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Summary

Suspended Microchannel Resonators (SMRs) are hollow resonant structures containing an embed-

ded U-shaped microfluidic channel. This configuration reduces the losses due to the damping

caused by the fluid, which are deleterious for the quality factor in traditional solid resonators im-

mersed in fluid. As bio-sensors, SMRs enable real time detection of liquid compounds, by added

mass resonance frequency shift, with very high quality factors, and weighing of nanoparticles, bac-

terial cells and single bacterial cells and sub-monolayers of adsorbed proteins in water with sub-

femtogram resolution. Theoretical and experimental results have proved that in these devices the

energy dissipation is a non-monotonic function of the fluid viscosity (or Reynolds number), while in

conventional cantilevers it always increases with the viscosity as the damping from the fluid on the

solid structure increases. Furthermore, a variation in the device quality factor by several orders of

magnitude was discovered when the microfluidic channel axis was placed away from the beam neu-

tral axis, which is expected to happen always for fabrication limits, and a change in the behaviour

of the Quality Factor Q at high viscosities was noticed when varying fluid compressibility.

The author would like to declare that this project has been carried out during a six months long

experience at the École polytechnique fédérale de Lausanne, thanks to a collaboration between

the Advanced NanoElectroMechanical Systems Laboratory and the Integrated Systems Laboratory

of EPFL. Thus, the author had the chance to include in his Master of Science experience several

secondary activities such as:

• joining an international environment, being constantly supervised and helped by Professors

and PhD students;

• attending weekly group meetings;

• getting to know about the nowadays research interests in the field of nano-sized resonators;
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• attending a compulsory course to access the EPFL Cleanroom;

• attending a course of French language (level A2/B1).

In this project, both a Mathematica (release 10.4) code and a 3D COMSOL (release 5.3) model are

produced to validate the theoretical and experimental results on the energy dissipation in these de-

vices [32]. To reduce the computational effort an eigenvalue study is performed. The incompressible

and compressible cases are investigated while changing the fluid and device characteristics. The ef-

fects of the rigid lead channel length have been studied and some differences have been found with

respect to the reference paper [32]. Importantly, numerical results seem to match quite well with

the theoretical results everywhere but at high viscosities, while a slightly bigger difference exists

between numerical and experimental results. Our numerical model works fine where the experi-

mental data are provided but it is in contrast with the theoretical model at low Reynolds number.

We consider it valid in the region of interest and send to further investigation the difference at low

β between theory and numerics. Throughout the work some improvements to the theoretical model

have been proposed as a few mistakes were proved to exist in the equations developed in [32].

The student’s main tasks are here summed up:

• Reviewing and understanding the state of the art of energy dissipation in hollow beam res-

onators;

• Analytically proving and coding in Mathematica (release 10.4) the theoretical model proposed

by Sader[32];

• Developing a 3D COMSOL model to compare experimental [33], theoretical [32] and numerical

results;

• Taking part to some experimental sessions in the ANEMS Laboratory of the EPFL.

Finally, an Abstract and a Poster on this work have been accepted by the 1st International Workshop

on Nanofluidics and Nanomechanics, held in Turin on 14th-15th September 2017.
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Chapter 1

Introduction

“I felt it as a sensual delight that I should become one with –

become this earth which is forever radiated by the sun in such a

constant ferment and which lives – lives – and which will grow

plants from my decaying body – trees and flowers – and the sun

will warm them and I will exist in them – and nothing will

perish – and that is eternity.”

Edvard Munch
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This introductory chapter aims to give a general overview of this MSc project. Firstly, an overview

on the Micro-NanoElectroMechanicalSystems state of the art is provided. Starting from a litera-

ture survey on the advances in the M/NEMS industry, we move on discussing the peculiarities of

resonant systems.
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Secondly, application of M/NEMS technology in bio-sensing is discussed, whereupon the key pa-

rameter known as quality factor is introduced and the attention is focused on the innovative mi-

crofluidic devices referred to as Suspended Microchannel Resonators (SMRs).

The last two sections have the purpose to show the aim of the study with the research goal that

justifies this project and the outline of this Master Thesis project.

1.1 Literature Survey

1.1.1 MEMS and NEMS

Micro-Electro-Mechanical Systems, or MEMS, are miniaturized mechanical and electro-mechanical

devices made using the techniques of microfabrication. They have been developed and broadly

produced to perform specific functions, typically acting as sensors, controllers and actuators at the

micro-scale, having dimensions in the range of a few to hundreds of microns [6]. Their diffusion

is due as well to the versatility, good mechanical properties, low cost, biocompatibility and abun-

dance of their main material, compatible with most batch-processed integrated circuits technologies:

silicon. Therefore, the last decades have seen a boost in the use of silicon for the fabrication of minia-

turized systems with moving parts. Advanced fabrication procedures, such as lithography, thin film

deposition and etching, have turned MEMS into a well-established industry. Their applications span

the automotive industry, communications, defence systems, national security, health care, informa-

tion technology, avionics, environmental monitoring, cell weighing, mass spectrometry, magnetom-

etry and surface science (phase transitions and diffusion). Accelerometers (for automotive airbag

sensors), gyroscopes (for orientation determination in vehicles, smartphones, games consoles, etc.),

inkjet printer nozzles, microphones, video projector display chips, blood pressure sensor are well-

known examples of MEMS commercial products, as well as Scanning Tunneling Microscope (STM)

and Atomic Force Microscope (AFM)[15] [38].

Recently, innovative manufacturing technologies and materials have enabled the scaling down of

MEMS to a smaller size-domain. These sub-micron MEMS have been naturally defined NanoElec-

troMechanical Systems (NEMS) and allow for exploiting of MEMS aforementioned characteristics

at a higher level, with light and astonishing sensitive sensors, minimally invasive bio-medical tools

and ultra-high data storage. MEMS and their extension NEMS are collected in the category referred

Master of Science Thesis A. Gerbino
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Figure 1.1.1: Scanning electron microscopy images of different mechanical resonators: a) microcantilever array (with

courtesy of Annalisa De Pastina from EPFL), b) surface stress membrane-like sensor c) resonant nanostring (with

courtesy of An Hoang Tran)

to as “M/NEMS”, where the physical principles and theoretical background on which they are

based are in common, while their size differs of almost an order of magnitude.

Mechanical structures such as beams, plates, strings, wires and membranes that exhibit resonance,

vibrating at some specific resonance frequencies (determined by geometry, dimensions, stiffness

and mass density) with bigger amplitude than at others, are all mechanical resonators. Hence,

M/NEMS resonators are simply miniaturised mechanical resonators consisting of suspended micro-

or nanostructures free to oscillate at high frequencies (in the order of kHz and MHz), much bigger

than their macroscopic counterparts due to their small sizes.

Figure 1.1.1 shows examples of different configurations of M/NEMS. In all case, small sizes and new

properties of M/NEMS resonators have endowed many sensors with incredibly high sensitivity to

changes in relative humidity, temperature, pressure, flow, viscosity, charge, mass, force, etc. External

physical stimuli can strongly affect the oscillations of the resonators, especially at their resonance

frequency, at which these devices are often driven. Observing the changes in vibrational properties

such as resonant frequency, vibration amplitude, phase or damping and correlating them back to

the stimuli define the fundamentals of the sensing principle of resonant M/NEMS. Extremely high

sensitivity, ultralow power requirements, device robustness and very high mechanical responsivity

have been achieved in these innovative sensors thanks to the reduced dimensions, high mechanical

properties and low mass, also leading to an increase in the resonator’s resonant frequency.

Master of Science Thesis A. Gerbino
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1.1.2 Nanomechanical bio-sensors

Figure 1.1.2: CMOS technology applied to bio-sensing: the biosensors are immersed in a sample and linked to a CMOS

Integrate circuit; the interaction of biological molecules with the device surface is one of the most relevant phenomena

when it occurs at the interfaces between CMOS circuits and biological systems [25]

MEMS/NEMS technology has found wide application in bio-sensing. A biosensor is a device

which measures the physicochemical changes that a biological recognition layer attached to a solid

transducer undergoes when it interacts with a sample that contains the targeted molecules: some

biomolecules (receptors or probes) specifically bind (recognize) complementary biomolecules (lig-

ands or targets); the surface of the micro- or nanomechanical element is sensitised with receptor or

"probe" molecules that selectively recognize the targeted substance.

Figure 1.1.3: Bio-sensing working principle: binding

of target molecules with receptors of the functional-

ized surface produces a stimuli which is transduced

into a measurable signal

For example, if we develop an implantable system for

measuring human glycemia (the measure of glucose

in the blood), then glucose must be the only molecule

to interact with our interface. Functionalization can

be achieved in several ways like evaporating, sputter-

ing, or spraying a thin layer of bio-material on a gold

or silicon surface [19]. Common molecular recogni-

tion mechanisms in biology occur in systems such

as, for example, receptors/ligands in cell membranes,

antigens/ antibodies in the immune system, DNA-

DNA and DNA-RNA pairings in cell nuclei. Molec-

ular complementarity is a concept of utmost impor-

tance: it assures the correct pairing in target/probe

recognition at the Bio/CMOS interface. Targets may

Master of Science Thesis A. Gerbino
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be metabolites, genes, proteins, enzymes, cells, bacteria or particular base sequences in a single-

stranded DNA or RNA extracted from cells [13]. In all cases, immobilization of the probes onto the

chip surface is mandatory to create a stable Bio/CMOS interface. Typical interactions are hybridiza-

tion of complementary nucleic acids and antibody–antigen binding. These devices are broadly re-

quested in biological studies, health science research, drug discovery, on-chip cell cultures mon-

itoring, pH monitoring and clinical diagnosis. Their use is based on the detection of the forces,

motion, mechanical properties and masses that emerge in biomolecular interactions and fundamen-

tal biological processes. An important step is the transduction of the physicochemical change into a

measurable signal: optical, electrical or mechanical. MMS and microcantilever systems include sys-

tems based on cantilevers having a fixed end and a movable end; in these systems, the displacement

and/or movement of the "free" end is usually detected. However, there are also systems based on

cantilevers clamped at both ends, in which the movement of the central part can be detected. This

displacement can be in the order of about 1- 100 nanometres (nm) and in many cases it is neces-

sary to obtain a resolution better than 1 nm, depending on the application. For the readout of the

displacement, there are several techniques such as capacitive detection, detection based on tunnel

current, optical interferometry, piezoresistive readout and the optical beam deflection technique.

Figure 1.1.4: Chronogram of the publication rate in optical, electrical, mechanical and nanomechanical biosensors. Up

to now, optical and electrical transduction techniques clearly dominate the research on biosensors. It is expected that

emerging nanomechanical biosensors will play an increasing role during the next decade [26]

Biosensors based on micro- and nanomechanical resonators have gained considerable relevance in

the last decade and are expected to be widely used in the next years (Figure 1.1.4). The key point

of their spread is the high sensitivity of deformation and vibrational characteristics to molecular

adsorption thanks to the advances in micro- and nanofabrication technologies that nowadays enable

Master of Science Thesis A. Gerbino
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us to achieve increasingly smaller mechanical transducers with micro- and nanosized moving parts.

These ultrasensitive nanomechanical biological and chemical sensors take advantage of their small

dimensions to measure with very high resolution physicochemical changes of biological particles.

Common devices consist on suspended mechanical structures when either biological adsorption

or interactions take place on their surface. Mass, surface stress, effective Young’s modulus and

viscoelasticity are typical parameters that change as a consequence of biomolecular adsorption,

while common issues are the immobilization of biomolecular receptors on the surface of the sensors.

In comparison to other technologies such as quartz crystal resonators, the smaller size of nanome-

chanical systems produces outstanding mass resolution (up to single atoms), thanks to the compa-

rable sizes of the biomolecules and one of the dimensions of the mechanical system, typically its

thickness.

Displacements in nanomechanical biosensors range from angstroms to hundreds of nanometres,

and they can be measured by means of optical and electrical techniques.

(a) Bio-functionalized micro-cantilever experiencing a

static deflection due to molecular binding between target

and probe bio-molecules [39]

(b) Top: conceptual model of a cantilever with

an added mass at the tip; centre: frequency shift

of a mechanical system due to the effect of an

added mass after molecular recognition; bottom:

SEM image of a silver microsphere attached to a

silicon cantilever [16]

Figure 1.1.5: Bio-sensing working principle of nanomechanical cantilevers immersed in biological fluid samples

Nanomechanical biosensors commonly operate in two modes: static and dynamic. In the former, one

side of the device, often a microcantilever, is functionalized with a layer of biomolecular receptors

Master of Science Thesis A. Gerbino
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which exhibit high affinity to the targeted biomolecules. Surface stress changes on one side of the

structure induce the cantilever bending, which is optically detected. In the dynamic mode, piezoelec-

tric actuators, magnetic forces or light-induced forces drive the cantilever at its resonance frequency.

Figure 1.1.6: Frequency shift

in the cantilever resonance

curve observed by Lavrik and

Datskos [23] after adsorption

of 11-mercaptoundecanoic acid,

corresponding to an added mass

of 5.5 fg

The exquisite and unprecedented sensitivity (mass change over fre-

quency shift) and resolution (minimum detectable mass) in mass mea-

suring of micro- and nanomechanical resonators has been widely

proven [21], [37], [23] and allowed for mass detection of individual

virus particles, with measurement of the cantilever resonant frequency

often performed using a microscope scanning laser Doppler vibrom-

eter. Femtogram-level mass sensitivity using photothermally actuated

NEMS was attained by Lavrik and Datskos[23]: their conventional Si

microcantilevers with resonance frequencies in the range of 1 to 10 MHz

were exposed to vapours of 11-mercaptoundecanoic acid; to estimate

an additional cantilever mass due to attached 11-mercaptoundecanoic

acid molecules, they used a model of a weakly damped resonator where

∆m = 2G k∆ f
π2 f0

3 , with f0 as the cantilever frequency before adsorption, k

as the spring constant, G as a geometrical factor and ∆ f =2 KHz as the

frequency shift, corresponding to an added mass of 5.5 fg. In 2006, Yang and Roukes [37] demon-

strated in situ measurements in real time with mass noise floor ∼ 20 zg and mass resolution of

∼ 7 zg. Their doubly clamped NEMS were maintained at high vacuum (< 10−7 Torr) at T=300 K,

fundamental resonant frequency was of 133 MHz and a controlled flux of atoms or molecules was

shot onto the NEMS. In recent years, detection limits have been even further reduced, attaining

yoctogram resolution (10−24 g) and enabling to measure the mass of single protons [36], [14].

1.1.3 Quality factor

A key parameter of a resonator is the so-called quality factor Q, defined as the ratio between the

energy stored and the energy lost during one cycle at resonance. It can also be computed from

the vibrational frequency spectrum as Q = f0
∆ f0

, with f0 the resonance frequency and ∆ f0 = f2 − f1

the bandwidth at -3dB from the peak, Figure 1.1.8. The quality factor determines the accuracy

of the resonance frequency measurement, thus a high quality factor is desired for applications of

mechanical resonators as it means a sharp peak of the measurement.

Master of Science Thesis A. Gerbino
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Figure 1.1.7: Chronology of the advances in nanofabrication of mechanical resonators that have increasingly enhanced

the mass detection limits: the device mass, the detected mass levels and the resonance; huge quality factors (1000–10 000)

and high resonance frequencies are measured in vacuum with high sensitivity. The advances in nanofabrication have led

to smaller devices, smaller mass detection limits approaching Dalton resolution and higher resonance frequencies. Data

are from [21], [14] and [36]

Energy dissipation in mechanical systems is due to the sum of different dissipation mechanisms,

among which we mention viscous dissipation through the surrounding medium, clamping to the

substrate and intrinsic dissipative mechanisms whithin the material of the resonator; obviously,

operation in vacuum and proper structural design can bring up the Q factor of some orders of

magnitude. Fluid damping has always limited the use of resonating microcantilevers immersed in

liquid as a micro- and nanomechanical sensor as it severely degrades the signal-to-noise ratio of

measurements by lowering the mass responsivity and the quality factor of these sensors. Desired

yoctogram resolutions require nanoscale resonators with huge quality factors (1000 - 100000), only

obtainable with measurements performed in vacuum, while bio-sensing commonly needs aqueous

solutions; the development of bio-cantilever sensors for detection in liquid presents two drawbacks:

(i) long-term drift of the cantilever deflection induced by slow electrochemical processes at the

cantilever/solution interface [28] and (ii) the quality factor of the cantilever is reduced by about two

orders of magnitude, from more than 104 in vacuum [36] to few units in liquid [9].

Master of Science Thesis A. Gerbino
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Figure 1.1.8: Quality factor computed from the frequency spectrum of a mechanical resonator

Therefore, current challenges concern the development of resonators in contact with viscous fluids

with limited energy loss [20], [30]. Tamayo [35] enhanced the sensitivity of the cantilever response

by up to three orders of magnitude through Q-control electronic positive feedback technique.

Sader [30] found out that viscous effects strongly depend on the dimensions of the beam: miniatur-

ization of these devices always results in broadening of the resonant peak from its value in vacuum,

thus lowering the quality factor and not being a good strategy for the purpose of increasing Q.

To sum up, the low quality factor together with the low mass responsivity leads to low sensitiv-

ity of M/NEMS when immersed in liquid for bio-sensing applications. A clever solution to this

problem has been recently proposed [10]: rather than having the resonator immersed in a liquid

environment, the liquid sample is enclosed and let flow in an embedded channel placed within the

resonator itself. This easily allows to actuate the device in vacuum, leading to almost equal quality

factors for empty and filled resonators [12]. This turns microfluidic technologies into an even more

suitable and efficient option for measuring single cells biophysical properties such as density and

monitoring cell growth when applied to cancer, immunology and microbial systems. These devices

are called Suspended Microchannel Resonators (SMRs).

1.1.4 Suspended Microchannel resonators

Microcantilevers immersed in fluids have been developed for a broad range of applications, from

sensing of environmental conditions to imaging with molecular resolution. The quality factor deter-

mines the precision to which small changes in resonant frequency can be measured, therefore using

microcantilevers as sensors in fluid environments is a challenge, being the quality factor often of

order of unity.

Master of Science Thesis A. Gerbino
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One of the very first differences between microcantilevers and macrocantilevers immersed in fluids

is that the former are strongly affected by fluid viscosity, while the latter are almost not at all. This

produces a big dissimilarity in the fluid dynamics developed by the mechanical oscillations of these

similar-in-shape devices. However, the scaling is a major issue that differs them. In fact, quality

factors of microcantilevers are orders of magnitude smaller than those of macro-scale cantilevers,

because of energy dissipation enhanced with miniaturization. As discussed in the previous subsec-

tion, a good quality factor means a very pure resonance peak that enhances the signal-to-noise ratio

of resonant frequency measurements and Suspended Microchannel Resonators (SMRs) have been

proposed as an alternative to cantilevers immersed in fluids to overcome the issue of high energy

dissipation: confining the fluid inside a hollow cantilever significantly increased sensitivity by sur-

rounding the whole device with vacuum and eliminating high damping.

Figure 1.1.9: Chip layout and typical

chip dimensions for an array of SMRs.

Inset: fluidic channel inlet dimensions.

Image taken from CleWin (with cour-

tesy of Mauricio Loucena Couto)

The idea of using microfabricated resonant channels for sens-

ing was developed by Enoksson et al. in 1995 [17]. They devel-

oped a device made of a silicon tube whose resonance frequency

changed according to the density of fluid flowing through. In

2003 Manalis and Burg [10] developed the first SMR, overcoming

the major drawback of conventional immersed resonators: low

quality factor, low mass responsivity and low sensitivity.

Surprisingly, a non-monotonic energy dissipation due to fluid

viscous dissipation was observed while increasing viscosity, in

contrast to the monotonic degradation of Q in conventional can-

tilevers; as a direct consequence enhancement of the quality factor

upon miniaturization has been possible [32], [33], [31].

In 2006 Burg and Manalis [11] demonstrated a new type of vacuum-packaged sensor known as the

suspended microchannel resonator (SMR) that effectively solved the problems of a limited quality

factor in resonators immersed in liquids. They successfully described the fabrication, packaging and

testing of a resonant mass sensor for the detection of biomolecules in a microfluidic format with a

suspended microchannel as the resonating element of their sensor, such to avoid the problems of

viscous damping that degrade the sensitivity of resonant sensors in liquids. It has been showed that

these devices exhibit quality factors as high as 10000, comparable to their macro-scale counterpart

and orders of magnitude higher than traditional microcantilevers immersed in fluid. Furthermore,
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1.1 Literature Survey 11

Figure 1.1.10: SEM image of the inlet (blue framed) and outlet (green framed) channels for a Suspended Microchannel

Resonator (with courtesy of Annalisa De Pastina)

quite surprisingly no change was observed in these devices when air or water was passed through

the channel. Such behaviour is in contrast with traditional microcantilevers immersed in fluid whose

quality factor drops by 2 orders of magnitude when the surrounding fluid is changed from air to

water, because of the increased damping exerted by water on the mechanical system (fluid structure

interaction, acoustic impedance).

Such a tool constitutes a micromechanical resonator, modelled as a harmonic oscillator, in which the

effective spring constant k and the total effective mass m∗ of the system (channel walls mass, liquid

mass and the mass of any adsorbed matter) determine the mechanical resonance frequency [34]:

ωn =

√
k

m∗
(1.1.1)

Microcantilevers incorporating a microfluidic channel in their interior constitute a promising solu-

tion to the problem of low Q factors: the basic idea is to fill the internal environment of the cantilever

with the fluid to be investigated and surround the whole device with vacuum.

These devices have enabled many important measurements through two main modalities of opera-

tion:

• flow-through detection: real time monitor of resonance frequency over time, as particles are
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(a) Chip of 12 Suspended Microchannel Resonators in silicon nitride (ls− SiNx) of different sizes fabricated at the CMi

Laboratory at EPFL; image taken with a SEM microscope (with courtesy of Annalisa De Pastina)

(b) Zoom at the tip of a SMR (c) Zoom at the clamping of a SMR
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flown in diluted suspesion inside the microchannels (Figure 1.1.12c).

• affinity-based capture: channel inner walls are functionalized in order to immobilize the tar-

geted particles by molecular recognition (not real time measurement). At the microscopic scale,

any small increase in mass of the cantilever will affect the global resonant frequency of the

mechanical vibrating system (Figure 1.1.12b).

Other possible applications are fluid density and mass flow measurements. Research is now making

efforts to measure tiny changes in single cell properties, achieving miniaturization of the microchan-

nel to enable the weighing of single virus cells and ultimately single molecules. This will be possible

if the microresonator is well fabricated at the micro-scale and structural defects are avoided. Fur-

thermore, a deep insight into the fluid dynamics of the internal fluid may help to "tune" the system

properties to achieve any specific sensing task.

Figure 1.1.12: Representation of the two mass measurement capabilities of a SMR; a) SMR translates mass changes

into resonance frequency shifts. The fluid continuously flows through the channel delivering biomolecules, cells or other

particles; b) surface adsorption mechanism: molecules that bind to the channel wall accumulate inside the device. This

enables specific detection by way of immobilized receptors; c) particles flow through the cantilever without binding to

the surface. The observed signal depends on the position of the particles along the channel. The exact mass excess of a

particle can be quantified by the frequency peak shift induced at the apex [12]

This MSc project focuses on studying the energy dissipation due to the motion of the fluid contained

inside these new devices, and it is found that the complexity in fluid dynamics exceeds that of

fluid surrounding conventional microcantilevers, which has been widely solved numerically [29].

Comparison between theoretical, numerical and experimental results is our main task.
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1.2 Aim of the Study 14

Importantly, the effects of fluid density and viscosity are considered in the model and investigated,

similarly to popular works on the vibration of microcantilevers immersed in fluid. However, in

internal problems the effects of compressibility must be investigated. Thus, it is found that this

fluid property is of utmost importance in certain cases. Compressibility and other fluid properties

are responsible for the rich behaviour of the fluid, in contrast with the external problem counterpart.

The most important result following this particular flow field developed inside the resonator is that

the quality factor is not a monotonic function of fluid viscosity (or Reynolds number), allowing

for a reduction in energy dissipation which is unprecedented in micromechanical systems. It is

of paramount importance to underline that the model focuses on energy dissipation due to the

fluid motion only and neglects all the effects of structural dissipation in the solid structure such

as thermo-elastic dissipation, clamping/anchor losses (acoustic losses due to energy radiated at the

clamping), electrostatic interactions, dislocations, internal friction and damping due to residual gas

in the vacuum chamber. Importantly, it is found that positioning of the fluid channel in the beam

cross-section strongly affects the fluid dynamics and the quality factor.

The model is developed dividing the solution in two sub-problems: on-axis placement and off-axis

placement of the channel. The complete flow is given by the linear combination of the two solutions.

1.2 Aim of the Study

The main objective of this thesis is to develop a reliable numerical model to describe dissipation in

Suspended Microchannel Resonators, through determination of the Quality Factor, as a costless and

quickly reproducible procedure to determine the effectiveness and performance of these innovative

MEMS for bio-sensing. Through comparison of numerical results with theoretical and experimental

results available in literature we aimed to contribute to the research and understanding of the

physical phenomena occurring in these recently developed devices, putting under question some of

the previous results and opening to new possible interpretations and discussions.

Importantly, after finding a good match between numerics and experiments, we encourage to re-

analyse the findings in the approximated bi-dimensional theoretical model, which seems to give

controversial results in the high viscosity regime.
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1.3 Thesis outline

This report has been organized in the following structure:

• Chapter 1 gives an introduction to the main topic studied in this thesis: MicroElectroMechanical

Systems (MEMS) and NanoElectroMechanicalSystems (NEMS) are presented before focusing

on Suspended Microchannel Resonators (SMRs) and their innovative aspects. Their application

as bio-sensors is also discussed and the importance of the Quality Factor in the design of SMRs

is underlined. The chapter is concluded with the presentation of the aim and structure of the

thesis.

• Chapter 2 shows the derivation of the theoretical model and all the relevant equations used to

describe the physical phenomenon behind dissipation in SMRs.

• Chapter 3 is dedicated to the discussion of results in the theoretical model, done by plotting

functions and variables with the help of Mathematica (release 10.4), which the author suggests

as a powerful symbolic tool.

• Chapter 4 focuses on the description of the numerical model built in COMSOL (release 5.3),

with details on the geometry, the dimensions, the boundary and initial conditions, the mesh,

the materials and the type of study performed in the numerical analysis. Both a 2D and 3D

models are developed and presented and their strengths and weaknesses are discussed.

• Chapter 5 contains a discussion on the numerical results and a comparison with their theoreti-

cal and experimental counterpart1.

• Chapter 6 sums up what has been achieved in this thesis, followed by an outlook on the future

work. Suggestions and recommendations conclude the text.

• Appendices are included at the very end of the thesis, as the aforementioned Abstract, the

Poster and the Mathematica codes used to discuss on the theoretical model.

1An Abstract and a Poster on this part have been submitted and accepted by the 1st International Workshop on

Nanofluidics and Nanomechanics held in Turin on 14th and 15th September 2017
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Chapter 2

Theoretical Model

Voglio fare dei disegni che vadano al cuore della gente... Sia nella

figura che nel paesaggio vorrei esprimere, non una malinconia

sentimentale, ma il dolore vero. Voglio che la gente dica delle

mie opere: “Sente profondamente, sente con tenerezza”

Vincent Van Gogh
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2.6 Complete case: linear combination of on-axis and off-axis solutions . . . . . . . . . . 39

2.6.1 Normalized Quality factor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.6.2 Effect of Poisson’s ratio . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

2.6.3 Effect of Mode number . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

A theoretical model to explain the physical mechanisms of the energy dissipation in the SMRs was

proposed by Sader et al. and validated through measurements [32]. We will here prove and discuss

on the theoretical model, used as a reference to compare numerical and experimental results. It is

important to note that the model focuses on the energy dissipation due to the fluid only, neglecting

all the other dissipative mechanisms happening in the solid cantilever structure.

In such a model, the quality factor is defined as the ratio between the energy stored and the energy

dissipated per cycle when the resonator is driven at the resonance frequency:

Q = 2π
Estored

Ediss/cycle

∣∣∣∣∣
ωn

(2.0.1)

2.1 Model hypotheses

Several hypothesis are stated to simplify the problem and allow for an analytical solution:

1. Cantilever width bcant and thickness hcant are much smaller than its length L; as such, Euler-

Bernoulli beam theory can be applied to describe the beam motion.

2. Fluid channel thickness h f luid and channel width b f luid are in a ratio such that we can take the

limit h f luid
b f luid

→ 0; as such, a bi-dimensional analysis in the x-z plane passing through the beam

neutral axis can be performed, representing the fluid channel as a single channel with total

width the sum of the two channels widths.

