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When there is so much to be known,
when there are so many fields of knowledge

in which the same words are used with different meanings,
when every one knows a little about a great many things,

it becomes increasingly difficult for anyone to know
whether he knows what he is talking about or not.

And when we do not know, or when we do not know enough,
we tend always to substitute emotions for thoughts.

— Thomas Stearns Eliot

A Nuccia e Silvio,

ad Ahmadreza Djalali.
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Abstract
In the present information era, a huge amount of machine-readable data is available regarding
scientific publications. Such unprecedented wealth of data offers the opportunity to investigate
science itself as a complex interacting system by means of quantitative approaches. These kind of
studies have the potential to provide new insights on the large-scale organization of science and
the driving mechanisms underlying its evolution. A particularly important aspect of these data is
the semantic information present within publications as it grants access to the concepts used by
scientists to describe their findings. Nevertheless, the presence of the so-called buzzwords, i.e.

terms that are not specific and are used indistinctly in many contexts, hinders the emerging of the
thematic organization of scientific articles.
In this Thesis, I resume my original contribution to the problem of leveraging the semantic
information contained in a corpus of documents. Specifically, I have developed an information-
theoretic measure, based on the maximum entropy principle, to quantify the information content
of scientific concepts. This measure provides an objective and powerful way to identify generic
concepts acting as buzzwords, which increase the noise present in the semantic similarity between
articles. I prove that the removal of generic concepts is beneficial in terms of the sparsity of the
similarity network, thus allowing the detection of communities of articles that are related to more
specific themes. The same effect is observed when describing the corpus of articles in terms of
topics, namely clusters of concepts that compose the papers as a mixture. Moreover, I applied the
method to a collection of web documents obtaining a similar effect despite their differences with
scientific articles. Regarding the scientific knowledge, another important aspect I examine is the
temporal evolution of the concept generality, as it may potentially describe typical patterns in the
evolution of concepts that can highlight the way in which they are consumed over time.

Keywords: Complex systems | science of science | semantic networks | community detection |
topic modeling | maximum entropy principle | applied statistical physics
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Sommario
Nell’era dell’informazione nella quale viviamo, una grande quantità di dati riguardanti le pub-
blicazioni scientifiche risulta disponibile in un formato che può essere facilmente trattato da un
computer. Tale mole di dati, la cui grandezza è senza precedenti, offre l’opportunità di investigare
la scienza stessa nell’ottica dei sistemi complessi tramite approcci quantitativi. Questa tipologia
di studi ha il potenziale per fornire nuove conoscenze sull’organizzazione a grande scala della
scienza, e sui meccanismi che fanno da motore alla sua evoluzione. Un aspetto particolarmente
importante di questi dati è l’informazione semantica presente all’interno delle pubblicazioni,
che garantisce l’accesso ai concetti utilizzati dagli scienziati per descrivere i risultati della loro
ricerca. Tuttavia, la presenza di concetti popolari, cioè termini che non sono specifici e vengono
usati indistintamente in molti contesti, impedisce l’emersione dell’organizzazione tematica degli
articoli scientifici.
Nella presente Tesi riassumo il mio apporto originale al problema dell’utilizzo dell’informazione
semantica contenuta negli articoli scientifici. In special modo, ho sviluppato una misura di
teoria dell’informazione fondata sul principio di massima entropia per quantificare il contenuto
informativo dei concetti scientifici. Tale misura rappresenta un metodo oggettivo e potente per
identificare quei concetti generici che agiscono come termini dal significato vago, accrescendo il
“rumore” presente nelle reti di similarità semantica tra articoli. Inoltre, dimostro che la rimozione
dei concetti generici porta dei benefici in termini di riduzione della densità della rete di similaritá,
permettendo di identificare gruppi di articoli che trattano specifici temi. Lo stesso effetto si
osserva se gli articoli vengono descritti come composti da un misto di diversi temi costituiti da
gruppi di parole. Il metodo è stato anche applicato ad un gruppo di documenti web ottenendo un
effetto simile nonostante questi siano chiaramente differenti rispetto agli articoli scientifici per
struttura e contenuti. Per quel che riguarda la conoscenza scientifica, un’altro aspetto importante
che ho esaminato è stata l’evoluzione nel tempo della generalitá dei concetti, dato che può
essere utilizzata per descrivere degli andamenti tipici nell’evoluzione dei concetti che possono
evidenziare il modo in cui essi vengono utilizzati al variare del tempo.

Parole chiave: sistemi complessi | scienza della scienza | reti semantiche |
identificazione dell’organizzazione in comunità | modelizzazione dei temi |
fisica statistica applicata
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Introduction

The present-day interest in characterizing and understanding the driving mechanisms of the scien-
tific production is placed within the general curiosity in the comprehension of human activities
that range from the use of social media to increase people awareness [1] to the description of
recurrent mobility patterns [2, 3]. Scientists are increasingly attracted by the narrative of science,
especially if approached from a global viewpoint in order to discover large-scale trends that
guide such collective effort [4]. Despite a widespread enthusiasm in such studies surfaced only
recently [5], a longstanding tradition in the inquiry of scientific knowledge and how it evolves
constitutes a central part of the philosophy and the history of science [6, 7]. These fields of re-
search are indeed essential to provide a systemic overview of scientific paradigms and milestones
from a qualitative point of view.

On the other hand, quantitative analysis of science dates back to 1930s with the publication of the
book of John D. Bernal entitled The Social Function of Science [8]. However, it was only after
World War II that the interest in the field began to flourish [9]. The first commercial release of
citation indexes in 1950s [10] immediately triggered the enthusiasm toward the opportunities that
the availability of such information opened up: the seminal paper of Eugene Garfield, published in
1955, was a precursor of the modern citation analysis [11]. Garfield itself founded the renowned
Institute of Scientific Information (ISI) and prompted the development of the Science Citation
Index, a database collecting information about scholar manuscripts from several disciplines [12].
A decade after Garfield’s paper, de Solla Price published two books, Science Since Babylon

and Little Science, Big Science, between 1961 and 1963, and right after the milestone paper in
scientometrics, entitled Networks of scientific papers [13–15].

Although, in their prime, this kind of studies were the focus of the research activity of a small
community of scholars, they involve nowadays a much bigger community of scientists coming
from a broader range of disciplines. The gathering of all these studies/scientists gave rise to a new
domain called science of science. This term broadly indicates all the works that investigate some
facet of science1 in the framework of the scientific method without restricting to quantitative
studies (as opposed to qualitative) or to natural sciences only [16]. Accordingly, various scientific

1The definition of ’science’ in this domain is customarily intended in its full breath as including any “... ordered
and reliable knowledge – so that a philologist or a critical historian can truly be called scientific ... ” ( taken from [16],
p. 390 ) as quoted in [5].
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Introduction

disciplines contribute to the study of science of science, ranging from the sociology of science to
its mathematical modeling, to just mention a few. This wealth of cultures, each one bringing in
its own approaches and methods, implies that science of science did not become a self-consistent
branch of knowledge like economics or sociology, but the studies are developing somehow
independently as small niches within various fields [5].

In the present era of data deluge, the science of science has been positively affected by the
advances in information technology. In particular, the digitalization of scientific communication is
providing a wealth of data regarding scientific publications [17–21]. Aside from that, the number
of publications keeps growing as a consequence of the rise in the number of scientists which is
primarily induced by the higher educational level of population and the recognized benefits of
science for society [22–29]. Furthermore, modern science itself is experiencing a pressure toward
specialization that enhances the sophistication of instruments (think about the Large Hadron
Collider at CERN), experimental techniques, analytical methods and theories [30–33]. On the one
hand, the combination of these continuous changes with an ever-increasing rate of publications
makes dealing with such overwhelming information not trivial. On the other hand, the massive
amount of publication data that can be processed offers the opportunity to confirm conjectures
and to distillate innovative insights supported by quantitative analyses at unprecedented scales,
both time- and domain-wise. The interpretation of empirical patterns ultimately allows to answer
fundamental questions about science like which are the driving mechanisms that cause the

emergence of research fronts and the shifts of scientific paradigms [34–36]. Nevertheless, it
becomes more problematic to extract reliable information as publication data are usually noisy or
incomplete. Both the low quality and the unstructured heterogeneity of these data pose practical
challenges that undermine their potential applications, contributing to dilute the efforts toward
the possibility to make general claims about science.

The information available in a scientific article ideally contains the journal of publication, the list
of authors and their affiliation, the semantic component (title, abstract and text), and references
to cited articles [37]. Moreover, some journal provide the classification of a paper in different
subjects and important keywords usually selected by the authors. Among the many uses of
the various information about publications, relevant examples include the investigation of the
patterns of co-authorships [38–42], the influence of the geographical position of the institutions
on the scientific collaborations and individual careers [43–49], the evolution of the impact of
papers [50–55], and the characterization of the scientific activity of scholars [56–59].

One approach to gain knowledge from such information is to construct a map of science at
the article level, analyzing the relationships between them at a coarse level. The reasonable
assumption behind this approach is that it should exist an underlying organization of science in
different disciplines and fields [60, 61], where the role and effects of such organization should
manifest when analyzing some of the entities that articles possess. The most exploited facet is
the similarity of the reference lists in the citation space, which leverages the pattern of citations
among articles [62–64]. All the above studies, however, base their findings on the bibliographic
information associated with articles i.e. authors, affiliations, and citations. As a matter of fact,

2



most of the information contained in the articles is actually overlooked. Clearly, the vast majority
of an article is constituted by the text that contains the explanation of the research and the analysis
of its outcomes. Ignoring this kind of information is not really efficient as we are not considering
the message that the authors want to convey and the topic of research that they address, which
represent the reason why the paper was written, i.e. to disseminate its content. Considering
the semantic content of articles is a different way to map the scientific knowledge [65–67]. In
this way, we should be able to identify topically related articles that share concepts, methods or
ideas, potentially uncovering similarities in their content at a broader semantic level that goes
beyond citations [63, 68–70]. Moreover, a careful analysis of the topic structure is also useful to
characterize the specialization of science. However, understanding the thematic organization of a
corpus has been a longstanding effort also in information retrieval, mainly related to the search of
relevant documents in the vast literature of a domain [71, 72]. Contributions from text analysis
and information retrieval scholars allowed to define the (current) standard approach to extract the
subjects within a corpus of documents going under the name of topic modeling. This approach
aims at describing documents as composed by topics, i.e. groups of semantically related words
that co-occur more frequently together [73]. Words in single documents are then modeled as if
they are extracted from the topics that compose the documents. Indeed, the hypothesis behind
topic modeling is that a latent thematic division is present in the corpus and, therefore, the model
adopted should be able to highlight it automatically.

Generally speaking, the studies on science of science leverage various types of information
associated to scientific publications. The different perspectives that can be considered when
analyzing these data ideally place these researches in the domain of complexity science [74, 75].
Indeed, a system that is composed by several kind of constituents related to each other in
very different ways is well suited to be described as a complex system. Given the multitude
of constituents and interactions, a compact but complete description of such systems can be
provided by modeling the interactions between constituents as a network. This formalism allows
to looking through the intrinsic complexity of these systems, characterizing the emergence of
interesting phenomena from the collective interaction of the constituents. The analysis of the
collective effects in interacting systems is the subject of statistical physics, a fundamental branch
of Physics that investigate systems with many constituents where macroscopic phenomena, like
the self-organization of articles in topics, can develop from microscopic properties, e.g. the
way concepts are adopted in single articles. Therefore, a physicist examining complex systems
is certainly intrigued by their faceted nature and will likely be excited by the possibility of
characterizing the relationships between their constituents from the micro- to the macro-scale.

The objective of the present Thesis is to identify the patterns of organization emerging in scientific
knowledge using methodologies grounded on statistical physics. To this aim, we focused on the
analysis of the semantic content of scientific articles. More specifically, we design a method
intimately connected to the notion of entropy in information theory in order to detect relevant
concepts within articles. Linking concepts with such feature allows to discern their role in shaping
the large-scale organization of scientific knowledge when examined under the lens of the topic
composition. This perspective is indeed important to consider since the growing number of

3



Introduction

scientific articles poses serious challenges to the scalability of traditional classification schemes
that rely on human supervision. The design of effective methods that characterize automatically
the composition of a corpus of scientific articles is, therefore, a vivid exigence. Apart from
the scientific interest in exploring the semantic organization of knowledge per se, the practical
implications of such methods are even more pressing as navigating the existing literature to
find a paper of interest is is becoming increasingly difficult due to the fast growth of available
publications [76–78]. Within the same perspective, we study the evolution in time of the “role”
of a scientific concept to identify trends and associate them to different roles. For example, hot
research topics may popularize the adoption of concepts that were previously used only by a
restricted community of scholars or, on the contrary, it may happens that other concepts become
obsolete after being commonly embraced.

The present Thesis is organized as follows: in chapter 1 we gently introduce from scratch the
conceptual definitions that will be used throughout the rest of the Thesis. Apart from the setup
of a common terminology, we also describe various methodologies, techniques and measures,
providing adequate reasonings and motivations that lead to their adoption. In particular, section 1.1
is devoted to the fundamentals of network theory, and section 1.2 to the notion of information
entropy. In chapter 2 we apply concepts from network theory to study the semantic similarity
between documents, conceiving a method to establish the relevance of scientific concepts based
on entropy. Such method provides a well-grounded criterion to remove blurring noise in the
paper similarities, a thoughtful operation that proves to be beneficial – among other things –
for ameliorating the organization of the network in groups of thematically related articles. In
chapter 3 we investigate the evolution in time of concept relevance, addressing the possibility
to detect common trends in their history. Ideally, collecting concepts with related trajectories
would allow to analyze their common fate, highlighting similarities and differences between the
roles that they take on concerning the knowledge transformations. Finally, in the conclusions we
summarize the main results that have been obtained, pointing out the original contribution of our
research in the framework of existing knowledge about science of science.
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1 Methods

1.1 Introduction to complex networks

Networks, also called graphs [79–84], provide a general yet simple formalism to describe the
interactions among constituents in real-world systems, ranging from social structures [85–90]
to technological infrastructures [91–97], biological entities [98–103] and physical systems
[104–106]. Despite the heterogeneous origin of such systems, they consist of elementary compo-
nents interacting together in a non-trivial fashion: no matter the peculiar features of the single
constituents or the nature of their interactions, they all give rise to the emergence of collective
phenomena that are surprisingly similar and cannot be explained as the pure sum of the actions
of individual units [107]. Such aspect is the distinctive hallmark of complex systems where the
interactions among the units drive the spontaneous emergence of an organization. Therefore,
systems whose interaction patterns are very much alike and are characterized by non-trivial
topologies can be described as complex networks.

In the network framework, the basic units that compose a system are denoted as nodes (or
vertices) connected to each other by links (or edges) that symbolize the interactions among them,
as depicted in Figure 1.1. This abstract description of complex networks can be formalized in
mathematical terms by means of graph theory [108, 109]. In particular, we resort to it focusing
on a specific kind of graphs known as bipartite networks.

1.1.1 Bipartite networks

Imagine that we want to characterize a system constituted by two distinct types of entities
where relationships exist only between entities of different type [110–115]. An example of such
network is provided by the affiliation network of actors and movies, where actors are solely
linked to movies they participated in [116–118]. These kinds of systems are best represented by a
weighted bipartite graph B=

(
VP,VQ,Z

)
, a mathematical object composed by two independent

sets VP and VQ, each containing entities of the same type as elements, and a third set Z ={
z(vp , vq ) ∈R+|vp ∈VP, vq ∈VQ

}
, which elements are positive numbers that indicate the intensity
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link

node

Figure 1.1 – Sketch of a network where nodes are represented by circles and links are drawn as
lines between pairs of nodes. The network is composed by 10 links and 8 nodes.

of the interaction between elements taken from VP and VQ respectively. Since the two sets VP

and VQ are independent, their intersection is the empty set, VP∩VQ =�. Moreover, entities that
are not interacting do not have a representative element in the set Z. The cardinality, i.e. the
number of elements, of the three sets is thus

∣∣VP

∣∣= P ,
∣∣VQ

∣∣=Q and
∣∣Z

∣∣= E .

In the network language, the elements of VP and VQ are the nodes of distinct type of the bipartite
network while the elements of Z are the link weights. Any two nodes vp ∈ VP and vq ∈ VQ

connected by a link are denoted as adjacent or neighbors and the set of neighbors of a given
node vp is called the neighborhood of vp . A compact way to describe the bipartite graph B is
through its weighted biadjacency matrix [110], which is the P×Q matrix AB where the entry in
row p and column q , apq , is equal to the link weight z(vp , vq ) that connects two adjacent nodes
vp and vq of the network and zero otherwise. An illustrative instance of a weighted bipartite
graph B is displayed in Figure 1.2 (a) together with its biadjacency matrix AB in Figure 1.2
(b). Although the bipartite networks formalism is the natural framework to describe systems
where interactions occur only between constituents of two different types, it is often easier to
analyze the property of a system in terms of relationships among constituents of a single type.
The procedure that we adopt to compute such relationships is called one-mode or unipartite
projection of a bipartite network [119]. Such projection onto a one-mode network implies that
there is always a loss of information, though it can be mitigated by an appropriate weighting
of the links in the resulting unipartite network [120, 121]. In the following part, we provide the
mathematical details of the projection scheme [122].
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(f)(e)

(a) (b)

(c) (d)

Figure 1.2 – Prototype of a bipartite network B consisting of P = 7 nodes from set VP and Q = 5

nodes from set VQ with a total number of links E = 13. A schematic layout is illustrated in (a)
where nodes in VP and VQ are represented by orange circles and blue squares, respectively, while
links are the lines that run between them. The weight of the link between nodes vp and vq is
indicated as apq and graphically displayed by the thickness of the line. The biadjacency matrix
AB of the graph is presented in (b): rows and columns indices are colored according to the set of
nodes that they represent in (a), i.e. VP and VQ respectively. The unipartite projection onto the
nodes in VP is shown in (c) along with its weighted adjacency matrix AUP

outlined in (d), where
the link weight between nodes i and j , wP

i j
, is calculated from AB according to Equation 1.1.

Similarly, the unipartite projection onto the nodes in VQ is shown in (e) along with its weighted
adjacency matrix AUQ

outlined in (f), where the link weight between nodes i and j , wQ
i j

, is
calculated from AB according to Equation 1.2.
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1.1.2 Unipartite projection of bipartite networks

The unipartite projection of a bipartite network B =
(
VP,VQ,Z

)
is defined as a weighted

graph UN =
(
VN,WN

)
where elements of the set VN are nodes taken exclusively from one of the

two sets of nodes, i.e. either VN =VP or VN =VQ. The size of the unipartite graph is the number
of nodes in the network, namely the cardinality of the set of nodes

∣∣VN

∣∣= N . The elements of

the set WN are the weights of the links among nodes in VN, i.e. WN =
{

wN
i j
∈R+|vi , v j ∈VN

}
,

where a link between two nodes vi , v j ∈VN exists only if they share at least one adjacent node in
the bipartite network B. For example, consider the bipartite network B in Figure 1.2 (a): if we
take the projection onto the one-mode network composed by nodes in VP, nodes 4 and 5 do not
have any adjacent node in common in B. As a consequence, these nodes are not adjacent in the
projected network UP. The link weight wN

i j
between nodes vi and v j is thus defined as the sum

of the product between link weights in Z that join common adjacent nodes of vi and v j in the
bipartite network B. Although other policies to compute the link weights are possible [119], here
we adopt this simple definition. The projected network UN can be fully described in a concise
form by means of the so-called weighted adjacency matrix AUN

[123]. Such matrix is akin to
the biadjacency matrix AB since it contains the intensity of the interactions among nodes in VN.
As a consequence, it is an N ×N matrix. The entry in row i and column j denotes the link weight
wN

i j
from node vi to node v j . In general, such interactions are not symmetric, wN

j i
�= wN

i j
. In this

case, since the order of the nodes is important, we can associate a direction to the link that goes
from a source node to a target node [124]. Conversely, if there is no reason to assume that the
interactions are directed, the weighted adjacency matrix is symmetric, i.e. the entry in row i and
column j is the same as in row j and column i , wN

i j
= wN

j i
. Moreover, self-loops that connect

nodes to themselves are not usually allowed, therefore the diagonal entries wN
i i

are set to zero.

If we consider the unipartite projection UP that consist of nodes in VP, the entry wP
i j

is defined
in terms of the entries of the biadjacency matrix AB as follows:

wP
i j = ai 1a j 1+ai 2a j 2+·· ·+aiQ a jQ =

Q∑

q=1

ai q a j q = ai : ·a j :

(
i , j = 1, . . . ,P , i �= j

)
, (1.1)

where ai : and a j : are shorthands for the vectors that represent rows i and j of AB, respectively,
while the symbol · denotes the dot product between vectors. The relation in Equation 1.1 is
nothing else than the matrix product between the biadjacency matrix AB and its transpose AB

′,
wP

i j
=
(

ABAB
′)

i j =
∑Q

q=1 ai q a′
q j =

∑Q
q=1 ai q a j q , where the entry in row q and column j of the

latter is equal to the entry in row j and column q of the former, a′
q j = a j q . As an example,

the one-mode projected network UP obtained from the bipartite network B in Figure 1.2 (a) is
displayed in Figure 1.2 (c), along with its weighted adjacency matrix AUP

in Figure 1.2 (d).

In the same manner, we can examine the unipartite projection UQ composed by nodes in VQ,
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where the entry wQ
i j

of its weighted adjacency matrix AUQ
is

wQ
i j =

P∑

p=1

api ap j = a:i ·a: j

(
i , j = 1, . . . ,Q , i �= j

)
, (1.2)

where a:i and a: j are shorthands for the vectors that represent columns i and j of AB, respectively.
Again, the weight wQ

i j
can be recast as the matrix product between the transpose of the biad-

jacency matrix AB
′ and the biadjacency matrix AB itself, wQ

i j
=
(

AB
′AB

)
i j =

∑P
p=1 a′

i p ap j =∑P
p=1 api ap j [89, 125]. In this case, the one-mode projected network UQ and the corresponding

adjacency matrix AUQ
are illustrated in Figure 1.2 (e) and (f), respectively.

After having introduced how to project a weighted bipartite network onto a unipartite one, we
take a step further in order to analyze its interaction pattern. Indeed, the characterization of
various facets of the interactions is of great importance to describe the large-scale behavior of the
systems encoded as networks.

1.1.3 Topological indicators of unipartite networks

The weighted adjacency matrix AUN
of the projected network UN is the only ingredient that we

need in order to characterize the topology of a network since it encodes all the information about
the patterns of interaction among nodes. The number of non-zero entries of AUN

is twice the

number of links
∣∣WN

∣∣= 2L which cannot exceed
(

N

2

)
= N (N−1)

2
. In this limit case, all possible

pairs of nodes are connected by links, ergo all the off-diagonal entries of the weighted adjacency
matrix AUN

are non-zero and the network is called complete. The link density, ρ, is thus defined
as the ratio between the actual number of links in a network and the maximum attainable one [79]:

ρ =
2L

N (N −1)
. (1.3)

As expected for a density, 0 ≤ ρ ≤ 1. At the level of single nodes, the number of links connected
to a node i defines its degree, ki , which is equivalent to the number of neighbors of i . Such
quantity can be calculated from the weighted adjacency matrix AUN

as the number of non-zero
entries in row i . As a special case, a node with degree 0 is called isolated. The average degree,
〈k〉, of UN is defined as:

〈k〉 =
1

N

N∑

j=1

k j =
2L

N
, (1.4)

where the last equality stems from the fact that a link between two nodes contributes to both
degrees. The maximum degree, kmax , of UN is the maximum degree of its nodes:

kmax = max
j

(k j ) , (1.5)
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However, the degree of a node gives access only to the number of neighbors of that node,
completely overlooking the intensity of the interactions. The strength, si , of a node i is the
analogous of the degree which takes into account the link weights wi j as

si =
N∑

j=1

wi j . (1.6)

Both the degree ki and the strength si quantify the interactions between node i and its (first)
neighbors but disregard the relations with its second neighbors. In particular, it may be the case
where the neighbors of a node are likely to be connected each other. Such concept, whose origins
are in sociology, goes under the name of triadic closure [126]. Several measures have been
designed to capture it at the the level of the whole network but, historically, the first one was the
transitivity T [89] defined as

T =
3×number of triangles

number of connected triples
. (1.7)

A connected triple (also called triad) is composed by a given node and an unordered pair of links
connected to it. Moreover, a triangle is a complete network of three nodes. The transitivity T can
be interpreted as the fraction of transitive triples, i.e. those connected triples that possess the third
link to form triangles. Since a transitive triple (triangle) is composed by three connected triples,
it counts for each of them, thereby the factor 3 in the numerator. The transitivity is limited by
the interval 0 ≤ T ≤ 1, with T ≃ 0 possibly indicating a tree-like topology and T ≃ 1 an almost
complete network. An alternative way to quantify the global triadic closure of a network is by
means of the so-called local clustering coefficient, Ci , of node i defined as the ratio between
the number of links, ei , that join the neighbors of i and the maximal number of such links [127].
Since the number of neighbors of node i is equal to its degree ki , the maximal number of links
between them is ki (ki −1)/2. The local clustering coefficient is then

Ci =
2ei

ki (ki −1)
, (1.8)

a relation which holds only if ki > 1, otherwise Ci = 0. The average clustering coefficient,
〈C〉, of a network is simply the average of the local clustering coefficients of the nodes in the
network [127]:

〈C〉 =
1

N

N∑

i

Ci . (1.9)

Clearly, both the local and average clustering coefficients are bounded such that 0 ≤Ci ≤ 1 and
0 ≤ 〈C〉 ≤ 1. Interestingly, most real-world networks feature a remarkably high density of triangles
if compared with the one of a random network with almost the same number of links and nodes,
C̃ = 〈k〉

N
[81, 82, 127]. Complementary, the large-scale structure of a network can be described

using the concept of reachability of two nodes. In general, networks are not embedded in a metric
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space thus a notion of distance between nodes is missing. Nevertheless, we may travel from
one node to another passing through the intermediate links in the network. The number of links
that we traverse is then a valid ingredient to design a reasonable equivalent of the distance. A
rigorous definition of reachability is based on the notion of path from node i to node j , defined
as an ordered set of nodes connected in sequence where the first and last elements are i and
j , respectively [83]. The length of the path is the number of links that join the nodes i and
j , namely the number of nodes in path minus one. The shortest path between nodes i and j

is the path of minimum length between them, also referred to as geodesic. The shortest path

length, li j , is then natural counterpart of the distance between nodes i and j for a network. Using
the shortest path length between nodes we can gauge the typical extent of a network from the
average shortest path length [83]

〈l〉 =
1

N (N −1)

N∑

i , j=1
i �= j

li j . (1.10)

Such quantity is the average number of links in the shortest paths between every pair of nodes
and measures the average degree of separation between nodes. For a random network the
average shortest path length 〈l〉 scales at most logarithmically with the number of nodes N ,
〈l〉 ∼ ln(N )

ln(〈k〉) [127–129]. Surprisingly, this same relation is valid also for real-world networks,
meaning that it requires few steps to walk between any pair of nodes [130–133]. A network that
exhibits such property is said to be a small-world. Another quantity to characterize the extent of
a network is the diameter d , usually defined as the maximum shortest path length of a network

d = max
i , j

li j , (1.11)

which specifies how far apart are the most distant nodes in the network. A whole network,
however, may be composed by several parts that are eventually unrelated. Part of a graph
UN =

(
VN,WN

)
is formally defined as a subgraph U′

N =
(
V′

N,W′
N

)
of UN if all the nodes V′

N

and all the links in W′
N are included in UN, i.e. V′

N ⊆VN and W′
N ⊆WN. A graph is called

connected if a path exists between all pairs of nodes, otherwise it is called unconnected or
disconnected. A component of a graph is then a connected subgraph, which is said to be a
giant component when its size corresponds to a macroscopic fraction of the number of nodes
in the graph [134]. In the case of disconnected network, a path between two nodes i and j in
distinct components does not exists, thus both 〈l〉 and d are infinite. Nevertheless, in such a case
these quantities are commonly redefined considering only the nodes that are part of the largest
connected component [127].

Until now, we dedicated our attention to the definition of several features of a network, both at
the micro- and macro-scale, by means of local and global measures, respectively. Local measures
characterize nodes or links while global measures provide an overview of the network. However,
we overlooked the presence of meso-scale structures at the intermediate level between the micro-
and macro-scale. Such kind of structures are subgraphs that exhibit peculiar interaction patterns
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among nodes. Examples of meso-scale structures include the core-periphery structure, which
consists of a modest core of firmly connected nodes and a considerable periphery of poorly
connected ones [135–137], and the community structure, where groups of strongly interacting
nodes are observed. This second example is particularly prominent since the organization of
nodes in groups is a common trait of diverse systems, ranging from biological entities [138] to
social structures [139].

