.0 957.6 2.0 cooling

Desert production des1 4.0 90.0 817.0 2.0 heating
des2 90.0 70.0 190.0 2.0 cooling

Hot water hw 15.0 55.0 167.2 2.0 hot water prodcution

Cleaning in place CIP1a 58.7 70.0 188.6 2.0 maintain temperature CIP1
CIP1b 65.0 15.0 104.5 2.0 recuperation waste heat CIP1
CIP2a 67.5 80.0 209.5 2.0 maintain temperature CIP2
CIP2b 75.0 15.0 125.4 2.0 recuperation waste heat CIP2

Fridge frig 5.0 5.0 300.0 2.0 maintain storage temperature
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