3. The beam vibrates at its fundamental mode.

4. The lead channel is rigid and does not move.

5. The amplitude of vibration is so small compared to any geometric scaling factor of the beam

that the non-linear convective term in the Navier-Stokes equations can be neglected and lin-

earized Navier-Stokes equations can be used.
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2.2 Structural Euler-Bernoulli model 18

Figure 2.1.1: Mid-plane section where the theoretical is developed

2.2 Structural Euler-Bernoulli model

From Euler-Bernoulli beam theory [8] the displacement field of a beam is given by:

ub(x, z, t) = W(x, t)ẑ− z
∂W(x, t)

∂z
x̂ (2.2.1)

Assuming harmonic motion we can write all the functions as the product of a spatial complex

function, parametric in the frequency ω, and a temporal oscillating function:

X(x, z, t) = X̃(x, z; ω)e−iωt (2.2.2)

We will clearly focus on Re [X(x, z, t)] and deriving 2.2.1 with respect to time and neglecting all ˜

for W(x; ω) we obtain:

vb(x, z, t) = ṽb(x, z; ω)e−iωt = −iω
(

W(x; ω)ẑ− z
∂W(x; ω)

∂z
x̂
)

e−iωt = −iωub(x, z, t) (2.2.3)

which gives the beam velocity, therefore also the boundary condition for the velocity field of the

fluid inside the channel. Notice that the velocity is correctly shifted of 90◦ with respect to the

displacement.
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Real and imaginary parts of each field (pressure, velocity,...) will be combined in time:

Re
{

X̃(x, z; ω)e−iωt
}

= Re
{

(Re
[
X̃(x, z; ω)

]
+ i Im

[
X̃(x, z; ω)

]
)(cos(ωt)− i sin(ωt))

}
=

= Re
[
X̃(x, z; ω)

]
cos(ωt) + Im

[
X̃(x, z; ω)

]
sin(ωt)

(2.2.4)

2.3 Fluidynamics model

The equations used to solve for the fluid field are the Continuity Equation and the Navier-Stokes

Equations; in the general form, these are:

∂ρ f

∂t
+∇ · (ρ f v) = 0 a + v · ∇v = −∇P

ρ f
+ ν f∇2v + f (2.3.1)

where a describes the time-derivative of the fluid velocity and f is any external force applied to

the fluid. The complete flow is divided into an on-axis flow and an off-axis correction, as in Figure

2.3.1. The former does not include a boundary condition at the tip wall, thus introducing an error

but allowing for an analytical solution, the latter does consider the presence of the end-wall by

defining a reduced velocity V and stating that its value in x = L is 0, as discussed in Section 2.5.

In this way, the velocity v in the original frame of reference is solved, matching the wall velocity

according to Euler-Bernoulli.

2.3.1 Turbulence

As the boundary conditions in Figure 2.3.1 clearly state, the fluid motion is due to the oscillation of

the solid boundaries: as a consequence, the velocity varies periodically with respect to time even at

large Reynolds numbers and the governing equations can be linearized; the main approximation in

the case in which no mean flow is imposed on the fluid, as in our case, is that

∣∣∣∣∂u
∂t

∣∣∣∣� |u∇u| (2.3.2)

which is of order U2
0

L where U0 and L are the characteristic velocity and length of the problem, in

our case ωh f and L. The linearization assumption is thus satisfied when ωL
U0

= L
h f
� 1. In cases in

which the periodic variation of u is forced on the fluid by oscillations of a solid boundary, as in

our case, the vorticity arises wholly from the boundaries and the rate of generation of vorticity is
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Figure 2.3.1: Bi-dimensional theoretical model: the complete flow (a) is divided into an on-axis flow (b) and an off-axis

correction (c); colours help to have immediate sense of motion in the x-direction: in (b) blue and red coloured walls are

moving in opposite verses, in (c) blue coloured walls are straining in the same verse, in (a) the verses depend on the

combination of (b) and (c). In the z-direction, each point of the channel moves proportionally to W(x;ω). Dashed line is

the wall at the tip: no boundary condition is set on it for simplicity. Notice that the off-axis correction affects only the x

component.

alternately positive and negative: therefore, it is wise to assume as a good approximation that no net

vorticity is generated in one cycle and that the vorticity is zero outside a very narrow region close

to the boundary layer [7]. It is known that convection carries vorticity and, with this approach, we

are inherently assuming that vorticity does not move far from the oscillating boundary before the

convection velocity is reversed. However, all this is true if separation of the boundary layer does not

occur: bodies with salient edges should be excluded, because separation occurs almost immediately

when such bodies move. As the frequency increases, edges of smaller radii of curvature can be

admitted. All these concepts are linked to our case when considering the importance of the sharp

edges at the end of the cantilever, which can surely be sources of vorticity, neglected in a linearized

solution. However, the importance of this neglected term is linked to the time available for diffusion

of vorticity of one sign from the boundary, which is 2π
ω , and so the thickness of the layer of non-zero

vorticity is of order δ =
( µ

ω

)2
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2.3.2 Energy dissipation: viscous dissipation function

We consider the energy equation of a fluid in motion from Batchelor [7], where the rate of change

of internal energy per unit mass of a material element of fluid is:

DE
Dt

= −
σijeij

ρ
+

1
ρ

∂

∂xi

(
k

∂T
∂xi

)
(2.3.3)

Substitution of the expression for the stress tensor σij gives:

DE
Dt

= − p∆
ρ

+
2µ

ρ

(
eijeij −

1
3

∆2
)

+
1
ρ

∂

∂xi

(
k

∂T
∂xi

)
(2.3.4)

where

φ =
2µ

ρ

(
eijeij −

1
3

∆2
)

(2.3.5)

is the rate of dissipation of mechanical energy (viscous dissipation function), per unit mass of fluid,

due to viscosity, equivalent to an irreversible addition of heat, while the first term on the right-

hand side of equation 2.3.4 is the rate of change of energy of compression (∆ is the trace of the

rate-of-strain tensor ¯̄e), which can be returned to the mechanical system without loss in a cycle

of expansion-compression. This is true approximately for small departures from the equilibrium

pressure p. Indeed, a more general expression is:

− p∆
ρ

= − pe

ρ
+

λ∆2

ρ
(2.3.6)

where the first term on the right-hand side represents a reversible transformation of energy, while

the second one represents a dissipation of mechanical energy. The parameter λ is an empirical coef-

ficient called "bulk viscosity" (alternative names are "second coefficient of viscosity" or "expansion

viscosity") and is often negligible (Stokes hypothesis), fact that allows us to conclude that dissipa-

tion only comes from the "Viscous dissipation function" φ. The value of λ, when large enough to be

measured, turns out to be not a fluid property but dependent on the rate of expansion ∇ · v. The

Stokes hypothesis states that λ∇ · v = 0: this term is associated with the dilation of the fluid particles

and has a strength much smaller than that of the dilation of fluid volumes, because of the much

smaller scale at which the phenomenon occurs. An alternative equation to 2.3.6 is pm = p− λ∇ · v

which reveals that the thermodynamic pressure (instantaneous pressure in the fluid) tends to be

higher than the mechanical pressure (waves of pressure due to fluid volumes motion only) when

the mechanical pressure is increasing (volume decreasing, ∇ · v < 0). In other words, it takes more
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time to the instantaneous pressure to react to volume changes because the particles haven’t relaxed

yet when the volumetric pressure waves have passed through.

2.3.3 Dissipated energy over a cycle of vibration

The energy dissipated within the fluid after a cycle of vibration of the solid cantilever can be com-

puted from equation 2.3.5 as:

φv,cycle =
T∫

0

φvdt =
T∫

0

2µ( ¯̄e : ¯̄e∗ − 1
3
|tr( ¯̄e)|2)dt (2.3.7)

and having all square terms in the equation and being all the fields harmonic ( ¯̄e = ˜̄̄e(x, y, z) cos ωt)

φv,cycle =
T∫

0

φ̃v cos2 ωtdt = 2µ( ˜̄̄e : ˜̄̄e∗ − 1
3
|tr( ˜̄̄e)|2)

T
2

=
π

ω
φ̃v (2.3.8)

2.4 On-axis placement of the channel

2.4.1 Governing equations

In the case where the channel mid-plane lies on the neutral axis of the cantilever (z0 = 0), we define

the scaled variables

x̄ =
x

h f luid
(2.4.1)

W̄ =
W
L

(2.4.2)

and use the following definitions:

β =
ρωh2

f luid

µ
(2.4.3)

U(x̄; ω) = −iωW(x̄; ω) (2.4.4)

We then expand the function U(x̄; ω) as a Taylor series expansion around the local point x̄0:

U(x̄; ω) = U0 + A(x̄− x̄0) + B(x̄− x̄0)2 + ... (2.4.5)

where

U0 = U(x̄0; ω) = −iωW(x̄0; ω) (2.4.6)
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and

A =
∂U(x̄; ω)

∂x̄

∣∣∣∣
x̄0

(2.4.7)

B =
∂2U(x̄; ω)

∂x̄2

∣∣∣∣
x̄0

(2.4.8)

x̄0 =
x0

h f luid
(2.4.9)

From the chain rule of the derivative of the composition of two functions we obtain:

A = −iωh f luid
∂W(x; ω)

∂x

∣∣∣∣
x0

(2.4.10)

As h f luid
L −→ 0, we can write:

U(x̄; ω) = U0 + A(x̄− x̄0) +O
((

h f luid

L

)2
)

(2.4.11)

The velocity of the beam 2.2.3 in the scaled variables and in the ω space becomes a linearized

function of z̄ and x̄:

ṽb(x̄, z̄; ω) = −iωW(x̄; ω)ẑ + (z̄h f luid)iω
∂W(x̄; ω)

∂x̄

∣∣∣∣
x̄0

x̂ =

= U(x̄; ω)ẑ− Az̄x̂ = U0ẑ + A[−z̄x̂ + (x̄− x̄0)ẑ]

(2.4.12)

or in matrix form:

ṽb =

 −Az̄

U0 + A(x̄− x̄0)

 =

 iωh f luid
∂W(x;ω)

∂x

∣∣∣
x0

z̄

U0 − iωh f luid
∂W(x;ω)

∂x

∣∣∣
x0

(x̄− x̄0)

 (2.4.13)

The general form of the continuity equation and Navier-Stokes equation is:

∂ρ

∂t
+∇ · (ρv) = 0 a + v · ∇v = −∇P

ρ
+ ν∇2v + f (2.4.14)

We now solve the continuity equation coherently assuming that when the channel is perfectly cen-

tred on the neutral axis of the beam, no change of total volume takes place in the channel hence

in the on-axis case the density is constant and the Navier-Stokes equation, in agreement with the

assumption that W(x; ω) � L, can be linearized, neglecting the convective inertial term; assuming

f = 0 and being a = −iωv turns 2.4.14 into:

∇ · v = 0 − iωρv = −∇P + µ∇2v (2.4.15)
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where the second one is a vectorial equation in 2 dimensions. Notice that we are studying the

stationary spatial functions having omitted all the ˜ . The problem for the fluid inside the channel

can be written as: 
∇ · v = 0 in Ω

−iωρv = −∇P + µ∇2v in Ω

v = vbeam on ∂Ω

(2.4.16)

which means: 

∇ · v = 0 in Ω

−iωρv = −∇P + µ∇2v in Ω

v = −iω[W(x; ω)ẑ− h f luid
2

∂W(x;ω)
∂x

∣∣∣
x0

x̂] on ∂Ω+

v = −iω[W(x; ω)ẑ + h f luid
2

∂W(x;ω)
∂x

∣∣∣
x0

x̂] on ∂Ω−

(2.4.17)

Let us now divide the solution in:

1. non-viscous solution (which needs to respect the normal boundary condition only)

2. corrective term necessary to respect the horizontal boundary condition

v = vinv + M(z̄)x̂ (2.4.18)

Notice that the corrective term must not affect the inviscid solution along ẑ because that part already

respects the vertical boundary condition.

It is wise to believe that the solution to the inviscid part is:

vinv = Az̄x̂ + (U0 + A(x̄− x̄0))ẑ (2.4.19)

which clearly satisfies the ẑ components of the boundary conditions in 2.4.17. Clearly, we couldn’t

choose vinv,x = −Az̄, otherwise no corrective term would have been necessary and we would have

stated that the flow field matches completely the beam velocity field, which is of course not true.

Substituting 2.4.19 in 2.4.17 we can easily satisfy the continuity equation and the ẑ component of the

boundary conditions. We can also derive the pressure from the ẑ component of the Navier-Stokes

equations, using the supposed expression 2.4.19:

− iωρvz = −∂P
∂z

+ µ

[
∂2vz

∂x2 +
∂2vz

∂y2 +
∂2vz

∂z2

]
(2.4.20)
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− iωρ[U0 + A(x̄− x̄0)] = −∂P
∂z̄

1
h f

(2.4.21)

from which

P(x̄, z̄) =
∫ z̄

0

∂P
∂z̄′

dz̄′ = iωρh f [U0 + A(x̄− x̄0)]z̄ (2.4.22)

which can be easily proved to satisfy both components of Navier-Stokes equations (second equation

of 2.4.17). We can now write:

v = vinv + M(z̄)x̂ = [M(z̄) + Az̄]x̂ + [U0 + A(x̄− x̄0)]ẑ

P = iωρh f [U0 + A(x̄− x̄0)]z̄

∇ · v = 0

−iωρv = −∇P + µ∇2v

(2.4.23)

Substituting the first two equations in the second two, the continuity equation and the z-component

of Navier-Stokes are again satisfied (having introduced a correction for the x-component) and, from

the x-component of Navier-Stokes:

− iωρvx = −∂P
∂x

+ µ

[
∂2vx

∂x2 +
∂2vx

∂z2

]
(2.4.24)

we get:

− iωρ[M(z̄) + Az̄] = −iωρh f Az̄
1
h f

+ µ
d2M(z̄)

dz̄2
1
h2

f
(2.4.25)

− i
ωρh2

f

µ
M(z̄) =

d2M(z̄)
dz̄2 (2.4.26)

or finally:

− iβM(z̄) =
d2M(z̄)

dz̄2 (2.4.27)

Importantly, the boundary conditions obtained from the beam theory do not change after the in-

troduction of the corrective term. Computing 2.4.18 in z̄ = ± 1
2 gives the boundary conditions for

M(z̄): 
M( 1

2 ) = −A

M(− 1
2 ) = A

(2.4.28)

The problem for M(z̄) becomes: 
d2 M(z̄)

dz̄2 + iβM(z̄) = 0

M( 1
2 ) = −A

M(− 1
2 ) = A

(2.4.29)

Master of Science Thesis A. Gerbino



2.4 On-axis placement of the channel 26

which is a simple harmonic equation, solved by:

M(z̄) = C sin(Ωz̄ + φ)

Ω2 = iβ

φ = 0

C = − A
sin(Ω

2 )

(2.4.30)

M(z̄) = −
A sin

(√
iβz̄
)

sin
(√

iβ
2

) (2.4.31)

Using some trigonometric relationship, the latter can be written also as

M(z̄; β) = −
A sinh

[
(1− i)

√
β
2 z̄
]

sinh
[

1−i
2

√
β
2

] (2.4.32)

which gives the corrective term for the x-component of the velocity field, parametric in β and

dependent on the specific x̄-coordinate through A. We finally obtain the total velocity field in the

on-axis case:

v = A

z̄−
sinh

[
(1− i)

√
β
2 z̄
]

sinh
[

1−i
2

√
β
2

]
︸ ︷︷ ︸

G(β)

x̂ + [U0 + A(x̄− x̄0)]ẑ (2.4.33)

It’s worth mentioning that the velocity field is made up of a real and an imaginary part, which are

90◦ and will then need to be properly combined in the time domain.
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Figure 2.4.1: Real and imaginary parts of the corrective function M(z̄; β) for the x-component of the velocity field,

normalized with respect to
∣∣∣vx,beam(x̄, 1

2 )
∣∣∣, for β = 10 and x̄ = L

h f
(tip) and different fractions of the period T: a) t = T

6 ,

b) t = 2T
6 , c) t = 3T

6 , d) t = 4T
6 , e) t = 5T

6 , f) t = T

Figure 2.4.2: Real and imaginary parts of the corrective function M(z̄; β) for the x-component of the velocity field,

normalized with respect to
∣∣∣vx,beam(x̄, 1

2 )
∣∣∣, for β = 1000 and x̄ = L

h f
(tip) and different fractions of the period T: a) t = T

6 ,

b) t = 2T
6 , c) t = 3T

6 , d) t = 4T
6 , e) t = 5T

6 , f) t = T

The velocity gradient tensor ∇v̄ = ∂vi
∂xj

can be written as the sum of a symmetric part eij and an
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antisymmetric part Ωij where:

eij =
1
2

(
∂vi

∂xj
+

∂vj

∂xi

)
(2.4.34)

is the rate-of-strain tensor of the fluid. In our bi-dimensional case, the tensor reduces to a 2x2 matrix

and, from 2.4.33, we learn that the terms on the diagonal are null, while for the symmetry of the

tensor the off-diagonal terms are equal. Therefore:

¯̄e =
1
2

(
∂vx

∂z
+

∂vz

∂x

)
(x̂ẑ) +

1
2

(
∂vz

∂x
+

∂vx

∂z

)
(ẑx̂) =

1
2

(
∂vz

∂x
+

∂vx

∂z

)
(x̂ẑ + ẑx̂) (2.4.35)

= −iω
∂W
∂x

∣∣∣∣
x0

1− 1− i
2

√
β

2

cosh[(1− i)
√

β
2 z̄]

sinh[ 1−i
2

√
β
2 ]

 (x̂ẑ + ẑx̂) (2.4.36)

The energy dissipated per cycle per unit volume is:

Ediss/cycle/volume =
2πµ

ω
( ¯̄e : ¯̄e∗ − 1

3
|tr( ¯̄e)|2) (2.4.37)

where ¯̄e : ¯̄e∗ indicates the colon product (dyadic) and returns 2|e12|2, while tr( ¯̄e) = 0 in our case. The

total dissipated energy in the channel is:

Ediss/cycle =
∫ h f

2

−
h f
2

∫ b f

0

∫ L

0
Ediss/cycle/volumedV =

=
∫ 1

2

− 1
2

∣∣∣∣∣∣1− 1− i
2

√
β

2

cosh[(1− i)
√

β
2 z̄]

sinh[ 1−i
2

√
β
2 ]

∣∣∣∣∣∣
2

dz̄
∫ b f

0
dy
∫ L

0
4πµωh f

[
∂W
∂x

∣∣∣∣
x0

]2

dx0

(2.4.38)

The displacement function of the beam is taken as the first vibrational mode, which is believed to

contribute most to the total displacement; a higher order expansion of the displacement as a sum of

more modes would barely increase the accuracy of the result:

W(x) = (cos B1x− cosh B1x)− cos B1L + cosh B1L
sin B1L + sinh B L

(sin B1x− sinh B1x) (2.4.39)

and for the first mode of a clamped beam

B1 =
1.8751

L
(2.4.40)
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Figure 2.4.3: Schematics of the first four bending modes Wn(x) of a clamped cantilever seen from the side. The amplitude

is in units of the Fourier coefficients and the position is in units of the length L, where 0 indicates the base of the cantilever

The energy stored is computed following [34]:

Estored =
1
2

Acρc

∫ L

0

(
∂W
∂t

)2

dx = Wkin,max = ω2Wkin(W(x, y; ω)) =
1
2

ω2Acρc

∫ L

0
W(x)2dx (2.4.41)

Applying the definition of Q and normalizing, we finally obtain the normalized Quality Factor F(β):

Q = 2π
Estored

Ediss/cycle

∣∣∣∣∣
ωn

= 2π

1
2 ω2Acρc

∫ L
0

(
∂W
∂t

)2
dx

2π
µ
ω 2
∫
V
|e12|2dV

= F(β)
ρc

ρ f

hc

h f

bc

b f

(
L
hc

)2

(2.4.42)

Fon(β) =
1

4L2

∫ L
0 W(x)2dx∫ L

0

[
∂W
∂x

∣∣∣
x0

]2

dx0

β

∫ 1
2

− 1
2

∣∣∣∣∣∣1− 1− i
2

√
β

2

cosh[(1− i)
√

β
2 z̄]

sinh[ 1−i
2

√
β
2 ]

∣∣∣∣∣∣
2

dz̄


−1

=

= 0.05379β

∫ 1
2

− 1
2

∣∣∣∣∣∣1− 1− i
2

√
β

2

cosh[(1− i)
√

β
2 z̄]

sinh[ 1−i
2

√
β
2 ]

∣∣∣∣∣∣
2

dz̄


−1

(2.4.43)

2.4.2 Small β limit

A Taylor series expansion around β0 = 0 arrested at the first order of 2.4.33 (easily obtainable

exploiting de l’Hôpital’s rule) gives:

v =
(
−Az̄ +

Ai
12

(4z̄3 − z̄)
)

x̂ + [U0 + A(x̄− x̄0)]ẑ (2.4.44)
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from which the rate-of-strain is:

¯̄e =
1
2

{
ωβ

∂W
∂x

∣∣∣∣
x0

(
z̄2 − 1

12

)}
(x̂ẑ + ẑx̂) (2.4.45)

and

F(β) =
0.05379β

β2

4

∫ 1
2
− 1

2

(
z̄2 − 1

12

)2 dz̄
=

38.73
β

, β� 1 (2.4.46)

2.4.3 Large β limit

For β → ∞ we can approximate the velocity field with 2.4.19 in all the channel but in a small

boundary layer where the boundary condition of no-slip must be satisfied. Therefore, the complete

solution 2.4.33 must be used and the small terms in β can be neglected after integration. Exploiting

the fact that, for β� 1:

1

sinh
(

(1−i)
2

√
β
2

) =
2

e
(1−i)

2

√
β
2 − e−(1−i)

√
β
2

' 2

e
(1−i)

2

√
β
2

(2.4.47)

we can write G(β) in equation 2.4.33 as:

G(β) = Az̄− 2Ae−
(1−i)

2

√
β
2 sinh

(
(1− i)

√
β

2
z̄

)
(2.4.48)

Therefore,

¯̄e = −iω
∂W
∂x

∣∣∣∣
x0

(
1− (1− i)

√
β

2
e−

1−i
2

√
β
2 cosh

(
(1− i)

√
β

2
z̄

))
(x̂ẑ + ẑx̂) (2.4.49)

which, integrating and neglecting small terms in β, gives:

F(β) =
0.05379β∫ 1

2
− 1

2

∣∣∣∣1− (1− i)
√

β
2 e−

1−i
2

√
β
2 cosh

(
(1− i)

√
β
2 z̄
)∣∣∣∣2 dz̄

' 0.215616β√
2
√

β
= 0.1521

√
β (2.4.50)

2.5 Off-axis placement of the channel

2.5.1 Governing equations

Scaling considerations allow to state that the Continuity and Navier-Stokes equations for compress-

ible flows 2.4.14 become:

∂ρ

∂t
+ ρ∇v = 0, ρ

∂v
∂t

= −∇P + µ∇2v +
1
3

µ∇(∇v) (2.5.1)
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where the Stokes hypothesis has been used (bulk viscosity µb = 0). In contrast with the on-axis case,

in the off-axis sub-solution the walls are straining in the same verse along x and the total volume

of fluid domain is changing, with frequency ω. For reference, see Figure 2.3.1. Hence, it is wise to

introduce and exploit the following relationship, which moves the origin of the reference frame to

the free end of the beam:

v = v|x=L + V (2.5.2)

with boundary conditions

V|z=z0±h f luid/2 =


iωz0

(
dW
dx −

dW
dx

∣∣∣
x=L

)
x̂ 0 ≤ x ≤ L

−iωz0
dW
dx

∣∣∣
x=L

x̂ − Lc ≤ x ≤ 0
(2.5.3)

By so doing, we build a reduced problem which represents a channel held fixed at its closed end,

whose sidewalls are straining in their plane in an infinite fluid reservoir.

The scaling factors are:

xs = L, zs = h f luid, us = iωz0
dW
dx

∣∣∣∣
x=L

, ws =
h f luid

L
us, Ps =

µusL
h2

f luid
(2.5.4)

Substituting the scaling factors and equation 2.5.2 into 2.5.1, the governing equations become:

∂ū
∂x̄

+
∂w̄
∂z̄

= iαP̄, −iβ(1 + ū) = −dP̄
dx̄

+
∂2ū
∂z̄2 (2.5.5)

At this stage, we define:

β =
ρ0ωh2

f luid

µ
, γ =

(
ωL
c

)2

, α =
γ

β
(2.5.6)

with

ρ = ρ0 + ρ0kP k =
1

(ρ0c2)
(2.5.7)

where k is the fluid compressibility [Pa−1], c is the speed of sound and ρ0 is the density at ambient

pressure. By making use of the Helmholtz decomposition of a general vector field [27], we define:

ū(x̄, z̄) = f (x̄)k′(z̄) + h(x̄), w̄(x̄, z̄) = − f ′(x̄)k(z̄) (2.5.8)

and, substituting 2.5.8 into 2.5.5 we obtain the following problems:

dh
dx̄

= iαP̄,
dP̄
dx̄

= B f (x̄) + iβ [1 + h(x̄)] (2.5.9)
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Figure 2.5.1: S(x̄) for both the components of fluid velocity field in the Helmholtz decomposition approach


k′′′(z̄) + iβk′(z̄) = B

k
(
± 1

2

)
= 0

k′
(
± 1

2

)
= 1

(2.5.10)

f (x̄) = S(x̄)− h(x̄) (2.5.11)

S(x̄) =


−1 +

dW
dx̄

dW
dx̄

∣∣∣∣
x̄=1

: 0 ≤ x̄ ≤ 1,

−1 : −L̄c ≤ x̄ < 0

(2.5.12)

The solutions for k(z̄) and B(β) are obtained in Mathematica (release 10.4):

k(z̄; β) =
sinh

(
(1− i)

√
β
2 z̄
)
− 2z̄ sinh

(
1−i

2

√
β
2

)
(1− i)

√
β
2 cosh

(
1−i

2

√
β
2

)
− 2 sinh

(
1−i

2

√
β
2

) (2.5.13)
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Figure 2.5.2: Real and imaginary parts of k(z̄) for both the components of fluid velocity field in the Helmholtz decom-

position approach, with γ = 0.0337, L = 250 µm and for several β and α, showing the effect of decreasing viscosity

(increasing β): a) β=5 and α=0.0067, b) β=50 and α=0.00067 , c) β=500 α=0.000067, d) β=5000 α=0.000067
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Figure 2.5.3: Real part, imaginary part and absolute value of B(β)

B(β) =
−2iβ sinh

(
1−i

2

√
β
2

)
(1− i)

√
β
2 cosh

(
1−i

2

√
β
2

)
− 2 sinh

(
1−i

2

√
β
2

) (2.5.14)

with

lim
β→0

Re[B(β)] = 12

Combining equations 2.5.8, 2.5.11 and 2.5.9 we obtain the problem for h(x̄; α, β):

d2h
dx̄2 + α(β + iB)h = iαBS(x̄)− αβ (2.5.15)

whose solution is found through the Green’s function method [18] obtaining:

h(x̄) = − α

Mcos[M(1 + L̄c)]

{
sin[M(1− x̄)]

∫ x̄

−L̄c

[iBS(x′)− β]cos[M(x′ + L̄c]dx′

+cos[M(x̄ + L̄c)]
∫ 1

x̄
[iBS(x′)− β]sin[M(1− x′)]dx′

} (2.5.16)

with

M =
√

α(β + iB) and P̄ =
1
iα

dh
dx̄

(2.5.17)

From Mathematica, we computed:

lim
α→0

h(x̄; α, β) = 0 (2.5.18)
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Figure 2.5.4: Real part, imaginary part and absolute value of h(x̄; α, β) obtained with the Green’s function method, with

γ = 0.0337, L = 250 µm and for several β and α, showing the effect of decreasing viscosity (increasing β): a) β=500

and α=0.000067, b) β=0.5 and α=0.067 , c) β=0.005 and α=6.7, d) β→ 0 and α→ ∞
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Incompressible flow: α→ 0 In this case, the velocity field is given by:

v = iωz0
dW
dx

∣∣∣∣
x=L

(
(1 + S(x̄)k′(z̄))x̂−

h f luid

L
S′(x̄)k(z̄)ẑ

)
(2.5.19)

Compressible flow: α > 0 In this case, the velocity field is given by:

v = iωz0
dW
dx

∣∣∣∣
x=L

((
1 + h(x̄) + [S(x̄)− h(x̄)]k′(z̄)

)
x̂−

h f luid

L
[S′(x̄)− h′(x̄)]k(z̄)ẑ

)
(2.5.20)

Hereinafter, we neglect the z-component, as much smaller than the x-component of a factor h f luid
L .