1.1.4 Community structure

Communities, also known as clusters or modules, are described as subgroups of nodes where
connections are tighter within them than with the rest of nodes [140]. Given a network, a
partition is then defined as a specific arrangement of nodes into subgroups. Since there are
many possible partitions of a network, we need to assess which among them contain appropriate
communities that match the above definition. To this aim, several quality functions have been
introduced, each one providing a different criterion to quantify if a given partition exhibits a
real community structure or not [140–142]. One of the most popular quality functions is the
modularity, introduced by Newman and Girvan in their seminal paper [143] and further analyzed
in [144]. The definition of modularity is simply based on a reasonable assumption: a random
network does not feature a community structure. In this case, a random network is devised by
reshuffling the links of the original network while preserving the degree of each node as defined
in subsection 1.1.3. Given two nodes i and j with degree ki and k j , respectively, the probability
that they are connected in a random network is then:

pi j =
ki k j

2L
, (1.12)

where L is the total number of links in the network. Given a partition of the original network, we
thus take a group of nodes comparing its link density with the one calculated for the same group
in a random network. If the link density in the original network is greater than expected in the
random case, we can conclude that the interaction pattern inside the group is distinct from the
random one and the group itself is a community. Moreover, the larger the difference between
expected and observed densities, the higher the probability that the group is a community.

Repeating the same procedure for every group of nodes in a given partition, we evaluate the
overall quality of the partition using the modularity Q defined as:

Q =
1

2L

N∑

i , j=1

(
Ai j −

ki k j

2L

)
δ
(
Ci ,C j

)
, (1.13)

where N is the number of nodes in the network and A is the adjacency matrix. The term
ki k j

2L

is the expected link density in a random network, (Equation 1.12). Ci and C j are the groups to
which nodes i and j belong to, respectively, and the sum is only valid for pairs of distinct nodes
(thus i �= j ). Finally, the Kronecker delta, δ

(
Ci ,C j

)
is 1 if nodes i and j are in the same group,
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i.e. Ci =C j , otherwise is 0. Due its presence, the only contributions to the sum in the modularity
Q come from nodes in the same group. Hence, Equation 1.13 can be recast as the sum over the
groups

Q =
ng∑

m=1

[
Lm

L
−
(

Km

2L

)2]
, (1.14)

where ng is the number of groups, Lm is the number of links inside group m and Km is the
sum of the degree of the nodes in the group. Therefore, for a fixed group m, the first term in
Equation 1.14 represents the fraction of links of the network that join the nodes in group m,
while the second term is the expected fraction of links within group m for a random network
where the degree of every node is the same as in the original network. Overall, summing all the
contributions from each group m, high positive values of the modularity Q denotes a partition
with a well-defined community structure. In particular, the modularity is always smaller than one
and attains zero when the entire network is considered as a single group since the only two terms
that contribute to the modularity are identical and they cancel out each other. On the other hand,
modularity can have negative values, e.g. in the case of a partition where each node is a separate
group. Therefore, if no partitions of a network have positive modularity the network itself does
not possess a community structure. We remark that the modularity Q in Equation 1.14 is not only
an explicit formulation which encapsulates the definition of communities as dense subgraphs
of nodes, but it has been derived also in the well-founded framework of maximum likelihood
approaches to community detection [145]. Despite the good properties of the modularity, several
drawbacks have been discovered. For example, modularity is affected by a resolution limit
that produces aggregated communities despite they are clearly separated in a simple synthetic
network [146]. Another, more general limitation is due to the fact that the modularity landscape of
real networks is often degenerate, in the sense that many partitions of a network have modularity
values which correspond to local maxima very close to each other. In addition, these maxima
forms a plateau which is close to the global maximum of the modularity. As a consequence,
networks may not admit a precise maximum of the modularity [147]. Last but not least, random
networks may comprise partitions with large modularity values, in contrast to the hypothesis that
suggested the formulation of modularity [148–150].

The modularity Q, devised for unweighted networks, can be easily extended to the weighted case.
Taking as a reference the formulation of modularity in Equation 1.13, the adjacency matrix A is
replaced with the weight matrix W and the degrees ki and k j are substituted with the strengths
si and s j of nodes i and j , defined in Equation 1.6. Consistently, the total number of links L is
replaced by the sum of the link weights W in order to ensure that the expected probability of
connection between nodes i and j in a random network is properly transformed into the expected
link weight pw

i j
between the same nodes in a weighted random network where the strength of

nodes has been preserved:

pw
i j =

si s j

2W
. (1.15)
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The weighted modularity Qw can be derived from Equation 1.13, using the abovementioned
substitutions, as

Qw =
1

2W

N∑

i , j=1

(
Wi j −

si s j

2W

)
δ
(
Ci ,C j

)
. (1.16)

In turn, this equation can be rearranged in the same form of Equation 1.14:

Qw =
ng∑

m=1

[
Wm

W
−
(

Sm

2W

)2]
, (1.17)

where ng is the number of groups, Wm is the sum of the weights of links inside group m and
Sm is the sum of the strengths of the nodes in the group. For a fixed group m, the first and
second term in Equation 1.17 are, respectively, the observed and expected fraction of the total
weight of the network inside group m, where the latter is calculated for the random counterpart
of the original network in which the strength of each node is unchanged but the link wights are
randomly assigned.

Thanks to the introduction of modularity, we are now able to evaluate the quality of any partition
of a network in a quantitative fashion. The goal of this operation, indeed, is to find the partition
with the best community structure, i.e. with the highest modularity. In principle, we should
compute the modularity for every partition of the network. However, the number of possible
partitions grows faster than exponentially with the number of nodes in the network [80, 140, 151].
As a consequence, a systematic check of the quality of all the partitions is not computationally
viable. Therefore, the best we can do is to design algorithms that try to discover good partitions by
maximizing modularity. A broad class of these algorithms is based on greedy optimization [152],
a heuristic technique that always performs, at each step, the best local choice towards the
optimization of a score function. Nonetheless, there is no guarantee that the globally optimal
solution will be reached trough intermediate steps which are locally beneficial. Indeed, in most
of the cases, greedy strategies may achieve locally optimal solutions that are not far from the
optimal one.

In the context of modularity maximization, a well-know greedy method is the Louvain algorithm

[153]. Each step of the algorithm is divided in two stages:

Stage I At the beginning, each node of a weighted network is assigned to a different community,
thus ng = N . For each node i , we examine its neighbors j calculating the change in
modularity that would occur if we remove node i from its community and place it in the
community of j . Among all the possible placements, we pick the one which produces
the highest increase of modularity, moving the node i to the corresponding community.
Otherwise, if no increase is observed, i remains in its original community. This elementary
operation is repeated sequentially for all nodes until no individual move can increase the
modularity. In such case, a local maximum of the modularity is reached so the first stage
is completed. We notice that a node may be considered several times during the stage,
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as it is often the case. The computational advantage of the algorithm stems from the fact
that the change in modularity can be calculated in a close form that only requires local
information about the connections of the node that we move and the target community. To
be more precise, the modularity change, ∆Qm , obtained after moving a given node i into
the community m of its neighbor j is:

∆Qm =
[

Wm +wi ,i n

2W
−
(

Sm + si

2W

)2
]
−
[

Wm

2W
−
(

Sm

2W

)2

−
(

si

2W

)2
]

, (1.18)

where Wm is the sum of the weights of the links that join nodes in community m, wi ,i n

is the sum of the weights of the links between i and all the nodes in community m, Sm

is the sum of the strength of nodes in community m, si is the strength of node i and W

is the sum of the link weights in the network. In order to move node i into a community
m, we have to remove it beforehand from the community Ci it belongs to. The change
in modularity for doing so is then −∆QCi

. Overall, one has to compute first the change
in modularity by removing node i from its community Ci and then by moving it into a
community m of one of its neighbors.

Stage II The communities identified in the previous stage becomes the nodes of a new network.
The weight of the link between two nodes is constructed as the sum of the link weights
between nodes in the corresponding communities. Moreover, nodes have self-loops whose
weights are the sum of the link weights between nodes in the same community. Once the
construction of the new network is completed, the second stage terminates.

Once a step composed by the two stages is completed, the algorithm iterates over the steps
until no further improvement in the modularity is possible, meaning that the maximum value of
the modularity has been reached. Most of the computations are performed in the first steps of
the algorithm since the number of communities decreases rapidly at each step. Typically, few
steps are sufficient to reach the maximum of modularity. By construction, the final output of the
algorithm is a hierarchy of communities where the top level is the one with the highest modularity.
However, the outcome of any greedy method depends on the initial condition. In the present case,
the sequence in which nodes are parsed influences the final partition. Therefore, the Louvain
algorithm is usually applied several times on a network, parsing the nodes at random in each run.
The partition with the best modularity among all the runs is then retained.

The Louvain algorithm became popular among the community detection methods thanks to the
good quality of the resulting partition and the competitive performance in terms of computational
resources. Besides greedy techniques, other strategies have been designed to optimize modularity
[140]. Moreover, the literature on community detection methods have been flourishing over
the years comprising different quality functions as well as several techniques to optimize them
[140, 154]. Recent developments are more focused on a data-driven approach to discover
latent communities, somehow relaxing the definition of quality function towards an implicit
description of the communities [155]. This perspective has been introduced by computer scientists,
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among which the community detection problem is a very active research field. Some of the
most distinguished contributions are Infomap [156] and the stochastic block model [157]. In
particular, the former is based on encoding the trajectory of a random walker on a network in
the most efficient way [156, 158, 159]. In this case, the greedy optimization strategy of the
Louvain algorithm is applied to minimize the map equation, a quality function that measures the
compression of the trajectory based on the entropy (section 1.2). Finally, various generalizations
of the community structure have been introduced in order to highlight different flavors of meso-
scale patterns within a single framework [160, 161].

1.1.5 Measures of similarity between partitions

As we have seen above, detecting communities is a task that can be accomplished in several
ways. Then, a question arises: how can we compare partitions uncovered by different methods?
Similarity measures provide a rigorous tool to assess the resemblance of two partitions, even in
the case where one of them correspond to a ground-truth classification of nodes. Specifically,
depending on the entities we want to compare, similarity measures can be divided in two main
categories. The first includes measures to evaluate the pairwise correspondence between selected
communities, while the second consist of measures that indicate the overall similarity between
two partitions as the result of the comparison between the respective communities.

The first type of indicators are commonly based on counting the number of nodes that are present
in two communities, say C and D , each composed by a given set of nodes. The number of shared
nodes, nC D , that belong to both communities is the cardinality of the intersection between the
two sets of nodes C and D:

nC D =
∣∣C ∩D

∣∣ . (1.19)

As the size of the intersection between C and D is affected by the size of the two communities, we
should take into account their size to properly compare them. For example, nC D can be divided
by the size of the maximum or minimum between the two sets, C and D, or by a combination of
their sizes like the sum or the product. A possible option is to divide it by the size of the union of
the two sets,

∣∣C ∪D
∣∣, which leads to the Jaccard score JC D [162, 163] given by

JC D =
nC D∣∣C ∪D

∣∣ =
∣∣C ∩D

∣∣
∣∣C ∪D

∣∣ =
∣∣C ∩D

∣∣
∣∣C

∣∣+
∣∣D

∣∣−
∣∣C ∩D

∣∣ . (1.20)

The Jaccard score, JC D , turns out to be a thoughtful choice for measuring the relative size of the
overlap between two sets since it has a simple heuristic interpretation [164]: it quantifies the
probability that an element belonging to at least one of the two sets (i.e. included in the union)
is also an element of both of them. Furthermore, it is a metric defined on finite sets [164, 165]
which allows to properly compare the similarities calculated for different communities. Finally,
the Jaccard score JC D varies between 0 and 1, where the former denotes an empty intersection
between C and D (meaning that the two sets are totally different), while the latter indicates that
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1.1. Introduction to complex networks

C and D are identical.

The second type of indicators quantify the correspondence between partitions. Since the partition
of a network is composed of several communities, some of the measures introduced before
may be adopted also as basic ingredients to describe the similarity between partitions. Various
definitions are possible but the most widespread are all grounded in Information Theory [166]
which provides a powerful framework for their derivation. The idea behind these measures
is that the more similar the partitions are, the least information we need to reconstruct one
partition from the other. The amount of such information is then a measure of their dissimilarity.
Given a network composed by N nodes which are divided in two partitions X = {xi }nX

i=1
and

Y=
{

y j

}nY

j=1
; the elements xi and y j of each partition denotes the sets of nodes that correspond to

the communities in partitions X and Y, respectively. In principle, every node can be the member
of any community in both partitions X and Y. In probabilistic terms, we can imagine that the
community memberships of a node in each partition, i.e. xi and y j , are the values of two random
variables X and Y [140, 166]. The probability that a node picked at random is present both in
community xi ∈X and y j ∈Y is then the joint probability distribution P (xi , y j ) of the two random
variables X and Y :

P
(
xi , y j

)
= P

(
X = xi ,Y = y j

)
=

ni j

N
, (1.21)

where ni j is the same quantity in Equation 1.19. The marginal probabilities, obtained by
consistence, are

P
(
xi

)
=

nY∑

j=1

P
(
X = xi ,Y = y j

)
=

nX
i

N

P
(
y j

)
=

nX∑

i=1

P
(
X = xi ,Y = y j

)
=

nY
j

N
.

(1.22)

where nX
i

and nY
j

are the size of the communities xi and y j , respectively. The mutual infor-

mation, MI(X ,Y ), quantifies the degree of dependence between two random variables X and
Y , measuring the average decrease in uncertainty about one variable after knowing the other
one. Since the partitions X and Y can be characterized themselves by random variables X and
Y , the mutual information MI

(
X,Y

)
between two partitions X and Y is naturally defined as the

mutual information between the random variables X and Y associated to the partitions X and Y,
respectively

MI
(
X,Y

)
=

nX∑

i=1

nY∑

j=1

P
(
xi , y j

)
ln

P
(
xi , y j

)

P
(
xi

)
P
(
y j

) . (1.23)

The mutual information is non-negative, (MI(X,Y) ≥ 0); it is symmetric, (MI(X,Y) = MI(Y,X));
and MI

(
X,Y

)
= 0 if and only if the two random variables X and Y are independently distributed,

i.e. P (xi , y j ) = P (xi )P (y j ). The definition of the mutual information as a measure of dependence
between two random variables is then justified, since in the case of independent random variables
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knowing one of the two variables does not provide any information about the other, i.e. its
uncertainty is not reduced. In order to better appreciate the meaning of mutual information
MI

(
X,Y

)
as the reduction in uncertainty about e.g. X, Equation 1.23 can be rewritten as

MI
(
X,Y

)
= H

(
X
)
−H

(
X
∣∣Y
)

, (1.24)

where H
(
X
)

is the entropy of X

H
(
X
)
=−

nX∑

i=1

P
(
xi

)
lnP

(
xi

)
, (1.25)

which represents the uncertainty1 of X and H
(
Y
∣∣X

)
is the conditional entropy of X given Y, i.e.

the uncertainty about X after observing Y

H
(
Y
∣∣X

)
=

nX∑

i=1

nY∑

j=1

P
(
xi , y j

)
lnP

(
xi

∣∣y j

)
. (1.26)

Therefore, for independent partitions H
(
X
∣∣Y
)
= H

(
X
)
, which implies MI

(
X,Y

)
= 0. Unfortu-

nately, the mutual information is not the best similarity measure between partitions that can be
designed: indeed, any partition X′ obtained from X by further dividing its communities has the
same mutual information with X, MI

(
X,X′)= H

(
X
)
, since the conditional entropy is systemat-

ically zero, H
(
X
∣∣X′) = 0. To overcome such limitation, the normalized mutual information

NMI [167] has been defined

NMI
(
X,Y

)
=

2MI
(
X,Y

)

H
(
X
)
+H

(
Y
) . (1.27)

which is also symmetric and ranges between 0 and 1. Indeed, NMI is equal to 0 if and only if X
and Y are independent and is equal to 1 only when the partitions are identical, X=Y. Another
variant of the mutual information MI is the variation of information VI [168] which measures
the amount of information lost and gained when changing from partition X to partition Y:

VI
(
X,Y

)
= H

(
X
)
+H

(
Y
)
−2MI

(
X,Y

)
= H

(
X,Y

)
−MI

(
X,Y

)
= H

(
X
∣∣Y
)
+H

(
Y
∣∣X

)
. (1.28)

Remarkably, the variation of information VI is a distance in the space of partitions since it is
symmetric, non-negative and fulfills the triangle inequality. The last property implies that the
variation of information is upper bounded, i.e. VI

(
X,Y

)
≤ ln N , where the maximum value is

achieved, for example, if one partition is composed by a single community of N nodes, and
the other by as many communities as nodes. Since the maximum value of the VI depends on
the number of nodes N , VI cannot be directly adopted to compare networks of different size.
However, simply dividing VI by its maximum, ln N , provides a normalized measure that can be

1For the sake of readability, we do not provide here a justification for the interpretation of entropy as a measure of
uncertainty. We point the interested reader to the next Section, where we detail a thorough derivation of entropy and
we fully motivate this interpretation.
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1.1. Introduction to complex networks

employed for such comparisons. As a direct consequence of its metric properties, VI is a local
measure which depends on the discrepancies between two partitions only in the portion of the
network where they take place and not on the partition of the rest of the graph [168].

In conclusion, NMI and VI are interdependent

NMI
(
X,Y

)
= 1−

VI
(
X,Y

)

H
(
X
)
+H

(
Y
) ,

and both have their own appealing properties. NMI quantifies the similarity between partitions
through their mutual dependence, with minimum and maximum values corresponding to well-
defined characteristics of the partitions. On the other hand, VI measures the distance between
partitions and different values can be properly compared. For example, given two partitions Y′

and Y′′, if their similarities with a third partition X are such that VI
(
Y′,X

)
= 2VI

(
Y′′,X

)
then Y′

and X are two times closer than Y′′ and X. However, the same is not valid for NMI: a value twice
as much as another, like NMI

(
Y′,X

)
= 2NMI

(
Y′′,X

)
, does not imply that Y′ and X are two times

more dependent than Y′′ and X.

However, existing measures to compare partitions are biased, for example, on the number
of clusters [168], the cluster size distribution [169], or they may not properly account random
partitions [170]. Moreover, none of the measures easily generalize to overlapping and hierarchical
partitions. To overcome such biases and limitations, a new measure has been proposed that applies
to disjoint, overlapping and hierarchical partitions [171]. Such measure shifts the problem of
comparing partitions from a cluster-centric to an element-centric perspective, where the partition
induces relationships between elements that are used to compare them. As a consequence, the
measure follows closely the behavior expected from intuition.

We already mentioned that the entropy is a measure of uncertainty. Nonetheless, we did not
derived it from first principles nor we stressed enough its importance. The next Section is then
devoted to properly introduce the notion of entropy and clarify its fundamental meaning, along
with its properties.

1.1.6 Filtering methods for weighted networks

A complex system represented as a weighted network usually exhibits patterns of interactions that
are enriched by the presence of the connection weights. Despite such weights are an additional
source of information that allows to model more realistically many systems, they may encode
relationships that are not significant. Therefore, it may happens that a substantial fraction of the
links does not carry important information. Over the years, several criteria to prune irrelevant
connections have been developed [172–175]. Clearly, if we have some knowledge about the
mechanism that assigns the weights, we can devise a method that establish if a given weight is
significant based on the expected value under a null model where, e.g. the process generating the
weights has some random characteristic. However, in general, the mechanism that is responsible
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for the creation of the weights is unknown or we cannot design a reasonable random expectation
of the weight values. In these situations, different methods have been introduced to establish the
significance of a weight from various statistical features of the topology of the original network,
all of them performing the filtering in an ex-post way, i.e. after the computation of the link weight.

An example of a local method is the disparity filter described in [172] where, for each node, every
link weight is compared to the strength of the node. Only the links whose weight is significantly
higher that the weight expected from a random null model that satisfies the constraint on the
strength are retained. In this way, if the weights of the node are homogeneously distributed no
link is preserved for the current node. As a result, the links of the network that are conserved are
the ones that connect two nodes and are significant for at least one of them. Despite drastically
reducing the network density, the disparity filter retains nearly all the nodes and preserves both
the degree and weight distribution along with the clustering coefficient. However, such local
filtering may be not suited for every real-world network. Indeed, we may be interested in the
conservation of salient features of the network topology based on a global criterion. In such a
case, another method has been designed to preserve the weight distribution from a null model
that consider all the weights [173].

Nevertheless, both methods described above do not guarantee that the inferred pattern of con-
nections is essential in the sense that it cannot be further reduced while conserving the same
properties of the network. A scrupulous approach to achieve such irreducibility relies on formu-
lating null models via the maximum entropy principle [176]. Following this prescription, only
the links whose properties cannot be reconstructed from local information at the node level are
then retained. Different null models are then possible depending on the constraints that we want
to preserve as ensemble averages, namely the degree of the nodes [177], the strength [178, 179]
or both of them [174, 180].

1.2 Entropy

Historically, the concept of entropy dates back to 1865 when it was introduced by Rudolf Clausius
to describe the macroscopic behavior of a thermodynamic system at the equilibrium. Thanks to
its definition, it was possible to reformulate the second law of thermodynamics [181]. In 1870,
Ludwig Boltzmann restated the definition of entropy in terms of the microscopic states of a system
at the equilibrium, providing the link between its microscopic features and the macroscopic
realm [182]. This seminal formulation laid the foundation of statistical mechanics, a branch of
Physics which describes the behavior of interacting systems trough the statistical properties of
their constituents. Later on, Josiah W. Gibbs generalized the expression of the Boltzmann entropy
to characterize a system in terms of the probability of its microstates. An analogous definition
was then introduced by Claude Shannon in a landmark paper about Information Theory dated
1948 with the purpose of studying the efficiency of communication of a message [183].

To understand the notion of information entropy, consider an event X which has n possible
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1.2. Entropy

outcomes {x1, x2, . . . , xn}. A message specifying the actual outcome, say xi , is transmitted to
a receiver when the event happens. Information is effectively present in the message only if
the receiver does not know a priori (with certainty) the content of the message, otherwise the
information content of the message is null. Before the communication, there is an uncertainty
about the occurrence of xi which disappears after, since the information in the message arrived to
the receiver. The acquisition of information for the receiver, indeed, cancels the uncertainty. The
self-information I (xi ) [184] is then defined as the a priori uncertainty regarding the occurrence
of the outcome xi , which depends only on its occurrence probability P (xi ) and not on the value
of the outcome itself xi :

I (xi ) = f (P (xi )) . (1.29)

In order to determine the form of function f we require it to satisfy the following properties:

• Self-information is a continuous function of P (xi ) and decreases as P (xi ) increases.

• Self-information is non-negative, i.e. I (xi ) ≥ 0, and the equality holds only if the outcome
xi is deterministic, i.e. P (xi ) = 1.

• Self-information is additive: if xi is composed by two independent outcomes xi 1 and xi 2

then xi = xi 1 ∩xi 2; hence, the additive property implies:

I (xi ) = I (xi 1)+ I (xi 2) , (1.30)

f (P (xi )) = f (P (xi 1))+ f (P (xi 2)) . (1.31)

This relation simply tells us that the two outcomes do not influence each other, therefore
the joint self-information is decoupled. The independence of the outcomes, in terms of the
probabilities of occurrence, reads:

P (xi 1 ∩xi 2) = P (xi 1)P (xi 2) ,

which plugged in Equation 1.31 leads to

f (P (xi 1)P (xi 2)) = f (P (xi 1))+ f (P (xi 2)) . (1.32)

The solution to the functional equation (1.32) is then a functional f which satisfies the above
conditions. The only admitted functional corresponds to the logarithm. Since the basis of the
logarithm must be specified, the more general solution includes a multiplicative constant that
incorporates an arbitrary change of basis:

f (P (xi )) = K log(P (xi )) . (1.33)

Since the probability, by definition, ranges between 0 and 1 and the self-information I (xi ) is
always non-negative, the constant K < 0. Thus, without loosing the generality, we can set K =−1
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remembering that any base for the logarithm is legitimate. The only influence of the base of the
logarithm is on the units of I (xi ): e.g. , if the logarithm is to the base 2, then I (xi ) is expressed in
bits, where log2

1
2
= 1bit. The name bit stems from the contraction of binary digit, adopted for the

first time in the Shannon’s milestone paper [183] as the basic unit of information in computing
and communication theory. Another common option for the base is the Napier number (also
called Euler constant) e, for which loge = ln; in analogy with the bit, the nat is then defined
as the natural unit of information entropy, as ln 1

e
= 1nat. This definition represents the choice

of 1 from e and is the common one in statistical mechanics for the Gibbs entropy. Finally, the
self-information I (xi ) of the outcome xi with associated probability P (xi ) reads:

I (xi ) =− ln
(
P (xi )

)
= ln

(
1

P (xi )

)
. (1.34)

A small probability of the outcome xi entails a large uncertainty associated to the occurrence of
xi , meaning that the self-information I (xi ) carried by the message after the outcome xi actually
happened is high.

Every possible outcome {x1, x2, . . . , xn} of an event X has a self-information I (xi ) as described in
Equation 1.34. The event X can then be represented as a discrete random variable with probability
mass function P (X ) which specifies the probability of each outcome, i.e. the probability that the
random variable is equal to a given value P (X = xi ) = P (xi ) ≥ 0. Moreover, by definition, the
probability mass function is normalized,

∑n
i=1

P (xi ) = 1. The (information) entropy S [X ] of a
discrete random variable X is the expected value of the self-information of its outcomes or, in
other words, the average self-information per outcome:

S [X ] = EP [I (X )] = EP [− ln(P (X ))] =
n∑

i=1

P (xi ) I (xi ) =−
n∑

i=1

P (xi ) lnP (xi ) , (1.35)

Alternatively, it can be interpreted as the average uncertainty associated a priori to the content of
a message. The information entropy is a continuous function in each variable P (xi ) since it is
the sum of continuous functions. Moreover, the information entropy is additive since it is the
average value of an additive quantity(i.e. the self-information) over the possible outcomes. In
the case when P (xi ) = 0 for some i , we define the term P (xi ) lnP (xi ) to be 0, since the limit
limP (xi )→0+ P (xi ) lnP (xi ) = 0. The same result holds when P (xi ) = 1, thus we obtain an entropy
S [X ] = 0 when the result of the event X is deterministic, i.e. P (xi ) = 1 for a fixed i and P

(
x j

)
= 0

for every other j �= i . The uncertainty about the result of the random variable X , as expressed
by S [X ], is then null since the outcome is always xi . On the contrary, if P (xi ) = 1

n
for every

i , the entropy attains its maximum value, Smax [X ] = ln(n): the average uncertainty about the
presence of an outcome in the message is maximum when all the outcomes are equally probable.
The maximum entropy Smax [X ] increases monotonically with the number of outcomes: given
two discrete random variables X1 and X2 with n1 and n2 possible outcomes respectively, if
n1 > n2 then Smax [X1] > Smax [X2]. Intuitively, when there are more possible outcomes which
are equally likely there is more choice about the one to send in the message, i.e. the average
uncertainty about the received outcome is greater.
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In many practical scenarios, we may be interested in comparing the observed probability distri-
bution P (X ) that describes an event X with a model Q (X ) for the expected occurrence of that
event. A proper measure to quantify the difference between two probability mass functions
P (X ) and Q (X ) is the relative entropy of P (X ) with respect to Q (X ), commonly known as the
Kullback-Leibler divergence between P (X ) and Q (X ) [185, 186]:

DKL (P||Q) = EP

[
ln

(
P (X )

Q (X )

)]
=

n∑

k=1

P (xk ) ln

(
P (xk )

Q (xk )

)
=

=−
n∑

k=1

P (xk ) lnQ (xk )+
n∑

k=1

P (xk ) lnP (xk ) .

(1.36)

The Kullback-Leibler divergence is the difference between the expected values of the self-
information computed according to the model Q and the observed distribution P, respectively,
where both expectations are taken using the probability P. The Kullback-Leibler divergence
quantifies the additional uncertainty that is present if one assumes that the distribution of X is Q

instead of P [187]. This interpretation is evident from the last equality in Equation 1.36 as the
last summand is the opposite of the information entropy in Equation 1.35. The Kullback-Leibler
divergence is not a distance between probability distributions since it is not symmetric and does
not satisfy the triangle inequality. However, DKL (P||Q) is always non-negative and is zero if and
only if P = Q. In the definition of Equation 1.36 if P (xi ) = 0 for some xi then, by continuity,
0ln 0

Q(xi )
= 0 since the corresponding limit is zero. By convention, when both probabilities

are zero 0ln 0
0
= 0 but, if only Q (xi ) = 0 for some xi then P (xi ) ln

P(xi )
0

=∞ and the Kullback-
Leibler divergence is not defined. The mutual information MI

(
X ,Y

)
, introduced in the previous

subsection 1.1.5, Equation 1.23, is defined as the relative entropy DKL

(
P (X ,Y ) ||P

(
X
)
P
(
Y
))

of
the observed joint probability P (X ,Y ) with respect to the model probability P

(
X
)
P
(
Y
)

where the
events X and Y are independent, as given in Equation 1.22:

MI
(
X ,Y

)
= DKL

(
P (X ,Y ) ||P

(
X
)
P
(
Y
))
= EP(X ,Y )

[
ln

(
P (X ,Y )

P (X )P (Y )

)]
=

=
nX∑

i=1

nY∑

j=1

P
(
xi , y j

)
ln

(
P
(
xi , y j

)

P
(
xi

)
P
(
y j

)
)

.

