
A Machine Learning-Based Strategy for Efficient Resource

Management of Video Encoding on Heterogeneous MPSoCs

Arman Iranfar, William Andrew Simon, Marina Zapater, David Atienza

Embedded Systems Laboratory (ESL), Swiss Federal Institute of Technology Lausanne (EPFL), Switzerland

{arman.iranfar, william.simon, marina.zapater, david.atienza}@epfl.ch

Abstract—The design of new streaming systems is becoming a
major area of research to deploy services targeted in the Internet-
of-Things (IoT) era. In this context, the new High Efficiency Video
Coding (HEVC) standard provides high efficiency and scalability
of quality at the cost of increased computational complexity for
edge nodes, which is a new challenge for the design of IoT
systems. The usage of hardware acceleration in conjunction with
general-purpose cores in Multiprocessor Systems-on-Chip (MP-
SoCs) is a promising solution to create heterogeneous computing
systems to manage the complexity of real-time streaming for
high-end IoT systems, achieving higher throughput and power
efficiency when compared to conventional processors alone. Fur-
thermore, Machine Learning (ML) provides a promising solution
to efficiently use this next-generation of heterogeneous MPSoC
designs that the EDA industry is developing by dynamically
optimizing system performance under diverse requirements such
as frame resolution, search area, operating frequency and stream
allocation. In this work, we propose an ML-based approach for
stream allocation and Dynamic Voltage and Frequency Scaling
(DVFS) management on a heterogeneous MPSoC composed of
ARM cores and FPGA fabric containing hardware accelerators
for the motion estimation of HEVC encoding. Our experiments on
a Zynq7000 SoC outline 20% higher throughput when compared
to the state-of-the-art streaming systems for next-generation IoT
devices.

Index Terms—HEVC, resource management, machine learn-
ing, heterogeneous MPSoC.

I. INTRODUCTION

Real-time video streaming and processing is one of the ma-

jor services targeted by the Internet of Things (IoT) paradigm.

Video streaming is expected to reach 80% of global traffic

by 2019 [1], with services such as Netflix and YouTube

accounting for over 50% of downstream traffic [2]. High

Efficiency Video Encoding (HEVC) is a next-generation video

coding standard that provides twice the compression of its

predecessors for the same video quality. If properly man-

aged, its unprecedented configurability enables matching the

throughput/quality needs of the myriad of available IoT edge

nodes. However, due to its increased complexity, to achieve

real-time encoding, the use of heterogeneous Multiprocessor

Systems-on-Chip (MPSoCs) brought by the EDA industry and,

in particular, of hardware accelerators, is required.

In this context, a few works on the EDA community

have considered hardware acceleration for HEVC encoding

and, in particular, for Motion Estimation (ME), due to its

high computational burden [3]. Among them, a high-level

This work has been partially supported by the EC H2020 MANGO project
(GA No. 671668), and the ERC Consolidator Grant COMPUSAPIEN (GA
No. 725657).

synthesis design flow that maps the intra-prediction block

into a SoC-FPGA is presented in [4], while different design

aspects of a heterogeneous multicore model are assessed in

[5]. Nonetheless, none of these works take into account inter-

picture prediction as one of the most demanding, yet essential,

stages of the encoder. Although Paul et al [6] investigate

the advantages of heterogeneous MPSoCs for accelerating

different stages within an image processing algorithm, they

do not address the HEVC computational complexity.

However, variations in video features (e.g., resolution)

and contents (e.g., motion) pose a challenge to efficient re-

source management (RM) of heterogeneous MPSoCs, making

hardware acceleration by itself not sufficient to provide the

efficiency (in terms of throughput and power) required to

enable real-time video streaming. Therefore, static hardware

acceleration needs to be combined with heterogeneity-aware

runtime RM, with the goal of serving as many users (i.e.,

encoding as many videos) as possible, with a given quality

and under a certain power cap. In such scenarios, the large

variety of devices requiring different video configurations,

together with the high workload variation in terms of number

of requests, makes Machine Learning (ML), and in particular

reinforcement learning, a promising approach to deal with such

large environment-dependent problems [7].

In this work, we propose an ML-based RM strategy for

heterogeneous MPSoCs that allocates different video streams

(in terms of resolution and motion) to general-purpose cores

and hardware accelerators (IPs), while setting the frequency

of both. In particular, we consider a heterogeneous MPSoC

composed of ARM cores and an FPGA fabric on which we

implement several IPs of the ME algorithm. Our goal is to

maximize the number of streams being processed at the same

time and their total throughput while satisfying a minimum

throughput per-stream and a user-defined power constraint.