This means that the flow is expected to be locally directed parallel to the neutral axis of the beam.

2.5.1.1 Normalized wavenumber

As said, the parameter γ =
(

ωL
c

)2

has been defined "Normalized wavenumber". The reason why

this is done is here provided: it is known that
ω

c
=

2π

λ
, which is used to give γ =

(
L
λ

2π

)2

. The last

equation shows that γ =
(

cantilever length
acoustic wavelength

2π

)2

and, apart from a factor 2π, it is the inverse

of a normalized wavelength. Importantly, acoustic effects are important if γ� 1, which also means

L � λ. Therefore, the frequency of acoustic waves is so big that "many pressure waves" are being

transmitted in the fluid domain defined by x ∈ [0, L] and these will affect the fluid flow and,

consequently, the energy dissipation.

2.5.2 Volumetric flux

The volumetric flux is given by:

q(x̄) =
∫∫

A
v · dA =

∫ b f

0

∫ h f
2

−
h f
2

v · n̂dydz =
∫ b f

0
dy
∫ 1

2

− 1
2

u(x̄, z̄)h f dz̄ = (2.5.21)

=
jωz0

L
∂W
∂x̄

∣∣∣∣
x̄=1

h f b f

(∫ 1
2

− 1
2

(1 + h(x̄)dz̄ +
∫ 1

2

− 1
2

(S(x̄− h(x̄)k′(z̄)dz̄

)
(2.5.22)

and finally the volumetric flux entering the system at the normalized position x̄ = L̄c is:

q(−L̄c) =
jωz0

L
∂W
∂x̄

∣∣∣∣
x̄=1

h f b f [1 + h(L̄c)] (2.5.23)
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From Mathematica (release 10.4) we computed the limit case when compressibility α → ∞ and

found out that

lim
α→∞

h(−L̄c; α, β) = −1, (2.5.24)

thus the volumetric flux is zero. This was expected as the infinitely compressible case ideally corre-

sponds to an infinitely rarefied fluid, such as vacuum.

2.5.3 Energy dissipation

In the off-axis case the rate-of-strain of energy dissipation in the compressible case is given by:

¯̄e =
iωz0

2h f luid

∂W
∂x

∣∣∣∣
L

[S(x̄)− h(x̄)]k′′(z̄)(x̂ẑ + ẑx̂) (2.5.25)

In the incompressible case it reduces to:

¯̄e =
iωz0

2h f luid

∂W
∂x

∣∣∣∣
L

[S(x̄)]k′′(z̄)(x̂ẑ + ẑx̂) (2.5.26)

Notice that if the off-placement is null, there is no energy dissipation in the fluid. The complete flow

energy dissipation will be due only to the on-axis solution.

Using now the scaling factor

Es = 4πρLb f h f luid|us|2 (2.5.27)

the normalized energy dissipated per cycle is:

E(β)diss/cycle =

2πµ
ω

∫ L
−Lc

∫ b f
0

∫ h f
2

−
h f
2

2|e12|2dxdydz

Es
=

=
2πµ

ω
b f

∫ L
−Lc

∫ h f
2

−
h f
2

|us|2
4h2

f
|[S(x̄)− h(x̄)]k′′(z̄)|2dxdz

4πρLb f h f luid|us|2
=

µ

ωh2
f ρ

1
4

∫ 1

−L̄c

∫ 1
2

− 1
2

|[S(x̄)− h(x̄)]k′′(z̄)|2dx̄dz̄ =

=
1

4β

∫ 1

−L̄c

∫ 1
2

− 1
2

|[S(x̄)− h(x̄)]k′′(z̄)|2dx̄dz̄

(2.5.28)

In the incompressible case it reduces to:

E(β)diss/cycle,inc =
1

4β

∫ 1

−L̄c

∫ 1
2

− 1
2

|S(x̄)k′′(z̄)|2dx̄dz̄ (2.5.29)
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2.6 Complete case: linear combination of on-axis and off-axis solutions

2.6.1 Normalized Quality factor

To derive the normalized quality factor in the complete case, we exploit the fact that the complete

fluid flow within the fluid channel is a linear combination of the two flows derived in the on-axis and

off-axis case separately: vtot = von + vo f f . We recall that these two flows have been found solving two

different sub-problems with different boundary conditions, the combination of which well describes

the physics of the original problem, as discussed in Section 2.1. Using the definition of Q (eq. 2.0.1)

and applying the definition of the rate of strain tensor ¯̄e (eq. 2.4.34) to the total velocity field, we

obtain:

Q = F(β)C (2.6.1)

where C = ρc
ρ f

hc
h f

bc
b f

(
L
h f

)2
is a normalizing factor and

F(β) =
β

16
∫ 1
−L̄c

∫ 1
2
− 1

2
|G(x̄, z̄)|2dx̄z̄

(2.6.2)

with

G(x̄, z̄) =

1− 1− j
2

√
β

2

cosh
(

(1− j)
√

β
2 z̄
)

sinh

(
1− j

2

√
β

2

)
 dW̄

dx̄
+

jβz̄0

2


sinh

(
(1− j)

√
β
2 z̄
)

(1− j)
√

β

2
cosh

(
1− j

2

√
β

2

)
− 2 sinh

(
1− j

2

√
β

2

)
 [S(x̄)− h(x̄, α)]

dW̄
dx̄

∣∣∣∣
x̄=1

(2.6.3)

x̄ =
x
L

, z̄ =
z− z0

h f luid
, z̄0 =

z0

h f luid
(2.6.4)

Equation 2.6.2 gives the quality factor of a Suspended Microchannel Resonator (SMR) in the general

case of a device with normalized off-placement z̄0 and a fluid with compressibility number α.
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2.6.2 Effect of Poisson’s ratio

As far as Poisson’s effect is concerned we mention the findings in [31], which give an extension of

equation 2.6.3; importantly, we underline that the on-axis case is not affected by Poisson’s effect,

because the total volume doesn’t change anyhow. On the contrary, the off-axis term is affected by

Poisson through a factor (1− 2ν) multiplying S(x̄) in 2.6.3.

2.6.3 Effect of Mode number

In this thesis, the effect of the mode number is not investigated deeply: we only remind the reader

that the mode number, and more in general the mode shape, surely affects the results, entering

the quality factor equation 2.6.2 through W(x̄) in G(x̄, z̄). In this study, we focus on the first two

vibrational modes for each device described in Chapter 4; therefore, to compare with the theoretical

results, we just apply equation 2.6.3 changing W(x̄) coherently. For further information, we send to

[33].
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Chapter 3

Theoretical results and discussion

Per aspera ad astra

Marcus Tullius Cicero
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In this chapter, the main theoretical results concerning the flow field developed in the fluid by

the solid beam walls movement and the normalized quality factor are presented. Results are split

in three parts, in agreement with the theoretical approach: firstly, the on-axis case is investigated,

followed by the off-axis pumping mechanism and finally by the results on the linear combination of

the two sub-flows.
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3.1 On-axis flow and F(β)

3.1.1 Flow field within the channel

Figure 3.1.2 shows the qualitative fluid flow field at different x-positions along the beam for a value

of the Reynolds number β = 60. We immediately notice that the field is split in real and imaginary

parts and their combination at different fractions of the period T is also shown, to learn how they

interact. The grey dashed line shows the beam velocity field. The beam has an aspect ratio of L
h f

= 50.

We notice that the no-slip condition is respected everywhere and at the tip of the cantilever there

is some difference in velocity between the beam and the fluid: therefore, as also evident from the

imposed boundary conditions, the on-axis part of the model does not include any closing wall at

the end of the channel.

Figure 3.1.1: Middle section (red) of a SMR where the the-

oretical model is developed: the inlet and outlet channels are

merged to find an analytical solution; symmetry condition

is exploited (X-Y plane)

As a matter of fact, the fluid is not forced to

bounce back when in lag with the beam and

an unrealistic suction phenomenon takes place

and keeps the fluid inside the channel. The only

source of momentum onto the fluid comes from

the up and bottom wall along z, not strong

enough to hold the fluid. We refer to this er-

ror as the "tip drop-effect". A plausible real

phenomenon would consider a matching of the

fluid movement with that of the channel end

wall, whatever the viscosity of the fluid is. Fig-

ures 3.1.3 and 3.1.4 show similar results for

higher β, namely 600 and 6000, showing the effect of viscosity changes. In z̄ = 0 there is no dif-

ference between the beam (which is not straining in x̄ along the neutral axis) and the fluid, which

is changing verse on the neutral axis.

Figure 3.1.5 is more suitable to understand how the fluid moves within the channel: in this case the

flow field is computed relatively to the local beam velocity, with the difference calculated point by

point; therefore, what we see is how many times the fluid is faster than the theoretical beam that

the channel is substituting in that point; furthermore, all values are normalized by the wall velocity
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Figure 3.1.2: On-axis qualitative flow field (not relative) and beam linear velocity field (grey dashed line) for a SMR

with L
h f

= 50 and β = 60; the channel domain is shown and the velocities are scaled by a factor of 1000 for presentation

only; the velocity profiles are shown at different x̄-positions with ∆x̄ = 10 and at different fractions of the period T; a)

t = T
8 , b) t = 2T

8 , c) t = 3T
8 , d) t = 4T

8

Figure 3.1.3: On-axis qualitative flow field (not relative) and beam linear velocity field (grey dashed line) for a SMR

with L
h f

= 50 and β = 600; the channel domain is shown and the velocities are scaled by a factor of 1000 for presentation

only; the velocity profiles are shown at different x̄-positions with ∆x̄ = 10 and at different fractions of the period T; a)

t = T
8 , b) t = 2T

8 , c) t = 3T
8 , d) t = 4T

8
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Figure 3.1.4: On-axis qualitative flow field (not relative) and beam linear velocity field (grey dashed line) for a SMR

with L
h f

= 50 and β = 6000; the channel domain is shown and the velocities are scaled by a factor of 1000 for presentation

only; the velocity profiles are shown at different x̄-positions with ∆x̄ = 10 and at different fractions of the period T; a)

t = T
8 , b) t = 2T

8 , c) t = 3T
8 , d) t = 4T

8

(in |z̄|= 1/2 ) corresponding to the same normalized abscissa. We notice that for very viscous fluids,

the relative velocity is almost zero. With this approach, we are pushed to believe a counter-intuitive

fact: for very high viscosities, the fluid moves in tandem with the part of solid of which it occupies

the place, therefore showing linear behaviour as described by Euler-Bernoulli equation; we will see

that increasing viscosity thus leads to zero dissipation and increasing Quality Factor. For inviscid

fluids (case c: β→ ∞), the maximum relative velocity is attained and it is lower or equal to 2.

In |z̄|= 1
2 the no-slip condition is verified, while for a generic x, the beam velocity is linear in z and

the fluid velocity differs from it, depending on β. For high µ, the fluid velocity tends to be linear and

in phase with the solid velocity, hence the difference tends to vanish. For low µ, the flow tends to

be in counter-phase with respect to the beam. The higher β, the thinner the boundary layer and the

bigger the region that is π out-of-phase with the beam. We underline that along z̄ the fluid is moving

exactly as the beam, being however the z-velocities higher than the x-velocities. The fluid is being

pushed up and down, with strength depending on x, by the no-penetration boundary condition.

For this reason, we neglect including the z-component in our analysis and only focus on the flow

along x. The imaginary part, which dominates the global magnitude of the flow, is chasing the real

part.

The "tip drop effect" is again shown in Figure 3.1.6, where the instantaneous velocities, normalized
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Figure 3.1.5: On-axis qualitative flow field relative to beam velocity (point by point) and normalized to beam wall

velocity for a SMR with L
h f

= 50 for different β: a) β = 1, b) β = 100, c) β = 10000 and at several fractions of the period

T: 1) t = T
5 , 2) t = T

3 , 3) t = T
2
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with respect to the beam wall velocity, of fluid and beam at the tip for a given β and different

fractions of the period T are shown together.

Figure 3.1.6: On-axis case fluid velocity (not relative) and beam linear velocity (grey dashed line) for a SMR at the tip

(x̄ = L
h f

= 50) with β = 100; instantaneous velocities, normalized with respect to the beam wall velocity, of fluid and

beam are shown at different fractions of the period T; a) t = T
4 , b) t = T

2 , c) t = 3T
4

3.1.2 Energy Dissipation

The minimum in the Normalized quality factor in the On-axis case occurring at β ' 46 is due to

the fact that the distribution of energy dissipation along the channel assumes such a shape that its

integral over the volume of the channel itself is maximized. This happens even though the maximum

of the energy dissipation distribution (which is always at the wall, regardless the particular value of

µ) is getting higher and higher for higher values of β. However, we also underline that the on-axis

model is neglecting the closing of the tip, for simplification reasons. This is believed to introduce an

error of the order of O( h f
L ), which is reasonably small for small ratios h f

L , as in the practical cases.

However, a more precise model would include the tip closing and a corrective term (weighing factor)

which would allow the fluid to move in tandem with the channel end-wall in x = L
h f

. Whenever such

a fluid-solid coincidence happens, the dissipated energy reduces (in the same way of when µ is so

high that the fluid tends to the beam) to zero. This is not being described by our model, as shown

in the distribution of energy dissipation in Figure 3.1.7, where the dissipation is not going to zero

at the channel end-wall, independently from β.

This simplification and other errors of the order of O( h f
L ) are believed to be responsible of the slight
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Figure 3.1.7: Rate of energy dissipation within the channel in the on-axis case; the whole dissipation takes place in

the cantilever proper: integration of the distribution of dissipated energy over the channel gives the dissipated energy,

inverse of the Quality Factor. Top: β = 0.001, β = 46, β = 1000; Bottom: same, at x̄ = 1 (channel end) only, proving

slip-condition or missing channel-end boundary condition in the on-axis case

Figure 3.1.8: Comparison of theoretical model with measurements taken from [32] showing overestimation of energy

dissipation by the theoretical model

discrepancy in the quality factor between experiments and theory, at high β, where the on-axis

problem dominates the complete solution. In particular, the theoretical model is predicting lower

values of the quality factor because of this overestimation of the energy dissipation, as seen in Figure

3.1.8.

We also recall that the whole dissipation is taking place in the cantilever proper, as the on-axis prob-

lem model doesn’t include any rigid lead channel: this is trustworthy because the flow is developed

only after the entrance of the fluid in the cantilever, as no change in volume occurs and no flow can

be developed before the cantilever proper, the vibrations of which are causing the skew-symmetric

flow field.
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3.1.3 Normalized Quality factor F(β)

Figure 3.1.9: On-axis Normalized Quality Factor F(β); both the small β, large β approximations and the exact solution

are shown; red dot (46.4348,1.81751) is the minimum of the quality factor

As previously discussed, the on-axis case does not depend on compressibility. Equations 2.4.46

and 2.4.50 give the Quality Factor in the on-axis case in the small and large β approximations

respectively. Together with the exact solution, equation 2.4.43, their trends are shown in Figure

3.1.9. The minimum in this case is F(β)=1.81751 and occurs at β=46.435. We learn that the whole

dissipation is taking place in the cantilever proper, as the on-axis problem model coherently does

not include any rigid lead channel: this is trustworthy because the flow is developed only after the

entrance of the fluid in the cantilever, as no change in volume occurs and no flow can be developed

before the cantilever proper, the vibrations of which are causing the skew-symmetric flow field. We

underline that the reason why there is no difference in the quality factor if the fluid is compressible

or incompressible is that there is no change of volume in the on-axis case, which makes the fluid

not change volume too, giving constant density ρ. Thus, there is no difference in the behaviour of a

compressible or incompressible fluid, because they both do not experience any δρ.
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3.2 Off-axis flow and F(β)

3.2.1 Flow field within the channel

3.2.1.1 Incompressible case

Figure 3.2.1: Incompressible case qualitative flow field relative to the cantilever wall velocity in the off-axis case at

different fractions of the period T and for several values of β: a) β = 0.0001, b) β = 100, c) β = 1000, 1) t = 3T
8 , 2)

t = 5T
8 , 3) t = 6T

8 ; real (green) and imaginary (orange) parts of the field are shown together with the instantaneous field

(grey dashed line and grey filling); black solid lines show the reference positions and the blue dashed lines show the wall

velocities for each x̄-coordinate; on the walls (|z̄|= 0.5) the fluid velocity matches with the wall velocity

Asymptotic behaviour at small and large β From equation 2.5.19 we can easily obtain an asymp-

totic behaviour for small and large β of the incompressible flow in the off-axis case. We only need

to compute the Taylor series expansion around β=0 (arrested at the first order) and the limit for

β→ ∞ of v.
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Figure 3.2.2: Incompressible case scaled pressure (scaled also by β) in the off-axis case (z̄0 = 0.1) with L = Lc = 250µm

at different fractions of the period T and for several values of β: a) β = 10, b) β = 100, c) β = 1000, 1) t = 0, 2) t = T
8 ,

3) t = 3T
16 , 4) t = 4T

16 , 5) t = 5T
16 ; real (green) and imaginary (orange) parts of the pressure are shown together with the

instantaneous one (grey dashed line)

1. small β:

as β doesn’t appear in S(x̄) or S′(x̄), we only focus on k(z̄) and k′(z̄):

lim
β→0

k(z̄) = − z̄
2

+ 2z̄3 (3.2.1)

Instead, the series expansion of k′(z̄) gives:

k′(z̄) ≈ −1
2

+ 6z̄2 − 1
160

iβ
(

1− 24z2 + 80z4
)

(3.2.2)

A higher order expansion is useless because the first term dominates the asymptotic behaviour.

The vertical component in k(z) is neglected because smaller than the horizontal component of

a factor h f
L .

2. large β:

as far as the high β limit is concerned, we only need to compute the limits for β → ∞,

∀z̄ ∈ (− 1
2 , 1

2 ); Mathematica (release 10.4) returns:

lim
β→∞

k(z̄) = 0 (3.2.3)
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lim
β→∞

k′(z̄) = 0 (3.2.4)

Therefore, we obtain the following equation which is a good approximation for the two limits of

low and high β:

v = iωz0
dW
dx

∣∣∣∣
x=L

x̂ ·


1 + S(x̄)

[
6
(

z−z0
h f luid

)2
− 1

2

]
: β→ 0

1 : β→ ∞
(3.2.5)

We recall that S(x̄) = −1, x̄ < 0 (Figure 2.5.1), therefore the parabolic profile is theorized constant

in x̄ in the incompressible case (Figure 3.2.1) before the fluid enters the proper cantilever, as the

pressure function also prescribes (see Figure 3.2.2).

Figure 3.2.3: Compressible case qualitative flow field relative to the cantilever wall velocity in the off-axis case (z̄0 = 0.1)

with L = Lc = 250µm, γ = 0.03 at different fractions of the period T and for several values of β and α = γ
β , showing

effects of decreasing compressibility: a) (β = 0.03, α = 1), b) (β = 0.1, α = 0.3), c) (β = 10, α = 0.003), 1) t = 3T
8 , 2)

t = 5T
8 , 3) t = 6T

8 ; real (green) and imaginary (orange) parts of the field are shown together with the instantaneous field

(grey dashed line and grey filling); black solid lines show the reference positions and the blue dashed lines show the wall

velocities for each x̄-coordinate; on the walls (|z̄|= 0.5) the fluid velocity matches with the wall velocity

Master of Science Thesis A. Gerbino



3.2 Off-axis flow and F(β) 51

3.2.1.2 Compressible case

Equation 2.5.20 gives the off-axis flow field in the compressible case; Figure 3.2.3 shows how the

fluid moves within the channel, relatively to the wall velocity, when the walls are straining along x.

Figure 3.2.4: Compressible case scaled pressure (multiplied by β) in the off-axis case (z̄0 = 0.1) with L = Lc = 250µm,

γ = 0.03 at different fractions of the period T and for several values of β and α = γ
β : a) β = 0.01, b) β = 0.1, c) β = 10,

1) t = 0, 2) t = T
16 , 3) t = T

8 , 4) t = 3T
16 , 5) t = 4T

16 ; real (green) and imaginary (orange) parts of the pressure are shown

together with the instantaneous one (grey dashed line)

3.2.2 Normalized Volumetric flux

In the off-axis case we can introduce a new interesting variable, which was missing for physical

reasons in the on-axis case: the volumetric flux due to the pumping phenomenon brought about by

the coherent straining of the top and bottom walls of the channel. The normalizing factor for the

volumetric flux is:

qs = ush f luidb f luid (3.2.6)

Substitution in equation 2.5.21 leads to:

q̄ = 1 + h(−L̄c) (3.2.7)
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Figure 3.2.5: Normalized volumetric flux as a function of the normalized wavenumber γ for different β

Notice that the real flux depends on z0 and the channel dimensions through the scaling factor. In

figure 3.2.5 the normalized volumetric flux is shown for several values of β, and reasonings on its

trend help to understand the phenomenology that causes strong oscillations in the quality factor in

Figure 3.2.6. In previous sections, we discussed on how high values of β correspond to low values

of viscosity µ, and vice-versa. At this point, when dealing with a compressible flow, we need to

bear in mind how high viscosity not only brings up dissipation, but also damps out the volumetric

flux due to the pumping mechanism. Figure 3.2.5 proves the existence of resonance phenomena

within the fluid, strongly dependent on the value of β. We first notice that the system is becoming

increasingly damped with increasing β: this corresponds to either a less viscous fluid or a higher

resonance frequency (mode number).

We now discuss the effects of different values of β, γ and α on the volumetric flux (Figure 3.2.5).

Independently from β, the general trend for increasing γ is a decreasing volumetric flux, which

is coherent with the fact that α = γ
β → ∞ for γ → ∞, giving zero volumetric flux as in equation

2.5.24. Physically, this was expected because infinite compressibility corresponds to an infinitely

rarefied gas, such as vacuum. However, smaller β give high α earlier in the γ space. Therefore, it

may happen that when β is very small (both high friction and high damping), even with small
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γ, compressibility α could be very high, making resonance appear. As a matter of fact, increasing

the acoustic wavenumber in this case returns an immediate drop in the volumetric flux, such that

resonance behaviour is negligible. On the other hand, for high β, damping is really small and, as

compressibility is included in the model, the fluid is provided with elastic properties. As α depends

on γ, when γ is small α→ 0, giving unitary volumetric flux, while when γ is high α increases and,

for some combinations of these two values, resonance can manifest itself because viscosity is low

for high β.

To sum up, for very small β (very high damping) the resonance peaks die out, while for very

high β (very low damping) resonance peaks appear. At small γ, when β is high (low damping or

high inertia), compressibility is already quite low (almost incompressible fluid) which means the

normalized volumetric flux has already reached the unitary asymptotic value. At small γ, when β

is small γ and β are comparable. The smaller β is, the smaller the volumetric flux at the entrance,

because the fluid is more and more viscous for lower β and still compressible (as α is not yet 0),

therefore it hasn’t reached the asymptotic unitary value of an incompressible fluid yet.

3.2.3 Quality factor F(β)

Effect of γ The quality factor as a function of γ in the off-axis case is shown in Figure 3.2.6:

reasonings in subsection 3.2.2 can be directly applied to this graph to get to the same conclusions.

The general trend of F(γ; β) in the off-axis case is the following: increasing γ for a given β leads to

an increase of the quality factor; the smaller the β, the larger the Q increase. However, the behaviour

at intermediate γ strongly depends on the particular value of β. The energy dissipation mechanisms

in the off-axis case give rise to the following situations:

• at small γ the volumetric flux is unitary, therefore friction between layers of fluid causes

smaller quality factors for smaller β; this is due to the fact that the increase of viscosity,

which increases the dissipation, dominates over the increase of damping (which should give

benefits in terms of quality factor) for this combination of γ and β. The reduction (ultimately

until the asymptotic unitary value) of the volumetric flux entering the channel is too little

to give benefits while viscosity is increasing. Importantly, decreasing γ more will lead to an

asymptotic unitary value of the normalized volumetric flux, which means the parabolic profile

has reached an invariant shape and the shear and dissipation cannot change, hence the quality
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Figure 3.2.6: Normalized quality factor due to the off-axis solution only in the compressible case as a function of the

normalized acoustic wavenumber γ, with z̄0 = 0.1 and for several β

factor has reached a constant value.

• at high γ, the opposite phenomenon takes place, with a constant value of F(γ; β) reached when

increasing γ. Smaller values of β will give higher constants as for the same γ the volumetric

flux is much smaller and the fluid flow is more affected by the value of γ. We underline that

intermediate values of β have lower constant value of F(γ; β) because of the disadvantageous

combination of the moderate viscosity value and fluid flow profile.

• at intermediate γ, resonance phenomena occur; low viscosity fluids are more affected by these

phenomenon, coherently. For β = 1000, for γ ' 1 there is a peak in the volumetric flux (Figure

3.2.5), which corresponds to a drop in the quality factor

Effect of β By computing F(β; γ) and running simulations in COMSOL by constraining the device

to deform in-plane (longitudinally), one could compare the theoretical and numerical flow fields;

indeed, in both cases the device would be deforming in such a way to produce a pumping mech-

anism at the origin of energy dissipation in the off-axis case; however, the numerical simulations

would incorrectly give no importance to the value of the off-axis placement, while this is known to
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increase dissipation; for this reason, quality factors wouldn’t be comparable. For what said so far,

the effect of β will be investigated in the next section, where the complete case is studied.

3.3 Complete flow and F(β)

We first of all recall that the complete case flow field will be a linear combination of the two sub-

solutions (on-axis and off-axis flows), as described in Section 2.6.1, while the Quality factor will be

a non-linear combination of Qon and Qo f f defined by:

1
Qtot

=
1

Qon
+

1
Qo f f

(3.3.1)

from which we easily obtain

Qtot =
QonQo f f

(Qon + Qo f f )
(3.3.2)

It is important to realize that when one of the two, say Qon for instance, is much smaller than the

other one, then the total quality factor will follow it, as Qtot → Qon, and vice-versa for very small

Qo f f . This explains why the Qon takes over at high β for small enough z̄0 or why Qo f f dominates

at low β in the incompressible case, as in figure 3.3.2. Energy dissipation from one of the two

sub-solutions is dominating over the other one.

3.3.1 Incompressible fluid

In this section we compute F(β), equation 2.6.2, assuming an incompressible flow (α → 0 and

h( ¯x; α, β)→ 0 in this limit) and integrating over the channel domain; we provide both the exact

solution (obtained through numerical integration) and the approximated expressions for small β

(by Taylor Series expansion around β0 = 0, arrested at the first order, of the integrand G( ¯x, z̄)) and

large β. From equation 2.6.2, we obtain:

G(x̄, z̄) ' −6
(

z̄ ∂W̄
∂x̄

∣∣∣
1

z̄0S(x̄)
)

+ 1
120 i

(
−5 ∂W̄

∂x̄ + 60 ∂W̄
∂x̄ z̄2 − 18 z̄ ∂W̄

∂x̄

∣∣∣
1

z̄0S(x̄) + 120 z̄3 ∂W̄
∂x̄

∣∣∣
1

z̄0S(x̄)
)

β +O(β)
3
2

(3.3.3)

and integrating over the normalized channel height:∫ 1
2

− 1
2

∫ 1

−1
|G(x̄, z̄)|2dx̄dz̄ '

∫ 1

−1

[
1

720
β2 ∂W̄

∂x̄

2

+ 3
(

∂W̄
∂x̄

∣∣∣∣
1

)2

z̄2
0S(x̄)2 +

β2z̄2
0S(x̄)2

2800

]
dx̄ (3.3.4)

Therefore, equation 2.6.2 becomes:

Fsmall(β) =
38.73β

β2 + 4086.86
(

1 + β2

8400

)
z̄0

, β� 1 (3.3.5)
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We underline that the same result has been found when computing the approximated rate-of-strain

tensor (from the series expansion of the total velocity field), confirming the validity of this solution

with respect to what given in [32]1.

Similarly to what done in section 2.4.3, integrating eq. 2.6.2, neglecting small terms for β → ∞ and

rearranging, we obtain the other limit:

Flarge(β) =
0.1521

√
β

1 + 0.2613 z̄0
2 , β� 1 (3.3.6)

Notice that if z̄0 = 0 equations 3.3.5 and 3.3.6 give back the quality factor in the on-axis case for

small and large β (eq. 2.4.46 and eq. 2.4.50). At this stage we underline a discrepancy with the result

at small β provided by the reference work [32]; figure 3.3.1 shows the different behaviours: the own

solution well follows the small β behaviour and is believed to be a better approximation than the

reference paper one. The maximum occurs at β < 46.434 and, taking the expression for β � 1, for

z̄0 → 0, it takes place when:
∂Fsmall(β; z̄0)

∂β
= 0 (3.3.7)

which gives:

βmax = 63.92z̄0 + O(z̄0
2) (3.3.8)

Similarly, we can find the condition for which the turnover in the quality factor vanishes, by impos-

ing that:

Fsmall(βmax; z̄0) > Fon(βmin) = 1.8175 (3.3.9)

which gives:

z̄0 > 0.2959 (3.3.10)

Various z̄0 We now discuss the effects of the off-placement of the channel z̄0 on the complete case

quality factor.

