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The Gibbs free energy is the fundamental thermodynamic potential underlying the relative sta-
bility of different states of matter under constant-pressure conditions. However, computing this
quantity from atomic-scale simulations is far from trivial, so the potential energy of a system is
often used as a proxy. In this paper we use a combination of thermodynamic integration methods
to accurately evaluate the Gibbs free energies associated with defects in crystals, including the va-
cancy formation energy in BCC iron, and the stacking fault energy in FCC nickel, iron and cobalt.
We quantify the importance of entropic and anharmonic effects in determining the free energies of
defects at high temperatures, and show that the potential energy approximation as well as the har-
monic approximation may produce inaccurate or even qualitatively wrong results. Our calculations
manifest the necessity to employ accurate free energy methods such as thermodynamic integration
to estimate the stability of crystallographic defects at high temperatures.

I. INTRODUCTION

Knowledge of the Gibbs free energy is crucial in pre-
dicting the relative stability of different states of mate-
rials and molecules, and underlies a plethora of physi-
cal and chemical phenomena including phase diagrams,
solubility, equilibrium concentration of defects, and so
on. However, free energy calculations in atomistic sim-
ulations are often technically challenging and/or compu-
tationally demanding. For this reason, in many cases
– particularly those involving solid phases – the poten-
tial energy of the local minimum configuration associated
with a given state is used as a simple proxy, and at times
a harmonic correction is also included as the entropic
term.

One class of standard free energy techniques, such as
metadynamics, umbrella sampling, and transition path
sampling [1–3], relies on the concept that the phase space
of a system can be divided into a number of states using
a choice of reaction coordinates (or collective variables),
and the free energy difference between two states can
then be computed by sampling both states, as well as
the transition paths that connect them.

Another class of free energy methods concentrates on
computing the “absolute” free energy of a system by per-
forming a thermodynamic integration (TI) [4–6]. The
TI can be performed along a physical path for exam-
ple along temperature or pressure, or via an unphysi-
cal path between the physical system and a reference
system over a switching parameter λ. For the latter
route, the parameterized Hamiltonian can be taken to
be H(λ) = (1 − λ)Href + λH, where H is the actual
Hamiltonian and Href is for the reference system with a
known free energy. For example, the Helmoltz free en-
ergy of a crystal can be obtained by TI from an Einstein
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crystal, whose free energy can be expressed analytically,
to the fully interacting system [6–10]. The Gibbs free
energy of liquid water can be computed by following a
thermodynamic path from a Lennard-Jones model to the
real potential [11]. However, each TI route is associ-
ated with different complications which have been exten-
sively discussed in the literature, such as the singularity
around T = 0 when integrating with respect to the sys-
tem temperature [12], and the pathological divergence of
dH(λ)/dλ that is often observed at the end points of the
integral when switching between the real and the refer-
ence systems [5, 7, 13, 14]. As such, in general it is
not trivial to find an optimal route for TI for a specific
system.

The free energies associated with crystallographic de-
fects (e.g. vacancies, dislocations, grain boundaries, sur-
faces, etc.) are extremely important in predicting the
micro-structures and the properties of crystalline materi-
als. For example, the free energy of stacking faults is cru-
cial in predicting the dislocation nucleation rate [15], the
free energies associated with different surface reconstruc-
tions determine the surface phase diagram [16], grain
boundary free energy affects the rate of boundary mi-
gration [17]. However, computing the free energies asso-
ciated with the defects is a particularly challenging prob-
lem, which reveals many of the shortcomings of standard
free energy methods. Determining a physical or a vir-
tual transition path to introduce or destroy a defect in-
side a crystal is often complicated, ruling out techniques
such as metadynamics or umbrella sampling. Thermody-
namic integration over λ using a harmonic reference often
leads to divergences at high temperatures, when diffusive
and anharmonic behaviors become dominant [13]. Due
to these difficulties in free energy estimations, the de-
fect free energies are usually approximated by just the
potential energy of defects or by harmonic approxima-
tions [18, 19]. Recently, a number of studies have revealed
significant temperature dependency of the stacking fault
free energy due to entropic effects [15, 20, 21]. It has also
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been shown that vacancy formation energy at high tem-
peratures is strongly affected by anharmonicity [22, 23].
Overall, the community is becoming more aware that the
accuracy of the prediction from the minimum potential
energies may deteriorate at high temperatures.

In this paper we use a combination of thermodynamic
integration methods to compute the Gibbs free energies
associated with crystallographic defects in solid systems.
From discuss an optimized integration route (Figure 1)
that reduces the statistical error, and eliminates potential
sources of divergence in the integration. We also intro-
duce a direct connection between the TI routes under the
canonical (NVT) ensemble and the isothermal-isobaric
(NPT) ensemble, in order to freely transform between
the Helmoltz free energy and the Gibbs free energy of
a system. In addition, we incorporate several enhanced
sampling methods and post-processing techniques to im-
prove the overall statistical efficiency. Using this frame-
work, we then calculate the free energy of a vacancy in
BCC iron and the intrinsic stacking fault free energy in
FCC nickel, iron and cobalt. We quantify the importance
of entropic and anharmonic effects in these representative
systems, demonstrating that they can significantly affect
the free energies of defects in solids at high temperatures.