(1.37)

Information entropy, however, is not the only measure of uncertainty that have been designed.
Indeed, several alternatives have been introduced, but the most immediate generalization of the
information entropy is the Rényi entropy [188] which includes information entropy and other
simpler definitions of entropy as special cases. Rényi entropy fulfills the same properties of
information entropy, namely, is a continuous, non-negative function of the probabilities P (xi ),
it has the same maximum of information entropy for equiprobable outcomes and is additive. A
more general formulation of entropy is the Tsallis entropy [189] which breaks the additivity
of information entropy. Tsallis entropy was proposed as a suitable quantity to characterize
out-of-equilibrium systems that do not obey the Boltzmann-Gibbs theory of statistical mechanics
but are described by non-extensive statistics [190, 191].
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The notion of information entropy can be extended to random variables which take continuous
values. In such case, a continuous random variable X is described by a probability density
function f (x) which satisfies the normalization condition

∫+∞
−∞ f (x)d x = 1. The analogue of

information entropy is the differential entropy s [X ], also known as continuous entropy:

s [X ] = E f

[
− ln f (x)

]
=−

∫+∞

−∞
f (x) ln f (x)d x . (1.38)

However, the naive substitution of the sum in Equation 1.35 with the integral induces a problem:
although f (x) > 0, there is no guarantee that f (x) ≤ 1 ∀x. If ∃ (a,b) : f (x) > 1 for x ∈ (a,b) the
contribution of that interval to the differential entropy is negative (since ln f (x) > 0) and such
negative part may not be counterbalanced by other positive contributions. Hence, the differential
entropy can be negative, unlike the discrete (information) one. In order to understand more in
depth the relation between the differential and information entropies we start by discretizing the
former. In this way, we should obtain an entropy that resembles the discrete one. Thus, consider
that we split X into bins of width ∆. If the probability density function is continuous inside the
bins, according to the mean value theorem, there exists a value xi inside each bin such that the
associated probability pi is

pi = f (xi )∆=
∫(i+1)∆

i∆
f (x)d x , (1.39)

from which follows that the discretized version X ∆ of the continuous random variable X is simply

X ∆ = xi if i∆≤ X ≤ (i +1)∆ .

The entropy of the discretized random variable X ∆ is

S
[

X ∆
]
=−

+∞∑

i=−∞
pi ln pi

=−
+∞∑

i=−∞
f (xi )∆ ln

(
f (xi )∆

)
=−

+∞∑

i=−∞
f (xi )∆ ln

(
f (xi )

)
−

+∞∑

i=−∞
f (xi )∆ ln(∆) .

(1.40)

If both terms f (x) ln
(

f (x)
)

and f (x) in S
[

X ∆
]

are Riemann integrable, by definition of Riemann
integrability we have

lim
∆→0

+∞∑

i=−∞
f (xi )∆ ln

(
f (xi )

)
→

∫+∞

−∞
f (x) ln f (x)d x = s [X ] ,

lim
∆→0

+∞∑

i=−∞
f (xi )∆→

∫+∞

−∞
f (x)d x = 1.

Using these relations in Equation 1.40 we obtain for the differential entropy the following
expression

s [X ] = lim
∆→0

(
S
[

X ∆
]
+ ln∆

)
→−

∫+∞

−∞
f (x) ln f (x)d x . (1.41)
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As a result, the differential entropy s [X ] of the continuous random variable X is equal to the
limit for ∆ → 0 of the information entropy S

[
X ∆

]
of its discretized counterpart X ∆ (i.e. the

direct equivalent of S [X ] in Equation 1.35) up to an additive factor which is infinite since
lim∆→0 ln∆→−∞. Therefore, differential entropy s [X ] is not well-defined as a proper extension
of information entropy. Nonetheless, in practice, for a finite sample of X we compute the
differential entropy choosing a fixed ∆ as the bin width, i.e. without taking the limit ∆ → 0.
Similarly, the discretized information entropy for bins of variable width ∆i is

S
[

X ∆
]
=−

+∞∑

i=−∞
pi ln pi =−

+∞∑

i=−∞
f (xi )∆i ln

(
f (xi )∆i

)

=−
+∞∑

i=−∞
f (xi )∆i ln

(
f (xi )

)
−

+∞∑

i=−∞
f (xi )∆i ln(∆i ) .

(1.42)

where the discretized version of X with variable bin widths ∆= {∆i } is

X ∆ = xi if i∆i ≤ X ≤ (i +1)∆i .

The probability pi associated to the discretized variable X ∆ in bin i is then

pi = f (xi )∆i =
∫(i+1)∆i

i∆i

f (x)d x . (1.43)

The definition of the Kullback-Leibler divergence Equation 1.36 can also be extended to the
probability density functions f (x) and g (x) as

dKL

(
f ||g

)
= E f

[
ln

(
f (x)

g (x)

)]
=
∫+∞

−∞
f (x) ln

(
f (x)

g (x)

)
. (1.44)

The same discretization detailed above can be applied to obtain the discretized version of the
Kullback-Leibler divergence dKL

(
f ||g

)
from the probabilities pi (see Equation 1.43) and qi :

qi = g (xi )∆i =
∫(i+1)∆i

i∆i

g (x)d x .

which yields to

DKL (P||Q) = EP

[
ln

(
P
(
X ∆

)

Q
(
X ∆

)
)]

=
+∞∑

i=−∞
pi ln

(
pi

qi

)
=

+∞∑

i=−∞
f (xi )∆i ln

(
f (xi )∆i

g (xi )∆i

)

=
+∞∑

i=−∞
f (xi )∆i ln

(
f (xi )

g (xi )

)
.

(1.45)
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Chapter 1. Methods

1.2.1 Maximum entropy principle

Information Theory provides a well-grounded conceptual framework to quantify the information
content of a random variable through its entropy. However, in real-world situations, we may
foresee that a random variable is not maximally haphazard, but has some peculiar features that
determine typical expected values. In such case, the typical values control the functional form of
the probability distribution followed by the random variable which, in general, is distinct from
the uniform distribution. Indeed, the latter is the most unbiased distribution that satisfies only
the normalization constraint over a finite interval. Likewise, we can impose other constraints
that influence the functional form of the probability distribution of a random variable, given the
expected values of quantities that depend on the variable itself. This is a very general problem
in mathematical optimization that was first solved by Joseph Louis Lagrange in analytical
mechanics [192]. The mathematical technique that he developed was named after him as the
method of Lagrange multipliers. The statement of the problem is the following: we have
a continuous function f (x1, . . . , xn) of n variables {x1, . . . , xn} which is subject to M equality
constraints like gk (x1, . . . , xn) = 0 and we want to extremize it, finding the local maxima and
minima.2 To this aim, we introduce the so-called Lagrange multipliers λk [193–195], one for
each constraint, that become the additional variables of an auxiliary function

f̃ (x1, . . . , xn ,λ1, . . . ,λM ) = f (x1, . . . , xn)−
M∑

k=1

λk gk (x1, . . . , xn) , (1.46)

which incorporates the constrained functions gk (x1, . . . , xn). The method of Lagrange multipliers
consist in solving the equations

∇x1,...,xn ,λ1,...,λM
f̃ (x1, . . . , xn ,λ1, . . . ,λM ) =∇x ,λ f̃ (x ,λ) = 0, (1.47)

where x = (x1, . . . , xn), λ= (λ1, . . . ,λM ) and

∇x1,...,xn ,λ1,...,λM
f̃ =

(
∂ f̃

∂x1
, · · · ,

∂ f̃

∂xn
,
∂ f̃

∂λ1
, · · · ,

∂ f̃

∂λM

)
=
(
∇x f̃ ,∇λ f̃

)
,

is the gradient of f̃ that includes the first partial derivatives of f̃ with respect to every variable.
Equation 1.47 encapsulates n +M equations in n +M unknown variables, where each of the M

terms ∂
∂λk

f̃ (x1, . . . , xn ,λ1, . . . ,λM ) results in gk (x1, . . . , xn) = 0, that is, the constraint associated
to λk is satisfied. Hence, solving Equation 1.47 is equivalent to solve the system of equations




∇x f (x)−

∑M
k=1

λk∇x gk (x) = 0,

g1 (x) = ·· · = gM (x) = 0.
(1.48)

where the first line is a shorthand for n equations and the second line represents the M equations
of the constraints. It is worth to remark that the fixed constraints gk uniquely determine the

2The formulation of the extremization problem is well-defined only if we assume that the function f and the
constraints gk , as well as their first derivatives, are continuous.
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functional form of f after the system in Equation 1.48 is solved.

Here, we use the method of Lagrange multipliers to determine the probability distribution of a
random variable that is consistent with known constraints but is maximally unbiased otherwise.
As we motivated at the beginning of the Section, information entropy is the proper measure to
quantify the uncertainty or ignorance about the distribution of a random variable: if the probability
is more biased toward a value, the entropy of the random variable is lower; on the contrary, the
entropy is maximal if the random variable is uniformly distributed. Entropy, which depends
on the probability distribution, is then the right function to maximize in order to establish the
most even probability distribution that satisfies the expected values as constraints. The maximum
entropy principle was first proposed in the milestone paper [196] of Edwin T. Jaynes as a mindful
approach to recover the rules of statistical mechanics in terms of an inference problem from partial
knowledge. In this way, the maximum entropy principle allows the derivation of the maximum
entropy probability distribution, which is the best possible estimate based on a limited knowledge
represented by the constraints, being at the same time the least biased estimate. Accordingly, the
maximum entropy distribution is the most ignorant choice that could be made respecting only the
constraints, as we do not construct it from knowledge that we do not have.

As a simple application of the maximum entropy principle, consider the discrete random variable
X whose possible outcomes are {x1, x2, . . . , xn} with associated probabilities p =

(
p1, . . . , pn

)

where pi = P (X = xi ) for every i = 1, . . . ,n. The least constrained probability mass function is
the one that maximize the information entropy in Equation 1.35: following the strategy of the
Lagrange multipliers, the function f in Equation 1.46 is the information entropy, which depends
on the probabilities pi :

f
(
p1, p2, . . . , pn

)
=−

n∑

i=1

pi ln pi . (1.49)

If no expected values are imposed as actual constraints, the only rule that the probability mass
function must obey is the normalization condition

∑n
i=1

pi = 1, which can be regarded as the only
constraint to fulfill:

g
(
p1, p2, . . . , pn

)
=

n∑

i=1

pi −1. (1.50)

The system in Equation 1.48 then becomes



∇p

(
−
∑n

i=1
pi ln pi

)
−ν∇p

(∑n
i=1

pi −1
)
= 0,

∂
∂ν f̃

(
p ,ν

)
= g

(
p
)
=
∑n

i=1
pi −1 = 0.

(1.51)

In this example, ν is the Lagrange multiplier associated to the constraint on the normalization of
the probability mass function. Thus, every single equation among n obeys

∂

∂pk

{
−

n∑

i=1

pi ln pi −ν

(
n∑

i=1

pi −1

)}
=− ln pk −1−ν= 0. (1.52)
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The probability mass function is then

pk = e−ν−1 , (1.53)

by imposing the normalization constraint of Equation 1.50, we get

n∑

k=1

pk =
n∑

k=1

e−ν−1 = ne−ν−1 = 1,

therefore

pk = e−ν−1 =
1

n
, (1.54)

The least constrained maximum entropy probability distribution is the uniform one.

We detailed here the motivations to adopt the maximum entropy principle when considering
probability distributions with peculiar traits since it will be used in the next Chapter to characterize
the frequency of occurrence of words within texts. In such case, the probability distribution
tends to have a broad profile, similar to a power-law, an ubiquitous distribution that describes a
plethora of critical phenomena in nature, ranging from the income of people to the intensity of
earthquakes [197].
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2 Entropic selection of concepts

in networks of similarity

between articles
2.1 Analysis of scientific articles

In this Chapter we will make use of the concepts introduced in the previous one to study the
relationships amid scientific manuscripts. Since articles are the main sources of dissemination of
scientific knowledge, describing their interdependencies is of primary importance to understand
the fundamental principles that shape science. The more natural approach to investigate their
relationships it to consider articles as basic elements that constitute the nodes in a network. The
most recurrent policy to create links between articles is from the reference list, in such a way
that an article is connected to all the articles that are cited within. Given the immediate definition
of the links, the resulting citation network has been among the first attempts to quantitatively
sketch a map of scientific knowledge in the seminal work of de Solla Price [15]. Thanks to
the availability of machine-readable bibliometric data about the articles, the studies based on
such resources have been flourishing addressing various aspects of the citation patterns, from
the simple empirical characterization of the citation distribution of papers [53], the discovery of
its universal features [198] and their utility to gauge the impact of the publications [199] to the
modeling of the citation mechanisms [200], the spreading of recurrent memes in the scientific
literature [4] and effect of the temporal dimension of citations in different fields [201]. Finally,
bibliometric data have been adopted to construct several maps of the scientific landscape in order
to conduct exploratory data analyses of the their information [61, 62, 64, 202].

By construction, citation networks clearly acknowledge important contributions from papers in
the existing scientific literature [203]. However, the ever-increasing number of papers that are
published yearly represent a major issue for scientists that need to keep up-to-date with recent
advances in their fields [23–25]. This problem is even more pronounced for interdisciplinary
research where the number of venues to watch over easily expands. Concurrently, the chance
of missing relevant work due to the scattering of papers in several venues likely grows [204]. A
paradigmatic example is provided by the field of complex networks [205], a truly multidisciplinary
community where contributions spread across scholars with very different backgrounds and
approaches, ranging from physicists to sociologists and economists. Therefore, thinking of
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Chapter 2. Entropic selection of concepts in networks of similarity between articles

reading all the new manuscripts that are published is not feasible since it would take too much
time and efforts. Ideally, the optimal solution would be to focus only on those papers that are
relevant. In order to help scholars in such activity, various tools have been designed throughout
the years [206]. A primary source to suggest interesting articles is following the citation paths
from other articles. Although citations remain a trustful source to point out previous knowledge,
their potential is limited to the subjectivity of the authors. Therefore, a more effective approach
to highlight similar studies relies on the semantic analysis of articles which may potentially
uncover related topics within. Usually, a large-scale analysis is performed from similarities
between titles and abstracts of the articles [66, 207] with the aid of natural language processing
techniques that allows to automatically extract keywords from these elements [208]. On the one
hand, the careful choice of the words adopted within eventually capture precise similarity patterns
between articles. On the other hand, the concise nature of title and abstracts likely overlook
deeper terms nested within texts that potentially contribute to the similarities with other articles.
For that reason, a thoughtful procedure is to exploit the full text of articles (including the body) to
semantically relate articles one another [65–67, 209, 210]. Of course, this approach is not perfect
and possesses its own limitations; for example, it cannot overcome the differences between
jargons that characterize the same concepts which are often field-specific [211]. Nevertheless,
the semantic analysis of the article texts may potentially uncover similarities between topics in
different articles. From the semantic similarity network, the thematic organization of manuscripts
emerges as groups of articles related to similar topics. Exploring such organization is then useful
to map the actual structure of the scientific knowledge [10, 60, 212].

Unfortunately, current methodologies to automatically extract keywords do not consider the
specificity of scientific terminology. Thanks to the collaboration with the ScienceWISE (SW)
team, we had access to a crowdsourced ontology of scientific concepts available in the SW
platform1. Such ontology has been extracted for a set of scientific manuscripts appearing in the
arXiv 2 electronic preprint repository. Indeed, the aim of the SW project is to help scientists
organizing their personal collection of preprints, enriching it through semantic tagging and
recommending interesting articles [213–218].

The manuscripts on arXiv are organized in categories that span several domains, from physics
to economics. The categories, however, are not static but evolve in time, continuously adapting
according to the feedback of the community of researchers that use the repository. As an
example, in its prime astrophysics was a unique category but after some time got split into six
subcategories3 with the purpose of differentiating the submissions into finer-grained subjects. In
the same spirit of adaptation, new categories have been introduced over the twenty-year history
of the repository, e.g. quantitative biology and finance, in order to encourage researchers to
disseminate their work [25]. During the submission process of a manuscript, the authors must
assign it to a primary (sub)category with the optional choice of cross-listing to other secondary
categories. However, the different (sub)categories are not pretended to be rigorous in providing a

1http://sciencewise.info
2https://arxiv.org/
3In the arXiv nomenclature, the subcategories are referred to as subject classes
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principled division of a field in several areas with the same specificity and importance. In the
field of physics, for example, high energy physics is divided in four subcategories with no further
subdivisions, while the physics category includes very disparate subcategories, from medical
physics to atmospheric and ocean physics.

Among all the possible choices available, we selected articles that have been submitted during
the year 2013 under one of the physics categories as primary subject, independently on their
secondary ones. The resulting corpus consists of 52979 articles, whose composition in terms of
arXiv categories is reported in Table 2.1 and Figure 2.1.

Table 2.1 – Number of articles Na and relative size (in %) of each arXiv category in the physics
corpus. The first and second column include the name and the abbreviation of the category. If a
given category is not the standard one but results from merging multiple categories, their suffix is
indicated within brackets after the abbreviation.

Category Abbreviation Na %

Condensed matter cond-mat 12679 23.93
Astrophysics astro-ph 12458 23.51
High energy physics hep [-ex, -lat, -ph, -th] 9661 18.24
Physics physics 7407 13.98
Quantum physics quant-ph 4039 7.62
General relativity and quantum cosmology gr-qc 2273 4.29
Nuclear physics nucl [-ex, -th] 1819 3.43
Mathematical physics math-ph 1767 3.34
Nonlinear sciences nlin 876 1.65

Total 52979 100

cond-mat

23.90%

astro-ph

23.48%

hep

18.22%

physics

13.96%

quant-ph

7.61%

gr-qc

4.28%
nucl

3.57% math-ph
3.34%

nlin1.65%

Figure 2.1 – Donut chart of the composition of the physics articles in terms of arXiv primary
categories.

The donut chart in Figure 2.1 shows that the corpus is highly heterogeneous in terms of the
number of articles. Indeed, the two most populated categories, cond-mat and astro-ph, comprise
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together almost half of the total number of articles, while gr-qc, nucl, math-ph and nlin do not
even size up to 13%. In order to distillate the content of the articles, we mine the texts as follows:
first, as a preliminary step, we preprocess the texts to get rid of the so-called “stop words”,
namely terms that are syntactic elements present in any written text and do not carry any semantic
meaning. Examples of such terms are articles (e.g. , “the”, “this” and “any”), conjunctions (e.g. ,
“and”, “but” and “after”) and adverbs (e.g. , “usually”, “very” and “enough”). Next, we identify
important words using the keyword extraction algorithm KPEX [219]. Finally, we match the
keywords with an ontology of scientific concepts that is accessible on the SW platform. These
concepts have been gathered initially from online encyclopedias and subsequently curated by
crowdsourcing from SW users expert in different areas of physics. Note that the availability of
a curated ontology for a large dataset is not common and can be regarded as a special feature
of our dataset. Overall, the articles in physics contain 11,637 unique concepts: from this pool,
we removed concepts that are present only in one article (since they do not contribute to the
similarity between articles), and those occurring always the same number of times inside the
articles, eventually obtaining 10,661 concepts. Among them, 339 have been marked as common

by experts. To characterize the relationships between articles in terms of the words that they
share, we then analyze the unipartite projection onto the articles as detailed in subsection 1.1.2,
capturing with the link weights the similarities between documents. The only relationships
that are present between them are described by the link weights that quantify the relevance of
a concept c in a document α. Several policies can be adopted to define such relevance. We
decided to adopt the de facto standard measure in information retrieval is the TF-IDF [220, 221].
The TF-IDF of a concept c in article α is defined as the product of two quantities: the boosted

term-frequency, t fc (α), which is the number of occurrences of concept c in article α magnified
depending on its position in the text of the article, and the inverse document frequency, I DFc ,
which corresponds to the inverse fraction of articles where concept c appears. The rationale
behind the TF-IDF is indeed the following: on the one hand, the boosted term-frequency is a
local measure, at the level of single articles, which gives importance to prevalence of a concept
inside a given text; on the other hand, the inverse document frequency is a global measure, at the
level of the corpus of articles, which penalizes a concept appearing in many articles. In order to
compute the boosted term-frequency, the full text of every article α is split in 3 different parts:
the title t , the abstract a and the body b. For each part p = {t , a,b} we compute the number of
times the concept c is found in it, n

p
c (α). The boosted term-frequency is then calculated as

t fc (α) = 5 ·nt
c (α)+3 ·na

c (α)+nb
c (α) . (2.1)

The inverse document frequency of concept c is

I DFc = ln

(
Na

Nc

)
, (2.2)

where Na is the total number of articles in the corpus and Nc is the number of articles that contain
concept c. The content of the article α is then summarized by a vector �dα whose elements
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correspond to the TF-IDF of the concepts in the article α:

dα(c) =





t fc (α) · I DFc if c ∈Cα ,

0 otherwise,
(2.3)

where Cα is the set of concepts contained in article α. The similarity between a pair of articles α
and β is represented by the link weight in the unipartite projection onto the articles, as defined in
Equation 1.1, by using �dα and �dβ:

wP
αβ =

�dα · �dβ∥∥�dα

∥∥∥∥�dβ

∥∥ , (2.4)

where · denotes the scalar product and
∥∥. . .

∥∥ is the Euclidean norm. Equation 2.4 is the definition

of cosine similarity between vectors, which is equivalent to imposing ai : =
�dα∥∥�dα

∥∥ and a j : =
�dβ∥∥�dβ

∥∥
in Equation 1.1. The cosine similarity between normalized vectors has the advantage that the
link weight wP

αβ
∈ [0,1], where wP

αβ
= 0 indicates that the articles are not sharing any concept

at all (i.e. are completely different) since the vectors form an angle θ = 90°in the space of the
concepts. On the contrary, a value wP

αβ
= 1 is found if the documents do not simply share the

same set of concepts, but use them with the equal occurrences up to a multiplicative constant
(i.e. they are identical); therefore, the corresponding vectors form an angle θ = 0°. As links
with very low weight are likely to include spurious similarities, we discard from the network all
the links whose weight is immaterial, i.e. wP

αβ
≤ wmi n , fixing a threshold wmi n = 0.01 which

corresponds to an angle θmi n = 89.43°. A general description of the similarities between articles
is achieved from the structural analysis of the network using the topological quantities introduced
in subsection 1.1.3. An important measure to gauge the overall connectivity is the average degree
〈k〉 = 19334: this value is of the same order of the size of the corpus Na = 52979, therefore it
is extremely high if compared to other real-world networks [81]. Likewise, the sparsity of the
network measured by the link density is ρ = 36.5%, indicating a very dense pattern of connections.
Even if these quantities are best suited to characterize a (simple) unweighted network, they make
clear the presence of an overwhelming number of links. This circumstance undermines the
modeling of the system as a network since one of the main benefits of this approach is to deal
with sparse interactions. In the next Section, we propose a solution to the problem of limiting
the number of connections of the similarity network. The majority of the work presented in this
Chapter and the related Appendix has been the subject of [222, 223].

2.2 Sparsifying the similarities between articles

The necessity of pruning the links of a weighted network is a common requirement in many
real-world cases. Several techniques have been suggested to tackle this problem by preserving the
significant links of a weighted network, as described in subsection 1.1.6. However, they operate a

posteriori on the weight distribution without considering the specificity of the relations encoded
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in the weights. Indeed, the projection of the bipartite network onto the articles P entails a loss of
information. Instead of filtering the weights, a more well-grounded approach consists in retaining
only relevant concepts before computing the similarities, thus acting ex-ante on the procedure that
generates the weights. Loosely speaking, the concepts that should be discarded are those that are
pervasive but do not carry a specific meaning, nor are they related to a particular domain. These
concepts are the so-called “common concepts” (CCs) which inflate the link weights between
articles and are responsible for the spurious similarities.

As explained in the previous Section, a built-in set of CCs is already present in the SW platform.
Users have been asked to tag the crowdsourced concepts that they believe are common or suggest
new ones as such. However, maintaining an updated set of CCs requires a periodical collaboration
from the experts. Indeed, the SW platform is directly linked to arXiv as it includes new articles
on a daily basis. The examination of their concepts can then become quite demanding for the
experts. Moreover, the identification of CCs is based only on the judgment of the experts that are
unaware of the composition of the whole corpus in terms of subjects. This point is crucial because
a concept like graphene could be regarded as common for a corpus of articles on material science
but it is likely specific for a corpus on astrophysics. These drawbacks suggest that removing
only the CCs may not be a thoughtful choice. Nevertheless, we can leverage such information to
pinpoint common traits of CCs, and use such features identify “hidden” common concepts that
are not been tagged as such. Concepts that are not considered as common are then relevant and
will be used to construct a “purified” version of the similarity network between articles.

The question that arises is then the following: is there a method that allows to automatically spot
relevant concepts which depends, by construction, on the corpus under scrutiny? In order to give
an answer, we first need to define the fingerprints of a relevant concept. A concept of this kind
should satisfy two requirements, at least:

1. It must neither be too widespread (i.e. a buzzword) nor too rare (too specific) among the
articles in the corpus.

2. It must occur a considerable number of times within articles.

The first feature describes the discriminative power of a concept as it appears in a significant
number of papers but it is also useful to discern articles. The second feature accounts for the
pertinence of a concept in delineating the content of an article. For a corpus of Na articles, the
number of unique concepts is defined as the union of the concepts that are present in the different
articles, C=

⋃Na

α=1Cα. The discriminative power of a concept c ∈C that is present in Nc articles
is measured by its document frequency4 d fc = Nc

Na
, while the pertinence for a given article α is

calculated as the (boosted) term-frequency t fc (α). The average term-frequency of c then reads

4In the following, we will use the same document frequency d fc as a symbol to denote the raw number of articles
Nc where concept c appears in. A distinct definition is not considered since the two quantities are the same up to a
divisive constant, thus they have the same properties and can be interchanged without affecting the conclusions drawn,
e.g. , for the their distribution.
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〈t fc〉 = 1
Nc

∑Nc

α=1 t fc (α). The characterization of the concepts is pursued in terms of their d f and
〈t f 〉 by partitioning the corresponding plane according to several thresholds on these quantities.
The classification of the concepts is then established from the regions that they occupy, defined
as follows:

A1 The domain of specific/rare concepts characterized by having both d f and 〈t f 〉 small.

A2 The domain of common/ubiquitous concepts showing high values of both d f and 〈t f 〉.

A3 The domain of relevant/informative concepts that have intermediate values of d f and 〈t f 〉.

A4 All the residual concepts that seldom appear within documents (on average) to be regarded
as relevant.