Increasing z̄0 in the incompressible off-axis case always lowers the quality factor as 1
z̄2

0
; this behaviour

will be preserved in the compressible case, as in Figure 3.3.8.

1As a matter of fact, we found the same results as in [32] when integrating equation 3.3.4 using a value of S(x̄) = 0 in

−L̄c ≤ x̄ < 0 in equation 2.5.1: we believe the authors of [32] made a typo in their Mathematica code
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Figure 3.3.1: Comparison between own solutions and analogous solutions in [32] for z̄0 = 0.1 for the quality factor in

the complete incompressible case: red stands for small β solutions (eq. 3.3.5), black for exact solution (eq. 2.6.2), blue for

large β solution (eq. 3.3.6); dashed lines refer to the good solutions; purple dot shows the maximum position

From Figure 3.3.2 we notice that, for higher z̄0, the value of the local maximum in the quality factor

decreases and the corresponding βmax at which this occurs is shifted at higher β. This means that a

bigger off-placement increases the energy dissipation, as expected, and it does it especially at high

µ. At low µ there is a slight uniform downshift of the quality factor while the qualitative behaviour

of increasing F(β) for increasing β is preserved. Thus, z̄0 does not affect much F(β) at low µ because

the off-axis component of the fluid is moving as a plug flow and, regardless the fact that the global

intensity of the plug flow increases with z̄0, the shear (and thus dissipation) remains low because

the "shape" of the flow does not change and dissipation is constrained in a thin boundary layer.

When z̄0 is very small, we need very high µ (very low β) to let the off-axis dissipation mechanism

dominate over the nice fact that the fluid is tending to move as the solid beam, which means we

need very high µ to let the off-axis parabolic profile be big enough to let the shear gradient cause

big dissipation; furthermore, as soon as the off-axis starts dominating at high µ, µ is so high that

the quality factor has a high rate of decrease, which explains the different slope of F(β) at high and
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Figure 3.3.2: Incompressible case Quality Factor for several off-placements of the channel; black dashed line is the on-

axis case, whose dissipation mechanism dominates at high β for low z̄0; red dot is the minimum in the quality factor

in the on-axis case, the appearance of which depends on the strength of the off-placement: for z̄0 > 0.2959, the non-

monotonicity in the quality factor is lost and the off-axis dissipation mechanism dominates everywhere; green dashed

line shows how the off-axis dissipation mechanism takes over at low β

low β.

Ultimately, the off-placement is so big that the maximum disappears and the quality factor becomes

monotonically increasing for decreasing viscosity. We therefore lose the nice feature of the maxi-

mum F(β) at intermediate β, which is basically due to the increase of F(β) for decreasing β < βmin

of the on-axis component. At high z̄0, therefore, the off-axis component of the flow dominates shift-

ing down the whole curve and the maximum disappear; however, F(β) will keep increasing for

decreasing µ. Combination of on-axis and off-axis quality factors is clear from figure 3.3.2.

The change in slope of the complete F(β) for high z̄0 is independent of z̄0 and occurs at β=46 where

also the off-axis incompressible case quality factor slope slightly increases. This happens when the

flow turns from parabolic flow into plug flow, with merging of the boundary layers.

We underline that the error of the order of O( h f
L ) due to the missing boundary condition in the

on-axis case model at the end of the channel is having effects only at high β, because at low β the

off-axis flow, which correctly includes this boundary condition, dominates. Therefore, the error is

coming only from the on-axis case and in [32] Sader et al. claim that it reduces to 0 when the on-axis
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component is not bringing about any dissipation (high µ). We put this finding into question and

send to Section 5.3.1 for further details on our believes.

All the aforementioned results find a direct explanation in the fluid motion; from equation 3.2.5 it is

evident that z̄0, as well as ω, S(x̄) and the mode shape through
dW
dx

∣∣∣∣
x=L

, increases the off-axis case

velocity magnitude, but at high β (low viscosity µ) this is not a big issue in terms of dissipation

because the off-axis fluid component is given by a plug flow. However, when at low β, the profile

is parabolic with strong shear gradients and, being µ high, dissipation will be higher. Figure 3.2.1

shows the relative motion of the fluid with respect to the lateral walls:

• in the proper cantilever the fluid is moving as the channel lateral walls, almost everywhere

and for any β

• in the rigid lead channel the fluid is moving faster than the cantilever channel lateral walls

everywhere but in a thin boundary layer if β is high, or with a parabolic profile with respect

to the walls if β is low. The lower β, the higher µ and the higher the dissipation for the same

parabolic profile.

Various Lc
L Increasing the length of the leading channel will not bring up the stored energy; on

the contrary, assuming some off-axis placement z̄0, the energy used to actuate the resonator will be

dissipated to pump in and out a bigger amount of fluid, which is proportional to the volume change

of the channel, but, being the reservoir further, a bigger amount of fluid will be displaced (at least

according to the theoretical model), thus decreasing Q. In particular, more energy will be dissipated

only in the rigid channel, while the energy dissipated in the cantilever proper should stay constant.

As the rigid lead channel is not included in the on-axis case, it appears clear that any change in Lc

will only affect the off-axis part.

In the incompressible case (Figure 3.3.3), reducing the length of the reservoir brings benefits to

the normalized quality factor; in the limit of Lc = 0 the energy dissipation is confined to the proper

cantilever and the off-axis component of dissipation cancels out. Any fluidic phenomenon occurring

in the rigid part of the device can only be problematic: no more energy can be stored increasing Lc,

but it can be easily dissipated because of shear between layers of fluid.

We also expected Lc
L to have the same effect on the elbow as z̄0: higher values of the length ratio

will monotonically increase dissipation (downshifting uniformly the off-axis contribution) making
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Figure 3.3.3: Incompressible case Quality Factor for several rigid channel lenghts, with z̄0 = 0.01; black dashed line is

the on-axis case, whose dissipation mechanism dominates at high β for low z̄0; coloured dashed lines show how off-axis

dissipation mechanism takes over at low β; for Lc
L = 0 the highest curve is obtained

Figure 3.3.4: Incompressible case Quality Factor for several aspect ratios of the channel, with z̄0 = 1; the effect is

stronger at higher β than in Figure 3.3.3 and as z̄0 is so big, the minimum has disappeared; black dashed line is the

on-axis case, whose dissipation mechanism dominates at high β for low z̄0; for Lc
L = 0 the highest curve is obtained;
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the elbow and the minimum vanish for very high ratios. Importantly, for Lc = 0 a maximum of the

local maximum is reached, while for Lc � L, the maximum disappears as for very high z̄0: the way
Lc
L affects the incompressible off-axis part is independent of z̄0.

Various Poisson’s ratios The effects of the Poisson’s ratio are discussed in [33].

Figure 3.3.5: Incompressible case Quality Factor for several Poisson’s ratios ν, with z̄0 = 0.2 and Lc
L = 1; for ν = 0

(incompressible solid) we get the same behaviour as without considering Poisson; for ν = 0.5 the off-axis contribution

cancels out and the quality factor overlaps the on-axis case (black dashed line); this is expected as explained in [31]

because increasing Poisson’s ratio to this limiting case leads to zero volumetric flux into the channel due to off-axis

placement and energy dissipation disappears for any z̄0

In this paper, the authors established that increasing Poisson’s ratio brings benefits reducing the

negative effects of off-axis channel placement. This is due to a reduced volumetric flux into the

channel forced by the pumping mechanism, as the channel contracts laterally while expanding

axially, giving zero volume change in the limit of ν = 0.5 overall, as in Figure 3.3.6.

Figure 3.3.6: Lateral walls contraction for different values of Poisson’s ratios ν [31]
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Figure 3.3.7: Compressible case Quality Factor for several β, with γ = 0.01 and Lc
L = 1

3.3.2 Compressible fluid

We now present results in the case of complete compressible flow (α 6= 0 and h(x̄; α) 6= 0). In this case,

the quality factor exhibits a slightly more complex behaviour and is differently affected by changes

of z̄0 and Lc
L .

Various z̄0 We begin by noticing that z̄0 has the negative effect on F(β) as in the incompressible

case, affecting it especially at low β. From Figure 3.3.9, we learn that in the compressible case two

maxima and two minima occur. We recognize that the rightmost maximum corresponds to the only

maximum in the incompressible case (Figure 3.3.2); accordingly, the result concerning the incom-

pressible case for high z̄0 applies to the complete compressible case too: the rightmost maximum

disappears after moving to higher β positions and merging with the on-axis case minimum at β=46.

Interestingly, on a broad range of 5 orders of magnitude, β ∈ (0.001, 10), F(β) keeps quite constant,

being confined to values in 1 order of magnitude. Importantly, we notice that the theoretical model

is predicting a counter-intuitive behaviour at low β, surprisingly qualitatively opposite to the in-

compressible case: it appears that increasing the viscosity brings benefits in terms of quality factor,
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Figure 3.3.8: Compressible case Quality Factor for several γ, with β = 0.01 and Lc
L = 1

with F(β) → ∞ for µ → ∞, while in the incompressible case this is not true. This behaviour is not

confirmed by our COMSOL simulations and a plausible explanation of this discrepancy is given in

Section 5.3.1.

Importantly, F(β) is pseudo-hyperbolic in z̄0: Figures 3.3.7 and 3.3.8 show how γ and β modify this

general trend: β affects the response to z̄0 changes, while γ simply uniformly reduces dissipation,

theoretically.

Various Lc
L For the same γ, Lc

L theoretically strongly affects the quality factor, as in Figure 3.3.10.

Importantly, in the complete compressible case it seems that when Lc = 0 the quality factor goes

down for high viscosity µ, oppositely to the general case where Lc 6= 0 in which the quality factor,

after some oscillations, goes up for. Increasing Lc decreases the rightmost maximum from the maxi-

mum value (F(β)=8 for Lc = 0) and makes the leftmost maximum appear and increase for increasing

Lc. Both the righmost and leftmost maxima take place at higher β as Lc is increased. Being there

two maxima, a minimum must occur for intermediate β and this takes place at higher β as Lc is

increased and its value also slightly increases. The rightmost minimum due to the on-axis case is

preserved.
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Figure 3.3.9: Compressible case Quality Factor for several z̄0, with normalized acoustic wavenumber γ = 0.0337 and
Lc
L = 1; black dashed line is the on-axis case; if z̄0 < 0.2959, increasing z̄0 brings down the quality factor especially

at low β, where the off-axis dissipation mechanism dominates, while at high β the on-axis dissipation dominates; when

z̄0 > 0.2959, the quality factor experiences a uniform dowhshift;

Ultimately, increasing Lc leads to the disappearing of the rightmost maximum, which merges with

the on-axis minimum, and to the increasing of the intermediate minimum which disappears too,

flattening to a constant value which is equal to the leftmost maximum. After the merging, a uniform

downshift of the quality factor at low µ occurs (which means Lc is so big that off-axis dissipation

mechanism is dominating).

As mentioned, the behaviours for Lc = 0 and Lc 6= 0 are strongly different at low β. We already

discussed on how introducing compressibility allows decreasing β to bring benefits, as damping

is increased and the flow due to the pumping dies out (Section 3.2.2). However, when Lc = 0, one

obtains the same decreasing trend as in the incompressible case, as if compressibility positive effects

were cancelled out. This is due to an failure of the boundary conditions in the off-axis model when

the reservoir merges with the entrance of the cantilever. We therefore assume Lc = 0.001 ≈ 0.
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Figure 3.3.10: Compressible case Quality Factor for several Lc
L , with normalized acoustic wavenumber γ = 0.0337 and

z̄0 = 0.1; black dashed line is the on-axis case; green line shows the surprising different behaviour for Lc
L = 0.

Figure 3.3.11: Compressible case Quality Factor for several Poisson’s ratios ν, with normalized acoustic wavenumber

γ = 0.12, Lc
L = 1 and z̄0 = 0.06; black dashed line is the on-axis case;

Poisson’s ratios The benefits from increasing Poisson’s ratios in the incompressible case discussed

in paragraph 3.3.1 are preserved in the compressible case (Figure 3.3.11).
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Numerical Model

On ne voit bien qu’avec le coeur. L’essentiel est invisible pour les

yeux
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The second part of the work consisted in developing a model in COMSOL (release 5.3) to compare

numerical results with theoretical and experimental results. A 2D model was provided to the author

as a reference for the geometry, the physics, the study and the boundary conditions to be used, and

to get familiar with COMSOL environment. However, it was immediately clear that the 2D Model

couldn’t be a good tool of comparison for several reasons, which will be later discussed.

In this chapter we discuss on the theoretical numerical background to perform a benchmark with

the analytical model and experimental data, which have been seen to match well enough [32],[33].

We also show the settings for our COMSOL model used to obtained results with an eigenvalue

study on the system.

An important research goal of this study is to compare two different methods like the two-way

coupled and the one-way coupled Fluid-Structure Interaction (FSI). In the former, a more realistic

analysis can be conducted, but this approach requires good definition of the double coupling. In the

latter, the stresses from the fluid are not affecting the motion of the solid.

4.1 Fluid-Structure Interaction (FSI)

A common example of Fluid Structure Interaction (FSI) problem in the field of Micro/Nano Electro

Mechanical Systems (MEMS/NEMS) is a cantilever vibrating in fluid environment: this has been

largely investigated theoretically, experimentally and numerically [29] [30]. Such FSI problem is

dominated by viscous damping, rather than other damping mechanisms (acoustic radiation damp-

ing or internal structural damping) [24], which represents the most dissipative process occurring

during the oscillation of any microstructure in a viscous fluid. Fluid damping imposes severe limi-

tations by strongly degrading the signal-to-noise ratio of measurements.

Importantly, FSI problems can be solved either in time domain or in frequency domain, the former

having many drawbacks:

• on equal mesh density, an eigenfrequency analysis is clearly less time consuming than a time

domain one;

• in frequency domain, a convergence study concerns only the mesh density and quality: no
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Figure 4.1.1: Fluid-structure interaction double coupling concept: the solid structure exerts forces (no-slip boundary

condition) on the fluid, transferring momentum to it. The fluid movement (inertial force) influences the structural

behaviour through stresses; in a one-way coupling

constraints on any time parameter (Courant condition,...) are to be verified, as happens in the

time domain

As discussed in chapter 1, dynamic measurement in microcantilever based Bio-Sensors is conducted

evaluating Q factors and Resonance Frequencies; as these parameters belong to the frequency do-

main, we decide to follow the approach of Ricci and Giuri [29], looking for the solution of an

eigenvalue problem. By so doing, and exploiting symmetry conditions, we obtain a strong reduc-

tion of the computational time and a high degree of accuracy of results, avoiding long transient

computations. Our numerical model is believed to help in design and optimization of Suspended

Microchannel Resonators.

4.2 COMSOL equations and solver

COMSOL Multiphysics R© is a general-purpose software platform, based on advanced numerical

methods, for modelling and simulating physics-based problems. Importantly, it provides the user

with a significant amount of physics modelling functionality, including multiphysics ability. By

adding application-specific modules, the modelling power is increased with dedicated tools for

electrical, mechanical, fluid flow, and chemical applications.

To simulate our phenomenon efficiently, we used the Acoustics and Structural Mechanics mod-
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ules from COMSOL, which were then linked by an Aeroacoustic-Structure Boundary Multiphysics

tool. Under Physics, we selected the "Solid Mechanics" and "Linearized Navier-Stokes, Frequency

Domain" interfaces: this step allows to move from the time domain to the frequency domain, and

transforms all the temporal terms
∂

∂t
in jωt. An "Eigenfrequency" study has been performed while

changing the fluid and structure properties.

4.2.1 Equations for fluids and solids from COMSOL

The equations and all the information on the solver were taken from COMSOL Documentation [1],

COMSOL Multiphysics Reference Manual [2] and COMSOL Multiphysics User’s Guide [3]. Aeroa-

coustic simulations would ideally involve solving the fully compressible continuity, momentum

(Navier-Stokes equations), and energy equations in the time domain. This approach is often im-

practical for real-world computational aeroacoustic applications due to the required computational

time and memory resources. Instead, for solving many practical engineering problems, a decoupled

two-step approach is used: first solve for the fluid flow, then the acoustic perturbations of the flow.

As far as the acoustic problem is concerned, the governing equations are linearized around the

background mean flow p0 and only solved for the acoustic perturbation p. Acoustic variables are

assumed to be small and perturbation theory can be used, for example, the total pressure is

ptot = p0 + p (4.2.1)

Fluid Dynamics The complex interaction of a stationary background flow and an acoustic field

can be modelled using the linearized Navier-Stokes physics interfaces in the Acoustics Module.

The interfaces allow for a detailed analysis of how a flow, which can be both turbulent and non-

isothermal, influences the acoustic field in different systems. Basically, the equations solve for the full

linear perturbation to the general equations of CFD (mass, momentum, and energy conservation).

The linearized Navier-Stokes equations are derived by linearizing the full set of fluid flow equations

given in General Governing Equations. After some manipulation, the continuity, momentum, and

energy equations become:
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

∂ρ
∂t +∇ · (ρ0u + ρu0) = M

ρ0

(
∂u
∂t + (u · ∇)u0 + (u0 · ∇)u

)
+ ρ(u0 · ∇)u0 = ∇ · σ + F

ρ0Cp

(
∂T
∂t + u · ∇T0 + u0 · ∇T

)
+ ρCp(u0 · ∇T0)+

−αpT0

(
∂p
∂t + u · ∇p0 + u0 · ∇p

)
− αpT(u0 · ∇p0) = ∇ · (k∇T) + Φ + Q

(4.2.2)

The equations are formulated in the frequency domain and assume harmonic variation of all sources

and fields. They include viscous losses and thermal conduction as well as the heat generated by

viscous dissipation, if relevant. All terms are defined in the COMSOL Reference Manual [2]. The

physics interface solves for the acoustic variations in the pressure p, velocity field u, and temperature

T. The background mean flow can be any stationary flow. The Linearized Navier-Stokes, Frequency

Domain interface is formulated in the so-called scattered field formulation where the total acoustic

field is the sum of the scattered field (the field solved for p, u, and T) and a possible background

acoustic field, such that

pt = p + pb Tt = T + Tb ut = u + ub (4.2.3)

All governing equations and boundary conditions are formulated in the total field variables. When

no Background Acoustic Fields feature is present, as in our case, the total field is simply the field

solved for:

pt = p Tt = T ut = u (4.2.4)

Coupling the interfaces to structures enables detailed vibration analysis of structures in the presence

of flow, such as FSI in the frequency domain. The coupling in the frequency domain and time

domain is readily performed using the predefined Aeroacoustic-Structure Boundary multiphysics

coupling feature. [1] [2] [3]

Solid Mechanics Solid Mechanics Physics is found in the module Structural Mechanics of COM-

SOL Multyphysics.

Importantly, we neglected structural damping, therefore all results refer solely to the Quality Factor

related to the fluid dissipation mechanisms.
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4.2.2 Modal eigenfrequency analysis

Our numerical results make use of the eigenfrequency analysis, which solves for the eigenfrequency

of the model. The time-harmonic representation of the generic field p

p(r, t) = Re(p̃(r)e−λt) (4.2.5)

includes a complex parameter in the phase, λ; this eigenvalue, −λ = −δ + jω, has an imaginary part

representing the eigenfrequency and a real part responsible for the damping. The complex time

exponential expresses the time behaviour of the system; the quality factor Q is derived from the

eigenfrequency and damping as:

Q =
ω

2δ
(4.2.6)

Equation 4.2.6 is used to extract the numerical results on the quality factor in all our simula-

tions. In the "Eigenfrequency search method" we selected Manual and inserted supposed eigen-

frequency values around which to search for the larger real part of the complex eigenfrequency

f̃ = − λ

2π j
= f + j

δ

2π
. This step strongly speeds up convergence. We underline that this definition of

Q is slightly different to the one proposed by Sader [32] and takes into account all the dissipative

mechanisms within the fluid (for instance, the energy equation contains a temperature dependent

term); therefore, comparison between numerical and theoretical results should be done carefully;

when we applied Sader’s definition of Q to our numerical model, we obtained the same qualitative

behaviour as when using Equation 4.2.6; however, the plots were slightly shifted down of some

units.

4.3 The 2D Model

A 2D Model was provided to the author to get confident with the software and as a reference to

later develop the 3D Model. Even though optimal in terms of computational effort, such a model

was unable to well describe the physics and provide coherent values of the quality factor for several

reasons, which will be now discussed. Moreover, even in a simpler case where the fluid is around

the beam [29], a 2D model would hold only when the length of the cantilever is much bigger than
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its thickness and just for low mode numbers; therefore, a 3D model, if computationally feasible,

is more appropriate for a deep analysis when short cantilevers and high mode numbers are to be

investigated.

4.3.1 Geometry

A 3D Geometry has been built and the middle cross section has been selected to perform a 2D

analysis. We immediately underline that the 3D characteristics are completely lost with this step:

the physical domain under study becomes the central section of the beam (X-Z plane). If the 3D

geometry included the internal wall separating the two channels, as in real devices, the central

section would be clearly intersecting this wall: the study would be performed on a solid domain

only, hence completely missing the fluid-structure interaction.

Believing valid the assumption that the internal wall can be neglected, as in the theoretical model,

the middle section becomes as in Figure 4.3.2. Again, we encountered a limit: the eigenfrequencies

solved for were 1 order of magnitude lower than the expected ones and the eigenshapes were wrong

and viscosity dependent. This mistake is due to the fact that the software is not modelling the two

lateral walls (parallel to the X-Z plane) which link the top and bottom walls (parallel to the X-

Y plane). This fault reduces the stiffness (giving lower eigenfrequencies) and makes the structure

behave as a so called "shear-type frame", as in Figure 4.3.6. Both ends cannot rotate, as in doubly

clamped structures.

4.3.2 Tip error caused by the shear-type frame

To solve the aforementioned problem, we tried to force COMSOL to apply the good mode shape for

all the eigenfrequencies. Two approaches were pursued:

• making the tip softer, by reducing its Young Modulus (Figure 4.3.4)

• including an additional solid domain (Figure 4.3.5)
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(a) (b)

Figure 4.3.1: "Wrong" shape obtained in the 2D model: (a) Shear-type frame showing the prevented rotation of the

free-end; (b) I mode shape and "wrong" shape

Figure 4.3.2: 3D CAD for Device B: a simplified geometry where the middle wall has been removed is built to compare

results with the theoretical model; the 2D analysis focuses on the middle section (Z-X)

Figure 4.3.3: 2D middle section (Z-X) where the 2D analysis is performed
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(a) (b)

Figure 4.3.4: Approach 1: low Young Modulus is given to the tip to make it softer; (a) Eigenshape of the structure; (b)

Zoom at the tip showing unrealistic structural deformation

Figure 4.3.5: Approach 2: Solid structure with extended tip to achieve the correct eigenmode

The first approach gave back the good mode shape, but introduced an important error at the tip.

The second approach did not introduce any error at the tip, but did not give back the good shape. In

both case, the correct values of the eigenfrequencies were not obtained. In conclusion, we decided

to move to a 3D model to well capture all the physics.

4.3.3 The "wrong" mode shape attempt

Before moving to the 3D model it is worth mentioning another attempt done to validate the the-

oretical model. We tried to apply the "wrong" mode shape obtained from COMSOL and fitted in

Mathematica (Figure 4.3.1a) to the theoretical model to compute the Quality factor and compare

it with the one obtained directly with COMSOL. In fact, equation 2.6.2 accepts any kind of mode

shape W(x̄).

However, we realized that this approach was not good for comparison because of the different

boundary conditions that COMSOL was imposing to the fluid: the top and bottom walls of the
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Figure 4.3.6: Inexact deformation of the structure when solving for the first eigenmode: the top and bottom walls are

considered separately by COMSOL in the 2D model, with one independent neutral-axis each; the internal walls have

opposite deformation

cantilever were considered as separate solid structures during deformation, each one having an

own neutral axis; as such, the boundary conditions onto the fluid are in the same verse even in the

simple case where z̄0 = 0, oppositely to the theoretical model (Figures 2.3.1 and 4.3.6).

4.4 The 3D Model

Most of the characteristics of the devices and fluid studied numerically are taken from [32], but

some parameters had to be assumed by the author not being available in the reference paper. Three

devices are investigated for comparison and all the relevant parameters are listed in Tables 4.3

and 4.1. In order to compare numerical results with the theoretical ones, a simplified model which

didn’t include the wall in the middle was firstly used. This preliminary analysis was conducted to

get acquainted with the software and detect the first differences between theory and numerics, in

order to give a first interpretation to the numerical results. Later, in order to match numerics with

experiments, a complete geometry was used, including the wall in the middle, with a supposed

value of bwall . This had the main effect of increasing the stiffness of the cantilever and returning

higher and more precise values of the eigenfrequency, which matched better with the experimental

results. Secondly, the Quality factor was quantitatively affected and shifted up of some units, as a

result of the decrease of the shear gradients. However, its general trend didn’t change, as expected.

To quickly run simulations for different devices and fluid properties, the COMSOL model was
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parameterized in function of relevant parameters such as h f luid, hchannel , k, ρ f luid, z̄0 and µ f luid and

Parametric Sweeps were performed.

4.4.1 Domain

In this section the domains for both the simplified and complete geometries are discussed and

presented together with a list of all the relevant parameters. Both geometries were studied for the

following purposes: at first, a simplified geometry with no wall separating the inlet and outlet

channels was built and numerical results were compared with the 2D theoretical model; in this way

we could validate the theoretical model more easily and find discrepancies which couldn’t be due to

the geometry, but to some theoretical uncaptured physics; secondly, a geometry closer to the devices

on which experiments were performed [32],[33] was built and numerical results were compared.

Figures 4.4.1 and 4.4.2 show the physical domain of interest in the simple case of z̄0 = 0: the solid

domain is coloured in green and the fluid domain is coloured in light blue. The geometrical param-

eters for Devices A, B and C are listed in Table 4.1, where also bwall is included to take into account

the wall in the middle in the model that better represents the real device. This last parameter and

the size and position of the channel bending are not provided and are therefore tuned to match

eigenfrequencies and quality factors.

Description Geometry parameter Device A, value [µm] Device B, value [µm] Device C, value [µm]

Channel height h f luid 3 8 15

Cantilever height hc 7 12 19

Channel width b f luid 16 16 40

Cantilever width bc 33 33 57

Middle wall width bwall 1 2 2

Channel length L 204 204 315

Rigid Channel length Lc 204 204 240

Tip length Ltip 12 6 6

Total cantilever length length 216 210 321

Table 4.1: Geometrical properties of the experimented and simulated devices
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Figure 4.4.1: 3D Simplified geometry, with z̄0 = 0, for theoretical and numerical comparison; on the top an isometric

view, on the bottom a later view

Figure 4.4.2: 3D complete geometry with a wall between the inlet and outlet channel, with z̄0 = 0, for experimental and

numerical; inset: front view
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4.4.2 Mesh

The mesh resolution and mesh element quality are important aspects to consider when validating

a model. Low mesh resolution — in relation to the variations in the solution and the geometry —

can lead to inaccurate results. A low mesh element quality — which measures the regularity of the

mesh elements’ shapes — can lead to inverted mesh elements and to high condition numbers for the

Jacobians, which in turn can cause convergence issues. The mesh element quality is a dimensionless

quantity between 0 and 1, where 1 represents a perfectly regular element, in the chosen quality

measure, and 0 represents a degenerated element. [1]

Figure 4.4.3: Square Mesh (mesh quality = 1) for the 3D simplified geometry (without the wall separating the inlet and

outlet channel); Inset: mesh refinement near the tip; the mesh density increases approaching the walls

Importantly, Figure 4.4.3 shows how we exploited symmetry conditions, allowing for a big reduc-

tion of the number of degrees of freedom and the computational effort. Even though the geometry

is symmetric with respect to two planes, only one symmetry condition was used because the eigen-

shapes are symmetric with respect to only one plane, with out-of-plane deformations. In all cases,

thanks to the ease of the geometry, a minimum element quality of 1 was achieved: this is a very

good condition and it avoids doubts on the reliability of the mesh. Table 4.2 shows different mesh

settings: the third option has been used for all simulations as a good compromise between accuracy

and computational effort, as discussed in Section 5.1. An element ratio of
1
5

has been set to have
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smaller elements close to the walls where the boundary layers develop.

