
Scrub: Online TroubleShooting for Large Mission-Critical
Applications

Arjun Satish
Turn Inc.

Thomas Shiou
Turn Inc.

Chuck Zhang
Turn Inc.

Khaled Elmeleegy*

Oracle Cloud
Willy Zwaenepoel

EPFL

ABSTRACT

Scrub is a troubleshooting tool for distributed applications that oper-
ate under strict SLOs common in production environments. It allows
users to formulate queries on events occurring during execution in
order to assess the correctness of the application’s operation.

Scrub has been in use for two years at Turn, where developers
and users have relied on it to resolve numerous issues in its online
advertisement bidding platform. This platform spans thousands of
machines across the globe, serving several million bid requests
per second, and dispensing many millions of dollars in advertising
budgets.

Troubleshooting distributed applications is notoriously hard, and
its difficulty is exacerbated by the presence of strict SLOs, which
requires the troubleshooting tool to have only minimal impact on
the hosts running the application. Furthermore, with large amounts
of money at stake, users expect to be able to run frequent diagnos-
tics and demand quick evaluation and remediation of any problems.
These constraints have led to a number of design and implementa-
tion decisions, that go counter to conventional wisdom. In particular,
Scrub supports only a restricted form of joins. Its query execution
strategy eschews imposing any overhead on the application hosts. In
particular, joins, group-by operations and aggregations are sent to
a dedicated centralized facility. In terms of implementation, Scrub
avoids the overhead and security concerns of dynamic instrumen-
tation. Finally, at all levels of the system, accuracy is traded for
minimal impact on the hosts.

We present the design and implementation of Scrub and contrast
its choices to those made in earlier systems. We illustrate its power by
describing a number of use cases, and we demonstrate its negligible
overhead on the underlying application. On average, we observe a
maximum CPU overhead of up to 2.5% on application hosts and a 1%
increase in request latency. These overheads allow the advertisement
bidding platform to operate well within its SLOs.

*This work was done when the author was at Turn Inc.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
EuroSys ’18, April 23–26, 2018, Porto, Portugal

© 2018 Association for Computing Machinery.
ACM ISBN 978-1-4503-5584-1/18/04. . . $15.00
https://doi.org/10.1145/3190508.3190513

CCS CONCEPTS

• Information systems Query languages; • Applied comput-

ing; • Computer systems organization Distributed ar-

chitectures; Real-time systems; Dependable and fault-tolerant

systems and networks;

KEYWORDS

Scrub, Advertising, Mission Critical, Big Data, Query Processing,
Troubleshooting, Debugging, Distributed Systems.

ACM Reference Format:

Arjun Satish, Thomas Shiou, Chuck Zhang, Khaled Elmeleegy, and Willy
Zwaenepoel. 2018. Scrub: Online TroubleShooting for Large Mission-Critical
Applications. In EuroSys ’18: Thirteenth EuroSys Conference 2018, April

23–26, 2018, Porto, Portugal. ACM, New York, NY, USA, 15 pages. https:
//doi.org/10.1145/3190508.3190513

1 INTRODUCTION

Modern online applications, such as web search engines, social
networks and online advertising platforms, serve billions of requests
per day. To guarantee revenue streams, they must be always-on and
respond to user requests within very tight SLOs. The complexity
of these applications is staggering. Thousands of geographically
distributed machines cooperate to maintain a very large internal
state. This state is updated constantly, and the application itself is in
constant flux, due to frequent new software rollouts.

Turn’s online advertisement bidding platform is one example of
such a complex system. Many thousands of machines serve millions
of bid requests per second. New advertising campaigns, changes to
existing ones, requests for bids on ad space, user clicks on ads all
trigger updates to the state of the system. Bug fixes, new features, and
introduction of new ad targeting models cause frequent new software
rollouts. Within such a complex system problems occur all the time.
New versions of the software often introduce bugs. Erroneous user
input may lead to misconfiguration of advertising campaigns. With
often millions of dollars at stake, problem resolution must be quick.

Scrub is a new troubleshooting tool for large mission-critical
distributed applications, that we use in production on Turn’s adver-
tisement bidding system. Much like similar tools, Scrub allows users
to specify SQL-like queries on the events in the system in order to
assess its correct operation. Scrub is used by both developers and
users, so the queries are quite diverse, and query load can at times be
considerable. The key design goal of Scrub, and what distinguishes
it from existing systems, is minimal interference with the applica-
tion, even under high query load. Under no circumstance should the
operation of Scrub cause the bidding platform to violate its SLO.
Any monitoring inevitably puts some load on the machines where

EuroSys ’18, April 23–26, 2018, Porto, Portugal A. Satish et al.

the application runs, but Scrub strives to minimize any impact it may
have on the application.

To this end we have designed a new query language that avoids
costly operations that are seldom used, and trades, when necessary,
accuracy for minimal impact. We also go counter to traditional query
optimization, which optimizes for query execution time, typically by
performing as much of the query as close to the data as possible [29].
Instead, our query execution strategy reduces as much as possible
impact on the hosts. Most of the query execution and in particular
all join, group-by and aggregation activity takes place in a dedicated
centralized engine, ScrubCentral. The only query activity that takes
place on the hosts is projection and selection, which serve to reduce
the amount of data that needs to be sent by the hosts to ScrubCentral,
thereby further reducing impact on the host.