Therefore, the ML learns to properly allocate each input

stream to an ARM core based on the frame resolution, the

motion (which is mainly driven by search area), and the cores’

available capacity while adjusting the operating frequency of

the hardware accelerators (i.e, IPs) and ARM cores. Fig. 1

shows an overview of our approach.

The main contributions of this paper are as follows:

• We propose a ML-based approach for multistream HEVC

encoding on heterogeneous MPSoCs that learns from per-

stream throughput and total power consumption based on

resolution and motion. The ML agent selects the best

frequency per IP and core, and the best allocation to

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Infoscience - École polytechnique fédérale de Lausanne

https://core.ac.uk/display/211981919?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

ARM Cores Hardware Accelerators

IP

4

IP

3

IP

2

IP

1

IP

5

IP

6

IP

8

IP

7
Stream8

Stream7

Stream6

Stream5

Stream4

Stream3

Stream2

Stream1

DVFS

Stream

Allocation
R

e
s

o
u

rc
e

 M
a

n
a

g
e

r

1

2

3

4

5

6

7

8

MPSoC
Per-Stream Throughput

Chip Power

Fig. 1. Overall view of the proposed ML-based resource management
approach.

available cores, maximizing the per-stream throughput

and the total number of streams that can be processed

simultaneously under a user-defined power constraint.

• We show how our ML-based approach is able to achieve

20% higher throughput without any power violation when

compared to other state-of-the-art techniques.

• Upon any change in the number of streams or their res-

olution and motion, our approach reaches its maximized

throughput 1.5x faster than the state-of-the-art techniques.

II. PROPOSED METHOD

Efficient heterogeneity-aware RM for HEVC encoding in

MPSoCs requires tackling application configuration, stream

allocation and DVFS for both general-purpose cores and IPs.

This requires exploring a very large and dynamic design space.

On one hand, streams have different inherent features, such

as frame resolution, and need specific encoding configura-

tions [8], such as search area (SA), which drives motion

estimation, that make the workload and resource demand vary

from one stream to the other. On the other hand, among the

different combinations of streams that could potentially be pro-

cessed at the same time, there could be many sub-optimalities

in regards to core allocation and core and IP frequencies. An

exhaustive search in the design space is required to avoid

such sub-optimalities. However, conventional offline static

approaches cannot guarantee handling the dynamic changes in

the environment (e.g., when a new configuration is needed).

Therefore, in this work, we propose machine learning (ML)

and, in particular, reinforcement learning as a promising

solution to deal with such a dynamism in the design space at

runtime [7]. The goal is to learn the best allocation of streams

to cores, as well as the operating frequency of each core and IP,

from the total power consumption and the output throughput,

for each SA and resolution combination.

In particular, we leverage the Q-learning algorithm which is

composed of a finite action set, A, a finite state space, S, and

an agent. The agent acts according to a learned policy,π , which

is a mapping from the state space to the action set while taking

into account the reward value granted to each state-action pair.

This value implies whether, given a state, an action is worth

applying. The Q-Learning agent maximizes this reward by

storing a Qπ(s,a) value to represent the quality of each state-

action pair in a Q-table. This value demonstrates the most

probable long-term reward, considering starting from state, s,

applying action a, and following the policy π . Note that the Q-

table does not need to keep values of all theoretically defined

state-action pairs, but only those that are observed at runtime.

The Q-values and the Q-table are updated as follows [7]:

Qt+1(st ,at) = Qt(st ,at)+αt(st ,at)× [Rt+1+

γ maxQt+1(st ,a)−Qt(st ,at)]
(1)

where Qt(st ,at) and Qt+1(st ,at) are, respectively, the current

and updated Q-values corresponding to at action and st state,

Rt+1 is the reward observed after at is applied for state st ,

αt(st ,at) determines the learning rate, and γ is the discount

factor and controls the significance of the history of the Q-

values against the recently obtained reward.

Our proposed ML-based approach consists of two phases.

In the exploration phase, once the learning process starts, at

each observed state, the ML agent takes a random action from

an action pool and calculates the reward, updating the Q-

table by Eq. 1. Since we aim at learning per-stream SA and

resolution, we need to create and keep one Q-table for each

resolution/SA pair. The exploration phase for each state-action

pair (st ,at) continues until the corresponding learning rate,

which is defined as:

αt(st ,at) = λ/Num(st ,at), (2)

drops below a threshold. In this formulation, Num(st ,at) is

the number of observations of the state-action pair, and λ is a

constant [9]. Afterwards, the exploitation phase begins, where

the ML agent stops updating the Q-tables and selects the most

appropriate action for each observed state.