II. THEORY

The statistical-mechanical expression for the free en-
ergy of a system is closely related to the partition func-
tion, which in turn depends on the thermodynamic
boundary conditions defining the ensemble. Under the
canonical (NVT) ensemble, the partition function of a
bulk system that has N indistinguishable particles and is
contained in a volume V is given by [4, 24]

Q(N,V, T ) =
V N

Λ3NN !

∫
D(V )

dq exp

[
−U(q)

kBT

]
, (1)

where the potential energy U is a function of the atomic
coordinates q = {q1...N}, D(V ) denotes the spatial do-
main defined by the containing volume [4], and Λ =√

2π~2/mkBT is the thermal de Broglie wavelength. The
expression for the Helmholtz free energy of the system is
thus

A(N,V, T ) = −kBT lnQ(N,V, T )

= −kBT ln
V N

Λ3NN !
− kBT ln

∫
D(V )

dq exp

[
−U(q)

kBT

]
,

(2)

where the first term in the last line is the free energy of an
ideal gas. When the isothermal-isobaric (NPT) ensemble
is used instead, the system can be characterized by the

FIG. 1. An illustration of the different thermodynamic in-
tegration routes employed in the present paper. Under the
canonical (NVT) ensemble, the yellow arrow indicates the
switching between an harmonic reference system (λ = 0) and
a real system (λ = 1), and the red arrow illustrates TI with
respect to temperature. The dashed blue arrow shows the
transformation between the Helmholtz free energy and the
Gibbs free energy. The green arrow denotes TI over temper-
ature under the isothermal-isobaric (NPT) ensemble.

Gibbs free energy

G(N,P, T ) = −kBT ln

∫
dV exp

[
− PV

kBT

]
exp

[
−A(N,V, T )

kBT

]
.

(3)

Computing directly the partition function for an arbi-
trary potential is impractical, and for this reason com-
putational routes for evaluating A or G typically use a
reference system for which the phase-space integral can
be computed analytically, followed by one or more ther-
modynamic integration steps. Since TI does not require
a smooth transformation of the atomic coordinates, but
just the evaluation of free-energy derivatives as a func-
tion of a change in the thermodynamic conditions, many
different paths can be used, and combined to obtain the
most efficient protocol.

In the case of a solid system, which is the main focus of
the present work, we found it effective to take a harmonic
crystal reference, and follow the TI routes illustrated in
Figure 1. In a nutshell, for evaluating the Helmholtz free
energy A of a solid system, we propose to first integrate
along λ between the harmonic and the real crystal and
then do an integration with respect to the temperature
T , which correspond to the yellow and the red arrows in
Figure 1, respectively. To calculate the Gibbs free energy
G of the system, we first obtain the Helmholtz free energy
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at a low temperature, switch from the NVT to the NPT
ensemble, and finally do TI along the temperature T (the
yellow, the blue, and the green arrows in Figure 1). In
the following, we discuss in detail how each step can be
computed conveniently and efficiently.

Before we start the detailed discussion, note that in
TI it is advantageous and often necessary to constrain
the center of mass (CM) of the system. The Helmholtz
free energy difference between the unconstrained and the
constrained crystalline system under periodic boundary
conditions can be expressed as [25]

∆Acm(N,V, T ) = −kBT
(

ln
V

N
+

3

2
lnN + ln

1

Λ3

)
, (4)

which can be considered as a finite size effect. Therefore,
when we perform TI we focus solely on systems with fixed
CM, and at the end of the calculation the term ∆ACM can
be added to retrieve the free energy of the unconstrained
system, although at times the influence may be negligi-
ble. We will also discuss in more detail other finite-size
effects in Section II F. In the other sections – since we
will always work under the constant-number-of-particles
framework in TI – we omit N when denoting thermody-
namic states.

A. An absolute reference: the Helmoltz free
energy of the Debye crystal

Strictly speaking, only the relative free energy of a sys-
tem with respect to a reference can be defined without
any ambiguity. The “absolute” free energy in this pa-
per refers to the fact that the free energies of the chosen
reference systems are analytic, and can be meaningfully
compared between distinct reference systems including
those that contain different numbers of particles.

A harmonically-coupled crystal of N atoms with a con-
strained center of mass constitutes a convenient refer-
ence system for a solid (point a in Figure 1). Taking the
phonon frequency for the crystal to be {ωi=1...3N−3}, [26]
one can obtain an expression for the classical free energy
of such a Debye crystal at the temperature T0:

Ah(V, T0) = kBT0

3N−3∑
i=1

ln
~ωi
kBT0

. (5)

Note that from the standpoint of performing thermody-
namic integration, the reference can be any harmonic
crystal that has the same number of particles as the real
system. For instance, one could even take a reference in
which all particles are independently coupled to the lat-
tice sites with a constant spring term (i.e. an Einstein
crystal) [6, 7, 27]. However, for better statistical effi-
ciency, it is better to choose a reference harmonic crystal
that has the same frequency modes and equilibrium con-
figuration as the real crystal, both of which can be deter-
mined for example via local energy minimization followed
by a diagonalization of the Hessian matrix [28].

