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Abstract

Localizing the source of an epidemic is a crucial task in many contexts, including the
detection of malicious users in social networks and the identification of “patient zeros”
of disease outbreaks. The difficulty of this task lies in the strict limitations on the data
available: In most cases, when an epidemic spreads, only few individuals, who we will
call sensors, provide information about their state. Furthermore, as the spread of an
epidemic usually depends on a large number of variables, accounting for all the possible
spreading patterns that could explain the available data can easily result in prohibitive
computational costs. Therefore, in the field of source localization, there are two central
research directions: The design of practical and reliable algorithms for localizing the source
despite the limited data, and the optimization of data collection, i.e., the identification of
the most informative sensors. In this dissertation we contribute to both these directions.
We consider network epidemics starting from an unknown source. The only information
available is provided by a set of sensor nodes that reveal if and when they become infected.
We study how many sensors are needed to guarantee the identification of the source. A
set of sensors that guarantees the identification of the source is called a double resolving
set (DRS); the minimum size of a DRS is called the double metric dimension (DMD).
Computing the DMD is, in general, hard, hence estimating it with bounds is desirable.
We focus on G(N, p) random networks for which we derive tight bounds for the DMD.
We show that the DMD is a non-monotonic function of the parameter p, hence there are
critical parameter ranges in which source localization is particularly difficult.
Again building on the relationship between source localization and DRSs, we move to
optimizing the choice of a fixed number K of sensors. First, we look at the case of trees
where the uniqueness of paths makes the problem simpler. For this case, we design
polynomial time algorithms for selecting K sensors that optimize certain metrics of
interest. Next, turning to general networks, we show that the optimal sensor set depends
on the distribution of the time it takes for an infected node u to infect a non-infected
neighbor v, which we call the transmission delay from u to v. We consider both a low-
and a high-variance regime for the transmission delays. We design algorithms for sensor
placement in both cases, and we show that they yield an improvement of up to 50% over
state-of-the-art methods.

iii



Acknowledgements

Finally, we propose a framework for source localization where some sensors (called dynamic

sensors) can be added while the epidemic spreads and the localization progresses. We
design an algorithm for joint source localization and dynamic sensor placement; This
algorithm can handle two regimes: offline localization, where we localize the source after
the epidemic spread, and online localization, where we localize the source while the
epidemic is ongoing. We conduct an empirical study of offline and online localization
and show that, by using dynamic sensors, the number of sensors we need to localize the
source is up to 10 times less with respect to a strategy where all sensors are deployed a

priori. We also study the resistance of our methods to high-variance transmission delays
and show that, even in this setting, using dynamic sensors, the source can be localized
with less than 5% of the nodes being sensors.

Key words: Source localization; Network epidemics; Sensor placement.
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Riassunto

Localizzare il punto sorgivo di un’epidemia è un problema cruciale in diversi contesti, per
esempio l’individuazione di soggetti che utilizzano in modo improprio i social networks
oppure l’identificazione dei pazienti-zero nella diffusione di una malattia infettiva. Le
strette limitazioni nella disponibilità di dati rendono questo problema difficile: Nella
maggior parte dei casi, quando un’epidemia si propaga, solo alcuni individui, che chi-
amiamo qui sensori, forniscono informazioni riguardo al loro stato. Inoltre, poiché la
diffusione di un’epidemia dipende spesso da molte variabili, tener conto di tutti i possibili
scenari che potrebbero rendere ragione delle informazioni disponibiili porta spesso a costi
computazionali proibitivi. Quindi, nella ricerca sulla localizzazione del punto sorgivo di
un’epidemia, due direzioni sono centrali: il design di algoritmi applicabili in pratica e
affidabili che possano localizzare la sorgente nonostante i dati a disposizione siano limitati
e l’ottimizzazione della raccolta dei dati, ossia l’identificazione dei sensori più informativi.
In questa tesi diamo un contributo in entrambe queste direzioni.
Dapprima studiamo quanti sensori sono necessari per garantire l’identificazione della
sorgente. Un insieme di sensori con cui è possibile garantire l’identificazione della sorgente
è un double resolving set (DRS); il minimo numero di nodi in un DRS si chiama double

metric dimension (DMD). Calcolare la DMD è, in generale, difficile. Quindi è desiderabile
poterne fare delle stime. Ci interessiamo a reti casuali di tipo G(N, p) per le quali
deduciamo una stima asintoticamente precisa per la DMD. In questo modo mostriamo
che la DMD è una funzione non monotòna del parametro p e che ci sono quindi dei valori
critici di p per i quali localizzare la sorgente è sostanzialmente più difficile.
Utilizzando ancora il legame tra la localizzazione della sorgente e i DRS, passiamo poi a
ottimizzare la scelta di un numero prefissato K di sensori. Per prima cosa, studiamo il
caso particolare degli alberi in cui l’unicità del cammino tra qualsiasi coppia di nodi rende
il problema più semplice. In questo caso, proponiamo algoritmi che, in tempo polinomiale,
selezionano K sensori che ottimizzano alcune misure rilevanti. Successivamente, passando
a reti generali, mostriamo che l’insieme ottimale di sensori dipende dalla distribuzione dei
tempi di trasmissione da nodo infetto a nodo sano. Consideriamo sia il caso di alta che
quello di bassa variabilità dei tempi di trasmissione, proponiamo algoritmi per la scelta
di sensori in entrambi i casi e otteniamo un miglioramento fino al 50% rispetto ai metodi
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correntemente in uso.
Infine, definiamo un modello più generale per la localizzazione della sorgente, in cui
alcuni sensori, detti dinamici, possono essere aggiunti mentre l’epidemia si diffonde e la
localizzazione della sorgente si precisa. Proponiamo un algoritmo con cui è possibile, allo
stesso tempo, localizzare la sorgente e scegliere dei sensori dinamici. Questo algoritmo
funziona sia quando si vuole localizzare la sorgente dopo la diffusione di un’epidemia (in
modo offline) sia quando si vuole localizzare la sorgente di un’epidemia che è in corso (in
modo online). Con un accurato studio sperimentale (del modo offline e del modo online)
mostriamo che, usando sensori dinamici, il numero di sensori necessari per localizzare
la sorgente è fino a 10 volte meno rispetto a metodi in cui tutti i sensori sono scelti a
priori. Inoltre, per quanto riguarda la resistenza del nostro approccio all’alta variabilità
dei tempi di trasmissione, mostriamo che, anche in questa condizione, usando sensori
dinamici è possibile localizzare la sorgente scegliendo meno del 5% dei nodi come sensori.

Parole chiave: Localizzazione della sorgente; Epidemie su reti; Scelta di sensori.
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1 Introduction

The phenomena that can be represented as a set of entities (or individuals) interacting and
communicating between them are countless. Examples span from a set of individuals, who
are connected if they can exchange information, to computers that are interconnected in
a computer network; and from train networks, where two cities are connected if they can
be reached in a single-hop journey, to hydraulic systems, where two points are connected
if water can flaw directly between them.

In a mathematical language, each of these phenomena can be modeled as a network : a
set of objects (which we call nodes) together with a set of connections between pairs of
them (which we call edges). Formally, if G is a network, we write G = G(V,E) where V is
the set of nodes in G and E is its set of edges. An edge is a pair uv such that u, v ∈ V ,
and uv ∈ E means that u is connected to v in G.

In many applications, having full knowledge of the network of interest is not easy. The
difficulties start with the definition of the relevant network for the problem to study and
also arise from privacy concerns and, importantly, from to the cost of gathering data,
which in turn results in open-access issues because having access to the network can
be a competitive advantage. The problem of defining, reconstructing or approximating
a network is actively studied from many perspectives: these span from using digital
mobility traces to infer human contacts [Salathé et al., 2012], to reconstructing an
online social network based on small subnetworks [Bollobás, 1990, Mossel and Ross,
2015, Yartseva et al., 2016] or based on observed sequences of events within the node
population [Gomez Rodriguez et al., 2010, 2011] .

If a network, or an approximation of it, is given, it can be used to study diffusion
phenomena, which we call epidemics. During an epidemic, an information or infection is
passed through the network from node to node. When we study the spread of an epidemic
I, we say that a node becomes infected when it is reached by I. Here, I can represent
an infectious disease spreading in a population, e.g., a rumor being passed in a social
network, an environment contamination or a computer worm. We call the time required

1



Chapter 1. Introduction

by a node u to pass I to a neighbor z the transmission delay between u and z.

Many problems regarding network epidemics have been extensively studied. Some
examples concern the extinction time of an epidemic and the conditions under which an
epidemic persists in a network [Berger et al., 2005, Nowzari et al., 2016]; the strategies
through which an epidemic can be mitigated or extinguished, for example, through vaccine
allocation [Preciado et al., 2013, Drakopoulos et al., 2014, Scaman et al., 2016] or network
rearrangement [Tong et al., 2012]; the identification of the most influential nodes, i.e., the
ones that maximize the epidemic spread [Richardson and Domingos, 2002, Kempe et al.,
2003, Leskovec et al., 2007a] (the latter problem is commonly called viral marketing).

Another difficult and intriguing task, which we address in this dissertation, deals with
localizing the source of an epidemic, i.e., the first node that became infected, hence it
is the origin of the epidemic. Detecting the origin of a worm in a computer network,
identifying a false-rumor instigator in a social network or finding the patient-zero of a
virulent disease can be crucial for both the containment of an ongoing epidemic and
for the prevention of future outbreaks. Focusing on a case in which the epidemic is
originated by a single source, we denote the source by v⋆ ∈ V . In source localization,
we want to produce an estimator v̂ for v⋆ such that v̂ is sufficiently close to v⋆ or, in
a slightly different formulation, we want to find a small set B of nodes such that, with
high-probability, v⋆ ∈ B.

It is clear that if it we could completely observe an epidemic propagation, identifying its
source would be very easy. Unfortunately, due to the costs of information collection and
to overhead constraints, the data available for source localization is often very sparse:
The number of nodes in the network is often prohibitively large and some of them can
be unable or unwilling to provide information about their state. When studying an
infectious disease, for example, performing the necessary medical exams and data analysis
on many suspected households or communities can be very expensive, whereas the efficient
allocation of resources can lead to enormous savings [Somda et al., 2009].

We refer to the network nodes whose state is observed as sensors. We are interested, in
particular, in how these sensors must be chosen in order to optimize source localization.
In other words, calling O = O(U) the set of observations obtained using the sensor set
U ⊆ V and considering a metric M for the performance of source localization, we are
interested in the choice of U that optimizes M(O, v⋆). An example of a metric M is the

probability of success in source localization, i.e., Ps(O, v⋆)
def
= P(v̂ = v⋆|O).

The difficulties faced in finding optimal sensor sets for source localization are two-fold.
First, computing the likelihood of a node being the source, conditioned on the available
observations, can be computationally prohibitive [Shah and Zaman, 2011, Pinto et al.,
2012]; evaluating the probability of correct localization given a set of sensors is, in
general, even harder. Second, the optimal selection of sensors is NP-hard, even when the

2



1.1. Outline and Contributions

 

v⋆

(a) Epidemic propagation

 

(b) Available observations

Figure 1.1 – (a): During an epidemic, an information or infection is passed through the
network from node to node starting from an unknown source v⋆; (b): The information
that can be used to localize the source is usually very limited, e.g., only the states and
infection times of a few sensors (marked with a red line) are known, and nothing is known
about the other nodes.

transmission delays are deterministic (see Section 1.2.4).

In this dissertation we present innovative and efficient methods for sensor placement for
source localization; our methods benefit from two essential features. First, in contrast
to many common approaches, these methods are specifically designed for the source
localization problem, i.e., the choice of the sensors is directly related to the way in which
the collected information is used to localize the source. Second, they are applicable in a
wide range of settings: For example, we study how to fit different levels of variance in the
transmission delays or how to choose the sensors when they can be adaptively selected
while the epidemic spreads and the localization process progresses.

1.1 Outline and Contributions

In Section 1.2 we describe the general setting we assume and we explain the relationship of
source localization and of sensor placement with the double-resolving-set (DRS) problem.
In this context, we also study the case of trees by presenting some first results and
examples that will be useful in the following.

In Section 1.3, we survey the relevant related work. In the last few years an impressive
amount of contributions to source localization have been published. We describe the main
lines of approach, pointing out the different assumptions and the results achieved. We
also position source localization in a wider spectrum of research that investigates similar
research questions.

3



Chapter 1. Introduction

The remainder of the dissertation is organized in four chapters that present our four main
contributions.

In Chapter 2 we look at the minimum number of sensors with which, on a given network,
the identification of the source can, under certain hypothesis, be guaranteed. This
minimum number is the minimum size of a DRS of the network, which we call the double
metric dimension (DMD) of the network. We derive asymptotic bounds for the DMD
of G(N, p) random networks when the parameter p = p(N) varies in a wide range. Our
bound undergoes a non-monotonic behavior as a function of p. We experimentally show
that, indeed, the DMD of G(N, p) random networks is non-monotonic in p, meaning
that we can identify parameter regimes where localizing the source is substantially more
difficult than in others.

Chapter 3 and Chapter 4 are concerned with optimizing the choice of sensors for when
all available sensors must be chosen a priori, i.e., independently of any epidemic instance.

In Chapter 3, we study the special case of trees where the uniqueness of paths makes the
problem of sensor placement simpler. For this case, we give polynomial-time dynamic-
programming algorithms to select the K sensors that optimize the probability of success
in source localization and the expected distance between the real source and the estimated
source. We also show how our algorithms are amenable for extensions to interesting
variants of the problem, such as for when sensors can have different costs or for when a
non-uniform prior on the identity of the source is available.

In Chapter 4, turning to general networks, we show that the optimal sensor set depends
not only on the topology of the network, but also on the variance of the node-to-node
transmission delays. We consider both a low-variance regime and a high-variance regime
for the transmission delays and, in both cases, we propose algorithms for sensor placement.
We prove that in the low-variance regime, it suffices to consider only the network-topology
and to minimize the amount of nodes that appear as equivalent from the point of view
of the sensors. However, the high-variance regime requires a different approach in order
to guarantee that the observed infection times are sufficiently informative about the
location of the source and do not get masked by the noise in the transmission delays.
This is accomplished by additionally ensuring that the sensors are not placed too far
apart from each other. By simulating epidemics in three real-world networks, we show
that, compared to state-of-the-art strategies for sensor placement, our methods have a
better performance in terms of source localization accuracy for both the low- and the
high-variance regimes.

In Chapter 5, we propose a general framework for source localization that incorporates
two possible scenarios: In the first, as in Chapter 3 and Chapter 4, all sensors are chosen
a priori independently of any epidemic process; in this case, we say that all sensors are
static. In the second scenario, more sensors (called dynamic sensors) can be added as
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1.2. Model and First Observations

the epidemic spreads and the localization process progresses. We propose an algorithm
for source localization and dynamic sensor placement; this algorithm can handle both
the regime where we want to localize the source after the epidemic spread through the
entire network (offline localization) and the one where we want to localize the source
while the epidemic is still ongoing (online localization), in which case the information at
our disposal is not only sparse but also incomplete. By experimenting with synthetic and
real-world networks, we compare the performance of offline and online source localization
by using both static sensors and dynamic sensors. We highlight how the trade-off between
cost (in number of sensors) and precision (in source localization) emerges across these
four variants. Moreover we study the impact of several model parameters such as the
relative number of static and dynamic sensors and the time delay between two successive
deployments of dynamic sensors. Our analysis shows that, by using dynamic sensors,
we dramatically outperform a static strategy with the same budget and that, even with
high-variance transmission delays, the source can be localized with extremely few sensors,
especially in real-world networks. Interestingly, we observe a switch in the optimal
placement of the static sensors when the variance of the transmission delays increases,
which is consistent with the results of Chapter 4.

1.2 Model and First Observations

In this section, we introduce the main notation, definitions and preliminary results that
are used throughout this manuscript. In Section 1.2.1, we describe the general network-
diffusion model we adopt. In Section 1.2.2, we introduce the notion of a double resolving
set in relation to source localization. In Section 1.2.3, we define and compare several
metrics of interest for source localization. Finally, in Section 1.2.4 we present some first
results for tree networks and prove a hardness result for sensor placement on general
networks, which motivates our search for scalable approaches to sensor placement on
general networks.

1.2.1 Model

Network

We model a set of contacts with a weighted network G(V,E) with |V | = N . For every
edge uv ∈ E, the weight wuv ∈ R+ is the average time it takes for an infection to spread
from u to v. G is undirected, i.e., wuv = wvu for every uv ∈ E. If u, v ∈ V are two
distinct nodes, a path connecting u and v is a sequence of k edges (k ∈ N+) of the form
u1,1u1,2, .., uk,1uk,2 where u1,1 = u, uk,2 = v and, for every i ∈ {1, .., k − 1}, ui,2 = ui+1,1.
The distance d(u, v) between two nodes u and v is the minimal sum of edge weights
along a path connecting u and v. When the path connecting two nodes u, v is unique,
we denote it with P(u, v); i.e., P(u, v) is a sequence of nodes {v1, .., vm+1} where v1 = u,

5



Chapter 1. Introduction

Notation

N (resp., N+) positive integers including (resp., excluding) 0

G(E, V ) contact network
N = |V | network size
wuv weight of edge uv (∈ R+)
Xuv random transmission delay on edge uv

d(x, y) weighted distance between x and y (∈ R+)
P(x, y) path (sequence of nodes) from x to y (when unique)
v⋆ unknown source
t⋆ unknown starting time of the epidemic
tu infection time of node u

T (v, u) tu − t⋆, random infection delay of node u when v⋆ = v

U set of sensors
K budget for sensors
O set of observations

v2 = v and m is the number of edges in P(u, v).

Epidemic

An epidemic starts from an unknown single source at an unknown time t⋆. An extension
of our results to the case of multiple sources could use the work by Zhang et al. [2015] on
a related problem, but it is not addressed in this thesis.1

The identity of the source is an unobserved random variable v⋆ that takes values in the
node set V . We denote the prior distribution on the identity of the source with π. Unless
otherwise specified, we assume that we have no prior knowledge on the identity of the
source, hence we take π to be the uniform distribution over the nodes in V .

We use the SI epidemic model adopted, among others, by Pinto et al. [2012] and Luo
and Tay [2012]: At any time, every node is in one of two possible states, S (Susceptible)
or I (Infected). Nonetheless, as our methods for source localization only use the time at
which the sensors are first infected (no assumption on recovery or re-infection dynamics
is made), they can be applied to any epidemic model, including SIS or SIR (provided
that nodes do not recover before infecting their neighbors).

For every edge uv ∈ E, let Xuv be the time it takes for an infection to spread from u to v.
Xuv is called the transmission delay on edge uv and is a positive random variable with

1Zhang et al. [2015] extended the definition of double resolving sets to set-resolving sets (SRS): the
idea is that, based on the distances to the nodes in a SRS, it is possible to distinguish amongst different
possible groups of coexisting sources.
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Figure 1.2 – (a): An epidemic propagates in a network starting from a single unknown
source; (b): Only the sensors provide information about the epidemic process by revealing
their infection time.

mean E[Xuv] = wuv. Denote by tu the infection time of a node u, i.e., the first time u is
reached by the epidemic. An infected node u infects any non-infected neighbor v at time
tv = tu +Xuv. We assume that the variables {Xuv}uv∈E are mutually independent. This
model implies that all nodes eventually become infected. When v⋆ = v, we denote by
T (v, u) the total time it takes for the infection to spread from v to a node u ∈ V .

In Chapters 3-5, we will consider different distributions for the variables {Xuv}uv∈E that
will be specified in the relevant chapters. In particular we will often distinguish the
deterministic case where Xuv = E[Xuv] = wuv for every uv ∈ E (Var(Xuv) = 0) from a
noisy (or non-deterministic case) where Var(Xuv) > 0.

Sensors

We localize the source by using the information provided by a subset of nodes that we
call sensors.

Definition 1.1 (Sensor). A sensor is a node that can reveal its infection state (S or I)

and, if it is infected, its infection time.

Note that if v⋆ = v and v is a sensor, v provides information in the same way as any
other sensor i.e., it only reveals, if infected, its infection time (which would be equal to
t⋆), but it does not reveal itself to be the source.
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Chapter 1. Introduction

1.2.2 Localization Based on Relative Distances

If an epidemic spreads deterministically starting from v⋆ = v, then T (v, u) = tu − t⋆ =

d(v, u) for every u ∈ V . If the spread is non-deterministic, the same relation holds in
average, i.e., E[T (v, u)] = d(v, u), when the path connecting v and u is unique.2 Hence if
t⋆ is known, T (v, u) can be interpreted as a proxy for d(v⋆, u) and the infection time tu
can be directly used to localize the source.

However, as we assume that t⋆ is unknown, we cannot use the infection time of a single
sensor to infer the identity of the source. Instead, we use the differences between the
infection times of pairs of sensors. If the sensor set is U , we use the differences {tu−tz}u,z∈U .
Borrowing the terminology used for the localization of transmitting devices, our work is a
TDOA (time difference of arrivals) approach to source localization (in contrast with a
TOA approach where the time of arrivals - and the starting time t⋆ - are used)[Li et al.,
2016].

Consider now the case of a deterministic epidemic and two possible sources v1 and v2.
We can distinguish which of the nodes is the source using the set {tu − tv}u,v∈U if and
only if there exist u1, u2 ∈ U such that

d(u1, v1)− d(u1, v2) �= d(u2, v1)− d(u2, v2).

Definition 1.2 (Distinguished nodes). Let U ⊆ V with |U| ≥ 2. A node v1 is distinguished

from a node v2 by U if and only if there exist u1, u2 ∈ U such that

d(u1, v1)− d(u1, v2) �= d(u2, v1)− d(u2, v2). (1.1)

In this case, we say that v1, v2 are distinguished by the pair u1, u2.

Definition 1.3 (Equivalent nodes). Let U ⊆ V with |U| ≥ 2. A node v1 is said to be

equivalent to a node v2 with respect to U , (which we write v1 ∼ v2) if and only if, for

every u1, u2 ∈ U

d(u1, v1)− d(u1, v2) = d(u2, v1)− d(u2, v2). (1.2)

The relation ∼ of Definition 1.3 is reflexive, symmetric, and transitive, hence it defines
an equivalence relation. Therefore, a set of sensors U partitions V in equivalence classes

(an example is given in Figure 1.3). We denote by [v]U the class of v, i.e., the set of all
nodes that are equivalent to v. When the identity of the sensor set U is clear from the
context, we simply write [v].

2If the path connecting v and u is not unique, we have the bound E[T (v, u)] ≤ d(v, u) and this bound
becomes looser when there are many alternative paths connecting u and v whose length is similar to
d(u, v).
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du1

du1

du1 du1

du1

u1 u2

= [1]

= [3]

= [−1]

= [−2]

= [−3]

Figure 1.3 – A network with two sensors u1 and u2 and all edge weights equal to 1. Groups
of nodes which are equivalent with respect to the red sensors are grouped by dotted lines
and represented by different node shapes. In this example there are 5 equivalence classes.

Double Resolving Sets

A set Z such that for every v1, v2 ∈ V , v1 and v2 are distinguished by Z is called a double

resolving set (DRS) of G. More formally, we have the following definitions.

Definition 1.4 (Double resolving set). Let U ⊆ V , |U| ≥ 2. U is a double resolving set

for G if and only if, for every v1, v2 ∈ V there exist u1, u2 in U such that

d(u1, v1)− d(u1, v2) �= d(u2, v1)− d(u2, v2).

Definition 1.5 (Double metric dimension). The double metric dimension (DMD) of a

network G is the minimum size of a double resolving set of G.

The DMD of a network is, by definition, larger or equal than 2. In relation to source
localization, the DMD of a network is equal to the minimum number of sensors needed
to identify the source of a deterministic epidemic among any set of possible sources.

The problem of finding the minimum-size DRS (hence the DMD) of a network is known
as the minimum-double-resolving-set problem (MDRS) [Cáceres et al., 2007]. Although
solving MDRS is, in general, NP-hard [Kratica et al., 2009], it is easy to compute the
DMD and to find a minimum size DRS for some particular network topologies such as
cycles, wheels and k-augmented trees [Chen et al., 2014]. The next proposition, proven
differently by Chen et al. [2014], gives a result for trees that we will use in the next
chapters.

Proposition 1.6 (DMD of trees. Lemma 4.1 in [Chen et al., 2014]). Let T = T (V,E)

be a tree and let L the set of all the leaves of T . U = L is the only minimum size DRS of

T and DMD(T ) = |L|.
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Chapter 1. Introduction

Proof. First, we prove that, if U = L, all equivalence classes are singletons. Let v, z ∈ V ,
v �= z and take ℓ1, ℓ2 ∈ L such that v, z ∈ P(ℓ1, ℓ2). Without loss of generality, we can
assume that d(v, ℓ1) < d(z, ℓ1) and d(z, ℓ2) < d(v, ℓ2), i.e., going from ℓ1 to ℓ2, we first
pass through v and then through z. Hence d(z, ℓ1)− d(z, ℓ2) > d(v, ℓ1)− d(v, ℓ2) and we
can conclude that [v] �= [z].

Second, we prove that if L �⊆ U , U is not a DRS of T . Let ℓ ∈ L\U and let v be the
only neighbor of ℓ. For every u ∈ U , d(v, u) = d(ℓ, u)− 1. Hence, for every u1, u2 ∈ U ,
d(v, u2) − d(v, u1) = d(ℓ, u2) − d(ℓ, u1), i.e., [v] = [ℓ], and we conclude that U is not a
DRS of T .

When proving that if L �⊆ U , U is not a DRS, we did not use that T is a tree. Hence we
have the following corollary.

Corollary 1.7. Let G = G(V,E) be a network and let L be the set of all the leaves of G.

If U is a DRS of G, then L ⊆ U .

Although a few results concerning the minimum-size DRS of specific network topologies
are available [Chen et al., 2014], finding a minimum-size DRS for general networks is
NP-hard. A (1 + o(1)) log(N)-approximation algorithm was proposed by Chen et al.
[2014] (see also Section 4.3.3).

Note that the DMD of a network can be as large as N − 1 (e.g., for a complete network),
and choosing the nodes forming a DRS as sensors can be, in many practical cases,
prohibitively expensive (see Figure 1.4). Furthermore, this would guarantee that it is
possible to localize the source only for deterministic epidemics. For this reason, studying
how to allocate a limited number of sensors in order to guarantee a good performance of
source localization is a crucial aspect of source localization.

Distance Vectors & Observation Vectors

We now define the distance vector of a candidate source.

Definition 1.8 (Distance vector). Let U ⊆ V with |U| = K ≥ 2 be a set of sensors and

let u1 ∈ U . For each candidate source v ∈ V the distance vector of v (with respect to u1)

is dv,u1 ∈ RK−1 with entries d(v, ui)− d(v, u1) for 2 ≤ i ≤ K.

The following lemma, shows that the equality between distance vectors of different
candidate sources does not depend on the choice of the reference sensor u1 of Definition 1.8.

Lemma 1.9 (Independence from the reference sensor. Lemma 3.1 in [Chen et al., 2014]).
Let U ⊆ V with |U| = K ≥ 2, u1 ∈ U and let v1, v2 ∈ V . Then, [v1]U = [v2]U if and only

if dv1,u1 = dv2,u1 , for any choice of the reference sensor u1.
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Figure 1.4 – Approximate DMD as a fraction of the network size for the networks presented
in Section 5.7.2. The approximation is computed with the (1+o(1)) log(N)-approximation
algorithm of Chen et al. [2014].

Proof. Let u1 ∈ U be the reference sensor. (⇒) Assume [v1]U = [v2]U . Then, by definition,
d(v1, u)− d(v1, u1) = d(v2, u)− d(v2, u1) for all u ∈ U , and hence dv1,u1 = dv2,u1 .

(⇐) Assume conversely that dv1,u1 = dv2,u1 . Then, for every ui, uj ∈ U\{u1}, both
equalities d(v1, ui)−d(v2, ui) = d(v1, u1)−d(v2, u1) and d(v1, uj)−d(v2, uj) = d(v1, u1)−
d(v2, u1) hold. Therefore, by transitivity, d(v1, uj)− d(v2, uj) = d(v1, ui)− d(v2, ui) and
the two nodes are equivalent, i.e., [v1]U = [v2]U .

Hence we base the localization of the source on a vector of observations where, again, the
choice of a reference sensor can be made arbitrarily.

Definition 1.10 (Observation vector). Let U ⊆ V , |U| = K ≥ 2 be a set of sensors,

u1 ∈ U a reference sensor and {tu}u∈U the infection times of the sensors for a given

epidemic. Then we call the observation vector of the epidemic the vector tu1 � [tu2 −
tu1 , .., tuK − tu1 ] ⊆ RK−1.

Note that, if an epidemic spreads deterministically starting from v⋆ = v, tu1 = dv,u1 .

1.2.3 Metrics for Source Localization

In this section, we define some possible metrics of interest for source localization, and we
show that optimizing these metrics can require different sets of sensors.
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For ease of exposition, we restrict ourselves to deterministic epidemics. In the deterministic
regime, the partition into equivalence classes determines if the source can be localized:
If [v⋆] is a singleton, it is always possible to localize the source exactly based on the
observed infection time; if it is not a singleton, we can only correctly identify the class to
which v⋆ belongs and we produce an estimated source v̂ ∈ [v⋆] sampling from π

∣∣∣
[v⋆]

. In

the following we will assume that no prior is available and we will take π to be uniform.

We will express the following metrics for the simple algorithm we just described. However,
they can be used to evaluate the performance of any algorithm that outputs a single
estimate v̂.

The success probability Ps is defined as P(v̂ = v⋆). If q is the number of equivalence
classes identified by a sensor set U , for the algorithm described above we have

Ps =
∑

[v]⊆V

P(v̂ = v⋆|v⋆ ∈ [v])P(v⋆ ∈ [v])

=
∑

[v]⊆V

1

|[v]| ·
|[v]|
n

=
1

n

∑

[v]⊆V

1 =
q

n
. (1.3)

Note that Ps = 1 if and only if all equivalence classes are singletons, and that Ps depends
exclusively on the number of equivalence classes (and not, for example, on their size).

A second metric of interest is the expected error distance De
def
= E[d(v̂, v⋆)]. Again, for

the algorithm above, De can be computed from the partition in equivalence classes:

De = E[d(v⋆, v̂)]

=
∑

s∈V

P(v⋆ = s)
∑

v∈[s]

P(ŝ = v|v⋆ = s)d(s, v)

=
1

n

∑

s∈V

1

|[s]|
∑

v∈[s]

d(s, v), (1.4)

De = 0 if and only if all equivalence classes are singletons. Moreover, Equation 1.4 shows
that De directly depends on the average distance between the nodes in a same equivalence
class. In our experimental evaluations, we also sometimes consider an expression for the
hop-distance (instead of the weighted distance as in (1.4)).

Maximizing Ps (respectively, minimizing De) we minimize the probability of v̂ �= v⋆ (resp.,
the average distance between v⋆ and v̂). Other natural metrics for source localization
are the worst-case versions of these metrics, i.e., the minimum probability of success

P̂s
def
= min[s]⊆V Ps|v⋆∈[s] and the maximum distance between v̂ and v⋆, denoted by D̂e.
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More formally, for the algorithm above

P̂s = min
[v]⊆V

1

|[v]|

and D̂e as

D̂e = max
[s]⊆V

max
t,v∈[s]

d(t, v).

These last two metrics are relevant, for example, in adversarial settings (e.g., in the case
of bio-warfare) where, if the sensors are known, the adversary would want to select the
worst location for the source.

A last natural metric, which interpolates between average and worst-case metrics, is the
expected maximum distance between the true and the estimated source, which we define
as De

def
= Ev⋆ [max(d(v⋆, v̂))]. For the algorithm above we have

De = Ev⋆ [max d(v⋆, v̂)] =
∑

s∈V

1

n

(
max
t∈[s]

d(s, t)

)
.

1.2.4 Sensor Placement

We define the sensor placement problem as follows: Given a budget K ∈ N, i.e., a number
of sensors K < N , and a metric M = M(U) that we want to optimize, find a set
Uopt ⊆ V, |Uopt| ≤ K that optimizes M.

Example: Sensor Placement on Trees

We now look at sensor placement in the particular case of trees. First, we prove that, if G
is a tree, for any of the metrics of Section 1.2.3 the minimum-size optimal sets of sensors
are contained in the leaf set. Then we demonstrate with an example that optimizing the
five metrics presented in Section 1.2.3 can require different set of sensors [Celis et al.,
2015].

Lemma 1.11. Let T = T (V,E) be a tree and U ⊆ V a set of sensors. Then the number

of equivalence classes q can be computed as

q =
∣∣∣
{
v : v ∈ P(u1, u2) for any u1, u2 ∈ U

}∣∣∣.

Proof. Let us define S � {v : v ∈ P(u1, u2) for any u1, u2 ∈ U}.

First, we prove that for every v, z ∈ S with v �= z we have [v] �= [z]. Take v, z ∈ S with
v �= z. There exist u1, u2, u3, u4 ∈ U , with possibly u1 (or u2) equal to u3 (or u4) such
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that v ∈ P(u1, u2) and z ∈ P(u3, u4). Since T is a tree, there exist i, j ∈ {1, 2, 3, 4} such
that v, z ∈ P(ui, uj). Then, the statement can be proven similarly to the first part of the
proof of Proposition 1.6.

Second, if z /∈ S, we prove that there exists v ∈ S such that [z] = [v]. If z /∈ S, there
exists a neighbor v of z such that U is contained in the subtree Tv rooted at v and not
containing z. Call w the last common node to all paths {P(z, u)}u∈U . We have that
w ∈ S. With a technique similar to the second part of the proof of Proposition 1.6, we
can prove that [z] = [w].

Proposition 1.12. Let T = T (V,E) be a tree and let L be the set of all leaves of T . Let K

be the budget for sensors. If U is a set of minimum-size such that U ∈ argmax|U|≤KPs(U),
then U ⊆ L.

Proof. Let U be a minimum-size sensor set that maximizes Ps among all possible sets
with cardinality smaller than K. We know from (1.3) that Ps is maximized if and only if
the number of equivalence classes is maximized.