The question then becomes whether under these constraints one
can build a troubleshooting engine that remains sufficiently expres-
sive to allow users to troubleshoot real problems, and is performant
enough, in terms of throughput and latency, to allow expedient prob-
lem resolution. Our experience is that this is indeed possible. Our
query language efficiently supports most SQL operators, and we
illustrate its power by describing a number of use cases in which
Scrub was used to quickly discover issues.

Our work was in large part motivated by the fact that logging [31,
37, 38, 43, 44, 46] – in practice is still the most common trou-
bleshooting technique for distributed systems – is inadequate for our
environment. With events containing hundreds of fields being pro-
duced at a very high rate, the amount of storage needed for logging
quickly becomes prohibitive, leading to difficult questions about
what to log and what not, with no good answers. Moreover, offline
log analysis is computationally expensive and implies unacceptable
delays in problem resolution.

Recognizing the issues with logging, a number of recent research
works have developed online troubleshooting systems [9, 12–14, 22,
23, 30, 35, 39, 40]. The principal differences between Scrub and
these other systems derive directly from differences in objectives.
Scrub aggressively minimizes impact on the hosts, an objective that
is essential in production systems.

The contributions of this paper are:

(1) The design and implementation of a troubleshooting tool for
distributed applications that minimizes impact on the hosts
running the application, and is therefore suitable for use in
production environments with stringent SLOs.

(2) A query language and a query execution strategy that achieve
the goal of low impact on the application hosts.

(3) The evaluation of Scrub in terms of expressiveness and per-
formance.

The outline of the rest of this paper is as follows. Section 2
presents our design philosophy. Section 3 describes the Scrub query
language. Section 4 shows how query execution is carried out in
Scrub. Section 5 covers some implementation aspects. Section 6
compares the design and implementation decisions in Scrub to al-
ternative strategies. Section 7 describes Turn’s online advertisement
bidding platform. Section 8 presents six use cases of Scrub at Turn.
Section 9 explores some performance aspects of Scrub. Section 10
provides a summary of related work, and we conclude in Section 11.

2 DESIGN PHILOSOPHY

Like in earlier systems [22, 35], monitoring in Scrub takes the form
of formulating and executing high-level queries over events defined
and generated by the application under study. Scrub provides an
API for the application developer to define and generate events, and
supports a query language for the troubleshooter to express queries
over these events.

Scrub is intended for use in mission-critical systems with very
stringent SLOs, in which even minor disruption can cause the sys-
tem to miss its SLO. As a result, Scrub’s primary goal is to impose
only minimal overhead on the running system, if need be at the
expense of other, more common goals in troubleshooting systems,
such as expressivity of the query language, query execution perfor-
mance, or accuracy. This singular focus on minimizing impact on
the monitored system is the primary differentiator between Scrub
and earlier systems for troubleshooting, and is essential if the system
is to be used in production environments with stringent performance
demands.

While Scrub also strives for these other qualities such as query
expressivity, performance and accuracy, it does so only to the extent
that they do not interfere with its primary goal of not impacting
the monitored system. Scrub’s query language is sufficiently expres-
sive to diagnose complex issues in large distributed systems, but
constructs that may impose considerable overhead on the running
system are discarded from the language. On the contrary, the query
language incorporates facilities that allow Scrub to reduce its impact
on the target system. Furthermore, as much money is at stake in
these mission-critical systems, we want problem resolution to be
expedient, and therefore Scrub strives for good query performance,
but only to the extent that achieving good query performance does
not have an adverse impact on the monitored system. Finally, query
results must be sufficiently accurate to allow correct problem diag-
nosis, but Scrub allows a degree of inaccuracy. Our experience with
Scrub is that any concessions we have made in terms of expressivity,
performance and accuracy have had only minor consequences on its
ability to support efficient troubleshooting.

In the next two sections we describe how this singular focus on
minimal impact on the application hosts permeates the design of the
query language and the query execution model.

3 QUERY LANGUAGE

Scrub allows troubleshooters to formulate queries over events de-
fined and generated by the application that is being monitored. We
first describe event definition and then the query language.

3.1 Events

An event in Scrub is an n-tuple of user-defined fields. In addition,
Scrub annotates events with two system fields, a unique request
identifier and a timestamp. The size of this metadata is bounded
and is kept to the minimum necessary to support equi-joins and
windowing.

The definition of an event takes two arguments: the event type (a
string label), and a list of fields and their data types. Scrub supports
fields of types: boolean, int, long, float, double, date/time, string,
and homogeneous lists of these primitive types. In addition, Scrub

Scrub: Online TroubleShooting for Large Mission-Critical Applications EuroSys ’18, April 23–26, 2018, Porto, Portugal

@ScrubType("bid")

public class ScrubBid

{

@ScrubField("exchange_id")

private final long exchange_id;

@ScrubField("city")

private final String city;

@ScrubField("country")

private final String country;

@ScrubField("bid_price")

private final double bid_price;

@ScrubField("campaign_id")

private final long campaign_id;

// business logic

// ...

}

Figure 1: Event type definition for bid event in the Turn bidding

system.

also supports nested objects, e.g., XML encoded objects. Other data
types can be added as the system evolves.

Figure 1 shows the definition of a bid event type, corresponding
to a bid response sent back to an online ad exchange in Turn’s online
bidding system. The definition uses Java annotations to declare the
fields of an event type.

