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Here, we first discuss the matrix representation of the
parameters of the layers of each of the streams in our ar-
chitecture. We then present in more detail our approach
to estimating the matrices {A1

i } and {A2
i } from the inner

part of the computed residual transformation {Ti}, which
was omitted from the main paper due to space restriction.
We also report additional experiments that show that our
method is independent from the specific domain discrep-
ancy loss term Ldisc we rely on.

1. Matrix form of the parameters
In Section 3.1 of the main paper, we showed that repre-

senting the layers’ parameters in vector form results in hav-
ing very large transformation matrices A,B, which leads to
extensive memory usage and significant reduction in train-
ing speed. To overcome this problem, we propose to repre-
sent the layers’ parameters in matrix form. Our strategy for
different layer types is as follows:

• Fully connected layer. Such a layer performs a trans-
formation of the form y = σ(Ax + b), where A is
a matrix and b a vector whose size is the number of
rows of A. In this case, we simply concatenate A and
b into a single matrix.

• Convolutional layer. Such a layer is parametrized by
a tensor W ∈ RNout×Nin×fx×fy , where the convo-
lutional kernel is of size fx × fy , and a bias term
b ∈ RNout . We therefore represent all these parame-
ters as a single matrix by reshaping the kernel weights
as an Nout×Ninfxfy matrix and again concatenating
the bias with it.

Following these operations, the parameters of each layer i
in the source and target streams are represented by matrices
Θs

i and Θt
i, respectively.

2. Least-Squares Solution
In Section 3.3.1 of the main paper we show how to an-

alytically compute {Ti}, that is, the approximation of the

solution to Eq. 12. Here we discuss in more detail, how to
estimate the transformation matrices {A1

i }, {A2
i } from the

resulting {Ti}. Recall that, for each layer i ∈ Ω, the inner
part of the residual parameter transformation Ti is defined
as

Ti =
(
A1

i

)ᵀ
Θs

iA
2
i + Di , Ti ∈ Rli×ri . (1)

As discussed in Section 3.3.1 of the main paper, we can
estimate A1

i ∈ RCi×li and A2
i ∈ RNi×ri by fixing Di,

which in turn allows us to rewrite Eq. 1 as(
A1

i

)ᵀ
Θs

iA
2
i = Ti −Di , (2)

and solve it in the least-squares sense. Eq. 2, however, is
under-constrained, which leaves us with a wide range of
pairs {{A1

i }, {A2
i }} that satisfy it. Therefore, in order to

make the learning process stable, we suggest finding the op-
timal {A1

i } and {A2
i } that are the closest to the Adam [1]

estimates {Â1
i }, {Â2

i }, as discussed in Section 3.3.1 of the
main paper. To do so, for every layer i ∈ Ω, we first find
the least-squares solution to

A1
i = argmin

Ã1
i

∥∥∥Ã1
i − Â1

i

∥∥∥2

2
+

∥∥∥(Ã1
i

)ᵀ
Θs

i Â
2
i −Ti + Di

∥∥∥2

2
,

(3)
and then substitute the resulting A1

i into

A2
i = argmin

Ã2
i

∥∥∥Ã2
i − Â2

i

∥∥∥2

2
+

∥∥∥(A1
i

)ᵀ
Θs

i Ã
2
i −Ti + Di

∥∥∥2

2
,

(4)
which we then solve in the least-squares sense. As both of
these problems are no longer under-constrained, this pro-
cedure results in a solution {A1

i }, {A2
i } that will both be

close to the Adam estimates {{Â1
i }, {Â2

i }} and approxi-
mately satisfy Eq. 1. We can then remove the rows of ma-
trix A1

i and columns of A2
i that correspond to the rows and

columns of Ti with an L2 norm less than a small ε, as they
will make no contribution on the final transformation.
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fj ∈ RNj layer outputs
pj ∈ RD layer output projections
Rj ∈ RNj×D random projection matrices
f ∈ RD resulting feature representation

Nj number of output neurons of layer j ∈ Λ
Λ predefined set of layers
D predefined projection dimensionality

Table 1: Notation

3. Additional Experiments
To show that our method does not depend on the specific

form of the domain discrepancy loss term Ldisc, we have
replaced the domain classifier from DANN [2], which we
used in the main paper, with the one from RMAN [3] that
was recently introduced and showed state-of-the-art perfor-
mance on many Domain Adaptation tasks. In short, this ap-
proach builds upon the methods of [2] and [4] by combining
the outputs from multiple layers of the feature extracting ar-
chitecture using random multilinear fusion.

More formally, in RMAN [3], the outputs {fj} of a pre-
defined set of layers Λ are projected into D-dimensional
vectors {pj} via a set of random projection matrices {Rj}.
Table 1 describes the notation in more detail. The resulting
feature representation f is then formed as

f =
1√
D

(
�|Λ|j pj

)
, j ∈ Λ (5)

where � is the element-wise (Hadamard) product. Finally,
f is passed to the domain classifier φ, which tries to predict
from which domain the sample comes, in the same way as
done in [2]. We then construct Ldisc in the same manner
as in Section 3.2 of the main paper. In short, the major
difference between DANN [2] and RMAN [3] is the input to
the domain classifier, which allows for an easy integration
of this method with our approach.

As the code for RMAN is not currently available, we
reimplemented it and report the results on the SVHN →
MNIST domain adaptation task. To this end, we used the
SVHNET [5] architecture that was discussed in more detail
in Section 4.2.1 of the main paper. To fuse the output of
the final fully-connected layer and the raw classifier output
into the 128-dimensional representation f, we used projec-
tion matrices {Rj}, the elements of which were sampled
from the a Gaussian distributionN (0, 1). The domain clas-
sifier that operates on f has exactly the same architecture
as the one used in DANN [2] for the SVHN→MNIST do-
main adaptation task. In Table 2 we compare the results
of our approach that uses the RMAN-based domain dis-
crepancy term with the original RMAN method, which can
be seen as a version of ours with all the parameters in the
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Figure 1: Automated complexity selection. Reduction of
the transformation ranks in each SVHNET layer. The layers
are shown on the x-axis and the corresponding ranks before
and after optimization on the y-axis.

Accuracy: mean [std]

RMAN [3] 81.0 [0.77]
Ours 84.6 [1.26]

Table 2: Comparison of our method that uses the RMAN-
based domain discrepancy term with the original RMAN
algorithm on the SVHN→MNIST domain adaptation task.

corresponding layers shared between the source and target
streams. Note that our approach, which allows to transform
the source weights to target ones, significantly outperforms
RMAN. Fig. 1 illustrates the reduction in the complexity of
the parameter transfer for every layer of the SVHNET archi-
tecture. As in our experiments in the main paper, the ranks
of the transformation matrices are significantly reduced dur-
ing the optimization process.
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