We assume by contradiction that there exists u ∈ U\L. We have two cases:

(a) There exist u1, u2 ∈ U\{u} such that u ∈ P(u1, u2). In this case, we can apply
Lemma 1.11 and say that if we remove u from U the value of Ps does not change.
Hence, we have a contradiction with U being an optimal set of minimum size;

(b) There do not exist u1, u2 ∈ U\{u} such that u ∈ P(u1, u2). In this case, there
exists a subtree Tu rooted at u in which no leaf is a sensor. Let ℓ ∈ Tu ∩ L. If we
substitute u with ℓ in U , the number of nodes lying on the shortest path between
two any sensor increases. Hence, applying again Lemma 1.11, we conclude that we
found a set with the same cardinality of U but a highest value of Ps, which gives a
contradiction with the optimality of U .

For the other metrics in Section 1.2.3 analogous results can be derived.

Consider now the tree in Figure 1.5, together with the four sets of K = 4 sensors
represented in the four subfigures. Using the result of Proposition 1.12, only sensor
sets contained in the leaf set can be optimal. We considered four of the possible sensor
placements contained in the leaf set and having cardinality K = 4. These include, in
particular, the placements that optimize Ps, P̂s, De, D̂e and De. We see from the table
in Figure 1.5 that the different metrics are optimized by different sensor sets.
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U1 U2

U3 U4

Ps P̂s De D̂e De

U1 0.71 0.14 0.57 6 0.26
U2 0.76 0.12 0.50 4 0.16
U3 0.76 0.14 0.45 5 0.18
U4 0.66 0.11 0.85 8 0.34

Figure 1.5 – A tree with different sets of K = 4 sensors. The table displays the values
of different metrics for the sensor sets. The best values for each metric are in bold type.
The remaining possible choices of K = 4 sensors within the leaf set are omitted either
because they are equivalent to one of the placements considered or because they do not
optimize any of the metrics examined.

Hardness of Sensor Placement

Solving sensor placement for trees is significantly easier than in the general case: When
the path connecting two any nodes is unique, the number of equivalence classes is tightly
linked to the number of nodes lying between two any sensors (see Proposition 1.11). In
Chapter 3, we will exploit this fact to derive polynomial-time algorithms in order to
optimize sensor placement on trees, with respect to both Ps and De.

For a general network, finding a sensor set U with |U| ≤ K that optimizes any of the
metrics defined in Section 1.2.3 is NP-hard. This can be shown via a reduction to the
MDRS problem defined in Section 1.2.2. We prove this result for Ps [Spinelli et al., 2017a],
for the other metrics in Section 1.2.3 it can be derived analogously.

Theorem 1.13. Given a network G = (V,E) and a budget K, finding an sensor set U
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which maximizes Ps is NP-hard.

Proof. We use a reduction from the MDRS, i.e., given a polynomial-time algorithm for
solving sensor placement under a budget constraint, we will prove that we can solve the
MDRS problem in polynomial time.

Assume that we have a polynomial-time algorithm A that takes as input a network
G = (V,E) and a budget K, and outputs a set U ⊆ V of size K such that Ps is
maximized. Recall from Section 1.2.2 that given a network G and a set U , the probability
Ps can be calculated in time O(N) where N = |V | (it is enough to compute the N

distances vector with respect to U and any reference sensor u1 ∈ U). Hence, we will
construct an algorithm for the MDRS problem.

Algorithm 1 Solves MDRS given algorithm A that maximizes Ps with budget K ∈ N+.

Require: Network G = (V,E)

for K = 1, . . . , |V | do

U � A(G,K)

P := Ps(U)
if P = 1 then

return K

Since the full set V always resolves the network, the program is well defined (i.e., it
always returns some K). Moreover, it returns precisely the minimum budget K required
in order to attain Ps = 1. Last, it is clear that the runtime is at most O(N(pA(N) +N))

where pA(N) is the runtime of algorithm A. Hence, we would have a polynomial-time
algorithm for the MDRS problem, contradicting with this problem being NP-hard.

1.3 Main Related Work

The problem of source localization has been widely studied in recent years and several
settings have been considered by different authors. A first survey of the field, focusing
especially on the different observation settings, was made available by Jiang et al. [2014].
In this section, we classify the main approaches to the problem, along several relevant
axes: epidemic models, observation settings, sensor choices. We also briefly describe
important contributions coming from different, but closely-related, fields.

1.3.1 Epidemic Models

Several models of an epidemic spread are studied in the context of source localization.
Although discrete-time transmission delays are common [Luo et al., 2014, Prakash et al.,
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2012, Altarelli et al., 2014a], in order to better approximate realistic settings, many works
adopt continuous-time models with varying distributions for the transmission delays; e.g.,
exponential [Shah and Zaman, 2011, Luo and Tay, 2012] or Gaussian [Pinto et al., 2012,
Louni and Subbalakshmi, 2014, Louni et al., 2015, Zhang et al., 2016]. Following this
line of work, we also consider transmission delays that follow a continuous distribution,
though mainly a distribution with bounded support. For example, we assume truncated
Gaussians with which, in contrast to Gaussians, we can ensure positivity (see Section 4.5)
or uniform random variables that, among unimodal distribution with fixed support, have
the highest variance and give a challenging setting for source localization (see Section 5.2).

Regarding the possible states of each node, many works, including our own, adopt models
in which a node can be susceptible (S) or infected (I) and, when it becomes infected, it
remains so forever (SI model). Other works, as specified in the discussion below, consider
models in which there is a third possible state: After undergoing an infection, a node can
become recovered (R) and, in this case, it cannot become infected anymore (SIR model).
For the definition of the classic SI and SIR models and a discussion of related research
questions, we refer the reader to [Nowzari et al., 2016].

1.3.2 Observation Settings

Complete observation

The first contribution to source localization is by Shah and Zaman [2011]. In this
pioneering work, the authors localize the source using a complete observation of the
network. They adopt a model in which an infected individual always remains infected
(SI) and they assume that, at some unknown time, the state of each node is observed.
The source is estimated with a maximum-likelihood (ML) approach that maximizes
the probability of the observed infected subnetwork given the source identity. The
estimator is derived analytically for regular trees; for general networks, the ML estimator
is approximated by assuming that the infection spreads along a breadth-first-search tree
(BFS) rooted at the source. Let us call the observed subnetwork of H infected nodes GH

and let VH = {v1, .., vH} be the node set of GH . A permutation γ of the nodes in VH is
said to be permitted by a source v ∈ VH if γ(v1) = v and, starting with the single source
v⋆ = v, it is possible that the infections occur in the order γ(v1), γ(v2), .., γ(vH). Shah
and Zaman show that, for regular trees, P(GH |v⋆ = v) is proportional to the number of
permutations permitted by v, called the rumor centrality of v and denoted by R(GH , v).
Moreover, R(GH , v) turns out to be a key quantity also in the approximated computation
of the ML estimator for general networks.

Rumor-centrality estimation was later extended to the case of multiple sources [Luo and
Tay, 2012] and to the case in which different sources can start spreading the epidemic at
different times [Ji and Tay, 2017]. Dong et al. [2013], always within the framework of Shah
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and Zaman, propose a local version of rumor centrality, where an a priori knowledge of the
set of suspects is used to estimate the source. Wang et al. [2015] study rumor-centrality
estimation when multiple independent observations that are originated by a common
source are available.

For general networks, Antulov-Fantulin et al. [2014] propose to estimate the source
by computing the likelihood of the observed network state. As analytic computation
is unfeasible, their method involves large-scale simulations of epidemics starting from
all potential sources, which is impractical on large networks, especially when no prior
information on the source identity is available.

Prakash et al. [2012] propose to use the minimum-description-length principle [Grünwald,
2007] to identify the set of source nodes by which the infected subnetwork can be most
succinctly described. With runtime linear in the number of edges and nodes of the infected
subnetwork, their method scales better than rumor-centrality estimation that, even to
detect a single source, runs in O(N2) [Shah and Zaman, 2011]. The results of Prakash
et al. [2012] were later extended to the setting where some infected nodes might have
been observed erroneously as susceptible: in this case Sundareisan et al. [2015] studied
how to determine the number and the identities of both the missing infected nodes and
of the sources.

Zhu and Ying [2013] look at a similar setting in which infected nodes can recover (SIR
model), but susceptible nodes cannot be distinguished from recovered nodes. They
estimate the source by finding the most likely sample path that leads to the observed
network-state. The key concept here is the infection eccentricity: the infection eccentricity
of a node v is the maximum distance between v and any infected node. Zhu and Ying
[2013] show that, for infinite trees, the source associated with the most likely sample
path is a node with the minimum infection eccentricity; they call this node a Jordan

infection-center. The result was extended to general networks and possibility/impossibility
results for Jordan-center source localization were derived for Erdős-Rényi networks [Zhu
and Ying, 2016].

An algorithm based on dynamic message-passing (DMP) [Kanoria et al., 2011] was
proposed by Lokhov et al. [2014]. This algorithm computes the exact likelihood of a node
being the source when the network is a tree, and it can be used as approximation for
sparse networks. Lokhov et al. [2014] show that DMP estimation outperforms previously
proposed methods such as rumor-centrality or Jordan-infection-center estimations on
several network topologies. However, the runtime of DMP is is O(t0N

2δ), where δ is the
average degree of the network and t0 is the time during which the epidemic has spread
since its beginning. Furthermore, if t0 is unknown, the algorithm should be executed for
different values of t0 in order to also optimize over this latter variable.

A practical and intuitive approach, similar in spirit to the Jordan-infection-center estima-
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tion, is that of Brockmann and Helbing [2013]: Studying datasets relative to global-scale
pandemics (such as the 2009 H1N1 influenza pandemic), they show that, by replacing
the mobility-network distance by an effective distance that accounts for the fact that
some diffusion paths are more likely than others, epidemics spread with homogeneous
propagation waves centered at the source. Hence, they suggest to estimate the source
by using a snapshot of the network state at a given time to find the node that, taken as
center, maximizes the concentricity of the subset of infected nodes.

Partial observation

All previously mentioned works rely on the assumption that, at some point in time, the
knowledge of the state of all the nodes is known. This assumption is often not realistic
because of both the availability of information and the cost of retrieving it. For this
reason, partial observation settings have been studied in the context of source localization.
In such settings, only the state of a set of nodes U , which we call sensors, is known.

Lokhov et al. [2014] study their DMP method also in the case where only a randomly
sampled fraction ξ of the nodes reveal their state. Furthermore, they propose adapted
versions of rumor-centrality and Jordan-infection-center for the partial-observation setting.
They show that DMP outperforms the other methods also in this setting. However,
in order for DMP to identify the source with good accuracy, the fraction ξ has to be
very high (in the order of 40− 60% at least), which is unfortunately unfeasible in many
practical situations.

Altarelli et al. [2014a] derived the belief-propagation (BP) equations for the probability
distribution of the network state. Their method has the merit of being very general: BP
can be used to identify the origin of an epidemic in the SIR, SI, and similar models, even
with multiple infection sources and incomplete information. A single iteration of BP can
be computed in O(|E|t0) where |E| is the number of edges and t0 is the time during
which the epidemic has spread since its beginning. However, as remarked by the authors,
there are cases where the BP equations do not converge or require too many iterations,
especially when the observations available are limited. Their experiments show that the
method works well if more than 40% of the nodes are sensors. The BP approach was
later extended to the cases in which it is not possible to distinguish between recovered
or susceptible nodes and in which the observations are noisy, i.e., they might contain
mistakes [Altarelli et al., 2014b].

Zhu and Ying [2014] extend the results of Zhu and Ying [2013] to a partial observation
setting in which, at a fixed time, infected nodes reveal their state with a given probability,
whereas the state of the rest of the nodes is unknown. Also their method requires around
30− 40% of the infected nodes to be observed in order to produce an estimated source
that is within a few hops from the real source. An extension of this work to multiple
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sources was also presented in [Zhu et al., 2016].

When the nodes are independently selected to be sensors with node-specific probability
qu, Luo et al. [2014] prove that, for trees, the Jordan-infection-center coincides with the
source of the most likely infection path that yields the limited observations available.

The large majority of the approaches discussed above only use information about the
state of the sensors and do not assume that the infection times of the sensors are known.
This is, in many cases, an unnecessary limitation because, by interviewing users of a social
network or patients affected by a disease, a (possibly noisy) observation of the infection
time might become available [Zhu et al., 2015]. Moreover, infection times are truly an
asset in source localization: Indeed, if we observe the infection time of sufficiently many
sensors and the node-to-node transmission delays are known, the source can always be
correctly identified [Chen et al., 2014], whereas otherwise this is not true.

In this direction, Pinto et al. [2012] introduce a model where the source is estimated based
on the infection times of a small set of sensors that are a priori chosen in the network.
They also make the additional assumption that the infected sensors can reveal by which
neighbor they were infected. Assuming that the transmission delays are Gaussian random
variables, a ML estimator of the source, given the available observations, can be computed
for trees in O(N). For general networks, an approximate ML estimator can be computed
by using a standard BFS approximation, in O(N3). From an application point of view,
an interesting feature of this model is the a priori choice of the sensors: it can be used
for all the problems in which knowing the state of the nodes might have a nontrivial cost
and the budget for sensors is limited. Another model for source estimation based on a

priori chosen sensors is proposed by Seo et al. [2012]. However, differently from [Pinto
et al., 2012], this work defines a ranking of the most likely sources by using only the
information about the sensor state. Instead, another work that uses the observation of
the infection times of a subset of the nodes is that of Zhu et al. [2015]. They propose
to estimate the source computing the most likely spreading tree that is consistent with
the observed infection times. This approach is shown to outperform that of Pinto et al.
[2012] when the fraction of the observed infection times is large enough (larger than 20%

for most of the experiments presented by Zhu et al. [2015]).

A different sparse-observation setting was explored by Kumar et al. [2017] who estimate
the source using either a list of infector-infected nodes or a list of node pairs where it is
known which node of each pair was infected first (and the two nodes in the pairs are not
necessarily neighbors). This framework is interesting because it is extremely light in terms
of assumptions: the knowledge of the infection times, and even of the diffusion model, is
not required. The source is detected with a Markov-chain-Monte-Carlo scheme whose
performance is highly sensitive to the fraction of information available: The experiments
show that to guarantee a high detection-rate, the infection precedence has to be revealed
for a large fraction of the node pairs (more than 60% for most of the networks examined).
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Finally, Farajtabar et al. [2015] look at the case in which several sparse epidemic traces
are available. They tackle the more general problem of both learning the contact network
(using multiple cascades) and the source identity (using one or more cascades generated
by the same source). Their approach is based on an efficient importance-sampling
approximation of the likelihood and was successfully applied to identify the origin of
memes in social networks.

1.3.3 Sensor Placement

The problem of finding the minimum number of sensors required to correctly identify the
source is studied, for deterministic transmission delays, by Zejnilović et al. [2013] who solve
it on trees under the assumption that the time at which the epidemic starts is known. In
this setting, minimizing the number of sensors needed for source localization is equivalent
to finding a minimum-size resolving set (RS) of the network [Chartrand et al., 2000].
Without assuming a tree topology and a known starting time, approximation algorithms
for the same problem were developed by Chen et al. [2014], still with deterministic
transmission delays, using the connection to the problem of finding a double resolving set
(DRS) of a network [Cáceres et al., 2007]. In fact, DRS are the natural counterpart of RS
for the case in which the starting time of the epidemic is unknown. The results of [Chen
et al., 2014] were also extended to the case of multiple sources by Zhang et al. [2015].
However, these results are not very practical: In a network of size N , the minimum
number of sensors required can be up to N − 1 (e.g., for a complete network). This
makes the application of this approach difficult in most real-world situations where sensor
choices cannot be solved without taking budget limitations into account. For this reason,
the problem of choosing a fixed number of sensors is of crucial importance.

Pinto et al. [2012] evaluate the effect of choosing sensors according to several natural
heuristics, e.g., using high-degree nodes or optimizing for distance centrality. Later,
Louni and Subbalakshmi [2014] and Louni et al. [2015] propose, for a similar model, to
place the sensors using a betweenness-centrality criterion [Freeman, 1977]. These and
other heuristic approaches for sensor placement are also evaluated empirically by Seo
et al. [2012] who reach the conclusion that, among the placements they consider, the
betweenness-centrality criterion performs the best. In a more recent work, Zhang et al.
[2016] introduce a new heuristic for the choice of sensors, called coverage-rate. This is
linked to the total number of nodes that are neighbors of the sensors. The authors show
that an approximated optimization of this metric outperforms several heuristics, including
betweenness-centrality, highest-degree and closeness-centrality. We remark here that none
of the above-mentioned heuristics is directly linked to source localization.

When the variance of the transmission delays is very small, Zejnilović et al. [2015b]
compute the optimal sensor placement based on the analysis of error exponents. This
is an interesting approach with strong mathematical foundations. Unfortunately, it is
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applicable only to small networks because it requires computing the error exponent for
every possible sensor set. Moreover, it requires the error probability in source localization
to be vanishing, i.e., sufficiently many sensors must be available.

In [Celis, Pavetić, Spinelli, and Thiran, 2015] we present a polynomial-time algorithm
for optimally placing a fixed number of sensors in a tree where the transmission delays
have bounded noise. This contribution is based on dynamic-programming techniques and,
as it heavily relies on the tree structure of the network, it is not directly extendible to
different topologies; see Chapter 3.

In [Spinelli et al., 2016, 2017a], we propose algorithms for choosing sensors in general
networks with an approach that is specifically tailored to source localization. In particular,
we present methods that use the connection between sensor placement and the double-
resolving-set problem [Cáceres et al., 2007]. These methods give favorable results when
compared with both betweenness centrality and coverage-rate. In contrast with previous
approaches, we also account for the variance in the transmission delays and show that
the optimal sensor choice depends on the transmission variance; see Chapter 4.

1.3.4 Online Sensor Placement

Online resource allocation is studied in several contexts, including information diffu-
sion [Dhamal et al., 2016], curing policies for epidemics [Drakopoulos et al., 2014, Scaman
et al., 2016] and more general robust-optimization problems where, to reach some objective,
only a part of the resources is allocated a priori and the rest is deployed, possibly at a
higher cost, when more information is available [Gupta et al., 2010]. Another related line
of work in the field of artificial intelligence is that of active learning, the study of how to
adaptively take a sequence of decisions by using sparse data, in order to optimize a given
objective [Settles, 2012, Golovin and Krause, 2011].

In the context of source localization, Zejnilović et al. [2015a] propose an algorithm
that sequentially places sensors to localize the source after the epidemic has spread
through the entire network. Working under the hypothesis that the starting time of
the epidemic is known and that the transmission delays are deterministic, they give a
dynamic-programming algorithm for localizing the source by using the minimum possible
number of sensors. In order to reduce the computational costs, they also propose a greedy
approximation for which guarantees are proven using adaptive submodularity [Golovin
and Krause, 2011].

Adopting different techniques, in [Spinelli et al., 2017b, ?], we propose a general algorithm
for source localization and sensor placement that allocates sensors one after the other
and localizes the source by iteratively refining a set of candidate sources. This approach
has two important features: The sensors can be placed while the epidemic evolves and
the transmission delays can have high variance; see Chapter 5.
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1.3.5 Other Related Work

Localization problems are also studied in very different settings such as the estimation
of the source of a signal [Li et al., 2016], of heat sources [Masood and Zaman, 2004] or
of pollution sources [El Badia and Ha-Duong, 2002]. In all these inverse problems, a
diffusion takes place in a continuous medium and the techniques used are, in general,
very different from those used for source localization on networks. However, Pena et al.
[2016] adapted the continuous setting of Candès and Fernandez-Granda [2014] to network
source localization under the hypothesis that the epidemic occurs in a way that mimics
heat diffusion in a continuous medium.

In the network domain, a closely related problem to source localization is that of outbreak

detection, i.e., detecting the existence of an epidemic in a timely manner. In this context,
sensor placement is a well-studied problem. The optimal solution for timely detection is
to place sensors at the k-Medians [Berry et al., 2006]. Furthermore, the optimization of
several alternate metrics of interest (e.g., the percentage of infected population at the
time of detection) is studied by Leskovec et al. [2007b] and Krause et al. [2008].

A problem that can, in a sense, be considered the dual of source localization is that of
source obfuscation. Here the interest is in hiding the source of a diffusion, i.e., in spreading
a message anonymously. Anonymous spread is important, for example, in contexts where
there is no freedom of expression, hence authors of sensitive messages want to remain
anonymous. Fanti et al. [2015] propose a randomized diffusion-protocol that spreads
content fast and, on regular trees, achieves perfect obfuscation of the source. In the same
line of work, Venkatakrishnan et al. [2017] study a way to redesign the Bitcoin network and
its broadcasting protocol in order to guarantee transaction anonymity. Luo et al. [2016],
instead, model diffusion and source localization as a strategic game, where the source and
the network administrator are the two players; they study the best-response infection
strategy for the source and the best-response estimation strategy for the administrator.
In all these works, the main difference with the traditional source localization setting
is the presence of a powerful network administrator who can act on the propagation
dynamics by purposely delaying some infections.

Finally, viral marketing [Richardson and Domingos, 2002, Kempe et al., 2003, Leskovec
et al., 2007a] has many similarities with sensor placement. Whereas in sensor placement
we want to identify the nodes that optimize information collection, in viral marketing
we want to find the nodes that optimize information diffusion. With an analysis based
on submodularity properties, Kempe et al. [2003] propose approximation algorithms for
finding the most influential nodes in a large class of diffusion models. In spite of the
similar formulation of the two problems, however, similar techniques cannot be used to
optimize sensor placement for source localization (see Sections 4.3.2 and 4.4.2).
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2 Double Metric Dimension (DMD)

of Random Networks

In Section 1.2.2, we defined the double metric dimension (DMD) of a network and we
explained its relevance to source localization. In a setting where the infection times of
some special nodes —called sensors— are observed, where the starting time of epidemics
is unknown and where epidemics propagate with deterministic transmission delays, the
source is always correctly and univocally identified if and only if the sensor set is a double
resolving set (DRS) of the network. In other words, the minimal number of sensors
required to guarantee source localization is the DMD of the network.

Therefore, the DMD of a network is an important metric for quantifying how difficult it
is to localize the source in a particular network. Let us consider some examples. In a
star network (see Figure 2.1a) the DMD is N − 1: a set that does not contain all the
external nodes cannot be a double resolving set. Whereas, for a path network, instead,
the DMD is 2 (see Figure 2.1b): taking as sensors the two nodes at the extremities of the
path suffices to always identify the source correctly (this is a particular case of the result
proven for trees in Proposition 1.6). These examples show that it is much easier to detect
the source of an epidemic in a path-like network than in a star-like network.

Unfortunately, computing the DMD of general networks is NP-hard [Kratica et al., 2009].
Chen et al. [2014] showed that there does not exist any (1 − ε) logN -approximation

(a) (b)

Figure 2.1 – (a): The DMD of a star network with N nodes is equal to N − 1: every
double-resolving set contains all the leaves. (b): The DMD of a path network is equal to
2: the two extreme nodes form a minimal-size double-resolving set.
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algorithm for DMD for any ε > 01 and gave a (1 + o(1)) logN -approximation algorithm.
In this chapter, we take a complementary approach to the approximation of the DMD, i.e.,
we derive asymptotic bounds. Our main result is an upper bound for the DMD of G(N, p)

random networks [Erdős and Rényi, 1959]. This bound undergoes a non-monotonic
behavior in the parameter p. Through an experimental analysis we show that, indeed,
the DMD of G(N, p), random networks is non-monotonic in p and that we can identify
parameter regimes where source localization is substantially more difficult than in other
regimes.

A problem that is closely related to the determination of the DMD is the determination
of the metric dimension (MD) of a network. With respect to source localization, the
MD is the minimum number of sensors needed to localize the source when the additional
information of the starting time of the epidemic is available. Results that are similar to
those presented in this chapter were derived for the MD problem by Bollobás et al. [2013].
Our proof techniques are inspired by theirs; however, as we explain in Section 2.2.2,
bounding the DMD is more challenging than bounding the MD. Along with the derivation
of our results, we will highlight where and why the specificity of our problem requires a
different approach.

2.1 Overview

In Section 2.2, we give some introductory elements, including a definition of the MD, its
relationship to the DMD, and a short survey of the results available for the MD problem.

In Section 2.3, we derive an asymptotic upper bound for the DMD of G(N, p) (or Erdős-
Rényi) random networks.

We take p = p(N) such that the G(N, p) networks are dense enough (in a sense that will
be specified in Section 2.3) and we give an asymptotic upper bound for three different
regimes of p(N): when p(N) = Θ(1), when p(N) ∼ N−i/(i+1) for some i ∈ N+ and,
finally, when p(N) = o(1) but p(N) is not asymptotic to N−i/(i+1) for any i ∈ N+. In
the regimes p(N) = Θ(1) and p(N) ∼ N−i/(i+1), the bound reaches its local minima.

In Section 2.4, we experimentally show that the DMD approximation obtained through
the greedy algorithm of Chen et al. [2014], and even the probability of error of source
localization when using a limited number of sensors, closely follow our theoretical bound.
We also observe that, on G(N, p) networks, the reults obtained via a greedy approximation
of the DMD resembles very closely to those obtained via a greedy approximation for the
MD, suggesting that, for a given accuracy, ignoring the starting time of the epidemic
does not incur a much higher cost in terms of sensors. We also observe that this is not

1Unless NP ⊂ DTIME(N log logN ). See [Garey and Johnson, 2002] for a definition and discussion of
complexity classes.
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the case for other topologies, e.g., trees.

2.2 Preliminaries

2.2.1 The Metric Dimension (MD)

The metric dimension of a network G(V,E) is the minimum number of nodes in a subset
U of the node set V such that all other nodes are uniquely determined by their distances
to the nodes in U . More formally, we have the following definitions.

Definition 2.1 (Resolving set (RS)). Let G(V,E) be a network and U ⊆ V . U is a

resolving set of G if and only if, for every v, w ∈ V with v �= w, there exists u ∈ U such

that d(v, u) �= d(w, u).

Definition 2.2 (Metric dimension (MD)). Let G(V,E) be a network. The metric di-

mension of G is the minimum k ∈ N+ such that there exists a resolving set U of G with

|U| = k.

Figure 2.2 shows resolving sets for the two examples of Figure 2.1.

The problem of determining the metric dimension of a network is often called the metric-
dimension problem. Denoting by MD(G) the metric dimension of a network G, we
have that 1 ≤ MD(G) ≤ N − 1. Moreover MD(G) = 1 if and only if G is a path and
MD(G) = N − 1 if and only if G is the complete network [Chartrand et al., 2000].

The MD was first defined by Slater [1975] and, independently, by Harary and Melter
[1976]; however Erdős and Rényi studied (and solved asymptotically) the metric dimension
problem in the special case of hypercubes earlier [Erdős and Rényi, 1963]. Resolving sets
are studied in various application areas including drug discovery [Chartrand et al., 2000],
robot navigation [Khuller et al., 1996], and network discovery and verification [Beerliova
et al., 2006].

In the context of source localization, the MD of a network is the minimum number of
sensors required to guarantee correct source identification when the transmission delays
are deterministic and the starting time of epidemics is known. This model is considered
by Zejnilović et al. [2013] who show the linked between optimal sensor placement and
resolving sets.

Solving the metric-dimension problem for an arbitrary network is an NP-complete prob-
lem [Garey and Johnson, 1979, Khuller et al., 1996]. Hauptmann et al. [2012] show that
the MD of an arbitrary network cannot be approximated within a factor of (1− ε) log(N)

for any constant ε > 02 and gave a 2 logN -approximation algorithm.3 Furthermore,
2Unless NP ⊂ DTIME(N log(logN)).
3More exactly, their algorithm has approximation ratio 1 + logN + o(logN).
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(a) (b)

Figure 2.2 – (a): The MD of a star network with N nodes is equal to N − 2: Every RS
contains at least all but one of the leaves. (b): The MD of a path network is equal to 1:
one extreme node forms a minimal-size RS.

researchers have determined metric dimensions for many particular classes of networks,
such as trees [Chartrand et al., 2000, Harary and Melter, 1976, Khuller et al., 1996] (see
also Proposition 2.6 here below), cycles [Chartrand et al., 2000] and wheels [Shanmukha
et al., 2002].

For the reader’s convenience we recall the definition of DMD and DRS.

Definition 2.3 (Double resolving set (DRS)). Let G(V,E) be a network and U ⊆ V with

|U| ≥ 1. U is a double resolving set of G if and only if, for every v, w ∈ V with v �= w,

there exist u1, u2 ∈ U such that d(v, u1)− d(v, u2) �= d(w, u1)− d(w, u2).

Definition 2.4 (Double metric dimension (DMD)). Let G(V,E) be a network. The

double metric dimension of G is the minimum k ∈ N+ such that there exists a double

resolving set S of G with |U| = k.

Looking at Figures 2.1 and 2.2, we see that in both cases the MD of the network is
smaller than the DMD. As we formalize in the following lemma, this is true in general.

Lemma 2.5. Let G(V,E) be a network. MD(G) ≤ DMD(G).

Proof. Let U ⊆ V be a double resolving set of G. We show that U is also a resolving set
of G, from which we can deduce that MD(G) ≤ DMD(G). Let v, w ∈ V with v �= w. Since
U is a double resolving set of G, there exist u1, u2 ∈ U such that d(v, u1) − d(w, u1) �=
d(v, u2)−d(w, u2). Hence, at least one between d(v, u1)−d(w, u1) and d(v, u2)−d(w, u2)

is different from zero. We conclude that for every v, w ∈ V there exist s ∈ U such that
d(v, s) �= d(w, s), hence U is a resolving set of G.

Note that the strict inequality MD(G) < DMD(G) does not hold in general: For a
complete network, MD(G) = DMD(G) = N − 1.

In Section 1.2, we proved that the DMD of a tree is equal to the number of its leaves (see
Proposition 1.6) and that any double resolving set must contain all leaves. Instead, the
metric dimension of a tree is strictly smaller than the number of its leaves. In particular,
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Figure 2.3 – In a tree, it is possible to find a minimum-size RS U by including in U , for
every major node, all its terminal nodes except one (see Proposition 2.6).

the following result, proved, e.g., by Chartrand et al. [2000], and illustrated in Figure 2.3
holds.

Proposition 2.6 (MD of trees). Let T = T (V,E) be a tree that is not a path and let L be

the set of all leaves of T . For every node u ∈ V , we say that u is a major node of T if its

degree is strictly larger than 2. Let u ∈ V be a major node and ℓ ∈ L be a leaf of T . We

say that ℓ is a terminal node of u if, for every other major node v ∈ V , d(u, ℓ) < d(v, ℓ).

Call ex(T ) the number of major nodes of T that have at least one terminal node. Then,

MD(T ) = |L| − ex(T ).

In particular, we can construct a minimum-size RS U of a tree T by including in U , for
any major node of T , all its terminal nodes except one. In Section 2.4.2, we will present
experimental results concerning the MD of trees in comparison with their DMD.

The MD of Random Networks

The MD of Erdős-Rényi networks was studied in detail in a paper by Bollobás et al.
[2013]. Bounding the MD from above and from below, they show that the MD follows a
zigzag behavior as a function of p. The intuition behind this result, as stated in their
paper, is as follows:

If a random graph is sufficiently dense, then the graph locally (that is, “observed” from a

given vertex) “looks” the same. In other words, the cardinality of the set of vertices at a

certain graph distance from a given vertex v does not differ much for various v. After

grouping the vertices according to their graph distances from v, it turns out that for the

metric dimension the ratio between the sizes of the two largest groups of vertices is of

crucial importance. If these two groups are roughly of the same size, then a typical vertex

added to the resolving set distinguishes a lot of pairs of vertices, and hence the metric

dimension is small. If, on the other hand, these two groups are very different in size, a
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nodes at distance 1 nodes at distance 2 nodes at distance 3

smaller p smaller p

x

Figure 2.4 – The MD is of G(N, p) networks is non-monotone in p. When p is large (left),
if we add a sensor in x, we can distinguish many pairs of nodes (any node at distance 1
from x and any node at distance 2 from x); when p gets smaller (center), some nodes at
distance 3 from x appear and x distinguishes a smaller number of pairs because there is a
large group of nodes at distance 2; when p gets even smaller (right), the cardinality of the
nodes at distance 3 from x becomes similar to the cardinality of the nodes at distance 2
from x and the number of pairs that can be distinguished by x increases again. The same
argument holds, when p becomes even smaller, for groups of nodes at larger distances
from x.

typical vertex distinguishes those few vertices belonging to the second largest group from

the rest. The number of other pairs that are distinguished is negligible and hence the

metric dimension is large. It is clear that this parameter is non-monotonic. Let us start

with a random graph with constant edge probability p. For each vertex v in the graph, a

constant fraction of all vertices are neighbours of v and a constant fraction of vertices

are non-neighbours. When decreasing p, the number of neighbours decreases, and some

vertices will appear at graph distance 3. As a result, the metric dimension increases.

Continuing this process, the number of vertices at graph distance 3 increases more and

more, and at some point this number is comparable to the number of vertices at graph

distance 2. Then, the metric dimension is small again, and the same phenomenon appears

in the next iterations.

An illustration of this argument is provided by Figure 2.4. We will see in Section ??

that the zigzag behavior of the MD is not peculiar to G(N, p) networks: a similar non-
monotonicity of the MD (and the DMD) with respect to the network density can be
observed also in preferential attachment models.
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Figure 2.5 – G(N, p) networks with N = 500. (a): Approximation of the DMD obtained
via the approximating algorithm of Chen et al. [2014] . (b): Average ratio between the
number of nodes at equal distance from a pair of nodes (|W x,y

0 |) and the number of nodes
at relative distance 1 from a pair of nodes (|W x,y

1 |).

2.2.2 Contrast between the MD & the DMD

For the DMD, the equivalent of the set of nodes at a given distance k from a node x (see
Section 2.2.1) are the set of nodes at relative distance k from a pair of nodes x and y, i.e.,

W x,y
k � {v ∈ V : d(v, x)− d(v, y) = k}.

Figure 2.5a and Figure 2.5b show, respectively, the average ratio between |W x,y
0 | and

|W x,y
1 | as a function of p (the average is taken over all possible pairs (x, y)) and the

approximation of the DMD obtained with the greedy algorithm by Chen et al. [2014].
The two curves follow closely the same pattern, hinting to the close relationship between
the relative size of the sets {W x,y

k }k∈N and the DMD. This suggests that a result similar
to the one derived by Bollobás et al. [2013] for the MD can be derived for the DMD.