The application defines where in the code an event of a certain
type can be generated by means of a Scrub API log() call.

3.2 Query Language

Scrub users write SQL-like queries, including selection, projection,
join, grouping and aggregation operations. The query specifies the
event types used in the query, and refers to the fields of those event
types. The query may include a time window. Otherwise, a default
window is used. Currently, only tumbling windows are supported,
but Scrub can easily be extended to allow sliding windows. Scrub
supports common aggregation functions such as MIN , MAX , AVG,
SUM , and COUNT , and probabilistic aggregation functions such as
TOP-K , using the space saving stream summary [36], and cardinality
counts, such as COUNT_DIST INCT , using hyperloglog [27].

In addition to the above, Scrub uses additional constructs to ex-
press the following concepts:
• Query span: Unlike traditional streaming queries, which are

everlasting, Scrub queries have a finite timespan, specified by
the start and the duration keywords. Both have default
values if no explicit values are given in the query. The times-
pan guards against users forgetting to end their queries after
a troubleshooting session is finished, and avoids overloading
the target system with queries no longer of interest.
• Target hosts: A Scrub query can specify the set of machines

from which the query is to collect events. This set can include

all machines, machines from a given list, or machines per-
forming a certain service. Filters can be applied to a set, e.g.,
clients in the AdServers service that reside in the San Jose
data center. Putting this construct in the language instead of,
for instance, using a selection on the host name, allows Scrub
to limit the execution of the query to the specified hosts, again
reducing the load on the target system.
• Sampling: Two types of sampling are supported: sampling

on the set of hosts, and sampling on the events on a given
host. Both types of sampling can be used in combination
with each other. Sampling reduces the load on the hosts in
the target system if the query touches many events. The sam-
pling rate is configurable, providing the possibility of trading
accuracy for performance in a tunable fashion. Similar to
ApproxHadoop [25], error bounds can be obtained through
multi-stage sampling theory.
For example, to compute an approximate sum, we randomly
select n machines, and then randomly selectmi events from
each chosen machine i. The sum is computed according to
Equation 1, and the error bound according to Equations 2
and 3, where s2i is the variance of readings at machine i,

τ̂ =
N

n

n
∑

i=1

*.
,

Mi

mi

mj
∑

j=1

vi j
+/
-
± ε (1)

ε = tn−1,1−α /2

√

V̂ ar (τ̂) (2)

V̂ ar (τ̂) = N (N − n)
s
2
u

n
+

N

n

n
∑

i=1

Mi (Mi −mi)
s
2

i

mi
(3)

Figure 2 shows some example Scrub queries used in the Turn
bidding system.

4 QUERY EXECUTION

Execution of a Scrub query can span thousands of machines in many
data centers across the globe. Scrub’s primary query optimization
goal is minimizing impact on the hosts of the target system. To
achieve this goal, Scrub departs from the conventional query op-
timization strategy of moving operations as close as possible to
the data or to where the data is generated. In particular, the join,
group-by and aggregation operations are carried out in a dedicated
central facility, ScrubCentral, and not on the hosts. Only selection
and projection happen on the host, because they reduce the amount
of data to be sent to ScrubCentral.

Figure 3 shows the steps in the execution of a Scrub query. The
user submits a query formulated in the Scrub query language to
the Scrub query server. The server parses and validates the query,
generates a unique query identifier, and then creates a number of
query objects tagged with this unique query identifier. A query
object representing the selection and projection operators is sent to
the hosts involved in the query, where it activates data collection,
including selection and projection. The resulting events are then
sent to ScrubCentral. Another query object representing the join,
group-by and aggregation operators is sent to ScrubCentral, where
the final query result is computed. The numbers on the arrows of
Figure 3 show the typical execution order.

EuroSys ’18, April 23–26, 2018, Porto, Portugal A. Satish et al.

in the bid response to the exchange. The above transaction has to
complete in under 20 milliseconds, so that the ad can be shown to
the user in time.

Finally, when an ad is shown or a user interacts with it, an event
is sent to Turn’s PresentationServers, which record it the user’s
profile in the ProfileStore, and log it in Turn’s data warehouse for
subsequent analytics.

Scrub is integrated with the BidServers, the AdServers, the Pre-
sentationServers and the ProfileStore. Tens of Scrub event types are
defined. We have already seen in Figure 1 the bid response event
type generated at the BidServers. In the use cases described in Sec-
tion 8 we use additional event types, such as auction and exclusion
events, generated at the AdServers, and impression and click events,
generated at the PresentationServers.

8 CASE STUDIES

8.1 Spam Detection

Spam is a serious problem in online advertising. A common example
is bots faking ad views or clicks. DSPs try hard to protect their cus-
tomers (advertisers) from such attacks. The challenge is to promptly
identify the offending entities and shut them down.