Nx Ny = Nz Nx2 Domain elements Boundary elements Edge elements DOF

5 5 5 462 663 312 11448

10 10 10 2772 2208 572 38718

15 15 10 7803 5033 1014 70668

25 25 20 32292 11318 1292 199008

Table 4.2: Number of elements and degrees of freedom for different mesh settings

4.4.3 Boundary conditions and physics

The aforementioned physics of Solid Mechanics and Linearized Navier-Stokes were applied to the

two different domains, as shown in Figure 4.4.4, where the darker blue highlights the selected

domains.

(a) Navier-Stokes physics domain (b) Linear elastic physics domain

Figure 4.4.4: Physical domains (darker blue highlights the domain of interest) in the 3D simplified geometry

The boundary conditions are then set in agreement with the theoretical model and are here listed

(darker blue shows the feature of interest):

Solid

• Fixed constraint u , Figure 4.4.5b

• Boundary Load Sn = FA, Figure 4.4.5d

• Symmetry n · u = 0, Figure 4.4.5a
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Fluid

• Wall ut and Tt = 0

• Prescribed Velocity ut = up, Figure 4.4.5d

• Pressure (Adiabatic) pt = pp , −n(−k∇Tt) = 0 and σn = −ppn, Figure 4.4.5e

• Symmetry n · u = 0, Figure 4.4.5a

The two-way coupling has been modelled by means of stresses exerted by the fluid on the solid.

The surfaces of contact between fluid and solid have been selected and a force per unit of surface

has been applied on them, where:

[
N
m2

]
FA =


−Tstress,x x̂

−Tstress,y ŷ

−Tstress,z ẑ

(4.4.1)

with the components of the total fluid stress tensor defined in COMSOL as:
Tstress,x = lns f .T_stress_tensorxx ∗ lns f .nxmesh + lns f .T_stress_tensoryx ∗ lns f .nymesh + lns f .T_stress_tensorzx ∗ lns f .nzmesh

Tstress,y = lns f .T_stress_tensorxy ∗ lns f .nxmesh + lns f .T_stress_tensoryy ∗ lns f .nymesh + lns f .T_stress_tensorzy ∗ lns f .nzmesh

Tstress,z = lns f .T_stress_tensorxz ∗ lns f .nxmesh + lns f .T_stress_tensoryz ∗ lns f .nymesh + lns f .T_stress_tensorzz ∗ lns f .nzmesh

(4.4.2)

The Model Builder in Figure 4.4.7 contains all the information on the general set up of the simula-

tions: the components, the physics, the studies and the results are easily accessible.

4.4.4 Structure properties

Table 4.3 shows the material properties of Devices A, B and C used in our numerical simulations

for comparison with experimental results.

The resonance frequencies in the uncoupled case (in vacuum and with no fluid in the channel) are

given in Tables 5.1, 5.2 and 5.3; experimental values are taken from [33], numerical values refer to

the complete geometry with the wall separating the inlet and outlet channels. All these results are

available in Chapter 5.
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(a) Symmetry plane boundary condition (red), applied to the 3D model to reduce the computational effort

(b) Fixed domain (c) Free to vibrate domain

(d) Fluid-Structure Interaction Boundaries
(e) Adiabatic Pressure boundary condition at the

channel inlet

Figure 4.4.5: Boundary conditions (darker blue) in the 3D simplified geometry; light blue stands for fluid, green stands

for solid
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Description Material parameter Devices A, B, C

Young’s Module [GPa] Ec 170

Poisson’s ratio µc 0.25

Solid Density [
kg
m3 ] ρc 2330

Table 4.3: Material properties of the devices for the numerical simulations in COMSOL

Glycerol % Fluid Density [ g
cm3 ] Viscosity [mPa·s]

0 0.99823 1.005

10 1.0221 1.31

20 1.0469 1.76

30 1.0727 2.5

50 1.1263 6

60 1.1538 10.8

70 1.1812 22.5

75 1.1948 35.5

80 1.2085 60.1

93 1.243 367

100 1.2611 1410

Table 4.4: Density and viscosity values of the fluids used for the experiments: a water-glycerol mixture is used, with

different percentages of glycerol affecting both density and viscosity

4.4.5 Fluid properties

Experiments have been conducted changing the viscosity of a water/glycerol mixture by adding

amounts of glycerol [33]. At first, when sweeping the viscosity we used the same fluid density,

because this varies only slightly with different concentrations of glycerol. However, more precise

results were obtained when sweeping both the viscosity and the density, as expectable: the values

were taken from [5].

Compressibility Compressibility is supposed to be affecting the fluid motion in the complete case

(Sections 3.3.2 and 3.2.1.2); in COMSOL, isothermal compressibility is defined as

βT = − 1
V

(
∂V
∂p

)
T

[Pa−1] (4.4.3)
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Figure 4.4.6: Viscosity-density relationship; viscosity is changed using a water/glycerol mixture and adding amounts

of glycerol to the water; density keeps almost constant while changing the viscosity, thus tuning β

while isentropic compressibility

βS = − 1
V

(
∂V
∂p

)
S

=
1

ρ0c2 [Pa−1] (4.4.4)

and the two are related by:

βS = βT −
α2T
ρcp

(4.4.5)

In our theoretical model γβ = βT
βS

= 1 and therefore k = βS = βT. To compare numerical results to

theoretical results we simply derived the relationship to link these definitions to those given in [32]:

c =

√
1

ρ0k
(4.4.6)

γ = ω2L2ρ0k (4.4.7)

α =
γ

β
=

ωL2µ

h2
f

k (4.4.8)

where k[Pa−1] is the parameter tuned in the parametric sweep in COMSOL. The values for k can be

derived either from equation 4.4.6 or 4.4.7, assuming the knowledge of the speed of sound for any

value of the density. We decided to find k for the three Devices after performing an eigenfrequency

study with a starting guess value of kguess = 5.63E − 10: in this manner, the coupled study could

be performed and the eigenfrequencies could be extracted and used in equation 4.4.7 (given γ) to

obtain k (Table 4.5); no iteration was necessary because compressibility doesn’t affect the eigenfre-

quencies much. Importantly, compressibility values do not change much for high changes of viscos-

ity; however, to obtain more accurate results, compressibility has been changed while changing the

viscosity.
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Device A, γ = 0.034 Device B, γ = 0.11 Device C, γ = 0.096

Fluid density [ g
cm3 ] k [Pa−1] k [Pa−1] k [Pa−1]

0.99823 4.34 E-10 4.71 E-10 4.21 E-10

1.0221 4.25 E-10 4.62 E-10 4.15 E-10

1.0469 4.16 E-10 4.52 E-10 4.09 E-10

1.0727 4.07 E-10 4.43 E-10 4.02 E-10

1.1263 3.89 E-10 4.25 E-10 3.89 E-10

1.1538 3.80 E-10 4.16 E-10 3.82 E-10

1.1812 3.72 E-10 4.08 E-10 3.77 E-10

1.1948 3.68 E-10 4.04 E-10 3.74 E-10

1.2085 3.64 E-10 4.00 E-10 3.71 E-10

1.243 3.55 E-10 3.91 E-10 3.64 E-10

1.2611 3.51 E-10 3.86 E-10 3.60 E-10

Table 4.5: Values of compressibility for Devices A, B and C used in experiments and numerical simulations (first

vibrational mode, complete geometries)

4.4.6 Quantities for validation

In order to validate the model we will investigate the Quality factor trend with respect to the fluid

viscosity, the fluid flow and the eigenfrequencies for the first two vibrational modes of the devices

B and C, comparing numerical results with the theoretical and experimental ones. In the uncoupled

structural analysis a comparison between the natural frequencies for the first two modes for De-

vices A, B and C is done, with little computational effort. In the coupled fluid-structure interaction

problem the flow field, the energy dissipation, the quality factor and the natural frequencies are

investigated to determine convergence of the mesh refinement and compare results with the the-

oretical and experimental ones. Often, to avoid useless waste of time, quantities for a single value

of viscosity where discrepancies between theory and numerics are believed to be bigger have been

compared.
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Device A, γ = 1.3 Device B, γ = 4.1 Device C, γ = 3.5

Fluid density [ g
cm3 ] k [Pa−1] k [Pa−1] k [Pa−1]

0.99823 4.32 E-10 4.27 E-10 4.16 E-10

1.0221 4.22 E-10 4.19 E-10 4.10 E-10

1.0469 4.12 E-10 4.10 E-10 4.03 E-10

1.0727 4.02 E-10 4.02 E-10 3.97 E-10

1.1263 3.83 E-10 3.85 E-10 3.84 E-10

1.1538 3.74 E-10 3.78 E-10 3.78 E-10

1.1812 3.65 E-10 3.70 E-10 3.72 E-10

1.1948 3.61 E-10 3.67 E-10 3.69 E-10

1.2085 3.57 E-10 3.63 E-10 3.67 E-10

1.243 3.47 E-10 3.55 E-10 3.61 E-10

1.2611 3.42 E-10 3.50 E-10 3.57 E-10

Table 4.6: Values of compressibility for Devices A, B and C used in experiments and numerical simulations (second

vibrational mode, complete geometries)

Figure 4.4.7: Model builder for the 3D model simulations in COMSOL
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Chapter 5

Numerical results and discussion

Orandum est ut sit mens sana in corpore sano

Decimus Iunius Iuvenalis

In this chapter we report numerical results and discuss on the validity of the numerical model,

highlighting the differences and similarities with the theoretical and experimental results. Most of

the qualitative results (convergence analysis, effects of z̄0, Poisson’s ratio, compressibility and fluid

density, ...) are obtained running simulations on the simplified geometry of Device B (see Table 4.1)

and working on the first vibrational mode.

Of course, viscosity is known to be a function of the temperature, which we assume to be 25◦C.

For comparisons with the experimental results, in our simulations the viscosity spans from about

1-1400 [mPa·s], where 1 mPa·s = 1 cP; at 37◦C blood viscosity is 3-4 cP. From figure 5.0.1 it is clear

that in practical cases values much bigger than 1000 cP and much lower than 1 cP are unlikely to

exist for bio-sensing. Corresponding values of β for the first mode of Device B are also shown.

However, some simulations on the simplified geometry were run with viscosity ranging 0.1-100000

[mPa·s] and β ranging in 0.001-1000, in order to investigate the behaviour out of the experimental

range.
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Figure 5.0.1: Typical viscosity values and corresponding β values for Device B (simplified geometry) in the first vibra-

tional mode (readapted from [4])

5.1 Convergence analysis

To study the mesh convergence, the quality factor trend of Device B (simplified geometry) has

been investigated while changing the mesh size in different directions. As shown in Figure 4.4.3

and explained in Section 4.4.2, the geometry has been divided in a certain number of elements, the

amount of which depends on the number of divisions along each direction: x, y and z. Furthermore,

the x-direction number of divisions is split in two: variable x2 sets the number of divisions within

the rigid lead channel, while variable x sets those in the cantilever.

From Figure 5.1.2 it appears that x2 is not affecting the solution much, while the number of divisions

in x, y and z strongly affects the results. It is also found out that slightly increasing the number of

divisions in x, y and z at the same time gives a better convergence than strongly increasing one single

parameter. It seems that 35/40 divisions are necessary along y and z to reach good convergence;

for storage limitations, we choose a mesh with x=y=z=15 and x2 = 10 number of divisions. This

is found to give good enough results and not lose the correct qualitative behaviour; however, we

underline that a finer mesh would give more accurate results.

Figure 5.1.1 shows the eigenvalue solver errors for the 2-way coupled analysis of Device B during

the viscosity sweep. It expresses how fast the solver is to find a solution to the problem and how

stable the procedure is; it is clearly affected by the mesh size and quality, but does not give any

information on the reaching of a converged numerical solution.
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Figure 5.1.1: Eigenvalue solver errors for the 2-way coupled analysis of Device B during the viscosity Parametric Sweep:

convergence is quickly reached thanks to the good mesh quality

We underline that values of parameters such as Si-N density, Young modulus and Poisson’s ratios of

the cantilevers experimented in [32] were not provided. Therefore, the first step has been reasonably

tuning these values, together with the middle wall width, the tip dimensions and the channel U-

bending dimensions and position, in order to achieve natural frequencies from our simulations as

close as possible to the experimental ones.

5.2 Structural uncoupled analysis

Structural uncoupled results concern simulations run on the simplified geometry of Device B (Table

4.1), without any wall separating the inlet and outlet channels. We firstly performed a Parametric

Sweep on the off-axis placement z̄0 and then on Poisson’s ratios, as the theoretical model in [33],

[31] and structures theory tell us how these parameters affect the eigenfrequencies of a structure.

The first requirement was obtaining the correct eigenshapes and eigenfrequencies: values around

hundreds of kHz for the first mode and some MHz for the second mode are coherent with the

available devices. Figure 4.3.3 shows the first and second modes for Device B with z̄0 = 0 (simplified

geometry); similar shapes have been correctly obtained for the complete geometries.

Effect of z̄0 A Parametric Sweep of z̄0 was run to investigate its influence on the eigenfrequencies.

Figure 5.2.2 shows that increasing z̄0 brings about a decrease in the natural frequency of the first
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(a) Effect of x-divisions of the mesh on the Quality Factor;

other divisions: y=z=5, x2=5

(b) Effect of x2-divisions of the mesh on the Quality Fac-

tor; other divisions: x=5, y=z=5

(c) Effect of z-divisions of the mesh on the Quality Factor;

other divisions: x2=5, y=5, x=5
(d) Effect of y-divisions of the mesh on the Quality Factor;

other divisions: x2=5, z=5, x=5

Figure 5.1.2: Mesh-convergence analysis on Device B (simplified geometry), with Poisson’s ratio ν = 0.25, z̄0 = 0.1 and

two-way coupling analysis in the incompressible case (first vibrational mode)

vibrational mode.

Effect of Poisson’s ratio In the same manner as for z̄0, the influence of Poisson’s ratio has been

studied for z̄0 = 0, z̄0 = 0.06 and z̄0 = 0.2. Figure 5.2.3 shows that regardless the off-placement of the

channel axis the trend of fn with respect to ν is the same: increasing ν causes the resonance frequency

to go up non-linearly. This qualitative result does not depend on the fact that the simulations were

run on the simplified geometry and it is in agreement with intuition: in a 1D structure Poisson’s

ratio is known not to affect much the eigenfrequency. When moving to wide structures (plates

and even more membranes) this parameter starts strongly affecting the eigenfrequencies, with the

stiffness being proportional to the Poisson’s ratio.
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Figure 5.2.1: First (left) and second (right) uncoupled mode shapes for Device B with z̄0 = 0

Figure 5.2.2: Effect of z̄0 on the natural frequency of Device B (simplified geometry) in the uncoupled case for different

Poisson’s ratios (first vibrational mode)

Master of Science Thesis A. Gerbino



5.3 Coupled analysis 91

Figure 5.2.3: Effect of Poisson’s ratio ν on the natural frequency of Device B (simplified geometry) for several z̄0 in the

uncoupled case (first vibrational mode)

5.3 Coupled analysis

When turning on the fluid-structure interaction and solving for the eigenfrequency of the coupled

system, we realize that the structural eigenshapes are not strongly affected; a literature survey

[22] reveals that the eigenshapes of structures such as underwater structures, shore and off shore

structures, moving tanks, dam reservoirs or big ship hulls containing fuel can be affected by the

fluid loading; however, in this case, due to the fluid confinement in a small volume the loading

seems to be not affecting the shapes.
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5.3.1 On-axis solution

Figure 5.3.1: On-axis fluid flow for different values of β: a) β = 0.001, b) β = 0.5, c) β = 46, d) β = 1000

The on-axis solution (z̄0 = 0) is known to be unaffected by fluid compressibility and Poisson’s ratio,

which are therefore ignored at this stage. Figure 5.3.2 shows comparison between numerical and

theoretical results for Device B (simplified geometry) in the incompressible case.

This simple case contains probably the most important result of this thesis, as it affects the com-

plete solution and constitutes a mismatch with the theoretical model. Surprisingly, at low Reynolds

numbers β (high viscosities) we numerically obtain a qualitative result opposite to the theoretical

expectations. Whereas the theory predicts a counter-intuitive increase in the quality factor for in-

creasing viscosities after the minimum in β ' 46, our simulations still show a non-monotonic trend

but with the presence of two interesting points: a minimum in β ' 46 as in the theory and a max-

imum in β ' 0.55. Our physical intuition brings us to believe that our model is overestimating the

dissipation or some dissipating phenomenon is missing in the theoretical model. One reason could

be the fact that a more and more viscous fluid, even though commonly thought as almost a solid,

cannot store more and more elastic or kinetic energy, then returning it during the vibrations. The

system is not getting stiffer while the viscosity is increasing, and any shear, for as small as it is,

between layers of fluid (which is kinetically behaving as the solid, but not dynamically) will bring

about dissipation. In fact, no elasticity model is assigned to the fluid domain. So, there will be a

point in the viscosity range where the fact that the fluid is moving as if it were a solid domain

(almost linearly in x in the Euler-Bernoulli theory, but not perfectly in the numerical model) is being

"damaged" by the fact that the dissipation is being enhanced by the viscosity increase: the very
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viscous fluid simply acts as a load on the structure. We underline that:

• for inviscid fluid (very high β) the quality factor is very high because the fluid motion is almost

linear and in counter-phase with respect to the beam everywhere but in a small boundary layer

close to the walls; the very low viscosity term dominates imposing small dissipation;

• increasing viscosity (decreasing β) the quality factor coherently drops and reaches a minimum

in β = 46, as the increase in viscosity makes the relative motion of the fluid with respect to the

beam decrease and the boundary layers become thicker until merging in the channel;

• between the minimum and the maximum the fluid motion is tending to be almost linear in x

and in-phase with the beam while the viscosity is increasing; this brings up the quality factor

because the very small relative motion dominates on the increasing viscosity;

• a maximum is reached at β ' 0.6 when the fluid flow is not being affected from a further

increase in viscosity; this brings up dissipation as the fluid flow is not perfectly linear in a

numerical simulation.

Another source of discrepancy and error could be the absence of the wall at the end of the channel

in the on-axis case in the theoretical model, which is coherently believed to affect the fluid motion,

especially in proximity of the wall itself. This might lead to introduce back non-linear terms in the

Navier-Stokes equations and the solution might be sufficiently more complex to describe this miss-

ing dissipation mechanism at low β even in the on-axis case. On the contrary, the theoretical model

states that the matching between the movements of the fluid and solid parts is positive in terms of

quality factor; it can be argued that including elasticity in the fluid and allowing for stiffening while

increasing viscosity (as the very-viscous/solid analogy would push to do) might give back an in-

definite increase in the quality factor. The fact that theoretical results with z̄0 = 0.01 almost perfectly

match with numerical results with z̄0 = 0 is relieving. It is worth noting that it is not even possible

to investigate this conceptually simple and fundamental case experimentally: technological issues

and well-known imperfections that reality operates on ideally smooth mathematical surfaces will

cause the fabrication to always be off-axis, even if just slightly. In this mismatch between theory and

numerics, we are somehow also relieved as in practical cases no on-axis placement of the channel

can ever exist and too deep investigation is not strictly necessary at unrealistic high viscosities.
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Figure 5.3.2: Quality factor comparison in the on-axis case for Device B (simplified geometry) in the first vibrational

mode, with Poisson’s ratio ν = 0, ρ f = 1000 kg
m3 and two-way coupling; when z̄0 = 0, the theoretical model predicts a

counter-intuitive behaviour, with the quality factor increasing for increasing viscosities (decreasing β); on the contrary,

numerical results show that the quality factor reaches a maximum and then drops down; however, when z̄0 = 0.01

numerical and theoretical results agree quite well. This surprising result makes us think that the theoretical model in

[32] is lacking of some dissipating phenomenon at high viscosities in the on-axis case

Effect of fluid viscosity on eigenfrequency This is known not to affect the real part of the eigen-

frequency of the system, but the dissipation through the imaginary part. However, a negligible

dependence of the eigenfrequencies with viscosity is observed, probably due to what happens in

the fluid while changing the viscosity: merging of boundary layers, linear or parabolic flow, in phase

or in counter-phase flow.

Effect of rigid channel length The rigid channel length has no effect on the quality factor nor on

the eigenfrequency, as expected, because no pumping is taking place in the on-axis case (z̄0 = 0).

5.3.2 Complete solution

It is clear that the off-axis case cannot be analysed individually, as it consists of a sub-solution to be

linearly added to the on-axis case in the theoretical model; when running a simulation with a certain
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Figure 5.3.3: Effect of ρ f on the natural frequency of Device B (complete geometry) in the incompressible fluid case, with

σ = 0.25, z̄0 = 0.06 and µ = 10 mPa·s; both the one-way and the two-way coupling are investigated (first vibrational

mode)

z̄0 6= 0, the complete solution will obviously take place. We remind to the reader that, according to

theoretical model, compressibility will affect the flow field in the channel and, consequently, the

energy dissipation. For this reason, both the incompressible and compressible cases are simulated.

5.3.2.1 Incompressible fluid

At first, the case of incompressible fluid was analysed to learn if the model was capturing the main

physical phenomena: in fact, compressibility will only affect results at low Reynolds numbers, as

known from the theoretical model; thus, looking at the easier case of incompressible fluid is a good

starting point of comparison with the experiments and theory and the quality factor is expected to

be well captured at least at high Reynolds numbers. Therefore, we expected the minimum to occur

at β ' 46, with F(β) ' 1.58.

Sensitivity of Eigenfrequency with fluid density As known, the fluid represents an added mass

for the solid, therefore its density is expected to influence the eigenfrequency of the system: Figure

5.3.3 shows that higher values of fluid density return lower values of natural frequency, as expected.

This analysis could be conducted without considering compressibility and with values of Poisson’s

ratio ν = 0.25, z̄0 = 0.06 and µ = 10 mPa · s. Importantly, we note that the one-way coupling results

are closer to the experiments than the two-way coupling ones.
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(a)

(b)

Figure 5.3.4: (a) Chip image taken with Optishot microscope with a magnification of 5x (with courtesy of Mauricio

Loucena Couto), showing an array of 12 SMRs with different tip lengths; red lines show the different positions of the

channel end-walls; (b) ANEMS SMR geometry; ANEMS SMRs are fabricated in low stress silicon nitride (ls− SiNx)

via LPCVD (Low Pressure Chemical Vapour Deposition) to prevent residual stresses and buckling in the resonators

Effect of tip length A parametric sweep of the tip length is available in the COMSOL model in

prevision of a numerical analysis of Suspended Microchannel Resonators fabricated by the ANEMS

group in EPFL, but the analysis has not been performed. Such a study would require some small

changes to the geometry to reproduce the devices accurately and capture all the energy storing and

dissipation. The effect of increasing the tip length is expected to be an increase in the stored energy

with respect to the dissipated one, with a decrease in the natural frequencies.

Effect of rigid channel length Importantly, our simulations predict that the rigid channel length

has not a big effect on the quality factor, oppositely to the theoretical expectations: this seems to be

due to the small strength of the parabolic and plug flows within the rigid part of the device, due to

the pumping mechanism, compared to the flow developed in the movable part.

Effect of Poisson’s ratio Poisson’s ratio has been found not to influence the Quality factor in

the on-axis case, in agreement with the theory. However, when the channel is placed off-axis the

theoretical model gives big importance to the value of ν, which brings up the quality factor at low
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Figure 5.3.5: Effect of Poisson’s ratio ν on the Quality Factor of Device B (simplified geometry) in the incompressible

fluid case, with z̄0 = 0.2, ρ f = 1000 kg
m3 and two-way coupling: the theoretical model seems to overestimate the influence

of Poisson’s ratio on Q at low β, while the numerical results suggest that high ν give very small benefits in terms of

energy dissipation; dashed lines stand for theoretical model, solid lines with markers for simulations

β uniformly. On the contrary, our numerical simulations state that the benefits in terms of energy

dissipation are reduced: high Poisson’s ratios still increase Q at intermediate-low β, but for very

low β Q values tend to merge on a line.

Effect of z̄0 Figures 5.3.6 and 5.3.7 show that the behaviour for intermediate β is more complex

than the one predicted by the theoretical model in [32] and the drop is less strong with respect to

an increase in z̄0.

Effect of bulk viscosity Bulk viscosity is believed not to affect the quality factor that much, ac-

cording to [32]. Figure 5.3.8 shows that numerical results agree with this assumption.
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Figure 5.3.6: Effect of z̄0 on the Quality Factor of Device B (simplified geometry) in the incompressible fluid case, with

Poisson’s ratio ν = 0, ρ f = 1000 kg
m3 and two-way coupling: the theoretical model seems to underestimate the quality

factor at low Reynolds numbers β and slightly overestimate it at high Reynolds numbers β; dashed lines stand for

theoretical results, solid lines for simulations

Figure 5.3.7: Effect of z̄0 on the Quality Factor of Device B (simplified geometry) in the incompressible fluid case, with

Poisson’s ratio ν = 0, ρ f = 1000 kg
m3 and two-way coupling: colour gradient from blue to yellow passing through red

shows the effect of increasing z̄0 from z̄0 = 0 to z̄0 = 0.2 with steps of ∆z̄ = 0.01; the range β is reduced to where the

effects occur
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Figure 5.3.8: Effect of bulk viscosity for Device B (simplified geometry) in the incompressible fluid case, with Poisson’s

ratio ν = 0.25, z̄0 = 0.1, ρ f = 1000 kg
m3 and two-way coupling: as predicted by the theoretical model, the bulk viscosity

doesn’t have a big effect on the dynamics of the fluid and therefore on the energy dissipation; a solution with an unrealistic

value of µb = 100µ has been found to give an idea of the strength of its effects

5.3.2.2 Compressible fluid

Surprisingly oppositely to what predicted by the theoretical model, compressibility values do not

seem to have a big influence on the quality factor. However, as stated in Section 4.4.5 we found

k from equation 4.4.7, with γ taken from [33], and when comparing numerical and experimental

results we used values of compressibility as in Tables 4.5 and 4.6.

5.4 Theoretical, numerical and experimental comparison

This section contains the comparison between numerical results of Devices B and C (see Tables 4.1,

5.2 and 5.3) with their experimental counterparts [33] and [32].

All simulations discussed in this section have been run on the complete geometries for the first and

second vibrational mode. The geometries have been built in such a way to reproduce as precisely

as possible the experimented ones. Fluid properties (compressibility, viscosity) and solid properties

(Young Modulus, Poisson’s ratios) have also been chosen coherently to match the experimental

conditions.
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Description COMSOL Experiment

Eigenfrequency (Mode 1) [kHz] 220 218.9

Eigenfrequency (Mode 2) [kHz] 1372 1354.1

Table 5.1: First two modes eigenfrequencies for Device A (complete geometry) in vacuum

Description COMSOL Experiment

Eigenfrequency (Mode 1) [kHz] 427 426.8

Eigenfrequency (Mode 2) [kHz] 2400 2476

Table 5.2: First two modes eigenfrequencies for Device B (complete geometry) in vacuum

After reaching convergence with a mesh convergence study (Section 5.1), we performed an Eigen-

frequency analysis and obtained the eigenfrequencies for Devices A, B and C for the first two

vibrational modes. Results are summed up in Tables 5.1, 5.2 and 5.3 and show good matching with

the experimental results.

As far as the quality factor is concerned, the results match quite well, especially in the first mode

case and at intermediate β (Figure 5.4.1) of Devices B and C. Simulations for Device A are to be still

performed. Experiments at very high and low β are not available and an experimental evidence of

our belief on the behaviour at low β of the Quality Factor is not possible (section 5.3.1). However,

such a good matching lets us believe that our nuemrical model and simulations are reliable and

valid; the linearized Navier-Stokes equations and Euler-Bernoulli beam theory combined and the

eigenvalue study are able to capture the energy dissipation in Suspended Microchannel Resonators;

we also claim that when simulations are extended to very low β they reveal a surprising different

behaviour than that stated in [32], and more investigation is needed.

We mention the fact that when we turned on the 2-way coupling, the eigenfrequencies were shifted

down (5.3.3) and Q dropped of some units. Therefore, to obtain a good matching between the

experiments and the numerical results in this case too, the width of the wall between inlet and

outlet channel had to be changed: we remind that this parameter is not defined in [33], therefore it is

assumed reasonably. We underline that the best results were obtained with the 1-way coupling: such

a numerical model seems to be sufficiently good to obtain Q as close as possible to the experimental

ones; 2-way coupling makes things more difficult and is likely to be not even necessary in the model:

due to the small fluid density and small channel volume, the forces exerted by the fluid on the solid
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Description COMSOL Experiment

Eigenfrequency (Mode 1) [kHz] 281 275.1

Eigenfrequency (Mode 2) [kHz] 1710 1663.9

Table 5.3: First two modes eigenfrequencies for Device C (complete geometry) in vacuum

are small and could be neglected. This is done also in [29], where experiments, numerics and theory

match well.