In Lemma 2.5, we proved that for any network G, MD(G) ≤ DMD(G). Consequently a
lower bound for the MD is a lower bound on the DMD, and to obtain a lower bound for
the DMD, we can directly apply the results of Bollobás et al. [2013]. For this reason, we
focus on the derivation of upper bounds for the DMD.

Compared to the MD, bounding the DMD is technically more challenging. If we want to
prove that a set U is a RS for a network G(V,E) it suffices to show, for any x, y ∈ V with
x �= y, that at least one node in U has a different distance from x than from y. Whereas,
if we want to prove that U is a DRS, we must show, for any x, y ∈ V with x �= y that
there exist two nodes u1, u2 such that

d(u1, x)− d(u2, x) �= d(u1, y)− d(u2, y). (2.1)
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Proof steps Comparison with the MD case

1. For two arbitrary nodes x, y, define
two sets Axy and Ayx such that any pair
(v, w) ∈ Axy ×Ayx distinguishes x and y.

For MD, it suffices to define one set Axy

such that any node v ∈ Axy distinguishes
x and y.

2. Lower bound the cardinality of Axy and
Ayx.

3. Upper bound the probability that a
set of size w sampled uniformly at random
contains at least one pair in Axy ×Ayx.

For MD, it suffices to upper bound the
probability that the random set contains
at least one node in Axy.

4. Use (3) to derive an upper bound on
the minimal size of a DRS.

Table 2.1 – Sketch of the proofs

Note that, (2.1) can hold even if d(u1, x) = d(u1, y) or d(u2, x) = d(u2, y), and that, it is
not sufficient that d(u1, x) �= d(u1, y) and d(u2, x) �= d(u2, y) for (2.1) to hold. Therefore,
as we will see in the proof of our theorems, the study of DMD requires a more fine-grained
analysis of the network topology than the study of the MD.

Table 2.1 summarizes the steps we take to derive upper bounds for the DMD (see
Theorems 2.10, 2.11 and 2.21). We underline the main differences with respect to the
derivation of upper bounds for the MD as it is done by Bollobás et al. [2013].

2.2.3 Definitions & Useful Lemmas

We study the DMD for G(N, p) random networks [Erdős and Rényi, 1959] where N

denotes the number of nodes and p is the probability that every given edge appears in
the network. A network G can be sampled from the G(N, p) model by sampling

(
N
2

)

independent Bernoulli random variables {Zuv}, one for each unordered pair of nodes,
with success probability p: if Zuv = 1, then uv ∈ E, otherwise uv /∈ E.

In this chapter, we assume that all edges have the same weight, i.e., wuv = 1 for every
uv ∈ E, hence the distance d(x, y) between two nodes x and y is equal to the minimum
number of edges on a path connecting x and y.

We denote by δ the expected average degree of every node, i.e., δ � p(N − 1).

In the following, all asymptotics are as N → +∞. Moreover, we say that a statement E
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holds asymptotically almost surely (a.a.s.) if and only if P(E) → 1 as N → +∞.

Let f, g : N → R be two functions. If ∃ C1, C2 ∈ R such that, for large enough n,
C1f(n) ≤ g(n) ≤ C2f(n), we say f = Θ(g) and we sometimes write f ∼ g. Moreover
we use the standard notations f(n) = o(g(n)) if f(n)/g(n) → 0 for n → +∞ and
f(n) = ω(g(n)) if f(n)/g(n) → +∞ for n → +∞.

We will often look at the set of nodes at some distance i ∈ N from a given node. Hence
we will use the following definitions.

Definition 2.7. Let G(V,E) be a network, v ∈ V and i ∈ N+. We denote the set of

nodes at distance i from v by

S(v, i) � {u ∈ V : d(u, v) = i}.

Moreover, the set of nodes at distance at most i from v will be denoted by

N(v, i) � {u ∈ V : d(u, v) ≤ i}.

We will also sometimes consider the sets S(Z, i) and N(Z, i) for Z ⊆ V where the
definitions of S(Z, i) and N(Z, i) follow from Definition 2.7 in a natural way. We will
estimate the cardinality of some relevant subsets of V using the following lemma; it is a
consequence of the Chernoff bound for the case of binomial random variables.

Lemma 2.8 (Chernoff bound for binomial random variables. Corollary 2.3 in Janson
et al. [2011]). Let X be a binomial random variable and 0 < ε < 3

2

P(|X −E[X]| ≥ εE[X]) ≤ 2 exp

(
− ε2E[X]

3

)
.

Moreover, we will prove our bounds by using the probabilistic method, as formulated in
the next lemma.

Lemma 2.9 (Probabilistic method). Let G(V,E) be a network. Let w ≥ 2 and let W be

a set sampled uniformly at random from the set collection {Z ⊆ V : |Z| = w}. If, for

all x, y ∈ V with x �= y the probability that W does not distinguish x, y is at most 1/N2,

then DMD(G) ≤ w.

Proof. Let us denote by X the number of node pairs that are not distinguished by W .
Assume by contradiction that DMD(G) > w, which implies that no set of size w is a DRS,
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hence that X ≥ 1. We have that

E[X] =
∑

u �=v

P({(u, v) is not distinguished by W})

≤
∑

u �=v

1

N2

≤ N2

2
· 1

N2
=

1

2
,

which gives a contradiction with X ≥ 1.

2.3 Upper Bounds on the DMD

In this section, we derive an upper bound on the DMD of G(N, p) random networks for a
wide range of the parameter p.

Table 2.2 summarizes our main results and points to the specific theorems that prove
them. For all these results, our proofs follow the structure of the first column of Table 2.1:
first, we define, for every x, y ∈ V some distinguishing sets Axy and Ayx, i.e., some sets
Axy and Ayx such that any pair (u, v) ∈ Axy × Ayx distinguishes x and y; second, we
lower bound the cardinality of the distinguishing sets; finally, we use this lower bound
to derive an upper bound on the DMD. In each of the three different regimes of p we
consider, the main challenge is to define appropriate distinguishing sets whose cardinality
is large enough.

In Theorem 2.10 (Section 2.3.1), we start with the case p = Θ(1) in which it is easy to
find distinguishing sets whose size is a constant fraction of N . Next, in Section 2.3.2, we
move to the case p = o(1) where we study two different regimes for p. First, we consider
p = Θ(N−i/(i+1)) for some i ∈ N+ (Theorem 2.11). In this case, with a slightly more
complicated derivation with respect to Theorem 2.10, we can still find distinguishing
sets whose size is a constant fraction of N . Second, we study the intermediate regimes,
i.e., those in which p �= Θ(N−i/(i+1)) for all i ∈ N+ but there exists i ∈ N such that
p = o(N−i/(i+1)) and p = ω(N−(i+1)/(i+2)). In this last regime, identifying distinguishing
sets which are large enough is more difficult and, whereas in the two previous cases we
obtained an upper bound of order log(N), the upper bound is here of order ω(log(N)).

Note that, with these three results we cover all values of p such that p = Θ(1) or such
that p = o(1) and p = Ω(1/N1−x) for some x > 0.

In Section 2.3.3, we summarize all our results (Theorem 2.22) and compare them with
the results obtained by Bollobás et al. [2013] for the MD.
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Values of p
Order

Statement
of the upper bound

p = Θ(1) log(N) Theorem 2.10

∃ i ∈ N+: p = Θ(N−i/(i+1)) log(N) Theorem 2.11

∃ i ∈ N: p = o(N−i/(i+1)) and p = ω(N−(i+1)/(i+2))
ω(log(N)) Theorem 2.21

(intermediate regimes)

Table 2.2 – Upper bounds for the DMD of G(N, p) networks.

2.3.1 Bound for G(N, p) with p = Θ(1)

Theorem 2.10. Let p = Θ(1) and let z � 1− p(1− p) = p2 + (1− p). Let G ∈ G(N, p).

Then a.a.s.

DMD(G) ≤ 2 log (
√
2N)

log(1/z)
. (2.2)

Proof. We prove this theorem by applying Lemma 2.9: We upper bound the probability
that a set W of cardinality w picked uniformly at random does not distinguish a pair
x, y ∈ V and show that, for our upper bound to be smaller than 1/N2, it suffices that

w ≤ 2 log (
√
2N)

log(1/z)
.

For u �= v, we define the set of the nodes that are neighbors of u but have distance greater
or equal than 2 from v as

Auv � S(u, 1)\N(v, 1) = {z : d(u, z) = 1, d(v, z) ≥ 2} (2.3)

Let x �= y. Axy and Ayx are distinguishing sets for x and y, i.e., for every u ∈ Axy and
v ∈ Ayx, x and y are distinguished by (u, v). This holds because

d(x, u)− d(x, v) = 1− d(x, v) ≤ −1

and

d(y, u)− d(y, v) = d(y, u)− 1 ≥ 1.

Let W be a set picked uniformly at random amongst all the subsets of V of size w and
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call pw the probability that W does not distinguish x and y. We have

pw ≤ P(∄u, v ∈ W : (u, v) ∈ Axy ×Ayx)

≤ P({∄u ∈ W : u ∈ Axy} ∪ {∄v ∈ W : v ∈ Ayx})
= P({W ⊆ V \Axy} ∪ {W ⊆ V \Ayx})
≤ P(W ⊆ V \Axy) +P(W ⊆ V \Ayx)

≤ 2P(W ⊆ V \Axy)

≤ 2

(
N − |Axy|

N

)(
N − 1− |Axy|

N − 1

)
· · ·
(
N − w + 1− |Axy|

N − w + 1

)

≤ 2

(
1− |Axy|

N

)w

. (2.4)

Now we estimate |Axy|. First, we have

E[|Axy|] = (N − 2)p(1− p).

Second, by applying Lemma 2.8 with ε =
√
logN/N , we obtain

P

(
||Axy| −E[|Axy|]| ≥ E[|Axy|]

√
logN

N

)
≤ 2 exp

(
− logN

3N
E[|Axy|]

)
(2.5)

= 2 exp

(
− (N − 2)p(1− p) logN

3N

)

which tends to 0 as N → +∞. Therefore, when N → +∞,

|Axy| = E[|Axy|]
(
1 +O

(√
logN

N

))
= (1 + o(1))Np(1− p). (2.6)

Hence, defining z � 1− p(1− p), we can rewrite (2.4) as

pw ≤ 2

(
1− (1 + o(1))p(1− p)

)w

= 2zw(1+o(1)),

which is at most 1/N2 for w = (2 + ε) log (
√
2N)/(log 1/z) (where ε > 0 can be taken

arbitrarily small). Applying Lemma 2.9, we conclude that the theorem statement holds.

2.3.2 Bound for G(N, p) with p = o(1)

When p = o(1), we cannot derive a bound for the DMD as we did in the proof of
Theorem 2.10 because the distinguishing sets Axy and Ayx defined by (2.3) are not large
enough: more specifically, when we plug (2.6) in (2.4), if p = o(1), we obtain a trivial
bound on the probability pw that a random set of cardinality w is a DRS. Therefore, for
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the case p = o(1), we have to define different distinguishing sets.

Case 1: p = Θ(N−i/(i+1)) for i ∈ N+

We start with the case in which p = Θ(N−i/(i+1)) for some i ∈ N+. Note that, with this
notation, i = 0 yields the case p = Θ(1) that has been studied in Section 2.3.1. The
regimes of p between Θ(N−i/(i+1)) and Θ(N−(i−1)/i) for all i ≥ 1 will be studied in Case
2 below.

Theorem 2.11. Suppose that p = Θ(N−i/(i+1)) for some i ∈ N+. Let

c = c(N) �
δi+1

N
(2.7)

and let z � 1− e−c(1− e−c) = (e−c)2 + (1− e−c). Let G ∈ G(n, p). Then a.a.s.

DMD(G) ≤ 2 log (
√
2N)

log(1/z)
. (2.8)

Remark 2.12. If p = Θ(N−i/(i+1)) for some i ∈ N+, then c � δi+1/N = Θ(1) and

therefore z = Θ(1). Indeed,

p = Θ(N−i/(i+1)) ⇒ pi+1 = Θ(N−i) ⇒ pi+1N i+1

N
= Θ(1) ⇒ c =

δi+1

N
= Θ(1).

Consequently, the order of bound (2.8) is log(N).

We will use the following lemma which formalizes an expansion property of random
networks.

Lemma 2.13 (Expansion property of G(N, p)). Let ζ = ζ(N) be a function tending to

infinity with N such that p ≥ ζ log(N)/N . Let i ∈ N+ such that δi = o(N). Then the

following properties hold a.a.s. for G(N, p):

(i) for every x ∈ V

|S(x, i)| =
(
1 +O

(
1√
ζ

)
+O

(
δi

N

))
δi (2.9)

and for every V ′ ⊆ V with |V ′| = 2

|S(V ′, i)| = 2

(
1 +O

(
1√
ζ

)
+O

(
δi

N

))
δi; (2.10)
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(ii) for every x, y ∈ V (x �= y),

|S(x, i)\S(y, i)| =
(
1 +O

(
1√
ζ

)
+O

(
δi

N

))
δi. (2.11)

We postpone the proof of this lemma to Section 2.3.4. In the proof of Theorems 2.11
and 2.21 we will use 2.9 and 2.11. 2.10 is actually only needed to prove 2.11 (see
Section 2.3.4).

Corollary 2.14. Let i ∈ N+ such that δi = o(N), then |N(x, i)| = o(N).

Proof. By Lemma 2.13 and the definition of N(x, i) (see Definition 2.7), we have that

|N(x, i)| = 1 +

i∑

j=1

|S(x, j)| = 1 +

i∑

j=1

(
1 +O

(
1√
ζ

)
+O

(
δj

N

))
δj

= δi + o(δi) = o(N).

Proof. [Theorem 2.11] The structure of the proof follows that of Theorem 2.10: the only
difference is in definition of the distinguishing sets Axy and Ayx and in the estimation of
their cardinalities.

For u �= v, let Auv be the set of nodes that are at distance (i+ 1) from u and at distance
at least (i+ 2) from v, i.e.,

Auv � S(u, i+ 1)\N(v, i+ 1) = {z ∈ V : d(z, u) = (i+ 1), d(z, v) > (i+ 1)}. (2.12)

Let x �= y. Axy and Ayx are distinguishing sets for x and y. In fact, if u ∈ Axy and
v ∈ Ayx, we have

d(x, u)− d(x, v) ≤ (i+ 1)− (i+ 2) = −1

and

d(y, u)− d(y, v) ≥ (i+ 2)− (i+ 1) = 1,

hence x and y are distinguished by u and v.

We now estimate |Axy| using Lemma 2.13(i). Note that Lemma 2.13 requires the existence
of a function ζ(N) tending to infinity with N and such that p ≥ ζ log(N)/N and ζ

tends to infinity with N . Such a function exists because p = Θ(N−i/(i+1)) implies
p = ω(log(N)/N). For example, we could take ζ = N1/(i+2)/ logN . Note also that, by
Remark 2.12, δi = o(N), hence all the hypotheses of Lemma 2.13 are satisfied.
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We have

E[|Axy|] =
∑

v∈V

P(d(v, x) = (i+ 1), d(v, y) ≥ (i+ 2)) (2.13)

If v ∈ N(x, i), P(d(v, x) = (i + 1)) = 0 and if v ∈ N(y, i), P(v /∈ N(y, i + 1)) = 0.
Therefore, in (2.13), all terms with v ∈ N(x, i)∪N(y, i) are equal to 0 and (2.13) becomes

E[|Axy|] =
∑

v∈V \(N(x,i)∪N(y,i))

P(d(v, x) = (i+ 1), d(v, y) ≥ (i+ 2)) (2.14)

We observe that, for v /∈ N(x, i) ∪N(y, i), d(v, x) = (i+ 1) if and only if there is an edge
between v and a node in S(x, i), whereas d(v, y) ≥ (i+ 2) if and only if there is no edge
between v and any node in S(y, i). Hence the two events happen jointly if and only if
there is an edge between v and a node in S(x, i)\S(y, i) (which we call the event E1) and
there is no edge between v and any node in S(y, i) (which we call the event E2). E1 and
E2 are independent because they depend on disjoint sets of possible edges. Furthermore,
for v /∈ N(x, i) ∪N(y, i), P(E1) = (1− (1− p)|S(x,i)\S(y,i)|) and P(E2) = (1− p)|S(y,i)|.

Therefore, following the derivation of Bollobás et al. [2013], we can rewrite (2.14) as

E[|Axy|] =
∑

v∈V \(N(x,i)∪N(y,i))

(1− (1− p)|S(x,i)\S(y,i)|)(1− p)|S(y,i)|

(a)
= N(1 + o(1))(1− (1− p)|S(x,i)\S(y,i)|)(1− p)|S(y,i)|

(b)
= N(1 + o(1))(1− (1− p)

(1+O( 1√
ζ
)+O( δ

i

N
))δi

)(1− p)
(1+O( 1√

ζ
)+O( δ

i

N
))δi

(c)
= (1 + o(1))e−c(1− e−c)N, (2.15)

where (a) holds by Corollary 2.14; (b) follows from (2.9) and (2.11) in Lemma 2.13; in
(c) we used the approximation (1 − p) = exp(−p+ O(p2)) for p → 0 and the fact that
pδi ∼ δi+1/N = c.

Using the same technique of the proof of Theorem 2.10, we can use (2.15) to prove the
theorem statement.

Case 2: intermediate regimes

We now want to extend our results to the case in which p = Ω(1/N1−x) for some x > 0

but p �= Θ(N−i/(i+1)) for all i ∈ N. To do so, we first introduce the parameter i⋆.

Definition 2.15. Let p = Ω(1/N1−x) for some x > 0. We denote by i⋆ the largest integer

such that δi
⋆
= ((N − 1)p)i

⋆
= o(N).

Remark 2.16. If p = Ω(1/N1−x) for some x > 0, i⋆ is well defined. As δ0 = 1 =
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o(N), there is at least one integer such that δi = o(N) (i = 0). Let x > 0 such that

p = Ω(1/N1−x). We have δ = Ω(Nx). Let k be the smallest integer such that kx > 1,

which exists because x > 0, then δk �= o(N) and i⋆ ≤ k − 1.

Remark 2.17. In the regime of Case 1, i.e., if p = Θ(N−i/(i+1)) for some i ∈ N, then

i⋆ = i. In fact, we have that

δi ∼ (N−i/(i+1))iN i = N (−i2+i(i+1))/(i+1) = N i/(i+1) = o(N)

and

δi+1 ∼ (N−i/(i+1))(i+1)N i+1 = N−iN i+1 = N �= o(N).

We can now define the function c of (2.7) for all regimes of p.

Definition 2.18. Let p = Ω(1/N1−x) for some x > 0 and i⋆ as in Definition 2.15. We

define

c = c(N) � δi
⋆+1/N.

The following lemma characterizes the values of i⋆ and proves that, when p �= Θ(N−i/(i+1)),
c → +∞. An illustration of the values of i⋆ and of c as functions of p is given in Figure 2.6.

Lemma 2.19 (Properties of i⋆ and c). Let δ = (N − 1)p ∼ pN and let i⋆ ∈ N denote

the largest integer such that δi
⋆
= o(N).

(i) Let i ∈ N+. i⋆ = i if and only if p ∈ o(N−(i−1)/i) and p ∈ Ω(N−i/(i+1)).

(ii) If p �= Θ(N−i/(i+1)) for all i ∈ N, then c → +∞.

Proof. (i) We have

i⋆ ≥ i ⇔ δi ∈ o(N) ⇔ p ∈ o(N (1−i)/i) ⇔ p ∈ o(N−(i−1)/i)

and

i⋆ ≤ i ⇔ δi+1 /∈ o(N) ⇔ δi+1 ∈ Ω(N) ⇔ p ∈ Ω(N−i/(i+1)),

hence the statement follows.

(ii) By Definitions 2.15 and 2.18, c = Ω(1). Assume by contradiction that c = Θ(1).
We have

c = Θ(1) ⇒ δi
⋆+1 = Θ(N) ⇒ p = Θ(N−i⋆/(i⋆+1)), (2.16)
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11

N1/2

1

N2/3

i⋆ = 0i⋆ = 1i⋆ = 2
[ )[ )

c =
δi

⋆

N

p = p(N)

i⋆

1

N i/(i+1)

i⋆ = i
[ )

c = Θ(1) c = Θ(1) c = Θ(1) c = Θ(1)

))( (
c → +∞c → +∞N N

Figure 2.6 – Values of i⋆ (see Definition 2.15) and c (see Definition 2.18) as functions of
p. For i ∈ N+, i⋆ = i if and only if p ∈ o(N−(i−1)/i) and p ∈ Ω(N−i/(i+1)). Furthermore,
c = Θ(1) if and only if p = Θ(N−i/(i+1)) for some i ∈ N, for all regimes p between any
two of these values, c → +∞.

which contradicts the fact that p �= Θ(N−i/(i+1)) for all i ∈ N. Hence, if p �=
Θ(N−i/(i+1)) for every i ∈ N, c → +∞.

Remark 2.20. Combining (2.16) and Remark 2.12, we have that c = Θ(1) if and only

if p = Θ(N−i/(i+1)) for some i ∈ N, whereas c → +∞ otherwise.

We are now ready to state our main result for the case in which p �= Θ(N−i/(i+1)) for all
i ∈ N, i.e., for c → +∞.

Theorem 2.21. Let p = Ω(1/N1−x) for some x > 0 and that p �= Θ(N−i/(i+1)) for all

i ∈ N. Let i⋆ and c be defined as in Definitions 2.15 and 2.18. Then

DMD(G) ≤ 2

(
δi

⋆

N
+ e−c

)−1

log(2N).

Proof. Let x, y ∈ V with x �= y. As in the proofs of Theorems 2.10 and 2.11 above, we
want to find large enough distinguishing sets for x and y. We will use the sets Axy, Ayx

defined by (2.12) with i = i⋆, together with other sets Bxy, Byx that we will define in the
following.

Let us first explain why the distinguishing sets Axy, Ayx defined above are not sufficiently
large to derive a bound in the present case. To estimate |Axy| via Lemma 2.8, we
need that E[|Axy|] → +∞ (see (2.5) and (2.6) in the proof of Theorem 2.10 for an
example of application of Lemma 2.8). As c → +∞, we have that E[|Axy|] = (1 +
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o(1))e−c(1 − e−c)N → +∞ if and only if Ne−c → +∞, which in turn happens if and
only if c ≤ x log(N) with x < 1. If this is not the case, in order to obtain an upper bound
on the DMD, we need to consider larger sets of distinguishing nodes. In the regime of p
we consider, it is possible that c ≥ log(N).4 For this reason, we will both consider the
sets Axy, Ayx defined by (2.12) and the sets Bxy, Byx defined as follows.

Let Buv be the set of the nodes that are at distance i⋆ from u and at distance at least
i⋆ + 1 from v, i.e.,

Buv � S(u, i⋆)\N(v, i⋆) = {z : d(z, u) = i⋆, d(z, v) > i⋆}.

Bxy and Byx are distinguishing sets for x and y: If u ∈ Bxy and v ∈ Byx, we have

d(x, u)− d(x, v) = i⋆ − d(x, v) < 0

d(y, u)− d(y, v) = d(y, u)− i⋆ > 0,

therefore d(x, u)− d(x, v) �= d(y, u)− d(y, v).

We now estimate |Bxy| = |Byx| applying Lemma 2.13 with ζ = ω(log2N): as p =

Ω(1/N1−x) for some x > 0 we have p = ω(log3(N)/N) and p ≥ ζ log(N)/N . Furthermore,
by definition of i⋆, δi

⋆
= o(N).

Call V +
y the set of nodes that are at distance strictly larger than i⋆ from y and V −

y the set
of nodes at distance strictly smaller than i⋆ from y. If S(y, i⋆)c denotes the complement
set of S(y, i⋆), we have therefore that S(y, i⋆)c = V +

y ∪ V −
y and

|S(x, i⋆)\S(y, i⋆)| = |S(x, i⋆) ∩ S(y, i⋆)c| = |S(x, i⋆) ∩ V +
y |+ |S(x, i⋆) ∩ V −

y |.

Estimating |S(x, i⋆)\S(y, i⋆)| via Lemma 2.13(ii), we obtain

|Bxy| = |S(x, i⋆) ∩ V +
y | = |S(x, i⋆)\S(y, i⋆)| − |S(x, i⋆) ∩ V −

y | = δi
⋆
(1 + o(1)),

where we used that (S(x, i⋆) ∩ V −
y ) ⊆ V −

y and that, by Lemma 2.13(i), |V −
y | = 1 + δ +

δ2...+ δi
⋆−1 + o(δi

⋆−1) = o(δi
⋆
).

Note that |Bxy| = Ω(
√
N) because

logN δi
⋆
=

log δi
⋆

logN
=

i⋆ log δ

log(δi⋆+1/c)
=

i⋆ log δ

(i⋆ + 1) log δ − log c

(a)

≥ i⋆

i⋆ + 1
≥ 1

2
,

where (a) holds because, by Lemma 2.19, c =→ +∞.

4Take for example p = N−i/(i+1) log(N)1/(i+1) for i ≥ 1. In this case, it is easy to verify that i⋆ = i
and c = δi+1/N = log(N).
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Remember that, to derive our bound, we want to both use the sets Axy, Ayx defined
by (2.12) with i = i⋆, and the sets Bxy, Byx. We have that Axy ∩ Bxy = ∅, hence
|Axy ∪ Bxy| = |Axy|+ |Bxy|. Following the argument of Bollobás et al. [2013], we now
estimate |Axy|+ |Bxy|.

As explained at the beginning of this proof, if c ≤ x log(N) with x < 1, we can estimate
|Axy| via Lemma 2.8 as in the proof of Theorem 2.11 and we have |Axy| = (1+o(1))e−c(1−
e−c)N. If, instead, c → +∞ faster than x log(N) for all x > 1 we have, in particular, that
c > 0.51 log(N) and

E[|Axy|] ≤ e−cN ≤ e−0.51 log(N)N < N0.49

and the contribution of |Axy| is negligible with respect to |Bxy| = Ω(
√
N). Hence, for

both regimes of c, when N → +∞,

|Axy|+ |Bxy| = (1 + o(1))(e−c(1− e−c)N + δi
⋆
).

Let W ⊆ V be a set sampled uniformly at random from the collection of all subsets of
V of cardinality w. We now want to upper bound the probability pw that W does not
distinguish two nodes x and y. Since both pairs of sets Axy, Ayx and of sets Bxy, Byx are
distinguishing sets for x and y,

pw ≤ P

(
{∄(v, w) ∈ (Axy ∩W )× (Ayx ∩W )}∩

{∄(v, w) ∈ (Bxy ∩W )× (Byx ∩W )}
)

= P({W ∩ (Axy ∪Bxy) = ∅} ∪ {W ∩ (Axy ∪Byx) = ∅}∪
{W ∩ (Ayx ∪Bxy) = ∅} ∪ {W ∩ (Ayx ∪Byx) = ∅})

(a)

≤ 4P({(Axy ∪Bxy) ∩W = ∅})
(b)

≤ 4

(
1− |Axy ∪Bxy|

N

)w

= 4

(
1− |Axy|+ |Bxy|

N

)w

= 4

(
1− (1 + o(1))(e−c(1− e−c) + δi

⋆
/N)

)w

≤ 4 exp

(
− (1 + o(1))w(e−c(1− e−c) + δi

⋆
/N)

)
,

where in (a) we used that |Axy ∩ Bxy| = |Ayx ∩ Bxy| = |Axy ∩ Byx| = |Ayx ∩ Byx| = ∅,
hence |Axy ∪ Bxy| = |Ayx ∪ Bxy| = |Axy ∪ Byx| = |Ayx ∪ Byx| = |Axy| + |Bxy|; (b)
can be derived as (2.4) in the proof of Theorem 2.10. To conclude, we observe that
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4 exp(−w(e−c(1− e−c) + δi
⋆
/N) is at most 1/N2 for

w = (2 + ε) log(2N)

(
e−c(1− e−c) + δi

⋆
/N

)−1

,

where ε can be taken arbitrarily small. Hence by Lemma 2.9 the theorem statement
holds.

2.3.3 Overall Bound on the DMD for G(N, p)

The following theorem sums up the bounds we proved in Theorems 2.10, 2.11 and 2.21.

Theorem 2.22 (Upper bounds for DMD). Let G ∈ G(N, p). Let p = Ω(1/N1−x) for some

x > 0 and let i⋆ be the largest integer such that δi
⋆
= o(N). Define c = c(N) � δi

⋆+1/N

and

z �

{
1− p(1− p) = p2 + (1− p) if p = Θ(1),

1− e−c(1− e−c) = (e−c)2 + (1− e−c) if p = o(1).

(i) If c = Θ(1)

DMD(G) ≤ 2 log (
√
2N)

log(1/z)
.

(ii) If c → +∞

DMD(G) ≤ 2

(
e−c +

δi
⋆

N

)−1

log(2N).

For comparison, we state here the upper bound obtained for the MD by Bollobás et al.
[2013].

Theorem 2.23 (Upper bounds for MD. Theorem 3.1 in [Bollobás et al., 2013]). Let

G ∈ G(N, p). Let p = Ω(1/N1−x) for some x > 0 and let i⋆ be the largest integer such

that δi
⋆
= o(N). Define c = c(N) � δi

⋆+1/N and

q �

{
1− 2p(1− p) = p2 + (1− p)2 if p = Θ(1),

1− 2e−c(1− e−c) = (e−c)2 + (1− e−c)2 if p = o(1).

(i) If c = Θ(1)

MD(G) ≤ 2 log (N)

log(1/q)
.
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(ii) If c → +∞

MD(G) ≤
(
e−c +

δi
⋆

N

)−1

log(N).

As we could expect, since DMD(G) ≥ MD(G), the bounds of Theorem 2.22 are larger
than those of Theorem 2.23. Note, in particular, that

(a) z and q are different and z ≤ q. When p = Θ(1), both z and q are, as functions of
p, parabolas with vertex in p = 1/2, furthermore they equal 1 in both p = 0 and
p = 1. Hence p = 1/2 yields the maximum distance between z and q. The case
p = o(1) is analogous except that z and q are functions of e−c.;

(b) in the bound (i) (respectively, (ii)), for DMD there is an additional multiplicative
factor of

√
2 (respectively, 2) inside the log;

(c) in the bound (ii) for DMD we have an additional multiplicative factor of 2.

Finally, Bollobás et al. [2013] also proved that the MD of G(N, p) can be lower bounded
with bounds that are asymptotic to the upper bounds (i) and (ii) of Theorem 2.23, from
which we can directly deduce lower bounds of the same shape for the DMD.

2.3.4 Expansion Properties of Random Networks

We now prove Lemma 2.13 which we used to prove Theorems 2.11 and 2.21.

Lemma 2.13 (Expansion property of G(N, p)). Let ζ = ζ(N) be a function tending to

infinity with N such that p ≥ ζ log(N)/N . Let i ∈ N+ such that δi = o(N). Then the

following properties hold a.a.s. for G(N, p):

(i) for every x ∈ V

|S(x, i)| =
(
1 +O

(
1√
ζ

)
+O

(
δi

N

))
δi (2.9)

and for every V ′ ⊆ V with |V ′| = 2

|S(V ′, i)| = 2

(
1 +O

(
1√
ζ

)
+O

(
δi

N

))
δi; (2.10)

(ii) for every x, y ∈ V (x �= y),

|S(x, i)\S(y, i)| =
(
1 +O

(
1√
ζ

)
+O

(
δi

N

))
δi. (2.11)
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Remark 2.24. These expansion properties are proven in Lemma 2.1 of [Bollobás et al.,

2013] where they are stated, together with other properties that are not of direct interest for

the results in this chapter, under the additional hypothesis that ζ ≤ (logN)4(log logN)2.

Our proof, which does not use the latter hypothesis, mostly follows the structure of that

of Bollobás et al. [2013]. The main difference is in the estimation of |N(V, i)| which we

obtain here by induction (see (2.22) below).

Proof. (2.11) follows from (2.9) and (2.10), and on the fact that, for any two sets A and
B, |A ∪B| = |A\B|+ |B|. In particular, we take A = S(x, i) and B = S(y, i).

We now prove that for all V ′ ⊆ V with |V ′| ≤ 2

|S(V ′, i)| =
(
1 +O

(
1√
ζ

)
+O

(
δi

N

))
δi|V ′|,

which implies both (2.9) and (2.10).

We will take the following steps:

I) estimate the cardinality of N(Z, 1) for Z ⊆ V of arbitrary cardinality;

II) derive an estimation of N(V ′, 1) for V ′ ⊆ V with |V ′| ≤ 2;

III) use I) and II) to recursively derive an estimation for N(V ′, i) with i ∈ N and
|V ′| ≤ 2;

IV) use III) to derive the desired estimation for the cardinality S(V ′, i) with i ∈ N and
|V ′| ≤ 2.