B. The Helmoltz free energy of an anharmonic
crystal

Starting from a reference crystal (a) with a known free
energy, one can obtain the Helmholtz free energy of the
real crystal (b) using thermodynamic integration in the
NVT ensemble, as indicated by the yellow arrow in Fig-
ure 1. using a parameter λ to perform the switch between
the harmonic Hamiltonian Hh and the actual Hamilto-
nian H. In practice, one should run multiple simulations
with the hamiltonian H(λ) = (1−λ)Hh+λH at different
values of λ, so as to switch between the harmonic Hamil-
tonian Hh and the actual Hamiltonian H [7]. The free
energy of the real system with a fixed CM can then be
evaluated using

A(V, T0)−Ah(V, T0) =

∫ 1

0

dλ 〈U − Uh〉V,T0,λ
, (6)

where 〈. . .〉V,T0,λ
denotes the ensemble average over NVT

simulations using the Hamiltonian H(λ).
In practice, to avoid severe statistical inefficiencies

and singularities in the integral, one should perform this
step at a low temperature T0 when the system is quasi-
harmonic and when diffusive or rotational degrees of free-
dom are completely frozen. If T0 is sufficiently low and
the real and the reference systems are very similar, one
also has the option to evaluate A(V, T0) − Ah(V, T0) us-
ing the free energy perturbation method, eliminating the
integration error altogether. One only needs to run sim-
ulations for the reference harmonic crystal, and obtain
the free energy of the real system using

A(V, T0)−Ah(V, T0) = −kBT0 ln

〈
exp

[
−U − Uh

kBT0

]〉
V,T0,λ=0

,

(7)
where 〈. . .〉V,T0,λ=0 denotes the ensemble average for the
harmonic crystal at T0 and V , and U and Uh denote the
real and harmonic potentials, respectively. Note that in
order to ensure the statistical efficiency of this perturba-
tive approach, the standard deviation of U − Uh has to
be of the order of kBT0 [29].

C. The Helmholtz free energy as a function of
temperature

Thermodynamic integration from a Debye crystal to
the fully-anharmonic potential tends to become very in-
efficient as the temperature increases. For this reason, it
is often useful to perform a thermodynamic integration
with respect to temperature to from a low to a high tem-
perature under the desired thermodynamic conditions.
Let us start by discussing how to perform this step un-
der the NVT ensemble, which is the process indicated
by the red arrow (b to c) in Figure 1. The Helmholtz
free energy of a system that has N atoms and a fixed
CM can be expressed by the well-known thermodynamic
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integration expression

A(V, T1)

kBT1
=
A(V, T0)

kBT0
−
∫ T1

T0

〈U〉V,T + 〈K〉V,T
kBT 2

dT, (8)

where 〈U〉V,T and 〈K〉V,T are the ensemble averages of
the potential energy and the kinetic energy, respectively.

One way to improve the convergence of Eqn. (8) is to
consider that the ensemble average of the classical kinetic
energy of a system that has N atoms and a fixed CM is
analytic: 〈K〉V,T = (3N − 3)kBT/2. Furthermore, one
can also consider that if the potential was harmonic, also
〈U〉 would take the same value. Thus, one can take

〈δU〉V,T = 〈U〉V,T −A(V, 0)− (3N − 3)
kBT

2
(9)

that measures the temperature-dependent anharmonic
part of the potential energy. Note that A(V, 0) =
〈U〉V,0. After performing analytically some of the in-

tegrals, Eqn. (8) becomes

A(V, T1)

kBT1
=
A(V, 0)

kBT1
+
A(V, T0)−A(V, 0)

kBT0

− (3N − 3) ln
T1
T0
−
∫ T1

T0

〈δU〉V,T
kBT 2

dT. (10)

In quasi-harmonic systems, one can further reduce the
variance of the integrand. One can use again the an-
alytical expression for 〈K〉V,T , together with the virial
theorem, to write

(3N − 3)
kBT

2
= 〈K〉 = −1

2

N∑
i=1

〈Fiqi〉 . (11)

Here qi and Fi are the position of atom i and the force
vector acting on it. Since the average force 〈Fi〉 is zero,
one can also add an arbitrary reference position q̂i, and
write [12, 14]

〈δU〉V,T =

〈
U +

1

2

N∑
i=1

Fi(qi − q̂i)

〉
V,T

−A(V, 0) (12)

If the potential energy surface is perfectly harmonic, and
if one take q̂i equal to the equilibrium position of atom i,
it is easy to verify that the virial term would cancel com-
pletely the fluctuations in the potential energy. Even if
the potential is quasi-harmonic, as long as it is not dif-
fusive even at high temperatures, the use of the virial
reference and Eqn. (12) can substantially improve the
statistical efficiency in the estimation of 〈δU〉V,T . How-
ever, when the motion of atoms is strongly anharmonic
or diffusive, an atom can start vibrating around a differ-
ent equilibrium position, and in that case the statistical
efficiency of the straightforward expression Eqn. (9) is
better.

Besides improving the convergence of each tempera-
ture window, one can try to improve the accuracy and

the efficiency of the TI procedure by choosing wisely the
discretization points or, equivalently, by performing a
change of variables that yields a smoother integrand [30].
In this case, it is convenient to perform a change of vari-
ables that ensures that the statistical error in the inte-
grand is roughly constant at all temperatures. Assuming
the temperature dependence of the fluctuations in the
anharmonic potential energy is similar to its harmonic
counterpart, i.e.