In one particular incident, we suspected spam bid requests. A
common spamming technique is to have bots simulating page views
at high frequency, resulting in bid requests to show ads for these fake
page views. We ran Scrub query in Figure 9 on one of the BidServers
for 20 minutes, grouping bid requests by user identifier and counting
the number of bid requests received from each user within tumbling
windows of 10 seconds. Figure 10 visualizes the results, after some
post-processing, in a three-dimensional plot. In the x-axis we have
time, divided in 10-second windows, and in the y axis we have the
logarithm of the number of bid requests received during that interval.
The size of the dots reflects the number of users making that number
of requests in the given window. There is a high density of large dots
at one bid request per interval. In fact, in every time window, about
half of the users issue a single bid request. Some users have multiple
bid requests in the same time window, because many web pages show
multiple ads. Nevertheless, the number of bid requests per user per
window decreases exponentially. Moreover, most users issue a single
batch of bid requests during the experiment’s 20-minute duration,
reflecting a single web page view. Some users have two batches,
representing two page views, which remains consistent with human
user behavior. Two users, however, exhibited a very abnormal pattern.
One of these users is represented by the red triangles in Figure 10
and the other by black crosses. These users sent very large batches
of bid requests at a high frequency. We concluded that these are bots,
not human users. Consequently, we quickly blacklisted these users,
stopping any ads from being served to them.

To demonstrate Scrub’s effectiveness, we contrast using Scrub
with the traditional way of tracing this problem using logging. Since
queries are not known a priori, all data would need to be logged.
Moving all this data over cross-continental links to a centralized
location for analysis would be very costly, retaining it for any length
of time even more so. To run the above query in batch mode on 20
minutes worth of data would require a large Hadoop cluster. The cost
of doing so limits the number of queries that can be run in a given
amount of time. While the query is running, the problem persists,

Select bid.user_id, COUNT(*)

from bid

@[Service in BidServers and Server = host1]

group by bid.user_id;

Figure 9: Query used to troubleshoot spam bots.

accumulating financial losses as a result. In contrast, with Scrub
the problem as well as the offenders were detected very quickly,
allowing for prompt corrective action. Moreover, only a small Scrub-
Central cluster was needed to execute this query, making it very
cost-effective.

8.2 Validating New Ad Exchanges

Over time new ad exchanges join the online advertising ecosys-
tem. DSPs integrate with these new exchanges as they come up.
After integration, the DSPs verify that the integration went well,
by monitoring key metrics, such as the number of bid requests and
impressions received and the amount of budget spent.

Figure 11 demonstrates a query used for this purpose. It counts
the number of impressions per exchange. Since only statistical and
not exact total information is required, the query samples 10% of the
impression events in 10% of the PresentationServers in data center
DC1.

Figure 12 shows the result of executing this query during a time
interval in production when a new ad exchange came online. The
x-axis shows time measured in seconds, and the y-axis shows the
number of impressions served from four exchanges A, B, C, and D

aggregated over 10-second windows. Exchange A was introduced at
time 550. From that time on, we see a large number of impressions
served by D, indicating a healthy integration.

This experiment demonstrates the effectiveness of Scrub in getting
realtime results from the bidding platform, while in production. Even
though the platform is distributed across the globe, Scrub was able
to quickly validate the correctness of the integration with the new
exchange.

8.3 A/B Testing of Ad Targeting Models

This experiment demonstrates the effectiveness of Scrub for A/B
testing in production. Specifically, we ran a new ad targeting modelA
on a subset of machines, and used Scrub to measure its effectiveness
against the incumbent model B running on the remaining machines.
Ad targeting models try to target the right users for a particular ad, for
instance seeking to optimize the Click Through Rate (CTR), while
keeping the cost per impression constant. The CTR is defined as the
fraction of clicks on an ad per impression. The cost per impression
is usually measured by the industry-standard CPM value, the cost
per thousand impressions. We ran the Scrub queries in Figures 13
and 14, each computing the daily average CPM and CTR values for
a particular ad, with one query targeting the servers running model
A and the other targeting the servers running model B. Figure 15a
shows the measured CPM for both models, and Figure 15b shows
the CTR. B achieved higher CTR than A, while keeping the CPM
more or less the same, which is exactly what was desired.

EuroSys ’18, April 23–26, 2018, Porto, Portugal A. Satish et al.

Select 1000*AVG(impression.cost)

from impression

where impression.line_item_id = id

@[Servers in (list)];

Figure 13: Query template used to support A/B testing of ad

targeting models by computing the CPM of different models. id

is the line item of interest, and list is a parameter used to select

the set of machines running the desired model, i.e., A or B.

Select COUNT(*)

from event

where event.line_item_id = id

@[Servers in (list)];

Figure 14: Query template used to support A/B testing of ad tar-

geting models by computing the CTR of different models. event

is either clicks or impressions, id is the line item of interest, and

list is a parameter used to select the set of machines running the

desired model, i.e.,A or B. The CTR is computed by dividing the

count of clicks by the count of impressions.

In this template, queries run at the BidServers and AdServers in
DC1. The query template equi-joins events belonging to the same
request, but one event type (bid) is generated at the BidServers
and the other (exclusion) is generated at the AdServers. Selection
on the set of fields A allows us to narrow down the results, For
instance, selecting on bid.exchange_id gives us results for bids from
a particular exchange. Figure 16 shows production results about
the number of occurrences of line item exclusions for a particular
exchange and a publisher. These distributions are then compared to
corresponding distributions of well-behaved line items to identify
anomalies.

This case study illustrates Scrub’s scalability. At any given time,
there are usually several tens of thousands of active line items. The
vast majority of them do not pass the filtering process. Hence, every
bid request produces tens of thousands of exclusions. If logging were
used, it would result in a enormous data set. Similarly, if baggage
propagation were used, the baggage would have to include all these
exclusions and pass them from the AdServers to the BidServers. In
contrast, Scrub queries the needed data on demand.