We start with step I). Let Z ⊆ V of arbitrary cardinality z = |Z| ≥ 1, and consider the
random variable X = X(Z) = |N(Z, 1)|. We estimate X using Lemma 2.8. First, we
compute the expectation of X:

E[X] =
∑

v∈V

P(v ∈ N(Z, 1)) = N −
∑

v∈V

P(v /∈ N(Z, 1))

= N −
∑

v∈V \Z

P(v /∈ N(Z, 1)) = N − (N − z)P(v /∈ N(Z, 1))

(a)
= N − (N − z)

(
1− δ

N − 1

)z

= N − (N − z) exp

(
z log

(
1− δ

N − 1

))

(b)
= N − (N − z) exp

(
− δz

N − 1
+O

(
(δz)2

N2

))

= N − (N − z) exp

(
− δz

N

(
1 +O

(
δz

N

)))
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(c)
= N − (N − z)

(
1− δz

N

(
1 +O

(
δz

N

))
+O

([
δz

N

(
1 +O

(
δz

N

))]2))

= N − (N − z)

(
1− δz

N
+O

(
(δz)2

N2

))

= N −
(
N − z − δz +

δz2

N
+O

(
(δz)2

N

))
= z(δ + 1) +O

(
δ2z2

N

)

= δz

(
1 +O

(
δz

N

))
, (2.17)

where (a) follows from the relation p = δ/(N − 1), (b) holds because, when x → 0,
log(1 + x) = x+O(x2), whereas (c) holds because, for x → 0, exp(x) = 1 + x+O(x2).
It follows from (2.17) and Lemma 2.8 (with ε = 4(|Z|ζ)−1/2) that

|N(Z, 1)| = δ|Z|
(
1 +O(δ|Z|/N)

)
+O(εE[|N(Z, 1)|])

= δ|Z|
(
1 +O(δ|Z|/N)

)
+O(ζ−1/2δ|Z|1/2))

= δ|Z|
(
1 +O(δ|Z|/N) +O((ζ|Z|)−1/2)

)
(2.18)

with probability at least

1− 2 exp(−ε2|Z|δ/3) = 1− 2 exp(−16δ/3ζ)
δ≥ζ log(N)

≥ 1− 2 exp(−16 log(N)/3)

= 1− 2

N16/3
≥ 1− 1

N3
. (2.19)

Next, we move to step II). By applying Lemma 2.8 with ε = 2
√

ζ−1, the expected number
of sets V ′ with |V ′| ≤ 2 such that

∣∣∣∣|N(V ′, 1)| −E[|N(V ′, 1)|]
∣∣∣∣ > εδ|V ′|

is

∑

|V ′|≤2

P

(∣∣∣∣|N(V ′, 1)| −E[|N(V ′, 1)|]
∣∣∣∣ > εδ|V ′|

)

≤
∑

z=1,2

N z2 exp

( −ε2zδ

3 + o(1)

)
(a)

≤
∑

z=1,2

N z2 exp

(−ε2zζ log(N)

3 + o(1)

)
(b)
= o(1)

where (a) holds because, by hypothesis, δ ≥ ζ log(N) and (b) because

N z exp

(−ε2zζ log(N)

3 + o(1)

)
∼ N z

N ε2zζ/3
=

N z

N4z/3
=

1

N z/3
→ 0

for N → +∞.
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Hence, for |V ′| ≤ 2, it holds a.a.s. that

|N(V ′, 1)| = E[X] +O(εE[X])

= δ|V ′|
(
1 +O

(
δ|V ′|
N

))
+O

(
2δ|V ′|√

ζ

)

= δ|V ′|
(
1 +O

(
δ

N

)
+O

(
1√
ζ

))
(2.20)

and step II) is complete.

For step III) we observe that δi ≤ N implies i ≤ log(N)/ log(δ) and, since δ ≥ log(N),
we have i ≤ log(N)/ log(log(N)). Hence the sets N(V ′, i) with |V ′| ≤ 2 and δi ≤ N are
at most O(N2 log(N)). In view of (2.19), we deduce that the expected number of sets
Z = N(V ′, i) for which (2.18) does not hold is upper bounded by N2 log(N)/N3 → 0,
hence (2.18) holds a.a.s.

We are ready to obtain an estimation of |N(V ′, i)| by induction. Assuming that

|N(V ′, i− 1)| = δi|V ′|
(
1 +O

(
δi−1

N

)
+O

(
1√
ζ

))
, (2.21)

we can use N(V ′, i) = N(N(V ′, i− 1), 1) to obtain that

|N(V ′, i)| = |N(N(V ′, i− 1), 1)|
(2.20)
= δ|N(V ′, i− 1)|

[
1 +O

(
δ|N(V ′, i− 1)|

N

)
+O

(
1√

ζ|N(V ′, i− 1)|

)]

(2.21)
= δi|V ′|

(
1 +O

(
δi−1

N

)
+O

(
1√
ζ

))[
1 +O

(
δi

N

)
+O

(
1√
ζδi−1

)]

= δi|V ′|
(
1 +O

(
δi

N

)
+O

(
1√
ζ

))
. (2.22)

Finally, for step IV), by definition of S(V ′, i) and N(V ′, i) we obtain

|S(V ′, i)| = |N(V ′, i)| − |N(V ′, i− 1)|
(2.22)
= δi|V ′|

(
1 +O

(
δi

N

)
+O

(
1√
ζ

))
− δi−1|V ′|

(
1 +O

(
δi−1

N

)
+O

(
1√
ζ

))

= δi|V ′|
(
1 +O

(
δi

N

)
+O

(
1√
ζ

))
− δi−1|V ′|

= δi|V ′|
(
1 +

1

δ
+O

(
δi

N

)
+O

(
1√
ζ

))

(a)
= δi|V ′|

(
1 +O

(
δi

N

)
+O

(
1√
ζ

))
(2.23)

48



2.4. Experimental Results

where (a) holds because δ ≥ ζ log(N) ≥ √
ζ.

2.4 Experimental Results

In this section, we experimentally show that the DMD approximation obtained through
the greedy algorithm by Chen et al. [2014] follows, as a function of p, the behavior
predicted by the bounds that we derived in Section 2.3. Furthermore, we look at the error
probability Pe of source localization when only a fixed number of sensors is available and
we find that the non-monotonicity of the DMD is reflected also in the behavior of Pe.

Finally, we empirically compare the MD and the DMD, first for G(N, p) networks and
then for trees.

2.4.1 The DMD of G(N, p) Networks

Non-monotonic Behavior of the DMD

We generate several instances of G(N, p) networks for varying values of p, and we approxi-
mate the DMD of the networks with the greedy algorithm proposed by Chen et al. [2014].
We have already seen in Figure 2.5 that the DMD follows closely the ratio |W x,y

0 |/|W x,y
1 |.

In Figure 2.5a we also observe that, apart from the main peak, for very small values of p,
another local maximum seems to appear. Figure 2.7 depicts a more detailed version of
the DMD curve for small values of p. Remember, from Section 2.3.2, that the values of p
for which c = Θ(1), i.e., for which the upper bound we derived reaches its minima, are
of the form p = N−i/(i+1). In Figure 2.7, we marked with two vertical lines the points
p = N−1/2 (rightmost line) and p = N−2/3 (leftmost line), where, as expected, DMD
reaches a minimum value. Note that for the selected value of N (N = 2000), the values
p = N−i/(i+1) for i ≥ 3 do not give connected instances of G(N, p) networks, hence are
not displayed in the figure.

DMD & Error Probability in Source Localization

We show that the DMD of a network indeed reflects the difficulty of source localization.
In Section 1.2.3, we introduced several metrics for source localization and, in particular,
the success probability Ps (see (1.3)), i.e., the probability that the estimated source ŝ

is equal to the real source s⋆. We consider the case in which epidemics spread with
deterministic transmission delays and we want to estimate the source looking at the
infection times {ts : s ∈ S} of a set S ⊆ V of sensors. As explained in Section 1.2.2,
using {ts : s ∈ S} we can determine the equivalence class of the source [s⋆]. We then
produce an estimate ŝ of the source by sampling uniformly at random from [s⋆]. In this
way, if the source is a singleton, i.e., [s⋆] = {s⋆}, Ps = 1, otherwise Ps = 1/|[s⋆]|. In
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Figure 2.7 – Approximate DMD for small values of p and N = 2000. The two vertical
lines mark the points p = N−1/2 and p = N−2/3, where, as predicted by the results of
Section 2.3.2, the DMD reaches a minimum value.

order to make the comparison with the DMD easier, we consider here the probability of
error Pe � 1− Ps rather than Ps. The optimization of the sensor choice will be studied
in the next chapter and we ignore it here; for the results we display, the sensors were
chosen with the LV-Obs algorithm that will be presented in Chapter 4. Figure 2.8a shows
the average value (over the possible sources s⋆) of Pe for varying p when the number of
sensors is fixed to |S| = 0.02 ·N . We see that the curve follows closely that of the DMD
(see Figure 2.8c) and, in particular, both local maxima are matched.

Comparison between MD & DMD

In Figure 2.8c, we compare the approximation of DMD obtained with the algorithm
of Chen et al. [2014] (DMD) with the approximation of MD obtained with the algorithm
of Hauptmann et al. [2012] (MD). Note that the two curves follow closely each other
but that the DMD approximation is consistently smaller than the MD approximation.
We know that DMD(G) ≥ MD(G): This apparently contradictory result is due to the
approximation quality of the two algorithms. Note, in particular, that the algorithm
of Hauptmann et al. [2012] is a greedy algorithm that starts with the emptyset and
iteratively selects the node that minimizes a certain objective function. Also the algorithm
of Chen et al. [2014] is greedy but, as at least two nodes are needed to distinguish any
two other nodes in a DMD sense, the algorithm loops over all possible initializations
S0 = {v}, v ∈ V . For this reason, we consider also an improved (even if more costly in
runtime) version of the algorithm of Hauptmann et al. [2012] where we also loop over
all possible initializations S0 = {v}, v ∈ V . The resulting (approximated) MD, also
depicted in Figure 2.8c, is, as expected, smaller than the one obtained with the algorithm
of Hauptmann et al. [2012] and is now very close to the DMD approximation. We conclude
that, in the case of G(N, p) networks the (approximated) values of MD and DMD are
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very close to each other. From a source localization perspective, this means that when
the information on the starting time of the epidemic is not available, the cost-difference
in terms of sensors needed to localize the source is very little or even not existent. Of
course, this result is highly dependent on the topology (see, e.g., the discussion about
trees in Section 2.4.2.)

Finally, Figure 2.8b shows again the probability of error Pe when t⋆ is unknown (Figure
2.8a) compared to Pe when t⋆ is known and used to localize the source. In this last case
we chose the sensors by stopping each run of the improved algorithm of Hauptmann
et al. [2012] described above after the number of |S| = 0.02 ·N sensors was reached. As
we could expect, Pe is in general lower when t⋆ is known because more information is
available. Nevertheless the improvement with respect to the case in which t⋆ is unknown
is relatively small, which again shows that when the information on the starting time of
the epidemic is not available, the amount of resources needed for source localization does
not dramatically increase. Note also that, close to the values of p for which Pe reaches its
maximum, Pe appears to be smaller when t⋆ is known. This is again due to the quality
of the algorithm for approximating the MD which seems to perform particularly poorly
when larger sets of sensors are needed to detect the source.

2.4.2 The DMD and the MD of Other Random Networks

Trees

For trees, we know that the DMD is equal to the number of leaves (see Proposition 1.6),
whereas the MD can be computed with the formula given in Proposition 2.6. We look
at how the difference between the MD and the DMD varies with the tree topology.
In particular, we consider a family of random trees where, for each node, the number
of children Nc is distributed according to a geometric random variable Geom(q) with
0 < q < 1, i.e., for i ∈ N+, P(Nc = i) = q(1 − q)i−1. A tree T is generated starting
from one single node and adding, one after the other, some generations of new nodes, i.e.,
assigning children to the nodes that are currently leaves. For this family of random trees,
the DMD is linear in q: This is a consequence of the fact that the DMD equals the number
of leaves and that the number of children Nc is geometrically distributed. We give a proof
of this fact in the next lines. Let N denote the size of T after k ∈ N+ generations. Let
z � 1/q and denote by X(i) the size of the ith generation in the tree, X(0) = 1. We have
that E[X(i)] = zi and we use the following identity: zi − 1 = (z − 1)(1 + z + ...+ zi−1).
We have

N = X(0) + ...+X(k) = 1 + z + zk−1 + zk = zk +
zk − 1

z − 1
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Figure 2.8 – G(N, p) networks with N = 500. (a): Probability of error Pe in source
localization as a function of p when the epidemic starting time t⋆ is unknown. (b):
Probability of error Pe when t⋆ is unknown compared to Pe when t⋆ is known and used to
localize the source. (c): Comparison between the approximate DMD obtained with the
algorithm of Chen et al. [2014] (DMD), the approximate MD obtained with the algorithm
of Hauptmann et al. [2012] (MD) and an improved MD approximation obtained by
initializing the algorithm of Hauptmann et al. [2012] in turn with each possible singleton
{v} ⊂ V (MD improved).
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Hence the number of leaves of the tree T is

zk =
N + 1/(z − 1)

1 + 1/(z − 1)
=

N(z − 1) + 1

z
=

N(1− 1/q)

1/q
+O

(
1

N

)

and we can conclude that, as shown in Figure 2.9a,

DMD(T )

N
= (1− q) +O

(
1

N2

)
∼ 1− q.

Figure 2.9a depicts the average values of the MD and the DMD as a function of q.

First, we note that for small q, both the DMD and MD approach N . In fact, when q

gets smaller, the tree becomes more similar to a star network for which we know that
the DMD is N − 1 and the MD is N − 2. Conversely, when q is close to 1 both the MD
and DMD approach 0: In this case the tree becomes similar to a path network for which
we know that the DMD is 2 and the MD is 1. For intermediate values of q the MD is
significantly smaller than the DMD, with the largest difference at around q = 0.5. This is
an example of a network topology where not knowing the starting time of the epidemic
incurs a significantly higher cost in terms of sensors.

Barábasi-Albert Networks

Figure 2.9c compares the (approximated) MD and the DMD of Barabási-Albert networks
with parameter m ∈ {2, 3, 4}. Here m is the number of existing nodes in the network to
which a new node is connected, hence, for larger m, the network topology gets further
from a tree topology. We observe that the average MD is consistently smaller than the
average DMD and, as we could expect based on the discussion of the tree-case above, the
difference between the two decreases when the parameter m increases.

Finally, Figure 2.9b shows the MD and the DMD for larger values of m. We note that
the MD and the DMD curves are very close to each other and, interestingly, they both
present a non-monotonic behavior similar to that observed for G(N, p) random networks.
This result shows that the dependency of the MD and the DMD on the density of edges
goes beyond the G(N, p) topology and characterizes a broader class of random networks.

2.5 Discussion

In this chapter, we derived bounds for the DMD for G(N, p) networks. These bounds are
non-monotonic in the parameter p and we experimentally showed that the DMD seems to
follow the same non-monotonic behavior. Moreover, we empirically showed that for these
networks, the DMD is very close to the MD, which implies that the cost, in terms of the
number of sensors needed for source localization, of not having access to the starting time
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Figure 2.9 – (a): MD and DMD for random trees of N = 1000 nodes. The number of
children of each node is distributed as Geom(q). (b-c): MD and DMD for Barabási-Albert
networks of N = 500 nodes and parameter m.

of the epidemic, is very low.

For future work, several extensions are of interest. First, from a theoretical perspective, it
would be valuable to identify other network families for which similar bounds can be found.
Natural candidates would be Random Geometric Networks [Penrose, 2003]. This model
shares with the G(N, p) model a well-concentrated degree distribution. Furthermore, the
presence of an edge connecting a node y to a node x, is, similarly to the G(N, p) case, a
binomial random variable (depending, however, on the position of node x).

Second, it would be interesting to experimentally study the DMD of more complex
networks containing G(N, p)-like clusters, e.g., the stochastic block model [Holland et al.,
1983]. In this case, it would be interesting to study the effect on the DMD of the interplay
between the p parameter of the G(N, p) components and the between-clusters connectivity.
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2.5. Discussion

Finally, as for G(N, p) the MD and the DMD seem to follow a very similar behavior as
functions of p, a natural extension of this work would investigate the similarity between
the minimum-size RS and the minimum size DRS of a network. This would lead to
understand if there are nodes, or group of nodes, that emerge as being key to distinguishing
among other nodes both in RS’s and DRS’s.
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3 Sensor Placement on Trees

We defined a sensor to be a node for which, when an epidemic spreads in a network, the
infection time is known (see Definition 1.1).

If we want to localize the source of an epidemic and we can choose only K nodes as
sensors, what is the optimal choice? Answering this question is not easy, even in the
simple case of deterministic transmission delays: in Section 1.2.2 we proved that, for
general networks, this is actually a NP-hard problem.

In this chapter we focus on the special case of trees where the uniqueness of the path
connecting any two nodes makes sensor placement easier to tackle. Moreover we assume
the variance of the transmission delays to be low in a sense that we will soon specify.
Our main results are two distinct polynomial-time algorithms for finding the K sensors
that optimize the probability of success in source localization and the expected distance
between the real source and the estimated one.

Our approach and our terminology are developed based on the link between sensor
placement and the double-resolving-set (DRS) problem described in Section 1.2.2. This
provides a tractable and intuitive framework for optimizing sensor placement.

The results presented in this chapter were published in [Celis, Pavetić, Spinelli, and
Thiran, 2015].

3.1 Overview

Building on the definition of DRS, we begin by introducing the concept of node resolvability,
and we show that the performance of a sensor set, with respect to the success probability
Ps, is directly linked to the number of resolved nodes (see Section 3.2). Our main results
are in Sections 3.3 and 3.4. For the case of a tree T of size N with uniform prior on
the identity of the source, we design an O(NK2) dynamic-programming algorithm to
find K sensors that maximize the number of resolved nodes and, as a result, the success
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probability. Also for the minimization of the expected error distance De, we show that
if G is a tree with bounded node degree, an optimal sensor set U can be found via a
polynomial-time algorithm. In Section 3.5, we generalize our results to (i) the case in
which sensors have a non-unit cost and the budget limits the maximum total cost of the
sensor set and (ii) the case of general priors on the identity of the source.

3.2 Preliminaries

3.2.1 Model

We consider the model described in Section 1.2.1. In this chapter, we look only at the
case of deterministic epidemics (Xuv = wuv for every uv ∈ E) and non-deterministic
epidemics with bounded noise (see Proposition 3.1 in Section 3.2 for the details).

Given a budget K ∈ N, we study the problem of finding a set U ⊆ V of size K such that
observing the infection times of the nodes in U optimizes a given metric.

We consider two possible metrics for quantifying the performance of source localization:

1. the success probability, i.e., Ps � P(v̂ = v⋆);

2. the expected distance between the real source v⋆ and the estimated source v̂, i.e.,
De � E[d(v⋆, v̂)], where d is the weighted distance between two nodes in the network.

We have already seen that optimizing these two metrics can require different sets of
sensors (see Section 1.2.3).

Recall that, in a deterministic epidemic, if a node v gets infected at time tv, it infects
each non-infected neighbor u at time tu = tv +wuv where wuv ∈ R+ is the weight of edge
uv. Then it is clear that, based on the observation vector tu1 , we can identify a set of
nodes that are candidate sources (see Definition 1.10 in Chapter 1). Specifically, if the
source of the diffusion is v⋆, based on the observation vector tu1 , we identify all nodes
in [v⋆] as candidate source nodes because their distance vectors are equal to tu1 . Then
we can produce an estimated source v̂ by by sampling the conditional distribution π|[v⋆],
where π denotes the prior on the identity of the source. If no prior is available, we sample
uniformly from [v⋆].

If the transmission delays are random but do not deviate much from their average values,
we are always able to identify the equivalence class to which the real source belongs by
finding the class [v] that minimizes the distance between the distance vector dv,u1 and
the observation vector tu1 . In other words, the estimator v̂ that we have just defined
tolerates a bounded amount of noise in the transmission delays.
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3.2.2 Noise Tolerance

Proposition 3.1 (Noise tolerance). Let T (V,E) be a tree, U ⊆ V a set of sensors and

call ∆ the maximum distance between a node in U and a node in V , w̄ the maximum edge

weight in T . If, for every uv ∈ E, the transmission delay Xuv is a random variable such

that Xuv ∈ [(1− ε)wuv, (1 + ε)wuv] and ε < w̄/∆, the equivalence class of the source is

[v⋆] = [v] such that

[v] = argmin
z∈V

‖dz,u1 − tu1‖∞.

Proof. First, we prove that for every v, z such that [v] �= [z], ‖dv,u1−dz,u1‖∞ ≥ 2w̄. Since
[v] �= [z] there exists u ∈ U such that d(v, u)− d(v, u1) �= d(z, u)− d(z, u1). Take v′, z′ ∈
P(u, u1) (possibly equal to v, z or to u, u1) such that d(v′, u)−d(v′, u1) = d(v, u)−d(v, u1)

and d(z′, u)− d(z′, u1) = d(z, u)− d(z, u1). More precisely, v′ is the last common node in
the ordered paths P(v, u) and P(v, u1) (which necessarily lies on P(u, u1) because T is
a tree) and, analogously, z′ is the last common node in the paths P(z, u) and P(z, u1).
Necessarily v′ �= z′ (otherwise v and z would not be distinguished by the pair u, u1).
Without loss of generality we can assume d(v′, u) < d(z′, u), i.e., going from u to u1 we
pass first through v′ and then through z′. We have d(v′, u1)− d(z′, u1) > d(v′, z′) ≥ w̄

and analogously d(z′, u)− d(v′, u) > d(v′, z′) ≥ w̄. By combining the last two we obtain

d(v, u1)−d(z, u1)−d(v, u)+d(z, u) = (d(v′, u1)−d(z′, u1))+(d(z′, u)−d(v′, u)) ≥ 2w̄

and we can conclude ‖dv,u1 − dz,u1‖∞ ≥ 2w̄.

Let tu′ be the infection time of u′ ∈ U . When the source is v⋆ we have

tu′ − t⋆ ≤ d(v⋆, u′)(1 + ε). (3.1)

Moreover,

tu′ − t⋆ ≥ d(v⋆, u′)(1− ε). (3.2)

Combining inequalities (3.1) and (3.2) for u′ being, respectively, u and u1 and calling t1
(resp., tu) the infection time of the reference sensor u1 (resp., u), we have

|tu − t1 − d(v⋆, u) + d(v⋆, u1)| ≤ ε(d(v⋆, u) + d(v⋆, u1)) ≤ 2ε∆.

Since, for every v ∈ [v⋆], dv,u1 = dv⋆,u1 , we conclude that for every v ∈ [v⋆], ‖dv,u1 −
tu1‖∞ ≤ 2ε∆.

Take now v /∈ [v⋆] and assume by contradiction that ‖dv,u1 − tu1‖∞ ≤ 2ε∆. Using the
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triangular inequality and the hypothesis ε < w̄
∆ we have

‖dv⋆,u1 − dv,u1‖∞ ≤ ‖dv⋆,o1 − tu1‖∞ + ‖dv,u1 − tu1‖∞ ≤ 2ε∆ < 2w̄,

which gives a contradiction with ‖dv⋆,u1 − dv,u1‖∞ > 2w̄. Hence for every v /∈ [v⋆],
‖dv,u1 − tu1‖∞ > ‖dv⋆,u1 − tu1‖∞.

3.2.3 Resolved Nodes

Building on the definition of distance vector (see Definition 1.8 in Chapter 1), we can
introduce the notions of resolved node and unresolved node.

Definition 3.2 (Resolved & unresolved nodes). Let G be a network, U ⊆ V , |U| = K ≥ 2

a set of sensors. Fix u1 ∈ U . A node z is resolved by a set U if and only if dz,u1 �= dv,u1

for all v ∈ V , v �= u, and unresolved otherwise.

In other words, a resolved node is a node z that can be distinguished from all other
nodes based on the relative distances between z and the sensors U . As a consequence of
Lemma 1.9, Definition 3.2 does not depend on the choice of the reference sensor u1 and z

is resolved by U if and only if [z]U = {z}.

In the following lemma we make some observations that are key to solve sensor placement
on trees. The three statements are illustrated in Figure 3.1.

Lemma 3.3. Let T be a tree with N nodes, U ⊆ V , |U| ≥ 2.

(i) Let z ∈ U be a non-leaf node or z ∈ V \U . If there are no u1, u2 ∈ U , u1, u2 �= z,

such that z ∈ P(u1, u2), then z is not resolved by U ;

(ii) let z ∈ V a non-leaf node and root T at z. z is resolved if and only if every subtree

Tc rooted at a child c of z contains at least one node of U ;

(iii) a leaf ℓ is resolved if and only if ℓ ∈ U .

Proof.

(i) Suppose first that z ∈ V \U . If there do not exist u1, u2 ∈ U , such that z ∈ P(u1, u2)

it means that all nodes in U are in a subtree rooted at a neighbor of z, say c, and
not containing z itself. Hence it is easy to see that z is equivalent to c and is
not resolved. Next, suppose that z ∈ U is a non-leaf node. If there do not exist
u1, u2 ∈ U , u1, u2 �= z, such that z ∈ P(u1, u2), it means that there is at least a
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Figure 3.1 – Illustration of Lemma 3.3. Red nodes represent sensors. On the left,
illustration for statement (i): v does not lie on the path between the two sensors and is
not resolved; u2 is also not resolved: in fact it is equivalent to its two leaf neighbors. On
the right, illustration for statements (ii) and (iii): the tree rooted at z contains a sensor
in each subtree, hence z is resolved; leaves u1 and u3 are resolved, the other leaves are
not.

neighbor of z, say c, such that no node of U is contained in the subtree rooted at c

and not containing z. Hence z is not resolved because it is equivalent to c.

(ii) Let z be a resolved non-leaf node. By contradiction, let z have a neighbor c such
that the subtree rooted at c and not containing z has empty intersection with U .
Then, as in (i), c is equivalent to z, giving a contradiction with the fact that z

is resolved. For the backward direction take a non-leaf node z and a node v in a
subtree Tc rooted at a neighbor c of z. Since z is not a leaf, it has at least one other
neighbor h �= c. To resolve the pair (z, v) it is then enough to take a sensor in Tc
and one in Th.

(iii) Let ℓ ∈ U be a leaf. Since |U| > 1 there exists t ∈ U , t �= ℓ. Remember
that T is a tree: for every x ∈ V , x �= ℓ, t, there exists a node y such that
y ∈ P(ℓ, t)∩P(x, ℓ)∩P(x, t), with possibly y = x or y = t. Then, d(ℓ, t)− d(ℓ, ℓ) =

d(ℓ, t) > d(y, t)−d(y, ℓ) = d(x, t)−d(x, ℓ), implying that ℓ is resolved by U . Suppose
next that ℓ /∈ U . Then ℓ is equivalent to its only neighbor and is not resolved by U .

3.3 Success Probability Maximization

We first consider the maximization of the success probability. Maximizing the success
probability is equivalent to minimizing the error probability Pe = P(ŝ �= s⋆). We express
our results in terms of this last metric.
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From (1.3) in Chapter 1 we derive

Pe(U) =
1

N

∑

[u]U⊆V

(|[u]U | − 1) = 1− q

N
(3.3)

where q denotes the number of equivalence classes.

It is clear that Pe is minimized if the number of equivalence classes is maximized.

We proved in Proposition 1.6 in Chapter 1 that, if the network is a tree T and all leaves
are sensors, Pe = 0. Moreover, we have seen in Proposition 1.12 that when the budget K

is smaller than the set of leaves the optimal sensor placement is contained in the leaf set
and the minimum value of Pe is strictly larger than 0. This suggests that, given a tree
and a sensor set, if we root the tree at an arbitrary node it is possible to compute Pe as
the sum of the probabilities of error of the different subtrees. Building on this observation
we prove that, for a tree T = T (V,E) with |V | = N and a budget K ∈ N, a set Uopt with
|Uopt| = K that minimizes Pe can be found with a recursive algorithm of total runtime
O(NK2).

Theorem 3.4. Let T be a tree with N nodes and ℓ leaves and let the prior π be uniform.

If K ≥ ℓ, the leaves form an optimal sensor set. If K ∈ {2, . . . , ℓ − 1}, there exists an

algorithm that finds Uopt ∈ argmin|U|=KPe(U) in time O(NK2).

Correctness. The statement is trivial for K ≥ ℓ as the set of leaves resolves all the nodes.
If 2 ≤ K < ℓ, call Tr the tree obtained rooting T at an arbitrary non-leaf node r. We
claim that UK

opt is obtained through the main function of Algorithm 2, i.e., by computing
OptErr(Tr,K). We prove the statement by strong induction on the height of the tree.

Fix a budget K ′ and let p(Tx,K ′) be the contribution to the error probability from Tx
assuming K ′ sensors are placed optimally in Tx. The base case is a subtree Tx of height 0,
i.e., a leaf: if K ′ ≥ 1 then we can place a sensor directly on the leaf and, by Lemma 3.3(iii)
p(Tx,K ′) = 0. If K ′ = 0 then we cannot resolve x and p(Tx, 0) = 1/N . Now consider the
general case of a rooted tree Tx of height h > 0, and assume we can find p(Ti,K ′

i) for all
trees Ti of height less than h. If K ′ = 0, then p(Tx, 0) = |Tx|/N since we have no way to
distinguish between any nodes in Tx. Otherwise, we recurse over all possible partitions of
K ′ between the subtrees rooted at the children of x (see the function OptErrChildren

in Algorithm 2). In particular, if g is the number of children of x and Tx,i, for i ∈ {1, .., g},
denotes the subtree rooted at the ith child of x, any configuration of K ′ sensors in Tx
has 0 ≤ K ′

i ≤ K ′ sensors in subtree Tx,i with
∑g

i=1K
′
i = K ′. If K ′

i �= K for every i (in
particular if K ′ < K),

p(Tx,K ′) =
∑

K′
i=0

|Tx,i|
N

+
∑

K′
i �=0

p(Tx,i,K ′
i).
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In fact, by Lemma 3.3(i), x is equivalent to all nodes in the subtrees Tx,i (if any) for
which K ′

i = 0 and |[x]| − 1 =
∑

K′
i=0 |Tx,i|. Instead, if there exists j in {1, .., g} such that

K ′
j = K (all sensors are placed in the subtree Tx,j),

p(Tx,K) =
∑

i �=j

|Tx,i|
N

+ p(Tx,j ,K) +
1

N
,

because the jth child of x is equivalent to x and to all nodes in the subtrees Tx,i with
i �= j. Since the height of each Tx,i is less than h, by the induction hypothesis we can
compute the optimal p(Tx,i,K ′

i), and hence p(Tx,K ′).

Runtime Bound. A call to OptErrChildren is determined by the root x of the subtree,
the subset c of its children considered and the budget K ′ ≤ K. There are N − 1 possible
values for the pair (x, c) (N − 1 is the number of edges T ). In fact, we can assume that
the children are ordered and the possible partitions are of the form (c, children at the
right of c)1 so the number of pairs (x, c) is bounded by N − 1. Hence, there are O(NK)

possible calls of OptErrChildren. Combining this with the minimization on m ≤ K

sensors sent to the leftmost sub-tree, the runtime is O(NK2).

3.4 Expected Error Distance Minimization

We now turn to the minimization of the expected error distance, which for uniform prior
π, can be computed as

De(U) = E[d(v⋆, v̂)] =
1

N

∑

[v]U⊆V

( ∑

s,t∈[v]U

d(s, t)

|[v]|U

)
. (3.4)

In the error-probability case, the contribution of each equivalence class was a function
only of the number of its elements (see Equation (3.3)). Here instead, the contribution of
each unresolved node to (3.4) depends not only on the size of the classes but also on the
sum of distances between the nodes in each equivalence class; this makes the problem
more challenging.

Similarly to what happens for Pe, if T has ℓ leaves, placing a sensor in every leaf ensures
De = 0. Moreover, if K ∈ {2, .., ℓ} Uopt is contained in the leaf set.

Theorem 3.5. Let T be a tree of maximum degree D with N nodes and ℓ leaves and let the

prior π be uniform. If K ≥ ℓ, the leaves form an optimal sensor set. If K ∈ {2, .., ℓ− 1},
there exists an algorithm that finds the set Uopt ∈ argmin|U|=KDe(U) in time O(2DNK2).

1We consider the children of any node to be ordered, e.g. according to the order induced by any
embedding of T in the plane.
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Algorithm 2 Minimizes Pe with budget K on a tree of size N rooted at r

OptErr(Tx, K ′)
if K ′ = 0 then

return |Tx|
N

if |Tx| = 1 then
p ← 0

else
p ←OptErrChildren(Tx, K ′, children(x))

if x �= r and K ′ = K then
return p+ 1

N
else

return p

OptErrChildren(Tx, K ′, C)
if |C| = 0 then

return 0
else if K ′ = 0 then

return
∑

c∈C
|subtree(c)|

N

f ← first child, oc ← other children, results ← {}
for m from 0 to K ′ do

results ← results ∪ {OptErr(Tf ,m)+ OptErrChildren(Tx,K ′ −m, oc)}
return min{results}

Correctness. Consider T as rooted at an arbitrary non-leaf node r. We claim that the
main function of Algorithm 3, i.e., OptDist(Tr,K), finds the set Uopt. The structure
of Algorithm 3 is very similar to that of Algorithm 2 as is the proof of correctness for
the algorithm, so we limit ourselves to highlighting the differences. When computing the
expected error distance on a tree rooted at x we need to keep track of all the subtrees
rooted at the children of x where there is not any sensor (see the variable unsensored-

neighbors in the pseudo-code). Using the notation of the proof of Theorem 3.4 and
applying again Lemma 3.3(i), if K ′

i �= K for every subtree Tx,i, the expected distance
e(Tx,K

′) of the classes entirely contained in Tx is computed as

e(Tx,K ′) =
∑

K′
i �=0

e(Tx,i,K ′
i) +E[d(v̂, v⋆)|v⋆ ∈ {x, V (Tx,i) : K ′

i = 0}].

Instead, if there exist a child xj of x such that K ′
j = K (all sensors are in Tx,j), e(Tx,j ,K)

is computed taking into account that the subtree Fxj rooted at xj and containing the
root node r is entirely contained in the class [xj ]. The case K ′ = 0 never arises in the
calls to OptDist since, when no sensor is assigned to a given subtree, it is enough to
add its root to the list of unsensored-neighbors in the next calls of OptDistChildren

so that the entire subtree will contribute to the final computation of the expected error
distance.
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3.4. Expected Error Distance Minimization

Finally we look at the pre-computation of the contributions to the expected error distance.
For every subtree Tx and subset S = {x1, .., xm} of children of x for which the subtree Txi

does not contain sensors, the expected error distance (denoted by ExpDist(x, S) in the
pseudo-code) is recursively pre-computed as follows. The base case is a subtree of only
one element, i.e. a leaf, for which the expected distance is 0. For a non-leaf node x, the
contribution to the expected error distance of the subtree rooted at x can be computed
based on the contributions of the subtrees rooted at the children of x. We note that if
i, j ∈ {1, ..,m}, i �= j,

∑

u∈Txi ,v∈Txj

d(u, v) =
∑

u∈Txi ,v∈Txj

d(u, x) + d(x, v)

= |Txj |
∑

u∈Txi

d(u, x) + |Txi |
∑

v∈Txj

d(v, x).