Considering each trait individually, we can naively split its range in three, or more, intervals that
include low, medium and high values. The boundaries of the domains are then defined in terms
of the percentiles in order to capture at best the variability of the data. In particular, we consider
three intervals for 〈t f 〉 delimited by 25th and 75th percentiles, and four intervals for d f delimited
by the 25th, 75th and 90th percentiles. The resulting partitioning is displayed in Figure 2.2. As

Figure 2.2 – Classification of the concepts based on the tessellation of the (〈t f 〉,d f ) plane. Each
type of concept is identified by a different color. The dashed lines correspond to the different
percentiles that delimit the domains.

can be appreciated in Figure 2.3, the actual position of the concepts in the plane indicate that both
variables span a wide range of values. The type of concepts is denoted by the color: green dots, for
example, identify the concepts defined as relevant by the partitioning scheme, which amount to
46% of the total. In principle, we can keep only these concepts to calculate the similarity between
articles. Nevertheless, the intuitive tessellation of the plane has several drawbacks: indeed, it
depends on many thresholds that are arbitrary both in their number and value. Furthermore,
concepts hand-marked as common by experts (the black points in Figure 2.3) are not located in
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any specific region of the (〈t f 〉,d f ) plane. Still, they tend to concentrate in a band that is not
a straightforward combination of d f and/or 〈t f 〉, as shown by the black curve. Curiously, this
trend already suggests the presence of a common principle that influence their position. Last but

Figure 2.3 – Bidimensional tessellation of the concepts represented by different shapes and colors
according to the domain they are assigned to, as reported in Figure 2.2. Ubiquitous (red stars),
rare/specific (cyan triangles), significant (green circles), and other concepts (orange squares)
constitutes the 4.6, 11, 46, and 39 % of the total, respectively. Black points denote concepts
tagged as common (CCs) and the solid black line is a guide for the eye that interpolate their
average position. Logarithmic scales are adopted to neatly visualize the results.

not least, both quantities have a broad distribution as displayed in Figure 2.4. This property is not
surprising since has been already observed in [224–228]. Besides, it is intimately related to a
similar behavior observed for the total number of word repetitions in a corpus which obeys the
Zipf’s law [229]. Scale-free quantities do not possess a characteristic scale, thus imposing some
threshold is not only subjective but also inappropriate. These shortcomings suggest the pursuit of
an alternative method to filter concepts which should not rely on simple quantities associated to
them but, ideally, on some microscopic characteristic of the concepts themselves. More precisely,
every concept has a specific distribution of the term-frequency over the articles that describes
how it is used. Therefore, we are interested to understand more in detail the peculiar traits of such
distributions in order to characterize the concepts. To this aim, we can regard the term-frequency
of a concept as a random variable. A suitable measure to quantify its information content is given
by the entropy introduced in section 1.2. Thus, every concept has an associated entropy, Sc , that
can be used as a proxy for its importance [230–232]:

Sc =−
∞∑

k=1

pc (k) ln pc (k) , (2.5)

where pc (k) = Nc (k)
Nc

is the ratio between the number of articles where concept c occurs k times,
Nc (k), and the total number of articles it appears in, Nc . In other words, pc (k) is the probability
that a document picked at random among Nc contains k occurrences of concept c. The entropy
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Figure 2.4 – Probability density function of the concept features: panel (A) refers to the document
frequency, d f , while panel (B) is related to the average term-frequency, 〈t f 〉. In each panel, the
power-law fit of the corresponding distribution, P (x) ∼ x−α, is displayed by a dashed line along
with the parameter α and its standard deviation. The fits are reported only to highlight the broad
shape of the distributions and they are not intended to represent the best fitting models. The trend
of the distributions reveal the great variability of such quantities that may lack a typical scale.

Sc is called conditional since it is calculated under the condition that the concept c is present
within the articles. We then investigate the relation between Sc and the emblematic attributes of a
concept, (i.e. d fc and 〈t fc〉). Intuitively, we may expect that concepts present in many articles are
likely to be classified as common. However, there is no evidence that confirms this claim. Indeed,
Figure 2.5 A illustrates the d f of concepts are present as a function of the entropy, Sc . CCs,
denoted by black points, do not exhibit any shift toward particular values of Sc , but are evenly
scattered across the whole range (as already noted in Figure 2.3). Nonetheless, a linear correlation
between log10(d f ) and Sc exists, as shown by the black line, implying that the two quantities
are somehow related. However, if we consider the 〈t f 〉, CCs tend to have an higher Sc when
compared to the other concepts with the same 〈t fc〉, as displayed in Figure 2.5 B. Furthermore,
CCs are concentrated toward an ideal border of the concept distribution in the (Sc ,〈t f 〉) plane.
The existence of such limit region is quantitatively demonstrated by the dashed line describing
the maximum entropy computed after imposing 〈t f 〉 as a constraint:

S〈t f 〉 = 〈t f 〉 ln
(
〈t f 〉

)
−
(
〈t f 〉−1

)
ln

(
〈t f 〉−1

)
. (2.6)

For brevity, the derivation of such formula is given in subsubsection A.1.2.1. Likewise, a
condensation of Sc for CCs is noticed also in the case of 〈ln

(
t f

)
〉 (Figure 2.5 C) where such

trend is even more pronounced with respect to the one observed for 〈t f 〉. Therefore, the peculiar
behavior of Sc as a function of 〈t f 〉 and 〈ln

(
t f

)
〉 suggests that they are both intimately related

to the high entropy of CCs. However, the raw value of Sc is not sufficient to discriminate CCs.
Indeed, we need to fairly assess if the observed Sc is big or not with respect to a reference value.
Given the trends recognized above, we argue that CCs are driven close to their maximum possible
entropy because of some fundamental mechanism. Then, a proper comparison of the actual
entropy should be made considering the expected maximum entropy as its theoretical counterpart.
The adoption of the maximum entropy principle, however, is not only motivated by empirical
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Chapter 2. Entropic selection of concepts in networks of similarity between articles

Figure 2.5 – Relations between the entropy Sc and several features of the concepts. Common
concepts in SW (CCs) are denoted by black points. (A) Dependence between Sc and the number of
articles where concepts appear in, d f . The solid line is the linear least-squares regression between
log10 d f and Sc for CCs (Pearson correlation coefficient r = 0.743). (B) Dependence between Sc

and the average term-frequency, 〈t f 〉. The dashed line represents the analytical expression of the
maximum entropy as a function of 〈t f 〉, calculated by imposing only the constraint on 〈t f 〉 itself.
(C) Dependence between Sc and the average logarithm of the term-frequency, 〈ln

(
t f

)
〉.

evidence but it is also justified from theoretical arguments, as we detailed in subsection 1.2.1.

In the scientific literature, an increasing interest has been devoted to the investigation of the
statistical properties of word [224–227]. Specifically, the distribution of the term-frequency of a
word is described by a law spanning a broad range of values. In order to establish the constraints
that are more appropriate to recreate the word frequency distribution, a useful hint is given by
the empirical findings unveiled above. The average term-frequency, 〈t f 〉, and the average of the
logarithm of the term-frequency, 〈ln

(
t f

)
〉, may be suitable constraints as they are clearly related

to the high entropy Sc of common concepts5. The inspection of the term-frequency distribution
of various concepts (in particular the common ones), as displayed in Figure 2.6, reveals that pc (k)

is well characterized by a power-law with a cutoff

qc (k) ∝ k−se−λk . (2.7)

represented by the dashed line in Figure 2.6. Equation 2.7 is precisely the functional form of the
maximum entropy probability distribution that follows from such constraints [226]. Furthermore,
it has been already adopted to model the t f distribution of words [225]. The maximum entropy
principle described in subsection 1.2.1 allows to derive the analytical expression for the expected
distribution qc (k) as in Equation 2.7. In particular, the maximization of the entropy S is performed
under the constraints that the first moment and log-moment of the term-frequency k must match

5Naively, the choice of the constraints can be explained in the following way: first, the mean value of a variable
is its most characteristic feature, therefore is reasonable to select 〈t fc 〉 as a constraint of the maximum entropy
distribution. Second, many studies confirm that the term-frequency distribution is spread across a wide range of values,
exhibiting a heavy tail profile [225, 227]. The proper constraint to reproduce such behavior is then the average of the
logarithm of the variable, 〈ln(t fc )〉, which can be considered as the simplest typical value on a broader (logarithmic)
scale.
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Figure 2.6 – Typical distributions of the term-frequency, t fc , for two representative concepts.
For each concept, the dashed line indicates the maximum entropy distribution, a power-law with
a cutoff, whose parameters s and λ are reported. (A) Concept “Universe” is an example of a
common concept. (B) Concept “Neutrino” is taken from those concepts identified as generic by
the entropic filtering, as explained later.

the empirical values, 〈t fc〉 and 〈ln(t fc )〉 respectively. As a consequence, the expression to
maximize reads

Smax =−
∞∑

k=1

qc (k) ln qc (k)−λ

(
∞∑

k=1

k qc (k)−〈t fc〉
)

− s

(
∞∑

k=1

ln(k) qc (k)−〈ln(t fc )〉
)
−ν

(
∞∑

k=1

qc (k)−1

)
.

(2.8)

In this equation, λ is the Lagrange multiplier associated to the 〈t fc〉 constraint, s is the one
associated to 〈ln(t fc )〉 and ν is associated to the normalization condition of the probability mass
function qc (k). The maximization of Equation 2.8 with respect to qc (k) is performed as ∂Smax

∂qc (k)
= 0,

which gives:

− ln qc (k)−1−λk − s ln(k)−ν= 0. (2.9)

Thus, the probability mass function qc is defined as

qc (k) =
e−(ν+1)e−λk

k s
. (2.10)

This probability mass function corresponds to a power law with a cutoff. The power law k−s

is responsible for the fat tail of the distribution, while the cutoff e−λk is likely due to the finite
size of the articles under scrutiny. Maximizing Equation 2.8 with respect to each Lagrangian
multiplier allows to impose the relative constraint. As a consequence, the parameters that appear
in Equation 2.10 are computed from the constraints. The maximization of Equation 2.8 with
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respect to ν, ∂Smax

∂ν = 0, allows to recover the normalization condition:

∞∑

k=1

qc (k) = e−(ν+1)
∞∑

k=1

e−λk

k s
= 1,

e(ν+1) =
∞∑

k=1

e−λk

k s
=Lis(e−λ) . (2.11)

In the last equation, the infinite summation is equal to the special function called polylogarithm6

of order s and argument e−λ. Equation 2.11 allows to properly normalize the probability mass
function in Equation 2.10 so that we obtain

qc (k; s,λ) =
e−λk

k s

Lis(e−λ)
, (2.12)

the same expression reported in Equation 2.7. Maximizing Equation 2.8 with respect to λ,
∂Smax

∂λ = 0, we recover the constraint 〈t fc〉:

∞∑

k=1

k qc (k) =
∑∞

k=1
k e−λk

k s

Lis(e−λ)
=

∑∞
k=1

e−λk

k s−1

Lis(e−λ)
= 〈t fc〉 ,

Lis−1(e−λ)

Lis(e−λ)
= 〈t fc〉 , (2.13)

where in the last equation we applied the definition of the polylogarithm in Equation 2.11. Finally,
the maximization of Equation 2.8 with respect to s, ∂Smax

∂s
= 0, allows to impose the constraint on

〈ln(t fc )〉:

∞∑

k=1

ln(k) qc (k) =
∑∞

k=1
ln(k)e−λk

k s

Lis(e−λ)
= 〈ln(t fc )〉 ,

−
∂sLis(e−λ)

Lis(e−λ)
= 〈ln(t fc )〉 . (2.14)

The expression in the last equation has been derived thanks to the identity

∞∑

k=1

ln(k)e−λk

k s
=−

∂

∂s

∞∑

k=1

e−λk

k s
=−

∂

∂s
Lis(e−λ) .

Considering that the two constraints in Eqs. (2.13) and (2.14) must be valid simultaneously, the

6For any value of s,e−λ ∈C, the definition of the infinite sum as polylogarithm is limited to the case when the
modulus of the argument is smaller than one, |e−λ| < 1. Note, however, that in the present case only real valued
parameters are meaningful.

40



2.2. Sparsifying the similarities between articles

resulting system of equations to solve is then

Lis−1(e−λ)

Lis(e−λ)
= 〈t fc〉 ,

−
∂sLis(e−λ)

Lis(e−λ)
= 〈ln

(
t fc

)
〉 .

(2.15)

In Equation 2.15, both parameters s and λ are present in each of them. Since the two equations
are coupled, the parameters cannot be calculated explicitly but we resort to solve the system
numerically. The details of the algorithmic implementation of the system, along with some
snippets of code, are provided in subsection A.3.1.

The analysis of the distribution of s and λ reveals the trend followed by the maximum entropy
distribution qc of the concepts, as illustrated in Figure 2.7. Interestingly, panel A highlights
that s = 3/2 is the most recurrent value of the power-law exponent, therefore it is somehow
characteristic of the mechanism that steers the empirical distributions of the term-frequency.
Moreover, panel B shows the distribution of the exponential cutoff λ which is peaked around 0,
highlighting that the cutoff mildly affects the power-law behavior in general. For every concept,
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Figure 2.7 – Histogram of the parameters of the maximum entropy distribution, a power-law
with a cutoff (see Equation 2.7), for the term-frequency of the concepts. (A) Distribution of the
power-law exponent s that shows a pronounced peak at s = 3/2, as indicated by the dashed vertical
line. Note that most of the values tend to be located around such maximum. (B) Distribution of
the exponential cutoff λ which is squeezed toward zero.

the maximum entropy Smax associated to the probability mass function in Equation 2.12 is then

Smax =−
∞∑

k=1

qc (k) ln qc (k)

= ln
[
Lis(e−λ)

]
+λ〈t fc〉+ s〈ln

(
t fc

)
〉 . (2.16)

This expression is then the sum of three contributions, each coming from a Lagrange multiplier
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which modulates the respective constraint. The interplay between the maximum entropy, Smax ,
and the observed entropy, Sc , is then examined in Figure 2.8 where we observe a clear correlation
between such quantities. Indeed, the majority of common concepts (represented in black) tend to
concentrate in a narrow region close to the line Sc = Smax . As a consequence, CCs displays a very
high correlation between Smax and Sc . Comparing this trend with the relation observed for Sc

against d f (Figure 2.5 A), we immediately appreciate that Smax is more suitable to characterize
CCs. Therefore, we exploit this relation in order to design a new criterion that quantify the
generality of concepts.

Figure 2.8 – Organization of the concepts in the (Sc ,Smax ) plane. Points are colored according to
the percentile p of the residual entropy distribution P (Sd ) to which they belong (concepts with
p > 90% are omitted). CCs, represented as black diamonds, have a Pearson correlation coefficient
of r = 0.979. The solid black line indicates the equality Sc = Smax . The bottom right inset shows
the position of the concepts in the (log〈t f 〉, log(d f )) plane, whose color represents the percentile
p.

To this aim, we consider for every concept c the residual entropy, Sd (c), which is the difference
between its maximum and actual entropy, Sd (c) = Smax (c)− Sc (c). Albeit this definition is
very naive, it is exactly the Kullback-Leibler divergence (also known as relative entropy [185])
between the observed term-frequency distribution, pc , and the maximum entropy counterpart, qc ,
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2.2. Sparsifying the similarities between articles

as shown in subsection A.1.3. A deviation of the actual distribution from the maximally random
(with constraints) is therefore an indication that the observed distribution is non-trivial, including
peculiar features that are not expected. The tendency of CCs to have a nearly maximal entropy
is even more evident from the distribution of Sd displayed in Figure 2.9. The residual entropy
distribution of CCs, indicated by the black points, is significantly dissimilar from the one of the
other concepts shown by orange dots. Thus, CCs are not just drawn at random from the existing
concepts but they feature a very small residual entropy. A small value of Sd for a given concept
allows to consider it as generic since it shares this salient property with CCs, meaning that the
term-frequency distribution is essentially unbiased apart from respecting the constraints.
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Figure 2.9 – Distribution of the residual entropy Sd = Smax − Sc for the CCs (in black) and
the other concepts (in orange). The dotted blue line represents the lognormal distribution
computed for concepts that were not tagged as common using µ= 〈ln(Sd )〉 =−1.947 and σ2 =
〈ln

(
S2

d

)
〉−µ2 = 1.550 as parameters.

An intuitive explanation of the behavior of a significant concept is then the following: such kind
of concept is not so mainstream but rather specific. Therefore, it has not been adopted regularly
as other, more generic concepts. As a consequence, the observed term-frequency distribution
is somehow deviating from the standard one since its usage is more erratic, responding to a
precise need of conveying an accurate meaning. Loosely speaking, significant concepts are
not permeating the language, therefore they are used in a way that does not match expected
characteristics at the microscopic level of the term-frequency distribution. The residual entropy
Sd can be considered as a “distance” from the maximum entropy line Sc = Smax . Because the
distribution of Sd spans different orders of magnitude, imposing a raw value as a threshold to
discriminate generic concepts is not appropriate. In order to adapt the classification of generic
concepts to the shape of distribution of Sd , we take advantage of the notion of percentile defined
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as the value below which a fraction p of the observations fall. The distribution of Sd is then
divided in nine percentiles ranging from p = 10 to p = 90 and concepts are assigned to the
percentile p they belong to, as illustrated in Figure 2.8. The color of the points represents the
percentile p and the bottom right inset encodes the percentile information in the (d f ,〈t f 〉) plane.
Finally, the criterion to establish if a concept is generic is based on the percentiles: concepts that
are included in a percentile p are considered generic while the rest are significant.

A more detailed examination of Figure 2.8 discloses other two intriguing facts. On the one hand,
some concepts tagged as common are positioned far away from the diagonal Sc = Smax , revealing
the presence of outliers. Examples of such concepts are ‘operational calculus’, ‘Fraunhofer line’,
‘gigawatt’ and ‘Gaussian symplectic ensemble’, which may be regarded as generic within some
specific field but are fairly specialized for the heterogeneous corpus of article under scrutiny (see
Figure 2.1). On the other hand, multiple concepts are located near the diagonal but have not been
tagged as common, e.g. ‘statistics’, ‘intensity’, ‘Hamiltonian’, ‘fluid dynamics’, and ‘scaling
law’. Therefore, we claim that those concepts have been overlooked by the experts without being
classified as common despite they are likely so. Both instances demonstrate the drawbacks of
the human-based concept tagging, pointing out the benefits of our entropy-based model which is
nearly unsupervised.

The novelty of the proposed approach to outline significant concepts stems from the comparison
of the observed term-frequency distribution with the theoretical expectation that arises from the
maximum entropy principle. Indeed, the statistical characterization of the word distribution has
been already addressed in the literature where several models have been proposed to describe
the different facets of word usage [224–227, 229, 230, 232]. Given the regularities uncovered in
the large scale patterns of word consumption, the idea that they can be explained by a maximum
entropy mechanism have been widely employed to construct such models. In parallel, various
flavors of the observed entropy of words have been conceived in natural language processing to
gauge the importance of words within a text [228, 233–235]. In particular, these studies focus
on the analysis of documents composed by different parts (e.g. chapters) in order to quantify
the entropy of the words based on their arrangement among the parts. The proposed approaches
provide the entropy of a word only at the level of individual texts without addressing its relevance
for the entire corpus of documents. Moreover, the difference between the maximum entropy and
the actual one is not taken into account. On the contrary, such difference is the cornerstone of our
method which aims to characterize relevant words that distinguish the composition of documents
at the corpus scale. Indeed, the method is also effective to assess the relative performance of
concepts in describing the content of a single article, as shown in Tables A.2 – A.4. The adopted
approach is powerful enough even if the content of documents is modeled in the simplest way, i.e.

using the so-called bag-of-words approximation where the relative position of words inside the
text is not considered.

In such approximation, the raw information about the words frequency across documents may
be adopted to define an entropy which is slightly different from the conditional one. Albeit the
choice of Sc seems the most straightforward and intuitive, we can construct an entropy based on
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the full probability of the term-frequency, p f , which takes into account also the frequency of no
appearance of a concept. This probability distribution is based on the total number of articles
in the corpus, Na , in contrast to pc (k) = Nc (k)

Nc
that includes only the articles Nc ≤ Na where the

concept is found. The new term entering in p f corresponds to the absence of the concept (k = 0)
and is calculated as the fraction of papers where the concept is not present, p f (0) = 1−d f . The
complete probability that the concept appears k times, with k ∈ [0,∞], is then p f (k) = Nc (k)

Na
.

Therefore, the full entropy S f associated to p f (t ) reads

S f =−
(
1−d f

)
ln

(
1−d f

)
−d f ln

(
d f

)
+d f Sc . (2.17)

The interested reader can refer to subsection A.1.1 for the derivation of such expression. Here,
we only note that the full entropy features the presence of the d f which modulates the contri-
bution of the conditional entropy Sc . In the same fashion we analyzed the relationship between
characteristic quantities of the concepts and Sc in Figure 2.5, we inspect the behavior of S f in
order to understand if it exhibits any peculiar trend for CCs with respect to some feature. The
comparison of the results shown in Figure 2.10 for S f with the respective panels of Figure 2.5
demonstrates that neither S f nor Sc are able to discriminate CCs based on d f (black points in
panel A). However, the tendency of CCs to have higher entropies for a given value of 〈t f 〉 is
observed only in the case of Sc (panel B), the same conclusion being valid for 〈ln(t fc )〉 (panel
C). The reader may argue that the above features are very naive and there could be others, more
complicated features that are better suited to improve the performance of S f . Further attempts to
detect potential trends of CCs using other features are examined in Figure A.1.

In conclusion, none of the presented combination is useful to isolate CCs. The full entropy S f

is then unfit to highlight CCs and the conditional entropy Sc is, by far, the most suitable and
informative quantity. Clearly, we expect that any other naive quantity not based on the notion
of information is not able to highlight CCs, as we already discovered for the d f in Figure 2.3.
Nevertheless, we examine the effects of selecting concepts according to the percentiles of the
inverse document frequency, I DF , in Figure A.4 since it is a basic feature commonly used to
filter out pervasive words in natural language processing. The selection of concepts based on
this measure differs from the one of our approach, albeit the two rankings are not completely
unrelated.

2.3 Effects of the entropic selection of relevant concepts

The criterion based on the distribution of Sd allows to divide concepts for different percentiles.
Increasing the percentile p, only meaningful concepts (below p) that incorporate significant
information are retained to construct network of similarity between articles while generic concepts
(above p) are discarded. In this way, we finally achieve the desired ex-ante approach to filter
concepts. The outcomes of the pruning on the topology of the networks are reported in Table 2.2.
The total number of concepts, Ncon = |C|, as well as the number of documents containing at
least one concept, Na , diminish as p increases, although the latter remains fairly constant up to
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Figure 2.10 – Relations between the full entropy S f and several features of the concepts. Common
concepts in SW (CCs) are denoted by black points. The different panels display the relation
between S f and the fraction of articles where concepts appear in, d f (A), the average term-
frequency, 〈t f 〉 (B), and the average logarithm of the term-frequency, 〈ln

(
t f

)
〉 (C).

p = 30%. The link density ρ, instead, undergoes a sizable drop from 36% to 7% when p jumps
from 0% (no filtering) to 10%. As a consequence, both the maximum and average degrees, kmax

and 〈k〉, dramatically decrease while the average “distance” between articles, 〈l〉, grows with
p. At the global level, the connectedness of the networks gets attenuated as outlined by the
increment of 〈l〉 with p and the concurrent fragmentation into separate connected components
M . This effect is the byproduct of the presence of “cultural holes” among different domains in
physics already highlighted for scientific disciplines [211]. Cultural holes, indeed, quantify the
difficulty in communicating between disciplines from an information-theoretic measure of the
diversity in the respective languages.

As the pattern of connections becomes sparser, spurious similarities tend to fade. Ergo, articles
on the same theme are more similar and develop stronger relations with each other. Groups
of tightly connected articles then emerge more neatly from the network structure leading to a
refined organization in communities. In order to discover which communities are present in a
network, we maximize the weighted modularity by means of the Louvain method described in
subsection 1.1.4.

2.3.1 Organization of articles into topics

Articles sharing similar concepts – i.e. on the same topic – tend to belong to the same community.
In terms of the community structure, we can imagine that the fraction of pruned concepts, p, acts
as a parameter, tuning somewhat the granularity of the topics. Therefore, we investigate how the
community structure evolves as a consequence of the entropic filtering. For each percentile p,
we executed the Louvain algorithm 1000 times using a different random seed node per run. The
variability in the number of detected communities for each run is then displayed in Figure 2.11.
Augmenting the filter intensity p there is a remarkable tendency toward an increased number of
communities. This effect is clearly due to pruning of the networks in terms of the link density
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p (%) Ncon Na ρ (%) 〈k〉 kmax T 〈l〉 M

0 11637 52979 36.493 19333.522 46504 0.557 1.635 1
10 9594 52337 7.340 3841.235 17532 0.327 1.935 1
20 8528 51522 3.752 1933.031 10399 0.319 2.008 1
30 7462 49821 2.057 1024.818 8109 0.332 2.160 1
40 6396 47173 1.197 564.823 5669 0.343 2.378 2
50 5330 41775 0.638 266.419 2771 0.390 2.687 7
60 4264 34939 0.482 168.307 1999 0.508 2.914 20
70 3197 24710 0.363 89.766 1140 0.755 3.409 59
80 2132 14789 0.257 37.989 495 0.783 4.242 153
90 1066 5703 0.228 13.027 104 0.848 7.124 342

Table 2.2 – Topological quantities of the article similarity networks. The first row (p = 0%)
corresponds to the original (unfiltered) network, while the following to the networks obtained after
removing generic concepts at a given percentile p. The columns indicate the percentage of filtered
concepts p, the number of concepts Ncon , the number of articles (nodes) containing at least one
concept Na , the link density ρ (Equation 1.3), the average and maximum degrees, 〈k〉 and kmax

(Equation 1.4 and Equation 1.5), the transitivity T (Equation 1.7), the average shortest path length
〈l〉 (Equation 1.10) and the number of connected components M (see subsection 1.1.3). The
minimum edge weight is equal to wmi n = 0.01.
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Figure 2.11 – Probability of the number of discovered communities, P (ng ), over 1000 runs of the
Louvain algorithm for different filtering intensities p denoted by different colors in the legend.

and the breaking of the networks in distinct connect components outlined in Table 2.2. Other
statistics involving the similarity between the partitions detected in different runs are reported in
Figure A.2.

Focusing on the partition with the highest modularity we investigate its composition in terms of
concepts in order to understand the effects of the filtering at the community level. The results are
displayed through the Sankey diagram7 [237] in Figure 2.12. Each community is identified by a
box whose height represents the community size, while each column refers to a filter intensity p.
The name of a community describes its main topic identified from the ten most used concepts
among its articles. For p = 0, the communities are clearly associated to major domains in physics.

7The interactive version of the diagrams displaying additional information is available at [236]
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2.3. Effects of the entropic selection of relevant concepts

At this level, it is not possible8 to detect finer-grained communities because of the effect of
generic concepts that hold together the articles within large groups. As p increases, a progressive
fragmentation of the topics takes place, moving from broad domains in physics – not exactly
overlapping with the arXiv classification as shown by [238] – to more specialized themes
at p = 20%. A paradigmatic example of the fragmentation is observed for the Astrophysics
community at p = 0% which constitutes a major field that progressively unfold into Stellar
Physics, Planetary Astrophysics, High Energy Astrophysics and Solar Physics up to p = 40%.

Although the filtering of generic concepts allows to unveil smaller and more precise communities,
it causes the loss of information that is encoded in the concepts. Therefore, we do not want
to discard too many concepts. Indeed, considering large values of p deteriorates the results.
Actually, this is the consequence of two combined effects. On the one hand, the eradication of too
many generic concepts (which may be, in part, mildly generic) makes the similarities between
articles depending on concepts that are extremely specific, whose statistical relevance is weak
and that are vaguely related to each other. On the other hand, an increasing portion of articles
containing only generic concepts are no longer part of the network as they do not share any
similarity with other articles. These isolated articles (i.e. without significant concepts) constitute
the so-called “ghost” community. An heuristic rule to establish the level popt at which to stop
the filter is given by the size of the “ghost” community that should not exceed the average size of
the other communities, as illustrated in Figure 2.13. In this case, 30% ≤ popt ≤ 40%.

Figure 2.13 – Average community size, 〈N〉, as a function of the filter intensity p for the networks
of articles. Red circles refer to the size of the “ghost” community, while blue squares denote the
average size of all the other communities. The shaded area corresponds to the standard deviation
of the community size.

8To be precise, the assertion is true if we fix the community detection method (modularity maximization) and the
algorithm (Louvain). However, as we mentioned in subsection 1.1.4, many other methods are available that eventually
discover hierarchies of communities. If we may want to adopt any of them to highlight smaller communities, their
potential is limited nevertheless since the similarities encode some noise due to generic concepts that create spurious
connections and increase the weight of links between nodes. Therefore, any method would be applied to a pattern of
similarities which is not “clean”, undermining the advantages of such methods.
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Chapter 2. Entropic selection of concepts in networks of similarity between articles

2.3.2 Filtering keywords in web documents

In principle, the residual entropy approach described above should be effective not only in
discriminating concepts in scientific articles but also in detecting generic keywords in any kind of
document. To assess the validity of the method in another context, we repeat the same analysis
detailed in this Chapter for the corpus of physics articles from arXiv on another corpus of web
documents about climate change. Before delving into this dataset it is worth mentioning that,
in general, a web document lacks the same structural organization of a scientific manuscript.
Indeed, there is not an introduction, a conclusion, or a methodological part, for example. This
fact is linked to the different perspective that an online document aims to convey with respect to
a scientific paper even if on the same topic, as they can simply report facts (news releases) or
provide an opinion on a given subject.

Our corpus of web documents has been constructed from a collection of tweets available within
the ScienceWISE database (SW). More specifically, such collection contain tweets on climate
change posted between January and June 2015 and it was compiled using the Twitter API [239]
through several harvesting campaigns. Among these tweets, we considered only the original

ones, thus culling mentions, re-tweets and other similar “non original” posts. Then, we kept
only tweets written in English containing at least one URL. Such procedure gave a set of distinct
URLs pointing to some fifty million web documents ranked according to the number of tweets
mentioning each of them. At the end, we took the 100.000 most “tweeted” URLs and we retained
only those that contain at least one of 165 specific keywords on climate change in order to ensure
a thematic consistency.