〈
δU2

〉
V,T
− 〈δU〉2V,T ∼ T , the required

change of variable is y = ln(T/T0), which transforms the
integral into the form∫ T1

T0

〈δU〉V,T
T 2

dT =

∫ ln(T1/T0)

0

〈δU〉V,T0ey

T0ey
dy. (13)

In other words, one should select temperatures that
are equally spaced in ln(T ) in simulations. Coinciden-
tally, this selection is also optimal for performing replica
exchanges between the systems at different tempera-
tures [31] - which should be done whenever possible as it
will greatly benefit statistical convergence.

Another advantage of performing parallel tempering is
that it requires sufficient overlap between adjacent repli-
cas at temperatures Ti and Ti+1. Under these circum-
stances, 〈U〉V,T for Ti < T < Ti+1 can be evaluated via
re-weighting, such as

〈U〉V,T =

〈
U exp

[
− U

kB

( 1

T
− 1

Ti

)]〉
V,Ti〈

exp
[
− U

kB

( 1

T
− 1

Ti

)]〉
V,Ti

. (14)

The integral in Eqn. (10) can thus be solved analytically
to give an exact (within statistical uncertainty) expres-
sion for the contribution to the integral from the [Ti, Ti+1]
window:

A(V, Ti+1)

kBTi+1
− A(V, Ti)

kBTi
=

− 3N − 3

2
ln
Ti+1

Ti
− ln

〈
exp

[
− U

kB

( 1

Ti+1
− 1

Ti

)]〉
V,Ti

,

(15)

which effectively turns the thermodynamic integration
formalism into a sequence of free energy perturbations,
eliminating completely the integration error.

D. From the Helmholtz free energy to the Gibbs
free energy

More often than not, the isothermal–isobaric ensemble
(NPT) provides a more natural framework to describe
the thermodynamic conditions of real systems than the
NVT ensemble. However, the harmonic crystal (a in Fig-
ure 1) that was used as the absolute constant-volume ref-
erence in previous sections does not extend naturally to
the NPT ensemble because its pressure is not well-defined
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(e.g. the Einstein crystal is a system of independent par-
ticles) [32]. As a result, it is not convenient to perform
TI with respect to λ from the reference crystal to the
real crystal under the NPT ensemble. One way to avoid
NPT simulation involves performing multiple simulations
at different constant volumes, and then computing the
Gibbs free energy and the equilibrium volume of the sys-
tem by evaluating explicitly the integral (3). This is of-
ten done using a harmonic expression for the free energy
at the different volumes, leading to the so-called quasi-
harmonic approximation (QHA) [33, 34]. Alternatively,
the equilibrium volume can be computed by performing
a single NPT simulation at the desired temperature, and
then A(〈V 〉P,T , T ) is used as a proxy for G(P, T ) [32]. In
this section, we argue that the transformation between
the Helmholtz free energy and the Gibbs free energy,
which is the process marked by the dashed blue arrow
in Figure 1, can be conducted rigorously. This process
effectively allows us to convert at will between the two
ensembles when performing thermodynamic integrations
with respect to ensemble temperature.

The expression for the Gibbs free energy of a system
as an integral over the Helmholtz free energy is given by
Eqn. (3). This expression can be combined with that
for the distribution of volume fluctuations for the system
under the NPT ensemble

ρ (V |P, T ) =

exp

[
− PV

kBT

]
exp

[
−A(V, T )

kBT

]
∫
dV exp

[
− PV

kBT

]
exp

[
−A(V, T )

kBT

] , ,
(16)

which is just the normalized probability of observing the
system to have instantaneous volume V in a simulation
under constant P and T. We can then write

G(P, T ) = A(V, T ) + PV + kBT ln ρ (V |P, T ) , (17)

which is valid for arbitrary V .
In practice, one can run NPT simulations for a system

and compute ρ (V |P, T ) just by accumulating the his-
togram of the instantaneous volume of the system. After
that, one can select a volume V , preferably the one that
maximizes ρ (V |P, T ) for the sake of better statistical ef-
ficiency in the determination of ρ (V |P, T ), and compute
A(V, T ) for the same system at that volume using the
route a to b in Figure 1. Finally, the Gibbs free energy
can be obtained applying Eqn. (17).

For a solid system, in order to avoid residual strain and
elastic energy, one can vary the shape of the simulation
cell instead of using a fixed shape in NPT simulations
under a hydrostatic pressure [35]. To account for the
degree of freedom associated with the variable cell, in
this case Eqn. (17) should be modified to read

G(P, T ) = A(h, T ) +P det(h) + kBT ln ρ (h|P, T ) , (18)

where h is a matrix that represents the dimensions of
a simulation cell, and A(h, T ) is the free energy of the
system evaluated at constant cell dimensions.