Then, if there is at least a sensor in T \Tx, i.e., if [x] ⊆ Tx, we have

E[d(v̂, v⋆)|v⋆ ∈ [x]] =
m∑

j=1

|Txj |
|Tx|

E[d(v̂, v⋆)|v⋆ ∈ Txj ]

+
2

|Tx|
m∑

j=1

(
|Tx\Txj |

∑

u∈Txj

d(u, x)

)

+
2

|Tx|
m∑

j=1

( ∑

u∈Txj

d(u, x)

)
,

where the first term accounts for the cases in which v⋆ and v̂ are in the same subtree,
the second term for the cases in which v⋆ and v̂ are in two different subtrees and the last
term accounts for the cases in which either v⋆ or v̂ are in x itself. The sums of distances
from x to the nodes in a given subtree that appear in the latter expression can again
be recursively pre-computed. If all the available sensors are in Tx, i.e., if [x] �⊆ Tx, also
the contribution to the expected error distance coming from the subtree rooted at the
father of x and not containing x should be added. Once more, this contribution can be
recursively pre-computed with similar techniques.

Runtime bound. With respect to Theorem 3.4 the call to OptDistChildren has an
additional argument which corresponds to the list of neighboring subtrees that have
already been considered and to which no sensor has been assigned. Since the number of
neighbors of x is less than the maximum degree D, the number of possible calls to the
algorithm for a given x and a sensor budget K is upper-bounded by 2D and the total
number of calls is O(2DNK2). Finally, the expected distance for every x and all subsets
of neighboring subtrees can be pre-computed with a runtime O(2DN). In conclusion the
total runtime for the algorithm is O(2DNK2).
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Chapter 3. Sensor Placement on Trees

Note that in Algorithm 3, when |Tx| = 1 and K ′ > 1 we return ∞: in this way the cases
in which the budget is not completely allocated are directly excluded.

Algorithm 3 Minimizes the expected error distance with budget K on a tree of size
N rooted at r

OptDist(Tx, K ′)
if |Tx| = 1 then

if K ′ = 1 then return 0
else

return ∞
if x �= r and K ′ = K then

unsensored-neighbors ← [parent(x)]
else

unsensored-neighbors ← [ ]

return OptDistChildren(Tx, K, children(x), unsensored-neighbors)

OptDistChildren(Tx, K ′, C, S)
if |C|=0 and K ′ > 0 then

return ∞
if K = 0 then

S ← S ∪ C
return ExpDist(x, S)

if x �= r and K ′ = K then
for c in C do

results ← {OptDist(Tc, K)}
f ← first child, oc ← other children
results ← {OptDistChildren(Tx, K ′, oc, S ∪ {f})}
h ← min(K ′,K − 1)
for m from 1 to h do

e1 ← OptDist(Tf , m)
e2 ← OptDistChildren(Tx, K ′ −m, oc, N)
results ← e1 + e2∪ results

return min{results}

3.5 Extensions

This section presents the extension of our results to weighted nodes, i.e., to the case
where choosing different sensors can result in different costs, and to general priors on the
identity of the source.
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3.5. Extensions

3.5.1 Weighted Nodes

Theorem 3.4 and Theorem 3.5 can be extended to the more challenging case where each
node u has a cost ku and K ∈ N still represents the total budget allowed, i.e., we have
the constraint

∑
u∈U ku ≤ K.

The additional difficulty comes from the fact that, if each node u has a cost ku ∈ N,
the optimal sensor placement Uopt will not necessarily be contained in the leaves of T ,
especially if the leaves have high cost compared to other nodes of the network.

We give a few remarks on how the structure of Algorithm 2 (respectively, Algorithm 3)
can be adapted to this case without increasing the total runtime bound of the algorithm.
At each call of the function OptErr (respectively, OptDist) on a subtree Tx with
budget K ′ > kx two possible cases need to be considered: 1) node x itself is chosen as
a sensor and the remaining budget K ′ − kx is distributed in the subtrees rooted at the
children of x; 2) node x is not chosen as a sensor and we distribute the entire budget K ′

among the children of x. At an algorithm level this translates in an additional call to the
function OptErrChildren (respectively, OptDistChildren) for every node x. Hence
the runtime bound of the algorithms is not affected.

3.5.2 Non-uniform Priors

We now consider the case of a non-uniform prior probability π on the identity of the
source.

Proposition 3.6. Let G = G(V,E) be a network and U ⊆ V the set of sensors with

|U| = K ≥ 2. Let π(v) = P(v⋆ = v) for every v ∈ V . The error probability Pe and the

expected distance De can be computed as follows:

1. Error probability

Pe = P(v⋆ �= v̂) =
∑

[v]U⊆V

( ∑

s,t∈[v]U ,s �=t

π(s)π(t)

π([v]U )

)

=
∑

[v]U⊆V

( ∑

s∈[v]U

π(s)(π([v]U )− π(s))

π([v]U )

)
.

(3.5)

2. Expected error distance v̂

De = E[d(v⋆, v̂)] =
∑

[v]U⊆V

( ∑

s,t∈[v]U

d(s, t)π(s)π(t)

π([v]U )

)
. (3.6)

In both Equation (3.5) and Equation (3.6) the contribution to each equivalence class
depends on the prior probability of each element in the class and, in the case of Equation
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Chapter 3. Sensor Placement on Trees

(3.6), on the distances between elements in a same class. If we now think of the recursive
computation of Pe and De in a tree, in both cases, the contribution of a node u depends
on which of the subtrees rooted at the children of u contain or do not contain sensors
and not only on their cardinality. Hence, in view of Theorem 3.5 and Algorithm 3, it is
clear that for both metrics it is possible to find an optimal set Uopt in time O(2DNK2).
The proof of the result follows that of Theorem 3.5.

3.6 Discussion

In this chapter, we presented optimal algorithms for placing a limited budget of sensors to
be used for source localization. Our algorithms build on the notion of node resolvability,
which we showed to be the key to studying optimal sensor placement for source localization.
We considered two metrics of practical relevance, error probability and expected error
distance, and we gave a polynomial time solution for optimizing them on trees. We
showed that our approach is quite general, comprising interesting extensions such as to
sensors with different costs and to general priors on the identity of the source.

An interesting extension would study worst-case metrics rather than average-case metrics;
e.g., minimizing the maximum distance between a real and estimated source could be of
interest.

The results we presented in this chapter shed light on the importance of sensor placement
for source localization and on the advantages of studying sensor placement in relation
to double resolvability. However, these results are limited by two strong assumptions:
the deterministic spread of the epidemics and the absence of cycles in the network.
In many practical situations, we are uncertain about the transmission delays or the
transmission delays are subject to high randomness, in which cases the optimality of our
sensor placements is not guaranteed. Finally, it could be thought possible to use the
algorithms we derived on a general network using a tree-approximation of the network.
Unfortunately, this is not the case. In fact, the sensor set obtained would highly depend
on the particular approximating tree. Moreover, different approximating trees would lead
to sensor sets that can reliably identify different set of possible sources: The distances
from a node to the sensors in the approximating subtree would typically be close to the
real distances if the node is in the core of the tree but this would not be the case if the
node is a leaf.

In the next chapter, we develop an approach to sensor placement that does not suffer
from the mentioned restrictions.
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4 Sensor Placement on General Networks:

The Effect of the Transmission-Delays

Variance

In the previous chapter we have studied sensor placement for source localization under
two strong assumptions: a tree topology and low-variance transmission delays. Here, we
study sensor placement with a more general approach that does not rely on any of these
two assumptions.

The results of Chapter 3 heavily-rely on the tree-structure on the network, and they cannot
be directly extended to general networks. However, the concept of node-resolvability,
which we introduced in Chapter 3, will again be crucial for our analysis. As for the
variance of the transmission delays, we will show that this model parameter has a strong
impact on source localization and, in particular, on the optimal sensor placement.

Our main results in this chapter are two distinct algorithms for sensor placement that
are specifically designed for two different regimes of transmission delays: a low-variance
regime and a high-variance regime. In fact, as illustrated in Figure 4.1 and 4.2, as the
variance of the transmission delays grows, the optimal sensor set must change in order to
fit the growing difficulty of source localization.

These results were published in [Spinelli et al., 2016, 2017a].

4.1 Overview

We study the choice of sensors for source localization and, in particular, how it is affected
by the amount of randomness (i.e., the variance) of the transmission delays {Xuv}uv∈E .
To this end, we separately analyze two different regimes for the amount of randomness of
the transmission delays: low-variance and high-variance. A dichotomy exists between
the two, and our approach for sensor placement differs. We take a principled approach
that begins with considering deterministic transmission delays (zero-variance regime),
and we build on this intuition in order to develop heuristics for both low-variance and
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Placement
for Low-Variance

Placements
for High-Variance

σ0 σ0 σ1 σ2 σF...

U0 U1 UF

Figure 4.1 – Sequence of optimal sensor placements for increasing transmission variance.
We assume the transmission transmission delays {Xuv}uv∈E to be such that E[Xuv] =
wuv ∈ R+ and such that the variance is a growing function of a variance parameter
σ, i.e., Var(Xuv) = g(wuv, σ) with g(x, 0) = 0 for all x ∈ R+. For σ ∈ (0, σ0) the
transmission delays are effectively deterministic (i.e., σ does not affect source localization).
For σ ∈ (σ0, σ1), σ affects the accuracy of source localization but the optimal sensor
placement is still U0. For larger σ, the optimal sensor placement might change, possibly
multiple times (Uk denotes the optimal placement for σ ∈ (σk, σk+1)) up to σ = σF . For
σ > σF the optimal placement remains the same (UF ).

high-variance regimes.

Low-Variance Regime

When the variance in the transmission delays is low (see Section 4.3), we prove that the
set of optimal sensors is exactly the optimal set for the zero-variance regime. In the zero-
and low- variance regime, both the probability of success Ps (as well as other possible
metrics of interest) can be explicitly computed. Despite this seeming simplicity, the
problem remains NP-hard (see Section 1.2.4). As in Chapter 3, we tackle the problem by
using its connection with the well-studied double-resolving-set (DRS) problem [Cáceres
et al., 2007] that minimizes the number of sensors with which the source can be localized.
This minimum number is, in many cases, still prohibitively large, hence we cannot use
this approach directly. However, from the connection between sensor placement and DRS,
we find inspiration for our algorithm which, by selecting one sensor at a time in order to
reach a DRS set until the budget is exhausted, greedily improves Ps (see Section 4.3).
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Figure 4.2 – Optimal sensors for Gaussian-distributed transmission delays with unit mean
and standard deviation σ on a path network. In this case Ps and, consequently, the
optimal sensor placements, can be explicitly computed. (a): different sensor placements;
(b): their performance in terms of probability of success Ps for w = 20 and 30 edges.

High-Variance Regime

When the noise in the transmission delays is high, it is no longer negligible and it poses
an additional challenge to source localization; in effect, the accumulation of noise from
node to node as the epidemic spreads might no longer enable us to distinguish between
two potential sources, especially when they are both far from all sensors. Hence, we must
strengthen the requirements for sensor placement in order to ensure that the nodes can
be distinguished by sensors that are near to them; this nearness is a function of the noise,
of the budget K, and of the network topology. We define a novel objective function that
both maximizes the success probability and imposes a uniform spread of sensors in the
network. Taking inspiration from the low-variance regime, we design an algorithm that
greedily maximizes this new objective (see Section 4.4).

Empirical Results

In Section 4.5, we evaluate our algorithms on three different real-world datasets that
represent different application areas for source localization and different network topolo-
gies. First, we take a community of people living in the proximity of a university
campus [Aharony et al., 2011], a typical network for the transmission of airborne diseases.
Second, we take a community of students exchanging messages over a Facebook-like social
network [Opsahl and Panzarasa, 2009] through which ideas and trends can propagate.
Finally, we consider the road network of the state of California [Census]: This captures
geographical networks that can model the transmission of a disease between connected
communities or the diffusion of contaminants, e.g., through a hydrological network. We
show that our methods perform favourably against state-of-the-art approaches in both
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Chapter 4. The Effect of the Transmission-Delays Variance

the low- and the high-variance regimes yielding an improvement of up to 50%. (see
Section 4.5.2). Moreover, in the empirical results, the dichotomy between the low- and
high-variance regimes becomes apparent.

4.2 Preliminaries

4.2.1 Model

We assume the epidemic model described in Section 1.2. Recall that the transmission

delay through edge uv, i.e., the time it takes for a node u to infect a neighbor node
v is encoded by the random variable Xuv. We consider a transmission model which is
both natural and versatile as it comprises deterministic transmissions, which we call
zero-variance, and arbitrary random independent transmission models. A large part of
the epidemic literature models transmission delays with exponential random variables.
However we make a different modeling choice for two reasons. First, we are interested in
decoupling the transmission variance and the average transmission time (for exponential
random variables, mean and variance cannot be tuned independently). Second, in many
applications it has been suggested that the transmission delays can be less-skewed than
exponential random variables [Cha et al., 2009, Lessler et al., 2009, Vergu et al., 2010].
For every edge uv we assume Xuv to be a symmetric and non-negative1 random variable.
We do not make any strong assumption on the distribution of the transmission delays
Xuv: we only assume that their mean is equal to the edge weights, i.e., E[Xuv] = wuv for
every uv ∈ E, and that their variance is an increasing function of both the edge weight
and of a variance parameter σ, that is, Var(Xuv) = g(wuv, σ), where g depends on the
particular distribution of Xuv and g(x, 0) = 0 for all x ∈ R+.

If the variance parameter is zero, or if it is low compared to the edge weights, network
distances are a good proxy for time delays (see Section 1.2.2 and Section 4.3 here). We
refer to this setting as a low-variance regime, as opposed to the high-variance regime in
which time delays are very noisy and network distances no longer work as a proxy for
time delays.

4.2.2 Source Localization

Let U ⊆ V be the set of sensors (which we will select). We assume we know the time
at which each sensor is infected, and we refer to this vector of infection times as TU .
Knowing TU is a standard and realistic assumption [Netrapalli and Sanghavi, 2012]. We
want to identify the source using only the information contained in TU . We use maximum

1Note that in Figures 4.2 and 4.3a we compute the value of the success probability Ps assuming
Gaussian distributed delays (and ignoring that, with low probability, negative delays could appear)
because this is the only distribution that makes the exact computation of this value feasible. However, in
all experiments we only consider non-negative distributions for Xuv.
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likelihood estimation (MLE) to produce an estimate v̂ of the true unknown source v⋆

as in Pinto et al. [2012]. This approach is common (see e.g., Shah and Zaman [2011],
Dong et al. [2013]), although the exact form of the estimator depends on the model and
assumptions. In our case we have

v̂ ∈ argmaxs∈V P(TU |v⋆ = s)π(v⋆),

where π denotes the prior on the identity of the source. In this chapter we assume π to
be uniform (i.e., π(v) = 1/N for all nodes v ∈ V ).

4.2.3 Metrics

We assume that we are given a budget K on the number of sensors we can use, and that
we must select our sensors once and for all, i.e., independently of any particular epidemic
instance. In order to select the best set of sensors U of size K we must first define our
metric of interest. In this chapter we are mainly interested in the success probability

Ps = P(v̂ = v⋆)

which is a widely used metric for source localization (see, e.g., Shah and Zaman [2011],
Pinto et al. [2012], Louni and Subbalakshmi [2014]). In our experiments we also evaluate
another important metric, the expected distance between the estimated source and the
real source, i.e., De = E[d(v⋆, v̂)], where d denotes the distance between two nodes in the
network.

4.3 The Low-variance Regime

In the zero-variance setting, i.e., when Xuv = wuv for every edge uv ∈ E the equivalence
class of the source can be identified based on the observation vector tu1 as described in
Section 3.2.

As in Chapter 3, if a prior distribution π on the identity of the source is given, after the
class of the source is identified we can generate an estimated source v̂ sampling from
π|[v⋆](u) = P(v⋆ = v|v ∈ [v⋆]). If a prior π is not known, we sample v̂ uniformly at
random from [v⋆], which is equivalent to having a uniform prior π.

Actually, we can estimate the source with this simple algorithm also in a more general
low-variance setting. In fact, as mentioned in Chapter 3, if the transmission delays
are random but do not deviate much from their average values we are always able to
identify the equivalence class to which the real source belongs by finding the class [v] that
minimizes the distance between the distance vector dv,u1 and the observation vector tu1 .
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4.3.1 Noise Tolerance

Proposition 4.1 extends Proposition 3.1 to the case of general networks proving a looser
version of the bound on tolerated-noise of Section 3.2.

Proposition 4.1. Let G(V,E) be a network of size N , U ⊆ V and fix u1 ∈ U . Call

φ � min
v,z:dv,u1 �=dz,u1

‖dv,u1 − dz,u1‖∞

and call ∆ the maximum distance in any shortest path between any node and any sensor.

If the transmission delays are such that for each uv ∈ E, Xuv ∈ [wuv(1− ε), wuv(1 + ε)]

with ε < ε0 � φ/(4∆), the equivalence class of the source is [v⋆] = [v] such that

[v] = argmin
z∈V

‖dz,u1 − tu1‖∞.

Proof. Let tu′ be the infection time of u′ ∈ U . When the source is v⋆ we have

tu′ − t⋆ ≤ d(v⋆, u′)(1 + ε). (4.1)

Moreover, if Q is the collection of all paths connecting v⋆ and u′ and, for p ∈ Q, if
dp(v

⋆, u′) is the (weighted) length of path p we have

tu′ − t⋆ ≥ min
p∈Q

dp(v
⋆, u′)(1− ε) = d(v⋆, u′)(1− ε). (4.2)

Combining inequalities (4.1) and (4.2) for u′ being, respectively, u and u1 and calling t1
(resp., tu) the infection time of the reference sensor u1 (resp., u), we have

|tu − t1 − d(v⋆, u) + d(v⋆, u1)| ≤ ε(d(v⋆, u) + d(v⋆, u1)) ≤ 2ε∆.

Since for every v ∈ [v⋆] dv,u1 = dv⋆,u1 , we conclude that for every v ∈ [v⋆], ‖dv,u1 −
tu1‖∞ ≤ 2ε∆.

Take now v /∈ [v⋆] and assume by contradiction that ‖dv,u1 − tu1‖∞ ≤ 2ε∆. Using the
triangular inequality and the hypothesis ε < φ/4∆ we have

‖dv⋆,u1 − dv,u1‖∞ ≤ ‖dv⋆,u1 − tu1‖∞ + ‖dv,u1 − tu1‖∞ ≤ 4ε∆ < φ,

which contradicts the definition of φ. Hence for every v /∈ [v⋆], ‖dv,u1 − tu1‖∞ > 2ε∆.

Note that here ε0 plays the role of σ0 in Figure 4.1 in the sense that it is an upper-bound
on a regime in which the delays are effectively deterministic and the variance of the
transmission delays does not affect the accuracy of source localization.

74



4.3. The Low-variance Regime

For the remainder of this section, we will assume ε < φ/4∆, which we call the low-variance
regime.

4.3.2 Algorithm for Sensor Placement

Applying Proposition 4.1, the success probability Ps, as well as other possible metrics of
interest, can be computed exactly in polynomial time independently of the topology of the
network G (see, e.g., Equation (1.3) and (1.4) in Chapter 1). In fact, due to Lemma 1.9
and Theorem 4.1, it is enough to compute the distance vector of Definition 1.3 for all the
nodes. Nonetheless, if we have a budget K ≥ 2 of nodes that we can choose as sensors,
finding the configuration that maximizes Ps is an NP-hard problem (see Section 1.2.4).

For trees, the optimal sensor placement can be find in polynomial time using dynamic
programming techniques (see Chapter 3). In a general network (with loops) the problem
of source localization is made more challenging by the multiplicity of paths through
which the epidemic can spread and for the same reason also finding an optimal sensor set
becomes much harder.

A first idea to solve sensor placement on a general network could be to use the latter result
on a breadth-first-search (BFS) approximation of the network. However, as mentioned
in Section 1.2.4, on a tree the optimal sensor placement is contained in the leaf set.
If we consider a non-tree network and take a BFS-approximation, the leaves of the
BFS tree depend on where the BFS-tree is rooted. Hence, by applying the result of
Chapter 3 to a tree approximation, it is not possible to guarantee high probability of
success independently of the identity of the source.

Our approach, presented in Algorithm 4, does not rely on a network approximation.
Moreover, it is specifically designed for the source localization problem and has a simple
greedy structure: for every node v ∈ V , initialize U ← {v} and iteratively add to U the
node u that maximizes the gain with respect to the success probability until we either run
out of budget or Ps = 1. Equation (1.3) ensures that greedily maximizing Ps is equivalent
to greedily maximizing the number q of equivalence classes. When adding an element to
the sensor set, the partition in equivalence classes can be updated in linear time, hence
the total runtime of our algorithm is O(KN3). Despite bypassing the NP-hardness of
the problem, this might not be sufficiently fast for very large networks. However, the
algorithm is extremely parallelizable (see, for example, the main for loop and the argmax

in the while loop).

The sensor placement obtained through Algorithm 4 will be denoted LV-Obs to emphasize
the fact that it is designed for the case in which the variance is absent or very small (LV

stands for low-variance regime).

Unfortunately we cannot use a submodularity argument to give guarantees on the
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Chapter 4. The Effect of the Transmission-Delays Variance

Algorithm 4 (LV-Obs): sensor placement for the low-variance setting.

Require: Network G, budget K
for v ∈ V do

Uv ← v
while Ps(Uv) �= 1 and Uv < K do

u ← argmaxz∈V \Uv
[Ps(Uv ∪ {z})− Ps(Uv)]

Uv ← Uv ∪ {u}.
return argmaxv∈V Ps(Uv)

performance of Algorithm 4 because the number of equivalent classes, and hence the
function Ps, are not submodular. Consider as a simple example a cycle C of length 6 as
in Figure 4.4a. If the sensor set is U1 = {1}, the number of equivalence classes is q = 1. If
we add node 2 to U1 the classes become {1, 5, 6} and {2, 3, 4} (q = 2). Hence by adding
node 2 to the set {1} the gain in terms of equivalence classes is just 1. Consider now
U2 = {1, 4} ⊇ U1, which identifies as classes {1}, {4}, {2, 6} and {3, 5}. If again we add
node 2 to U2 we reach a DRS of C, i.e., all classes are singletons. This means that the
gain in terms of equivalence classes is 6− 4 = 2 > 1 and we conclude that the number of
equivalence classes is not submodular.

4.3.3 The Approximating Algorithm of [Chen et al., 2014]

Chen et al. [2014] proposed a (1 + o(1)) log(N)-approximation algorithm to find the
minimal size of a DRS, i.e., the double metric dimension (DMD) defined in Section 1.2.2.
Their algorithm is based on a minimization of an entropy function2 and shares with
lv-Obs the property of being greedy. The entropy minimized by Chen et al. [2014] is
defined as follows.

Definition 4.2 (Entropy of Chen et al. [2014]). Let G a network, U ⊆ V , a set of sensors.

The entropy of U is

HU = log2

( ∏

[u]U⊆V

|[u]U |!
)

Note that HU is minimized if and only if each equivalence class consists of only one node
and hence if and only if Ps = 1 (see Section 1.2.3).

However, despite the fact that HU is minimized when Ps is maximized and that both act
on the same set of equivalence classes for a given U , the greedy processes that minimize
HU and maximize Ps are not the same. This can be seen by rewriting both objective
functions in the following way. Let c1, . . . , cq be the sizes of the equivalence classes. Then

2Note that this has no connection to the information-theoretic entropy
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4.3. The Low-variance Regime

HU can be written as

HU (c1, .., cq) =
l∑

i=1

ci∑

j=2

log(j) =

max cj∑

i=2

log(i) · |{cj ≥ i}|.

Analogously we have the following equality for the success probability

Ps(c1, . . . , cq) = N(1− Ps(c1, . . . , cq)) = N − q =

max cj∑

i=2

|{cj ≥ i}|.

Hence, though similar in spirit, a greedy minimization of HU is not related to a greedy
maximization of Ps.

4.3.4 Comparison with Benchmarks

As budgeted sensor placement (even in the zero-variance setting) is NP-hard, there is
no optimal algorithm to compare against. Instead, we evaluate the performance of our
algorithm against a set of natural benchmarks that have shown to have good performance
in other works [Seo et al., 2012, Berry et al., 2006, Zhang et al., 2016] (see Section 4.5.2
for a discussion of these benchmarks, Figure 4.8-4.10 for the results).

We further compare LV-Obs against two other natural heuristics that also optimize an
objective function greedily.

Alternative Objective Functions

The first baseline heuristic we consider is an adapted version of the approximation algo-
rithm for the DRS problem proposed by Chen et al. [2014] and described in Section 4.3.3.
By stopping the greedy process after it selects K nodes, we can adapt in a natural way
this approximation algorithm and create a heuristic for the budgeted version that we
denote by Φent. We want to check if LV-Obs actually reaches smaller values of Ps

compared to Φent.

The second is a greedy minimization of the expected error distance De = E[d(v⋆, v̂)] of
Equation (1.4) that we denote by Φdist. Even if LV-Obs is not directly minimizing De,
we want to compare the results we obtain in terms of De with those obtained by Φdist in
order to check if, at least in some budget regimes, we can use the maximization of Ps as
a proxy for the minimization of De.

Let us here denote LV-Obs with Φ for consistency of notation. Table 4.1 compares
LV-Obs, Φent and Φdist, for different topologies and different budgets k, in terms of both
Ps and De. The results are given in the form of (averaged) relative differences.We denote
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Random Geometric Network, N = 100, r = 0.2

ρ(Ps,Φ,Φdist) ρ(De,Φdist,Φ) ρ(Ps,Φ,Φent)

k = 2 -0.205 0.101 -0.033
k = 4 -0.014 -0.003 -0.007
k = 8 -0.003 -0.002 -0.003

Barabási Albert Network, N = 100, m = 3

ρ(Ps,Φ,Φdist) ρ(De,Φdist,Φ) ρ(Ps,Φ,Φent)

k = 2 -0.168 0.023 -0.037
k = 4 -0.039 0.025 -0.028
k = 8 -0.004 -0.003 0.005

Table 4.1 – Comparison of LV-Obs (Φ) with the greedy algorithms that minimize the
entropy function of Chen et al. [2014] (Φent) and the expected distance (Φdist)

the relative difference of x and y with respect to f as

ρ(f, x, y)
def
=

f(y)− f(x)

f(x)
.

Since the expected distance can be equal to 0 we add 1 to the denominator when comparing
values of De, i.e.,

ρ(De, x, y)
def
=

De(y)−De(x)

De(x) + 1
.

The results achieved by Φent and Φdist are, on average, worse than those of Algorithm
4 both in terms of Ps and of De, independently of the network topology. We observe
two exceptions. First, when k is very small: Φdist reaches smaller values of De compared
to LV-Obs, which can be explained by the fact that Φdist directly minimizes De and
that, when fewer sensors are available the difference between the sensor placements that
maximize Ps and minimize De is greater. Second, for large k, on the Barabási Albert
networks Φent gives, in average, larger Ps than LV-Obs. This is probably due to the
fact that, for this class of networks, the DMD is small, hence with a large value of k we
approach the regime in which the objective function of Φent, designed to minimize the
DMD of the network, is optimal.

4.4 The High-variance Regime

When the variance is not guaranteed to be low, as defined in Section 4.3, computing
analytically the success probability - or other metrics of interest - is unfortunately not
possible (except for very simple networks, like the path network of Figure 4.2, and for
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Figure 4.3 – (a): Success probability Ps on a path of length L for increasing variance σ.
(b): Counterexample for the converse of Lemma 4.3; for each pair of sensors in U , u is
not contained in the shortest path between them, yet U is a DRS.

particular transmission delays, e.g., Gaussian-distributed).

When the variance is high, also the localization of the source is more challenging because
the observed infection delays ti − tj can be misleading, especially if the corresponding
sensors ui and uj are far from the source. Take, for example, a path of length L where
the two leaves are the only two sensors and all edges have weight equal to 1. Figure 4.3a
shows how the success probability Ps decays faster for increasing values of L. Building
on this observation, we propose a strategy for sensor placement that enforces a controlled
distance from a general source node to the sensor set.

4.4.1 Estimation of the Source

For the high-variance case we localize the source using an adapted version of the algorithm
proposed by Pinto et al. [2012]. This adapted algorithm can be seen as a generalization
to the high-variance regime of the source localization method used for the low-variance
regime.

Denote by TU the vector of the observed infection times. If the transmission delays are
Gaussian-distributed, G is a tree, the maximum likelihood (ML) estimator defined as

v̂ ∈ argmax
v∈V

P(v|TU ),

has a tractable closed form [Pinto et al., 2012]. Note that the model of Pinto et al. [2012]
additionally assumes that the infected sensors reveal which neighbor infected them; this
assumption is not essential for the derivation of the ML estimator and it is not required
in our work.
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In particular, given a set of sensors

U = {u1, u2, . . . , uK} ⊆ V,

and assuming that, Xuv ∼ N (wuv, σwuv), the vector of the observed infection delays
tu1 = [t2 − t1, . . . , tK − t1] ∈ RK−1 is distributed as N (dv,u1 ,ΛU ) where dv,u1 is the
distance vector of Definition 1.8 and the covariance matrix Λu1 is

Λu1,(k,i) = σ2

{ ∑
(u,v)∈P(u1,uk+1)

w2
uv k = i∑

(u,v)∈P(u1,uk+1)∩P(u1,ui+1)
w2
uv k �= i.

(4.3)

Hence the ML estimator is

v̂ ∈ argmax
v∈V

exp

(
− 1

2(tu1 − dv,u1)
⊤Λu1

−1(tu1 − dv,u1)

)

|Λu1 |1/2

= argmax
v∈V

[
d⊤
v,u1

Λu1
−1(tu1 −

1

2
dv,u1)

]
.

(4.4)

On non-tree networks, the multiplicity of paths linking any two nodes makes source
estimation more challenging. As claimed in [Pinto et al., 2012], the same estimator can
be used as an approximation of the ML estimator for a non-tree network by assuming
that the diffusion happens only through breadth-first-search (BFS) tree rooted at the
(unknown) source. In this case the paths which appear in the definition of the covariance
matrix Λu1 are computed on the BFS tree rooted at the candidate source considered.
Hence Λu1 depends on the candidate source and the ML estimator is

v̂BFS ∈ argmax
v∈V

exp

(
− 1

2(tu1 − dv,u1)
⊤Λv

u1

−1(tu1 − dv,u1)

)

|Λv
u1
|1/2 . (4.5)

In this work, we adopt (4.5) as the source estimator in the noisy case. In fact, even we
do not assume transmission delays to be Gaussian-distributed, under the hypothesis of
sparse observations, we can apply the Central Limit Theorem (CLT) to approximate the
sum of the edge delays with Gaussian random variables: if all edges have the same weight
we can apply the CLT for i.i.d. random variables; if this is not the case, we can apply
Lyapunov’s version of the CLT.3 Finally, using (4.5) to compute the ML estimator, the
likelihood of nodes in the same equivalence class can result to be different as an artefact
of the BFS approximation. Hence, for consistency with our source localization method in

3Lyapunov condition with δ = 1 is easily verified for a sequence of independent and uniformly bounded
random variables (see Example 27.4 in [Billingsley, 1995] for more details).
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the low-variance case, we compute an average likelihood and estimate that the source is
in the class with the higher average likelihood. Then, once an equivalence class for the
source is estimated, we select v̂ by sampling the prior probability on the identity of the
source (if available), or by uniform sampling, from the estimated equivalence class.

4.4.2 Algorithm for Sensor Placement

First, we formalize why distances between sensors are important. Recall that for every
transmission delay Xuv we assume Var(Xuv) = g(wuv, σ), with g being an increasing
function of both its arguments. If ui, uj are two sensors connected by a unique path
P(ui, uj) and the source is v⋆ ∈ P(ui, uj), then

Var(ti − tj) =

[ ∑

uv∈P(ui,uj)

g(wuv, σ).

]
. (4.6)

For example, if Xuv ∼ N (wuv, σ
2w2

uv) we have

Var(ti − tj) = σ2

[ ∑

uv∈P(ui,uj)

w2
uv

]
. (4.7)

Although we cannot control σ, we can control the path length between sensors.

We make use of the following sufficient condition for a set to be a DRS, i.e., for a sensor
set to guarantee correct source localization.

Lemma 4.3. Let G(V,E) be a network, U ⊆ V . If for every u ∈ V there exist u1, u2 ∈ U
such that there is a unique shortest path P(u1, u2) between u1 and u2 and u ∈ P(u1, u2),

then U is a DRS for G.

Proof. Let u, v ∈ V \U . We will prove that there exist u1, u2 ∈ U such that the pair (u, v)

is resolved by (u1, u2), i.e., d(v, u1)− d(u, u1) �= d(v, u2)− d(u, u2). Let u1, u2 ∈ U such
that u appears in the unique shortest path P(u1, u2) and u3, u4 ∈ S such that v appears
in the unique shortest path P(u3, u4). If v ∈ P(u1, u2) or u ∈ P(u3, u4) than u and v are
resolved by, respectively, (u1, u2) or (u3, u4). Take v /∈ P(u1, u2) and u /∈ P(u3, u4). In
this case, {u1, u2} �= {u3, u4}. Let us suppose without loss of generality that u1 /∈ {u3, u4}.
We look only at the case where (u1, u2) does not resolve (u, v) and prove that the pair
is indeed resolved by two nodes in U . Since (u1, u2) does not resolve (u, v), there exists
c ∈ R such that d(v, u1)− d(u, u1) = c = d(v, u2)− d(u, u2). Since the unique shortest
path between u1 and u2 goes through u we have that c > 0. We prove that either (u1, u3)

or (u1, u4) resolves (u, v). If this was not the case, we would have the following equalities:

c = d(v, u1)− d(u, u1) = d(v, u3)− d(u, u3)

c = d(v, u1)− d(u, u1) = d(v, u4)− d(u, u4).
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Figure 4.4 – Counterexamples for the submodularity property of Algorithm 1 (a) and
Algorithm 2 (b). For the network in (a) (respectively, (b)) the gain of adding the node
with red border to U2 is larger in terms of Ps (respectively, PL) than the gain of adding
it to U1 ⊆ U2.

Since c > 0, d(v, u3) > d(u, u3) and d(v, u4) > d(u, u4) giving a contradiction with v (and
not u) being on the shortest path P(u3, u4). We conclude that (u, v) are resolved by
either (u1, u3) or (u1, u4).