Many reasons of discrepancy between theoretical, experimental and numerical results are here dis-

cussed. Importantly, all the dimensions in the real devices are affected by a certain fabrication

tolerance: as these dimensions enter the eigenfrequencies and the normalizing factors and affect

the energy dissipation mechanism at this small scale, experimental results are to be taken carefully;

for instance, β values depend on eigenfrequencies and small changes in them affect the β range;

for instance, the channel thickness h f luid strongly affects the normalizing factor, which goes as
1
h3

f
;

secondly, due to the uncertainty in the normalized off-axis placement z̄0 in the devices for fabrica-

tion tolerances, Sader [32] used it as a fitting parameter in the theoretical/experimental comparison.

Other reasons of discrepancy shall be found in the fact that some damping might have affected

experiments if the environment was not perfectly vacuum or because of other unseen phenomena.

Furthermore, extraction of Q f luid from the total Q requires additional experiments which tend to

accumulate the error. Another source of difference between experiments and numerical results can

be found in the fact that experiments were conducted applying an external pressure and thus devel-

oping a stream within the channel. Thus, in the inlet and outlet channel the flows would be different

and it cannot be stated that a lower dissipation in one channel is compensated by the increase of

dissipation in the other channel. For all these reasons, experimental values are to be considered

valid for comparison within a certain range of tolerance (measurements error bars are not shown in

Figure 5.4.1).

As far as the comparison with the theoretical model is concerned, we recall that Euler-Bernoulli

theory makes use of strong assumptions, whose validity depends on the final scope. It might be

possible that these assumptions strongly reduce the accuracy to model a complex phenomenon

such as Fluid-Structure Interaction at the small scale. For instance, a 2D theoretical model might

not be sufficient to predict all the 3D deformative mechanisms, while a 3D numerical model with

a big number of elements will be able to describe fluidic and solid deformations closer to reality.
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As a matter of fact, a strong assumption has been the linearization of the fluid motion. It could be

possible that small second order terms enter the vectorial laplacian in Navier-Stokes equations and

become important at high viscosity.

Furthermore, stating that the fluid is experiencing rigid motion when very viscous is not completely

coherent. If that were the case, such a statement would apply to the solid domain too, thus storing no

elastic energy through deformation. On the contrary, the solid elements must be slightly deformed

in order to store elastic energy, as well as the fluid elements which in turn will be deformed and

dissipate energy through viscosity (see Section 5.3.1 for more details).

We finally recall that the quality factor is typically defined by means of a decaying factor in a

harmonic analysis, while the theoretical model defines Q = Solid Kinetic Energy
Fluid Dissipation , neglecting, for instance,

fluid Kinetic Energy.
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(a)

(b)

Figure 5.4.1: Experimental and numerical comparison of the Quality factor for the first two vibrational modes of a Sus-

pended Microchannel Resonator (SMR), one-way coupled: experiments (dashed lines) match quite well with numerical

results (solid lines) and theoretical predictions (dot-dashed lines). Markers are placed where experimental and numerical

values were obtained; third order interpolation of the data has been performed; density, viscosity and compressibility

are changed according to Tables 4.4 and 4.5; a) Device B: z̄0 = 0.05, γ1 = 0.11, γ2 = 4.1 and ν = 0.25; b) Device C:

z̄0 = 0.05, γ1 = 0.096, γ2 = 3.5 and ν = 0.25; experimental results are taken from [33]
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Chapter 6

Conclusions and future work

L’illuminismo è l’uscita dell’uomo dallo stato di minorità di cui

egli stesso è colpevole. Minorità è l’incapacità di servirsi della

propria intelligenza senza la guida di un altro. Colpevole è

questa minorità, se la sua causa non dipende da un difetto di

intelligenza, ma dalla mancanza di decisione e del coraggio di

servirsi di essa senza essere guidati da un altro. "Sapere aude!"

Abbi il coraggio di servirti della tua propria intelligenza! Questo

dunque è il motto dell’illuminismo.

Immanuel Kant

To validate the numerical model, we compared results of the Quality Factor from the theory and

the experiments provided in [32] and [33]. Our numerical model seems to work fine where the

experimental data are provided but it is in contrast with the theoretical model at low Reynolds

number. We consider it valid in the region of interest and send to further investigation the difference

at low β between theory and numerics.

Some parameters were not provided in the reference paper [33] and had to be properly tuned to

match the eigenfrequencies. More reliable results would be obtained if simulations and experiments

were performed on own devices, of which all dimensions and material properties would be known;

filtering out the Quality Factor due to the structural energy dissipation is also a major issue.

Our numerical model has proved to capture well enough the energy dissipation in Suspended

Microchannel Resonator: it can therefore be used to perform simulations while sweeping material
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and geometrical parameters to design an optimized Suspended Microchannel Resonator, to achieve

as high as possible Quality Factors. To do so, it seems wise to reduce the off-axis placement of the

channel z̄0, to use materials with as big as possible Poisson’s ratios (compatibly with fabrication

requirements and bio-sensing performances) and to drive the device at its first vibrational mode.

Future work requires investigation on Device A to validate our numerical model at very low β too,

confirming our believes on the theoretical model limitations and sweeping geometrical properties

for a fixed viscosity value to learn how to decrease energy dissipation by optimal design; a numerical

analysis on the effects of the longitudinal in-plane eigenmodes of the cantilever is suggested; in such

a way, the pumping mechanism can be isolated and studied; investigation on why compressibility

and rigid channel length do not to affect the Quality Factor and the fluid motion (as theoretically

expected) is necessary, especially when comparison with experimental results is good anyhow; we

finally recommend deeper investigation on the validity of the 2-way coupling defined in our model,

suggesting for more comparison between 1-way and 2-way coupled results and questioning the

need of the 2-way coupling at a small scale such that of Suspended Microchannel Resonators.
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Appendix A

Conference Abstract and Poster

In this appendix we attach the abstract and poster that have been submitted to the 1st International

Workshop on Nanofluidics and Nanomechanics, held in Turin on 14th-15th September 2017.

They sum up the most relevant results of this Master of Science Thesis when comparing numerics,

theory and experiments.

We had the chance to meet some of the authors of the reference paper [32], [33] and discuss about

the main discoveries obtained in these six months of work at the École polytechnique fédérale de

Lausanne from February to August 2017.
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Suspended Microchannel Resonators (SMRs) are hollow resonant structures containing an embedded 
U-shaped microfluidic channel. This configuration reduces the losses due to the damping caused by the 
fluid, which are deleterious for the quality factor in traditional solid resonators immersed in fluid. As 
bio-sensors, SMRs enable real time detection of liquid compounds, by added mass resonance frequency 
shift, with very high quality factors [1], and weighing of nanoparticles, bacterial cells and more[2]. 
Theoretical and experimental results have proved that in these devices the energy dissipation is a non-
monotonic function of the fluid viscosity (or Reynolds number), while in conventional cantilevers it 
always increases with the viscosity as the damping from the fluid on the solid structure increases. 
Furthermore, a variation in the device quality factor by several orders of magnitude was discovered 
when the microfluidic channel axis was placed away from the beam neutral axis, which is expected to 
happen always for fabrication limits, and a change in the behavior of Q at high viscosities was noticed 
when varying fluid compressibility [3]. 
In this work, both a Mathematica (V10.4) code and a 3D COMSOL (V5.3) models are produced to 
validate the theoretical and experimental results on the energy dissipation in these devices (Device A) 
[3]. To reduce the computational effort an eigenvalue study is performed. The incompressible and 
compressible cases are investigated while changing the fluid and device characteristics. The effects of 
the rigid lead channel length have been studied and some differences have been found with respect to 
the reference paper [3]. Importantly, numerical results seem to match quite well with the theoretical 
results everywhere but at high viscosities, while a slightly bigger difference exists between numerical 
and experimental results at this stage. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1: Effect of the Rigid Lead Channel length on the 
normalized quality factor as a function of Reynolds number, 
with Z0=0.1 and acoustic wavenumber γ=0.337. 
 

Figure 2: Comparison between numerical, experimental 
(Device A, [3]) and theoretical results. Z0=0.06, hf=8 µm, 
γ=0.12. 
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• Good agreement between 

experimental and numerical 

results for β∈(1,1000) for first two

modes

• Contrasting behavior at high 

viscosities between theoretical 

and numerical results (β<1)

• Dependence of Q on Z0, Lc, 

compressibility, Poisson’s ratio 

and mode number for β<1.

• Need of improvement of 2-way-

coupling modelling

Fig. 7: Comparison of Normalized Quality Factor F(β) as a function of

Reynolds Number between theoretical [1], [2], [3], experimental [1], [2]

and numerical results for Device A (hf=8 μm, hc=12 μm, bf= 16 μm,

bc=33 μm, L=204 μm, Lc=210 μm, cantilever length=210 μm, Z0=0.06,

normalized wavenumber�=0.12, Poisson’s ratio=0.25) for Mode 2.

Viscosity spans from to 1 mPa·s to 1000 mPa·s and is inversely

proportional to Reynolds Number.

Fig.2a: COMSOL Model (half geometry) of Device A [1]: hf=8 μm, hc=12 μm, bf=16 μm, bc=33 μm, L=204

μm, Lc=210 μm, cantilever length= 210 μm, Z0=0.06.

In green the elastic domain, in blue the fluid domain. Z0 is the off-axis placement of the fluidic channel

with respect to the beam neutral axis.

Fig.2b: Cross-section of half geometry of Device A [1] (symmetry boundary condition is exploited)

Fig. 6: Comparison of Normalized Quality Factor F(β) as a function of

Reynolds Number between theoretical [1], [2], [3], experimental [1], [2]

and numerical results for Device A (hf=8 μm, hc=12 μm, bf=16 μm, bc=33

μm, L=204 μm, Lc=210 μm, cantilever length=210 μm, Z0=0.06,

normalized wavenumber � =0.12, Poisson’s ratio=0.25) for Mode 1.

Viscosity spans from to 1 mPa·s to 1000 mPa·s and is inversely

proportional to Reynolds Number.

• 3D eigenfrequency study in COMSOL Multiphysics®

• Device symmetry is exploited (fig.2a)

• Both 1-way-coupling and 2-way-coupling simulations are performed

• The quality factor is extracted as:

������� = 
�[λ]2��[λ]
where λ is the complex eigenvalue.

• The quality factor is scaled according to the analytical model proposed by Sader

in [1], in function of the Reynolds number β:

FEM model

x

Z

Theoretical model [1]
• 2D theoretical model is only due to fluid motion and viscous forces, through the rate-of-

strain tensor e, defined as: ��� = �
� ���� + ����

• Quality factor is computed as:

• Strong effect of:

Fig. 3:

2D theoretical model;

Euler-Bernoulli beam

equations imposed as

boundary conditions on

the top and bottom wall;

x is the coordinate along

the length of the beam, z0

is the off-placement of

the channel with respect

to the beam neutral axis

[1].

SOLID

FLUID

������� 
• Suspended Microchannel Resonator [1], [2], [3]

• Development of a 3D coupled fluid-structure interaction model to

extract Quality Factor as function of fluid dynamic viscosity

• Comparison between numerical, theoretical [1] and experimental [2]

results

• Good match between experimental and numerical Q for first two modes

• Decreasing Q for increasing viscosity in contrast with theory

Fig. 1: Fluid-structure interaction is defined on the internal walls of the

channel; a fixed constraint is imposed to the rigid channel (x<0). The cantilever

is let free to vibrate (x>0). Linearized Navier-Stokes and Solid Mechanics

equations are solved in COMSOL. The solid transfers momentum to the fluid,

which sends back stresses to the cantilever, affecting its motion.

� = 2! ��"�#$%�%���/'('�$)
*+

• Parameters studied: compressibility ( � = *,
'

�
is the normalized acoustic

wavenumber), dynamic viscosity, off-axis placement Z0, Poisson ratio, mode

number.

Fig. 5: Theoretical Normalized Quality Factor F(β)

for various rigid lead channel lengths Lc in the

compressible case ( � =0.0337) and Z0=0.1; the

theoretical model predicts a surprisingly different

behavior when Lc=0. The local maxima and minima

of F(β) are strongly affected by Lc.

� = - . /'/0
ℎ'ℎ0

2'20
3ℎ0

� , β = /06ℎ0�7

(1)

• compressibility [1]

• channel off-placement Z0 [1]

• Poisson’s ratio [3]

• mode number [2]

Fig. 4: Theoretical Normalized Quality Factor F(β) for

various normalized off-placements Z0 of the channel in the

compressible case (�=0.0337) for Lc=L; the theoretical

model predicts an increasing F(β) for increasing viscosity

(decreasing β) and lower F(β) for higher off-placements of

the channel with respect to the beam neutral axis. For

Z0<0.2 this effect is stronger for β<10.
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Appendix B

Mathematica code

In this section the most relevant codes written in Mathematica (release 10.4) are collected: these

codes are meant to serve any user to solve the theoretical model and verify the discussed results.
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� �

����������� �������� ��� ��� ������� β ��������
��� ���������� ������ �� ��� �� - ���� ����

The beam is believed to vibrate at its fundamental mode, the coefficient of which is B and the lenght
is L (eq. 17 from Sader)

� = ������ / �� (*��� ��� ����� ���� �����*)

� = (���[� * �] + ����[� * �])  ���[� * �] + ����[� * �]�

������������������ = � / � *

������������[� * �] - ����[� * �] - � * ���[� * �] - ����[� * �]��� {�� �� �} 

�������������[� * �] - ����[� * �] - � * ���[� * �] - ����[� * �]� ����

{�� �� �} // ������������

�� + ��������� ��

(*������ ������ ���� ��� ���� ��������� �[�]��=�[�]*�[�] ��� ������������

��������� �� ������ ������ �*���� ��� ������

��� ���� ���� ����� ��� ������������� ������*)

����������� �������� ��� ��� ����� β ��������
��� ���������� ������ �� ��� �� - ���� ����

���������������� =

�������������������� * �  ������������ - � / ����� {�� -���� ���}

�������

����������� �������� ��� ��� ����� β ��������
��� ���������� ������ �� ��� �� - ���� ����

Here we solve for the large β, looking for the coefficient. Notice that we neglect only the small terms
in β for β->Infinity, but not those that are a function of z because this is not allowed before integra-
tion. We use equations (14) and (17) from Sader.

���� = ������������[

���[� - (� - �) * (���� / �)�(� / �) * ���[-(� - �) / � * (���� / �)�(� / �)] *

����[(� - �) ����[���� / �] �]] // �������������� ���� > �]�

� = ���[� * �] - ����[� * �] - � * ���[� * �] - ����[� * �]�

�������������� = ���������������������� / � * ���������[(�)��� {�� �� �}] 

���������[�[(�)� �]��� {�� �� �}] * ���������[������� {�� -� / �� � / �}]

�������� ⅇ � ���� ��  -������� ���� + -�� + ������� ����  ⅇ � ���� +

ⅇ

����

� �� + ������� ⅈ ���� ⅇ
-

ⅈ ����

� - ⅇ

ⅈ ����

� + �� ⅇ
-

ⅈ ����

� + ⅇ

ⅈ ����

�

Now  we  neglect  (this  step  has  been  done  by  hand)  the  small  terms  for  large  Beta  in  the  previous
result and compute the coefficient: 
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����������������� =

�������������������� ⅇ
� ���� ��  ������������������� ���� ⅇ

� ����


�������� ��

����
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We now copy the results from the previous notebook and plot all the functions (eq. 17, 20, 24):

����� = ����� / �����

����� = ������ * (����)�(� / �)�

����� = ������� * ���� / ��������������

����������� =

������������ - (� - �) / � * ����[(���� / �)] * ����[(� - �) * � * ����[(���� / �)]] 

����[(� - �) / � * ����[(���� / �)]] // �������������� ���� > ����

������������� = ������������[���������[������������ {�� -� / �� � / �}]]�

����������[{������ ������ �����}�

{����� �� ��� ���}� ����������� → {�������� �������� �������}�

��������� → �������� �������� ��������� → {β� �[β]}� ��������� → �����]

�����������[������ {����� �}]

{�������� {���� → �������}}

The minimum in the Normalized quality factor in the On-axis case (only incompressible; no compres-
sibility effect) occurs at β=46.435 and is Fmax=1.81751.
In  this  case,  the  whole  dissipation  is  taking  place  in  the  cantilever  proper,  as  the  on-axis  problem
model doesn’t include any rigid lead channel: this is trustworthy because the flow is developed only
after the entrance of the fluid in the cantilever, as no change in volume occurs and no flow can be
developed  before  the  cantilever  proper,  the  vibrations  of  which  are  causing  the  antisymmetric  flow
field.
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��������������������������
(*�������� �� ���� ��� ����*)

�������� = # /� {�_���� �_��������������� ⧴ �����[#~�������~� �� �� �]�

� � (��������� → _) ⧴ �~�������~�} ��

����[����_] �= � /� ����[�����������[{���[��[�� �� ����] - ������[�� �]]�

� ≤ � ≤ ���� / � �� -� / � ≤ � ≤ � / �}� {�� �}� {�� �}]]�

� = � * ���-��

� = ��� * �����

����� = � * �[��� �] * ��

���� = �[��� * ���-�]�

�� = ���� / ��

��� = �����

���� = �������

(*� ���� �����*)

�� = �������

� = (���[�� ] + ����[�� ])  ���[�� ] + ����[�� ]�

�[�_] = ���[�� * � * �] - ����[�� * � * �] - � * ���[�� * � * �] - ����[�� * � * �]�

��[��_] = -� (�� * � ���[�� �� �] - �� * � ����[�� �� �]) -

�� * � ���[�� �� �] - �� * � ����[�� �� �]�

(*���� ������������ (�) ��� �������� (�)*)

�[�_] = -� ����� ��[�]� (*�� �*)

������[�_� �_] = - � ��[�]� (*�����-���������*)

������[�_] = (�[� ])� (*�����-���������*)

������[�_� �_] = - � ����� ������[�� �]� (*���� ��������� � ���������� �� �*)

������[�_] = -� ����� ������[�]� (*���� ��������� � ���������� �� �*)

(*����� ������������ ��� ��������*)

�[�_� �_� ����_] =

-�[�] ����[(� - �) ����[���� / �] �]  ����[(� - �) / � ����[���� / �]]�

(*���������� ����� �� ��*)

��[�_� �_� ����_] = �[�] � + �[�� �� ����]�

(*����� ��������� � ���������� �� ��*)

��[�_] = -� ����� (�[�])� (*����� ��������� � ���������� �� ��*)

��[�_� �_� ����_] = ��[�� �� ����] / (-� �����)�

(*����� ������������� � ���������*)

�[�_� �_] = � ��� ����� � (-� ����� �[�] ) �� (*��������� �� �*)

(*���� �������*)

����� =

������������������[{�� �}� {�� �}] @@ ���������[����[�� {�� -��� ��}]][[�]]�

�������� = {��� ��}� {�� � / �� �� � / �}� {�� � / �� �� � / �}� ��  �� ��  ��

{-��� -��}� {-�� � / �� -�� � / �}� -��  �� -��  �~����~������

����[����[�� {�� -� ��� � ��}]� ����� → {��������� ���������}]�

�����������������������������������������
��������������[��[���[ -� ����� �] * �[�]]� {�� �� ���� / �}�

��������� → ����� ����������� ���� (������������ �� ����)��

��������� → {��[�/�]�� ��(�) [�]�}�

��������� → {{�� ���� / �}� {-���[�[���� / �]]� ���[�[���� / �]]}}] �

�� �� �  �� ���������� → ���������
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��������������[��[���[- � ����� �] ��[�]]�

{�� �� ���� / �}� ��������� → ����������� �� ���� ����������� ������

��������� → {��[�/�]�� ���(�)�}�

��������� → {{�� ���� / �}� {-���[��[���� / �]]� ���[��[���� / �]]}}] �

�� �� �  �� ���������� → ���������

��������������{��[����� ���[- � ����� �] ������[�� �]]�

��[ ���[- � ����� �] ������[�� �]]}� �� �� �  �� ��������� →

����-��-����� �������� ��� ������������ ��� � ������� � ��� � �� ������

��������� → ������ ����������� → {����� �������������� ����� ���������}�

{�� �� ���� / �}� {�� -� / �� � / �}

��������������[{��[ ���[- � ����� �] ������[�� �]]�

��[ ���[- � ����� �] ������[�� �] / �����]}� {�� -� / �� � / �}�

��������� → ����� ������ �-��������� �� ������������ ��� ����������

��������� → {������� ���}� ����������� → {���������� ���������}� ��������� →

{{-� / �� � / �}� {-���[������[���� / �� � / �]]� ���[������[���� / �� � / �]]}}] //

��������� {�� �� ���� / �� ���������� → ���������}�

�� �� �  �� ���������� → ���������

��������������[{��[���[-� ����� �] ������[�� �]] + (-� + � � (� / ����))

���[������[���� / �� � / �]]� ��[���[-� ����� �] ������[�� �] / �����] +

(-� + � � (� / ����)) ���[������[���� / �� � / �] / �����]}� {�� -� / �� � / �}�

��������� → ����� ������ �-������������ ��������� → {��/��� ���}�

����������� → {���������� ���������}� ��������� →

{{-� / �� � / �}� {-���[������[���� / �� � / �]]� ���[������[���� / �� � / �]]}}�

����� → ����� ����������� → � / �� ���� → ������

������������ → {{�� �}� {�� ���������}}] // ���������

{�� �� ���� / �� ���������� → ���������}�

�� �� �  �� ���������� → ���������

��������������[{��[���[-� ����� �] ������[�� �]] + (-� + � � (� / ����))

���[������[���� / �� � / �]]� ��[���[-� ����� �] ������[�� �] / �����] +

(-� + � � (� / ����)) ���[������[���� / �� � / �] / �����]}� {�� -� / �� � / �}�

��������� → ����� ������ �-������������ ��������� → {��/��� ���}�

����������� → {���������� ���������}� ��������� →

{{-� / �� � / �}� {-���[������[���� / �� � / �]]� ���[������[���� / �� � / �]]}}�

����� → ����� ����������� → � / �� ���� → ������

������������ → {{�� �}� {�� ���������}}] // ���������

{�� �� ���� / �� ���������� → ���������}�

�� �� �  �� ���������� → ���������
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�������������

# � /@ ��������������� ��[���[-� ����� �] * ������[�� �] * ����������] + ��

{�� -� / �� � / �}� ��������� → ������� ���������� → {��/��� ���} //

��������� {�� �� ���� / �� ��}� ��������� →

{{�� ���� / �}� {-� / �� � / �}}� ����� -> ����� ����������� → � / ��

��������������� �����[- � ����� �] * ��[�� �� ����] * ���������� + ��

��[���[-� ����� �]] * ����[�� �� ����] * ���������� + ��

��[���[-� ����� �]] * ����[�� �� ����] * ���������� + ��

{�� -� / �� � / �}� ��������� → ������� ���������� → ����� ��������� → ��� //

��������� {�� �� ���� / �� ��}� ��������� → {{�� ���� / �}� {-� / �� � / �}}�

����� -> ����� ���������� → {��/��� ���}� ����������� → � / ��

{����� ������ ���� ���������� → ���������}�

��

��

�  ��

������������� → � / (��)�

����������� → ����

���������� → ���������

���������� ����� ����� ���� ���� ������������ ��� ������
��������

��������������[{��[���[- � ����� �]] ��[�[�� �� ����] / ���[������[�� -� / �]]]�

��[���[-� ����� �]] ��[�[�� �� ����] / ���[������[�� -� / �]]]}� {�� -� / �� � / �}�

��������� → {��/��� ���}� ����������� → {���[�(�)]�� ���[�(�)]�}� ��������� →

{{-� / �� � / �}� {-���[�[� / �� ���� / �� ����] / ���[������[�� -� / �]]]�

���[�[� / �� ���� / �� ����] / ���[������[�� -� / �]]]}}� ��������� →

����������� ���������� ���� �(�) ��� ��� �-��������� �� ����� ���������] //

��������� {�� ������� ���� / �� ���������� → ���������}�

{����� ������� ����� ���������� → ���������}�

�� �� �  �� ���������� → ���������

����������������������������������������������������
��������������

{��[���[-� ����� �]] ��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �]] ��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �] (��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �] ������[�� �] / ���[������[�� -� / �]]] +

(-� + � � (� / ����)) ���[������[���� / �� � / �] / �����]}� {�� -� / �� � / �}�

����������� → {����� ������ ���������� ������ �������������}�

��������� → ��-��������� �� ����� ��������

�������� �� ���� ��������� ���������� �� ������

��������� → �
�� - �����

�����
�� ���� ��������� → {{-� / �� � / �}�

{-���[��[�� ����[����]� ����] - ������[�� ����[����]]] / ���[������[��

����[����]]]� ���[��[�� ����[����]� ����] - ������[�� ����[����]]] /

���[������[�� ����[����]]]}}� ��������� → ����� // ���������

{����� ������ ����� ���������� → ���������}� {�� ������� ���� / ��

���������� → ���������}�

�� �� �  �� ���������� → ���������
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��������������

{��[���[-� ����� �]] ��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �]] ��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �] (��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]}�

�� �� �  �� ��������� → ����-��-����� �������� ������������ ��������� → ������

����������� → {���[Δ]�� ���[Δ]�� �Δ�}� ��������� → ������� �
�� - �����

�����
��

{�� ������� ���� / �}� {�� -� / �� � / �}� {����� ����� ����}

�������������# � /@ ����������[{��[���[-� ����� �]]

��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]� �}�

{�� ������ ���� / �}� {�� -� / �� � / �}� ����������� → � / �� ��������� → ������

����� → ���������� ��������� → {{�� ���� / �}� {-���� ���}}�

��������� → ������� ����� �� ���� ���� �� ����� �������� ��������

�� ��� ���� ���������� ���������� → {��/��� ���}]�

����{��[���[-� ����� �]] ��[(��[�� �� ����] - ������[�� �]) /

���[������[�� -� / �]]]� ��[���[-� ����� �]]

��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �] (��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]}�

{�� -� / �� � / �}� ����������� → {����� ������ ���������� ������

�������������}� ��������� → ��-��������� �� ����� ��������

�������� �� ���� ��������� ���������� �� ������

��������� → �
�� - �����

�����
�� ���� ��������� → {{-� / �� � / �}�

{-���[��[�� ����[����]� ����] - ������[�� ����[����]]] / ���[������[��

����[����]]]� ���[��[�� ����[����]� ����] - ������[�� ����[����]]] /

���[������[�� ����[����]]]}}� ��������� → ����� // ���������

{����� ������ ����� ���������� → ���������}�

{��

�������

���� /

�� ���������� →

���������}� �� �� � 

�� ���������� →

���������
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�������������# � /@ ����������[{��[���[-� ����� �]]

��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]� �}�

{�� ������ ���� / �}� {�� -� / �� � / �}� ����������� → � / �� ��������� → ������

����� → ���������� ��������� → {{�� ���� / �}� {-���� ���}}�

��������� → ������� ����� �� ��������� ���� �� ����� ��������

�������� �� ��� ���� ���������� ���������� → {��/��� ���}]�

����{��[���[-� ����� �]] ��[(��[�� �� ����] - ������[�� �]) /

���[������[�� -� / �]]]� ��[���[-� ����� �]]

��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �] (��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]}�

{�� -� / �� � / �}� ����������� → {����� ������ ���������� ������

�������������}� ��������� → ��-��������� �� ����� ��������

�������� �� ���� ��������� ���������� �� ������

��������� → �
�� - �����

�����
�� ���� ��������� → {{-� / �� � / �}�

{-���[��[�� ����[����]� ����] - ������[�� ����[����]]] / ���[������[��

����[����]]]� ���[��[�� ����[����]� ����] - ������[�� ����[����]]] /

���[������[�� ����[����]]]}}� ��������� → ����� // ���������

{����� ������ ����� ���������� → ���������}�

{��

�������

���� /

�� ���������� →

���������}� �� �� � 

�� ���������� →

���������

����������

���# � /@ ����������[{��[���[-� ����� �] (��[�� �� ����] - ������[�� �]) /

���[������[�� -� / �]]]� �}� {�� ������ ���� / �}� {�� -� / �� � / �}�

����������� → � / �� ��������� → ������ ����� → ����������

���������� → {��/��� ���}� ��������� → {{�� ���� / �}� {-���� ���}}�

��������� → ������� ����� �� ������ ����� �������� ��������

�� ��� ���� ��������� ���������� �� ���� ���������]�

����{��[���[-� ����� �]] ��[(��[�� �� ����] - ������[�� �]) /

���[������[�� -� / �]]]� ��[���[-� ����� �]]