E. The Gibbs free energy as a function of
temperature

Having converted a harmonic-reference Helmoltz free-
energy to a constant-pressure Gibbs free energy at a given
temperature T0, one can easily perform a thermodynamic
integration over temperature in the NPT ensemble (a
path indicated by the green arrow in Figure 1). For a
system with N atoms and a restricted CM, the expression
reads

G(P, T1)

kBT1
=
G(P, T0)

kBT0
−
∫ T1

T0

〈H〉P,T
kBT 2

dT, (19)

where 〈H〉P,T = 〈U〉P,T +(3N−3)
kBT

2
+P 〈V 〉P,T is the

enthalpy. Starting from this expression, one can apply all
the techniques mentioned in Section II C, for example one
can take

〈δH〉P,T = 〈H〉P,T −G(P, 0)− (3N − 3)
kBT

2
, (20)

where G(P, 0) = 〈U〉P,0+P 〈V 〉P,0. Doing the integration

in Eqn. (19) explicitly leaves

G(P, T1)

kBT1
=
G(P, 0)

kBT1
+
G(P, T0)−G(P, 0)

kBT0

− (3N − 3) ln
T1
T0
−
∫ T1

T0

〈δH〉P,T
kBT 2

dT. (21)

In addition, one can also use the virial theorem
(Eqn. (11)), the change of variable in the integration
(Eqn. (13)), and parallel tempering to further accelerate
the convergence. When performing parallel tempering,
one can eliminate the thermodynamic integration error
by using a free-energy perturbation to compute the in-
crement of G between two replicas at temperatures Ti+1

and Ti:

G(P, Ti+1)

kBTi+1
− G(P, Ti)

kBTi
=

−3N − 3

2
ln
Ti+1

Ti
−ln

〈
exp

[
−U + PV

kB

(
1

Ti+1
− 1

Ti

)]〉
P,Ti

.

(22)

F. Finite size effects

Most of the time, one is interested in computing the
free energy per atom of a bulk, infinite system, or the
excess free energy of a defect in the dilute limit. An
atomistic simulation, however, is inevitably restricted to
a finite system size, which can result in deviations from
the ideal case. Many of these finite-system-size effects
have been documented in the literature. First of all,
in the limit of small system size, the free energy of the
system is not an extensive quantity. Taking the ideal
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gas part of the Helmholtz free energy Aid(N,V, T ) =

−kBT ln
V N

Λ3NN !
in Eqn. (2) for example, one can see

that

Aid(N,V, T )

NkBT
= 1− ln

V

N
+ln

1

Λ3
− lnN

2N
+O

(
1

N

)
(23)

using Stirling’s formula. The leading lnN/N term is a
well-documented finite size effect that reduces to zero in
the thermodynamic limit [25, 36]. The Gibbs free energy
per atomG(N,P, T )/N as well as kBT ln ρ (V |P, T ) /N in
Eqn. (16) also displays a similar dependence on lnN/N .
Constraining the center of mass of the system in simu-
lations also introduces a non-extensive correction to the
free energy,

∆Acm(N,V, T ) = A(N,V, T )−Acm(N,V, T ), (24)

where Acm denotes the Helmholtz free energy of the sys-
tem with fixed center of mass [5, 25]. Fortunately, it
is easy to correct for this part, because the expression
for ∆Acm in Eqn. (4) is analytic and trivial to compute.
More subtle sources of finite size effects come from the
cutoff of potentials, and from the discretization of the
vibrational phonon spectrum due to the size of the su-
percell in simulations [32]. To help with this issue, there
are interpolation techniques that help accelerate the con-
vergence of the computed phonon dispersion relation [37].

It is worth stressing that for system sizes that can be
reached easily in simulations using empirical force fields,
finite-size effects may not be significant. However, one
should always be aware of their presence and check for
system-size convergence, particularly in ab initio calcula-
tions where the number of atoms that can be simulated
is highly restricted. To minimize the impact of finite-size
effects one should always compare free energies between
systems of similar sizes, to benefit for a (partial) error
cancellation.

III. APPLICATION 1: VACANCY FREE
ENERGY

A. Introduction

A vacancy is a type of point defects in a crystal,
in which an atom is removed from one of the lattice
sites. At any given temperature and pressure up to the
solid-liquid coexistence line, an equilibrium concentra-
tion exp [−Gv/kBT ] of vacancies exists, where Gv is the
Gibbs free energy of a vacancy. Often, particularly in
materials produced by fast quenching, a non-equilibrium
concentration of vacancies can persist at low tempera-
ture, which can play an important role in technologically
relevant solid-state transformations [38].

Several experimental techniques including positron an-
nihilation and quenching can be used to characterized
the vacancy formation energy. High temperature exper-
iments and data analyses are however difficult [39]. As

such, when interpretation experimental observations it
is often assumed that the equilibrium concentration of
vacancies follows the Arrhenius law, and that the va-
cancy formation energy is constant across different tem-
peratures [39]. However, molecular dynamics simulations
suggest that the temperature dependence of the vacancy
formation energy can be a complicated one [40].

B. System selection and simulation details

We studied a BCC iron system using a widely used
EAM potential [41, 42]. This potential was fitted with
the BCC vacancy formation energy at 0K but lacks a
thermally stable FCC phase [41, 43]. Iron exhibits phase
transitions between BCC α-iron, FCC γ -iron and a
BCC δ-phase when increasing the temperature at ambi-
ent pressure, which are largely due to the magnetism of
the material [43]. Since the stabilization of the austenitic
phase is due to quantum mechanical effects and this EAM
potential does not reproduce it, we neglect the FCC
phase in the present study, and performed the simula-
tions considering a perfect BCC crystal (250 atoms) and
a BCC crystal with a vacancy (249 atoms). In all the
simulations, the centers of mass of the systems were con-
strained.