From this procedure we obtained a corpus of 30705 documents. To get rid of very short documents,
we removed from the corpus those with less than Lmin = 500 words that roughly correspond to
half of a book page. After this thresholding, we ended up with a corpus of 18770 documents.
Since the SW platform does not have a curated ontology of crowdsourced concepts on climate
change, we resorted to mine simple keywords composed by n-grams from the texts using the
KPEX tool as it is natively implemented in the SW platform [219]. The KPEX algorithm returned
822.601 unique keywords which were stemmed first and then lemmatized, obtaining a final set
of 152.871 keywords. Clearly, keywords are more “rough” in some sense as we cannot expect
that they have a precise meaning and a high specificity like concepts. Nevertheless, we will refer
to them as concepts in the following. Another important distinction between web documents
and scientific articles concerns their length. The comparison of distribution of the number of
words per document between the two corpus reveals that they have different traits, as displayed
in Figure 2.14. Specifically, in the climate change corpus the distribution of the number of words
per document does not to possess a characteristic scale and is quite inhomogeneous. Because
of this, taking into account only the raw term-frequency when defining the entropy is not ideal.
Nevertheless, the same approach to classify keywords can be applied with a minor change,
replacing the term-frequency of a concept c in document α, t fc (α), with its term-frequency

density, r t fc (α) = t fc (α)
L(α)

, where L (α) is the length of the document in terms of the number of
words. As a consequence, r t fc is a continuous variable and the entropies must be redefined by
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Figure 2.14 – Distribution P (L) of the number of words per document, L, for the physics (A) and
climate change (B) corpus. In the first case a clear peak is present, indicating a typical length of
the documents around L ≃ 3000, while this is not the case for climate change. Panels (C) and (D)
display the cumulative distribution functions P (≤ L) for the same corpora.

substituting the summation with an integral over the probability density function pc (x) of r t fc .
Moreover, keywords for which max(r t fc )−min(r t fc ) < 0.005 are ignored in order to limit those
with very similar values of r t fc . As a result, the number of keywords gets shrunk to 9222.

The maximum entropy probability density function is recovered based on two constraints, average
and variance of the logarithm of the term-frequency density, 〈ln(r t fc )〉 and σ2(ln(r t fc )). We
select the logarithm of the term-frequency density since it is more appropriated to describe a
broad distribution of values: the average of the logarithm identifies the most likely value of the
distribution while the variance characterize its variability scale. The analytical expression of the
probability density function pc (x) satisfying these constraints is a lognormal, i.e. the distribution
associated to a variable x whose logarithm, y = ln(x), is normally distributed:

pc (x) =
1

�
2πσx

exp

[
−

(ln x −µ)2

2σ2

]
with x > 0. (2.18)

The parameters µ and σ2 that appear in can be directly calculated from the observed data:

µ=
∫∞

0
ln(x) pc (x) d x ≡ 〈ln(r t fc )〉 , σ2 =

∫∞

0

(
ln(x)−µ

)2
pc (x) d x ≡σ2(ln(r t fc )) . (2.19)
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The maximum entropy Smax associated to the probability in Equation 2.18 is then:

Smax =−
∫∞

0
pc (x) ln pc (x) d x = ln

(�
2πσ

)
+µ+

1

2
. (2.20)

The reader can find further details about the methodology in subsubsection A.1.2.2, while
in Figure A.6 we show the relation between the conditional entropy, Sc , and the maximum
one, Smax , for the keywords. Filtering keywords based on the percentile p of the residual
entropy, Sd = Smax −Sc , we recover sparser similarity networks whose topological quantities
are reported in Table A.5. The community structure of the networks in response to the selective
removal of concepts highlights the progressive specialization of topics, as displayed in the
Sankey diagram of Figure 2.16. The comparison with the results for the physics corpus in
Figure 2.12 indicates one significant difference: the communities about extreme weather/energy

storage tends to progressively condensate going from p = 5% to p = 20%. To gain insight into
such phenomenon, we focus on the set, C̃, of 20 most frequent keywords in each community
s. Then, we compute its coverage, Γs(C̃), defined as the union of the sets of documents where
those keywords appear divided by the size of the community, i.e. the number of documents
N s

a . Hence, Γs(C̃) = 1
N s

a
∪c∈C̃ N s

a(c) ∈ [0,1]. Remarkably, the coverage of the community named
“Mixed_themes” at p = 20 is Γ= 0.016 which is pretty small compared to Γ= 0.64 of “extreme
weather” community or Γ= 0.87 of “ice melting”. The poor coverage of keywords in community
“Mixed_themes” indicates that documents condense into a single community due to the similarities
associated to small groups of keywords weakly related together. However, the deep reason behind
such condensation is the presence of keywords whose distribution is not well-describe by a
lognormal, as shown in Figure 2.15 for the 10 most frequent ones. The discrepancy between
the observed distributions and the lognormal fits is the motivation at the basis of the limited
ability to characterize the content of the web documents in the community. When we take off
these keywords, the similarities joining together this vast condensed community dissolve – or
become weaker, at least – thereby fragmenting it into much smaller communities that address
more specific topics.
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Figure 2.15 – Distribution of the top ten most frequent concepts within the community of uncertain
label “Mixed_themes” found at p = 20% in Figure 2.16. The lognormal fit of each distribution
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2.3. Effects of the entropic selection of relevant concepts

Finally, we establish the optimal filtering level popt with the same heuristic previously adopted.
Therefore, popt is estimated as the crossover between the size of the “ghost” community and the
average size of the other communities, as illustrated in Figure 2.17. In this case, 25% ≤ popt ≤
30%.

Figure 2.17 – Average community size, 〈N〉, as a function of the filter intensity p for the web
document networks. Green circles refer to the size of the “ghost” community, while yellow
squares denote the average size of all the other communities. The shaded area corresponds to the
standard deviation of the community size.

Generally speaking, the investigation of the unfolding of the community structure varying the
filtering intensity shows three different behaviors:

I) preservation with specialization, i.e. when the topic of a community remains unaltered
but the concepts used to characterize it are more specific (e.g. Cond_Mat/Astrophysics in
Figure 2.12);

II) splitting with specialization, i.e. when the elimination of generic concepts causes the frag-
mentation of the original topic into more specific sub-topics (e.g. Cond_Mat → Graphene +
Solid State in Figure 2.12);

III) nucleation (e.g. Extreme weather in Figure 2.16) i.e. when one or more shared concepts
draw documents together into a single community.

Concluding, it is worth to underline two major differences between the climate change corpus
and the physics one. First, there is no guarantee that web documents comes from trusted sources
(like newspapers online editions or news websites) while articles in arXiv cannot be uploaded
by someone that is not endorsed by an author that already published on arXiv . Further, the
text of articles is parsed to spot those using a very atypical jargon which likely refers to research
themes out of the conventional scientific landscape, perhaps containing more delirious visions
than rational claims9. Therefore, the classification scheme of arXiv article can be used to

9See footnote number 2 of p. 223 in [211].
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roughly understand the composition of the corpus in terms of domains. On the contrary, such
thematic division is not present for web documents. Second, keywords extracted from web
documents are less precise than scientific concepts, implying that the similarities between web
documents are less accurate. This notwithstanding, the entropic method to filter generic keywords
is effective in order to construct similarity networks between documents that are sparser, encoding
weaker spurious interactions between documents. As a consequence, these networks are more
computationally tractable for community detection techniques.

Nevertheless, examining the community structure of the article similarity networks is not the
unique way to understand the effects of the concept filtering on the dataset under scrutiny. In
order to gain insights into the composition of a corpus, a complementary approach is to model
it as constituted by documents containing a mixture of topics, each characterized by specific
words. Such kind of analysis, called topic modeling, is indeed the mainstream approach that
is considered with the aim of exploring the themes inside a corpus [71, 72]. In the following
part, we are going to dissect the results of the topic modeling on the corpus of physics article,
comparing them with the communities of articles previously described.

2.3.3 Topic modeling

The goal of topic modeling is the description of the thematic structure of a document corpus.
To accomplish this objective, several techniques have been developed to automatically learn the
composition of topics in terms of words describing a corpus [71, 72, 240]. The first attempts were
based on the idea that subjects can be identified from a decomposition of the word-document
matrix M though dimensionality reduction techniques [208]. Given the W × D matrix M ,
whose rows represent words, and its columns represent documents; Latent Semantic Analysis
(LSA) [241] – also known in information retrieval as Latent Semantic Indexing (LSI) [242,243] –
is based on calculating the Singular Value Decomposition (SVD) [244] of M as follows:

M =UΛV T =
R∑

r=1

λr ur ·v T
r , (2.21)

where R is the rank of M and Λ is the diagonal, R ×R matrix whose elements λr are the
singular values of M , i.e. the eigenvalues of M M T such that λ1 ≥ λ2 ≥ . . . ≥ λR . The matrix
U is a W ×R matrix with orthonormal columns ur and V is a D ×R matrix with orthonormal
columns vr . In LSA, only the K largest singular values of the decomposition are retained (usually
K ≪ R). The approximated version of M , MK = UK ΛK V T

K , is a matrix of rank K where the
rows VK ΛK are a compressed representation of documents in the K -dimensional space described
by the columns of UK . For a given K , the matrix MK is then taken among the matrices G of
rank at most K as those that minimizes the reconstruction error quantified by the Frobenius
norm

∥∥M −G
∥∥2 =

∑
w,d (Mwd −Gwd )2. Another dimensionality reduction technique, called

Non-negative Matrix Factorization (NMF) [245], have also been applied with the same purpose
of providing a compressed representation of the word-document matrix, M , which eventually
captures the thematic features of a corpus through the out-of-the-box clustering of the columns of
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M [246, 247]. In such case, the word-document matrix M is approximated as M ≈ Z H where H

is a K ×D non-negative matrix whose non-zero entries in the kth row indicate the membership
of the documents in M . On the other hand, Z is a W ×K non-negative matrix whose entries in
the kth column represent the centroid of the kth component that describes a thematic feature.
However, using LSA has some disadvantages [248]: for example, the reduced dimensionality
K transforms the original sparse matrix M , into an approximate MK whose factors U and V T

are dense. Therefore, it is not straightforward to associate words or documents exclusively to
a meaningful subsets of the K components. Moreover, the model cannot capture non-linear
dependencies since it is based on linear algebra. To overcome such limitations, a full probabilistic
model has been introduced as an improvement of LSA to describe the presence of words into
documents by means of the association of words to topics and topics to documents. Such model
is called probabilistic Latent Semantic Analysis (pLSA) [249, 250], a Bayesian approach for the
unsupervised discovery of the hidden topics in a corpus. Interestingly, there are some analogies
between NMF and pLSA methods [251]. In particular, when the error function to minimize in
order to find the approximated representation of M is the Kullback-Leibler divergence [185, 186]
(see Equation 1.36), NMF is equivalent to pLSA. Nevertheless, strictly speaking, a topic model is
any probabilistic generative model that describes a corpus in terms of topics.

The basic ingredients of such a model are the probability that a given document d contains a
topic t , π(t |d), the probability that a word w belongs to a topic t , π(w |t ), and the probability of
the given document, π (d). These probabilities are estimated by maximizing the likelihood L of
generating the observed distribution of words in documents, π(w,d):

L=
∏

w,d

π (w,d) =
∏

w,d

∑

t

π(w |t )π(t |d)π(d) . (2.22)

In general, for a corpus of D documents with W unique words and T topics, we need to estimate
D ×T probabilities π(t |d) and T ×W probabilities π(w |t ). In pLSA all these probabilities are
directly treated as parameters, therefore they must be estimated from the observations. This
plethora of parameters, however, is not ideal to extract latent topics since there are all independent,
thereby assuming the absence of any constraint between topics which is unrealistic. In particular,
the number of parameters increases linearly with the number of documents D, hence the model
is not fully generative. Instead, a better approach would be to add some regularity among
such parameters. To this purpose a generalization of pLSA, called latent Dirichlet allocation
(LDA) [68, 252], has been developed. LDA differs from PLSA since the probability distribution
over the T topics of a document d , Π (T |d) = {π(t |d)}T

t=1, as well as the probability distribution
over the W words in a topic t , Π (W |t ) = {π(w |t )}W

w=1, are drawn from a Dirichlet distribution
with T and W parameters, respectively; as such, probabilities are constrained and no longer free
parameters. Due to this property, LDA is a fully generative model of documents [253].

Several extensions relaxing the constraints of LDA [254–256], for example describing hierarchical
topic modeling [257] or incorporating other information about articles have been introduced
(see references in [258, 259]). A further refinement of LDA, called Correlated Topic Model
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(CTM) [260] allows to account for the correlation between the occurrence of topics. Indeed,
the mixture of topics within a document is modeled by a Dirichlet distribution that implicitly
generates independent probabilities for the mixture. For CTM, the topic mixture is expressed by a
logistic normal distribution that encompass the possibility of a correlation between topics, thereby
allowing a more faithful description of the thematic structure. Nevertheless, the state-of-the-art
procedure to uncover the thematic structure of a corpus remains LDA. For such reason, we have
decided to use LDA to extract the topic organization of our copora.

From the operational viewpoint, establishing the total number of topics T as well as the composi-
tion of each of them are then the crucial objectives of topic modeling. Each topic is composed by
a subset of the total number of words W which are semantically related, while each document is
described by a small number of prominent topics that contain most of the words that appear in
it. On the one hand few topics may tend to aggregate words which are not equally related but,
on the other hand, many topics may overfit the model incorporating only very specific words. A
remarkable improvement of the LDA performance that does not modify the algorithm itself has
been obtained in [69] where the authors borrowed ideas and methods from network theory to
successfully guess the composition and number of topics. Here, we briefly describe the proposed
pipeline called TopicMapping (TM), which consists of four steps:

Preprocessing documents’ text Given a corpus of D documents, preprocessing the texts is a
standard stage in text mining [208] which consists in removing the so-called “stop words”,
namely terms that are syntactic elements and do not contribute to the definition of topics.
The remaining words are then stemmed in order to identify their common root like in the
case of the singular and plural forms of the same noun or the different tenses of the same
verb.

Filtering the similarity between words The presence of the words within documents can be
modeled as a weighted bipartite network which involves words and documents as distinct
types of nodes. The link weight, aud , between word u and document d is term-frequency

of the word in the document, t fu(d). Instead of evaluating the unipartite projection onto
documents (as done before), we define the unipartite network of words, as described in
subsection 1.1.2, where the similarity between any pair of words u and v is the dot product
of their term frequencies over the documents where they coappear:

wuv =
D∑

d=1

t fu(d) t fv (d) = au: ·av : . (2.23)

Following this definition, very frequent words are strongly related to any other, biasing the
similarity also with more specific words that are semantically closer to each other. In order
to quantify this effect, a simple null model is introduced where the words are randomly
shuffled among documents preserving the number of words per document. The purpose
of the second step of TM is to prune the links between words which can be explained
by the coappearance of words by chance. The expected value 〈wab〉 for the null model
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depends only on the product between the number of occurrences of the two words u and
v in the whole corpus, namely t fu =

∑
d t fu(d) and t fv =

∑
d t fv (d), respectively. The

probability distribution of the dot product similarity under the null model is well described
by a Poisson distribution π〈wab〉(k) = 〈wab〉k exp(−〈wab〉)

k !
with average 〈wab〉. The actual

similarity between a pair of words is then compared against the expectation for the null
model: if the two values are significantly different, it means that the actual tie is unlikely
to be attained from the null model, therefore the link is retained in the network of words
since it stems from a genuine similarity.

Defining topics From the structure of the filtered network between words, topics are identified
as communities of words using the Infomap algorithm [156]. In this way, the number of
topics is automatically identified as a result of the algorithm, without the need to fix it a

priori as required in topic modeling. Topics defined by Infomap are “hard” communities
of words, i.e. each word is assigned to exactly one cluster. The same word, however, may
be potentially used in multiple topics. In order to relax the single membership of words,
topics are refined through the application of a standard topic modeling.

Estimating the topic model The detected communities are adopted as initial guess for the
number of topics and the word composition of each topic in PLSA. A local maximization
of the likelihood is carried out in such a way that the same word is allowed to appear in
several topics and documents are mainly described by fewer topic. The model probabilities
are then estimated and taken as initial guess for the evaluation of the LDA parameters.

Among the above steps, the pruning of links contributes to denoise the similarity network between
words as it removes ties that can be explained by the null model. From this purified network, the
communities of words are considered as educated guess for the topics composition which is further
refined with LDA, whose results are better than standalone LDA since the parameter optimization
depends on the quality of the initial topics. The introduction of the network perspective in topic
modeling is then crucial to overcome the performance limits of standard algorithms like LDA.

Provided that TM is the “gold standard” to identify topics in a collection of documents, we apply
it to the dataset of scientific concepts in physics articles, exploring the effects of filtering generic
concepts at various percentiles p on topic modeling. Each topic t is characterized by the number
of concepts it contains, nw (t ), and the probability associated to it, π(t ) =

∑
w π(t |w) π(w), which

indicates its importance. The relation between the two quantities is shown in Figure 2.18 (a):
each circle corresponds to a topic uncovered at a given filtering percentile as represented by
colors. The number of topics increases as a direct consequence of the filtering since the similarity
network between concepts becomes sparser and more communities are detected. Simultaneously,
the probabilities π(t ) associated to the topics decrease, as well as the number of concepts within
the topics, nw (t ). Interestingly, topics tend to be more concentrated on a vertical region with
low value of π(t ) spanning almost two orders of magnitude with respect to nw (t ). In the inset of
Figure 2.18 (a), we better appreciate that the total number of topics grows fast but the number of
topics with a significant probability (e.g. , π(t ) > 0.01) does not increase equally rapidly. Such
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Figure 2.18 – (a) Relation between the number of concepts nw (t ) and the probability π(t )

associated to each topic t . Every circle represents a topic whose color denotes the filtering
percentile. The dashed vertical line corresponds to the topic probability π(t ) = 0.01 below which
topics are not considered meaningful. In the inset, the total number of topics for each percentile is
shown by squares along with the number of important topics with probability π(t ) > 0.01 shown
by triangles. The complementary cumulative distribution functions of the topic probability π(t )

and the number of concepts per topic nw (t ) are represented in (b) and (c), respectively. Colors
identify the percentile of filtered concepts for which the distributions are displayed.

trend of the probabilities π(t ) varying the percentile of filtered concepts is well illustrated by
the complementary cumulative distribution functions (ccdfs) in Figure 2.18 (b) defined as the
total fraction of topics with a probability greater than π(t ). The proliferation of concepts with
low probabilities is accentuated especially when passing from p = 0 (no filtering) to p = 20 as
the distributions tend to span a narrower range. Likewise, the ccdfs of the number of concepts
within topics, nw (t ), are displayed in Figure 2.18 (c) for various percentiles. Without filtering
the concepts (p = 0), all the topics are composed by more than 1000 concepts. However, already
at p = 10 the number of concepts decreases significantly, with roughly half of the topics having
less than 1000 concepts. A considerable reduction in the number of concepts takes place at
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p = 20 where only the 40% of topics have at least 100 concepts. For the successive percentiles the
number of concepts per topic are further reduced but the distributions becomes less heterogeneous
as more topics have a similar number of concepts.

Once we have provided an overview of the statistics about the topics, we then want to understand
how these topics describe the content of the articles by means of the probability of a topic t in a
given article d , π(t |d). Thus, for every article we extract the maximum of these probabilities over
the topics T , m(d) = maxt∈T (π(t |d)), and compute the ccdf of such values for all the articles
as illustrated in Figure 2.19 (a). The distributions reveal that the majority of articles have a
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Figure 2.19 – Complementary cumulative distribution functions (ccdfs) of the probability of
topics within articles, π(t |d), for various percentiles p of filtered concepts. For each article d ,
we calculate the maximum of the probability π(t |d) over the topics , m(d), plotting the ccdf of
such values for all the articles in (a). In the same fashion, we calculate the ratio, r (d), between
the maximum m(d) and the second highest value of π(t |d), whose ccdfs are displayed in (b).

maximum probability m which exceeds 0.5. Hence, the most important topic inside these articles
is also dominant. In particular, filtering more concepts decreases the fraction of articles with
a dominant topic. This dependence is marked for the first percentiles (p = 0, 10, 20) but gets
attenuated for the subsequent ones where the ccdfs are closer to each other. Therefore, we
may guess that the topic mixture that describes single articles becomes more balanced as the
maximum probabilities lower. In order to determine if this is the case, we analyze the ccdfs of
the ratio between the maximum and second highest value of π(t |d), r (d), calculated for every
article d . Figure 2.19 (b) shows that 80% of articles have a ratio r greater than 2 for all the
percentiles, meaning that the vast majority of articles are quite focused on the most important
topic. Remarkably, even the fraction of articles with r > 10 is not so small. Therefore, if we
increase the filtering percentile p the topic composition of articles is not fuzzier. However, the
behavior of the ccdfs when increasing the percentile p is not the same as in (a). Indeed, the
ccdf drops faster when passing from p = 0 to p = 20, remains very close to the last at p = 30 but
suddenly raises again for p = 40,50. Such trend of the ccdfs is not monotonic in p, contrary to
what noticed in (a). The high jumps in the distributions for p = 40,50 suggest that the values of r
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are very concentrated in that regions. From what we have observed so far, it is fairly justified to
assign articles to their most probable topic.

The content of the topics for different filtering levels can be analyzed more in detail by means
of the Sankey diagram in Figure 2.20. Each topic t , represented as a box, is labeled according
to the 10 most frequent concepts within, based on the prominence of words recovered from
π(w |t ). The height of the box denotes the number of articles associated to the topic since it is
the most likely for them. Each column in the diagram corresponds to a given level of filtering
p for which the most meaningful topics are displayed. A rough comparison of the topics with
the communities of article in the Sankey diagram based on community detection, Figure 2.12,
reveals that the number of topic is higher than the number of communities at the same per-
centile. Already when no concepts are removed (p = 0) some topics are more specialized than

Figure 2.20 – Static Sankey diagram representing the topics found by TM on the physics dataset.
Each topic is identified with a colored box whose height corresponds to the number of articles
associated to it. Each article d is assigned to the topic with maximum probability π(t |d), i.e. the
topic that describes the highest portion of the article. Topics are manually labeled from the ten
most representative concepts according to the probabilities of concepts given the topic, π(w |t ).
For the ease of visualization, only topics with probability π(t ) > 0.01 are shown, whereas the
remaining ones are incorporated together in a single “super-topic” denoted as “Small topics”.
The boxes labeled “ghost” are composed by articles that do not contain any significant concept at
a given percentile p, therefore are not part of the dataset used by TM. The thickness of the bands
between boxes indicates the number of shared articles. Interactive version available at [236]

the communities of articles; for example, two different branches of astrophysics (“Stellar_Astro”
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and “Solar_Astro”) as well as “Cosmology” are present together with other narrow topics like
“Optics/Waves” and “Fluids”. However, we also identify topics which are considerably broader,
e.g. “Material_science”, “High_Energy_Theory” and “Particles”. As p increases, topics be-
come more fragmented: for example, “Particles” evolves into “Particles_Theory”,“QCD” and
“Nuclear”, while “Stellar_Astro” splits into “Stellar_Astro”, “Cosmic emissions”, “Stellar/Galac-
tic_Astro” and “Planetary_Astro”. Nevertheless, the fragmentation does not take place for every
topic at the same stage as demonstrated, for example, by “Material_science”: the topic remains
unaltered up to p = 30 for which it breaks down into smaller topics like “Superconductivity”
and “Nanoparticles” among the others. The overall phenomenology of filtering resembles the
one highlighted in previously for article communities. Interestingly, both approaches shows
the presence of a topic/community, “Quantum_Info”, that does not deteriorate by splitting or
mixing with others as p grows, meaning that it is somehow isolated since it shares only few
concepts with other topics/communities. Intriguingly, this observation may denote the presence
of a “cultural hole” between quantum information and the other disciplines. Despite the pruning
of generic concepts allows the emergence of finer-grained topics, filtering out too many concepts
implies that useful information is ignored. As a consequence of increasing p, topics with small
probability (π(t ) < 0.01) grouped in “Small_topics” attract more and more articles.

In order to properly compare the results of TM with those from the article similarity networks, we
must remember that the two approaches provide clusters of different type of nodes. Indeed, TM
reveals the presence of latent groups of concepts that correspond to topics, while the communities
of the similarity networks are composed by articles. In order to compare similar entities, we first
investigate the relation between topics and communities of articles focusing on shared concepts.
Next, we reverse the viewpoint, examining the articles in communities along with the ones
associated to topics.

Concerning the concepts, we characterize each community of articles C by ranking concepts with
respect to the frequency among papers. Likewise, concepts within topic t are sorted according
to the probability π(w |t ) which represents the importance of concept w for the description of
the topic. For each topic t and community of articles C , we take the concepts in the intersection
and correlate their rankings using the Kendall coefficient τb , a nonparametric measure of the
association between the two rankings [261]. Given the set of K concepts in the intersection, each
one is associated to a probability xk in topic t and a frequency yk in community C . For any
pair of concepts k and l , we say that they are concordant if their ordering is the same in both
variables, i.e. if xk > xl and yk > yl ; or if xk < xl and yk < yl . Conversely, they are discordant if
the ordering is reversed, namely either xk > xl and yk < yl ; or if xk < xl and yk > yl . Finally, the
pair is tied on x (y) if xk = xl (yk = yl ). Among the number of possible pairs, K (K −1)/2, the
number of concordant and discordant pairs are then R and S, respectively, while X0 (Y0) denote
the number of pairs tied only on x (y). The Kendall correlation coefficient is then defined as

τb =
R −S

�
(R +S +X0) (R +S +Y0)

. (2.24)
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This value varies between −1 and +1, where −1 indicates opposite rankings for the two quantities
and +1 equal rankings. The correlation coefficient τb is calculated between every topic and every
community of articles after removing the same percentile p of generic concepts. The heatmaps
of τb are displayed in Figure 2.21. At p = 0 single communities are strongly correlated with
individual topics as shown by the dark red elements on the diagonal. The same is valid for
p = 10 even if the correlations are less sharp; curiously, most of correlations outside the diagonal
are negative only in this case, albeit their magnitude is quite lower than positive values on the
diagonal. The communities about “Particles”, “Theory_Q-Gravity” and “Networks/Polymers”
have close correlations with two or more topics, corroborating their more specialized nature. At
p = 20, the coefficients span a wider range of values and most of the communities share a high
correlation with multiple topics, again suggesting that part of the topics are more definite. For
example, “Astro. (Galaxy/Star)” has 5 topics with close correlations, while for “Particles (Exp.)”
the similar topics are 3. Curiously, the community “Graphene” exhibits mild correlations with
the topics “Topological_materials”, “Polymer/Complex_matter” and “Chaos”, while the topic
“Topological_materials” is heavily correlated to the community about “Cond_Mat_(Topl_Ins)”.
Finally, for p = 30, we still observe strong correlations of the communities with a small subset of
topics whereas the weak correlations that form a kind of background are reduced. For example,
the “Astro. (Galaxies)” community shows a high correlation with topics related to astrophysics
like “Cosmic_emissions”, “Galactic_Astro” and “Stellar_Astro”. Therefore, the localized strong
correlations demonstrate that there is a tight correspondence between communities and topics in
terms of their characteristic concepts, despite the very distinct methods that are adopted to identify
these groups. Such overlaps emphasize the presence of an underlying thematic organization of
the articles which emerges when both methods are applied.