The converse of this lemma is not true: If U double resolves G, it is not even true that for
every node u there must exist u1, u2 ∈ U such that u is contained in some shortest path
between u1 and u2 of (see Figure 4.3b).

Path Covering Strategy

We take Lemma 4.3 as a basis for deriving a path covering strategy for sensor placement.
In practice, the condition about the uniqueness of the shortest path is too strong and
excludes many potentially useful sensors. Experimentally we see that in many practical
situations two shortest paths differ only by a few nodes and the majority of nodes on
the path are resolved by the two extreme nodes. This is why we relax the condition of
Lemma 4.3 and we prefer, when the shortest path is not unique, to select one arbitrarily.
Let U ⊆ V be a set of sensors and L a positive integer: We call PL(U) the set of nodes
that lie on a shortest path of length at most L between any two sensors in the set U .
Given a budget K, and a positive integer L, we denote by U⋆

K,L the set of K nodes
that maximize the cardinality of PL(U). We call L the length constraint for the sensor
placement because we consider an sensor to be useful for source localization only if
it is within distance L from another sensor. U⋆

K,L can be approximated greedily as in
Algorithm 5. The runtime of Algorithm 5 is O(N2K2), however, as Algorithm 4, this
algorithm is highly parallelizable and hence tractable even for large networks.

We will refer to the sensor placement produced by Algorithm 5 as HV-Obs(L) to
emphasize that it is designed for the high-variance case.

Unfortunately also for Algorithm 5 we cannot use a submodularity argument to derive
approximation guarantees. In fact, the function PL is not submodular. Consider the path
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4.4. The High-variance Regime

Algorithm 5 (HV-Obs): sensor placement for the high-variance setting.

Require: Network G(V,E), budget K, length constraint L
N ← |G|
for v ∈ V do

Uv ← v
while |PL(Uv)| �= N and Uv < K do

u ← argmaxz∈V \Uv
[|PL(Uv ∪ {z})| − |PL(Uv)|]

Uv ← Uv ∪ {u}.
return argmaxv∈V |PL(Uv)|
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0.2

0.4

0.6
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L
|/n

KMED

LV-Obs

HV-Obs

Figure 4.5 – Fraction of nodes in PL(·) for the CR dataset with 2% of sensors.

P of 7 nodes in Figure 4.4b, fix L = 3 and set U1 = {1}. If we add node 7 to U1 no node
lies on a path of length smaller than L = 3 among the two sensors 1 and 7, hence the
gain is 0. Consider now U2 = {1, 4} ⊇ U1. If we add node 7 to U2, the gain is 3 because
node 5, 6 and 7, that did not lie on any path of length smaller than L connecting two
sensors before, now lie on the path connecting 4 and 7, hence PL is not submodular.

Comparison with Algorithm 4

Note that taking L equal to the maximum weighted distance ∆m between two nodes in G
does not make Algorithm 5 equivalent to Algorithm 4, i.e., we do not obtain LV-Obs. To
see how the two algorithms could give different results, take a cycle of odd length d with a
leaf ℓ added as a neighbor to an arbitrary node v and assume to start the algorithm with
initial set {v}. At the first step, the two algorithms will make the same choice, choosing
one of the two nodes that are at distance (d− 1)/2 from v. At the second step however,
LV-Obs will add ℓ (by Corollary 1.7 a DRS contains all leaves), whereas Algorithm 5 will
add a node on the cycle. This observation is key to our results because it explains why
Algorithm 5 results in a more uniform (and hence variance-resistant) sensor placement
with respect to LV-Obs. HV-Obs operates a trade-off between the average distance to
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Figure 4.6 – Fraction of nodes in PL(HV-Obs) and success probability in the zero-variance
regime (Ps(σ = 0)) as a function of L/∆m.

the sensors and the maximization of Ps.

Choice of the L parameter

How could one optimally set L? Needless to say, the optimal L depends on the network
topology and on the available budget: Clearly, for a larger budget a smaller L is preferred.
The cardinality of PL(U) is a good proxy for the performance of U . The value |PL|
is increasing in L and reaches its maximum for L equal to the maximum weighted
distance ∆m. For small L, |PL(HV-Obs)| < |P∆m(LV-Obs)| but for L large enough
this is no longer the case. See Figure 4.5 for an example. Our empirical results suggest
that L should be chosen as the maximum for which |PL(HV-Obs)| ≤ |P∆m(LV-Obs)|.
The key property of HV-Obs with respect to LV-Obs is that sensors are spread more
uniformly without losing too much in terms of success probability Ps: Figure 4.6 shows
|PL(HV-Obs)| and Ps as a function of L. An a-priori evaluation of the variance threshold
above which one should use the HV-Obs placement (and of the appropriate value of
the L parameter) can be based on the comparison of Ps on a path network for different
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(a) lv-Obs (b) hv-Obs, L
∆m

= 0.5

(c) KMED

Figure 4.7 – Comparison of the oberver placements LV-Obs, HV-Obs ( L
∆m

= 0.5) and
KMED with K = 5% on the F&F network. Note the difference between LV-Obs and
HV-Obs: LV-Obs contains leaves while HV-Obs has shorter spacing.

values of L and σ as in Figure4.3a. In fact, looking at Figure4.3a we see that, for small
values of σ Ps is very close to 1 independently of L, hence LV-Obs is the best solution.
When σ grows, we see that, in order to guarantee an high Ps one must choose smaller
and smaller values of L. LV-Obs and HV-Obs can give drastically different sensors (see
Figure 4.7 for an example).

4.5 Experimental Results

4.5.1 Datasets

We purposely run our experiments on three very different real-world networks that, in
addition to being relevant examples of networks for epidemic spread, display different
characteristics in terms of size, diameter, clustering coefficient and average degree (see
Table 4.2), enabling us to test the performance of our methods on various topologies. The
three networks we consider are:

⋄ Friend & Families (F&F). This is a dataset containing phone calls, SMS exchanges
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|V | |E| min(wuv) avg(wuv) max(wuv)

Friends & Families (F&F) 120 563 4 5.58 7
Facebook Messages (FB) 1020 6205 1 2.97 5
California Roads (CR) 1259 1801 1 1.71 9

Avg Degree Diameter Avg Distance Avg Clustering

Friends & Families (F&F) 9.38 6 17.5 0.67
Facebook Messages (FB) 12.16 5 6.69 0.09
California Roads (CR) 2.86 66 55.3 0.2

Table 4.2 – Statistics for the networks examined

and bluetooth proximity, among a community living in the proximity of a university
campus [Aharony et al., 2011]. We select the largest connected component of
individuals who took part in the experiment during its whole duration. The edges
are weighted, according to the number of phone calls, SMSs, and bluetooth contacts.

⋄ Facebook-like Message Exchange (FB) [Opsahl and Panzarasa, 2009]. As the
individuals included in this dataset were living on the same university-campus,
the number of messages exchanged is likely to be a good measure of in-person
interaction. We selected links on which at least one message was sent in both
directions and individuals that had a contact with at least one other individual.

⋄ California Road Network (CR) [Census]. In order to obtain a single connected
component and remove points that effectively represent the same location, we
collapsed the points falling within a distance of 2 km. Moreover we iteratively
deleted all leaves. In fact, the roads that cross the state border are not completely
tracked in this dataset and terminate with a leaf. Some other leaves might represent
remote locations, not necessarily close to the borders, but their influence on the
epidemic should anyway be very low. The diameter of the CR network is very large
compared with that of the other two networks. The edges are weighted according
to a rescaled version of the real distance (measured in km).

In all three networks, edges are given (non-unit) integer weights, which is realistic in
many applications as the expected transmission delays are known only up to some level
of precision. Integer weights do not simplify the localization of the source; in fact, this
makes it more difficult to distinguish between nodes. For example, if the edges of the CR
network were weighted according to the Euclidean distance between the two endpoints,
LV-Obs would use only a very small portion of the budget and the comparison with
other sensor placements would not be meaningful.
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Figure 4.8 – Success probability Ps as the variance parameter σ increases.
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Chapter 4. The Effect of the Transmission-Delays Variance

4.5.2 Comparison with Benchmarks

We compare LV-Obs and HV-Obs against the following benchmarks:

⋄ ABC (Adaptive Betweenness Centrality): Betweenness Centrality (BC) is a popular
method for placing sensors for source localization (see, e.g., Louni and Subbalakshmi
[2014] and Seo et al. [2012], where it emerges as the best heuristic for sensor placement
among those tested). It consists of the K nodes having the largest BC, which is
defined, for all u ∈ V as

BC(u) =
∑

x,y∈V,x �=y

ψx,y(u)

ψx,y

where ψx,y is the number of shortest paths between x and y and ψx,y(u) is the number
of those paths that passes through u. Here we consider an adaptive version of BC
(ABC) which iteratively chooses the node that maximizes the betweenness centrality
without considering the shortest paths that pass by already-chosen nodes [Yoshida,
2014]. ABC, with respect to the basic BC, gives less clustered, and hence more
efficient, sensor sets.

⋄ Coverage [Zhang et al., 2016]: This approach maximizes the number of nodes that
have a sensor as neighbor, i.e.,

C(U) =

∣∣∣
⋃
u∈U

Nu

∣∣∣

N

where Nu denotes the set of neighbors of u. It has been shown to outperform several
heuristics with a diffusion model and a source localization setting that are very
similar to ours [Zhang et al., 2016].

⋄ K-Medians (KMED): this is the optimal placement for the closely-related problem
of maximizing the detectability of a flow [Berry et al., 2006]. The KMED placement
is the set of K nodes U such that

U = arg min
|U|=K

∑

v∈V

min
u∈U

d(v, u).

Determining the KMED of a network is NP-hard [Kariv and Hakimi, 1979], hence
we approximate KMED with a greedy heuristic.

4.5.3 Distributions for the Transmission Delays

Unless otherwise specified, we sample the transmission delays Xuv from truncated Gaussian
random variables with parameters

(
wuv, σwuv,

[
wuv
2 , 3wuv

2

])
. More precisely, if Yuv ∼
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N (wuv, σwuv) is a Gaussian random variable, Xuv is obtained by conditioning Yuv with

Yuv ∈
[
wuv
2 , 3wuv

2

]
. With respect to the delay distribution assumed by Pinto et al. [2012]

i.e., Xuv ∼ N (wuv, σwuv), the distribution we assume has the advantage of admitting
only strictly positive transmission delays. Furthermore, different values of the parameter
σ result in different regimes for the transmission delays, making our model very versatile.
When σ = 0, we are in the zero-variance regime; when σ is large, the distribution of Xuv

becomes closer to a uniform random variable U
([

wuv
2 , 3wuv

2

])
. Finally, when σ is strictly

positive but small, Xuv ≈ N (wuv, (σwuv)
2).

To assess the robustness of our approach for source localization and sensor placement,
we also experiment with uniformly distributed transmission delays, i.e., for every edge
uv ∈ E, we take Xuv ∼ Unif([(1 − ε)wuv, (1 + ε)wuv]). The uniform distribution is,
among the unimodal distributions on a bounded support, the one that maximizes the
variance [Gray and Odell, 1967]. Hence, uniform delays are a very challenging setting for
source localization.

4.5.4 Evaluation of the Probability of Success and of the Expected

Error Distance

We estimate the probability of success Ps and the expected error distance De for different
values of the variance parameter σ. Our estimations are computed averaging the results
obtained by choosing each node in turn as the source and generating synthetic epidemics.
For the FB and the CR datasets, we run 5 simulations per node and value of σ; for the
F&F dataset, as the network is smaller, we run 20 simulations per node and value of σ.
For the FB and CR datasets, we localize the source based on the first 20 observations
only: Given the large size of these networks, it would be unrealistic to wait for all the
nodes to get infected before running the algorithm.

The results for Ps are displayed in Figure 4.8. An approximation of the value σ1, above
which HV-Obs outperforms LV-Obs, is marked with a vertical line. For the expected
distance (weighted and in hops), see Figure 4.9.

We first take as budget for the sensors the minimum budget for which Ps(LV-Obs) = 1.
This corresponds to K ∼ 10% for the F&F dataset, K ∼ 9% for the CR network and
K ∼ 5% for the FB dataset. This is the setting in which we expect the improvement
of HV-Obs over LV-Obs to be especially strong: For smaller values of K we expect
LV-Obs to be nearly optimal even in the high-variance regime because we do not have
enough budget to contrast both the topological undistinguishability among nodes (what
LV-Obs is designed for) and the accumulation of variance (what HV-Obs is designed
for).

For the F&F and the CR networks, we also experiment with smaller percentages of sensors
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Figure 4.9 – Expected error distance De = E[d(v⋆, v̂)] in number of edges (first row) and
in weighted path length (second row) as the variance parameter σ increases. For the plots
on the right-hand side, see the plots on the left-hand side for the legend.
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4.6. Discussion

and consistently find an improvement of HV-Obs over LV-Obs in the high-variance
regime: Below a certain amount of variance σ1, LV-Obs performs better than HV-Obs

for any choice of the parameter L, whereas above σ1 a calibrated choice of L leads to a
significant improvement. Such L stays constant for all σ > σ1, i.e., with the notation of
Figure 4.1, we have σ1 = σF .

Instead, for the FB dataset, probably due to the low diameter with respect to the number
of nodes, we observe that HV-Obs does not improve on LV-Obs for any value of L.

Both LV-Obs and HV-Obs systematically outperform the baseline heuristics that we
described in Section 4.5.2. For the CR dataset the performance of ABC is particularly
poor. The Coverage heuristic outperforms ABC on all three networks (confirming the
findings of Zhang et al. [2016]) but is consistently less effective than KMED and our
methods.

Finally in Figure 4.10, we consider uniform transmission delays, and we measure whether,
without making any changes, our sensor placement still performs well. We find comparable
results, which suggest that our sensor placement is not dependant on the exact transmission
model and that the variance of the transmission delays is really a key factor for a good
sensor placement.

4.6 Discussion

In this chapter, we presented a principled approach towards budgeted sensor placement for
source localization, which shows a dichotomy between the low- and high-variance regimes.
We developed complementary approaches to handle both of these regimes. Moreover, we
evaluated our approaches against state-of-the-art and alternative heuristics, showing a
better performance of the algorithms proposed.

A question that remains open concerns the possibility of deriving analytical results for
optimal sensor placement as a function of the transmission variance. These would certainly
require adopting some additional assumptions. For example, in a similar model, under
the assumption that the budget for sensors is large enough, Zejnilović et al. [2015b]
recently proposed an analytical approach to sensor placement. It would be interesting to
investigate if their approach extends to our setting. Alternatively, we could consider only
acyclic networks and work, for example, with exponential transmission delays within the
dynamic-message-passing framework of Lokhov et al. [2014].

A different, yet related, line of work would be that of a repeated game where the source is
placed by an adversary who knows which nodes are sensors. Although largely not true
for virulent epidemics, this could be a factor in the case of biowarfare or virtual attacks.
Some studies, similar in spirit to this line of work, look at how to place airport security
checkpoints in order to catch attackers [Pita et al., 2011] or, from the adversary point of
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Figure 4.10 – Success probability Ps for uniform transmission delays Xuv ∼ Unif([(1−
ε)wuv, (1 + ε)wuv]).

view, at introducing delays in the diffusion in order to better obfuscate the source [Fanti
et al., 2015].

In the next chapter we present a natural extension of the work we discussed in this
chapter, i.e., the case in which the observation occurs in two stages. In the first stage, as
in this chapter, a small set of sensors are selected to monitor the network. In the next
stage, once an epidemic begins, additional sensors are deployed in the relevant region of
the network to localize the source. As we will see, this adaptive strategy yields enormous
savings in terms of the number of sensors required to localize the source.
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5 Sensor Placement on General Networks:

Static Vs Dynamic

In Chapters 3 and 4 we have studied source localization algorithms that use the information
provided by a fixed set of K sensors chosen independently of any particular epidemic.
Intuitively, however, depending on the identity of the source, the most informative sensors
are not always the same. Hence, for most epidemics, a large fraction of the deployed
sensors are, in effect, useless. What if we could deploy a part of our sensor budget
adaptively, i.e., depending on the particular epidemic instance?

Together with limiting the cost of data collection, another important concern for source
localization is timeliness: If an epidemic is detected while it is spreading, being able to
promptly identify its source based on the incomplete information available can be essential
for the activation of containment measures [Al Qathrady et al., 2016]. Therefore, we are
interested in a model where the source can be localized progressively by incorporating in
the estimation all the information available, as soon as it becomes available.

In this chapter, we make minimal assumptions on the epidemic spread and design a flexible
framework for information collection and source localization where the information can
be either collected adaptively or at a fixed set of locations, and the source of an epidemic
can be promptly localized. This framework incorporates the settings of Chapter 3 and 4,
where information collection was static, i.e., not adaptive. Furthermore the results of
Chapter 4 concerning the dependence of sensor placement on the transmission variance
will be shown to efficiently guide the choice of sensors even in this more general setting.

These results were partly presented in [Spinelli et al., 2017b]; a more complete version
was recently published in [Spinelli et al., 2018].

5.1 Overview

We localize the source by using the information provided by a subset of nodes called
sensors. When a node is chosen as a sensor, it can reveal its infection state and, if it is
infected, its infection time. We have two possible types of sensors: static sensors and
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observations
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(A) (B)

when a sensor     

Update

d

when a new sensor d is 

deployed and/or when it 

gets infected

d

s ∈ S

Figure 5.1 – Illustration of our approach to source localization. An epidemic is observed
through the sensors (static S and dynamic D). Based on the observations O, we iteratively
update a set B of candidate sources (step A) which is used, if the budget allows it, to
guide the choice of an additional dynamic sensor (step B). The subroutines (A) and (B)
depend on the setting used (among the four listed in Table 5.1).

dynamic sensors. Static sensors are placed a priori in the network, independently of any
particular epidemic instance. Dynamic sensors are placed adaptively while we perform
source localization. Figure 5.1 depicts our approach to source localization.

We propose a general framework for source localization that encompasses both static and
dynamic sensor placement and that allows to localize the source both while the epidemic
is still spreading (online localization) and after the epidemic has spread throughout the
entire network (offline localization); see Table 5.1. This opens new possibilities, as to
date most approaches assume that all sensors are static and that the source can be
localized only after the epidemic spreads throughout the network. We show that when
we sequentially deploy dynamic sensors, the source is always correctly identified with
only a few sensors even when the transmission delays are highly noisy. This result is very
practical because it applies to general networks.

We also propose several methods for choosing where to deploy the dynamic sensors and
we compare them.

Because of its flexibility, the proposed framework can be used in a number of different
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5.1. Overview

Offline Localization Online Localization

S-OFF – Section 5.3 S-ON – Section 5.4
Static only static sensors, only static sensors,
sensor the source is localized the source is localized

placement after the epidemic, during the epidemic,
observations are always observations can be positive

positive. or negative.

D-OFF – Section 5.5 D-ON – Section 5.6
Dynamic static and dynamic sensors, static and dynamic sensors,
sensor the source is localized the source is localized

placement after the epidemic, during the epidemic,
observations are always observations can be positive

positive. or negative.

Table 5.1 – The source localization methods and settings considered in this chapter.

applications, ranging from localizing the source of a belief that spread in the past to
tracking the source of a disease outbreak in real time, and from finding the source of a
rumor in a network in which we constantly monitor a set of individuals, to detecting the
patient-zero of an infection through ad-hoc interviews or clinical tests.

Experimental evaluation

Through extensive experiments on synthetic and real-world networks, we evaluate our
approach along two different axes: (1) Under budget-constraints for the number of sensors,
we measure the uncertainty on the identity of the source (i.e., the number of nodes that
have a positive probability of being the source given the available observations); and (2)
when the budget for sensors is not limited, we assess the number of sensors needed to
exactly identify the source.

Our analysis highlights that a strategy that uses dynamic sensors dramatically outperforms
a static strategy with the same budget: By choosing fewer than 5% of the nodes as
sensors we improve the success rate of finding the source from approximately 30% to
approximately 92% (see Figure 5.9a). Moreover, when we do not have a limited budget
on the number of dynamic sensors, we can localize the source with a small number of
sensors: between 3% and 6% of the network nodes depending on the network topology
(see Figure 5.10). The reason for these improvements is that, using dynamic sensors, we
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Notation

S set of static sensors
D set of dynamic sensors
U S ∪ D, set of all sensors
Ks budget for static sensors
Kd budget for dynamic sensors
K Ks +Kd, total budget for sensors
τ⋆ time at which source localization begins
θ deployment delay
ω = (u, tu) observation of node u:

if u is not infected, tu = ∅
B set of candidate sources

can progressively reduce the network to a small sub-network whose nodes always include
the source.

We also show that, given a set of constraints (how many sensors can be deployed, whether
they can be deployed adaptively, ...), the choice of the sensors strongly affects the
performance of source localization. In particular, we evaluate different choices of the
static sensors (in Section 5.7.3) and different methods for choosing the dynamic sensors
(in Section 5.7.6). We also study the effect of varying the proportion of static versus
dynamic sensors, showing that we can save some resources by choosing a small budget
for static sensors, but not too small as we might pay with a longer time for localizing the
source (see Figure 5.12).

Finally we demonstrate that, by using all the information available as soon as it becomes
available, we can greatly enhance the timeliness of source localization and restrict the
search to a small set of candidate sources when the number of infected nodes is still small
(see Figures 5.6a and 5.6b).

5.2 Preliminaries

5.2.1 Model

We do not assume a precise distribution {Xuv}(u,v)∈E for the transmission delays. Instead,
we assume that there exists ε ∈ [0, 1) such that for every (u, v) ∈ E, the support of Xuv is
contained in [(1− ε)wuv, (1+ ε)wuv]. We call ε the variance parameter because it encodes
how much the transmission delays can deviate from their mean.

For ε = 0, Xuv = wuv for every (u, v) ∈ E, and we say that the epidemic is deterministic;
for ε > 0, wuv · ε gives an upper bound on the deviation of Xuv from its mean. By
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letting the maximum deviation be proportional to the edge weights we make sure that
our transmission model is not trivial: If the maximum deviation was constant, the impact
of the variance would depend on the scale of the edge weights and, for large wuv, Xuv

would be effectively deterministic.

In the experimental evaluation of Section 5.7, we consider mostly the case in which
Xuv is uniformly distributed on [wuv(1 − ε), wuv(1 + ε)]. In this case, the variance of
Xuv is Var(Xuv) = w2

uv
ε2/3 (which is the maximum variance of unimodal distributions

with support [(1− ε)wuv, (1 + ε)wuv] [Seaman et al., 1985]). However we also test the
performance of our methods when Xuv has unbounded support (see Section 5.7.9).

5.2.2 Online & Offline Source Localization

Depending on the application of interest, it can be desirable to localize the source while

the epidemic is still spreading (e.g., for a disease spreading now) or only after it has
propagated throughout the network (e.g., for an epidemic that happened in the past or
when a timely investigation is not needed). In the former case, we speak about online

source localization, and in the latter case about offline source localization. In contexts
where the data becomes available while the epidemic spreads, online localization has
the potential to identify the source (or a small set of candidate sources) before the
epidemic propagates throughout the entire network. Offline localization, instead, is the
only possible approach to source localization when we study epidemics that occurred
in the past. Moreover, it is the setting that is commonly used in the literature (see
Section 1.3).

Source localization might not be instantaneous. Let τ⋆ be the time at which we start
investigating the identity of the source and, for every v ∈ V , let tv denote the infection
time of v. We can give the following definition.

Definition 5.1 (Online/offline method). A method for source localization is said to be

an online (respectively, offline) method if τ⋆ < maxv∈V tv (resp., τ⋆ ≥ maxv∈V tv).

The main difference between online and offline source localization is that, when performing
offline localization, the full picture of the process is already available at time τ⋆.

We present a framework that naturally encompasses both the offline and the online regimes.
We study offline source localization in Section 5.3 and 5.5, online source localization in
Section 5.4 and 5.6.

5.2.3 Sensors

Similarly to Chapters 3 and 4 we use only the information provided by a subset of nodes
which we call sensors. In this chapter, sensors can be either static or dynamic.
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Definition 5.2 (Static/dynamic sensor). A sensor is said to be static if it is chosen

independently of any epidemic. In contrast, we say that a sensor is dynamic if it is chosen

in order to localize the source of a particular epidemic.

We assume that we have a budget K for the total number of sensors and we consider
two regimes for sensor placement: static sensor placement (all K sensors are static) and
dynamic sensor placement (Ks > 0 static sensors and Kd = K −Ks dynamic sensors).
Note that we never set Ks = 0 because otherwise no sensor would be deployed in the
network when the epidemic starts spreading and the detection of the source would be
trivially impossible.

The set of static (respectively, dynamic) sensors is denoted by S (resp., D) and the set of
all sensors is U = S ∪ D.

In online localization, the dynamic sensors are chosen while the epidemic spreads; in the
offline regime, they are chosen while we perform source localization, i.e., by the time they
are chosen the epidemic has already spread throughout the network.

As mentioned in Section 5.2.2, the localization process is generally not instantaneous
because it can require a sequence of steps (e.g., updates of the estimated identity of
the source when more information is available or when additional dynamic sensors are
deployed). Let τ denote the time at which a step in the localization process is taken: At
time τ a sensor u gives information in two possible ways: If it became infected at tu ≤ τ ,
it reveals its infection time tu; otherwise it informs about its susceptible state. In the
first (respectively, second) case we say that the sensor gives a positive (resp., negative)
observation.

In offline source localization, all observations are positive. Instead, in online source
localization both static and dynamic sensors can give positive or negative observations
and, as we will see in Section 5.4, both positive and negative observations contribute to
the localization.

We represent each observation ω as a tuple ω � (u, tu) where u ∈ V denotes the sensor
and tu ∈ R is the infection time of u if the observation is positive, tu = ∅ if the observation
is negative.

Table 5.1 summarizes the source localization settings that we consider and the relationships
between the definitions of static/dynamic sensors, online/offline source localization and
positive/negative observations. Figure 5.1 illustrates our high-level approach to source
localization, highlighting the different roles of static and dynamic sensors.

98



5.3. Offline Localization with Static Sensors (S-OFF)

5.3 Offline Localization with Static Sensors (S-OFF)

In this section and in the following ones (Sections 5.4-5.6), we present the four settings
listed in Table 5.1. For the sake of readability, the technical details are presented in
Section 5.8.

We first describe the S-OFF algorithm with which we perform offline source localization
using only static sensors. This is the setting most of the literature works with (see
Section 1.3). In contrast to other approaches we are more interested in determining all
nodes that are possible sources, to make sure that we did not miss the actual source,
rather than in isolating only one node that would maximize the likelihood of being the
source. This approach paves the way for the correctness results of D-OFF and D-ON in
Sections 5.5 and 5.6.

We do not use any dynamic sensor, hence U = S and |U| = K = Ks. As we localize the
source offline, a set of positive observations of the form O = {(u, tu) : u ∈ U} is available
at the beginning of the localization process.

Using O, we want to determine the possible sources, i.e., the set of candidate sources

B � {v ∈ V : P(O|v⋆ = v) > 0}. (5.1)

B depends not only on v⋆ but also on the particular realization of the infection times
and on the variance parameter ε. In fact, when the variance parameter ε is larger, given
a set of observations, the uncertainty on the identity of the source is higher because a
larger set of nodes can initiate epidemics that result in the observed infection times. In
Figure 5.2, we display the set B for a few simple examples. Figure 5.2a illustrates that
when the infection times are not deterministic, it is in general more difficult to localize the
source, as we can expect, because the infection times can substantially deviate from their
mean value. More surprisingly, the reverse can also occur, as shown in the example of
Figure 5.2b: For specific network topologies and moderate values of ε, non-deterministic
transmission delays can make source localization easier than in the deterministic case.
This is due to the maximum deviation of the transmission delay Xuv from wuv being
proportional to wuv itself (see Section 5.2.1): Observing a very extreme value of the
difference tu − tv between the infection time of two sensors u and v can give information
about the path along which the epidemic spread, hence about the identity of v⋆.

Sections 5.3.1 and 5.3.2 explain how B can be computed in practice.
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Figure 5.2 – Examples of sets of candidate sources B: The set B depends on the (unknown)
source v⋆, on the variance parameter ε, and on the realization of the random infection
times. For each of the two setups (a) and (b), the first network shows the actual source
and the network topology, and the following networks show different realizations of the
observations O for different noise parameters ε. (a): For the weighted network at the
top, when ε is large (bottom), B can be larger than for ε = 0 (middle). (b): For the
weighted network at the top-left, when ε is positive but small (bottom-left), B can be
smaller than when ε = 0 (top-right); when ε is large (bottom-right) B can be larger than
in the two previous cases.
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5.3.1 Deterministic Epidemics

We explained in Section 1.2.2 that, when the starting time t⋆ of the epidemic is unknown,
no single observation taken in isolation is informative about the identity of the source.
Instead, a set of two (or more) observations gives information on the identity of the source.
Therefore we start defining, for two observations ω1, ω2, the event of observing ω1 and
ω2 jointly.

Definition 5.3 (Event Aω1,ω2). Let ω1 � (u1, tu1), and ω2 � (u2, tu2), ω1 �= ω2, be two

observations. We define the event Aω1,ω2 as Aω1,ω2 � {T (v⋆, u1)− T (v⋆, u2) = tu1 − tu2}.

For every pair of observations ω1, ω2, ω1 �= ω2, we define

Bω1,ω2 � {v ∈ V : P(Aω1,ω2 |v⋆ = v) > 0}. (5.2)

When epidemics are deterministic (ε = 0), B can be easily computed using the result of
the following proposition (see Section 5.8.1 for proof and complementary lemmas).

Proposition 5.4. Let O be a set of observations and let ε = 0. Let ω1 � (u1, tu1) ∈ O
be a fixed observation, which we call the reference observation. Then, the set of candidate

sources B is

B =
⋂

ω∈O\{ω1}

Bω1,ω. (5.3)

From Proposition 5.4, we can compute the candidate set B with Algorithm 6.

Algorithm 6 S-OFF - deterministic epidemic
Require: O set of observations
B ← V
ω1 � (u1, tu1) ← Sample(O)
for (u, tu) ∈ O\{ω1} do

for v ∈ B do
if d(v, u)− d(v, u1) �= tu − tu1 then

remove v from B
return B

The runtime of Algorithm 6 is O(KsN). When v⋆ = v, since T (v, ui)− T (v, u1) = ti − t1
is deterministic and equal to d(v, ui)− d(v, u1) for any u1, ui ∈ U , the set B of candidate
sources returned by Algorithm 6 is equal, because of Lemma 1.9, to [v]U . Hence, in the
inner for of Algorithm 6 it would be enough to loop over a set of representatives v of the
equivalence classes in B. However, for consistency with the algorithms presented in the
following sections, we keep the version of the algorithm given in Algorithm 6, where the
loop is over all v ∈ B.
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5.3.2 Non-deterministic Epidemics

When the transmission delays are not deterministic (0 < ε < 1), verifying analytically if
P(O|v⋆ = v) > 0 is computationally intense for two reasons: the interdependence of the
events {Aωi,ωj}ωi �=ωj

and, in meshed networks, the multiplicity of possible propagation
paths. To overcome these difficulties, we compute a superset B̃ ⊇ B of the set of candidate
sources using the result of the following proposition.

Proposition 5.5. Let 0 < ε < 1, let ω1 � (u1, tu1), ω2 � (u2, tu2) ∈ O, ω1 �= ω2, and let

v ∈ B. Then

|d(v, u1)− d(v, u2)− tu1 + tu2 | ≤ ε(d(v, u1) + d(v, u2)). (5.4)

Based on Proposition 5.5, we define

B̃ �

{
v ∈ V : |d(v, u1)− d(v, u2)− tu1 + tu2 | ≤ ε(d(v, u1) + d(v, u2))

∀(u1, tu1), (u2, tu2) ∈ O
}
. (5.5)

Remark 5.6. The runtime of computing B̃ is O(K2
sN). In fact, in contrast to Algorithm 6,

we need to loop over all pairs (ω1, ω2) ∈ O × O with ω1 �= ω2. If we fix a reference

observation ω1 as in Proposition 5.4 and, for a candidate source v, we verify (5.4) only

for the pairs (ω1, ωi), ωi ∈ O, we would obtain a larger set of candidate sources that might

also includes some nodes v such that P(O|v⋆ = v) = 0.

In fact, given v ∈ V and ω1 � (u1, t1), ωi � (ui, ti), ωj � (uj , tj) ∈ O\{ω1}, ωi �= ωj, it is

possible that

{
|d(u1, v)− d(ui, v)− t1 + ti| ≤ ε(d(u1, v) + d(ui, v))

|d(u1, v)− d(uj , v)− t1 + tj | ≤ ε(d(u1, v) + d(uj , v))
(5.6)

and yet |d(ui, v)− d(uj , v)− ti + tj | > ε(d(u1, v) + d(uj , v)).

We now give a concrete example. Consider the network (with sensor infection times) of

Figure 5.3. If ε = 0.25, for node v we have

|d(v, u)− d(v, z)− tu + tz| ≤ ε(d(v, u) + d(v, z)) (5.7)

and

|d(v, u)− d(v, w)− tu + tw| ≤ ε(d(v, u) + d(v, w)) (5.8)

but

|d(v, w)− d(v, z)− tw + tz| > ε(d(v, w) + d(v, z)). (5.9)
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Hence, taking u as reference sensor and comparing tu with tz and tw we would not remove

v from the set of candidate sources, which instead we do if we further compare tw and tz.

v⋆
v

u

z

w

tu = 7.8

tw = 4.5

tz = 2.3

Figure 5.3 – When ε > 0, taking a single reference sensor, we get a larger set of candidate
sources. In this example, taking u as reference sensor and comparing tu with tz and tw we
would not remove v from the set of candidate sources, which instead we do if we further
compare tw and tz.

Remark 5.7. The set B̃ defined in (5.5) is, in general, strictly larger than B. When

computing B̃ we consider only two observations at a time; however, if ω1, ω2 and ω3

are three distinct observations, it is possible that P(v⋆ = v|ωi, ωj) > 0 for every i, j ∈
{1, 2, 3} but P(v⋆ = v|ω1, ω2, ω3) = 0 (similar situations can arise for larger sets of

observations). When epidemics are non-deterministic, verifying if P(v⋆ = v|O) > 0 for a

set O of arbitrary cardinality would be computationally intractable, roughly exponential

in the cardinality of the set. Thus, we approximate B with B̃. Section 5.7 demonstrates

empirically that the size of B̃ decreases very fast over the iterations of the algorithm,

indicating that our approximation is not too loose.