At high temperatures, the computation of the free en-
ergy of the crystal with a vacancy is particularly prob-
lematic using the integration over λ in Eqn. (6) due to
the onset of diffusion in simulations [13]. This difficulty is
circumvented here as we performed the integration from
the harmonic crystal to the real crystal at a low tem-
perature T0 =100K and at the equilibrium cell size (the
yellow arrow in Figure 1). This harmonic crystal has
the same phonon modes and Hessian matrix as the real
system [28, 44]. Note that at this step the Helmholtz
free energy of a crystal with a vacancy that sits at a
fixed lattice site is computed, as the vacancy does not
diffuse during the simulations at T0 =100K. After that,
we switched to the NPT ensemble (the blue arrow in
Figure 1), and ran simulations at different temperatures
and zero hydrostatic pressure, using stochastic velocity
re-scaling for temperature control and the anisotropic
Nose-Hoover barostat to vary the dimensions of the or-
thorhombic periodic supercell [45, 46]. During this step,
we obtained the temperature dependence of the free en-
ergies using Eqn. (19) (the green arrow in Figure 1). At
high temperatures, the vacancy does diffuse but diffu-
sion does not change the values of 〈δH〉P,T compared
with the case when the vacancy is fixed at one site, due
to the translational symmetry of the lattice. As such, the
Gibbs free energy of a crystal with a fixed vacancy was
obtained after integration using Eqn. (19).

The absolute Gibbs free energies of the perfect BCC
iron and the crystal with a fixed vacancy are included
in the supplemental material [47], together with all the
detailed procedures, the key data points, annotated input
files and Python notebooks for data analysis.
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C. Gibbs free energy of a vacancy

The Gibbs free energy of a fixed vacancy in the crystal
can be expressed as

Gv = Gvacancy −
Nvacancy

Nperfect
Gperfect. (25)

We used three different methods to estimate this quantity
– namely a minimum-potential energy calculation, a har-
monic free-energy estimate and the fully anharmonic TI
– and plot the results in Figure 2 as a function of temper-
ature. Note that, for a given interatomic potential and
within the statistical errors, the thermodynamic integra-
tion method gives access to the full Gibbs free energy,
and can be considered as the ground truth. The other
commonly used approximations, on the other hand, rest
on different assumptions: the harmonic approximation
method assumes that anharmonicity is negligible, while
the minimum-potential energy method neglects both the
anharmonicity and entropic contributions. By compar-
ing the predictions from these approximation methods to
the accurate values computed using thermodynamic in-
tegration, we can provide a representative benchmark of
the accuracy of these approximations.

The difference between the predictions from the har-
monic approximation and the TI is largely negligible at
low temperatures, but becomes significant when the tem-
perature approaches the melting point 1772K for this
EAM potential system [41]. To investigate whether this
difference stems from a shift in the phonon spectra due
to lattice expansion, or from anharmocity, we analyzed
the vibrational modes {ω′i=1...3N−3} using the equilib-
rium configuration of each system at 1500K, computed
the vacancy free energy under this quasi-harmonic ap-
proximation, and plotted the result as the orange dot in
Figure 2. It can be seen that the harmonic contribution
at 1500K cannot explain the difference, and therefore the
difference is mainly due to anharmonic effects.

IV. APPLICATION 2: STACKING FAULT FREE
ENERGIES

A. Introduction

A stacking fault (SF) is a defect in the planar stack-
ing sequence of atoms in a crystal. While the perfect
stacking for FCC crystals along the [111] direction is
ABC|ABC|ABC|, an intrinsic stacking fault changes the
arrangement to ABC|AB|ABC| as if one plane had been
removed. The stacking fault free energy (γSF) measures
the free energy increase that is associated with the pres-
ence of the intrinsic stacking fault plane. The stacking
fault free energy has a significant effect on the plastic
deformation behavior of crystalline materials. For exam-
ple, metals with a low γSF form more stacking faults and
twins, and more extended partial dislocations which have
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FIG. 2. The Gibbs free energy associated with a fixed vacancy
in BCC iron estimated using potential energy difference (PE)
at 0K, the harmonic approximation (HAR), and the ther-
modynamic integration method that considers anharmonicity
(ANH). QH indicates the quasi-harmonic approximation us-
ing the equilibrium configuration at 1500K. Statistical uncer-
tainties are indicated by the error bars.

reduced mobility [48–50]. Stacking faults also provide a
strong barrier to dislocation gliding [48–50].

The magnitude of the stacking fault energy in FCC
metals as well as how it varies with temperature has
been extensively measured in experiments utilizing a va-
riety of techniques including X-ray diffraction and ob-
serving extended dislocation nodes [51]. It is well-known
that depending on the composition, the temperature de-
pendence of the stacking fault free energy (dγSF(T )/dT )
can exhibit a strongly positive or negative slope [51, 52].
However, this temperature dependence is often neglected
in the atomistic modellings, as quite often the potential
energy difference caused by the stacking fault is used as
a proxy to estimate γSL. In order to investigate the ef-
fect of entropy and anharmonic effects on γSF(T ), and to
benchmark the accuracy of a number of commonly used
approximations, we selected three representative metals
that contain a FCC phase (nickel, iron and cobalt) in
their phase diagram.