After we established a relation between the priority of concepts for the communities of articles
and topics, we compare here the articles that constitute the communities and those associated
to the topics. In particular, articles are assigned to their most important topic as deduced from
m(d) = maxt∈T (π(t |d)). The comparison between articles offers a complementary perspective to
identify similarities between communities and topics. The Jaccard score is then used to assess
such similarity varying the percentile p of removed concepts, as displayed in Figure 2.22. For
p = 0, the high Jaccard scores on the diagonal of the heatmap indicate the presence of an almost
perfect, one-on-one correspondence between topics and communities. The smaller values on
the diagonal are clearly influenced by the disparity between the community and topic size, as
indicated in square brackets. For instance, the “Theoretical_Physics” community is almost
twice as big as the “High_Energy_Theory” topic. Likewise, the community “Networks” is
two times smaller than the topic “Networks/Complex systems” which also includes concepts
related to complex systems apart from the ones about networks. The relations highlighted here
confirm the correlations between the ranked concepts in the communities and topics. A similar
pattern of large scores on the heatmap diagonal is also observed for p = 10. Apart from the
greatest elements that spot a well defined correspondence between a single community and a
given topic, the presence of lower values on the diagonal indicate anyway a good matching
of the communities with topics since their values are remarkably higher than the ones in the
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Figure 2.21 – Kendall correlation coefficient τb for different topics (columns) and communities of
articles (rows) detected at a given filtering percentile p. Only those topics for which π(t ) > 0.01

are included in the heatmaps. The number of concepts in every community or topic is indicated
within square brackets. The correlation coefficient is restricted to the intersection between
concepts in a topic and the ones within a community. The limits of the color scale for each
percentile p are equal in absolute value. 65
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Figure 2.22 – Jaccard score between the articles that compose the communities (rows) and the
ones associated to topics (columns) for a given filtering percentile p. Only those topics for which
π(t ) > 0.01 are included in the heatmaps. The number of articles in every community or topic is
indicated within square brackets.66
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background outside the diagonal. As an example, the “Theory_Q-Gravity” community overlaps
mostly with the “High_Energy_Theory” topic, although it is modestly related to the “Black_hole”
and “Dark_Universe/Gravity” too. Moreover, the “Particles” community shares a comparable
score with “QCD” and “Particles_Theory” topics. A milder relation is finally present between
the “Networks/Polymers” community and the topics “Polymers/Complex_matter”, “Fluids/Mag-
netohydrodynamics” and “Networks/Complex_systems”. In this case, the community has a
non-negligible overlap with a puzzling topic, “Solar_Astro”; such overlap is due the articles
about solar hydrodynamics that are incorporated in the community. For p = 20, the communities
on the diagonal with a high score, in the lower left part, are less than the previous percentile. The
other communities with a moderate value of the score on the diagonal (colored in blue) display a
bit higher numbers of topics with a mild overlap off the diagonal. The “Solitons” community
has a maximum score which is pretty weak but all the other scores are rather lower than it, the
same happening with the “Graphene” community. Finally, in the case of p = 30, we notice,
again, that every community has an higher score with a distinct topic which allows to delineate a
correspondence between them: albeit the maximum score for a community may not be as big as
the maximum of the whole heatmap, it is dominant with respect to the other scores in the same
row. In this case, an exception to this trend is given by the community “Cond_Mat (Spintron-
ics)” which has a similar overlap with the topics “Nanoparticles” and “Superconductivity”, plus
smaller overlaps with “Spin” and “Quantum_effects_in_materials”. Other two exceptions are the
communities “Astro (Galaxies)” and “Particles (SUSY)”.

Overall, the detailed comparison of the Jaccard scores reveals that there is a strict relationship
between every community and at least one topic in terms of common articles, as highlighted by
the strong similarities on the diagonal of the heatmaps. Indeed, these findings allow to draw a
one-to-one correspondence between communities and topics in most of the cases. Nonetheless,
the presence of such correspondence is not trivial since the communities of articles and the
topics have been unveiled from very different methods based on clustering articles and concepts,
respectively. In addition, the assignment of articles to topics has been devised in a strict way
associating each article to its most important topic, thus overlooking the information about the
topic mixture that describe the content of the article. Despite this rough approximation introduces
a bias in the assignments, the resulting Jaccard scores disclose a remarkable affinity between
communities and topics. These results match closely the high correlations discovered between
the ranked concepts in communities of articles and topics. To summarize, both the correlations
(between concepts) and the Jaccard scores (between articles) for different communities and topics
confirm the existence of a latent organization in peculiar themes within physics. Interestingly,
the results from the two methods are coherent in the identification of the more pronounced
relationships even if the methods are grounded on distinct criteria.

After comparing the set of articles that compose the communities against the articles associated to
topics, we can ask if these groups of articles match some known classification. The answer to this
question is important since it eventually provides an independent way to validate the discovered
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groups of articles10.

2.3.4 Comparison with the ground-truth

The articles deposited on arXiv are classified by the authors with a primary category (mandatory)
and secondary category(ies) (optional). In our case, articles have been selected from primary
categories that correspond to physics subject classes, as detailed in Table 2.1 and Figure 2.1.
Each subject class allows to define a ground-truth for each article that corresponds to its primary
category. For every community of articles or topic we then evaluate its correspondence with
the ground-truth categories. However, due to historical reasons related to the popularity of
arXiv in different fields of physics, they are not homogeneous in the number of papers they
contain and the categories do not necessary reflect a well-principled division of the papers into
hierarchically similar areas. Therefore, we decided to group together some categories (like the
high energy physics) into macrocategories that correspond to a more homogeneous classification
of the different fields. Nonetheless, we also consider a finer-grained division of the articles
subcategories that in the nomenclature of arXiv are specified by a dot after the category name;
e.g. astro-ph.CO is the subcategory about cosmology and non-galactic astrophysics within
the astrophysics (astro-ph) category. Once we clarified the ground-truth classification in
use, we analyze the matching pattern between groups of articles and categories by means of the
Jaccard score between them, as defined in Equation 1.20. The extensive comparison between
communities and categories is outlined in Figure A.3. Here, however, we are interested in
analyzing two different measures that are derived from the Jaccard score: the recall and precision

scores. The first quantifies to which extent a known category is well reproduced by a discovered
group of articles; it is therefore defined for every known category Ci as the maximum Jaccard
score of the category over all the discovered groups D j :

R(Ci ) = max
D j

J (Ci ,D j ) . (2.25)

The score is close to one if a discovered group matches fairly well the known category. Taking the
specular point of view we then define the other quantity, the precision score, which determines if
a discovered group is well represented by a known category. Such score is indeed defined as the
maximum Jaccard score between the discovered group D j over all the known categories:

P (D j ) = max
Ci

J (Ci ,D j ) . (2.26)

Then, we calculate for every know category and every discovered group the respective score and
we evaluate the overall quality for each score by ranking it in increasing order and displaying

10Unfortunately, such comparison is possible only for the articles in arXiv and cannot be broaden to the concepts
since a categorization is missing. A very interesting and promising effort in this direction is actually taking place for
the American Physical Society journals where the authors that publish a paper are asked to label it using the so-called
PhySH (Physics Subject Heading) in order to describe the content of the paper with a wide range of features such as
the techniques, the methods, the physical system that they analyze and so on. [262]
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the respective value. The rankings are normalized by the number of known categories in the
case of the recall and by the number of discovered groups in the case of the precision. The
trend of the scores is then analyzed varying the percentile p of removed concepts in order to
understand the effect of the filtering on the two scores. Figure 2.23 shows the resulting scores.
In the case of macrocategories, the recall score has very close values in the left part of the plot,
i.e. for the lower positions. An exception to this trend is observed for p = 10, whose values are
higher both for the communities of articles and the topics. In the right part, the recall reaches
different values when varying the percentile and, in general, the scores for the communities are
greater than the ones for the topics in TM at the same percentile. In this interval, however, a clear
trend is present: increasing the percentile p reduces the value of the recall. For the subcategories
the recall starts with very low values, likely due to the small number of papers that compose
them. Curiously, the recall is slightly greater for the articles associated to the topics and does not
decrease with p. Indeed, it attains the highest values over the whole rankings for p = 10 followed
closely by p = 20. Then, for p = 30, the values lower again as for p = 0 and gets closer to each
other for the topics and communities. Nevertheless, the variation of the scores for different
percentiles is much less pronounced than in the case of macrocategories. The precision score for
the macrocategories exhibits a more clear trend when p raises since the curves are more separated
and the precision values are reduced. The results from TM are again lower than the ones from
the communities of articles. For the subcategories the precision values show again a decreasing

Figure 2.23 – Ranked values of the recall and precision scores for the ground-truth classification
of articles in macrocategories and subcategories of arXiv . The color denotes the percentile p

of removed concepts. The dashed lines refers to the communities of articles and the dotted lines
to the articles associated to topics by TM.

behavior as the percentile p increases, but the values for the communities of articles and the

69



Chapter 2. Entropic selection of concepts in networks of similarity between articles

topics are not well separate as before. The overall values of the recall and precision scores suggest
that the communities of articles have a better performance in most of the cases. Nonetheless,
the scores are not tremendously higher than in the case of articles assigned to topics. These
findings, however, are not completely unexpected: as several studies highlighted, the problem
of identifying known communities only relying on the structural properties of a real network
seems not to have acceptable solutions [163]. The cases where the performance of the algorithms
is good are limited to synthetic networks with a planted community structure. In most of the
real networks, integrating the information about metadata like the ground-truth above is then
necessary to achieve a good performance, at least in some scenarios [263].

Nevertheless, it is important to stress a crucial difference, very often overlooked: metadata infor-
mation of real networks should not be considered having the same reliability of the ground-truth
in synthetic networks. Indeed, a ground-truth is enforced in the structure of synthetic net-
works by construction while metadata may not be the underlying basis from which communities
formed [264]. On the other hand, metadata are usually termed ground-truth and wrongly treated
as such. However, metadata may only help to achieve a better community structure, although
there is no guarantee that this is case. Accordingly, we cannot become obsessed by reproducing
the metadata in the community structure although their interplay with the communities is, indeed,
a valuable contribution. Ergo, the quality of the community structure must not be evaluated solely
in terms of metadata but other criteria should be considered when possible.

In the above case, for example, examining the concept frequency within communities (as reported
in the Sankey diagrams [236]) highlights that coherent topics are identified in the communities.
However, the fact that the communities do not match perfectly the categories is not surprising.
Exploiting the concepts in the full text of the articles – without restricting to title and abstract –
allows to delineate more in depth the content, catching the complete spectrum of background
knowledge, methods, techniques, and applications of the research. Some of these concepts can be
shared among different fields that do not fall within the same category, especially if the research
is interdisciplinary or concepts borrowed from one field are used in another one. A remarkable
example of this case is the recent developments of AdS/CFT correspondence from string theory
in condensed matter physics [265, 266]. The comparison of the communities of articles with
the state-of-art technique in topic modeling, i.e. TopicMapping, suggests a certain robustness of
the detected structure, given that similar topics are also discovered from such complementary
approach. Therefore, we may argue that there is a core organization structure unveiled by both
methods. Perhaps a closer matching of the communities with existing categories would have been
reached, for example, if we had limited the semantic similarity to title and abstract, since they are
less rich in terms of concepts or establishing article connections from citations. Notwithstanding,
simply reproducing the categorization of articles already known would be of limited interest. In
conclusion, we think that it is more enlightening to uncover unexpected relationships that go
beyond the available information, an achievement that has been possible thanks to the method for
filtering generic concepts.
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2.4 Conclusions and remarks

The availability of large collections of documents offers the opportunity to investigate the semantic
information presents within them. From this large-scale analysis is then possible to characterize
the complex pattern of word adoption in texts, not only examining where they are used (the
frequency among documents) but also how (the term frequency inside documents). This analysis
is important to identify documents with similar content in order to automatically classify them in
thematically related groups. In this way, we can explore the emerging meso-scale organization of
documents in different topics.

In the present Chapter we focused on a corpus of scientific preprints where we discovered that
concepts extracted from their body are not equally valuable to describe the content of the articles.
Indeed, generic concepts play the role of buzzwords that do not carry a specific meaning but
are quite vague and indefinite, being present in various articles regardless the topic that they
address [267, 268]. Their presence dramatically hinder the construction of genuine similarities
between articles since they are responsible for spurious contributions to the link weights. For
that reason, the resulting density of the article similarity network is very high, as detailed in
section 2.1. As a consequence, the community structure is composed by major topics drawn
together by common concepts which do not allow to recover finer-grained communities.

Contrary to what expected, the notion of generality of a concept is not naively related to the
frequency among articles but it depends on a quantity that captures more deeply the information
about the distribution of a concept, i.e. the entropy. Guided by the empirical evidence that
concepts tagged as common possess an higher entropy, we have developed a method that accounts
for such trend in order to quantify the generality of concepts. Firmly grounded in the maximum
entropy principle, the proposed method allows the identification of generic concepts based on
the difference between the maximum entropy and the actual one, as described in section 2.2.
The advantages of this method are at least two: first, it is unsupervised as it does not need the
validation of experts in order to (manually) spot generic concepts. Second, it provides a measure
of generality that is intrinsically related to the context since it depends on the corpus under
scrutiny. As an example, the method can be applied recursively to sub-corpora in order to identify
generic concepts within a given topic. Removing a fraction p of generic (uninformative) concepts,
the noise captured in the article similarities is reduced since only relevant concepts contribute to
the link weights. In this way, the article similarity network becomes sparser causing the detected
communities to represent more closely specific topics which offer a detailed overview of the
thematic organization of large corpora, as reported in section 2.3. Filtering generic concepts,
however, is useful also in the case of topic modeling, a complementary perspective to determine
the topics in a corpus. In such case, the granularity of topics (represented by groups of words) also
improves as a direct effect of the removal of generic concepts. Given the division of articles in
various categories within arXiv , the emergence of a thematic organization is expected, although
neither the communities of articles nor the modeled topics match very closely the categorization.

The validity of the filtering method is not limited to the case of a curated ontology of crowdsourced
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concepts but it applies also to the removal of irrelevant keywords extracted from webpages about
climate change, as outlined in subsection A.2.2. Regardless the differences in the structure,
composition, and purpose of the kind of documents, the method effectively improves the topic
description of the latter, even if the results are less outstanding due to the rough nature of keywords
as compared to scientific concepts.

As a general purpose method, the characterization of keywords by different degrees of generality
might be helpful in order to propose a sorted pool of words when building an ontology for a corpus
of documents or to improve an existing one. Among the efforts to characterize more precisely the
vast knowledge enclosed in scientific publications, a recent development has been introduced by
the American Physical Society with the Physics Subject Headings (PhySH) system, a hierarchical
annotation framework that superseded the old PACS with the aim of classifying the manuscripts
by the various facets that a publication addresses, from methods and techniques that are adopted
to the physical systems that are studied and the research areas that are concerned [262].

Regarding scientific concepts, an interesting question concerns the evolution over time of the
concept generality in order to establish if some trend is present, e.g. concepts that were specific
and then gained momentum or, viceversa, concepts that were abandoned after being mainstream
for a period of time. In the first case, for example, we can include “graphene” as it has become
an increasingly popular material, very promising for many technological applications. In this
perspective, we devote the next Chapter to the analysis of the temporal trajectory of concepts.
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scientific concepts

Understanding the changes in scientific knowledge without considering its evolution across time
is impossible. Indeed, the changes that take place in the scientific research over time are a
valuable asset to describe the advances and the specialization of the scientific knowledge. In
the literature, several works address this aspect considering the concurrent transformations of
paper and author networks [40], the variation of the citations received by papers [52, 54, 55], the
transitions of topological indicators in the networks of citations among scientific publications
to discover emerging fields [34, 269], and the development of collaboration networks to outline
the history of scientific domains [22, 35]. Notwithstanding, none of these studies leverages the
semantic content of the articles. In principle, this operation can be realized by considering the
evolution of scientific concepts in order to investigate another facet of the progress of scientific
knowledge. Thus, an interesting question is to characterize how the consumption of scientific
concepts evolves over time focusing on their term-frequency distribution within papers. The
method introduced in the previous Chapter exploits precisely such distribution by linking the
generality of a concept with its residual entropy, adapting to the corpus of articles under scrutiny.
Given the fact that concepts are not exploited always in the same way over time, we guess that
their generality across time will fluctuate as well. Accordingly, the temporal traces of concept
generality can be employed to outline common trends in their evolution.

To this purpose, we decided to focus on one of the oldest categories of arXiv , astrophysics
(astro-ph), which has been actively used to submit preprints since the birth of arXiv in
1992 [270, 271]. Therefore, the long history and the high submission rate per year guarantee that
we have good statistics in order to evaluate the concept generality with confidence. The number
of submitted papers and the number of unique concepts per year are displayed in Figure 3.1.
We consider a 20 years period in time spanning from 1994 up to 2014, since the number of
articles in 1992 and 1993 does not provide a considerable coverage, being 59 and 488 respectively.
Furthermore, we keep only those concepts appearing in more than one paper and whose term-
frequency distribution is different from a delta. In this way, only those concepts with an observed
entropy greater than zero are selected to be further analyzed. Every year is studied as a separate
corpus containing a given number of selected concepts for which we compute the residual entropy
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Figure 3.1 – Evolution of the number of articles (�), concepts (△) and selected concepts (�)
across the years.

as described in the previous Chapter. Since the raw value of the residual entropy, Sd , cannot be
used to compare the “generality” across time, we compute its percentile. We consider percentiles
going from the 10th up to the 100th in steps of 10 and assign concepts to their highest percentile.
Loosely speaking, we refer to the resulting groups as percentile slices since they contain concepts
that are included in a given percentile but not in the previous one. This provides a rough separation
of concepts into classes of generality, where each class contains the same number of concepts.

Following the variation of the percentile slice through time, we can characterize the changes of the
concept generality. The percentile slices and maximum entropy parameters for selected concepts
are displayed in Figure 3.2. We note that the variations of the maximum entropy parameters, s

and λ, seem erratic but they may compensate in the maximum entropy of Equation 2.16, implying
that the percentile slices p remain constant in some cases. More in detail, we inspect the trend of
the percentile slice over time for some reference concepts which are pertinent to astrophysics,
providing a comparison with their generality for the physics corpus analyzed in the previous
Chapter. In particular, concepts tagged as common by SW experts, like “Energy” and “Universe”,
always fall into the 10th percentile from 1996 onward. This observation suggests that they
can be considered as very generic at any time. Moreover, they are also included in the 10th
percentile for the physics corpus examined in the previous Chapter, being general both for the
big corpus of physics articles and one of its subcorpus, astrophysics. Nevertheless, the concept
“Star” is considered very generic for most of the years and also in the physics corpus, albeit it
has not been tagged as common. Again, the method based on the residual entropy is able to spot
automatically those concepts that are generic for a given corpus. Important concepts more related
to astrophysics, from “Hertzsprung-Russell diagram” down to “Perfect fluid” are also outlined.
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The temporal traces of the percentile slice fluctuates more in these cases. Another concept with
a prominent role in astrophysics is “Dark matter”. This type of matter is called dark since it
does not emit light, therefore is not possible to investigate it by means of standard instruments
like telescopes adopted in astrophysics. Yet, the standard model of cosmology indicates that it
makes up about 27% of the Universe [272]. The investigation of such mysterious matter has been
increasing over the years thanks to the availability of advanced instrumentations like the Planck
telescope, among others . Therefore, many models have been proposed to justify the presence of
dark matter in the Universe [273–276]. Such models postulate the existence of different types of
dark matter characterized by various properties and each type can be associated to a characteristic
concept. The evolution of the percentile slice for some of these concepts is shown in Figure 3.3.
Interestingly, “Dark matter” alone is a concept always generic and a similar behavior can be
observed for “Cold dark matter”. On the other hand, “Warm dark matter” and “Weakly interacting
massive particle” may be regarded as very specific over the whole time. Finally, other flavors of
dark matter exhibits very different trends, some more constant while others more oscillating.

Since the traces of the percentile slice evolve disparately, we want to understand if it is possible
to identify characteristic trends in such traces that may describe concordant evolutions of a
considerable number of concepts. For example, few plausible trends of concept generality are
sketched in Figure 3.4. Notwithstanding the intuitive description of these trends, there is no reason
why concepts should follow them. In principle, the trends that mostly represent the percentile
slices could be completely different. Therefore, to avoid imposing any particular trend, we need
to resort on a method that automatically determine the most recurrent patterns. Such problem
can be though in terms of finding few typical patterns that explain common trends observed in
empirical data. Dimensionality reduction techniques are a large class of methods that accomplish
this task [277, 278]. To explain the basic principles, let us consider a matrix X of dimension
C ×T , where C is the number of concepts and T is the number of years. In the following, we
focus only on those that are present for every year in the time interval under study. The element
xi j is the percentile slice of concept i in year j . Any dimensionality reduction scheme tries to
approximate the matrix X with a product of two or more matrices that offer a reduced description
of X . Ideally, the approximation allows to reconstruct the entries in the original matrix X by
capturing relevant components of the observed variations. One popular method applied for time
series analysis is Singular Value Decomposition (SVD [244], see Equation 2.21) which aims to
decompose the original matrix as follows:

X ≈UΛV T =
K∑

k=1

λk uk ·v T
k . (3.1)

Each of the K components of V , vk , identifies a direction of optimal projection in a low, K

dimensional space along which the values in X tend to align. Moreover, the eigenvalues λk

quantify the contribution of the respective component k to the approximated description of X .
In our case, the columns of vk provide the pattern of variation most frequently observed that
reconstruct the traces in X more faithfully. However, none of the extracted components describe
a prototypical series that is somehow regular. Indeed, each of them basically encodes the highly
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Figure 3.3 – Evolution of the percentile slice, p, across time for different concepts associated
with “dark matter”.

fluctuating nature of the percentile slice that most concepts exhibits. Hence, the characteristic
patterns do not show interesting trends over time but simply capture the noisy variations of
concept generality. Nevertheless, we also tested a more advanced technique in order to establish
if common trends in the percentile slice evolution can provide a classification of concepts. Such
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Figure 3.4 – Schematic portrait of plausible trends in the evolution of the percentile slice of
concepts. A brief description of the different traces is provided in the legend.

technique, called Dynamic Time Warping (DWT, [279]), has been developed specifically for time
series analysis, aiming to compute a distance between time series and then clustering together
those that are closer to each other. Unfortunately, also this attempt did not give meaningful results.
We claim that these analysis were not successful since the traces of the percentile slice are very
short in time – only 20 points – whereas the techniques adopted in time series usually deal with
much longer traces. Moreover, fluctuations in the time series are usually smooth with a small
amplitude, while in our case they are oscillating up and down many times with big jumps.

In conclusion, despite the identification of characteristic variations of concept generality has not
been accomplished, we have been able to explore more closely the role of few important concepts
in astrophysics that remain general over the years or, on the contrary, are quite specific throughout
the whole 20 year interval. An interesting direction of further investigation would be to analyze
more carefully the role of the power-law exponent derived from the maximum entropy principle,
which shows a typical peak around s = 3/2 for the concepts in the physics corpus (see Figure 2.7).
This remarkable maximum is especially compelling since it is the exponent typical of critical
branching processes à la Galton-Watson [280]. In this framework, it is intriguing to imagine that
old articles “inspire” (or “generate”, in the language of branching processes) new manuscripts
that inherit roughly the same number of concepts and similar term-frequencies from the old ones.
For such kind of analysis, the temporal framework described above is the ideal one. Testing if a
critical branching process is responsible for the content of new articles would be interesting since
it may shed light onto the mechanism that drives the evolution of scientific knowledge.
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Investigating the scientific knowledge as a large-scale phenomenon requires the contribution
of scholars with very different backgrounds, since every discipline involved (from sociology
to mathematical modeling) provides its own viewpoint on the study of science of science. In
particular, the unprecedented disposal of digital publication data paves the way to investigate the
scientific knowledge from a quantitative perspective, leveraging multiple types of information
contained in articles. Many studies consider the citation pattern among publications as the key
ingredient to describe, for example, the organization of science in domains. However, few of
them actually consider the semantic content of articles which outlines the research work therein.

In this Thesis, we offered two different contributions to characterize the scientific knowledge
from the semantic content of articles. In particular, we analyzed the relationships between the
concepts present inside the full text of articles and the articles themselves as a complex network.
Considering the content similarity between articles, we showed that the resulting network may
be extremely dense, obfuscating the underlying organization of articles in thematically related
groups. Such high amount of interactions stems from the presence of the so-called buzzwords,
i.e. terms that are not very relevant to describe the content of scientific articles since they are
pervasively adopted in many articles from various fields. These generic concepts contribute to
create spurious similarities between articles that would not be so much related otherwise.

Our original contribution amounted to understand how the microscopic usage of scientific
concepts inside papers is related to the “generality” of concepts through their residual entropy, a
rigorous measure grounded in information theory that quantifies the intrinsic semantic information
encoded in scientific concepts. Therefore, instead of reducing the number of concepts using naive
– but intuitive – methods, like considering only the most frequent concepts inside a document,
we deepen the comprehension of the relevance of scientific concepts in order to remove the
less informative ones. The filtering of concepts enhances the similarity relationships, thereby
the community structure of the similarity network portraits more specific “subjects”. The same
filtering approach is valid when characterizing the composition of articles in terms of latent topics,
i.e. groups of concepts, that describe the article content. Therefore, combining the macroscopic
description of article and concept similarity networks with the microscopic analysis of the concept
relevance provided an original contribution to the understanding of the emerging organization
of scientific knowledge. These findings are particularly relevant when studying large corpora
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of scientific documents that are not divided in predetermined categories or lack a fine-grained
division, since we can potentially uncover the thematic organization of these documents. This
achievement is possible because the “generality” of a concept is not carved in stone but it adapts
to the corpus under scrutiny. As a consequence, such concepts are identified more efficiently than
resorting to the judgment of experts. Indeed, we proved the presence of false positive concepts
that have been marked as common by experts although they are not, as well as false negative, i.e.

concepts that experts have missed out to tag as common. Moreover, the entropy-based measure
used to quantify the relevance of concepts does not rely on the division of a text in parts, therefore
it can be applied to unstructured texts like web pages as well, even in the absence of an ontology
of concepts.

A further contribution to characterize of scientific knowledge was provided by considering its
temporal evolution. Indeed, the advancement of science manifests with the emergence of new
scientific paradigms and discoveries that modify the knowledge landscape. In this global picture,
the evolution of the consumption of scientific concepts in terms of how they are employed shed
light into the historical development of science. In this case, quantitative studies of the novelties
emerging in science would need to be supported with qualitative studies touching the sociology,
history, and philosophy of science. Indeed, the direct human knowledge is fundamental to track
historical trends in science since a complete understanding of the mechanisms that govern its
evolution as a complex system is far from being reached.

An interesting direction of further investigation would be to understand the relation between
the paper similarity networks after filtering generic concepts and the map of scientific papers
defined in terms of cultural holes [211], since the latter approach is also based on an entropic
measure to quantify the dissimilarity of scientific jargon. Regarding the scientific concepts, we
can try model their interaction as an Ising-like spin system where concepts are present or not in
articles, looking at the possible couplings between concepts that describe the strength of their
interactions [281]. Moreover, the same principle to characterize generic concepts can be applied
to other ontologies like the MeSH (Medical Subject Heading), a well-curated classification system
of medical terms from the U.S. National Library of Medicine, in order to characterize the usage
of medical vocabulary [282].

The interplay between scientific concepts and articles can be studied more in depth, looking if
a nested structure is hidden in their bipartite network [102, 283]. Such pattern of interactions
may highlight the presence of widespread concepts used in papers from diverse fields, as well as
specific concepts adopted in particular ones, possibly discovery a relation with generic concepts
defined from the residual entropy.

More in general, if we look at the scientific knowledge as a complex evolving system with many
types of interactions (between authors, publications, institutions), it is very natural to imagine
that our understanding of such system would benefit from taking into account these various
interactions simultaneously, since a complex system usually exhibits non-trivial features that can
be explained satisfactorily only when taking advantage of the whole complexity. For example, we
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could investigate the interplay between the semantic similarity and citation network, discovering
communities of different articles based the two criteria and comparing their traits. Another
example would be to delineate the scientific concepts that authors use and how they change over
time, thereby describing the evolution of the scientific interests of scholars at different stages of
their career.
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A Entropic selection of concepts

in networks of similarity

between articles

The majority of the work contained in this Appendix is included in [222, 223]

A.1 Theory

In this Section we provide the analytical details behind the filtering method based on the maximum
entropy principle. We begin proving the relation between the full entropy, S f , and the conditional
one, Sc , and then we motivate the decision to use the latter for the design of the filtering method-
ology (subsection A.1.1). After that, we provide the details of the maximum entropy models
introduced in chapter 2 (subsection A.1.2), and we show the equivalence between the residual
entropy, Sd , and the Kullback-Leibler divergence, DKL(p||q), between the probability distribution
of empirical observations, p (k), and maximum entropy model, q (k) (subsection A.1.3). Finally,
we present the comparison between the concept lists ranked according to residual entropy Sd and
I DF (subsubsection A.1.4.1).

A.1.1 Relation between full entropy and conditional entropy

The probabilistic formulation of the entropy adopted in section 2.2, does not contemplate as a
possible event the absence of a concept c in a document α (i.e. t fc (α) = 0). For this reason,
in Equation 2.5 the sum starts from t fc (α) = 1. We labeled such entropy, Sc , as conditional

since it is computed under the condition that concept c appears in the document, thus implying
an associated probability pc (k) = Nc (k)

Nc
. Nevertheless, we can also define another probability

distribution that incorporates the absence event, which translates into the so-called full entropy S f .
To construct such distribution, we consider the total number of papers in the corpus, Na , while
concept c appears only in Nc ≤ Na papers. Then, we extend the t fc probability distribution by
including the absence event as a term that corresponds to the fraction of papers where the concept
c did not appear, 1−d f , where d f = Nc

Na
is nothing else than the document frequency of concept
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c. In conclusion, the probability that the concept c appears k ∈ [0,∞] times is p f (k) = Nc (k)
Na

,
where p f (0) = 1−d f . As a result, the full entropy associated to distribution p f (k) is:

S f =−
∞∑

k=0

p f (k) ln p f (k) =

=−p f (0) ln p f (0)−
∞∑

k=1

p f (k) ln p f (k) =−(1−d f ) ln(1−d f )−
∞∑

k=1

Nc (k)

Na
ln

(
Nc (k)

Na

)
.