8.5 Line Item Cannibalization

After passing the filtering phase, line items go through an internal
auction. There, using machine learning models, line items are as-
signed scores predicting how likely the user is to interact with their
ad. Based on the scores as well as on a preconfigured advisory bid
price for each line item, a winner is chosen and sent in the bid re-
sponse. The bid price used in the bid response is based the advisory
price, but adjusted depending on the score. Hence, in practice, the
bid prices for a line item winning an internal auction move in a
narrow band around the preconfigured advisory price.

If two line items, A and B, have similar targeting criteria, they are
likely to pass the filtering phase together and compete in the auction.

If A has a significantly higher advisory bid price, its entire band
of bid prices is likely to be higher than B’s entire price band. As a
result, A ends up having precedence over B, “cannibalizing” it by
preventing it from making bids and hence having a chance to show
its ad. These conditions are hard to detect at campaign creation time
as different line items may be created by different people. Moreover,
even if the targeting criteria of two line items look different, they
may act similarly, because the differences may be inconsequential
for the user population in the bid requests. These situations need to
be detected at runtime to make prompt corrective actions.

To give a concrete example, one advertiser reported that one of its
line items λ was not serving ads, even though it had budget and fairly
relaxed targeting criteria. After studying the exclusions to verify that
it was not being excluded at the filtering phase, we ran the query in
Figure 19 to investigate a possible cannibalization scenario.

An event of type auction is generated by the AdServers for every
internal auction. An auction event includes the list of line item iden-
tifiers participating in the auction, each with its bid price. Impression
is an event type generated by the PresentationServers, after the ad
has been served to the user. Hence, it includes the identifier of the
line item that won both the internal and external auctions. The query
identifies line items winning at an internal auction, where λ is a par-
ticipant. For each line item, the query computes the number of times
it won and its average winning bid price. Figure 18 plots the output
of this query running for an hour in production. Figure 18a shows the
number of times a line item wins the auction, while Figure 18b gives
the average winning bid prices for the corresponding line item. We
noticed that λ advisory bid price was much lower than all winning
bid prices in the auctions in which it participated, explaining its
cannibalization. In response, we bumped up its advisory bid price,
and immediately it started delivering ads.

This case study demonstrates Scrub’s effectiveness in realtime
troubleshooting as well as in scalability. It was critical to detect the
problem promptly to allow the campaign to meet its goals in the
desired time frame. In terms of scalability, logging auction events
with information about all line items participating in the auction for
every bid response would have been prohibitively expensive given
the sheer volume of data it would entail.

8.6 Incorrectly Set Field

Contrary to the previous case studies that troubleshoot campaign
performance, in this case a software developer was debugging a
software problem. A Turn customer had configured a campaign to
show ads with a maximum frequency of one ad per user per day.
Using Turn’s campaign reporting and analytics tools, the customer,
however, noticed that some users received ads at higher frequencies.

Turn’s platform records in the user’s profile in the ProfileStore the
number of times an ad has been served to this user. Since each bid
request includes the user identifier, whenever a user is served an ad,
the count for this ad for this user is incremented. This information is
then used in the filtering phase for subsequent bid requests. When
a new bid request is received, line items whose ads have met their
frequency caps are filtered out. Since we had not made any changes
in the code for maintaining these frequencies, we suspected that
the problem resulted from erroneous input data. If, for instance, a

EuroSys ’18, April 23–26, 2018, Porto, Portugal A. Satish et al.

None of this applies to streaming though. Conversely in Scrub, inputs
are sampled, either by sampling the data sources or sampling records
per source.

Kodiak [34] provides a platform to process high-dimensional,
large-scale event data. Its primary use case was online advertising
too. However, it was targeting offline analytics and hence relied on
batch processing.

11 CONCLUSIONS

Scrub is an online troubleshooting tool for large-scale distributed
applications that operate under tight SLOs common in production
environments. This environment imposes on the troubleshooting tool
the requirement that it only minimally impacts the hosts on which
the application runs. This requirement is reflected in Scrub’s design
and implementation in a number of ways. Joins in its query language
are restricted to equi-joins on a request identifier. Query execution
is largely performed in a centralized entity, and not on the hosts.
Where necessary, accuracy of the query results is traded for minimal
impact on the hosts.

At the time of writing, Scrub has been in production use for two
years with Turn’s ad bidding platform. Given the large amounts of
money at stake in this application, users demand quick problem
detection and resolution. Offline analysis of logs is not an option in
this environment.

This paper presents Scrub’s architecture, explains its design choices,
and describes its integration in Turn’s ad bidding platform. We
demonstrate its power by presenting a number of use cases where
complex problems were quickly resolved with Scrub’s help. Further-
more, we show that Scrub has negligible impact on the application
hosts.

ACKNOWLEDGEMENTS

We would like to thank the anonymous reviewers, our shepherd
Rodrigo Fonseca, Maria Borge, Pamela Delgado, Diego Didona,
Florin Dinu, Manos Karpathiotakis, Christoph Koch, and Baptiste
Lepers for their valuable feedback.

REFERENCES
[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar Ramaswamy.

1999. The Aqua Approximate Query Answering System. In Proceedings of the

1999 ACM SIGMOD International Conference on Management of Data (SIGMOD

’99). ACM, New York, NY, USA, 574–576. https://doi.org/10.1145/304182.
304581

[2] Apache [n. d.]. Apache Kafka: A high-throughput distributed messaging system.
http://kafka.apache.org/. ([n. d.]).