B. System Selections

FCC nickel has a high intrinsic stacking fault en-
ergy that has been estimated to be about 130 mJ/m2

at room temperature decreasing to about 86 mJ/m2 at
1333K, corresponding to a slope dγSF(T )/dT of about
−0.04 mJ/m2K [52]. In our simulations described
the Ni-Ni potential with a widely used EAM poten-
tial [42, 53], that however predicts a considerably lower
γSF = 57 mJ/m2 for Ni at 0K. Note that in general there
is a quite substantial variability in the predictions of γSF
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from different EAM potentials for Ni [19].
The magnitude of the stacking fault energy dictates the

mechanical properties of austenitic steels [54]. Accord-
ing to experimental measurements, γSF in various type
of FCC iron based alloys ranges from about 10 mJ/m2

to 100 mJ/m2 at room temperature depending on the
compositions [54]. In contrast, DFT calculations suggest
that γSL in pure fcc iron and Fe-Mn alloys at 0 K are
well below zero [55, 56]. While of course pure FCC iron
is not stable at room temperature, it is interesting to in-
vestigate whether anharmonic and entropic effects play a
role in destabilizing stacking faults at finite temperature.
To simulate pure FCC iron we used the Ackland EAM
potential [57], which predicts a negligible γSF at 0 K.

Cobalt is a transition metal whose equilibrium crys-
talline structure is hexagonal close packed (HCP) below
700K and FCC above this temperature. Metastable FCC
Co was found to exist at low temperatures [58]. Exper-
imental measurements suggest that γSL in HCP cobalt
increases from −30 mJ/m2 to −18 mJ/m2 at temper-
atures from 273K to 700K, and γSL in FCC cobalt in-
creases from 10 mJ/m2 to 20 mJ/m2 at temperatures
from 700K to 1000K with a positive the temperature
dependence around 0.03 mJ/m2K [51]. In the simula-
tions, we employed a newly developed EAM potential
for Co that reliably reproduces many physical proper-
ties of both HCP and FCC cobalt, including the phase
transition temperature [59].

Although we have found a number of good agreements
between simulation predictions and experimental obser-
vations, we want to caution that the empirical EAM po-
tentials may lack quantitative predictive power regarding
the free energies of different structures and phases. For
instance, different EAM potentials usually yield quite di-
vergent estimates for the stacking fault energy, and a
comprehensive comparison between them together with
a few DFT results can be found in Ref. [19]. As such,
the purpose of these simulations is to quantify the im-
portance of entropic and anharmonic effects on γSF for
representative metallic systems rather than attempting
a direct prediction of experimental values, which would
require a more reliable description of interatomic forces.
Nevertheless, this work can be seen as a stepping stone
in that direction, providing an optimized thermodynamic
integration framework that can be combined with DFT
or machine-learning potentials.

C. Simulation details

For each pure metal we selected (Ni, Fe and Co),
we performed the simulations of a perfect FCC crystal
and of a FCC crystal with a stacking fault layer sepa-
rately. The perfect FCC crystal used in simulations has
12 layers of {111} planes, and a total of Nperfect = 1440
atoms. The defective crystal has 11 layers with the stack-
ing ABC|ABC|AB|ABC|, and a total of Nsf = 1320
atoms. We calculated separately the Gibbs free energy

for both systems. The centers of the mass of the systems
were constrained in all the simulations. All the detailed
procedures and the key data points used in the calcu-
lations are included in the supplemental material [47],
along with annotated input files and Python notebooks
for data analysis for the case of Ni. In brief, we first
computed the Helmoltz free energy of a real system at
T0 =90K by thermodynamic integration with respect to
λ starting from a reference system using Eqn. (6). The
reference system is a harmonic crystal that has the same
phonon modes and the Hessian matrix as the real sys-
tem at the minimum potential energy [28, 44], and the
simulation cell is kept constant at the equilibrium size
of the real system at 90K. Afterwards, at temperatures
that are equally spaced in ln(T ), independent molecu-
lar dynamics simulations were performed under the NPT
ensemble with zero external stress [45, 46], in order to
compute the anharmonic contributions 〈δH〉P,T and em-
ploy thermodynamic integration with respect to T using
Eqn. (21). We also found the use of the virial theorem to
significantly reduce the fluctuations in the estimation of
〈δH〉P,T when we select q̂ to be the equilibrium position

of the atoms in Eqn. (12).

D. Stacking fault free energy estimations

The free energy excess (γSF ×Area) that is associated
with the stacking fault plane with a surface area equal
to the cross section of the simulation supercell is just the
difference between the free energies of a crystal with a
stacking fault and a perfect bulk FCC crystal that have
the same number of atoms:

γSF ×Area = Gsf −
Nsf

Nperfect
Gperfect. (26)

The results obtained for pure FCC Ni, Fe and Co, us-
ing the three different methods to estimate γSF(T ), are
compared with each other in Figure 3. Let us reiterate
that while the shortcomings of the inter-atomic poten-
tial prevent a direction validation of different methods
against experiments - which can be in themselves affected
by large uncertainties. Our main objective here is to
benchmark different approximation against the thermo-
dynamic integration results, which are the correct free-
energetic estimates for a given potential.