In what follows, we describe the state space, the action set,

and the proposed reward functions.

A. States

Since the goal of this work is power- and throughput-aware

RM of heterogeneous MPSoCs, the state space is defined as:

S = {Ptotal ,Th} (3)

where Ptotal is the total power consumption, and Th is a vector

of throughputs for each running stream.

B. Actions

The proposed action set includes adding a stream, removing

a stream, increasing/decreasing the frequency of an IP, and

increasing/decreasing the frequency of an ARM core:

A = {Str+,Str−, fIP,inc, fIP,dec, fARM,inc, fARM,dec} (4)

While adding a new stream to the existing running streams

may lead to a higher total throughput, removing a stream is

not desirable. In other words, once an encoding request is

accepted, the encoding process must be guaranteed to complete

within a certain time. However, we introduce this action since

it might be required to reduce power consumption.

At each decision step, only one action must be taken.

Therefore, we can only change the frequency of one (and

only one) IP or core. When the action is fIP,dec(fIP,inc) or

fARM,dec(fARM,inc), both in exploration or exploitation, we let

the agent apply the frequency change only for the stream with

the highest(lowest) throughput.

C. Reward Function

The reward function must provide useful feedback about the

selected action for a previous state. Since we are minimizing

power consumption and maximizing performance, we propose

a reward function composed of two sub-functions, as follows:

rtot = c1rper f + c2rpower (5)

where rper f and rpow are the reward functions for performance

and power, respectively. In this work, we consider equal

significance coefficients (ci) for both rewards.

We define rper f to encourage the ML agent to choose actions

leading to higher performance while avoiding those resulting

in any performance loss:

rper f =



















N
β
str

Nstr

∑
i=1

T hi/T hre f ,i ∀i T hre f ,i < T hi

−1 ∃i T hi < T hre f ,i

(6)

where Nstr is the total number of streams being processed, and

T hre f ,i is the reference throughput (frame per second, FPS) for

the ith stream. This reference throughput is obtained based

on the maximum throughput achievable on an Intel server

at its maximum frequency, as explained in Section III. We

experimentally prove that the following inequality holds for

all SAs and resolutions given the maximum frequencies for

IPs and ARM cores, as specified in Sec. III:

1 ≤ T hi/T hre f ,i < 15 (7)

This inequality indicates that on our specific heterogeneous

MPSoC, the achieved throughput for an individual stream is

always greater than the reference one, but not larger than

15 times. However, when considering multiple streams at

the same time, the cumulative throughput does not increase

beyond 40 FPS. Therefore, since the goal in (7) is to first

maximize the number of served streams while meeting their

minimum reference throughput, we choose β equal to 5.3

which satisfies the worst case scenario. This value leads the

ML agent to seek for increasing the number of concurrent

streams, while guaranteeing the minimum required throughput

of each individual stream. After fully occupying all available

resources, the ML agent takes actions to increase the through-

put of each individual stream.

In order to keep power consumption under a user-defined

constraint (Pconst) we propose the following reward function:

rpower =







0 P < Pconst

−2.5×106 P > Pconst

(8)

TABLE I
THROUGHPUT (ENCODED FRAMES PER SECOND) FOR DIFFERENT

RESOLUTIONS AND SEARCH AREAS, INTEL PROCESSOR

Resolution
Search Area

4 6 8 10 12

704x576 0.62 0.31 0.19 0.13 0.09

1280x720 0.26 0.13 0.08 0.05 0.04

1920x1080 0.11 0.066 0.03 0.02 0.02

On one hand, reducing the power consumption below the

constraint should not give a positive reward, since it ultimately

results in lower throughput. On the other hand, any violation

of the power constraint must add a large enough negative

value (here, −2.5× 106 because the maximum value of the

performance reward is always less than 8β × 40) to the total

reward function, so that the corresponding action is avoided.

III. EXPERIMENTAL SETUP

In this work, experiments are performed on the Xilinx ZC-

706 equipped with a Zynq7000 SoC, type Z-7045 [10]. The

chip comprises a dual core Cortex-A9 ARM processor with a

maximum frequency of 1 GHz. The chip also contains FPGA

fabric consisting of 350K logic blocks and 19.2 Mb of BRAM.