Since Nc (k)
Na

= Nc (k)
Nc

Nc

Na
= pc (k)d f , we have:

S f =−(1−d f ) ln(1−d f )−
∞∑

k=1

Nc (k)

Nc
d f ln

(
Nc (k)

Nc
d f

)
=

=−(1−d f ) ln(1−d f )−d f ln
(
d f

) ∞∑

k=1

Nc (k)

Nc
−d f

∞∑

k=1

Nc (k)

Nc
ln

(
Nc (k)

Nc

)
= (A.1)

= Sbi n +d f Sc .

where we used the normalization condition over Nc (k), i.e.
∑

k=1
Nc (k)

Nc
= 1. The full entropy,

S f , is then a linear combination of two entropies: the binary entropy, Sbi n , and the conditional

entropy, Sc , respectively . The first accounts for the probability of presence/absence of a concept
in the corpus. The second is the entropy computed in Equation 2.5 of section 2.2 modulated by
the factor d f .

At this point, it is natural to ask whether S f could be used to classify concepts or not. To this aim,
in Figure A.1 we outline the relation between S f and several quantities in order to establish if it
can be adopted as a valid alternative to Sc in discriminating generic concepts. The analysis of
the influence between S f and Sc (panel A), d f ·Sc (panel B) and d f ·Sc

S f
(panel C) reveals that a

clear separation between common concepts (in black) and the others (in orange) is not present.
Performing the same investigation for the first term in Equation A.1, Sbi n , outlines that S f does
not display a characteristic dependence for the common concepts neither on Sbi n (panel D), nor
on its fraction explained by Sbi n , Sbi n

S f
(panel G). Summarizing, none of the dependencies shown

in Figure A.1 seems to provide additional solutions to conceive a classification scheme. Ergo, the
full entropy S f is inadequate to distinguish generic concepts, since its discriminative power is not
as strong as one of the conditional entropy.

A.1.2 Maximum entropy models

Information theory provides a framework to characterize in a rigorous way the information
content of concepts, as encoded by the conditional entropy Sc . However, such raw value, which
measures the actual information present in the data, is not sufficient to determine if a concept is
generic or not. Indeed, we need to fairly compare the observed entropy, Sc , to an expected value
in order to establish if it is small or not. This theoretical counterpart of the observed entropy
is the maximum entropy associated to an expected probability distribution where some of its
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Figure A.1 – Relation between the full entropy S f and the conditional entropy Sc (A), the
contribution of the conditional entropy to the full one d f · Sc (B), the conditional entropy
contribution over the full one d f ·Sc

S f
(C), the binary entropy Sbi n (D) and the binary entropy

contribution over the full one Sbi n

S f
(E). The black markers represent common concepts, while the

other ones are indicated in orange. The data shown here correspond to the concepts in the physics
corpus of section 2.1

features are constrained, as explained in subsection 1.2.1. The maximum entropy distribution
is then the maximally unbiased one that fulfills these features derived from the data. In such a
way, the prescribed constraints dictate the functional form of the maximum entropy distribution.
Operationally, in order to enforce the constraints derived from the expected features, we adopt
the Lagrangian multipliers formalism (see subsection 1.2.1, Equation 1.48 and Equation 1.51). In
the rest of the Section, we characterize two maximum entropy models, detailing the calculations
that lead to the associated distributions from the respective constraints.

A.1.2.1 Discrete t f

First, we consider the case where the average term-frequency of a concept c, 〈t fc〉, is imposed as
a constraint. The probability mass function describing the expected frequency of a concept c that
appears k times is denoted as qc (k). The system of equations to solve in order to maximize the
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entropy is

S〈t fc 〉 =−
∞∑

k=1

qc (k) ln qc (k)−λ

(
∞∑

k=1

k qc (k)−〈t fc〉
)
−ν

(
∞∑

k=1

qc (k)−1

)
. (A.2)

The Lagrange multipliers ν and λ are associated to the normalization condition and the constraint
on 〈t fc〉, respectively. The probability mass function is then The maximization of Equation A.2
with respect to qc (k) is performed as

∂S〈t fc 〉
∂qc (k)

= 0, which gives:

− ln qc (k)−1−λk −ν= 0. (A.3)

Thus, the probability mass function qc reads

qc (k) = e−(ν+1)−λk . (A.4)

The probability mass function is an exponential with parameter λ where the constant term
e−(ν+1) is associated to the normalization condition. To impose such constraint, we maximize
Equation A.2 with respect to ν, i.e. the Lagrange multiplier associated to that constraint, as
∂S〈t fc 〉
∂ν = 0 obtaining

∞∑

k=1

qc (k) = e−(ν+1)
∞∑

k=1

e−λk = e−(ν+1) e−λ

1−e−λ
= 1,

e−(ν+1) =
1−e−λ

e−λ
, (A.5)

where the last identity in the first line is obtained from the geometric series

∞∑

k=1

r k =
r

1− r
. (A.6)

Likewise, the constraint on 〈t fc〉 is enforced by the maximization of Equation A.2 with respect
to λ,

∂S〈t fc 〉
∂λ = 0, as

∞∑

k=1

k qc (k) = e−(ν+1)
∞∑

k=1

k e−λk =−e−(ν+1) ∂

∂λ

∞∑

k=1

e−λk =
1

1−e−λ
= 〈t fc〉 ,

e−λ = 1−
1

〈t fc〉
. (A.7)
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Substituting the probability mass function of Equation A.4 in the definition of the entropy gives,
for every concept,

S〈t fc 〉 =−
∞∑

k=1

qc (k) ln qc (k) = 1+ν+λ〈t fc〉 =− ln


 1

〈t fc〉
(
1− 1

〈t fc 〉

)


−〈t fc〉 ln

(
1−

1

〈t fc〉

)

=− ln


 1

〈t fc〉
(
1− 1

〈t fc 〉

)


−〈t fc〉 ln

(
1−

1

〈t fc〉

)

=− ln

(
1

〈t fc〉

)
+ ln

(
1−

1

〈t fc〉

)
−〈t fc〉 ln

(
1−

1

〈t fc〉

)

=− ln

(
1

〈t fc〉

)
−
(
〈t fc〉−1

)
ln

(
1−

1

〈t fc〉

)

=−〈t fc〉
(

1

〈t fc〉
ln

(
1

〈t fc〉

)
+
(
1−

1

〈t fc〉

)
ln

(
1−

1

〈t fc〉

))
.

Finally, simple algebra from the last line gives the formula reported in Equation 2.6.

A.1.2.2 Density of t f

The second maximum entropy model is designed to describe the rescaled version of the term-
frequency distribution of a concept c. Such term-frequency density is defined as r t fc (α) = t fc (α)

L(α)
,

where L(α) is the length of document α calculated as the number of words. The term-frequency
density, indeed, is better suited to describe the relevance of a concept within documents in the
case of a length distribution which is inhomogeneous. In the opposite case, i.e. when documents
have the same length, the (discrete) term-frequency distribution and the rescaled version are
identical up to a scaling factor. The analytical expression of the probability density function pc (x)

is determined by maximizing its entropy Smax under the constraints on the average and variance
of the logarithm of the term-frequency density that must equate 〈ln(r t fc )〉 and σ2(ln(r t fc ))

respectively:

S̃ =−
∫∞

0
pc (x) ln pc (x) d x

+γ

(
〈ln(r t fc )〉−

∫∞

0
ln(x) pc (x) d x

)

+η

[
σ2(ln(r t fc ))−

∫∞

0

(
ln(x)−

∫∞

0
ln(x) pc (x) d x

)2

pc (x) d x

]

+ν

(
1−

∫∞

0
pc (x) d x

)
,

(A.8)

where γ, η and ν are the Lagrange multipliers associated to the constraints 〈ln(r t fc )〉, σ2(ln(r t fc ))

and the normalization condition of pc (x), respectively. Maximizing Equation A.8 with respect to
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pc (x), ∂S̃
∂pc (x)

= 0, we obtain:

− ln pc (x)−1−γ ln(x)−η
(
ln(x)−µ

)2 −ν= 0, (A.9)

where we defined the constant µ =
∫∞

0 ln(x) pc (x) d x as the average of the logarithm of x

according to the maximum entropy distribution pc (x). Therefore, the probability density function
pc (x) is defined as:

pc (x) =
e−(ν+1)e−η(ln(x)−µ)2

xγ
. (A.10)

As we have done in the previous case, subsubsection A.1.2.1, we must impose the normalization
condition on the probability density function Equation A.10. Moreover, we also compute the
parameters η and γ, similarly to what we performed in Equation 2.13 and Equation 2.14. Since
we have already detailed the process to calculate the parameters, we report here directly the final
expression of the probability density function:

pc (x;µ,σ) =
1

�
2πσx

exp

[
−

(ln x −µ)2

2σ2

]
with x > 0. (A.11)

Such probability density function corresponds to the lognormal reported in Equation 2.18, where
the parameters µ and σ2 are computed directly from the empirical constraints on the average and
the variance of the logarithm of x:

µ=
∫∞

0
ln(x) pc (x) d x ≡ 〈ln(r t fc )〉 , σ2 =

∫∞

0

(
ln(x)−µ

)2
pc (x) d x ≡σ2(ln(r t fc )) . (A.12)

Note that µ is a constant fully determined from the data and is not a function of σ2. The maximum
entropy Smax associated to the probability density function in Equation A.11 is then:

Smax =−
∫∞

0
pc (x) ln pc (x) d x = ln

(�
2πσ

)
+µ+

1

2
. (A.13)

A.1.3 Equivalence between the Kullback-Leibler divergence and the residual en-

tropy

In section 2.2, we introduced the definition of residual entropy of a concept c, Sd (c), as the
difference between its maximum entropy, Smax (c), and the conditional one, Sc (c). Here we show
that the residual entropy, Sd , which measures the “generality” of concepts, is exactly equivalent
to the Kullback-Leibler divergence (KL), a widely adopted to rigorously compute the deviation
between two probability distributions [185]. More specifically, we consider the KL between
the maximum entropy probability distribution, qc , and the empirical one, pc . For the sake of
simplicity, we prove the equivalence with the residual entropy in the case where p and q are
probability mass functions representing discrete random variables, although the same reasoning
can be used for probability density functions. In particular, we remind that pc (k) describes the
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observed probability that the term-frequency of a concept c, t fc , is equal to k, thus pc (k) = N (k)
Na

.
The KL from q to p is defined as:

DKL(p||q) =
∞∑

k=1

pc (k) ln

(
pc (k)

qc (k)

)
=−

∞∑

k=1

pc (k) ln qc (k)+
∞∑

k=1

pc (k) ln pc (k) . (A.14)

The last term in the (A.14) is nothing else, apart for the sign, than the conditional entropy Sc :

Sc =−
∞∑

k=1

pc (k) ln pc (k) . (A.15)

The first term, instead, can be rewritten using the maximum entropy probability qc (see Equa-
tion 2.12) as:

−
∞∑

k=1

pc (k) ln qc (k) =−
∞∑

k=1

pc (k) ln




e−λk

k s

Lis(e−λ)




=
∞∑

k=1

pc (k) ln
[
Lis(e−λ)

]
−

∞∑

k=1

pc (k) ln

(
e−λk

k s

)

= ln
[
Lis(e−λ)

]
−

∞∑

k=1

pc (k) ln

(
e−λk

k s

)

= ln
[
Lis(e−λ)

]
+λ

∞∑

k=1

pc (k)k + s
∞∑

k=1

pc (k) lnk

= ln
[
Lis(e−λ)

]
+λ〈k〉+ s〈lnk〉 ≡ Smax . (A.16)

Plugging the results of Eqs. (A.15) and (A.16) into (A.14) we get:

DKL(q||p) =−
∞∑

k=1

q(k) ln p(k)+
∞∑

k=1

q(k) ln q(k) = Smax −Sc . (A.17)

Hence, for a given concept c, the KL divergence of between p and q coincides with the residual
entropy Sd = Smax −Sc .

A.1.4 Comparisons between sets

A.1.4.1 Comparison between concept rankings based upon Sd and I DF

Despite both the nverse document frequency, I DF , and the residual entropy, Sd , are defined
on the corpus of documents under scrutiny, they actually encode different information. The
first penalizes concepts that are frequently present across articles, while the latter is intrinsically
related to the term-frequency distribution of a concept. Therefore, we may expect to observe
some correlation between them although they are different quantities. To compare the list of
concepts ranked upon each quantity, we calculate the overlap, On,m , between the set of concepts

89



Appendix A. Entropic selection of concepts in networks of similarity between articles

in the nth percentile slice1 of the I DF , An , and the set of concepts in the mth percentile slice of
Sd , Bm . Thus, we have:

On,m =
|An ∩Bm |

|An |
, (A.18)

with On,m ∈ [0,1]. As usual, On,m = 1 denotes that the two sets share exactly the same elements,
i.e. completely overlap, while On,m = 0 characterizes two sets with no elements in common.

A.2 Datasets

In this section, we provide additional findings from the analysis of the physics corpus in sub-
section A.2.1.Moreover, we also describe supplementary findings related to the corpus of web
documents about climate change in subsection A.2.2. We recall that we used the maximum
entropy model based on the (discrete) term-frequency t fc for the former corpus, while for the
latter we adopted term-frequency density, r t fc .

A.2.1 Physics

A.2.1.1 Similarity between partitions

In order to quantify the similarity between the partitions obtained in different runs, we compute
the Normalized Mutual Information (NMI) and the Normalized Variation of Information (NVI)
between the partitions for any pair of runs, as defined in subsection 1.1.5. In Figure A.2, we
display for every filtering percentile from p = 10 to p = 50 the histograms of the NMI and the
NVI. Moreover, we show the histogram of the modularity Q, defined in subsection 1.1.4, for all
the runs. We observe that the modularity tend to increase significantly with the filtering percentile
p. On the contrary, both the NMI and NVI does not show a remarkable shift towards higher or
lower values as p increases, but they tend to be narrower distributed close to the central peak.

A.2.1.2 Jaccard score between communities and arXiv categories

The Jaccard scores displayed in Figure A.3 as an heatmap aims to detail the correspondence
between the communities of articles detected in the similarity networks and the categories to
whom these articles belong. Indeed, we observe the presence of strong analogies between the
communities of articles and the arXiv categories.

1Given a probability distribution p(x), the kth slice of the percentile contain those values x which are included in
the kth percentile, P̃k , but are not present in the (k −10)th percentile, i.e. x ∈

[
P̃k−10, P̃k

]
, k ∈ {10,20, . . . ,90}.
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Figure A.2 – Histograms of the modularity Q (left column) calculated over all the 1000 runs of
the Louvain method at each filtering percentile p. In addition, the histograms of the NMI (center)
and NVI (right) between any pair of partitions are shown.
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A.2.1.3 Differences between Sd and I DF rankings

In order to examine the correlation between the ranking of concepts based upon the residual
entropy, Sd , and the ranking based upon the I DF , we calculate the overlap score O of the sets of
concepts belonging to the percentile slices of these quantities, as defined in Equation A.18. The
result is shown in Figure A.4: in the case of the I DF , concepts are ranked from the most frequent
(i.e. having the smallest I DF ) to the least one. In the case of residual entropy, instead, we rank
concepts in ascending order of Sd (thus from the most generic to the least one). According to the
definition of O, matrices are normalized by row. The analysis of the overlap matrix denotes a
certain degree of similarity in the region near the main diagonal. Within such region, with the
sole exception of O10,10, the average overlap is around 15% indicating that – in general – more
frequent concepts tend to fall in higher percentiles of the residual entropy. The O10,10 element,
instead, has a value around 50%, denoting a remarkable affinity between these sets. This means
that generic concepts are, to some extent, also those appearing more often across the collection,
albeit this is not always the case.
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Figure A.4 – Overlap between sets of concepts ranked according to the residual entropy Sd and
I DF for the physics corpus. The color of the cells denotes the value of overlap O where the
white corresponds to the absence of overlap. Matrices are normalized by row and the dashed line
indicates the main diagonal.

A.2.1.4 Comparison of the communities obtained after filtering concepts on Sd and I DF

Given the results of the overlap between the sets of concepts ranked according to Sd and I DF ,
we compare the community structure uncovered after filtering concepts with each of two criteria.
In Figure A.5 we report the heatmaps of the Jaccard score computed between the communities of
the similarity networks obtained by pruning out a given fraction p of concepts according either to
their I DF ranking (horizontal axis) or to their Sd one (vertical axis). Each column corresponds
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to a different amount of removed concepts spanning from 10% to 30%. Overall, we can see
that there is always a certain degree of similarity between the communities found after filtering
according to I DF and Sd . However, the overlap fades away as the system begins to display a
richer topic/community organization in response to the increasing amount of concepts removed.
More specifically, as p increases, we notice the coexistence of one group of communities present
in both networks and another group of communities characteristic of a given filtering criterion.
Such coexistence is yet another proof that using residual entropy to filter concepts is not equivalent
to the filter based on the inverse document frequency, which is the most widespread method to
remove concepts in order to sparsify the network of similarity between articles.

Figure A.5 – Jaccard scores among the communities of the similarity networks obtained after
filtering concepts either using entropy (y-axis) or I DF (x-axis). Each label accounts for the main
topic and the size of a give community. Each matrix refers to removing, respectively, the 10%
(A), 20% (B) and 30% (C) of the concepts. The values of the score in panel (A) range from
0.70 to 0.45 on the main diagonal, while off-diagonal elements are below 0.11, except for the
score between “ghost” communities which is 0.34. Panel (B) features overlaps between 0.59 and
0.22 on the main diagonal, while the other values are below 0.17 and the score between “ghost”
communities is 0.29. Finally, panel (C) displays values ranging from 0.54 to 0.19 on the main
diagonal and below 0.18 outside, apart from the “ghost” communities score which is 0.30.

A.2.1.5 Ranking of concepts within papers

In the following, we want to understand if the entropic selection of concepts could be adopted
also to rank concepts and, in turns, if we can use those rankings to classify papers. To this aim,
we select ten highly cited papers from the physics corpus, which are reported in Table A.1. For
each of them we consider the rankings based on TF, IDF, TF-IDF and Sd respectively. Next,
we order concepts from the most generic to the least one according to the four rankings. This
translates into sorting either in descending order (TF, TF-IDF) or in ascending one (IDF, Sd ).
The top ten concepts of each ranking are listed in Table A.2. Qualitatively speaking, the ranked
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lists of concepts presented in seems to confirm, on one hand, the inability of Sd and IDF to fully
grasp the subject of each article. On the other hand, instead, TF and TF-IDF perform remarkably
better in this task. However, these conclusions are not surprising: both Sd and IDF are global
measures, defined on the whole corpus in order to quantify the importance of a concept for the
entire corpus. Conversely, both TF and TF-IDF are local measures that capture the significance
of a concept within papers.

arXiv ID # cit Prim. cat. Secondary category(ies) Venue
1306.5856 1572 cond-mat.mtrl-sci – Nat Nanotech 8, 235–246 (2013)
1301.0842 390 astro-ph.EP – Astroph Jour 766, 81 (2013)
1308.0321 478 cond-mat.quant-gas cond-mat.str-el, quant-ph Phys Rev Lett 111, 185301 (2013)
1301.1340 272 hep-ph – Rep Prog Phys 76, 056201 (2013)
1301.0319 415 astro-ph.SR astro-ph.IM Astrophys J Suppl Ser 208, 4 (2013)
1304.6875 667 astro-ph.HE astro-ph.SR, cond-mat.quant-gas, gr-qc Science 340, Issue 6131 (2013)
1306.2314 254 astro-ph.CO – Phys Rev D 88, 043502 (2013)
1311.6806 231 astro-ph.EP – PNAS 110, 19175 (2013)
1302.5433 195 cond-mat.supr-con cond-mat.mes-hall J Phys Conden. Matter 25, 233201 (2013)
1303.3572 26 cond-mat.str-el hep-ph, quanth-ph Phys Rev B 89, 045127 (2014)

Table A.1 – Main attributes of the manuscripts selected to study the rankings of concepts within
documents. For each document we report its arXiv ID, the number of citations, #ci t , its primary
category and eventual secondary ones. Finally, we provide the publication venue. The number of
citations has been retrieved from [284] the 19th of December 2017.

Table A.2 – List of the ten most generic concepts for the papers listed in Table A.1. We rank
concepts using: residual entropy Sd , inverse document frequency IDF, term-frequency TF and
TF-IDF. Concepts indicated as common by SW are marked with an asterisk. The column
corresponding to the best ranking is highlighted.

arXiv ID Sd IDF TF TF-IDF
1306.5856 Raman spectroscopy as a versatile tool for studying the

properties of graphene

Experimental data * Energy * Phonon Phonon
Regularization Measurement * Graphene Graphene
Intensity Field * Electron * Graphite
Temperature * Potential * Energy * Raman

spectroscopy
Field * Mass * Graphite Raman scattering
Optics * Particles * Resonance * Electron *
Electromagnet * Temperature * Frequency * Carbonate *
Energy * Probability * Measurement * Resonance *
Mass * Units * Scattering * Wave vector
Wavelength * Vector * Intensity Selection rule

1301.0842 The false positive rate of Kepler and the occurrence of

planets

Order of magnitude * Measurement * Planet Planet
Numerical simulation Field * Star Kepler Objects

of Interest
Continued on next page
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continued from previous page

arXiv ID Sd IDF TF TF-IDF
Space telescopes Potential * Kepler Objects

of Interest
False positive rate

Temperature * Mass * Periodate * Star
Statistical error Temperature * Frequency * Eclipsing binary
Field * Probability * Signal to noise ratio Eclipses
Optics * Units * False positive rate Signal to noise ratio
Mass * Frequency * Eclipsing binary Neptune
Frequency * Periodate * Eclipses Earth-like planet
Fluctuation * Velocity * Orbit * Stellar classification

1308.0321 Realization of the Hofstadter Hamiltonian with

ultracold atoms in optical lattices

Experimental data * Energy * Atom * Atom *
Intensity Measurement * Magnetic field * Magnetic field *
Strong interactions Field * Potential * Optical lattice
Field * Potential * Measurement * Cyclotron
Optics * Mass * Optical lattice Ultracold atom
Energy * Particles * Hamiltonian Spin Quantum

Hall Effect
Mass * Units * Spin * Band mapping
Wavelength * Electron * Orbit * Time-reversal

symmetry
Frequency * Frequency * Cyclotron Hamiltonian
Factorisation Periodate * Energy * Superlattice

1301.1340 Neutrino Mass and Mixing with Discrete Symmetry

Order of magnitude * Energy * Symmetry * Neutrino mass
Experimental data * Measurement * Neutrino mass Neutrino
Weak interaction Field * Mass * Charged lepton
Vacuum * Potential * Neutrino Symmetry *
Field * Mass * Charged lepton Sterile neutrino
Electromagnet * Particles * Field * See-saw
Energy * Probability * Leptons * Leptons *
Mass * Units * Sterile neutrino Mixing patterns
Equation of motion * Vector * Vacuum expectation

value
Grand unification
theory

Momentum * Electron * See-saw Vacuum expectation
value

1301.0319 Modules for Experiments in Stellar Astrophysics (MESA):

Giant Planets, Oscillations, Rotation, and Massive Stars

Order of magnitude * Energy * Mass * Star
Stellar physics Measurement * Star White dwarf
Right Hand Side
of the exression *

Field * Frequency * Massive stars

Regularization Potential * White dwarf Stellar evolution
Intensity Mass * Angular momentum * Angular momentum *

Continued on next page
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continued from previous page

arXiv ID Sd IDF TF TF-IDF
Temperature * Particles * Massive stars Mass *
Field * Temperature * Temperature * Planet
Optics * Probability * Pressure * Red supergiant
Energy * Units * Luminosity Asteroseismology
Mass * Electron * Stellar evolution Zero-age main

sequence stars
1304.6875 A Massive Pulsar in a Compact Relativistic Binary

Order of magnitude * Energy * Mass * White dwarf
Stellar physics Measurement * White dwarf Neutron star
Solar mass Field * Orbit * Pulsar
Temperature * Potential * Neutron star Orbit *
Statistical error Mass * Pulsar Gravitational wave
Degree of freedom Particles * General relativity General relativity
Field * Temperature * Gravitational wave Companion
Optics * Probability * Star Mass *
Energy * Units * Gravitation * Low-mass

X-ray binary
Mass * Vector * Companion Binary star

1306.2314 Warm Dark Matter as a solution to the small scale crisis:

new constraints from high redshift Lyman-alpha forest data

Astrophysics and
cosmology *

Measurement * Simulations * WDM particles

Numerical simulation Mass * Resolution * Simulations *
Regularization Particles * Cold dark matter Cold dark matter
Intensity Temperature * Temperature * Intergalactic medium
Temperature * Probability * Intergalactic medium Mean transmitted flux
Statistical error Universe * Quasar Ultraviolet

background
Degree of freedom Velocity * WDM particles Quasar
Optics * Objective * Wavenumber * Free streaming
Mass * Formate * Free streaming Redshift bins
Fluctuation * Optics * Matter power

spectrum
Matter power
spectrum

1311.6806 Prevalence of Earth-size planets orbiting Sun-like stars

Stefan-Boltzmann
constant

Energy * Signal to noise ratio Kepler Objects of In-
terest

Solar mass Measurement * Kepler Objects
of Interest

Signal to noise ratio

Intensity Potential * Light curve Light curve
Temperature * Mass * Photometry Habitable zone
Statistical error Temperature * Eclipses Photometry
Energy * Probability * Stellar radii Stellar radii
Mass * Periodate * Extrasolar planet Eclipses
Wavelength * Universe * Habitable zone Eclipsing binary

Continued on next page
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arXiv ID Sd IDF TF TF-IDF
Fluctuation * Objective * Eclipsing binary Extrasolar planet
Uniform distribution Statistics Event * High resolution

échelle spectrometer
1302.5433 Majorana Fermions in Semiconductor Nanowires:

Fundamentals, Modeling, and Experiment

Order of magnitude * Energy * Majorana fermion Majorana fermion
Bohr magneton Measurement * Energy * Nanowire
Experimental data * Field * Nanowire Majorana bound state
Right Hand Side
of the exression *

Potential * Superconductor Superconductor

Critical value Mass * Topology * Semiconductor
Regularization Particles * Field * Josephson effect
Temperature * Temperature * Semiconductor Topology *
Expectation Value Probability * Hamiltonian Superconductivity
Degree of freedom Units * Superconductivity Topological

superconductor
Field * Vector * Measurement * Heterostructure

1303.3572 3-dimensional bosonic topological insulators and its

exotic electromagnetic response

Right Hand Side
of the exression *

Energy * Bosonization Dyon

Regularization Field * Dyon Electromagnetism
Strong interactions Potential * Charge * U(1) *
Degree of freedom Mass * Condensation Witten effect
Vacuum * Particles * Fermion * Bosonization
Field * Units * Statistics Condensation
Electromagnet * Vector * U(1) * Projective

construction
Energy * Periodate * Electromagnetism Time-reversal

symmetry
Mass * Symmetry * Symmetry * Fermion *
Fluctuation * Statistics Time-reversal

symmetry
Mean field

Table A.2 shows how the generality of a concept depends on the criterion used to rank it. It is also
worth to see how the selective removal of concepts reverberates on the rankings. To this aim, we
report in Table A.3 the ten most generic concepts as a function of the filtering intensity p going
from the original set (p = 0%) to the optimal level (popt = 30%) as defined in subsection 2.3.1.
At first glance, we observe how increasing the aggressiveness of the filter produces an immediate
decrease of the number of concepts marked as common by SW. However, this phenomenon has
already been observed. More importantly, we clearly see how the entropic filtering removes also
concepts classifiable as generic that have not been marked as such by SW.
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Table A.3 – List of the ten most generic concepts per paper in Table A.1 as a function of the
entropic filtering intensity p. p = 0 denotes the original set, while popt corresponds to the optimal
level of filtering. Concepts indicated as common by SW are marked by an asterisk.

arXiv ID p = 0 p = 10 p = 20 popt = 30

1306.5856 Raman spectroscopy as a versatile tool for studying the

properties of graphene

Experimental data * Electronic
transition

Electron hole pair Monochromator

Regularization Irradiance Topological insulator Surface plasmon
resonance

Intensity Group velocity * Thermal Expansion Bilayer graphene
Temperature * Reciprocal

lattice
Transistors Graphene layer

Field * Diffraction * Backscattering Superlattice
Optics * Nanostructure Scanning tunneling

microscope
Van Hove singularity

Electromagnet * Hydrostatics Graphite Surface plasmon
Energy * Electron

scattering
Nitriding Exciton

Mass * Circular
polarization *

Dirac point Nanomaterials

Wavelength * Space-time
singularity

Normal mode Intervalley scattering

1301.0842 The false positive rate of Kepler and the occurrence of

planets

Order of magnitude * Planet formation Stellar classification Luminosity class
Numerical
simulation