For nickel, we found the estimations from just the po-
tential energy at 0K and the harmonic approximation
are only accurate at very low temperatures. The pre-
diction of the quasi-harmonic approximation using the
equilibrium configuration at 1408K is more accurate than
the harmonic approximation, but still differs by almost
50% from the fully anharmonic result. The inclusion of
all the entropic and anharmonic effects dramatically de-
creases the stacking fault free energy at high temper-
atures, and the temperature dependence dγSF(T )/dT is
about −0.03 mJ/m2K over a wide range of temperatures.
This example on nickel highlights the peril of only using
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the 0K potential energies to predict γSL(T ), which over-
estimates the magnitude of the stacking fault free energy
by almost 300% at T >1200K.

For FCC iron, the potential energy method, the har-
monic approximation and the quasi-harmonic approxi-
mation all predict a negligible stacking fault energy at
all temperatures. However, the anharmonic effects in-
crease the stacking fault energy at higher temperatures,
which was only captured by the thermodynamic integra-
tion method. This example suggests that anharmonicity
can have a significant contribution on γSF at finite tem-
peratures, and this contribution may help explain the
discrepancy between the DFT calculations at 0K [55, 56]
and the experimental measurements at higher tempera-
tures [54].

For FCC cobalt, the stacking fault free energy is nega-
tive at temperatures below 700K, indicating that a HCP
to FCC phase transformation will happen at 700K. This
result is consistent with both the EAM potential em-
ployed and the experimental data [59]. The harmonic
approximation also predicts the occurrence of such phase
transition but fails to reproduce the correct transition
temperature. The prediction of the quasi-harmonic ap-
proximation is quite close to the thermodynamic inte-
gration result, indicating the influence from lattice ex-
pansion is probably the main culprit in the failure of
the harmonic approximation method at high tempera-
tures. Overall, γSF(T ) for FCC cobalt predicted from
thermodynamic integration using the EAM potential [59]
finds very good agreement with experiments [51], which
is probably due to the fact that this potential has been
specifically fitted to model the HCP to FCC transition.

V. CONCLUSIONS

The thermodynamic integration method, while being
an exact and well-established free energy method widely
used in statistical physics and chemical physics, is rarely
applied in some of the fields of solid-state physics such
as metallurgy. In the present study we discuss how to
construct an effective protocol to compute the fully an-
harmonic Gibbs free energy in solids, with a particular
focus on defects in in crystals.

In order to minimize the statistical error and to avoid
numerical instabilities, we combined a number of ther-
modynamic integration routes, in a way that makes the
best use of the similarity between a crystalline system
and a harmonic Debye crystal at low temperatures, and
at the same time fully take into account the anharmonic
effects. Furthermore, we discuss how to convert between
free energy values estimated under constant-volume and
constant-pressure thermodynamic ensembles, and incor-
porate several techniques to enhance the efficiency and
accuracy of free energy estimation. In the supplementary
materials [47], we have included all the input files, work-
flows, and data analysis routines that were employed to
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FIG. 3. The area-specific stacking fault free energy for pure
FCC Ni, Fe and Co as a function of temperature. The black
lines are the estimations from potential energy difference at
0K, the blue curves represent the harmonic approximation
(HAR), and the red dots show the results from the ther-
modynamic integration method that considers anharmonic-
ity (ANH). QH indicates the quasi-harmonic approximation
using the equilibrium configuration at the corresponding tem-
perature and zero pressure. Statistical uncertainties are indi-
cated by the error bars.

produce the results discussed in the present paper, hoping
to encourage and facilitate future efforts that aim to use
thermodynamic integration methods to accurately pre-
dict the defect concentrations, phase diagrams, or any
of the many materials properties that are determined by
the Gibbs free energy.

The key merit of the thermodynamic integration
method is that it does not rely on any approximations
aside from the those underlying the interatomic poten-
tials. For this reason, it can also be used as a benchmark
for other approximation methods such as quasi-harmonic
approximations, self consistent phonons [60–62], or the
Greens function approach [63], that are often the only vi-
able option when one uses expensive electronic-structure
methods to compute more accurate potentials. When
needed, e.g. when the system contains light nuclei, it is
also possible to include the oft-neglected quantum nu-
clear effects by using path-integral molecular dynamics
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and adding an extra TI route from the classical to the
quantum mechanical system [9, 64].

To demonstrate the importance of anharmonic and en-
tropic effects in solids we computed the free energy of a
vacancy in BCC iron, and the stacking fault free energy
of pure FCC nickel, iron and cobalt. In all the cases, we
found that both entropic and anharmonic effects play an
important role in the free energy of defects at high tem-
peratures. In the case of the stacking fault energies in
iron and cobalt, the potential energy minima or the har-
monic approximations yield qualitatively wrong results.
The case of cobalt deserves particular attention, since
the potential is fitted to reproduce the HCP/FCC phase
transition, and can be expected to be accurate in describ-
ing the SFE. The full TI treatment predicts a change in
sign of the SFE close to the experimental temperature
of the phase transition, whereas the harmonic approxi-
mation underestimates the temperature by almost 200K.
Our findings suggest that, in order to accurately predict
the stablities of defect in crystals at high temperatures,

not only a high quality interatomic potential is required,
it is also necessary to employ accurate free energy meth-
ods that considers entropic and anharmonic effects. The
thermodynamic integration framework that we discuss
can be used together with a reliable potential surface to
provide accurate predictions, or together with a compu-
tationally inexpensive empirical potential to gauge the
significance of anharmonic effects in a system.
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