The board comes with a 1GB DDR3 RAM chip clocked at

533 MHz, and a 8GB SD card as primary storage.

Our reference throughputs are calculated on an Intel E5-

2690 v4 server [11]. These values represent the highest

throughputs achievable on a high-performance homogeneous

platform, and ultimately show the gains of our ML-based

approach running on a low-power heterogeneous SoC. This

server contains 14 cores with a maximum clock speed of

3.5 GHz, 28MB LLC, and 250GB of memory. When calculat-

ing application throughput we tie the application to one core

to prevent OS interference. TABLE I contains our reference

throughput in frames per second, sorted by frame resolution

and SA.

Our system utilizes FPGA-mapped accelerators (IPs) to

speed up motion estimation (ME), which allows HEVC en-

coding to be performed on the much smaller and energy effi-

cient ARM core, while maintaining comparable or improved

throughput compared to the Intel processor [12] at a much

lower power consumption. We implement 8 such IPs on the

FPGA fabric, allowing up to 8 encoding applications to run

simultaneously on the FPGA. These applications will share the

2 ARM cores. The IPs can be individually clocked to 50, 100,

150, or 200 MHz, and the two ARM cores can be individually

clocked to 333, 666, 800, or 1000 MHz.

Some simplifications are made in our setup to ease experi-

mentation. We assume the 3 resolutions listed in TABLE I and

we limit SA to even values between 4 and 12. This already

gives us a range of over 1.4 trillion combinations. We also

assume that there are always streams queued to be added to

the system, meaning the ML approach can add a new stream

as an action whenever it is necessary.

We have profiled each combination of SA, resolution, and

ARM and IP frequency. This profiling data is used to estimate

REFERENCES

[1] Cisco Systems, Inc., “Cisco visual networking index: Forecast and
methodology 2015-2020. cisco whitepaper.” 2016.

[2] Sandvine, Inc., “Global internet phenomena report,” 2013.
[3] Y. Lu, W. Cheng, L. Huang, X. Zeng, and Y. Fan, “A flexible HEVC

intra mode decision hardware for 8kx4k real time encoder,” in ASIC

(ASICON), 2015 IEEE 11th Int. Conf. on. IEEE, 2015, pp. 1–4.
[4] P. Sjövall, J. Virtanen, J. Vanne, and T. D. Hämäläinen, “High-level

synthesis design flow for HEVC intra encoder on SoC-FPGA,” in DSD,

2015 Euromicro Conf. on. IEEE, 2015, pp. 49–56.
[5] J. Brandenburg and B. Stabernack, “Simulation-based hw/sw co-

exploration of the concurrent execution of HEVC intra encoding algo-
rithms for heterogeneous multi-core architectures,” Journal of Systems

Architecture, vol. 77, pp. 26–42, 2017.
[6] J. Paul, W. Stechele, B. Oechslein, C. Erhardt, J. Schedel, D. Lohmann,

W. Schröder-Preikschat, M. Kröhnert, T. Asfour, É. Sousa et al.,
“Resource-awareness on heterogeneous MPSoCs for image processing,”
Journal of Systems Architecture, vol. 61, no. 10, pp. 668–680, 2015.

[7] R. S. Sutton and A. G. Barto, Reinforcement learning: An introduction.
MIT press Cambridge, 1998, vol. 1, no. 1.

[8] A. Iranfar, M. Zapater, and D. Atienza, “Work-in-progress: a machine
learning-based approach for power and thermal management of next-
generation video coding on MPSoCs,” in CODES+ISSS, 2017, pp. 1–2.

[9] A. Iranfar, S. N. Shahsavani, M. Kamal, and A. Afzali-Kusha, “A
heuristic machine learning-based algorithm for power and thermal
management of heterogeneous MPSoCs,” in ISLPED, 2015 IEEE/ACM

Int. Symp. on. IEEE, 2015, pp. 291–296.
[10] [Online]. Available: https://www.xilinx.com/products/boards-and-

kits/ek-z7-zc706-g.html
[11] [Online]. Available: https://www.intel.com/content/dam/www/public/

us/en/documents/datasheets/xeon-e5-v4-datasheet-vol-1.pdf
[12] A. Iranfar, F. Terraneo, W. A. Simon, L. Dragić, and I. P. et al., “Thermal

characterization of next-generation workloads on heterogeneous MP-
SoC,” in SAMOS XVII., 2017.