We conclude this section with a proposition stating that, for low ε and v⋆ = v, B̃ ⊆ [v]U .
This guarantees that when ε is sufficiently small, identifying the source is at least as easy
as in the deterministic case.

Proposition 5.8. Let U be the sensor set. Let

∆ � max
u∈U ,v∈V

d(v, u)

and

φ � min
[v1]U �=[v2]U

max
u1,u2∈U

|d(v1, u1)− d(v1, u2)− d(v2, u1) + d(v2, u2)|.

If ε < ε0 � φ/4∆ and v⋆ = v, then B̃ ⊆ [v]U .

If additional conditions on the edge weights or on the network topology are given, more
refined bounds ε0 in Proposition 5.8 can be derived. For example, in a tree with weights
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wuv > C ∈ R+, the uniqueness of the path between two any nodes yields that φ ≥ 2C for
every U . Hence, in this case, the statement holds for ε < C/2∆ (see also Proposition 3.1).

5.4 Online Localization with Static Sensors (S-ON)

In online localization with static sensors (S-ON), the localization of the source can be
seen as a process in which we iteratively refine the set B of candidate sources while we
gather more and more information about the epidemic.

Given a static sensor set U , the final outcome of S-ON and S-OFF is identical in terms of
the nodes that are identified as candidate sources. The difference is the ability of S-ON
to restrict the search for the source to a very small subset of nodes when the epidemic
has not yet propagated throughout the network.

In contrast to Section 5.3, where the observation set O contained all the observations
available at the end of the epidemic, which could therefore only be positive, here O
changes while the epidemic progresses. From a technical point of view, the difference
between S-ON and S-OFF is that in S-ON some observations are negative. Hence the
results of Proposition 5.4 (respectively, 5.5) must be refined to include in the computation
of B (resp., B̃) the information given by negative observations. We start the localization
process as soon as a sensor gets infected, i.e., at time τ⋆ � minu∈U tu. We denote by Ot

the observation set at time t. At every time t ≥ τ⋆, Ot is the union of a set of positive
observations and of a set of negative observations (see Section 5.2.3). We denote by O+

t

(respectively, O−
t ) the set of positive (respectively, negative) observations at time t. This

means that, for every t ≥ τ⋆ we have

O+
t = {(u, tu) : u ∈ U , tu ≤ t},

O−
t = {(u, ∅) : u ∈ U , tu > t},

and Ot = O+
t ∪ O−

t .

Definition 5.9 (Event At
ω1,ω2

). Let t ∈ R and let ω1 � (u, tu) ∈ O+
t , ω2 � (w, ∅) ∈ O−

t

be two observations, one positive and one negative. We define the event At
ω1,ω2

as

At
ω1,ω2

� {T (v⋆, u)− T (v⋆, w) < tu − t}.

Note that, if ω1 �= ω2 are two negative observations in O−
t , for every possible source there

exists a starting time t⋆ ∈ R such that both ω1 and ω2 hold at time t (and this remark
generalizes to larger sets of negative observations). For this reason, sets of only negative
observations are not useful to localize the source.

If only negative observations are available, we do not even know if there is an ongoing
epidemic. However, combining negative observations and positive observations we can
design an algorithm, S-ON, which, at any time t during the localization process, computes
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the smallest possible set of candidate sources: Given the information contained in Ot,
the set of candidates Bt computed by S-ON contains all and only the nodes that have a
positive probability of being the source.

More formally, we define the candidate sources set at time t as

Bt � {v ∈ V : P(Ot|v⋆ = v) > 0}. (5.10)

For every pair of positive observations ω1, ω2, ω1 �= ω2, let Bω1,ω2 be defined as in (5.2).
At time t, for every positive observation ω1 and negative observation ω2 we also define

Bω1,ω2,t � {v ∈ V : P(At
ω1,ω2

|v⋆ = v) > 0}.

Then Proposition 5.4 can be extended as follows (see Section 5.8.2 for proof and comple-
mentary lemmas).

Proposition 5.10. Let t ∈ R, Ot be the set of observations at time t and ε = 0. Let

ω1 � (u1, tu1) ∈ O+
τ⋆ be the first positive observation that we call the reference observation.

Then, the set of candidate sources Bt is

Bt =


 ⋂

ω∈O+
t \{ω1}

Bω1,ω


⋂


 ⋂

ω∈O−
t

Bω1,ω,t


.

Moreover, if t, t′ ∈ R, t′ > t, Bt′ ⊆ Bt.

Call τ⋆ = t1 < t2 < .. < tF = τF the times at which the observation set changes. Denoting
by tu the infection time of sensor u we have τF � maxu∈U tu. Let us also denote Oi � Oti .

Using the result of Proposition 5.10 we compute and update the set of candidate sources
with Algorithm S-ON (see Algorithm 7). S-ON updates the set of candidate sources B at
every time ti, 1 ≤ i ≤ F , producing a set that we call Bi.

At every time step ti, S-ON produces the smallest possible set of candidate sources that
always contain the source v⋆. More formally, we have the following.

Proposition 5.11. For every 1 ≤ i ≤ F there is no algorithm A different from S-ON

which, given Oi, produces a set of candidate sources Bi(A) � Bi and P(v⋆ ∈ Bi(A)) = 1.

Proof. By Proposition 5.10, the set Bi produced by S-ON is equal to Bti for all 1 ≤ i ≤ F .
Hence, by (5.10), for every v ∈ Bi, P(v⋆ = v|Oi) > 0. If an algorithm A produces
Bi(A) � Bi there exists v ∈ Bi\Bi(A) such that P(v⋆ = v|Oi) > 0. Therefore P(v⋆ ∈
Bi(A)) < 1.

Like for Algorithm 6, Algorithm 7 runs in time O(KsN).
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Algorithm 7 S-ON - deterministic epidemic

Require: Observation sets {O+
i }Fi=1, {O−

i }Fi=1

B0 ← V
ω1 � (u1, tu1) ← Sample(O+

1 )
O+

0 ← {ω1}
i ← 1
while i ≤ F and |Bi−1| > 1 do

i ← i+ 1
Bi ← Bi−1

for (u, tu) ∈ O+
i \O+

i−1 do
for v ∈ Bi do

if d(u, v)− d(u1, v) �= tu − tu1 then
remove v from Bi

for (u, ∅) ∈ O−
i do

for v ∈ Bi do
if d(u, v)− d(u1, v) < ti − tu1 then

remove v from Bi

return Bi

The extension of S-ON to ε > 0 follows similarly to Section 5.3.2 and is presented in
Section 5.8.2.

5.5 Offline Localization with Static and Dynamic Sensors

(D-OFF)

We now study D-OFF: offline source localization with static and dynamic sensors. After
computing the set of candidate sources B by using the observations gathered by the static
sensors, we use dynamic sensors to refine B, i.e., to remove as many nodes as possible
from B. Hence our D-OFF algorithm is, in its first part, identical to Algorithm 6 for
S-OFF whereas, in its second part, it consists of an iterative refinement of B based on
the observations obtained through the newly-deployed dynamic sensors. If we obtain a
candidate sources set B such that |B| = 1 before deploying the entire budget Kd, we stop
deploying dynamic sensors.

Clearly, not all possible dynamic sensors are equally informative about the identity of the
source. Our strategy is to iteratively choose where to place the dynamic sensors in order
to maximize the progress in the localization of the source, which we refer to as Gain. In
Section 5.5.2 we compare three possible notions of Gain.

In Algorithm 8 we present the pseudo-code for deterministic epidemics. The extension to
non-deterministic epidemics follows directly from the results of Section 5.3.2.
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Algorithm 8 D-OFF - deterministic epidemic
Require: O set of observations, Kd budget for dynamic sensors
B ← V
ω1 � (u1, t1) ← Sample(O)
for (u, t) ∈ O\ω1 do

for v ∈ B do
if d(u, v)− d(u1, v) �= t− t1 then

remove v from B
B0 ← B
i ← 0
while |Bi| > 1 and i < Kd do

i ← i+ 1
di ← argmaxd∈V \UGainU (d)
U ← U ∪ {di}
tdi ← infection time of di
Bi ← Bi−1

for v ∈ Bi do
if d(di, v)− d(u1, v) �= tdi − t1 then

remove v from Bi

return Bi

Let χGain denote the time required to compute Gain. The runtime of Algorithm 8 is
O(N(Ks + χGainKd)).

5.5.1 Correctness

If we could observe the infection time of all nodes in V , we could identify the source
trivially by looking at the node with the smallest infection time. We now prove that
when the budget for dynamic sensors is unrestricted, Algorithm 8 converges to the set
containing only the source v⋆ independently of the variance parameter ε. In other words,
Algorithm 8 never misses the source.

This result is tight in the budget Ks +Kd of dynamic sensors (as stated in Section 1.2.2,
for some network topologies the number of sensors needed to localize the source can go
up to N − 1) Proving tighter results for particular classes of network topologies is an
interesting direction for future work.

The correctness of Algorithm 8 does not depend on the definition of Gain: As we will
see in Section 5.7, Gain has an effect on the number of sensors required in Algorithm 8
but not on its correctness.

Theorem 5.12. Let ε ∈ [0, 1) and Xuv be a random variable with support [(1−ε)wuv, (1+

ε)wuv] for every uv ∈ E. Moreover let the budget for dynamic sensors be unrestricted

(Ks +Kd = N). Algorithm 8 always returns {v⋆}.
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Proof. We prove the statement for ε > 0, the proof for ε = 0 can be derived in a similar
way. First, note that nodes are removed from the set of candidate sources if and only if
they do not satisfy, for some u1, u2, the necessary conditions expressed by (5.4). Hence,
due to Proposition 5.5, the source v⋆ is never removed from the set of candidates. Next,
we want to prove that, for every node w �= v⋆, there exist z, y ∈ V such that, when
the infection times of z, y are observed, w is removed from the set of candidate sources.
Suppose that v⋆ = v and that its infection time tv is observed. Let w �= v be another
node for which the infection time tw is also observed. As v⋆ = v, we have tw > tv.
Note that (5.4) cannot hold for w with u1 = w and u2 = v: Indeed, we would have
0 < tw − tv ≤ (ε − 1)d(v, w) < 0, which gives a contradiction. Let i′ ∈ N+ such that,
when i = i′ in Algorithm 8, both v ∈ U and w ∈ U . Then, w /∈ Bi′ .

5.5.2 Natural Gain Functions

We consider three possible Gain functions to be used for the selection of the dynamic
sensors.

Size-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-GainSize-Gain. Perhaps the most natural Gain function is the one that computes the
expected reduction in the number of candidate sources. Let BU denote the set of
candidate sources computed based on the information given by the sensors in U and
Bc
U ⊆ BU the set of candidate sources after adding c ∈ V \U as a dynamic sensor. We

define the Size-Gain of choosing c as a dynamic sensor as gSIZEU (c) � E[|BU | − |Bc
U |].

Hence, maximizing gSIZEU is equivalent to minimizing the size of B(c)
U and maximizing

gSIZEU gives, at any step, a sensor choice that is locally optimal.

For deterministic epidemics, gSIZEU (c) can be easily computed by summing over the set T c
U

of the possible infection times for c (see Definition 5.13 below). For ε ∈ (0, 1) we propose
an approximation of gSIZEU (c) in Section 5.8.5.

Definition 5.13 (Possible infection times). Let U be a set of sensors, c ∈ V \U , OU �

{(u, tu), u ∈ U} and fix (u1, t1) ∈ OU arbitrarily. Let BU be the set of candidate sources

after observing the infection times of the nodes in U , i.e., BU = {v ∈ V : P(v = v⋆|OU ) >

0}. Then

T c
U � {h ∈ R : h = d(v, c)− d(v, u1)− t1 for some v ∈ BU}

is the set of possible infection times of c.

Note that when ε = 0, the cardinality of T c
U is always finite and equal to the number of

equivalence classes in which U ∪ {c} partitions U (see Definition 1.3). With techniques
similar to those of the proof of Proposition 5.4, it is easy to prove that Definition 5.13
does not depend on the choice of (u1, t1) ∈ OU . The next proposition shows how gSIZEU

can be computed in practice.
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Proposition 5.14. Let U be a set of sensors, c ∈ V \U , OU ,BU as in Definition 5.13

and fix (u1, t1) ∈ OU arbitrarily. Call tc the infection time of c and define

bU (c, h) � {v ∈ BU : P(v = v⋆|tc = h) > 0}
= {v ∈ BU : h = d(v, c)− d(v, u1) + t1}.

Then,

gSIZEU (c) =
∑

h∈Tc

P(v⋆ ∈ bU (c, h)) · (|BU | − |bU (c, h)|). (5.11)

Proof. Follows from the definition of gSIZEU , Tc and bU .

DRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-GainDRS-Gain. The definition of this second Gain function is inspired by the notion of double
resolving ser (DRS, see Section 1.2.2). When epidemics spread deterministically, observing
the infection times of a DRS of the candidate-sources set B removes all ambiguities about
the source identity. With DRS-Gain, we iteratively choose the sensor that, added to the
current sensor set U , gives the most progress in forming a DRS of B.

Let c ∈ V \U and T c
U as in Definition 5.13. Then, the DRS-Gain of adding c to U is

gDRS
U (c) � |T c

U |. (5.12)

Since there is no direct extension of gDRS
U to the non-deterministic case, we use the above

definition of gDRS
U independently of the variance parameter ε.

RC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-GainRC-Gain. RC-Gain (random candidate) assigns gain 1 to all candidates sources and
gain 0 to all nodes that are not candidate sources, i.e., when the sensor set is U and BU

is the set of candidate sources, for c ∈ V \U we set gRC
U (c) = 1 if c ∈ BU , gRC

U (c) = 0

otherwise. In other words, we randomly choose the dynamic sensors among the candidate
sources. Note that if the infection time of at least one node in BU is already observed,
adding a sensor in any other node in BU implies |BU∪{c}| < |BU |, independently of the
variance parameter ε.1 Hence, this very simple Gain ensures that the localization of the
source makes progress whenever a new dynamic sensor is chosen.

For any of the proposed Gain functions, the computation time χGain is O(|B|) ⊆ O(N).

As it is not a priori clear which version of Gain leads to a better performance of
Algorithm 8, in Section 5.7 we experiment with all of them.

1This can be proven with an argument analogous to the one used in the proof of Theorem 5.12: If the
infection time of two nodes is observed, only one of the two (the one with smaller infection time) can

belong to the set of candidate sources B (or, for ε ∈ (0, 1), to the superset B̃).
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5.6 Online Localization with Static and Dynamic Sensors

(D-ON)

We now turn to the online version of D-OFF: D-ON.

As in Section 5.4, we set the time τ⋆ at which the localization starts to the earliest time
at which a static sensor gets infected, i.e., τ⋆ = mins∈S ts. Starting from τ⋆, we run
online source localization as per S-ON and, in addition, we deploy dynamic sensors one
after the other to refine the localization of the source till the budget Kd for dynamic
sensors is exhausted. Specifically, a new dynamic sensor is deployed at times τ⋆ + jθ,
j ∈ {1, ..,Kd}, where θ ∈ R+ is fixed. We call θ the deployment delay. The choice of θ,
which will be discussed in Section 5.7, requires the evaluation of the trade-off between
timely localization and resource savings: With a large θ we are likely to have less negative
observations, hence to reach the localization with few dynamic sensors, but a long time
after the beginning of the epidemic. Vice versa, with a small θ, we are likely to reach the
localization earlier but by deploying more dynamic sensors.

At time t, the candidate set B, the sensor set U , and the observation set O = O+ ∪ O−

are updated in two cases:

I) if t = τ⋆ + jθ, j ∈ N, i.e., at time t a new dynamic sensor is added;

II) if t = tu > τ⋆, i.e., t is the infection time of a static sensor or of a node that was
chosen as dynamic sensor before time t but was not infected before time t.

For both cases, technical details are given in Section 5.8.3. Note that D-ON includes D-
OFF as a special case. If we run D-ON starting at τ⋆ > maxv∈V tv, the initial observations
set is O1 = {(s, ts) : s ∈ S}. Moreover, throughout the process all observations are
positive and we recover D-OFF.

5.6.1 Correctness

The correctness result of Theorem 5.12 holds also for D-ON.

Theorem 5.15. Let ε ∈ [0, 1) and Xuv be a random variable with support [(1−ε)wuv, (1+

ε)wuv] for every uv ∈ E. Moreover let the budget for dynamic sensors be unrestricted

(Ks +Kd = N). D-ON always returns {v⋆}.

Proof. The proof is almost identical to that of Theorem 5.12, the only necessary change
is in the last step. With the notations of the proof of Theorem 5.12, at the minimum
time t such that (v, tv), (w, tw) ∈ O+

t , it is guaranteed that w /∈ B.

110



5.7. Experimental Results

Finally, online localization needs, on average, more resources to reach convergence to the
source with respect to offline localization. This is due to the fact that, when running
offline localization, every deployed sensor can directly reveal its infection time (i.e., there
are no negative observations). As in the choice of the deployment delay θ, in order to
choose between D-ON and D-OFF, the trade-off between resource savings and timeliness
must be evaluated.

For the extension of the gain functions of Section 5.5.2 to the online setting (in which we
can have negative observations) we refer the reader to Section 5.8.4.

5.7 Experimental Results

5.7.1 Experimental Setup

Transmission delays

In our experiments, the transmission delays are uniformly distributed (except in Sec-
tion 5.7.9). The uniform distribution is, among the unimodal distributions on a bounded
support, the one that maximizes the variance [Gray and Odell, 1967], which makes it a
very challenging setting for source localization.

Static sensors

We choose the Ks static sensors with one of the following two rules:

⋄ KDRS (K-nodes approximation of a double resolving set): This rule computes the
set of Ks sensors that maximize the number of equivalence classes (see Section 1.2.2).
In Chapter 4, where this sensor placement was presented under the name of LV-Obs,
we showed that KDRS outperforms several common heuristics for sensor placement
in the case of deterministic or low-variance epidemics.

⋄ KMED (K-Medians): This rule computes the optimal placement of Ks sensors for
the closely-related problem of maximizing the detectability of a flow [Berry et al.,
2006]. The KMED placement is the set of Ks nodes S such that

S = argmin|S|=Ks

∑

v∈V

min
s∈S

d(v, s).

Determining the K-Medians of a network is NP-hard [Kariv and Hakimi, 1979],
hence we approximate KMED with a greedy heuristic. Contrary to KDRS sensors,
which are generally placed in the periphery of the network, KMED sensors are more
uniformly spread.
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ER BA RGG RT PLT
(p=0.016) (m=2) (R=0.3)

|V | 250 250 250 250 250
|E| 511 496 696 249 249
avg degree 4.09 3.96 5.6 1.99 1.99
avg shortest path 4.09 3.47 9.68 7.45 37.8
avg clustering 0.02 0.06 0.56 0 0

FB U-WAN WAN

|V | 3732 2258 2258
|E| 82305 17695 17695
avg degree 44.1 15.67 15.67
avg shortest path 5.34 6.94 3.56
avg clustering 0.54 0.65 0.65

Table 5.2 – Statistics for the networks used in the experiments.

In Chapter 4 we showed that the optimal placement of static sensors depends on the
variance parameter ε and that, given a value of ε, a suitable sensor placement can be
found interpolating between KDRS and KMED. For this reason, we limit ourselves to
considering these two alternative static-sensor placements, and we evaluate their respective
benefits for the different localization settings.

Default parameters

If it is not differently specified, we set the budget for static sensors to K/N = 2%, the
gain function for the choice of the dynamic sensors to SizeGain and the deployment
delay to θ = 0.5. The reasons for these choices will be clear in the following discussion.

All results are averaged over at least 100 simulations in which the source is chosen
uniformly at random.

For readability, throughout this section the set of candidate sources is always denoted by
B even when ε > 0 and we are actually computing the approximate set B̃.

5.7.2 Network Topologies

We experiment with both synthetic and real-world networks; the network properties and
statistics are reported in Table 5.2.
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Synthetic networks

We generated synthetic networks from the following classes: Erdős-Rényi networks
(ER) [Erdős and Rényi, 1959], Barabási-Albert networks (BA) [Barabási and Albert,
1999], random geometric networks on the sphere (RGG) [Penrose, 2003], regular trees of
degree 3 (RT) and trees with power-law distributed node degree (PLT). For each network
class, 10 connected instances of size 250 were generated.

Real-world networks

Facebook Egonets (FB). This dataset is a subset of the Facebook network, consisting of
3732 nodes. It was obtained from the union of 10 Facebook egonet networks [McAuley
and Leskovec, 2012], after removing the ego nodes2 and taking the largest connected
component.

World Airline Network (WAN). This network is obtained from a publicly available
dataset [OpenFlights] that provides the aircraft type used for every daily connection
between over three thousands airports. Using these data we can derive the number of seats
available on each route daily. We preprocess the network by removing the connections on
which fewer than 20 seats per day are available and by assigning to each connection uv

the average between the number of seats available from u to v and from v to u. Also, we
iteratively remove the leaves (for which we believe connections are not well represented
in the dataset), and we obtain a network of 2258 nodes.

Edge weights

All our results are valid for arbitrary edge weights wuv ∈ R+. For our experiments we
consider integer edge weights for several reasons. When ε = 0, integer weights actually
make the problem more challenging because it is more difficult to distinguish among
nodes based on their distances to the sensors; when ε > 0 instead, taking integer weights
does not affect the difficulty of the problem because network distances cannot anyway be
precisely recovered from the observations. Moreover, in practice, distances are always
known up to some degree of precision and, up to a multiplication factor, edge weights
can always be assumed to be integer.

All synthetic networks and the FB network are given unit edge weights as there is not a
straightforward method for deriving realistic edge weights for these networks. For WAN
the definition of the edge weights is inspired by a work by Colizza et al. [2006]. An edge
uv is weighted with an approximation of the expected time between the infection of city
u and the arrival of an infected individual at city v (see below for details). This gives a

2The ego nodes were removed in order to ensure that the sampling of contacts across the nodes in the
network is uniform.
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very skewed weight distribution. Our experiments show that the variability of the edge
weights brings an additional challenge to source localization. In order to evaluate the
impact of non-uniform weights, we also run our experiments on an unweighted version
(U-WAN) of this network (in which all weights are set to 1).

Weights for the WAN Network. Our definition of the edge weights for the WAN network
is inspired by the work of Colizza et al. [2006].

Let sij be the number of seats available on a flight from airport i to airport j. The number
of seats can be inferred by the aircraft with which the flight is operated [OpenFlights].
Moreover, let α = 0.7 denote the average occupancy rate on a flight [Colizza et al., 2006]
and Ni denote the population of city i. We approximate the probability that an individual
flies from i to j as αsij/Ni.

Let θ be the probability that an individual is infected when the infection reached the
city where he leaves. Then the probability that a sick individual travels from i to j is
1− (1− αsij/Ni)

θNi . Hence the average delay for the infection to spread from city i to
city j can be estimated to be

wij = [1− (1− αsij/Ni)
θNi ]−1 ≈ [1− exp−αsijθ]−1. (5.13)

We assume θ = 0.05 and, as discussed above, we rounded all weights wij to the closest
integer. Figure 5.4 shows the resulting weight distribution (note the log-scale of the
y-axis, hence the skewness of the distribution).

0 2 4 6 8 10 12 14
wij

100

101

102

103

104

Figure 5.4 – Histogram of edge weights for the WAN network.
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5.7.3 Choice of the Static Sensors

When we adopt a static approach, the only degree of freedom we have is the choice of
the static sensors. It is known that this choice has an impact on the performance of
source localization and that the optimal choice depends on the variance parameter (see
Chapter 4. Figure 5.5a compares the performance of KDRS and KMED sensors in terms
of the final size of the set of candidate sources B. As in Chapter 4, we observe that
for moderate variance, KDRS sensors are better than KMED sensors; for larger ε we
have the inverse result. In fact, for large ε, the more uniform placement achieved by
KMED can better deal with the noisy observations with respect to the KDRS placement
which, instead, enforces the possibility of distinguishing among possible sources in the
deterministic case.

We compare KDRS and KMED also for the case where we use dynamic sensors, and
we do not restrict the budget for dynamic sensors (Kd = N −Ks). As the final set of
candidate sources has always cardinality 1, we look instead at the total number of sensors
|U| needed to localize the source. We could think that when we use dynamic sensors and
place only a few static sensors (Ks = 0.02 ·N), the choice of the static sensors has a much
smaller effect. Instead, we observe the same result of the static approach. Figures 5.5b
and 5.5c show that for both online and offline localization, KDRS emerges as the best
choice for static sensors when ε is small but it is outperformed by KMED for larger values
of ε.

5.7.4 Online vs Offline Localization

Static approach

When taking an online approach (S-ON), the computation of B occurs while the epidemic
spreads, hence we can localize the source when many nodes are still not infected. Fig-
ure 5.6a (respectively, 5.6b) show the fraction µ of infected nodes when B contains fewer
than 5% of the nodes with KDRS (resp., KMED) sensors. With KDRS sensors, µ is
smaller than 60% for all synthetic topologies and smaller than 35% for the real-world
networks. As we could expect, with KMED sensors, µ is even smaller (less than 20%),
giving an argument for the choice of KMED sensors rather than KDRS sensors also for
deterministic epidemics. However, for the tree topologies, the final size of B can heavily
deteriorate when using KMED sensors: For RT, for example, the probability of obtaining
|B| < 5% ·N is lower than 0.05.

Dynamic approach

Also D-ON dramatically reduces, with respect to D-OFF, the fraction of infected nodes
at the time when our algorithm terminates. However, in this case, there is a trade-off
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Figure 5.5 – Comparison of KDRS and KMED for the choice of the static sensors. We
use white markers for ε = 0, black for ε = 0.2.
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Figure 5.6 – S-ON, Fraction µ of infected nodes at the time when B contains fewer than
5% of the nodes using KDRS sensors (a) and KMED sensors (b). The variance parameter
is ε = 0.

between µ and the cost in number of sensors |U| used for the localization. Figure 5.7
compares the average |U| for online and offline localization. We see that, independently of
the variance parameter and of the network topology, |U| is smaller for offline localization
than for online localization. In fact, in D-OFF, every sensor is already infected by the
time it is deployed, hence, when localizing the source offline, we have access to more
information.

5.7.5 Static vs Dynamic Localization

Cost of source localization

As stated in Section 5.2, with a static sensor placement (i.e, Kd = 0), the minimum number
of sensors required to localize the source when the transmission delays are deterministic
is the DMD of the network [Chen et al., 2014]. Hence, DMD is a natural benchmark for
the cost in terms of number of sensors |U| of our dynamic approach.

We focus on the deterministic case (ε = 0) with no constraints on the budget for dynamic
sensors (Kd = N −Ks). We run D-ON and we compare |U|/N with the (approximate)
DMD. The results are depicted in Figure 5.8. For all topologies, |U|/N is much smaller
than DMD/N . The improvement is particularly significant for trees whose DMD is very
large (equal to the number of leaves [Chen et al., 2014]) but where the topology makes
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Figure 5.7 – D-ON vs D-OFF: Number of sensors needed to localize the source. We use
white markers for ε = 0, black for ε = 0.2. S=KDRS.

it easy for our algorithm to rapidly narrow the search for the source to a small set of
candidates. Moreover, we note that |U|/N is smaller for the real-world topologies than
for the synthetic ones and, across all topologies, never exceeds an average of 0.03 · N ,
whereas DMD goes up to 0.7 ·N .

Performance with limited budget

We compare the success rate in localizing the source (i.e., the probability P(|B| = 1)) of
a purely-static approach with that of a dynamic approach in both its online and offline
variants. We fix a total budget of K/N = 5% sensors. For the purely-static approach,
we have Ks = K and Kd = 0; for the dynamic approach we have Ks = 0.02 · N and
Kd = K −Ks = 0.03 · N . For this experiment, we set ε = 0.2 and we choose KMED
static sensors. Figure 5.9a shows that a dynamic approach outperforms a static approach
on all topologies. Moreover, in the dynamic case, in line with the results displayed in
Figure 5.7, D-OFF achieves a better success rate than D-ON. The only exception is
represented by the WAN network: This is probably due to the high variability of the edge
weights, which makes it such that sometimes choosing sensors while the epidemic is still
local avoids dealing with very noisy transmission times. However, even for this network,
D-ON outperforms D-OFF only at an intermediate step in the localization process (i.e., if
we stop when K/N = 0.05): Looking at Figure 5.7, we see that also for WAN, the total
number of sensors needed to localize the source is smaller with D-OFF.
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the number needed by an optimal offline placement (DMD). Larger markers represent
higher concentrations of data points.

5.7.6 Dynamic Sensors: How to Choose, When to Deploy and How

Many

Different Gain functions

We study the effect of Gain on the performance of our dynamic algorithm. For each
variant, i.e., Size-Gain, DRS-Gain, RC-Gain, we report the relative cost in terms of
number of sensors |U|/N when Ks +Kd = N . We experiment with both a deterministic
setting (ε = 0) with KDRS static sensors and a non-deterministic setting (ε = 0.2) with
KMED static sensors (see Section 5.7.3). The results are depicted in Figure 5.10. We
observe that for the real-world networks and ε = 0, all proposed Gain functions have
similar performances. For FB and U-WAN, this is true also when ε > 0. These are
the cases in which source localization is achieved with the smallest number of sensors.
We conclude that, when source localization is less challenging, Gain does not have a
strong effect. In all other cases, Size-Gain consistently gives the best performance. The
improvement, with respect to DRS-Gain, is most noticeable when ε > 0; indeed, in
this setting, and in particular for online localization, DRS-Gain is outperformed by
the simple RC-Gain. We attribute this to the fact that, when there is high variance
in the transmission delays, splitting the candidate sources into subsets of nodes that
have different average infection times (see the definition of DRS-Gain in Eq. (5.12)),
does not guarantee that we are able to distinguish them based on the observed infection
times [Spinelli et al., 2016]. Instead, as mentioned in Section 5.5, RC-Gain enforces a
continuous progress in shrinking the set of candidate sources.
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Figure 5.9 – (a): D-ON vs D-OFF vs S-OFF/-ON. Success rate of source localization
when K = Ks + Kd = 0.05 · N and ε = 0.2. (b): D-ON. Cardinality of the set B of
candidate sources at successive steps for D-ON (KMED static sensors, ε = 0.2).

Deployment delay

When applying D-ON, an important parameter is the deployment delay θ, i.e., the time
between two consecutive placements of a dynamic sensor. On the one hand, the larger θ is,
the smaller we expect the cost in terms of number of sensors |U| to be; on the other hand,
the smaller θ is, the less time we expect to need for localizing the source, hence the fewer
individuals are infected before we do so. To choose θ, we must also account for the scale of
edge weights because, when transmission delays have larger (respectively, smaller) mean,
the optimal θ is also likely to be larger (resp., smaller). Here, for simplicity of exposition,
we ignore this aspect and experiment only with networks in which all weights are equal
to 1. We fix ε = 0.2, we vary θ and look at the number |D| of dynamic sensors used to
localize the source and at the fraction µ of infected individuals at the time of localization.
Figures 5.11a and 5.11b display the results for KDRS and KMED sensors, respectively.
In both cases, we observe a trade-off between |D| and µ. When using KDRS sensors, |D|
is smaller, especially for small θ. However, in line with the results of Figure 5.6a, KMED
sensors guarantee a smaller fraction of infected µ.

Budget allocation

Given a total budget K, how much of it should we allocate for static and how much
for dynamic sensors? We choose KMED static sensors, set ε = 0.2 and run D-ON. We
take a total budget K/N = 5% and we look at the impact of different values of Ks and
Kd = K −Ks on the total number of sensors needed to localize the source (which can
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Figure 5.10 – Comparison of different GAIN functions.
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Figure 5.11 – D-ON with varying deployment delay θ: Number of dynamic sensors |D|
needed for source localization and fraction of infected nodes µ at the final stage of the
algorithm for varying Ks.

be smaller than K if |B| = 1 is reached before Kd is exhaust). We also evaluate the
cardinality of the final set B and the fraction of infected nodes µ at the final stage of
the algorithm. The results are displayed in Figure 5.12. We observe that both |U| and
|B| increase with Ks, which indicates that a small budget for static sensors guarantees
both a lower cost in terms of number of sensors |U| and a higher precision. However µ is
minimized when we use around half of our budget for static sensors. In fact, when Ks is
small, we need to deploy many dynamic sensors in order to localize the source; instead,
when Ks is large and Kd is small, after placing a few dynamic sensors, we have to wait
for the static sensors to get infected in order to use this information to refine B.
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5.7.7 Number of Candidate Sources at Successive Steps

We evaluate the runtime of D-ON and D-OFF. The runtime of each iteration of our
algorithms is linear in |B|. Hence to estimate the runtime of source localization we look,
for the real-world topologies, at how many iterations are needed to localize the source
and at how |B| decreases along the successive iterations of the algorithm. The runtime
of D-OFF is smaller than that of D-ON, so we focus on this last case. As we can see
in Figure 5.8, the approximate DMD is 303 (around 0.08 ·N) for the FB network, 751
(around 0.3 ·N) for WAN and 484 for U-WAN (around 0.2 ·N). Hence, source localization
is more challenging on the WAN network. This is confirmed by the results shown in
Figure 5.9b. In the FB network, with variance parameter ε = 0.2, the source is localized
with in average 15 iterations of the localization algorithm. For the U-WAN network, the
average number of iterations needed is larger (around 37). We attribute this effect to the
presence of bottleneck edges, i.e., edges that appear on many different shortest paths and
make it difficult to estimate the source based on its distance to the sensors. This effect
becomes even stronger with the weighted version of the WAN network (where the number
of iterations needed is in average 98) and it is reflected in the average total number of
sensors U used for localization: 0.021 · N for FB, 0.022 · N for U-WAN and 0.042 · N
for WAN (see Figure 5.10). This result highlights that the high variability among the
edge weights makes source localization substantially more difficult, especially for ε > 0

(see Figure 5.10 for a comparison of the cost in terms of number of sensors |U| between
deterministic and non-deterministic delays). Also the cardinality of |B| decreases more
slowly for the weighted network WAN than for FB and U-WAN. However, for all three
topologies, |B| decreases faster than linearly (note the logarithmic scale in Figure 5.9b),
confirming the feasibility of our approach to source localization for a variety of real-world
networks.