[3] Apache [n. d.]. Apache Storm: A distributed realtime computation system. http:
//storm.apache.org/. ([n. d.]).

[4] Apache [n. d.]. HBase: the Hadoop database. http:///hbase.apache.org/. ([n. d.]).
[5] Arvind Arasu, Brian Babcock, Shivnath Babu, Jon McAlister, and Jennifer Widom.

2002. Characterizing Memory Requirements for Queries over Continuous Data
Streams. In Proceedings of the Twenty-first ACM SIGMOD-SIGACT-SIGART

Symposium on Principles of Database Systems (PODS ’02). ACM, New York, NY,
USA, 221–232. https://doi.org/10.1145/543613.543642

[6] Ron Avnur and Joseph M. Hellerstein. 2000. Eddies: Continuously Adaptive Query
Processing. In Proceedings of the 2000 ACM SIGMOD International Conference

on Management of Data (SIGMOD ’00). ACM, New York, NY, USA, 261–272.
https://doi.org/10.1145/342009.335420

[7] Ahmed M. Ayad and Jeffrey F. Naughton. 2004. Static Optimization of Conjunc-
tive Queries with Sliding Windows over Infinite Streams. In Proceedings of the

2004 ACM SIGMOD International Conference on Management of Data (SIGMOD

’04). ACM, New York, NY, USA, 419–430. https://doi.org/10.1145/1007568.
1007616

[8] Shivnath Babu and Jennifer Widom. 2001. Continuous Queries over Data Streams.
SIGMOD Rec. 30, 3 (Sept. 2001), 109–120. https://doi.org/10.1145/603867.
603884

[9] Paul Barham, Austin Donnelly, Rebecca Isaacs, and Richard Mortier. 2004. Using
Magpie for Request Extraction and Workload Modelling. In Proceedings of the

6th Conference on Symposium on Opearting Systems Design & Implementation

- Volume 6 (OSDI’04). USENIX Association, Berkeley, CA, USA, 18–18. http:
//dl.acm.org/citation.cfm?id=1251254.1251272

[10] Don Carney, Uǧur Çetintemel, Mitch Cherniack, Christian Convey, Sangdon Lee,
Greg Seidman, Michael Stonebraker, Nesime Tatbul, and Stan Zdonik. 2002. Moni-
toring Streams: A New Class of Data Management Applications. In Proceedings of

the 28th International Conference on Very Large Data Bases (VLDB ’02). VLDB
Endowment, 215–226. http://dl.acm.org/citation.cfm?id=1287369.1287389

[11] Kaushik Chakrabarti, Minos N. Garofalakis, Rajeev Rastogi, and Kyuseok Shim.
2000. Approximate Query Processing Using Wavelets. In Proceedings of the

26th International Conference on Very Large Data Bases (VLDB ’00). Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 111–122. http://dl.acm.org/
citation.cfm?id=645926.671851

[12] Anupam Chanda, Alan L. Cox, and Willy Zwaenepoel. 2007. Whodunit: Trans-
actional Profiling for Multi-tier Applications. In Proceedings of the 2Nd ACM

SIGOPS/EuroSys European Conference on Computer Systems 2007 (EuroSys ’07).
ACM, New York, NY, USA, 17–30. https://doi.org/10.1145/1272996.1273001

[13] Anupam Chanda, Khaled Elmeleegy, Alan L. Cox, and Willy Zwaenepoel. 2005.
Causeway: Operating System Support for Controlling and Analyzing the Execution
of Distributed Programs. In Proceedings of the 10th Conference on Hot Topics

in Operating Systems - Volume 10 (HOTOS’05). USENIX Association, Berkeley,
CA, USA, 18–18. http://dl.acm.org/citation.cfm?id=1251123.1251141

[14] Anupam Chanda, Khaled Elmeleegy, Alan L. Cox, and Willy Zwaenepoel. 2005.
Causeway: Support for Controlling and Analyzing the Execution of Multi-tier
Applications. In Proceedings of the ACM/IFIP/USENIX 2005 International Con-

ference on Middleware (Middleware ’05). Springer-Verlag New York, Inc., New
York, NY, USA, 42–59. http://dl.acm.org/citation.cfm?id=1515890.1515893

[15] F. Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wallach, M. Burrows, T.
Chandra, A. Fikes, and R. E. Gruber. 2008. Bigtable: A Distributed Storage
System for Structured Data. ACM Trans. Computer Systems 26, 2 (2008).

[16] Jianjun Chen, David J. DeWitt, Feng Tian, and Yuan Wang. 2000. NiagaraCQ:
A Scalable Continuous Query System for Internet Databases. In Proceedings

of the 2000 ACM SIGMOD International Conference on Management of Data

(SIGMOD ’00). ACM, New York, NY, USA, 379–390. https://doi.org/10.1145/
342009.335432

[17] MIchael Chow, David Meisner, Jason Flinn, Daniel Peek, and Thomas F. Wenisch.
2014. The Mystery Machine: End-to-end Performance Analysis of Large-scale
Internet Services. In 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 217–231.
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/chow