��[(��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]�

��[���[-� ����� �] (��[�� �� ����] - ������[�� �]) / ���[������[�� -� / �]]]}�

{�� -� / �� � / �}� ����������� → {����� ������ ���������� ������

�������������}� ��������� → ��-��������� �� ����� ��������

�������� �� ���� ��������� ���������� �� ���� ����������

��������� → �
�� - �����

�����
�� ���� ��������� → ���� ��������� →

{{-� / �� � / �}� {-���[��[�� ����[����]� ����] - ������[�� ����[����]]] /

���[������[�� ����[����]]]�

���[��[�� ����[����]� ����] - ������[�� ����[����]]] /

���[������[�� ����[����]]]}}� ��������� → ����� // ���������

{����� ������ ����� ���������� → ���������}�

{��

�������

���� /

�� ���������� →

���������}�

�� �� �  �� ���������� → ���������


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�����������������������������������
����������

���# � /@ ��������������� ��[���[-� ����� �] * ������[�� �] * ����] + �� {��

-� / �� � / �}� ��������� → ������� ���������� → {��/��� ���} // ���������

{�� �� ���� / �� ��}� ��������� → {{�� ���� / �}� {-� / �� � / �}}�

����� -> ����� ����������� → � / ��

��������������� �����[- � ����� �] * ��[�� �� ����] * ���� + ��

��[���[-� ����� �]] * ����[�� �� ����] * ���� + ��

��[���[-� ����� �]] * ����[�� �� ����] * ���� + �� {�� -� / �� � / �}�

��������� → ������� ���������� → ����� ��������� → ��� // ���������

{�� �� ���� / �� ��}� ��������� → {{�� ���� / �}� {-� / �� � / �}}�

����� -> ����� ���������� → {��/��� ���}� ����������� → � / ��

{����� ������ ���� ���������� → ���������}�

��

��

�  ��

������������� → � / (��)�

����������� → ����

���������� → ���������

��������������{��[���[-� ����� �] (��[�� �� ����]) / ���[������[�� -� / �]]]�

��[���[-� ����� �] ������[�� �] / ���[������[�� -� / �]]] +

(-� + � � (� / ����)) ���[������[���� / �� � / �] / �����]}�

{�� -� / �� � / �}� ����������� → {���(���)�}�

��������� → ��-��������� �� ����� ��������� ���������� �� ���� ����������

��������� → �
��

�����
�� ���� ��������� →

{{-� / �� � / �}� {-���[��[�� ����[����]� ����] - ������[�� ����[����]]] /

���[������[�� ����[����]]]� ���[��[�� ����[����]� ����] -

������[�� ����[����]]] / ���[������[�� ����[����]]]}} // ���������

{����� �� ���� ���������� → ���������}� {�� ������� ���� / ��

���������� → ���������}�

�� �� �  �� ���������� → ���������

02mathematica.nb  ���7



������������������������������������
��������[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

(*���� ��� ����� ��������*)

(*���������� ������ ������������ �������� �� ����� *)

���������� = �����������������������������

���� - (� - �) / � * (���� / �)�(���) * ����[(� - �) * � * (���� / �)�(���)] 

����[(� - �) / � * (���� / �)�(���)] // �������������� ���� > ����

{�� -���� ���} * ���������[(��[�] / ���)��� {�� �� �}]  �����

(*���������� ������ ����������� ������������� ���� �����*)

�����������[�_� �_� ����_] =

��������� / ���� ���� - (� - �) / � ����[���� / �] ����[(� - �) ����[���� / �] �] 

����[(� - �) / � ����[���� / �]]�� (��[�] / ���)���

(*������ �� β �� ����� �� ���� �� ���� ��� ������ ����������� ������������*)

������� = {����� ���� �� ��� ��� ���� ����}�

���������������������������[�� �� ����]� {�� -�� �}� {�� -� / �� � / �}�

��������� → ���� ����������� → {����������� ������ �������������}�

��������� → ������ ��������� → ���� ���� ��������� →

����������� ������������ �� ������ ����������� ����� �� ��� ��-���� ������

����������� → � / �� {����� ������ ����� ���������� → ���������}

��������������[

�����[�����������[�� �� ����]� {����� {����� ���� �� ��� ��� ���� ����}}]]�

{�� -�� �}� {�� -� / �� � / �}� ��������� → �����

����������� → {�����[�β=� <> ��������[�]� {�� �������}]}�

��������� → ���� ��������� → ������ ��������� → ���� ����

��������� → ����������� ������������ �� ���� �� ������

����������� ����� �� ��� ��-���� ������ ����������� → � / �

�������������������������[�� �� ����]� {�� -� / �� � / �}�

��������� → ���������� ����������� → {����������� ������ �������������}�

��������� → ������ ��������� → ���� ��������

��������� → ����������� ������������ �� ���� �� ������

����������� ����� �� ��� ��-���� ����� �� �=���

����������� → � / �� {����� ������ ����� ���������� → ���������}

���������������[�����[�����������[�� �� ����]� {����� �������}]]�

{�� -� / �� � / �}� ��������� → ����

����������� → {�����[�β=� <> ��������[�]� {�� �������}]}�

��������� → ������ ��������� → ���� ������ ��

��������� → ����������� ������������ �� ���� �� ������ �����������

����� �� ��� ��-���� ����� �� �=� �� ����������� → � / �
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��������������������������
������������ = � ∈ ����� �� -����� ≤ � ≤ � ��

����� > � �� ���� > � �� ����� > � �� � > � �� �� > � �� ���� ∈ ������

��������� = � * ���-��

� = ��� * �����

����� = � * �[��� �] * ��

��� = �����

�� = � * ���-��

(*������� �������*)

�� = � ����� �� ��[�] / ��

�� = ������  � ���

�� = ��

�� = �� �� �  ���������

�� = �������

(*���� ������ ���������*)

��[��_] = ���������[{{-� (�� � ���[�� � ��] - �� � ����[�� � ��]) -

�� � ���[�� � ��] - �� � ����[�� � ��]� � <= �� ≤ �}}]�

�[��_] = ���������[{{-� + ��[��] / ���� � <= �� ≤ �}� {-�� -����� <= �� < �}}]�

���������[�_] = ���������[(� * � * �[��] - ����) * ���[� * (�� + �����)]�

{��� -������ �}� ����������� → � ∈ ����� �� -����� ≤ � ≤ � �� ����� > �]�

���������[�_] = ���������[(� * � * �[��] - ����) * ���[� * (� - ��)]�

{��� �� �}� ����������� → � ∈ ����� �� -����� ≤ � ≤ � �� ����� > �]�

� = (���[�� * �] + ����[�� * �])  ���[�� * �] + ����[�� * �]�

��� = -� (�� � ���[�� �] - �� � ����[�� �]) - �� � ���[�� �] - �� � ����[�� �]�

�� = ������ / ��

� = ����[����� * (���� + � �)]�

� = -� � ���� ����[((� - �) / �) * ����[���� / �]] 

(� - �) * ����[���� / �] * ����[((� - �) / �) * ����[���� / �]] -

� ����[((� - �) / �) * ����[���� / �]]�

(*������ ���� ������ �� ������ ����� �� �� ��������� �� ��� ����������*)

���� = �[��� * ���-�]�

����� = �����

����� = �� / ��

�������� = ����� / �����

������ = �����

�������[�_] = ����� �  ���������

������� = ��� ����� �����������  �� + ���

(*������ ���� �� ��� ������ β ���������

��� ��������� ρ �� μ� �������� �������� ������*)

��������[�_] = �������[�] / �������� (*α ������� �� β �������*)

����� = ����

B.3 Off-axis flow solution and F(β) 121
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�����������β�
����[�[�] /� {� → ����� �� → �����}� {�� -��������� �}�

����������� → {��(�)�}� ��������� → {� [����]� ��(�)�}�

��������� → ��(�) ��� ���� ��� ���������� �� ����� ���������]

����[{����[�]� ��[�]� ��[�]}� {����� ����� �����}� ��������� → {�β�� ��(β)�}�

����������� → {�|�(β)|�� ���[�(β)]�� ���[�(β)]�}� ��������� → ��(β) ��� �(�)�]

������������������������������������������

������������������������������������������

����� = -(����� / (� * (���[� (� + �����)]))) * ���������[�] * ���[� * (� - �)]�

����� = -(����� / (� * (���[� (� + �����)]))) * ���������[�] * ���[� * (� + �����)]�

� = (����� + �����)�

(*�������� ��� ����� �� �(�) ��� α→�(��������� �����)*)

������ = � /� {� → ����� �� → ������ ���� → �������}�

�����[������� ����� → �� ����������� → ����� ∈ ����� �� -����� ≤ � ≤ �] //

���������������

�� + �� ⅈ

����[{���[�] /� {� → ����� �� → ������ ����� → ��������[����]� ���� → �������}�

��[�] /� {� → ����� �� → ������ ����� → ��������[����]� ���� → �������}�

��[�] /� {� → ����� �� → ������ ����� → ��������[����]� ���� → �������}}�

{�� -��������� �}� ����������� → {{�|�(�)|�� ���[�(�)]�� ���[�(�)]�}�

������[����[{{����������[��=�� ��� ����]}�

{����������[���=�� ��� �����]}� {����������[�α=���� ��������[����]]}�

{����������[�γ=���� ��������[����] * �������]}�

{����������[�β=���� �������]}}]� {{����� ���}� {�� ���}}]}�

��������� → ��(�) ��� ��� �-��������� �� ����� ����������

��������� → {� [����]� ����������� ����������}�

��������� → ���]

��������������������������

� = �[�� �] / (� * �����)� (*��������� ��� ��*)

��[�_� �����_� ����_� ��_] = � /� {� → ����}�

����[{���[�] /� {� → ����� �� → ������ ����� → ��������[����]� ���� → �������}�

��[�] /� {� → ����� �� → ������ ����� → ��������[����]� ���� → �������}�

��[�] /� {� → ����� �� → ������ ����� → ��������[����]� ���� → �������}}�

{�� -��������� �}� ����������� → {{�|�(�)|�� ���[�(�)]�� ���[�(�)]�}�

������[����[{{����������[��=�� ��� ����]}� {����������[���=�� ��� �����]}�

{����������[�α=���� ��������[����]]}� {����������[�γ=���� �������[����]]}�

{����������[�β=���� �������]}}]� {{����� ���}� {�� ���}}]}�

��������� → ��������� ������� ����� ��� ���������

��������� → {� [����]� ����������� ����������}]

������������������������������������������

� = �[�] - ��
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��������������������������������������������

�� = �[�� �]�

������������������������������������������

�[�_� ����_] =

����[(� - �) * ����[���� / �] * �] - � � ����[((� - �) / �) * ����[���� / �]] 

(� - �) * ����[���� / �] ����[((� - �) / �) * ����[���� / �]] -

� ����[((� - �) / �) ����[���� / �]]�

����[{���[�[�� ����]] /� ���� → �������� ��[�[�� ����]] /� ���� → ��������

��[�[�� ����]] /� ���� → �������}� {�� -� / �� � / �}�

����������� → {{�|�(�)|�� ���[�(�)]�� ���[�(�)]�}� ������[����[

{{����������[�γ=���� �������[����]]}� {����������[�α=���� ��������[����]]}�

{����������[�β=���� �������]}}]� {{����� ���}� {�� ���}}]}�

��������� → ��������� �(�) ��� ��� �-��������� �� ����� ����������

��������� → {� [����]� ����������� ����������}]

����������[����[{���[�[�� ����]]� ��[�[�� ����]]� ��[�[�� ����]]}�

{�� -� / �� � / �}� ����������� → {{�|�(�)|�� ���[�(�)]�� ���[�(�)]�}�

������[����[{{����������[�γ=���� �������[����]]}�

{����������[�α=���� �������[����] / ����]}� {����������[�β=���� ����]}}]�

{{����� ���}� {�� ���}}]}� ��������� →

��������� �(�) ��� ��� �-��������� �� ����� �������� ��� ������� β��

��������� → {� [����]� ����������� ����������}� ��������� → ���]�

{����� ������� � ������� ���������� → ���������}]

��������������������������������������������

��[�_� ����_] = �[�[�� ����]� �]�

����������������������������

������������������������������������

�����[��_� ����_] = � * �[��] + � ����� (*��� ��*)

����[����_� �_] = ���������[�����[��� ����]� {��� -������ �}�

����������� → � ∈ ����� �� -����� ≤ � ≤ � �� ����� > � �� ���� > � �� ���� ∈ �����]�

(* ����������� �� ������ ��� ����� �� �� ���� ��������

�������� ��� ������� ���� �(-�����)=� *)

����[{���[�����[�� ����]] /� {� → ����� �� → ������ ���� → ������}�

��[�����[�]] /� {� → ����� �� → ������ ���� → ������}�

��[�����[�� ����]] /� {� → ����� �� → ������ ���� → ������}}� {�� -��������� �}�

����������� → {{�|�����(�)|�� ���[�����(�)]�� ���[�����(�)]�}�

������[����[{{����������[��=�� ��� ����]}� {����������[���=�� ��� �����]}�

{����������[�α=���� ��������[����]]}� {����������[�β=���� ������]}}]�

{{����� ���}� {�� ���}}]}� ��������� →

��������� �������� ����� ��� ������� ��� ��� �������������� ������

��������� → {� [����]� ����������� ����������}]
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�����������������������������������������β

�����[�[�� ����]� ���� → �]

-
�

�
+ � ��

������� = ������[��[�� ����]� {����� �� �}] // ������

-
�

�
+ � �� -

�

���
ⅈ ���� � - �� �� + �� ��

�����[��[�� ����]� ���� → ��������� ����������� → -� / � < � < �]

�����[��[�� ����]� ���� → ��������� ����������� → � < � < � / �]

�

�

�[�_] �= �����[�[�� ����]� ���� → ��������]

{#� �[#]} � /@ �����[-�� �� � / ��]

{-�� ���������������}� -
�

��
� ���������������� -

�

�
� ����������������

-
�

��
� ���������������� -

�

�
� ���������������� -

�

�
� �� -

�

�
� ��

-
�

��
� �� -

�

�
� �� -

�

��
� �� {�� �}� 

�

��
� �� 

�

�
� �� 

�

��
� ��


�

�
� �� 

�

�
� �� 

�

�
� ���������������� 

�

��
� ����������������


�

�
� ���������������� 

�

��
� ���������������� {�� ���������������}

�[�_] �= �����[��[�� ����]� ���� → ��������]

{#� �[#]} � /@ �����[-�� �� � / ��]

{-�� ���������������}� -
�

��
� ���������������� -

�

�
� ����������������

-
�

��
� ���������������� -

�

�
� ���������������� -

�

�
� �� -

�

�
� ��

-
�

��
� �� -

�

�
� �� -

�

��
� �� {�� �}� 

�

��
� �� 

�

�
� �� 

�

��
� ��


�

�
� �� 

�

�
� �� 

�

�
� ���������������� 

�

��
� ����������������


�

�
� ���������������� 

�

��
� ���������������� {�� ���������������}
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�[�_] �= �����[���[�� ����]� ���� → ��������]

{#� �[#]} � /@ �����[-�� �� � / ��]

{-�� ���������������}� -
�

��
� ���������������� -

�

�
� ����������������

-
�

��
� ���������������� -

�

�
� ���������������� -

�

�
� -

� - ⅈ

�
∞�

-
�

�
� �� -

�

��
� �� -

�

�
� �� -

�

��
� �� {�� �}� 

�

��
� �� 

�

�
� �� 

�

��
� ��


�

�
� �� 

�

�
�
� - ⅈ

�
∞� 

�

�
� ���������������� 

�

��
� ����������������


�

�
� ���������������� 

�

��
� ���������������� {�� ���������������}

���������������
�[����_� ����_] =

(� + �) /� {� → -��������� �� → ������ � → ����� ����� → (���� / ����)}�

������������[

{{����������[���[�[�� ����]]� {����� ����� ���}� ��������� → ����� ����� → �����

���������� → {�γ�� ����������� ���������� �����}�

����������� → ����� ����������� →

{������[����[{{����������[�β=���� �]}}]� {{���� ���}� {�� ���}}]}]�

����������[���[�[��� ����]]� {����� ����� ���}�

��������� → ����� ����� → ����� ����������� →

{������[����[{{����������[�β=���� ��]}}]� {{���� ���}� {�� ���}}]}]}�

{����������[���[�[���� ����]]� {����� ����� ���}�

���������� → {�γ�� ����������� ���������� �����}�

��������� → ����� ����� → ����� ����������� →

{������[����[{{����������[�β=���� ���]}}]� {{���� ���}� {�� ���}}]}]�

����������[���[�[����� ����]]� {����� ����� ���}� ��������� → �����

����� → ����� ����������� → {������[����[{{����������[�β=���� ����]}}]�

{{���� ���}� {�� ���}}]}]}}� ��������� → ����]

����[����������[{���[�[������ ����]]� ���[�[����� ����]]� ���[�[���� ����]]�

���[�[�� ����]]� ���[�[��� ����]]� ���[�[���� ����]]� ���[�[����� ����]]}�

{����� ������ ���}� ��������� → ����� ����� → �����

���������� → {�γ�� ����������� ���������� �����}�

����������� → ����� ��������� → ������ ��������� → ����

����������� → {�β=������� �β=������ �β=����� �β=��� �β=���� �β=����� �β=�����}]�

��������[{�����[���@{{����� ���-�}� {���� ���-(� / �)}}]� ����[�β��

���@{���� ���-(� / �)}� ��������� → {������ ���������� → �������� ������}]}]]

�����������[���[�[����� ����]]� {����� ���}]

{�������� {���� → ��������}}
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��������������������������

�����������������������

��������[��� �� �� ���� �� ���� ��� �������]�

�[�_� �����_� ����_] = (����� + �����)�

�[�_� ����_] =

����[(� - �) * ����[���� / �] * �] - � � ����[((� - �) / �) * ����[���� / �]] 

(� - �) * ����[���� / �] ����[((� - �) / �) * ����[���� / �]] -

� ����[((� - �) / �) ����[���� / �]]�

��[�_� ����_] = �[�[�� ����]� �]�

���[�_� ����_] = �[��[�� ����]� �]�

�������� = �����

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

�[�_] = ���������[{{-� + (��[�] / ���)� � <= � ≤ �}� {-�� -� <= � < �}}]�

������ = -��

����� = ��

������� = �����[�� {�� ������� �����}]�

��������� = �����[�� {�� {����� ���� ���� ����� ���� ���� �� �� �� �� �}}]�

������� = ����[������ ����� ���� �� ��]� (*������ �� γ*)

������ = �����[�����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]� {�� �������}]�

������� = �����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]�

���������� = {������ ����� ����� �� ��� ���� ����}� (*������ �� β*)

������γ =

�����[�����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ����� - �� �}]� {�� ����������}]�

��[�_� �����_� ����_] = �����[�[�� ������ ����] /� ����� → �� {�� {�� ���������}}]�

��[�_] = �����[���������[{{-� + ��[�] / ���� � <= � ≤ �}� {-�� -� <= � < �}}]�

{�� {�� ���������}}]�

�������������������

In the incompressible off-axis case the rate-of-strain tensor reduces to: 

with h(x)=0 (in this case there are no several γ)!

�������� = �����

���������������[���[(�[�]) ���[�� �]]��� {�� -�� �}� {�� -� / �� � / �}]  � ��

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}�

������������� = �����

���������������[���[(�[�]) ���[�� �]]��� {�� -�� �}� {�� -� / �� � / �}]  � ��

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}�
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������������������ = �����

���������������[���[(�[�]) ���[�� �]]��� {�� �� �}� {�� -� / �� � / �}]  � ��

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}�

��������� = ������  � � ���[(�[�]) ���[�� �]]��� {�� ����������}�

�����������������

The  rate-of-strain  tensor  (which  must  be  integrated  over  the  channel  volume)  for  the  off-axis  com-
pressible case is: 

��������� = ���������������

��������������[�] - ��� �  �� � /� {�� → ������ � → ����} ���[�� �]���

{�� -�� �}� {�� -� / �� � / �}  � �� {�� ����� ���(� + �)�

��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}� {�� �������}�

�������������� = ���������������

��������������[�] - ��� �  �� � /� {�� → ������ � → ����} ���[�� �]���

{�� -�� �}� {�� -� / �� � / �}  � �� {�� ����� ���(� + �)�

��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}� {�� �������}�

������������������� = ���������������

��������������[�] - ��� �  �� � /� {�� → ������ � → ����} ���[�� �]���

{�� �� �}� {�� -� / �� � / �}  � �� {�� ����� ���(� + �)�

��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}� {�� �������}�

���������� = �����

�  � � ����[�] - ��� ��������  �� � /� {�� → ������ � → ����} ���[�� �]���

{�� ����������}�

������������� = ������ / (� ����������[[�]])

�����[�][[�]] - ��[�� �������� / ����������[[�]]� ����������[[�]]][[�]]

���[�� ����������[[�]]]�� /�

{����� → ���������[[�]]� � → ����}� {�� �� ������[���������]}�

�������������� = ������ / (� ����������[[�]])

�����[�][[�]] - ��[�� �������� / ����������[[�]]� ����������[[�]]][[�]]

���[�� ����������[[�]]]�� /�

{����� → ���������[[�]]� � → ����}� {�� �� ������[���������]}�

�����

����������������
◼ Distribution of energy dissipation at the walls
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���# � /@ �����������[

{�����[������[���������[[�]]� {�� -�� �}� {�� -� / �� � / �}� ��������� → ����

��������� → ���������[��][�]]� {�� �� ������[���������]}]}]�

��������� → ������� ��������� → ���� ����

�����������[{�����[����[���������[[�]] /� � → � / �� {�� -�� �}� ����� → �����

��������� → ���� ��������� → ���������[��][�]� ����������� →

{���[{�β=�� ��������[��[�������[����������[[�]]� ��������] ⩵ �����

�����������[����������[[�]]]� �[����������[[�]]� �]]]}]}]�

{�� �� ������[���������]}]}]� ��������� → ������� ���������� →

���� ��������� ��������� → ����������� ������������ �� ���� ��

������ ����������� ����� �� ��� ���-���� �������������� ����� 

��������������

�����������������������

������ = -��

����� = ��

������� = �����[�� {�� ������� �����}]�

��������� = �����[�� {�� {����� ���� ���� ����� ���� ���� �� �� �� �� �}}]�

������� = ����[������ ����� ���� �� ��]� (*������ �� γ*)

������ = �����[�����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]� {�� �������}]�

������� = �����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]�

���� =

����������������  ������� * ����� * ��������������[�] - ��� �  �� � /�

{�� → ������ � → ����} ���[�� �]��� {�� -�� �}� {�� -� / �� � / �}�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� �������

������ �}� {�� �������}�

������� = �����������  ������� ����� *

����������[���[(�[�]) ���[�� �]]��� {�� -�� �}� {�� -� / �� � / �}]�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}�

������������ =

�����������  ������� * ����� * ��������������[�] - ��� ����  �� � /�

{�� → ������ � → ����} ���[�� �]��� {�� -�� �}� {�� -� / �� � / �}�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}�
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������������������������β������������������γ���������������γ�β�

�[�_� �����_� ����_] = (����� + �����)�

�[����_� ����_] = (� + �[�� ������ ����]) /�

{� → -��������� �� → ������ � → ����� ����� → (���� / ����)}�

������ = -��

����� = ��

������� = �����[�� {�� ������� �����}]�

���������� = {������ ����� ���� �� ��� ���� ����}�

������γ = �����[�����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ����� - �� �}]� {�� ����������}]

����γ =

����������������  ������� * ����� * ��������������[�] - ��� �  �� � /�

{�� → ������ � → ����} ���[�� �]��� {�� -�� �}� {�� -� / �� � / �}�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� �������

������ �}� {�� ����������}�

����������������������� {�� ����� ����}� ��������� →

���������� ���(�����)� {���-�� ����}� ��������� → ���� �����[�����[

��������������[���������[{���������[{������γ[[�]]� ����γ[[�]]}][[�]][[�]]�

���������[{������γ[[�]]� ����γ[[�]]}][[�]][[�]]}]�

��������� → ���������[��][�]� ��[� == �� ����������� →

{���[{�β=�� ��������[��[�������[����������[[�]]� ��������] ⩵ �����

�����������[����������[[�]]]� �[����������[[�]]� �]]]}]}�

�����������[��������[]]]� ������ → ����]� {�� �� ������[�������]� �}]�

{�� �� ������[����������]� �}]� ��������� → ������

��������� → �������� ������ ��� ������� β �� ��� ���-����

������������ ���� �� � �������� �� γ� ��=� <>

��������[�����]� ���������� → {�γ�� ���(γ)�}� ����� -> ����

�����������������������������������������������������������������������

��������[��� �� �� ���� �� ���� ��� �������]�

�[�_� �����_� ����_] = (����� + �����)�

�[�_� ����_] =

����[(� - �) * ����[���� / �] * �] - � � ����[((� - �) / �) * ����[���� / �]] 

(� - �) * ����[���� / �] ����[((� - �) / �) * ����[���� / �]] -

� ����[((� - �) / �) ����[���� / �]]�

��[�_� ����_] = �[�[�� ����]� �]�

���[�_� ����_] = �[��[�� ����]� �]�

�������� = �����

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

������ = -��

����� = ��

������� = �����[�� {�� ������� �����}]�

��������� = �����[�� {�� {����� ���� ���� ����� ���� ���� �� �}}]�

������� =

�����[�����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]� {�� ���������}]�
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��[�_� �����_� ����_] = �����[�[�� ������ ����] /� ����� → �� {�� ���������}]�

��[�_] = �����[

���������[{{-� + ��[�] / ���� � <= � ≤ �}� {-�� -� <= � < �}}]� {�� ���������}]�

������������ =

������������������������������[�][[�]] - ���� ��������  �� �[[�]] /�

{����� → ���������[[�]]� � → ����} ���[�� �]���

{�� -���������[[�]]� �}� {�� -� / �� � / �}  � ��

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}�

{�� ������� ������ �}� {�� �� ������[���������]}�

����������������� =

������������������������������[�][[�]] - ���� ��������  �� �[[�]] /�

{����� → ���������[[�]]� � → ����} ���[�� �]���

{�� -���������[[�]]� �}� {�� -� / �� � / �}  � ��

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}�

{�� ������� ������ �}� {�� �� ������[���������]}�

���������������������� =

������������������������������[�][[�]] - ���� ��������  �� �[[�]] /�

{����� → ���������[[�]]� � → ����} ���[�� �]��� {�� �� �}�

{�� -� / �� � / �}  � �� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}�

{�� ������� ������ �}� {�� �� ������[���������]}�

����������� = ����������

��������������������[�][[�]] ���[�� �]��� {�� -���������[[�]]� �}�

{�� -� / �� � / �}  � �� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}�

{�� ������� ������ �}� {�� �� ������[���������]}�

���������������� = ����������

��������������������[�][[�]] ���[�� �]��� {�� -���������[[�]]� �}�

{�� -� / �� � / �}  � �� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}�

{�� ������� ������ �}� {�� �� ������[���������]}�

��������������������� =

������������������������������[�][[�]] ���[�� �]��� {�� �� �}�

{�� -� / �� � / �}  � �� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}�

{�� ������� ������ �}� {�� �� ������[���������]}�
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�����������[

{����������[�� {�� ������ ����}� ��������� → {{���������� ���}� {������ ���}}�

��������� → ���]� �����[��������������[���������[

{���������[{�������[[�]]� ���������������������[[�]]}][[�]][[�]]�

���������[{�������[[�]]� ���������������������[[�]]}][[�]][[�]]}]�

��������� → {������� → ����� ���������[��][�]}�

��[� == �� ����������� → {���[{��������������� ���������� �������}]}�

�����������[��������[]]]� ������ → ����]�

{�� �� ������[�������]� �}]� �����[��������������[

���������[{���������[{�������[[�]]� ����������������[[�]]}][[�]][[�]]�

���������[{�������[[�]]� ����������������[[�]]}][[�]][[�]]}]�

��������� → ���������[��][�]� ��[� == �� ����������� →

{���[{��������������� ����� ���� ��������}]}� �����������[��������[]]]�

������ → ����]� {�� �� ������[�������]� �}]� �����[��������������[

���������[{���������[{�������[[�]]� �����������������[[�]]}][[�]][[�]]�

���������[{�������[[�]]� �����������������[[�]]}][[�]][[�]]}]�

��������� → ���������[��][�]� ��[� == �� ����������� →

{���[{������������� ����� ���� ��������}]}� �����������[��������[]]]�

������ → ����]� {�� �� ������[�������]� �}]� �����[��������������[���������[

{���������[{�������[[�]]� ����������������������[[�]]}][[�]][[�]]�

���������[{�������[[�]]� ����������������������[[�]]}][[�]][[�]]}]�

��������� → {������� → ����� ���������[��][�]}�

��[� == �� ����������� → {���[{������������� ���������� �������}]}�

�����������[��������[]]]� ������ → ����]�

{�� �� ������[�������]� �}]� �����[��������������[

���������[{���������[{�������[[�]]� �����������[[�]]}][[�]][[�]]�

���������[{�������[[�]]� �����������[[�]]}][[�]][[�]]}]� ��������� →

����� ��[� == �� ����������� → {���[{��������������� �������� ��������}]}�

�����������[��������[]]]� ������ → ����]�

{�� �� ������[�������]� �}]� �����[��������������[

���������[{���������[{�������[[�]]� ������������[[�]]}][[�]][[�]]�

���������[{�������[[�]]� ������������[[�]]}][[�]][[�]]}]� ��������� →

������ ��[� == �� ����������� → {���[{������������� �������� ��������}]}�

�����������[��������[]]]� ������ → ����]�

{�� �� ������[�������]� �}]}]� ��������� → ������ ��������� →

����������� ���������� ������ ��� ���� ����� �� ��� ���-���� ����� γ=� <>

��������[��������] <> ��
��

�
=� <>

��������[���������[[�]]]�

���������� → {�β�� ������(β)�}�

����� ->

����
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������β������
���� = ������������

���� - (� - �) * (���� / �)�(� / �) * ���[-(� - �) / � * (���� / �)�(� / �)] *

����[(� - �) ����[���� / �] �] * (������[�]) + (�� � ���� ������� / �) *

����[(� - �) ����[���� / �] �]  ���[(� - �) / � * (���� / �)�(� / �)] *

((� - �) / � ����[���� / �]) * �[�] // �������������� ���� > ��

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

������[�_] = � / �

���������-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ ��

������� = � / � -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

�[�_] = ���������[{{-� + (��[�] / ���)� � <= � ≤ �}� {-�� -� <= � < �}}]�

��������� = ���������

������������(���� / ��)  ���������[������� {�� -�� �}� {�� -� / �� � / �}]

������� × ���� ���� ⅇ(�������+�������� ⅈ) ����  

-������� × ���� ⅇ�������� ���� - ������� × ���� ⅇ(��������+������� ⅈ) ���� +

������� × ���� ⅇ(�������+�������� ⅈ) ���� +

�

�
ⅈ ���� ⅇ(��������+�������� ⅈ) ���� ⅇ(��-�������� ⅈ) ���� - ⅇ(��+�������� ⅈ) ���� 

������ × ���� - ������� × ���� ��� +
�

�
���� ⅇ(��������+�������� ⅈ) ����

-ⅇ-�������� ���� + ⅇ�������� ����  ������ × ���� + ������� × ���� ���

(*�� ��� ������� ��� ����� ����� ��� β ����� ��

�������� ����� ��� ������� ���� ��������� ���� �������*)

������ = �������������������*��� ���� ⅇ
(�������������������+������������������� ⅈ) ����

 

�

�
���� ⅇ

(�������������������+������������������� ⅈ) ����
+ⅇ

������������������� ����


������������������*��� + �������������������*��� ��� // ����

������� × ���� ����

������ × ���� + ������� × ���� ���

(*�� ��� ���� ��=� � ��� ��� ��-���� ��������*)

������������[������ /� �� → �]

������� ����
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(*�� ��������� �� ���� β*)

���������[������]  ������[[�]] 

��������������������������[������]  ������[[�]]� �� // ����

�� ����

������� + ������� ���

�����

����������

(*����� ���� �� ���������*)

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

������[�_] = � / �

���������-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ ��

������� = � / � -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

(*��-���� ��������*)

��� = ������� * ���� / ��������������

����������� =

������������ - (� - �) / � * ����[(���� / �)] * ����[(� - �) * � * ����[(���� / �)]] 

����[(� - �) / � * ����[(���� / �)]] // �������������� ���� > ����

������������� = ������������[���������[������������ {�� -� / �� � / �}]]�

(*���� ����� ��� ������ ��� ������� ��*)

����� = ����

������� = �����[�� {�� {����� ���� ���}}]�

������ = -��

����� = ��

������� = �����[�� {�� ������� �����}]�

������ =

�����[�����[�����[�� {�� ����� ���(� + �)� ��[� >= �� ����� ���(� - �)]}]�

{�� ������� ������ �}]� {�� �������}]�

������� = �����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]�
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(*��������� ��� ��� �������������� �������� �� �(β)*)

�[�_� ����_] =

����[(� - �) * ����[���� / �] * �] - � � ����[((� - �) / �) * ����[���� / �]] 

(� - �) * ����[���� / �] ����[((� - �) / �) * ����[���� / �]] -

� ����[((� - �) / �) ����[���� / �]]�

���[�_� ����_] = �[�[�� ����]� {�� �}]� (*������ ���������� �� ��� ���*)

(*���� �� �������� �� ��� ��� ��������������*)

������������[����_] = ���� - (� - �) / � * ����[���� / �] *

����[(� - �) * � * ����[���� / �]]  ����[(� - �) / � * ����[ ���� / �]] *

(������[�]) + (�� � ���� ������� / �) * ����[(� - �) ����[���� / �] �] 

(� - �) ����[���� / �] ����[(����[���� / �] (� - �) / �)] -

� ����[����[���� / �] (� - �) / �] * (�[�])���

�[�_] = ���������[{{-� + (��[�] / ���)� � <= � ≤ �}� {-�� -� <= � < �}}]�

(*���-���� ���� �� ������ ��������������*)

������� = �����������  ������� ����� *

����������[���[(�[�]) ���[�� �]]��� {�� -�� �}� {�� -� / �� � / �}]�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� ������� ������ �}�

(*�(β) ������ ��������������*)

������ = ����������������  �� *

 ����������[������������[�] /� {�� → �}� {�� -�� �}� {�� -� / �� � / �}]�

{�� ����� ���(� + �)� ��[� >= �� ����� ���(� - �)]}� {��

������� ������ �}� {�� �������}�

����[�������[

{����������[{���}� {����� ���������� ��������}� ����������� → {���-�����}�

��������� → ������ ��������� → {{���������� ��������}�

{���������� ���(����� + �)}}� ��������� → {{��}� ���}]�

�����[��������������[���������[{���������[{�������� �������}][[�]][[�]]�

���������[{�������� �������}][[�]][[�]]}]�

��������� → {���������[��][�]� ������� → ����}� ������ → ����� ��[� == ��

����������� → {����-���� (��������������� ��=� <> ��������[�����] <> �)�}�

�����������[��������[]]]]� {�� �� ������[�������]� �}]� �����[�����[

��������������[���������[{���������[{������[[�]]� ������[[�]]}][[�]][[�]]�

���������[{������[[�]]� ������[[�]]}][[�]][[�]]}]�

��������� → ���������[��][�]� ��[� == �� ����������� →

{���[{���=�� ��������[��[�������[�������[[�]]� ��������] ⩵ �����

�����������[�������[[�]]]� �[�������[[�]]� �]]]}]}�

�����������[��������[]]]� ������ → ����]� {�� �� ������[�������]� �}]�

{�� �� ������[�������]� �}]}]� ��������� → ������

��������� → ����������� ������� ������ �(β) ��� ���

�������� �������������� ���� ��� ������� ����

���������� → {�β�� ���(β)�}� ����� -> ����]
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������������

��� = ������� * ���� / ��������������

����������� =

������������ - (� - �) / � * ����[(���� / �)] * ����[(� - �) * � * ����[(���� / �)]] 

����[(� - �) / � * ����[(���� / �)]] // �������������� ���� > ����

������������� = ������������[���������[������������ {�� -� / �� � / �}]]�

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

������[�_] = � / �

���������-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ ��

������� = � / � -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

�[�_] = �����[

���������[{{-� + (��[�] / ���)� � <= � ≤ �}� {-�� -� <= � < �}}]� {�� ���������}]�

���������������[����_] = �����

���� - (� - �) / � * ����[���� / �] * ����[(� - �) * � * ����[���� / �]] 

����[(� - �) / � * ����[ ���� / �]] * (������[�]) +

(�� � ���� ������� / �) * ����[(� - �) ����[���� / �] �]  (� - �) ����[���� / �]

����[(����[���� / �] (� - �) / �)] - � ����[����[���� / �] (� - �) / �] *

�[�][[�]]��� {�� �� ������[���������]}�

����� = �����

��������� =

����������������  �� *  ����������[���������������[�][[�]] /� {�� → �����}�

{�� -���������[[�]]� �}� {�� -� / �� � / �}]�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}�

{�� ������� ������ �}� {�� �� ������[���������]}�

����[�������[{����������[{���}� {����� ���������� ��������}� ��������� → ������

��������� → {{���������� ��������}� {���������� ���(����� + �)}}�

����������� → {���-�����}� ��������� → {{��}� ���}]� �����[�����[

��������������[���������[{���������[{�������[[�]]� ���������[[�]]}][[�]][[

�]]� ���������[{�������[[�]]� ���������[[�]]}][[�]][[�]]}]�

��������� → ���������[��][�]� ��[� == �� ����������� →

{���[{���/�=�� ��������[��[�������[���������[[�]]� ��������] ⩵ �����

�����������[���������[[�]]]� �[���������[[�]]� �]]]}]}�

�����������[��������[]]]� ������ → ����]� {�� �� ������[�������]� �}]�

{�� �� ������[���������]� �}]� ��������[

{�����[���@{{������ ���}� {���� ���}}]� ����[���/��� ���@{���� ���}�

��������� → {������ ���������� → �������� ������}]}]}]�

��������� → ������ ��������� → ����������� ������� ������ �(β) ���

��� �������� �������������� ���� ��� ������� ��/�� ��=� <>

��������[�����]� ���������� → {�β�� ���(β)�}� ����� -> ����]
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���������������

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

������[�_] = � / �

���������-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ ��

������� = � / � -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

��� = ������� * ���� / ��������������

����������� =

������������ - (� - �) / � * ����[(���� / �)] * ����[(� - �) * � * ����[(���� / �)]] 

����[(� - �) / � * ����[(���� / �)]] // �������������� ���� > ����

������������� = ������������[���������[������������ {�� -� / �� � / �}]]�

����� = ����

������� = �����[�� {�� {�� ���� ����� ���� ���� ����}}]�

������ = -��

����� = ��

������� = �����[�� {�� ������� �����}]�

������ =

�����[�����[�����[�� {�� ����� ���(� + �)� ��[� >= �� ����� ���(� - �)]}]�

{�� ������� ������ �}]� {�� �������}]�

������� = �����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]�

�����[������������]

�[�_� ����_] =

����[(� - �) * ����[���� / �] * �] - � � ����[((� - �) / �) * ����[���� / �]] 

(� - �) * ����[���� / �] ����[((� - �) / �) * ����[���� / �]] -

� ����[((� - �) / �) ����[���� / �]]�

���[�_� ����_] = �[�[�� ����]� {�� �}]�

������������[����_] =

���� - (� - �) / � * ����[���� / �] * ����[(� - �) * � * ����[���� / �]] 

����[(� - �) / � * ����[ ���� / �]] * (������[�]) +

(����� � ���� ������� / �) * ����[(� - �) ����[���� / �] �] 

(� - �) ����[���� / �] ����[(����[���� / �] (� - �) / �)] -

� ����[����[���� / �] (� - �) / �] * (� - � * ��) * (�[�])���

�[�_] = ���������[{{-� + (��[�] / ���)� � <= � ≤ �}� {-�� -� <= � < �}}]�

������ = ����������������  �� *

 ����������[������������[�] /� {�� → �}� {�� -�� �}� {�� -� / �� � / �}]�

{�� ����� ���(� + �)� ��[� >= �� ����� ���(� - �)]}� {��

������� ������ �}� {�� �������}�
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����[�������[{����������[{���}� {����� ���������� ��������}�

����������� → {���-�����}� ��������� → ������

��������� → {{���������� ��������}� {���������� ���(����� + �)}}�

��������� → {{��}� ���}]� �����[�����[

��������������[���������[{���������[{������[[�]]� ������[[�]]}][[�]][[�]]�

���������[{������[[�]]� ������[[�]]}][[�]][[�]]}]�

��������� → ���������[��][�]� ��[� == �� ����������� →

{���[{���_�=�� ��������[��[�������[�������[[�]]� ��������] ⩵ �����

�����������[�������[[�]]]� �[�������[[�]]� �]]]}]}�

�����������[��������[]]]� ������ → ����]� {�� �� ������[�������]� �}]�

{�� �� ������[�������]� �}]}]� ��������� → ������

��������� → ����������� ������� ������ �(β) ��� ��� ��������

�������������� ���� ��� ������� ���� ��=�����

���������� → {�β�� ���(β)�}� ����� -> ����]
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���������

������������ = � ∈ ����� �� -����� ≤ � ≤ � ��

����� > � �� ���� > � �� ����� > � �� � > � �� �� > � �� ���� ∈ ������

��������� = � * ���-�� (*�*)

�� = ��� * ����� (*��*)

����� = � * �[��� �] * ���

��� = ����� (*�����*)

�� = � * ���-��(*��*�*)

(*������� �������� ���� �������� ��*)

�� = � ����� �� ��[�] / ��

�� = ������  � ���

�� = ��

�� = �� �� �  ���������

�� = �������

(*������ ���� ������ �� ������ ����� �� �� ��������� �� ��� ����������*)

���� = �[��� * ���-�]� (*�*)

����� = �����

����� = �� / ��

�������� = ����� / �����

������ = ����� (*�/�*)

�������[�_] = ����� �  ���������

������� = ��� ����� �����������  ���

��������[�_] = �������[�] / ��������(*����� ������� �� ���� �������*)

���������

(*��������� ���� ����� ��� ��*)

����������[����_� ��_] = ����� ����  ������ + ����� ���� � + ������  �����

����������[����_� ��_] = ����[����]  ����� + ����� �����
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��[��_] = -� (�� � ���[�� � ��] - �� � ����[�� � ��]) -

�� � ���[�� � ��] - �� � ����[�� � ��]� (*���������� �� ���� �����*)

�[��_] = ���������[{{-� + ��[��] / ���� � <= �� ≤ �}� {-�� -����� <= �� < �}}]�

(*�������� ��*)

(*������� ������� �� ��*)

���������[�_] = ���������[(� * � * �[��] - ����) * ���[� * (�� + �����)]�

{��� -������ �}� ����������� → � ∈ ����� �� -����� ≤ � ≤ � �� ����� > �]�

���������[�_] = ���������[(� * � * �[��] - ����) * ���[� * (� - ��)]�

{��� �� �}� ����������� → � ∈ ����� �� -����� ≤ � ≤ � �� ����� > �]�

(*����� ���� ����������*)

� = (���[�� * �] + ����[�� * �])  ���[�� * �] + ����[�� * �]�

��� = -� (�� � ���[�� �] - �� � ����[�� �]) - �� � ���[�� �] - �� � ����[�� �]�

(*����� ���� ���������� ���������� �� ��� ���� �� �=�*)

�� = ������ / ��

� = ����[����� * (���� + � �)]� (*�� ��*)

� = -� � ���� ����[((� - �) / �) * ����[���� / �]] 

(� - �) * ����[���� / �] * ����[((� - �) / �) * ����[���� / �]] -

� ����[((� - �) / �) * ����[���� / �]]� (*��� ���*)

(*� ����� ����� �� ��� �����*)

����� = -(����� / (� * (���[� (� + �����)]))) * ���������[�] * ���[� * (� - �)]�

����� = -(����� / (� * (���[� (� + �����)]))) * ���������[�] * ���[� * (� + �����)]�

�[�_� �����_] = (����� + �����)�

��������[��� �� �� ���� ��� ��]�

(*����� ���� ����������*)

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]� (*����� ���� ����������*)

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

(*����� ���� ���������� ���������� �� ��� ���� �� �=�*)

������[�_] = � / �

���������-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �� (*����� ���� ����������� ����������*)

������� = � / � -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

�[�_] = ���������[{{-� + (��[�] / ���)� � <= � ≤ �}� {-�� -� <= � < �}}]�

(*�������� ��*)

(*���� �� ��� �������� �� ����������� �� ������*)

������������[����_] =

���-� � - (� - �) / � * ����[���� / �] * ����[(� - �) * � * ����[���� / �]] 

����[(� - �) / � * ����[ ���� / �]] * (������[�]) +

(�� � ���� ������� / �) * ����[(� - �) ����[���� / �] �] 

(� - �) ����[���� / �] ����[(����[���� / �] (� - �) / �)] -

� ����[����[���� / �] (� - �) / �] * (�[�] - �[�� �����])���

(*������� �� ���� �� ������� ��������� ��� ������� ��� �� ��/��

������ ������� ��� ���� �����*)

������� = �������[����[�� ����� ���� ���]]�

������ =

�����[�����[�����[�� {�� ����� ���(� + �)� ��[� >= �� ����� ���(� - �)]}]�

{�� -�� �� �}]� {�� �������}]�
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(*�������� �� ��� ������������ ����� ��� ������� ��� ��/�=�*)

������ =

����������������  �� *  ����������������������[�] /� �� → ������ � → �����

�� → �� ����� → �������[����]  �� {�� -�� �}� {�� -� / �� � / �}�

{�� ����� ���(� + �)� ��[� >= �� ����� ���(� - �)]}� {�� -��

�� �}� {�� �������}�

(*�������� �� ��� ������������ ����� ��� ������� ��� ��=�*)

��������� =

����������������  �� *  ����������������������[�] /� �� → �� � → �����

�� → �� ����� → �������[����]  �� {�� -�� �}� {�� -� / �� � / �}�

{�� ����� ���(� + �)� ��[� >= �� ����� ���(� - �)]}� {�� -��

�� �}� {�� �������}�

�����

����������

���� = ����[�������[

{����������[�� {�� ������ ����}� ��������� → {{������ ����}� {������� ���}}�

��������� → {{��}� ���}� ����������� →

{������[����[{{����������[�γ=���� ����������[�������[����]� �]]}}]�

{{���� ���}� {�� �}}]}]� �����[�����[��������������[

���������[{���������[{������[[�]]� ������[[�]]}][[�]][[�]]�

���������[{������[[�]]� ������[[�]]}][[�]][[�]]}]�

��������� → ���������[��][�]� ��[� == �� ����������� → {���[{���=��

��������[��[�������[�������[[�]]� ��������] ⩵ ���� || �������[[�]] ==

�� �����������[�������[[�]]]� �[�������[[�]]� �]]]}]}�

�����������[��������[]]]� ������ → ����]� {�� �� �� �}]�

{�� �� ������[�������]� �}]� ��������[

{�����[���@{{����� ���}� {��� �����}}]� ����[����� ���@{�� �����}�

��������� → {������ ���������� → �������� ������}]}]}]�

��������� → ������ ��������� → ����������� ������� ������ �(β)

��� ��� �������� ������������ ����� ��=���

���������� → {�β�� ���(β)�}� ����� -> ����]
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������������

(*��-���� ��������*)

��� = ������� * ���� / ��������������

����������� =

������������ - (� - �) / � * ����[(���� / �)] * ����[(� - �) * � * ����[(���� / �)]] 

����[(� - �) / � * ����[(���� / �)]] // �������������� ���� > ����

������������� = ������������[���������[������������ {�� -� / �� � / �}]]�

����� = ����

(*���������� �� ���� �����*)

������ = -��

����� = ��

������� = �����[�� {�� ������� �����}]�

��������� = �����[�� {�� {�� ������ ����� ���� �� �� �� �� ��� ��}}]�

(*������ �� ������� ��/�*)

������� = �����[�����[�����[�� {�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}]�

{�� ������� ������ �}]� {�� ���������}]�

(*��������� �� ������� ��� ������� ��/�*)

��[�_� �����_� ����_] = �����[�[�� �����] /� ����� → �� {�� ���������}]�

��[�_] =

���������[{{-� * (�� ���[�� �] - �� ����[�� �]) - �� ���[�� �] - �� ����[�� �]�

� <= � ≤ �}}]�

��� = -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

��[�_] = �����[���������[{{-� + ��[�] / ���� � <= � ≤ �}� {-�� -����� <= � < �}}] /�

����� → �� {�� ���������}]�

������[�_] = � / � ���������-� * (�� ���[�� �] - �� ����[�� �]) -

�� ���[�� �] - �� ����[�� �]� � <= � ≤ ��

������� = � / � -� (�� ���[�� ] - �� ����[�� ]) - �� ���[�� ] - �� ����[�� ]�

(*���� �� ��� �������� �� ����������� �� ������� ������������*)

������������[����_] =

��������� - (� - �) / � * ����[���� / �] * ����[(� - �) * � * ����[���� / �]] 

����[(� - �) / � * ����[ ���� / �]] * (������[�]) +

(�� � ���� ������� / �) * ����[(� - �) ����[���� / �] �]  (� - �) ����[���� / �]

����[(����[���� / �] (� - �) / �)] - � ����[����[���� / �] (� - �) / �] *

��[�][[�]] - ��[�� ������ ����][[�]]��� {�� �� ������[���������]}�

(*���� �� ��� �������� �� ����������� �� ������� ��������������*)

���������������[����_] =

��������� - (� - �) / � * ����[���� / �] * ����[(� - �) * � * ����[���� / �]] 

����[(� - �) / � * ����[ ���� / �]] * (������[�]) +

(�� � ���� ������� / �) * ����[(� - �) ����[���� / �] �]  (� - �) ����[���� / �]

����[(����[���� / �] (� - �) / �)] - � ����[����[���� / �] (� - �) / �] *

��[�][[�]]��� {�� �� ������[���������]}�

(*�������� �� ��� ������������ ����� ��� ������� ��/�*)

��������� = ���������������

�  �� *  ����������������������[�][[�]] /� � → ����� �� → ������ ����� →

�������[����]  �� {�� -���������[[�]]� �}� {�� -� / �� � / �}�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� �������

������ �}� {�� �� ������[���������]}�
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(*�������� �� ��� �������������� ����� ��� ������� ��/�*)

������������ = ���������������

�  �� *  �������������������������[�][[�]] /� � → ����� �� → ������ ����� →

�������[����]  �� {�� -���������[[�]]� �}� {�� -� / �� � / �}�

{�� ����� ���(� + �)� ��[� ≥ �� ����� ���(� - �)]}� {�� �������

������ �}� {�� �� ������[���������]}�

����[�������[{����������[�� {�� ������ ����}�

��������� → {{���������� ��������}� {���-�� ���}}�

��������� → {{��}� ���}� ����������� →

{������[����[{{����������[�γ=���� ����������[�������[����]� �]]}}]�

{{���� ���}� {�� �}}]}]� ����������[{���}� {����� ���������� ��������}�

����������� → {���-�����}� ��������� → {������ �������[�����]}�

��������� → {{���������� ��������}� {���-�� ���}}�

��������� → {{��}� ���}]� �����[�����[��������������[

���������[{���������[{�������[[�]]� ���������[[�]]}][[�]][[�]]�

���������[{�������[[�]]� ���������[[�]]}][[�]][[�]]}]�

��������� → ���������[��][� � + �]� ��[� == �� ����������� →

{���[{���/�=�� ��������[��[�������[���������[[�]]� ��������] ⩵ �����

�����������[���������[[�]]]� �[���������[[�]]� �]]]}]}�

�����������[��������[]]]� ������ → ����]� {�� �� ������[�������]� �}]�

{�� {�� �� �� �� �}}]}]� ��������� → ������ ��������� →

����������� ������� ������ �(β) ��� ��� ��������

������������ ���� ��� ������� ��/�� ��=� <>

��������[�����]� ���������� → {�β�� ���(β)�}� ����� -> ����]
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��������������������

(*������������ ��� ��� ������� ���� �������*)

��[�_] = (� � - �) ��  �� (*���� ��� �≥��

��������� ��� �→��������� ������������ ����*)

�[��[�]]

�������

�������� = �����

�������� = �����

����� = �� * ���-��

������ = � * ���-��

����� = �� * ���-��

������ = �� * ���-��

����� = ��� * ���-��

������ =

���������  �������� �����  ������ �����  ������ �����  ��������

�������

�� = �������

� = (���[��] + ����[��])  ���[��] + ����[��]�

�[�_] =

������������[�� * �] - ����[�� * �] - � * ���[�� * �] - ����[�� * �]� � ≤ � ≤ ��

�� = �[�[�]� �]�

���[�_] = �[�[�]� {�� �}]�

����[��� {�� �� �}]

�� = (���[��[�]] + ����[��[�]])  ���[��[�]] + ����[��[�]]�

��[�_� �_] = ������������[��[�] * �] -

����[��[�] * �] - �� * ���[��[�] * �] - ����[��[�] * �]� � ≤ � ≤ ��

����[�_� �_] = �[��[�� �]� {�� �}]�

���[�_� �_] = �[��[�� �]� �]�

Change the number in Wn[x,n] and plot the mode shape for each mode number.

����[��[�� �]� {�� �� �}]

(*�������*)

��������� =

{{{���� ���}� {������������������� �����������������*�-�}� {�������������������

�����������������*�-�}� {������������������� �����������������*�-�}�

{������������������� �����������������*�-�}� {������������������

�����������������*�-�}� {������������������ �����������������*�-�}�

{������������������ �����������������*�-�}� {������������������

�����������������*�-�}� {����������������� �����������������*�-�}�

{������������������ ����������������������}�

{������������������ ����������������������}�

{������������������ ����������������������}� {������������������

����������������������}� {������������������ ����������������������}�

{������������������ ����������������������}� {������������������

B.6 COMSOL shape fitting 143

Appendix B.6. COMSOL shape fitting

Master of Science Thesis A. Gerbino



(*��� ��� ������� ��� ��������� �� �����

���� = {{�������� �����}� {������� ����}� {������� ����}� {������� ���}�

{������� ����}� {������� ��}� {������� ����}� {������� ����}�

{������ ����}� {�������� ����}� {�������� ����}� {������� ����}�

{������� ����}� {������� ����}� {������� ����}� {�������� ����}�

{������ ����}� {������� ����}� {�������� ����}� {������� ����}�

{�������� ����}� {������� ����}� {������� �����}� {�������� �����}}�

�[�_] = ���[�����������[{#[[�]]� ���[#[[�]]]} � /@ ����� �]]

(*��(���������-������� ���[���� �])*)

{����� ����} = ������[����[[���� �]]]�

�����[�]� {�� ����� ����}�

������ → {���� �����������������[�]� �����[����]}� ����� → �����

���������� → �����[#� ����� ��] � /@ {�������� [�/����]�� ���������� [����]�}�

��������� → ���

��������� = �����[�[�]� {�� ����� ����� ������}]�

������� = �����[�� {�� ����� ����� ������}]�

���������[{���������� �������}]�
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List of Symbols

Ac Beam cross section area

α Fluid compressibility number (dimensionless)

λ, µb Bulk viscosity

B1 First vibrational mode coefficient for a clamped beam

β Reynold’s number (dimensionless)

bc Cantilever beam width

b f Channel width

D
Dt Material derivative

δ Dissipation term in Q definition

∂Ω+ Top channel boundary

Es Dissipative energy scaling factor

E Internal energy per unit mass of a material element of

fluid

Ediss/cycle/volume Dissipated energy per unit volume per cy-

cle in the resonator

Estored Stored energy in the resonator

¯̄e Fluid rate-of-strain tensor

ū x-velocity

Fon On-axis normalized quality factor

F(β) Normalized Quality Factor

f̃ Complex eigenfrequency in COMSOL

f Eigenfrequency in COMSOL

φ, Φ Viscous dissipation function

∇ Nabla operator

γ Fluid normalized acoustic wavenumber (dimensionless)

hc Cantilever beam thickness

h f Channel thickness

i, j Imaginary unit

Lc Rigid lead channel length

L Vibrating channel length

M On-axis corrective flow term

ν Poisson’s ratio

ν f Kinematic viscosity

Ω Fluidic channel domain

Ps Pressure scaling factor

P̄ Scaled fluid pressure

P Fluid pressure

Qo f f Off-axis Quality Factor

Qon On-axis Quality Factor

Qtot Total Quality Factor

qs Volumetric flux normalizing factor

q Volumetric flux

ρc Beam density

ρ f Fluid density

σij Fluid stress tensor

T Period of vibration

t Time variable

U Fourier transform of vertical beam velocity

µ Fluid dynamic viscosity

ub Cantilever beam displacement vector
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ū Fluid scaled velocity x-component

us x-velocity scaling factor

V Reduced velocity

vb Cantilever beam velocity vector

vinv On-axis inviscid flow solution

Wkin Beam kinetic energy

W Cantilever beam displacement

ωn Angular eigenfrequency of beam vibration of mode n

ω Angular frequency of vibration

w̄ Fluid scaled velocity z-component

ws z-velocity scaling factor

X̃(x, z; ω) Fourier Transform of the generic function X(x,z,t)

x̄ Scaled x-coordinate

x0 Local point of Taylor Series expansion

xs x-coordinate scaling factor

z̄ Scaled z-coordinate

z0 Off-axis placement of the channel with respect to the

beam neutral axis

zs z-coordinate scaling factor
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