123



Chapter 5. Static Vs Dynamic

BA ER
RG

G
PL
T RT

0.0

0.5

1.0

P
(B

=
{s

⋆
})

EIF GAU S-ON/-OFF D-ON

(a) ε = 0

BA ER
RG

G
PL
T RT

0.0

0.5

1.0

P
(B

=
{s

⋆
})

EIF GAU S-ON/-OFF D-ON

(b) ε = 0.2

Figure 5.13 – Comparison of D-ON and S-ON/-OFF with the baseline methods GAU
and EIF.

5.7.8 Comparison with Existing Methods

We compare our algorithms for source localization with the two following existing methods:

⋄ GAU: this method estimates the source through maximum-likelihood assuming
Gaussian transmission delays. It was initially proposed by Pinto et al. [2012] under
the assumption that each sensor reveals its infection time and from which node it
received the infection. In Chapter 4 we generalized this estimator to the setting
where the information about who-infected-whom is not available; we also showed
that the same method can be applied with different infection-delays distributions
(such as truncated-Gaussian and uniform). Here, we consider the improved estimator
used in Chapter 4.

⋄ EIF: this method estimates the source by computing, for every candidate source
v, an infection tree Tv rooted at v that is compatible with the observed infection
times. Every spreading tree Tv is given a cost that quantifies how much the observed
infection times deviate from the expected infection times when the infection spreads
along Tv. The estimated source is the root v of the spreading tree Tv with minimal
cost. The method was proposed by Zhu et al. [2015] and it is independent from
the transmission-delay distribution, only the average delays are needed for the
estimation.

We take K = 5%N . For GAU, EIF and S-ON/-OFF, all sensors are static; for D-ON
Ks = 2%N sensors are static and Kd = K −Ks = 3%N sensors are dynamic. We look
at P(B = {s∗}), i.e., the probability that the source is correctly identified without ties,
for ε = 0 (Figure 5.13a) and for ε = 0.2 (Figure 5.13b). For ε = 0, the performance of
GAU and S-ON/-OFF is identical: They both identify the correct equivalence class of the
source (see Definition 1.3) but cannot distinguish among nodes in the same equivalence
class. For tree networks (PLT and RT) the performance of EIF is also identical to that
of S-ON/-OFF and GAU: On trees, all the nodes in the equivalence class of the source,
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and only these nodes, are the roots of the minimal cost spreading trees. Instead, on
non-tree networks, the presence of loops makes it more challenging to correctly identify the
spreading tree and the performance of EIF is poorer than that of GAU and S-ON/-OFF.
For all network topologies, D-ON beats all other methods by a large margin. For ε �= 0,
the performance of S-ON/-OFF is lower than that of GAU. In fact, our methods are
designed to have maximum recall (P(s⋆ ∈ B) = 1) and, for both S-ON/-OFF and D-ON,
all nodes that have a positive probability of being the source are contained in B. When
moving from a deterministic to a non-deterministic setting, the various methods suffer
a performance drop in different ways: S-ON/-OFF and D-ON have a drop in precision;
GAU and EIF have a drop in recall. In a non-deterministic setting, D-ON still detects
the source with no ambiguity with a high probability, again strongly outperforming the
alternative methods.

5.7.9 Resistance to Unbounded Delay Distributions

Our theoretical results are derived under the hypothesis of bounded-support for the
distribution of the transmission delays (see Section 5.3-5.6). However, in some applications,
we work with transmission delays that are not upper bounded by a constant. We test our
D-ON method when each transmission delay Xuv is drawn from a Gamma distribution
Γ(k, 1/k) (hence E[Xuv] = 1 and V ar(Xuv) = 1/k) that includes the case of exponential
transmission delays (k = 1). In this setting, D-ON is not guaranteed to always detect the
source (i.e., Theorem 5.15 does not hold) and it can happen that v⋆ is removed from the
set of candidates B.

Let ε0 be the minimum value such that P(Xuv ∈ [wuv(1− ε0), wuv(1 + ε0)]) = 0.75. In
order to account for the variance of Xuv but still enforce the removal of nodes from B we
run D-ON with ε = min(ε0(k), 0.6). Figure 5.14a shows the final size of the set B, and
Figure 5.14b depicts the average distance d̄ from s⋆ to the nodes in B. For moderate
variance, d̄ is very small for all the topologies considered; for PLT, RGG and RT this
distance is very small even for large values of the variance, indicating a good performance
of our methods, especially for tree networks, even with unbounded and highly variable
transmission delays.

5.8 Additional Technical Details

5.8.1 S-OFF

We give the technical details regarding the computation of the set of candidate sources B,
starting from the case of deterministic epidemics and later extending our results to the
more general case when ε > 0.
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Figure 5.14 – Performance of D-ON when the transmission delays are Gamma random
variables with mean 1 in terms of (a) P(B = {v⋆}) and (b) average distance d̄(v⋆,B)
from the nodes in B to v⋆ (rescaled with the diameter ∆). Kd = 10% and ε is chosen as
described in Section 5.7.9.

We first note that, using Definition 5.3 we can rewrite P(O|v⋆ = v) as

P(O|v⋆ = v) = P

( ⋂

ωi �=ωj∈O

Aωi,ωj

∣∣∣∣∣v
⋆ = v

)
. (5.14)

The next lemma formalizes that, when epidemics spread deterministically, the only source
of randomness in the epidemic is the value of v⋆.

Lemma 5.16. Let O be a set of observations and let ε = 0. Then, for all v ∈ V ,

P(O|v⋆ = v) ∈ {0, 1}.

Proof. Let us pick v ∈ V such that P(O|v⋆ = v) > 0. We want to prove that P(O|v⋆ =
v) = 1. We have

P(O|v⋆ = v) > 0

⇔ P

( ⋂

ωi �=ωj∈O

Aωi,ωj |v⋆ = v

)
> 0

⇒ P(Aωi,ωj |v⋆ = v) > 0 ∀ ωi �= ωj ∈ O
⇔ P(T (v, ui)− T (v, uj) = ti − tj) > 0 ∀ ωi �= ωj ∈ O
(a)⇔ P(Aωi,ωj |v⋆ = v) = 1 ∀ ωi �= ωj ∈ O
⇔ P(O|v⋆ = v) = 1,

where (a) holds because T (v, ui) − T (v, uj) is deterministic and equal to d(v, ui) −
d(v, uj).
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A particular case of Lemma 5.16 is the following.

Lemma 5.17. Let ε = 0 and let ω1 � (u1, t1) and ω2 � (u2, t2) be two observations.

Then P(Aω1,ω2 |v⋆ = v) > 0 if and only if P(Aω1,ω2 |v⋆ = v) = 1. Moreover, P(Aω1,ω2 |v⋆ =

v) > 0 if and only if d(v, u1)− d(v, u2) = t1 − t2.

Proof. As in the proof of Lemma 5.16, P(Aω1,ω2 |v⋆ = v) > 0 ⇔ P(T (v, u1)− T (v, u2) =

t1 − t2) > 0 ⇔ P(T (v, u1)− T (v, u2) = t1 − t2) = 1 ⇔ d(v, u1)− d(v, u2) = t1 − t2.

We are now ready to prove Proposition 5.4 which gives a practical way of computing B.

Proposition 5.4. Let O be a set of observations and let ε = 0. Let ω1 � (u1, tu1) ∈ O
be a fixed observation, which we call the reference observation. Then, the set of candidate

sources B is

B =
⋂

ω∈O\{ω1}

Bω1,ω. (5.3)

Proof. We have

v ∈ B (a)⇔ P(O|v⋆ = v) = 1

(b)⇔ P(Aωi,ωj |v⋆ = v) = 1 ∀ωi �= ωj ∈ O
(c)⇔ v ∈ Bωi,ωj ∀ωi �= ωj ∈ O
⇔ v ∈

⋂

ωi �=ωj∈O

Bωi,ωj ,

where (a) holds by Lemma 5.16, (b) follows from (5.14) and (c) holds by Lemma 5.17.

To prove B ⊆ ⋂ω∈O\{ω1}
Bω1,ω it is enough to note that

⋂
ωi �=ωj∈O

Bωi,ωj ⊆
⋂

ω∈O\{ω1}
Bω1,ω.

For the reverse inclusion, take v ∈ ⋂ω∈O\{ω1}
Bω1,ω and ωi � (ui, tui), ωj � (uj , tuj ) ∈

O\{ω1}, ωi �= ωj . Since v ∈ Bω1,ωi ∩ Bω1,ωj , by Lemma 5.17 we have

d(v, ui)− d(v, u1) = ti − t1, (5.15)

d(v, uj)− d(v, u1) = tj − t1. (5.16)

By subtracting (5.15) from (5.16), we get d(v, ui) − d(v, uj) = ti − tj , which, again by
Lemma 5.17 implies v ∈ Bωi,ωj . Hence we can conclude that v ∈ ⋂ωi �=ωj∈O

Bωi,ωj .

We now turn to non-deterministic epidemics and give a proof of Proposition 5.5 which is
at the basis of the definition of the superset B̃ of candidate sources (see (5.5)).
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Proposition 5.5. Let 0 < ε < 1, let ω1 � (u1, tu1), ω2 � (u2, tu2) ∈ O, ω1 �= ω2, and let

v ∈ B. Then

|d(v, u1)− d(v, u2)− tu1 + tu2 | ≤ ε(d(v, u1) + d(v, u2)). (5.4)

Proof. Since v ∈ B, P(Aω1,ω2 |v⋆ = v) > 0. We prove that, if v⋆ = v, (5.4) holds. From
this we can conclude that (5.4) holds for every v ∈ B, because if there were v ∈ B such
that (5.4) does not hold, we would have P(Aω1,ω2 |v⋆ = v) = 0, giving a contradiction
with v ∈ B.

Recall that, if v⋆ = v, the infection time of u is tu = t⋆ + T (v, u). Since the transmission
delay along edge xy has range [(1− ε)wxy, (1 + ε)wxy], we have

T (v, u) ≤ (1 + ε)d(v, u). (5.17)

If Q is the collection of all paths connecting v and u and, for p ∈ Q, dp(v, u) is the
weighted length of path p we have

T (v, u) ≥ (1− ε)min
p∈Q

dp(v, u) = (1− ε)d(v, u). (5.18)

Combining inequalities (5.17) and (5.18) we obtain

|T (v, u1)− d(v, u1)| ≤ εd(v, u1), (5.19)

|T (v, u2)− d(v, u2)| ≤ εd(v, u2). (5.20)

From (5.19) and (5.20) and using the relation T (v, u1)−T (v, u2) = tu1−tu2 we obtain (5.4).

Algoritm 9 gives the pseudo-code for computing of B̃.

Algorithm 9 S-OFF - non-deterministic epidemic
Require: O set of observations
B̃ ← V
for (u, tu), (z, tz) ∈ O, u �= z do

for v ∈ B̃ do
D ← |d(v, u)− d(v, z)− tu + tz|
E ← ε(d(v, u) + d(v, z))
if D > E then

remove v from B̃
return B̃

Finally, we give a proof of Proposition 5.8.
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Proposition 5.8. Let U be the sensor set. Let

∆ � max
u∈U ,v∈V

d(v, u)

and

φ � min
[v1]U �=[v2]U

max
u1,u2∈U

|d(v1, u1)− d(v1, u2)− d(v2, u1) + d(v2, u2)|.

If ε < ε0 � φ/4∆ and v⋆ = v, then B̃ ⊆ [v]U .

Proof. Let v⋆ = v and w /∈ [v]U . We want to prove that w /∈ B̃. By hypothesis, there
exist u1, u2 ∈ U such that

|d(v, u1)− d(v, u2)− d(w, u1) + d(w, u2)| ≥ φ. (5.21)

For every z ∈ V , let µz(u1, u2) � d(z, u2)− d(z, u1). By Equation (5.4), the deviation of
tu2 − tu1 from µv(u1, u2) is upper bounded by

|tu2 − tu1 − µv(u1, u2)| ≤ ε(d(v, u2) + d(v, u1)) ≤ 2ε∆.

Moreover, by definition of B̃, a similar bound holds for every z ∈ B̃:

|tu2 − tu1 − µz(u1, u2)| ≤ ε(d(z, u2) + d(z, u1)) ≤ 2ε∆.

Assume by contradiction that w ∈ B̃. Then, by applying the triangle inequality and the
hypothesis ε < φ/4∆ we have

|µv(u1, u2)− µw(u1, u2)| ≤ |tu2 − tu1 − µv(u1, u2)|+ |tu2 − tu1 − µw(u1, u2)|
≤ 4ε∆ < φ

(5.22)

which contradicts (5.21). Hence, B̃ ⊆ [v]U .

5.8.2 S-ON

We show how B and B̃ can be updated when we have negative observations.

Similarly to Section 5.8.1, using Definitions 5.3 and 5.9 we can rewrite P(Ot|v⋆ = v) as

P



( ⋂

ωi �=ωj∈O
+
t

Aωi,ωj

)⋂( ⋂

ωi∈O
+
t ,

ωj∈O
−
t

At
ωi,ωj

)∣∣∣∣∣∣
v⋆ = v


.
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The next lemma extends Lemma 5.16 and Lemma 5.17 to the case in which O contains
negative observations.

Lemma 5.18. Let t ∈ R, ω1 � (u1, tu1) ∈ O+
t and ω2 � (u2, ∅) ∈ O−

t . Then

P(At
ω1,ω2

|v⋆ = v) > 0 if and only if P(At
ω1,ω2

|v⋆ = v) = 1 and d(v, u1)−d(v, u2) < tu1−t.

Proof. We have the following sequence of equivalences.

P(At
ω1,ω2

|v⋆ = v) > 0

⇔ P(T (v⋆, u1)− T (v⋆, u2) < tu1 − t) > 0

(a)⇔ P(T (v⋆, u1)− T (v⋆, u2) < tu1 − t) = 1

⇔ d(v⋆, u1)− d(v⋆, u2) < tu1 − t

(5.23)

where (a) holds because, given the value of v⋆, T (v⋆, u1)− T (v⋆, u2) is deterministic and
equal to d(v⋆, u1)− d(v⋆, u2).

Proposition 5.10. Let t ∈ R, Ot be the set of observations at time t and ε = 0. Let

ω1 � (u1, tu1) ∈ O+
τ⋆ be the first positive observation that we call the reference observation.

Then, the set of candidate sources Bt is

Bt =


 ⋂

ω∈O+
t \{ω1}

Bω1,ω


⋂


 ⋂

ω∈O−
t

Bω1,ω,t


.

Moreover, if t, t′ ∈ R, t′ > t, Bt′ ⊆ Bt.

Proof. The fact that Bt contains all and only the nodes that have a positive probability
to be the source given the information available at time t is a direct consequence of the
definition of Bt and Ot.

Similarly to the proof of Proposition 5.4 we have

v ∈ Bt ⇔ v ∈


 ⋂

ωi �=ωj∈O
+
t

Bωi,ωj


⋂


 ⋂

ωi∈O
+
t ,ωj∈O

−
t

Bωi,ωj ,t




and hence

Bt ⊆


 ⋂

ω∈O+
t \{ω1}

Bω1,ω


⋂


 ⋂

ω∈O−
t

Bω1,ω,t


.

If ωi, ωj ∈ O+
t \{ω1}, ωi �= ωj , as in the proof of Proposition 5.4 we have that v ∈ Bω1,ωi∩ ∈

Bω1,ωj implies v ∈ Bωi,ωj . Let now ωi � (ui, tui) ∈ O+
t \{ω1} and ωj � (uj , ∅) ∈ O−

t and
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take v ∈ Bω1,ωi ∩ Bωj ,ω1,t. By Lemma 5.17 and Lemma 5.18 we have

d(ui, v)− d(u1, v) = tui − tu1 (5.24)

d(u1, v)− d(uj , v) < tu1 − t. (5.25)

Combining (5.24) and (5.25), we have d(ui, v)− d(uj , v) < tui − t and, by Lemma 5.18,
v ∈ Bωi,ωj ,t. Hence we proved

Bt ⊇
( ⋂

ω∈O+
t \{ω1}

Bω1,ω

)⋂( ⋂

ω∈O−
t

Bω1,ω,t

)
.

Let now t, t′ ∈ R and t′ > t and take v ∈ Bt′ . As O+
t′ ⊇ O+

t ,

v ∈
⋂

ωi∈O
+
t \{ω1}

Bω1,ω.

If ωj � (uj , ∅) ∈ O−
t′ , by Lemma 5.18, d(u1, v) − d(uj , v) < tu1 − t′ and, since t′ > t,

d(u1, v)− d(uj , v) < tu1 − t. Hence, again by Lemma 5.18, v ∈ Bω1,ωj ,t and Bt′ ⊆ Bt.

We now turn to non-deterministic epidemics. As in S-OFF, when 0 < ε < 1, we compute
a superset of the candidate set B̃t ⊇ Bt. To do this, we extend Proposition 5.5 to account
for negative observations.

Proposition 5.19. Let t ≥ τ⋆, ω1 � (u1, tu1) ∈ O+
t , ω2 � (u2, ∅) ∈ O−

t and let v ∈ Bt.

Then,

d(u1, v)− d(u2, v)− tu1 + t < ε(d(u1, v) + d(u2, v)). (5.26)

Proof. The proof of the result follows closely that of Proposition 5.5. We limit ourselves
to highlighting the differences. If v⋆ = v, we have

T (v, u1) ≥ d(v, u1)− εd(v, u1), (5.27)

T (v, u2) ≤ d(v, u2) + εd(v, u2). (5.28)

Combining (5.27) and (5.28) and using the relation T (v, u1) − T (v, u2) < tu1 − t, we
obtain (5.26).

In view of Proposition 5.19 and Remark 5.6, we can compute and update B̃ with
Algorithm 10. Like for Algorithm 9, the runtime of Algorithm 10 is O(K2

sN).
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Algorithm 10 S-ON - non-deterministic epidemic

Require: Observation sets {O+
i }Fi=1, {O−

i }Fi=1

B̃0 ← V
i ← 1
while i ≤ F and |B̃i−1| > 1 do

i ← i+ 1
B̃i ← B̃i−1

for (u, tu) ∈ O+
i \O+

i−1, (z, tz) ∈ O+
i do

for v ∈ B̃i do
D ← |d(u, v)− d(z, v)− tu + tz|
E ← ε(d(u, v) + d(u, v))
if D > E then

remove v from B̃i

for (u, ∅) ∈ O−
i , (z, tz) ∈ O+

i do

for v ∈ B̃i do
D ← d(z, v)− d(u, v)− tz + ti
E ← ε(d(u, v) + d(z, v))
if D ≥ E then

remove v from B̃i

return Bi

5.8.3 D-ON

We give here some details concerning our D-ON algorithm.

As a pseudo-code for the complete algorithm would be quite involved (hence not very
helpful for the reader), we limit ourselves to giving the pseudo-code for the subroutines
with which, at a time t, we update the candidate set B, the sensor set U , and the
observation set O = O+ ∪ O−. The initialization, i.e., the first computation of B at
time τ⋆ is done in D-ON as for S-ON (i.e., as in the first iteration of the while loop of
Algorithm 7).

At time t, the candidate set B, the sensor set U , and the observation set O = O+ ∪ O−

are updated in two cases:

I) if t = τ⋆ + θj, j ∈ N, i.e., at time t a new dynamic sensor is added. In this case B,
U and O = O+ ∪ O− are updated with the subroutine presented in Algorithm 11.

II) if t = tu > τ⋆, i.e., t is the infection time of a static sensor or of a node that was
chosen as dynamic sensor before time t but was not yet infected at time t. In
this case B, U and O = O+ ∪ O− are updated with the subroutine presented in
Algorithm 12.

In Algorithm 11 and 12, t̄ denotes the time at which B, U and O where last updated
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before time t. If t is the time of the first update, t̄ = τ⋆. To simplify the notation, the
time index for the set B is omitted.

Algorithm 11 D-ON - Update I - deterministic epidemic

Require: B, U , Ot̄, ω1 � (u1, t1) ∈ O+
τ⋆

d′ ← argmaxd∈V \UGainU (d)
U ← U ∪ {d′}
if d′ is infected then

td′ ← infection time of d′

O+
t ← O+

t̄
∪ (d′, td′)

O−
t ← O−

t̄
for v ∈ B do

if d(d′, v)− d(u1, v) �= td′ − t1 then
remove v from B

for ω � (u, ∅) ∈ O−
t do

for v ∈ B do
if d(u, v)− d(u1, v) < t− t1 then

remove v from B
else

O+
t ← O+

t̄
O−

t ← O−
t̄
∪ (d′, ∅)

for ω � (u, ∅) ∈ O−
t do

for v ∈ B do
if d(u, v)− d(u1, v) < t− t1 then

remove v from B

The extensions of Algorithm 11 and 12 to non-deterministic epidemics follow from
Proposition 5.19 and Algorithm 10.

5.8.4 Extending the Gain Functions to Negative Observations

In online source localization, dynamic sensors can yield negative observations. For this
reason, the computation of gSIZEU and gDRS

U given in Section 5.5.2 should slightly change
to account for the case in which a dynamic sensor is not infected by the time at which it
is deployed.

Definition 5.20 (Possible infection times). Let U be a set of sensors, c ∈ V \U , OU �

{(u, tu), u ∈ U} and fix (u1, t1) ∈ OU arbitrarily. Let BU be the set of candidate sources

after observing the infection times of the nodes in U , i.e., BU = {v ∈ V : P(v = v⋆|OU ) >

0}. Then

T c
U ,t � {h ∈ (−∞, t] : h = d(v, c)− d(v, u1)− t1 for some v ∈ BU} (5.29)

is the set of possible infection times of c that are smaller than t.
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Algorithm 12 D-ON - Update II - deterministic epidemic

Require: B, Ot̄, ω1 � (u1, t1) ∈ O+
τ⋆ ,

(u, tu) new positive observation
O+

t ← O+
t̄
∪ (u, tu)

O−
t ← O−

t̄
for v ∈ B do

if d(u, v)− d(u1, v) �= tu − t1 then
remove v from B

for ω � (w, ∅) ∈ O−
t do

for v ∈ B do
if d(w, v)− d(u1, v) < t− t1 then

remove v from B

Again, Definition 5.20 does not depend on the choice of (u1, t1) ∈ OU . The next proposition
extends Proposition 5.14 to online localization.

Proposition 5.21. Let U be a set of sensors, c ∈ V \U , OU ,BU as in and Definition 5.13

and fix (u1, t1) ∈ OU arbitrarily. Call tc the infection time of c and define

bU (c, h) � {v ∈ BU : P(v = v⋆|tc = h) > 0}
= {v ∈ BU : h = d(v, c)− d(v, u1) + t1},

b̃U (c) � {v ∈ BU : P(v = v⋆|tc > t) > 0}
= {v ∈ BU : t < d(v, c)− d(v, u1) + t1}.

Then at time t, gSIZE can be computed as,

gSIZEU (c) =
∑

h∈T c
U,t

P(v⋆ ∈ bU (c, h)) · (|BU |− |bU (c, h)|)+P(v⋆ ∈ b̃U (c)) · (|BU |− |̃bU (c)|).

(5.30)

Proof. Follows from the definition of gSIZEU , Tc and bU .

For gDRS, let Xc = 1 if there exists v ∈ BU such that the infection time tc of c is larger
than t (i.e., such that d(v, c)− d(v, u1)− t1 > t), Xc = 0 otherwise. Then, the value of
DRS-Gain at time t is defined as

gDRS
U (c) � |T c

U ,t|+Xc. (5.31)

As in Section 5.5.2, we use the same definition of gDRS for both deterministic and
non-deterministic epidemics. Instead, an approximation of gSIZE is given in Section 5.8.5.
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5.8.5 Approximate Size-Gain for the Non-deterministic Case

When epidemics spread deterministically, Proposition 5.14 and 5.21 show that, for any
candidate sensor c, the probability of it being infected at time h, can be computed
summing over the possible the nodes v = v⋆ such that c is infected at time h. We limit
ourselves to give a generalization of Proposition 5.21 to non-deterministic epidemic for
the online localization setting For offline localization, Proposition 5.14 can be generalised
to non-deterministic epidemic analogously. We adopt the notations of Section 5.6.

Proposition 5.22. Let tc be the infection time of c ∈ V \U and t′c, t
′′
c the minimum and

maximum values for tc given Ot, then

t′c ≥ min
v∈B

(
max

(u,tu)∈Ot,tu �=∅

{
d(c, v)− d(u, v) + tu − ε(d(c, v) + d(u, v))

})
,

t′′c ≤ max
v∈B

(
min

(u,tu)∈Ot,tu �=∅

{
d(c, v)− d(u, v) + tω + ε(d(c, v) + d(u, v))

})

Proof. We prove the bound for t′c, the one for t′′c is analogous. Take v ∈ B. If v = v⋆,
then for every (u, tu) ∈ Ot

t′c ≥ d(c, v)− d(u, v) + tu − ε(d(c, v) + d(u, v)), (5.32)

hence

t′c ≥ max
(u,tu)∈Ot

{
d(c, v)− d(u, v) + tu − ε(d(c, v) + d(u, v))

}
. (5.33)

The bound follows then from the fact that v⋆ can be any node in B.

For h ∈ [t′c, t
′′
c ], let a(c, h) be the set of nodes v that satisfy (5.4) and (5.26) with v = v⋆

for all observations in Ot ∪ {(c, h)}, and let ã(c) be the set of nodes v that satisfy (5.26)
at time t for all observations in Ot ∪ {(c, ∅)}. Then we define

gSIZEU (c) =

∫ min(t′′c ,t)

min(t′c,t)
(|B| − |a(c, h)|)ftc(h)dh+ (|B| − |ã(c)|)(1− Ftc(t)), (5.34)

where ftc(·) denotes the density of the infection time tc of c conditioned on Ot and Ftc is
its cumulative function.

Let (u0, tu0) ∈ Oτ⋆ and, for h ∈ R, let us denote by Jh the interval [h− 1
2 , h+ 1

2 ], by J ′
h

the interval [h− 1
2 − tu0 , h+ 1

2 − tu0 ]. In order to compute (5.34), we make the following
approximations:
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1. we approximate the integrand with a stepwise constant function with steps of unity
length centered around the integer values in [t′c, t

′′
c ], i.e.

E[gSIZEU (c)] ≈
∑

h∈Z,h∈[t′c,t′′c ],h≤t

(|B|−|a(c, h)|)P(tc ∈ Jh|Ot)+(|B|−|ã(c)|)P(tc > t|Ot);

2. we compute P(tc ∈ Jh|Ot) by summing over B:

P(tc ∈ Jh|Oi−1) =
∑

v∈B

P(tc ∈ Jh|v = v⋆,Ot)P(v = v⋆|Ot).

In order to further limit the computational costs, if P(v = v⋆|Oi−1) > 0, we
approximate

P(v = v⋆|Ot) ≈
P(v = v⋆)

P(v⋆ ∈ B) , (5.35)

i.e., we ignore the fact that, conditioned on the observations in Ot the probability
of a node being the source can differ from the (rescaled) prior. Moreover, we
approximate P(tc ∈ Jh|Ot) as follows. We take (u0, tu0) as reference observation3

and we approximate P(tc ∈ Jh|Ot) ≈ P(tc − tu0 ∈ J ′
h).

4

An important side-effect of the approximation of P(tc ∈ Jh) is that the event gSIZEU (c) =

|B|, i.e., no node is a valid candidate source after adding c, might have a positive weight

in the computation of E[gSIZEU ]. Specifically, there might be a value of h such that
P(tc − tu0 ∈ J ′

h) > 0 but |ac,h| = 0. This can lead our algorithm to slow down by
choosing sensors that do not reduce the number of candidate sources. We address this
problem applying the following heuristic: Whenever the number of candidate sources
does not decrease in two consecutive steps we restrict the choice of the new sensor to
the set of candidate sources B. In fact, if the infection time of at least one node in B is
already observed, adding a sensor in any other node in B implies that the cardinality of
B decreases at the next step.

3In case of a large-diameter network, this choice could be optimized taking as reference the sensor u
(static or dynamic) which is closer to the candidate source v; for a small-diameter network this would not
yield a substantial improvement.

4If the time delays are all uniformly distributed with equal expected values, we can normalize tc−tu0
to

obtain a sum of uniform U([0, 1]) variables, i.e., an Irwin-Hall random variable and the latter probability
can be computed exactly. If time delays are uniformly distributed but with different expected values, the
probability P(tc − tu0

∈ J ′
h) is not easily computable Bradley and Gupta [2002], hence we approximate

the distribution of tc − tu0
with a Gaussian distribution with mean and variance equal to the mean and

variance of tc− tu0
. The latter Gaussian approximation can be used for generally distributed transmission

delays.
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5.9 Discussion

In this chapter we presented a very general framework for source localization. Using
all the information available at each stage of the localization process, we localize the
source by progressively updating a set of candidate sources. Furthermore, a fraction of
the available sensors are dynamic, i.e., can be adaptively chosen based on the knowledge
about the particular epidemic instance and on the progress of the localization process.
We showed that this last feature yields a dramatic reduction in the number of sensors
needed to localize the source, with respect to the common setting where all sensors are
static, i.e., chosen independently of any epidemic.

Due to its flexibility, the presented framework can be applied in many different contexts,
fitting the specific constraints of the setting, e.g., those on the number of sensors and on
the time at which they can be deployed.

Several research directions could be investigated using the framework and the formalism
introduced in this work. First, a natural and realistic extension could attribute a different
cost to static and dynamic sensors or could give the sensors a cost that depends on the
time at which they are deployed. Second, in order to further decrease the number of
sensors needed, we could approximate the set of candidate sources B with a smaller set
B ⊆ B excluding the nodes that have a small probability to be the source. Clearly this
approximation leads to possible errors (i.e., cases in which the source v⋆ is removed from
the set of candidates) but, depending on the budget available, a favourable trade-off
between cost and precision could be achieved.

A more theoretical and very interesting line of work is the investigation of upper bounds
for the number of dynamic sensors needed to reach B = {v⋆} for special classes of networks,
e.g., trees.

An interesting and closely related line of work would investigate source localization and
sensor placement in adversarial settings, e.g., where the epidemic spread is designed to
obfuscate the identity of the source [Fanti et al., 2015] or where an adversary knows the
identity of the static sensors and chooses the source in order to maximize the difficulty of
source localization. We believe that these settings would require different assumptions
about the sensors: for example, sensors that can be iteratively moved in the network or
that can reveal information about the infection provenance could be considered.
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Conclusion

In this dissertation, we studied the localization of the source of an epidemic in a network.
We mostly focused on two questions that have a strong practical impact: What is the

minimum amount of information needed to detect the source? How can we optimize the

collection of information for source localization, when we have a constraint on the amount

of information we can collect?

In Chapter 2, we studied the minimum number of observations with which, on a given
network, the identification of the source can, under certain hypothesis, be guaranteed.
We bounded this quantity in the special case of G(N, p) random networks. Combining
the derived bounds and an experimental analysis, we showed that on G(N, p) the amount
of observations needed follows a non-monotonic behavior as a function of p. This reveals
that we can identify parameter regimes in which localizing the source is substantially
more difficult than in other regimes.

In Chapters 3 and 4, we turned to optimizing the choice of the nodes to observe, which we
called sensors, working in a setting where this choice is made a priori, i.e., independently
of any epidemic instance.

In Chapter 3, we restricted our attention to trees where the uniqueness of paths makes
the problem of sensor placement simpler. For this case, we proposed a polynomial-time
dynamic-programming approach that solves the problem in the setting where only K

nodes can be chosen as sensors. Our approach can be used to optimize several relevant
metrics for source localization.

In Chapter 4, considering general networks, we showed that the optimal sensor set depends
not only on the topology of the network, but also on the variance of the node-to-node
transmission delays. We considered both a low-variance regime and a high-variance
regime for the transmission delays and, in both cases, we proposed algorithms for sensor
placement. Furthermore we experimentally showed that, compared to state-of-the-art
strategies for sensor placement, our methods have a better performance in terms of source
localization accuracy for both the low- and the high-variance regimes.
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Chapter 5. Static Vs Dynamic

Finally, in Chapter 5, we proposed a more general framework for source localization where
some sensors, called dynamic sensors, can be chosen while the epidemic spreads and the
localization process progresses. More specifically, the dynamic sensors can be chosen
online, taking advantage of all the already available information about the epidemic. Our
experimental analysis shows that, by using dynamic sensors, we dramatically outperform
a static strategy that uses the same number of sensors. Furthermore, even with high-
variance transmission delays, the use of dynamic sensors makes it possible to localize the
source with extremely few sensors, especially in real-world networks.

Further Research Directions

At the end of this journey, several interesting questions remain open. In the final discussion
of each chapter we listed some of the most relevant questions, or possibilities for extensions,
that arose during our study. We list here a few more general directions that we believe
are among the most interesting for future research in the field.

First, in a theoretical direction, it would be interesting to derive possibility / impossibility
bounds for source localization and to answer questions such as the following two: How

does the difficulty of localizing the source change while the epidemic progresses? Are

there diffusion models or networks that make it impossible to guarantee that the source is

localized correctly or within a desired precision? The derivation of punctual statements
about the difficulty of source localization is very challenging and requires defining models
that, though remaining of practical interest, are amenable to theoretical analysis. Some
interesting research in this direction was recently conducted, for example, by Fanti et al.
[2015] who studied diffusion protocols to obfuscate the source.

Second, in the direction of developing more scalable approaches, it would be worth
studying methods for localizing the source without any knowledge of the entire network or
of the full matrix of node-to-node distances. Such methods would rely instead either on a
partial network knowledge or, more interestingly, only on extremely local information,
e.g., the egonet-topology of each node.

Finally, combining source localization and the development of immunization strategies
would be of interest. In fact, it is often the case that the tasks of detecting the source and
of containing the epidemic expansion come hand-in-hand. Furthermore, both problems
can be expressed within the same framework of an iterative loop of data collection and
decision making. Hence, the study of combined approaches that could enhance the
performance of both tasks at the same time would be greatly beneficial.
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