[18] Tyson Condie, Neil Conway, Peter Alvaro, Joseph M. Hellerstein, Khaled
Elmeleegy, and Russell Sears. 2010. MapReduce Online. In Proceedings of

the 7th USENIX Conference on Networked Systems Design and Implemen-

tation (NSDI’10). USENIX Association, Berkeley, CA, USA, 21–21. http:
//dl.acm.org/citation.cfm?id=1855711.1855732

[19] Abhinandan Das, Johannes Gehrke, and Mirek Riedewald. 2003. Approximate
Join Processing over Data Streams. In Proceedings of the 2003 ACM SIGMOD

International Conference on Management of Data (SIGMOD ’03). ACM, New
York, NY, USA, 40–51. https://doi.org/10.1145/872757.872765

[20] Amol Deshpande and Joseph M. Hellerstein. 2004. Lifting the Burden of History
from Adaptive Query Processing. In Proceedings of the Thirtieth International

Conference on Very Large Data Bases - Volume 30 (VLDB ’04). VLDB Endow-
ment, 948–959. http://dl.acm.org/citation.cfm?id=1316689.1316771

[21] Khaled Elmeleegy. 2013. Piranha: Optimizing Short Jobs in Hadoop. Proc. VLDB

Endow. 6, 11 (Aug. 2013), 985–996. http://dl.acm.org/citation.cfm?id=2536222.
2536225

[22] Úlfar Erlingsson, Marcus Peinado, Simon Peter, and Mihai Budiu. 2011. Fay:
Extensible Distributed Tracing from Kernels to Clusters. In Proceedings of the

Twenty-Third ACM Symposium on Operating Systems Principles (SOSP ’11).
ACM, New York, NY, USA, 311–326. https://doi.org/10.1145/2043556.2043585

[23] Rodrigo Fonseca, George Porter, Randy H. Katz, Scott Shenker, and Ion Stoica.
2007. X-trace: A Pervasive Network Tracing Framework. In Proceedings of the

4th USENIX Conference on Networked Systems Design & Implementation

(NSDI’07). USENIX Association, Berkeley, CA, USA, 20–20. http://dl.acm.org/
citation.cfm?id=1973430.1973450

[24] Minos N. Garofalakis and Phillip B. Gibbon. 2001. Approximate Query Process-
ing: Taming the TeraBytes. In Proceedings of the 27th International Conference

on Very Large Data Bases (VLDB ’01). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA, 725–. http://dl.acm.org/citation.cfm?id=645927.672356

[25] Inigo Goiri, Ricardo Bianchini, Santosh Nagarakatte, and Thu D. Nguyen. 2015.
ApproxHadoop: Bringing Approximations to MapReduce Frameworks. In Pro-

ceedings of the Twentieth International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS ’15). ACM, New York,

Scrub: Online TroubleShooting for Large Mission-Critical Applications EuroSys ’18, April 23–26, 2018, Porto, Portugal

NY, USA, 383–397. https://doi.org/10.1145/2694344.2694351
[26] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online Aggre-

gation. In Proceedings of the 1997 ACM SIGMOD International Conference on

Management of Data (SIGMOD ’97). ACM, New York, NY, USA, 171–182.
https://doi.org/10.1145/253260.253291

[27] Stefan Heule, Marc Nunkesser, and Alexander Hall. 2013. HyperLogLog in
Practice: Algorithmic Engineering of a State of the Art Cardinality Estimation
Algorithm. In Proceedings of the 16th International Conference on Extending

Database Technology (EDBT ’13). ACM, New York, NY, USA, 683–692. https:
//doi.org/10.1145/2452376.2452456

[28] Patrick Hunt, Mahadev Konar, Flavio P. Junqueira, and Benjamin Reed. 2010.
ZooKeeper: wait-free coordination for internet-scale systems. In USENIXATC’10:

Proceedings of the 2010 USENIX conference on USENIX annual technical confer-

ence. 11–11.
[29] Yannis E. Ioannidis. 1996. Query Optimization. ACM Comput. Surv. 28, 1 (March

1996), 121–123. https://doi.org/10.1145/234313.234367
[30] Baris Kasikci, Benjamin Schubert, Cristiano Pereira, Gilles Pokam, and George

Candea. 2015. Failure Sketching: A Technique for Automated Root Cause Di-
agnosis of In-production Failures. In Proceedings of the 25th Symposium on

Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA, 344–360.
https://doi.org/10.1145/2815400.2815412

[31] Soila P. Kavulya, Scott Daniels, Kaustubh Joshi, Matti Hiltunen, Rajeev Gandhi,
and Priya Narasimhan. 2012. Draco: Statistical Diagnosis of Chronic Problems in
Large Distributed Systems. In Proceedings of the 2012 42Nd Annual IEEE/IFIP

International Conference on Dependable Systems and Networks (DSN) (DSN ’12).
IEEE Computer Society, Washington, DC, USA, 1–12. http://dl.acm.org/citation.
cfm?id=2354410.2355155

[32] J. Kreps, N. Narkhede, and J. Rao. 2011. Kafka: A distributed messaging system
for log processing. In Proceedings of 6th International Workshop on Networking

Meets Databases (NetDB), Athens, Greece.
[33] Sanjeev Kulkarni, Nikunj Bhagat, Maosong Fu, Vikas Kedigehalli, Christopher

Kellogg, Sailesh Mittal, Jignesh M. Patel, Karthik Ramasamy, and Siddarth Taneja.
2015. Twitter Heron: Stream Processing at Scale. In Proceedings of the 2015