Near-infrared Early-type star Eclipsing binary

Space telescopes Error function Probability density
function *

Matched filter

Temperature * Companion Companion stars Asteroseismology
Statistical error Spectrographs Star counts High accuracy radial

velocity planetary
search

Field * Angular distance Earth-like planet Hot Jupiter
Optics * Stellar

magnitude
Orbital elements Triple system

Mass * Extinction Eccentricity Neptune
Frequency * Kolmogorov-

Smirnov test
Primary stars Periastron

Fluctuation * Solar neighbor-
hood

Giant planet Planet

Continued on next page
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arXiv ID p = 0 p = 10 p = 20 popt = 30

1308.0321 Realization of the Hofstadter Hamiltonian with

ultracold atoms in optical lattices

Experimental data * Atomic number * Coriolis force * Landau-Zener
transition

Intensity Helicity Topological insulator Chern number
Strong interactions Quantum

Hall Effect
Mott insulator Superlattice

Field * SU(2) * Cyclotron Magnetic trap
Optics * Freezing Edge excitations Spin Hall effect
Energy * Lorentz force * Topological order Spin Quantum

Hall Effect
Mass * Spontaneous

emission
Berry phase Quadrupole magnet

Wavelength * Optical lattice Fractal Band mapping
Frequency * Quadrupole Landau-Zener

transition
Lowest Landau Level

Factorisation Bose-Einstein
condensate

Chern number Hofstadter’s butterfly

1301.1340 Neutrino Mass and Mixing with Discrete Symmetry

Order of magnitude * Neutron * Zenith Flavour physics
Experimental data * Antisymmetrizer Supersymmetry

breaking
Atmospheric neutrino

Weak interaction Mass spectrum Upper atmosphere Infinite group
Vacuum * Supersymmetry Weak neutral current

interaction
Clebsch-Gordan
coefficients

Field * Baryon number Renormalisation
group
equations

Neutrino telescope

Electromagnet * Subgroup CP violation CP violating phase
Energy * Permutation Euler angles Proton decay
Mass * Quark mass Rotation group * Neutrino mixing

angle
Equation of motion * Irreducible

representation
Superpotential Complex conjugate

representation
Momentum * Embedding Reactor neutrino

experiments
Neutralino

1301.0319 Modules for Experiments in Stellar Astrophysics (MESA):

Giant Planets, Oscillations, Rotation, and Massive Stars

Order of magnitude * Planet formation Diffusion equation Complete mixing
Stellar physics Accretion Gravitational energy Kelvin-Helmholtz

timescale
Right Hand Side
of the exression *

Low-mass stars Circumstellar
envelope

Radiative Diffusion

Regularization Massive stars Early-type star Optical bursts
Continued on next page
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continued from previous page

arXiv ID p = 0 p = 10 p = 20 popt = 30

Intensity Diffusion
coefficient

Helium shell flashes Asteroseismology

Temperature * Accretion disk Modified gravity Stellar oscillations
Field * Irradiance Evolved stars Zero-age main

sequence stars
Optics * Sloan Digital Sky

Survey
Neutron star Classical nova

Energy * Viscosity Hertzsprung-Russell
diagram

Large Synoptic
Survey Telescope

Mass * Hydrostatics Supernova Giant branches
1304.6875 A Massive Pulsar in a Compact Relativistic Binary

Order of magnitude * Accretion Radio telescope Lunar Laser Ranging
experiment

Stellar physics Massive stars Moment of inertia * Mass discrepancy
Solar mass Black hole Mass function Matched filter
Temperature * Irradiance Comparison stars Zero-age main

sequence stars
Statistical error Sloan Digital Sky

Survey
Circumstellar
envelope

Grism

Degree of freedom Cooling Probability density
function *

Radio pulsar

Field * Companion Companion stars Laser Interferometer
Gravitational-Wave
Observatory

Optics * Spectrographs Roche Lobe Radiation damping
Energy * Space-time

singularity
Mass accretion rate Barycenter

Mass * Stellar surfaces Peculiar velocity Space velocity
1306.2314 Warm Dark Matter as a solution to the small scale crisis:

new constraints from high redshift Lyman-alpha forest data

Astrophysics and
cosmology *

Simulations * Dark matter particle Nuisance parameter

Numerical simulation Cutoff scale Mass function Satellite galaxy
Regularization Mean

transmitted flux
Matter power
spectrum

Free streaming

Intensity Sloan Digital Sky
Survey

Luminosity function Quasar

Temperature * Cooling A dwarfs Active Galactic
Nuclei

Statistical error Spectrographs Supernova Planck data
Degree of freedom Dark matter Tellurate Halo finding

algorithms
Optics * Wavenumber * Monte Carlo Markov

chain
Baryon acoustic
oscillations

Continued on next page
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arXiv ID p = 0 p = 10 p = 20 popt = 30

Mass * Absorption
feature

Cold dark matter Void

Fluctuation * Flavour Stellar feedback Strong gravitational
lensing

1311.6806 Prevalence of Earth-size planets orbiting Sun-like stars

Stefan-Boltzmann
constant

Simulations * Hertzsprung-Russell
diagram

Eclipsing binary

Solar mass Companion Earth-like planet Asteroseismology
Intensity Stellar surfaces Monte Carlo Markov

chain
Limb darkening

Temperature * Stellar
magnitude

Hydrogen 21 cm line Planet

Statistical error Host star Keck Array High resolution
échelle spectrometer

Energy * Orbit
Eccentricity

Parallax Eclipses

Mass * Droplet * Eclipsing binary Habitable zone
Wavelength * Angular

separation
Asteroseismology Gaussian process

Fluctuation * Teams * Limb darkening Mars
Uniform distribution Galactic

structure
Planet Orange dwarf

1302.5433 Majorana Fermions in Semiconductor Nanowires:

Fundamentals, Modeling, and Experiment

Order of magnitude * Tight-binding
model

Second quantization P-wave

Bohr magneton Quantum dots Feshbach resonance Quantum
decoherence

Experimental data * Neutron * Zero mode Nanowire
Right Hand Side
of the exression *

Rest mass * Topological insulator Chern number

Critical value Nanostructure Proximity effect Local density of
states

Regularization Winding number Networks * Topological
superconductor

Temperature * Helicity Critical current Andreev reflection
Expectation Value Quantum Hall

Effect
Scaling limit Josephson effect

Degree of freedom Coarse graining Pair potential Weak antilocalization
Field * Chiral symmetry Quantum critical

point
Non-Abelian
statistics

Continued on next page
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arXiv ID p = 0 p = 10 p = 20 popt = 30

1303.3572 3-dimensional bosonic topological insulators and its

exotic electromagnetic response

Right Hand Side
of the exression *

Dirac fermion Band insulator Hall conductance

Regularization Quantum Hall
Effect

Topological insulator Electric magnetic

Strong interactions SU(2) * Mott insulator Long-range
entanglement

Degree of freedom Effective field
theory

Charge conservation Topological field
theory

Vacuum * Parton Magnetic monopole Axion
Field * Deconfinement Edge excitations Exciton
Electromagnet * Screening effect Topological order Short-range

entanglement
Energy * Effective

Lagrangian
Berry phase Symmetry protected

topological order
Mass * Directional

derivative
Fractional charge Group cohomology

Fluctuation * Global symmetry Electromagnetism Charge quantization

The information presented in Table A.3 confirms the power of our filtering methodology. In
analogy to what we have done in Table A.2, we check if Sd still outperforms other rankings also
in the filtered networks. For this reason, in Table A.4 we report the rankings of the concepts at
the optimal level of filtering (popt = 30%). A quick glance at its columns indicates that, albeit
being more specific, concepts ranked using Sd are still capable of describing the content of the
document, and such ranking is more dissimilar to the others three.

Table A.4 – Ten most generic concepts among those available at the optimal level of filtering,
popt = 30%, for Sd . Columns are the same as Table A.2, reporting the ranking upon different
quantities. The highlighted columns are those corresponding to Sd and TF-IDF which represent
the best rankings.

arXiv ID Sd (popt = 30) IDF (popt = 30) TF (popt = 30) TF-IDF (popt = 30)

1306.5856 Raman spectroscopy as a versatile tool for studying the

properties of graphene

Monochromator Exciton Surface enhanced
Raman spectroscopy

Surface enhanced
Raman spectroscopy

Surface plasmon
resonance

Superlattice Van Hove singularity Kohn anomaly

Bilayer graphene Graphene layer Grüneisen parameter Grüneisen parameter
Continued on next page
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arXiv ID Sd (popt = 30) IDF (popt = 30) TF (popt = 30) TF-IDF (popt = 30)

Graphene layer Bilayer graphene Kohn anomaly Van Hove singularity
Superlattice Surface plasmon Hexagonal boron

nitride
Hexagonal boron
nitride

Van Hove singularity Monochromator Nanocrystalline Nanocrystalline
Surface plasmon Van Hove

singularity
Graphene layer Graphene layer

Exciton Nanocrystal Exciton Fullerene
Nanomaterials S-process Nanocrystal Nanocrystal
Intervalley scattering Fullerene Fullerene Depolarization ratio

1301.0842 The false positive rate of Kepler and the occurrence of

planets

Luminosity class Planet Planet Planet
Eclipsing binary White dwarf Kepler Objects

of Interest
Kepler Objects
of Interest

Matched filter Eclipses False positive rate False positive rate
Asteroseismology M dwarfs Eclipses Eclipsing binary
High accuracy radial
velocity
planetary search

Periastron Eclipsing binary Eclipses

Hot Jupiter Eclipsing binary Neptune Neptune
Triple system Hot Jupiter Super-earth Super-earth
Neptune Neptune Triple system Triple system
Periastron Asteroseismology White dwarf Logarithmic

distribution
Planet Super-earth Logarithmic

distribution
White dwarf

1308.0321 Realization of the Hofstadter Hamiltonian with

ultracold atoms in optical lattices

Landau-Zener
transition

Superlattice Spin Quantum
Hall Effect

Spin Quantum
Hall Effect

Chern number Chern number Superlattice Band mapping
Superlattice Spin Hall effect Band mapping Superlattice
Magnetic trap Lowest Landau

Level
Landau-Zener
transition

Landau-Zener
transition

Spin Hall effect Spin Quantum
Hall Effect

Spin Hall effect Spin Hall effect

Spin Quantum Hall
Effect

Magnetic trap Magnetic trap Quadrupole magnet

Quadrupole magnet Landau-Zener
transition

Hofstadter’s butterfly Hofstadter’s butterfly

Band mapping Hofstadter’s
butterfly

Chern number Magnetic trap

Lowest Landau Level Quadrupole
magnet

Lowest Landau Level Lowest Landau Level

Continued on next page
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arXiv ID Sd (popt = 30) IDF (popt = 30) TF (popt = 30) TF-IDF (popt = 30)

Hofstadter’s butterfly Band mapping Quadrupole magnet Chern number
1301.1340 Neutrino Mass and Mixing with Discrete Symmetry

Flavour physics Gamma ray burst Mixing patterns Mixing patterns
Atmospheric neutrino Superfield Solar neutrino Tri Bimaximal

mixing
Infinite group Neutralino Reactor Experiment

for Neutrino
Oscillation

Solar neutrino

Clebsch-Gordan
coefficients

Mantle Tri Bimaximal mix-
ing

Reactor Experiment
for Neutrino
Oscillation

Neutrino telescope Two Higgs
Doublet Model

Clebsch-Gordan
coefficients

Trimaximal mixing

CP violating phase Supermultiplet Super-Kamiokande SNO+
Proton decay CP violating

phase
SNO+ Super-Kamiokande

Neutrino mixing
angle

Atmospheric
neutrino

Atmospheric neutrino Clebsch-Gordan
coefficients

Complex conjugate
representation

Proton decay Trimaximal mixing Mikheev-Smirnov-
Wolfenstein effect

Neutralino Massive neutrino Type I seesaw Cabibbo Angle
1301.0319 Modules for Experiments in Stellar Astrophysics (MESA):

Giant Planets, Oscillations, Rotation, and Massive Stars

Complete mixing Planet White dwarf White dwarf
Kelvin-Helmholtz
timescale

White dwarf Planet Planet

Radiative Diffusion Gamma ray burst Zero-age main
sequence stars

Red supergiant

Optical bursts Optical bursts Red supergiant Asteroseismology
Asteroseismology Pre-main-

sequence star
Asteroseismology Zero-age main

sequence stars
Stellar oscillations Asymptotic giant

branch
Pre-main-sequence
star

Pre-main-sequence
star

Zero-age main
sequence stars

Zero-age main
sequence stars

Asymptotic giant
branch

Stellar oscillations

Classical nova Large Synoptic
Survey Tele-
scope

Gamma ray burst Asymptotic giant
branch

Large Synoptic
Survey Telescope

Wolf-Rayet star Stellar oscillations Gamma ray burst

Giant branches Asteroseismology Optical bursts Classical nova
Continued on next page
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arXiv ID Sd (popt = 30) IDF (popt = 30) TF (popt = 30) TF-IDF (popt = 30)

1304.6875 A Massive Pulsar in a Compact Relativistic Binary

Lunar Laser Ranging
experiment

Planet White dwarf White dwarf

Mass discrepancy Pulsar Pulsar Pulsar
Matched filter White dwarf Low-mass X-ray

binary
Low-mass X-ray
binary

Zero-age main
sequence stars

Albedo Binary pulsar Binary pulsar

Grism VLT telescope Orbital angular
momentum of light

Green Bank
Telescope

Radio pulsar Low-mass X-ray
binary

Green Bank
Telescope

Orbital angular
momentum of light

Laser Interferometer
Gravitational-Wave
Observatory

Zero-age main
sequence stars

Zero-age main
sequence stars

Zero-age main
sequence stars

Radiation damping Grism Millisecond pulsar Solar system
barycenter

Barycenter Laser
Interferometer
Gravitational-
Wave
Observatory

Solar system
barycenter

Radio pulsar

Space velocity Millisecond
pulsar

VLT telescope Dispersion measure

1306.2314 Warm Dark Matter as a solution to the small scale crisis:

new constraints from high redshift Lyman-alpha forest data

Nuisance parameter Active Galactic
Nuclei

Quasar WDM particles

Satellite galaxy Quasar WDM particles Ultraviolet
background

Free streaming Gamma ray burst Free streaming Quasar
Quasar Void Ultraviolet

background
Free streaming

Active Galactic
Nuclei

Baryon acoustic
oscillations

Redshift bins Redshift bins

Planck data Reionization Temperature-density
relation

Temperature-density
relation

Halo finding
algorithms

Satellite galaxy Reionization Effective optical
depth

Baryon acoustic
oscillations

Nuisance
parameter

Warm dark matter Warm dark matter

Void Population III Effective optical
depth

Reionization

Continued on next page
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arXiv ID Sd (popt = 30) IDF (popt = 30) TF (popt = 30) TF-IDF (popt = 30)

Strong gravitational
lensing

Free streaming Nuisance parameter WDM particle mass

1311.6806 Prevalence of Earth-size planets orbiting Sun-like stars

Eclipsing binary Planet Kepler Objects
of Interest

Kepler Objects
of Interest

Asteroseismology Eclipses Eclipses Habitable zone
Limb darkening Eclipsing binary Habitable zone Eclipses
Planet Limb darkening Eclipsing binary Eclipsing binary
High resolution
échelle spectrometer

Mars Planet High resolution
échelle spectrometer

Eclipses Asteroseismology Mars Mars
Habitable zone Habitable zone High resolution

échelle spectrometer
Horizon Run
simulation

Gaussian process Gaussian process Limb darkening Planet
Mars Ephemerides False positive rate False positive rate
Orange dwarf High resolution

échelle
spectrometer

Ephemerides Orange dwarf

1302.5433 Majorana Fermions in Semiconductor Nanowires:

Fundamentals, Modeling, and Experiment

P-wave Nanowire Nanowire Nanowire
Quantum
decoherence

Carbon
nanotubes

Majorana bound state Majorana bound state

Nanowire P-wave Josephson effect Josephson effect
Chern number Local density of

states
Topological
superconductor

Topological
superconductor

Local density of
states

Chern number P-wave P-wave

Topological
superconductor

Topological
superconductor

Local density of
states

Local density of
states

Andreev reflection Andreev
reflection

Fermion doubling Fermion doubling

Josephson effect Josephson effect Andreev reflection Moore-Read Pfaffian
wavefunction

Weak antilocalization Weyl fermion Non-Abelian
statistics

Majorana zero mode

Non-Abelian
statistics

Non-Abelian
statistics

Moore-Read Pfaffian
wavefunction

Non-Abelian
statistics

1303.3572 3-dimensional bosonic topological insulators and its

exotic electromagnetic response

Hall conductance Exciton Dyon Dyon
Electric magnetic Axion Witten effect Witten effect
Long-range
entanglement

Hall conductance Projective
construction

Projective
construction

Continued on next page
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arXiv ID Sd (popt = 30) IDF (popt = 30) TF (popt = 30) TF-IDF (popt = 30)

Topological field the-
ory

Topological field
theory

Group cohomology Group cohomology

Axion Electric
magnetic

Topological field
theory

Topological field
theory

Exciton Long-range
entanglement

Exciton Response theory

Short-range
entanglement

Symmetry
protected
topological order

Response theory Charge quantization

Symmetry protected
topological order

Dyon Charge quantization Short-range
entanglement

Group cohomology Short-range
entanglement

Axion Symmetry protected
topological order

Charge quantization Charge
quantization

Hall conductance Long-range
entanglement

A.2.2 Climate change web documents

A.2.2.1 Entropic filtering

The conditional and maximum entropy calculated for the term-frequency density of the keywords
are outlined in subsubsection A.1.2.2. The position of points in the (Sc ,Smax) plane is reported in
Figure A.6.

Figure A.6 – Relation between the empirical entropy, Sc , and the maximum one, Smax for the
climate change corpus. The colors of the points encode the various percentiles of the residual
entropy Sd to which concepts belong to.
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p (%) Ncon Na ρ (%) 〈k〉 kmax T 〈l〉 M

0 152871 18770 10.111 1938.624 11047 0.399 1.904 1
5 8760 18770 9.960 1869.425 10199 0.400 1.902 1
10 8299 18762 7.610 1427.629 8677 0.480 1.936 1
15 7838 18743 5.351 1002.891 6789 0.569 2.003 1
20 7377 18622 2.478 461.369 3863 0.658 2.221 1
25 6916 18308 0.763 139.691 1362 0.308 2.565 1
30 6455 17888 0.512 91.521 1160 0.302 2.771 1
40 5533 16117 0.268 43.179 911 0.330 3.235 14
50 4611 13527 0.157 21.206 713 0.274 3.938 43
60 3689 10493 0.105 10.979 349 0.360 5.242 147
70 2767 7318 0.088 6.415 189 0.481 8.132 443
80 1845 4337 0.074 3.217 46 0.803 10.146 925
90 923 1876 0.102 1.919 29 0.954 1.207 744

Table A.5 – Topological indicators of the similarity networks between climate change webdocs.
The first row (p = 0%) corresponds to the original network, while the others to the networks
obtained using the maximum entropy filter. In the columns we report: the percentage of filtered
concepts p, the number of concepts Ncon , the number of web documents containing at least one
concept (nodes) Na . the link density ρ, the average and maximum degrees, 〈k〉 and kmax , the
transitivity T , the average shortest path length 〈l〉 and the number of connected components M .
The minimum edge weight is equal to wmi n = 0.01.

As in the case of physics concepts, we clearly observe a stratification of the residual entropy Sd

on the plane. Examples of the generic concepts found in the percentile slice p = 10 are “people”,
“climate change”, “water”, “home” and “company”. On the other hand, among concepts in the
percentile slice p = 50 we recognize “palm”, “whale”, “Boulder”, “metal” and “shop”. The
selective removal of concepts based on Sd alters the topological properties of the similarity
network, causing its overall sparsification as reported in Table A.5.

A.2.2.2 Differences between Sd and I DF rankings

Using the same formalism of subsubsection A.2.1.3, the overlap between the sets of concepts
ranked alternatively using Sd or I DF is shown in Figure A.7. The heatmap presents a narrow
region of high values concentrate on the main diagonal. Compared with the physics corpus, the
overlap is much higher, denoting a much stronger relation between the Sd and I DF rankings.

A.3 Numerical implementation with code snippets

In this Section we present a step-by-step description of the algorithms adopted to implement
the entropic filtering of concepts. First, we comment the case of the (discrete) term-frequency,
where the maximum entropy model is a power-law distribution with a cutoff (subsection A.3.1),
and then the case of the term-frequency density, which maximum entropy model is a lognormal
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Figure A.7 – Overlap between sets of concepts ranked according to the residual entropy Sd

and I DF for the climate change corpus. The matrix is normalized by row and white entries
correspond to absence of overlap. The dashed line indicates the main diagonal.

(subsection A.3.2). Our code has been written using the Python programming language [285]
making use of several functions available in the scipy ecosystem [286].

The core of the filtering method is the comparison between two entropies: the actual/experimental
one, Sc , and the expected/theoretical one, Smax, associated the maximum entropy principle.
Given a corpus of documents D, for each concept c appearing inside a document α ∈D, the
ScienceWISE platform provides its boosted term-frequency t fc (α), calculated as in Equation 2.1.

A.3.1 Discrete t f

Given a sequence of M values X = {x1, x2, . . . , xM }, the corresponding probability mass function
is given by:

P (X = x) = P (x) = N (x)
M

,

where N (x) is the number of times the variable X has value x, while M is the total number of
values of X . In our case, X is the t f sequence of a concept c and P (X = x) is the probability that
t fc = x, i.e. the ratio between the number of documents N (x) where a concept appears x times
and the total number of documents where c appears, M . Given such definition, we denote with
〈X 〉, σX and 〈ln(X )〉, respectively: the average, standard deviation and average of the logarithm
of X . The algorithm is made by the following steps:

1. Collection of the t f :

For each concept c, we collect the values of its t f into a list, lt f . After that, we compute
the standard deviation of the set of values in such list, σlt f

. If the standard deviation is
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equal to zero, then it means that either the concept has appeared in only one paper or that
it has appeared always the same number of times within the papers. Hence, we discard
such concepts since their entropy is zero. For the remaining concepts, we construct the
experimental term-frequency distribution of the occurrences of concept c.

2. Extraction of fit parameters:

The analytical form of the expected power-law with a cutoff is:

p(t fc = k) ≡ p th
c (k) =

1

Z

e−λk

k s
. (A.19)

where Z is the normalization constant corresponding to the polylogarithm function Lis(e−λ)

of order s and argument e−λ, defined as:

Z ≡Lis(e−λ) =
∞∑

k=1

e−λk

k s
, (A.20)

The theoretical distribution p th
c (k) depends on two parameters: s and λ. There are two

ways to compute their values:

(a) Exploit the fact that the theoretical maximum entropy distribution must reproduce
the expectation values 〈lt f 〉 and 〈ln

(
lt f

)
〉. Therefore, we can find s and λ by solving

numerically the following system:





〈lt f 〉 =
Lis−1(e−λ)

Lis(e−λ)
,

〈ln
(
lt f

)
〉 =

−∂sLis(e−λ)

Lis(e−λ)
=

∞∑
k=1

e−λk

k s
ln(k)

Lis(e−λ)
.

(A.21)

Since the polylogarithm function appears in the above system, we need to use the
Python package named mpmath [287], which implements functions and methods
with arbitrary precision float arithmetics. Thus, we define the two equations that have
to the be solved simultaneously as:

1 from mpmath import polylog, diff, findroot, fdiv

2 from math import log as mln

3 from math import exp as mexp

4

5 def eqs(n,z):

6 eqA = fdiv(polylog(n-1,z),polylog(n,z)) - avg_tf

7 eqB = fdiv(- diff(lambda v: polylog(v,z), n),polylog(n,z)) - avg_ln_tf

8

9 return (eqA, eqB)

where fdiv performs the division in mpmath, while diff is used to calculate
numerically the derivative of the function polylog with respect to s. Then, we use
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the findroot function of mpmath to numerically solve the system of equations
with:

1 sol=findroot(eqs, ci, solver="secant")

Typically, the initial values of the parameters are ci = (0.5,mexp(-0.1)).
The solution of Equation A.21 is stored in sol, having s and e−λ as its first and
second element. The two parameters, together with the empirical values of 〈lt f 〉 and
〈ln

(
lt f

)
〉, are then passed to the max_ent function defined below to compute the

maximum entropy.

(b) Use the maximum likelihood estimators which employs the full data sequence to
determine the parameters directly in p th

c , without relying only on two constraints to
do so. In this case, following the technique presented in [197,288] we use the Python
powerlaw package to compute the parameters.

3. Computation of Entropies:

Given the parameters s and λ, we can compute the maximum entropy of a concept c

as:

Smax = ln
[
Lis(e−λ)

]
+λ〈t f

exp
c 〉+ s 〈ln

(
t f

exp
c

)
〉 . (A.22)

which, implemented in Python, reads as follows:

1 def max_ent(n,z,avg_tf,avg_ln_tf):

2 return mln( fp.polylog(n,z) ) - mln(z)*avg_tf + n*avg_ln_tf

The empirical entropy, Sc , is computed using Shannon formula (Equation 1.35) from
distribution p

exp
c (k).

A.3.2 Density of t f

The maximum entropy distribution associated to the case of a rescaled term-frequency sequence,
r t f , is a lognormal, defined as:

p(x;µ,σ) =
1

�
2πσx

exp

[
−

(ln x −µ)2

2σ2

]
with x > 0. (A.23)

Given a sequence of M continuous values X = {x1, x2, . . . , xM }, we define the probability to
observe a value between x and x +∆x as P (x, x +∆x). To compute such quantity, we have to
consider the probability density function p(x) and integrate it across the interval, such that:

P (x, x +∆x) =
∫x+∆x

x
p(y)d y . (A.24)

Under this assumption, the algorithm is made by the following steps:
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A.3. Numerical implementation with code snippets

1. Collection of r t f :

For each concept c, we collect its r t f values into a list, lr t f . In analogy with the case
of discrete t f , we discard those concepts having max(r t f )−min(r t f ) ≤ 0.005. Then,
we create a binning {∆k} of the interval [min(r t f ),max(r t f )] and compute the empirical
probability, P , that the r t f takes a value between k and k +∆k , using Equation A.24.

2. Extraction of fit parameters:

Since the form of the lognormal distribution, Equation A.23, the parameters µ and σ

that determine it are directly calculated from the empirical r t f list, lr t f , as µ≡ 〈ln(lr t f )〉
and σ≡σ

(
ln(lr t f )

)
, where the last term denotes of the standard deviation of the logarithm

of the term-frequency density lr t f .

3. Computation of the residual entropy:

After obtaining parameters µ and σ, we compute the residual entropy, Sd , using a discrete
version of the Kullback-Leibler divergence given by:

Sd =
∑

P (k,k +∆k) ln
P (k,k +∆k)

Q(k,k +∆k)
∆k , (A.25)

where the sum is performed over the set of intervals used for the binning {∆k}. It is worth
stressing that such binning is the same for both P and Q. Such operation is achieved by the
following code:

1 def discrete_KL(data_distro, th_distro, bin_widths):

2 return np.sum(data_distro*np.log(np.true_divide(data_distro, th_distro))*

bin_widths)

3

4 num_bins_fixed_kl = 15

5

6 binning = np.logspace(np.log10(min(rescaled_tfs)*0.999),\

7 np.log10(max(rescaled_tfs)*1.001),\

8 num_bins_fixed_kl+1)

9

10 vs_r_tfs, bs_r_tfs = np.histogram(r_tfs, bins = binning, density=True)

11

12 centers_bins = (binning[1:]+binning[:-1])/2.

13

14 bin_ranges = binning[1:] - binning[:-1]

15

16 # Removal of bins with no data for the experimental distro

17 indx_nnz_vs_r_tfs = np.nonzero(vs_r_tfs)

18

19 vs_r_tfs_nnz = vs_r_tfs[indx_nnz_vs_r_tfs]

20

21 centers_bins_nnz = centers_bins[indx_nnz_vs_r_tfs]

22

23 bin_ranges_nnz = bin_ranges[indx_nnz_vs_r_tfs]

24

25 # Only calculated for the middle point of the bins for nonzero integral

26 # values of the data histogram
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27

28 th_pdf = lognorm.pdf( centers_bins_nnz, loc=0, s=sigma, scale=scale )

29

30 dKL = discrete_KL( vs_r_tfs_nnz, th_pdf, bin_ranges_nnz )

data_distro and th_distro contain the values of the probability distribution func-
tions evaluated at the center of the intervals {∆k} for the observed sequence lr t f and the
theoretically expected one.
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