ACM SIGMOD International Conference on Management of Data (SIGMOD ’15).
ACM, New York, NY, USA, 239–250. https://doi.org/10.1145/2723372.2742788

[34] Shaosu Liu, Bin Song, Sriharsha Gangam, Lawrence Lo, and Khaled Elmeleegy.
2016. Kodiak: Leveraging Materialized Views for Very Low-latency Analytics
over High-dimensional Web-scale Data. Proc. VLDB Endow. 9, 13 (Sept. 2016),
1269–1280. https://doi.org/10.14778/3007263.3007266

[35] Jonathan Mace, Ryan Roelke, and Rodrigo Fonseca. 2015. Pivot Tracing: Dynamic
Causal Monitoring for Distributed Systems. In Proceedings of the 25th Symposium

on Operating Systems Principles (SOSP ’15). ACM, New York, NY, USA, 378–
393. https://doi.org/10.1145/2815400.2815415

[36] Ahmed Metwally, Divyakant Agrawal, and Amr El Abbadi. 2005. Efficient Com-
putation of Frequent and Top-k Elements in Data Streams. In Proceedings of the

10th International Conference on Database Theory (ICDT’05). Springer-Verlag,
Berlin, Heidelberg, 398–412. https://doi.org/10.1007/978-3-540-30570-5_27

[37] Karthik Nagaraj, Charles Killian, and Jennifer Neville. 2012. Structured Compar-
ative Analysis of Systems Logs to Diagnose Performance Problems. In Pro-

ceedings of the 9th USENIX Conference on Networked Systems Design and

Implementation (NSDI’12). USENIX Association, Berkeley, CA, USA, 26–26.
http://dl.acm.org/citation.cfm?id=2228298.2228334

[38] A. J. Oliner, A. V. Kulkarni, and A. Aiken. 2010. Using correlated surprise to infer
shared influence. In 2010 IEEE/IFIP International Conference on Dependable

Systems Networks (DSN). 191–200. https://doi.org/10.1109/DSN.2010.5544921
[39] Christopher Olston and Benjamin Reed. 2011. Inspector Gadget: A Framework

for Custom Monitoring and Debugging of Distributed Dataflows. In Proceedings

of the 2011 ACM SIGMOD International Conference on Management of Data

(SIGMOD ’11). ACM, New York, NY, USA, 1221–1224. https://doi.org/10.1145/
1989323.1989459

[40] Patrick Reynolds, Janet L. Wiener, Jeffrey C. Mogul, Mehul A. Shah, Charles
Killian, and Amin Vahdat. 2005. Experiences with Pip: Finding Unexpected
Behavior in Distributed Systems. In Proceedings of the Twentieth ACM Symposium

on Operating Systems Principles (SOSP ’05). ACM, New York, NY, USA, 1–2.
https://doi.org/10.1145/1095810.1118601

[41] Benjamin H. Sigelman, Luiz André Barroso, Mike Burrows, Pat Stephenson,
Manoj Plakal, Donald Beaver, Saul Jaspan, and Chandan Shanbhag. 2010. Dapper,

a Large-Scale Distributed Systems Tracing Infrastructure. Technical Report.
Google, Inc. https://research.google.com/archive/papers/dapper-2010-1.pdf

[42] Ankit Toshniwal, Siddarth Taneja, Amit Shukla, Karthik Ramasamy, Jignesh M.
Patel, Sanjeev Kulkarni, Jason Jackson, Krishna Gade, Maosong Fu, Jake Donham,
Nikunj Bhagat, Sailesh Mittal, and Dmitriy Ryaboy. 2014. Storm@Twitter. In
Proceedings of the 2014 ACM SIGMOD International Conference on Management

of Data (SIGMOD ’14). ACM, New York, NY, USA, 147–156. https://doi.org/
10.1145/2588555.2595641

[43] Wei Xu, Ling Huang, Armando Fox, David Patterson, and Michael I. Jordan. 2009.
Detecting Large-scale System Problems by Mining Console Logs. In Proceedings

of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles (SOSP

’09). ACM, New York, NY, USA, 117–132. https://doi.org/10.1145/1629575.
1629587

[44] Ding Yuan, Jing Zheng, Soyeon Park, Yuanyuan Zhou, and Stefan Savage. 2011.
Improving Software Diagnosability via Log Enhancement. In Proceedings of the

Sixteenth International Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS XVI). ACM, New York, NY, USA,
3–14. https://doi.org/10.1145/1950365.1950369

[45] Matei Zaharia, Tathagata Das, Haoyuan Li, Timothy Hunter, Scott Shenker, and
Ion Stoica. 2013. Discretized Streams: Fault-tolerant Streaming Computation
at Scale. In Proceedings of the Twenty-Fourth ACM Symposium on Operating

Systems Principles (SOSP ’13). ACM, New York, NY, USA, 423–438. https:
//doi.org/10.1145/2517349.2522737

[46] Xu Zhao, Yongle Zhang, David Lion, Muhammad Faizan Ullah, Yu Luo, Ding
Yuan, and Michael Stumm. 2014. lprof: A Non-intrusive Request Flow Profiler for
Distributed Systems. In 11th USENIX Symposium on Operating Systems Design

and Implementation (OSDI 14). USENIX Association, Broomfield, CO, 629–644.
https://www.usenix.org/conference/osdi14/technical-sessions/presentation/zhao

